WO2004073221A1 - Transmission system, particularly for optical fiber offset of x-dsl signals - Google Patents

Transmission system, particularly for optical fiber offset of x-dsl signals Download PDF

Info

Publication number
WO2004073221A1
WO2004073221A1 PCT/FR2004/000046 FR2004000046W WO2004073221A1 WO 2004073221 A1 WO2004073221 A1 WO 2004073221A1 FR 2004000046 W FR2004000046 W FR 2004000046W WO 2004073221 A1 WO2004073221 A1 WO 2004073221A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
signals
synchronization
optical
modulation
Prior art date
Application number
PCT/FR2004/000046
Other languages
French (fr)
Inventor
Lucien Pophillat
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Publication of WO2004073221A1 publication Critical patent/WO2004073221A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/026Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse time characteristics modulation, e.g. width, position, interval
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1676Time-division multiplex with pulse-position, pulse-interval, or pulse-width modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation

Definitions

  • the present invention relates to an optical transmission system, in particular for the offset by optical fibers of electrical signals of x-DSL type.
  • the invention relates to the field of x-DSL type broadband access systems, for example ADSL ("Asynchronous Digital Subscriber Line" in English terminology). It typically finds its application in serving remote areas of a network access node, also called a central office.
  • ADSL Asynchronous Digital Subscriber Line
  • Such a system comprises a center equipment 1 located near or inside a central and connected by copper pairs 2 ⁇ to 2 n to an access equipment 3 which can be, for example, a DSLAM ("Digital Subscriber Line Access Multiplexer "in Anglo-Saxon terminology). It also includes remote equipment 4 located close to users Ul to Un.
  • the center equipment 1 is connected to the remote equipment 4 by a fiber optic cable 5.
  • this equipment firstly comprises means 6 for separating the two directions of transmission. These means 6 can be, for example, diplexing filters or directional couplers. They also include modulation-multiplexing means 7 as well as demultiplexing-demodulation means 8. The modulation and multiplexing functions, as well as those of demultiplexing and demodulation, have been here voluntarily combined because, in practice, they are very often strongly intertwined.
  • This equipment also includes optical transmitters 9 and optical receivers 10. Each optical transmitter 9 thus makes it possible to convert the frequency modulated and multiplexed signal, coming from a modulation - multiplexing means, into an optical signal which it transmits on the fiber optic cable 5.
  • Each optical receiver 10 makes it possible to restore the multiplexed electrical signal from the received optical signal.
  • An important drawback of the "Optical SCM" technique is that it involves the use of an expensive optical transmitter 9 to allow optimal linearity to be obtained between the power of the optical signal and the voltage of the electrical signal. , in order to limit the level of intermodulation products between the sub-carriers and thus avoid problems of distortion of the signal conveyed.
  • the technical problem to be solved by the object of the present invention is to propose an optical transmission system, in particular for the offset by optical fiber of electrical signals of x-DSL type, comprising center equipment connected to remote equipment. by means of at least one fiber optic cable, said center equipment and said remote equipment each comprising a modulation - multiplexing means connected to an optical transmitter equipment for converting said electrical signals into an optical signal intended to be conveyed on the fiber optic cable, and demultiplexing-demodulation means connected to an optical receiver for reproducing the signals electrical from said optical signal carried on said optical fiber cable, which would overcome constraints on the linearity between the power of the optical signal and the voltage of electrical signals, to allow the use of a cheaper optical transmitter , and which would also have an effective optical modulation index well above 25%, which would be favorable for obtaining an optical power required for low reception.
  • said modulation - multiplexing means is arranged to produce a signal at two voltage levels and that said demultiplexing - demodulation means is arranged to restore said electrical signals to starting from said signal at two voltage levels generated by said modulation - multiplexing means, the signal at two voltage levels (TM) consisting of periodic frames each comprising a synchronization cell (CEL0) followed by cells
  • the signal produced by the modulation means - -multiplexing being a binary type signal since it has two voltage levels, the clipping phenomena as well as the distortion phenomena intermodulation no longer appear. Consequently, the system makes it possible to overcome the constraints on the linearity and can therefore use a less expensive optical transmitter than those used until now. In addition, for such a signal, the clipping phenomenon being avoided, there is no longer any constraint on the effective optical modulation index which can therefore reach a value close to 100%.
  • the modulation functions - multiplexing on the one hand, and demultiplexing - demodulation on the other hand use inexpensive circuits, not bulky, and consuming little energy.
  • FIG. 2b a timing diagram of the signals relating to the modulation-multiplexing means shown diagrammatically in FIG. 2a,
  • FIG. 3 a diagram of an embodiment of a means for generating voltage ramp signals used in the modulation means - multiplexing of FIG. 2a, - FIG. 4, a diagram of a mode of realization of a means for generating synchronization elements used in the modulation - multiplexing means of FIG. 2a, FIG. 5a, a functional diagram of a demultiplexing-demodulation means used in a system conforming to that of FIG. 1,
  • FIG. 5b a timing diagram of the signals relating to the demultiplexing - demodulation diagram shown in FIG. 5a
  • FIG. 6 a diagram of an embodiment of a synchronization recovery means used in the demultiplexing - demodulation means of FIG. 5a.
  • Figure 1 which has already been described to illustrate the prior art, also applies to an optical transmission system, for the offset by optical fibers of electrical signals of x-DSL type according to the invention.
  • the system includes the same elements as the system already described.
  • the difference with the systems of the prior art essentially lies in the processing of the signals by the modulation - multiplexing 7 and demultiplexing - demodulation 8 means.
  • the modulation - multiplexing 7 means in particular no longer processes the signals according to the SCM technique, but it is arranged to convert them into a signal with two voltage levels.
  • the demultiplexing - demodulation means is, in turn, arranged to restore each of the electrical signals SI to Sn of the x-DSL type from the signal at two voltage levels generated by the mul iplexing modulation means.
  • FIG. 2a A functional diagram of a modulation-multiplexing means 7 intended to produce a signal at two voltage levels is shown in FIG. 2a and it will be described, for a better understanding, with reference to the timing diagram of FIG. 2b.
  • the signal at two voltage levels which is produced consists of periodic frames each comprising a synchronization cell CEL0 followed by cells CEL1 to CELn corresponding respectively to each of the signals S1 to Sn to be multiplexed and each comprising a single voltage level transition whose temporal position is a function of the voltage of said electrical signal SI - Sn corresponding to the instant of said transition.
  • An oscillator 11 produces a clock signal CLK which controls a shift register 12.
  • This shift register operates in a loop so as to periodically produce on its outputs control signals C0 to Cn corresponding to cells CELO to CELn.
  • the control signal C0 is directed to a means for generating synchronization elements 13 while the control signals C1 to Cn control means for generating voltage ramps 14 x to 14 n intended to produce ramp signals RI to Rn.
  • These ramp signals are compared, by means of comparators 15 ⁇ to 15 n , to the electrical input signals SI to Sn of the modulation-multiplexing means 7 so as to produce the signals T1 to Tn of which each rising transition is produced when the voltages ramp RI - Rn and corresponding signal SI - Sn are equal.
  • each upward transition of the signals Tl to Tn has a time position in its cell CEL1 to CELn which is proportional to the instantaneous voltage of the input signal SI to Sn corresponding to the instant of said transition.
  • the amplitude of the ramp signals must of course be greater than the maximum peak-to-peak amplitude of the input signals SI to Sn.
  • the signals Tl to Tn are then time-multiplexed by means of a first "OR" logic gate 16a which receives the signals from the comparators 15 of rank of a first parity, for example of odd rank, and of a second gate “OR" logic 16b which receives the signals from the rank comparators 15 of the other parity, i.e. even rank in the example.
  • the "OR" gate 16a, respectively 16b, is followed by a monostable flip-flop 17a, respectively 17b, which delivers a signal Ta, respectively Tb, comprising a short pulse for each rising transition of the signals Tl - Tn of odd rank, respectively even.
  • the signals Ta and Tb are sent to the set and reset inputs of a flip-flop 18 which delivers on its output a time multiplex signal TM with two voltage levels capable of modulating an optical transmitter in light intensity.
  • the monostable flip-flops 17a and 17b are not functionally essential for the production of the signal TM. In fact, their presence is advantageous because they reduce the risk of malfunction of the flip-flop 18 caused by overlapping of the pulses on its set and reset inputs.
  • the ramp signals RI to Rn are represented in FIG. 2b in an ideal manner for reasons of simplicity, but, in practice, it is quite obvious that the rising edges of these signals do not have a zero rise time . For this reason, the falling edges of the signals Tl to Tn can encroach on the immediately next cell, which constitutes a risk of overlapping between two consecutive pulses Tl to Tn.
  • the signals T1 to Tn correspond to a type of modulation well known under the name PWM ("Puise Width Modulation" in English).
  • PWM modulation is synchronous modulation with irregular sampling. Indeed, the samples of modulating signal voltages are not sampled regularly, but at times that depend on the value of these samples. For this reason, it is necessary to use an average sampling repetition frequency higher than the minimum frequency allowed by sampling theory. This minimum frequency is equal to twice the highest frequency contained in the signals S1 to Sn to be multiplexed. It should be noted that in the case of the present invention, the maximum amplitude of the variations in sampling instant is equal to the duration of a cell. For this reason, when the number of cells per frame is high, it can be considered that the sampling is almost regular which allows the use of a ramp repetition frequency close to the minimum frequency authorized by the theory of sampling.
  • a ramp repetition frequency of the order of 3 MHz is sufficient with a frame comprising 16 cells, one of which is reserved for synchronization and the other 15 for multiplexing 15 signals.
  • the high cutoff frequency of the optical transmission channel must be of the order of ten times the average frequency of the TM signal, ie 240 MHz.
  • FIG. 3 An embodiment of one of the ramp generation means 14 ⁇ is shown in Figure 3. It comprises a first transistor 19 for supplying a capacitor 20 with constant current. To this end, this transistor 19 includes in its emitter circuit a resistor 21 connected to a potential -V and its base is connected to a reference potential Vref. Thus, the constant current is determined by the resistor 21 and the difference between Vref and -V.
  • the ramp generation means also comprises a second transistor 22 for resetting the voltage ramp across the capacitor 20 and an adaptation means 23 intended to make the logic levels compatible, for example TTL (from the English “Transistor Transistor Logic ”) or ECL (from the English" Emitter-Coupled Logic "), of the corresponding control signal C1 coming from the shift register 12 with the high and low voltages required on the basis of the transistor 22.
  • This adaptation means 23 can be, for example, a simple bridge of resistances.
  • the transistors shown in Figure 3 are bipolar transistors, but it is of course possible to use field effect transistors.
  • FIG. 4 An embodiment of the means for generating synchronization elements 13, used in the modulation - multiplexing means of FIG. 2a, is shown in FIG. 4. It comprises a monostable flip-flop 24 receiving the control signal C0 and delivering a signal SY which comprises a short pulse for each rising transition of the signal C0. This signal SY is directed to three delay means, 25a, 25b and 25c, which provide a delay of%,%, and% respectively of the duration of the synchronization cell CEL0.
  • the signal SYa from the delay means 25a is directed to an input of the "OR” logic gate 16a and the signals from the delay means 25b and 25c are applied to the inputs of another "OR” logic gate 26 which delivers a signal SYb directed to an input of the logic gate "OR” 16b.
  • a synchronization element thus produced is represented in FIG. 2b by the part of the signal TM situated inside the interior of the cell CEL0. It has of course the characteristic of not being able to be imitated by a particular position of the transitions located in cells CEL1 to CELn. It is centered in the CELO synchronization cell and is made up of three transitions spaced apart by a quarter of its duration. It should be noted that the circuits used in the modulation means - multiplexing and which have just been described, have the advantage of being inexpensive, not bulky and consuming little energy.
  • FIG. 5a A functional diagram of a demultiplexing-demodulation means 8 intended to restore, from the signal TM produced by the modulation-multiplexing means 7, the electrical signals SI to Sn, is shown in FIG. 5a and will be described, for a better understanding, by referring to the timing diagram of figure 5b.
  • the signal at two voltage levels TM from the optical receiver 10 is applied to the input of a comparison means 27 with symmetrical outputs. This comparator 27 thus produces the signal TM and the inverted signal TMinv.
  • the demultiplexing - demodulation means 8 comprises as many "AND" logic gates 28 ⁇ to 28 n as there are signals SI to Sn to be restored.
  • the signal TM, coming from the comparator 27 is applied to an input of each AND gate 28 of rank of a first parity, for example of odd rank, while the inverted signal Tminv is applied to an input of each gate 28 of rank the other parity, that is to say of even rank in the example.
  • the AND gates 28 x to 28 n also receive selection signals SEL1 to SELn produced by a shift register 29 which, like the shift register 12 of FIG. 2a, operates in a loop.
  • This shift register 29 is controlled by an oscillator 30 whose frequency is controlled by a voltage from a synchronization recovery means 31 receiving on the one hand the signals TM and TMinv and on the other hand a synchronization selection signal SEL0 generated by the shift register 29.
  • the signals PI to Pn obtained at the output of the AND gates 28 x to 28 n correspond to a PWM type modulation of the signals SI to Sn.
  • the signals PI to Pn include in their frequency spectrum the corresponding signals SI to Sn which can be isolated by simple low-pass filtering obtained by means of low-pass amplifiers 32 ⁇ to 32 n .
  • the synchronization recovery means 31, of the demultiplexing - demodulation means 8, intended to detect the presence of the synchronization elements produced by the generation means 13 of synchronization elements, of FIG. 4, is represented in FIG. 6.
  • It includes a monostable flip-flop 33a, respectively 33b, producing a short pulse for each rising transition of the signal at two voltage levels TM, respectively of the inverted signal TMinv, a delay means 34a, respectively 34b, of a value of A, respectively y 2 f of the duration of the cell CEL0 and a logic gate "AND" with three inputs 35 which thus delivers a short pulse when the presence of a synchronization element is detected.
  • the RSY signal formed by these short pulses is applied to an input of a phase comparator 36 which forms with the oscillator 30 and the shift register 29 a phase locked loop whose operation is well known to those skilled in the art. 'art.
  • This phase comparator 36 also receives a signal SELOa which is obtained by delaying the synchronization selection signal SEL0 via a delay means 37.
  • the phase comparator 36 is for example of the type producing at its output a zero error voltage when the pulses arriving on its inputs are centered between them.
  • This configuration is represented on the timing diagram of FIG. 5b by the signals RSY and SELOa.
  • the direction of the signals of the timing diagrams of FIGS. 2b and 5b is only an illustrative example because it is entirely possible to conceive an embodiment of the modulation-multiplexing means 7 and the demultiplexing-demodulation means 8 with reverse signals.
  • the circuits used in the modulation means - multiplexing 7 and in the demultiplexing - demodulation means 8 which have just been described have the advantage of being simple elements, inexpensive, not bulky and consuming little energy.

Abstract

The invention relates to an optical transmission signal for optical fiber offset of electric x-DSL signals. The electric signals (S1-Sn) are modulated and multiplexed and are then converted into an optical signal by an optical transmitters (9) in order to be transmitted on a fiber optic cable (5). Modulation-multiplexing means (7) are provided in order to provide a signal which has two voltage levels. The invention can be used to service zones that are remote from a network access node.

Description

SYSTEME DE TRANSMISSION OPTIQUE , NOTAMMENT POUR LE DEPORT PAR FIBRES OPTICAL TRANSMISSION SYSTEM, PARTICULARLY FOR FIBER OFFSET
OPTIQUES DE SIGNAUX X-DSLX-DSL SIGNAL OPTICS
La présente invention concerne un système de transmission optique, notamment pour le déport par fibres optiques de signaux électriques de type x-DSL. L'invention se situe dans le domaine des systèmes d'accès à haut débit de type x-DSL, par exemple ADSL ( "Asynchronous Digital Subscriber Line" en terminologie anglo-saxonne) . Elle trouve typiquement son application dans la desserte des zones éloignées d'un nœud d'accès au réseau, également appelé central.The present invention relates to an optical transmission system, in particular for the offset by optical fibers of electrical signals of x-DSL type. The invention relates to the field of x-DSL type broadband access systems, for example ADSL ("Asynchronous Digital Subscriber Line" in English terminology). It typically finds its application in serving remote areas of a network access node, also called a central office.
Dans le contexte actuel de la montée en débit des transmissions, et de l'explosion des services sur Internet, de nombreux systèmes d'accès large bande ont été introduit chez les abonnés. Ces systèmes d'accès à haut- débit utilisent le câblage existant, c'est-à-dire le câblage sur paire de cuivre torsadée. Or, pour les zones éloignées du central, la performance en débit est fortement dégradée à cause de l'affaiblissement de la paire de cuivre . Afin de permettre la desserte desdites zones éloignées en services à haut débit, des systèmes de déport des signaux électriques au moyen d'une ou plusieurs fibres optiques sont proposés. L'un de ces systèmes est décrit dans l'article de asaru Fuse, Toshihiko Yasue, Mariko Nakaso, Hiroaki Yamamoto, Kuniaki Utsumi, and Susumu Morikura intitulé "Proposai of Multi-channel xDSL Access System for Multi-d ellings using Optical SCM Technology" et publié dans "Proceedings of ECOC'02, paper 9.2.4". Le système décrit dans cet article utilise une technique connue de modulation-multiplexage, usuellement appelée "Optical SCM" (Optical Sub-Carrier Multiplexing en anglais) . L'invention va maintenant être présentée en regard de la figure 1 qui représente schématiquement un système analogue à celui qui est décrit dans l'article précité.In the current context of the increase in transmission speed, and the explosion of Internet services, many broadband access systems have been introduced to subscribers. These broadband access systems use existing cabling, that is, cabling on twisted copper pair. However, for areas remote from the exchange, the throughput performance is greatly degraded due to the weakening of the copper pair. In order to allow the service of said remote areas in high-speed services, systems for offsetting electrical signals by means of one or more optical fibers are proposed. One of these systems is described in the article by asaru Fuse, Toshihiko Yasue, Mariko Nakaso, Hiroaki Yamamoto, Kuniaki Utsumi, and Susumu Morikura entitled "Proposai of Multi-channel xDSL Access System for Multi-d ellings using Optical SCM Technology "and published in" Proceedings of ECOC'02, paper 9.2.4 ". The system described in this article uses a known modulation-multiplexing technique, usually called "Optical SCM" (Optical Sub-Carrier Multiplexing in English). The invention will now be presented with reference to FIG. 1 which schematically represents a system similar to that which is described in the above-mentioned article.
Un tel système comprend un équipement de centre 1 situé à proximité ou à l'intérieur d'un central et relié par des paires de cuivre 2ι à 2n à un équipement d'accès 3 pouvant être, par exemple, un DSLAM ("Digital Subscriber Line Access Multiplexer" en terminologie anlo-saxonne) . Il comprend également un équipement distant 4 situé à proximité des usagers Ul à Un. L'équipement de centre 1 est relié à l'équipement distant 4 par un câble à fibres optiques 5.Such a system comprises a center equipment 1 located near or inside a central and connected by copper pairs 2ι to 2 n to an access equipment 3 which can be, for example, a DSLAM ("Digital Subscriber Line Access Multiplexer "in Anglo-Saxon terminology). It also includes remote equipment 4 located close to users Ul to Un. The center equipment 1 is connected to the remote equipment 4 by a fiber optic cable 5.
Les fonctions élémentaires des équipements de centre 1 et distant 4 sont symétriques. Ainsi, ces équipements comprennent tout d'abord des moyens 6 pour séparer les deux sens de transmission. Ces moyens 6 peuvent être, par exemple, des filtres diplexeurs ou des coupleurs directionnels. Ils comprennent également des moyens de modulation-multiplexage 7 ainsi que des moyens de démultiplexage-démodulation 8. Les fonctions de modulation et de multiplexage, de même que celles de démultiplexage et de démodulation, ont été ici volontairement rassemblées car, en pratique, elles sont très souvent fortement imbriquées. Ces équipements comprennent encore des émetteurs optiques 9 et des récepteurs optiques 10. Chaque émetteur optique 9 permet ainsi de convertir le signal modulé et multiplexe en fréquence, issu d'un moyen de modulation - multiplexage, en un signal optique qu'il émet sur le câble à fibres optiques 5. Chaque récepteur optique 10 permet de restituer le signal électrique multiplexe à partir du signal optique reçu. On peut utiliser une fibre optique par sens de transmission ou bien une seule fibre pour les deux sens de transmission en mettant en oeuvre, par exemple, un multiplexage optique en longueur d'onde. Un inconvénient important de la technique "Optical SCM" réside dans le fait qu'elle implique l'utilisation d'un émetteur optique 9 onéreux pour permettre l'obtention d'une linéarité optimale entre la puissance du signal optique et la tension du signal électrique, afin de limiter le niveau des produits d'intermodulation entre les sous porteuses et d'éviter ainsi des problèmes de distorsion du signal véhiculé. Cela peut conduire, en pratique, à imposer l'utilisation d'un laser de type DFB ( "Distributed Feed Back" en anglais) plus onéreux qu'un laser de type FP ( "Fabry-Pérot" ) ou de type VCSEL ("Vertical Cavity Surface Emitting Laser" en anglais).The elementary functions of the center 1 and remote 4 equipment are symmetrical. Thus, this equipment firstly comprises means 6 for separating the two directions of transmission. These means 6 can be, for example, diplexing filters or directional couplers. They also include modulation-multiplexing means 7 as well as demultiplexing-demodulation means 8. The modulation and multiplexing functions, as well as those of demultiplexing and demodulation, have been here voluntarily combined because, in practice, they are very often strongly intertwined. This equipment also includes optical transmitters 9 and optical receivers 10. Each optical transmitter 9 thus makes it possible to convert the frequency modulated and multiplexed signal, coming from a modulation - multiplexing means, into an optical signal which it transmits on the fiber optic cable 5. Each optical receiver 10 makes it possible to restore the multiplexed electrical signal from the received optical signal. One can use an optical fiber per direction of transmission or a single fiber for the two directions of transmission by implementing, for example, optical wavelength multiplexing. An important drawback of the "Optical SCM" technique is that it involves the use of an expensive optical transmitter 9 to allow optimal linearity to be obtained between the power of the optical signal and the voltage of the electrical signal. , in order to limit the level of intermodulation products between the sub-carriers and thus avoid problems of distortion of the signal conveyed. This can lead, in practice, to impose the use of a laser type DFB ("Distributed Feed Back" in English) more expensive than a laser type FP ("Fabry-Pérot") or type VCSEL (" Vertical Cavity Surface Emitting Laser ".
Un autre inconvénient réside dans le fait que, pour éviter le phénomène d'écrêtage, ou "clipping" en anglais, ainsi que le phénomène de distorsion d'intermodulation sous jacent, phénomènes tous deux bien connus de l'homme de l'art, l'indice de modulation optique efficace ne doit pas dépasser une valeur faible et voisine de 25%. Or, une telle valeur d'indice n'est pas favorable en termes de rapport signal à bruit à la sortie du récepteur optique et, en conséquence, elle entraîne une puissance optique requise en réception qui est élevée.Another disadvantage lies in the fact that, to avoid the phenomenon of clipping, or "clipping" in English, as well as the phenomenon of underlying intermodulation distortion, phenomena both well known to those skilled in the art, the effective optical modulation index must not exceed a low value close to 25%. However, such an index value is not favorable in terms of signal-to-noise ratio at the output of the optical receiver and, consequently, it results in a high optical power required for reception.
Un autre inconvénient concerne les fonctions de modulation-multiplexage et de démultiplexage-démodulâtion qui nécessitent, pour leur mise en oeuvre, de nombreux circuits comme par exemple des oscillateurs locaux, des mélangeurs et des filtres sélectifs qui sont généralement onéreux, volumineux ou grands consommateurs d'énergie.Another drawback concerns the modulation-multiplexing and demultiplexing-demodulation functions which require, for their implementation, numerous circuits such as for example local oscillators, mixers and selective filters which are generally expensive, bulky or large consumers of 'energy.
Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer un système de transmission optique, notamment pour le déport par fibre optique de signaux électriques de type x-DSL, comprenant un équipement de centre relié à un équipement distant au moyen d'au moins un câble à fibres optiques, ledit équipement de centre et ledit équipement distant comportant chacun un moyen de modulation - multiplexage relié à un équipement émetteur optique pour convertir lesdits signaux électriques en un signal optique destiné à être véhiculé sur le câble à fibres optiques, et un moyen de démultiplexage-démodulation relié à un récepteur optique pour restituer les signaux électriques à partir dudit signal optique véhiculé sur ledit câble à fibres optiques, qui permettrait de s'affranchir des contraintes sur la linéarité entre la puissance du signal optique et la tension des signaux électriques, pour permettre l'utilisation d'un émetteur optique moins onéreux, et qui présenterait en outre un indice de modulation optique efficace bien supérieur à 25%, ce qui serait favorable pour l'obtention d'une puissance optique requise en réception peu élevée.Also, the technical problem to be solved by the object of the present invention is to propose an optical transmission system, in particular for the offset by optical fiber of electrical signals of x-DSL type, comprising center equipment connected to remote equipment. by means of at least one fiber optic cable, said center equipment and said remote equipment each comprising a modulation - multiplexing means connected to an optical transmitter equipment for converting said electrical signals into an optical signal intended to be conveyed on the fiber optic cable, and demultiplexing-demodulation means connected to an optical receiver for reproducing the signals electrical from said optical signal carried on said optical fiber cable, which would overcome constraints on the linearity between the power of the optical signal and the voltage of electrical signals, to allow the use of a cheaper optical transmitter , and which would also have an effective optical modulation index well above 25%, which would be favorable for obtaining an optical power required for low reception.
La solution au problème technique est obtenue, selon la présente invention, par le fait que ledit moyen de modulation - multiplexage est agencé pour produire un signal à deux niveaux de tension et que ledit moyen de démultiplexage - démodulation est agencé pour restituer lesdits signaux électriques à partir dudit signal à deux niveaux de tension engendré par ledit moyen de modulation - multiplexage, le signal à deux niveaux de tension (TM) étant constitué de trames périodiques comprenant chacune une cellule de synchronisation (CEL0) suivie de cellulesThe solution to the technical problem is obtained, according to the present invention, by the fact that said modulation - multiplexing means is arranged to produce a signal at two voltage levels and that said demultiplexing - demodulation means is arranged to restore said electrical signals to starting from said signal at two voltage levels generated by said modulation - multiplexing means, the signal at two voltage levels (TM) consisting of periodic frames each comprising a synchronization cell (CEL0) followed by cells
(CEL1 - CELn) correspondant respectivement à chacun desdits signaux électriques (SI - Sn) et comportant chacune une transition unique de niveau de tension dont la position temporelle est fonction de la tension dudit signal électrique (Sl-Sn) correspondant à l'instant de ladite transition.(CEL1 - CELn) corresponding respectively to each of said electrical signals (SI - Sn) and each comprising a single voltage level transition whose time position is a function of the voltage of said electrical signal (Sl-Sn) corresponding to the instant of said transition.
Ainsi, le signal produit par le moyen de modulation - -multiplexage étant un signal de type binaire puisqu'il présente deux niveaux de tension, les phénomènes d'écrêtage ainsi que les phénomènes de distorsion d'intermodulation n'apparaissent plus. Par conséquent, le système permet de s'affranchir des contraintes sur la linéarité et peut donc utiliser un émetteur optique moins coûteux que ceux utilisés jusqu'à présent. De plus, pour un tel signal, le phénomène d'écrêtage étant évité, il n'existe plus de contrainte sur l'indice de modulation optique efficace qui peut donc atteindre une valeur proche de 100%.Thus, the signal produced by the modulation means - -multiplexing being a binary type signal since it has two voltage levels, the clipping phenomena as well as the distortion phenomena intermodulation no longer appear. Consequently, the system makes it possible to overcome the constraints on the linearity and can therefore use a less expensive optical transmitter than those used until now. In addition, for such a signal, the clipping phenomenon being avoided, there is no longer any constraint on the effective optical modulation index which can therefore reach a value close to 100%.
D'autre part, grâce à l'invention, les fonctions de modulation - multiplexage d'une part, et de démultiplexage - démodulation d'autre part utilisent des circuits peu coûteux, peu volumineux, et peu consommateurs d'énergie.On the other hand, thanks to the invention, the modulation functions - multiplexing on the one hand, and demultiplexing - demodulation on the other hand use inexpensive circuits, not bulky, and consuming little energy.
D'autres particularités et avantages de l'invention apparaîtront à la lecture de la description suivante, faite à titre d'exemple illustratif mais non limitatif, en référence aux figures annexées qui représentent :Other features and advantages of the invention will appear on reading the following description, given by way of illustrative but nonlimiting example, with reference to the appended figures which represent:
- la figure 1, déjà décrite, un schéma fonctionnel d'un système de transmission optique pour le déport par fibres optiques de signaux électriques de type x-DSL, -la figure 2a, un schéma fonctionnel d'un moyen de modulation-multiplexage utilisé dans un système conforme à celui de la figure 1,- Figure 1, already described, a functional diagram of an optical transmission system for the offset by optical fibers of electrical signals of x-DSL type, - Figure 2a, a functional diagram of a modulation-multiplexing means used in a system conforming to that of FIG. 1,
- la figure 2b, un chronogramme des signaux relatifs au moyen de modulation-multiplexage schématisé sur la figure 2a,FIG. 2b, a timing diagram of the signals relating to the modulation-multiplexing means shown diagrammatically in FIG. 2a,
-la figure 3, un schéma d'un mode de réalisation d'un moyen de génération de signaux de rampes de tension utilisé dans le moyen de modulation - multiplexage de la figure 2a, -la figure 4, un schéma d'un mode de réalisation d'un moyen de génération d'éléments de synchronisation utilisé dans le moyen de modulation - multiplexage de la figure 2a, -la figure 5a, un schéma fonctionnel d'un moyen de démultiplexage-démodulation utilisé dans un système conforme à celui de la figure 1,FIG. 3, a diagram of an embodiment of a means for generating voltage ramp signals used in the modulation means - multiplexing of FIG. 2a, - FIG. 4, a diagram of a mode of realization of a means for generating synchronization elements used in the modulation - multiplexing means of FIG. 2a, FIG. 5a, a functional diagram of a demultiplexing-demodulation means used in a system conforming to that of FIG. 1,
-la figure 5b, un chronogramme des signaux relatifs au moyen de démultiplexage - démodulation schématisé sur la figure 5a,FIG. 5b, a timing diagram of the signals relating to the demultiplexing - demodulation diagram shown in FIG. 5a,
-la figure 6, un schéma d'un mode de réalisation d'un moyen de récupération de synchronisation utilisé dans le moyen de démultiplexage - démodulation de la figure 5a.FIG. 6, a diagram of an embodiment of a synchronization recovery means used in the demultiplexing - demodulation means of FIG. 5a.
La figure 1 qui a déjà été décrite pour illustrer l'art antérieur, s'applique également à un système de transmission optique, pour le déport par fibres optiques de signaux électriques de type x-DSL selon l'invention. En effet, le système comprend les mêmes éléments que le système déjà décrit. La différence avec les systèmes de l'art antérieur réside essentiellement dans le traitement des signaux par les moyens de modulation - multiplexage 7 et de démultiplexage - démodulation 8. Le moyen de modulation - multiplexage 7 notamment ne traite plus les signaux selon la technique SCM, mais il est agencé pour les convertir en un signal à deux niveaux de tension. Le moyen de démultiplexage - démodulation est, quant-à-lui, agencé pour restituer chacun des signaux électriques SI à Sn de type x-DSL à partir du signal à deux niveaux de tension engendré par le moyen de modulation mul iplexage .Figure 1 which has already been described to illustrate the prior art, also applies to an optical transmission system, for the offset by optical fibers of electrical signals of x-DSL type according to the invention. Indeed, the system includes the same elements as the system already described. The difference with the systems of the prior art essentially lies in the processing of the signals by the modulation - multiplexing 7 and demultiplexing - demodulation 8 means. The modulation - multiplexing 7 means in particular no longer processes the signals according to the SCM technique, but it is arranged to convert them into a signal with two voltage levels. The demultiplexing - demodulation means is, in turn, arranged to restore each of the electrical signals SI to Sn of the x-DSL type from the signal at two voltage levels generated by the mul iplexing modulation means.
Un schéma fonctionnel d'un moyen de modulation- multiplexage 7 destiné à produire un signal à deux niveaux de tension est représenté sur la figure 2a et il va être décrit, pour une meilleure compréhension, en se référant au chronogramme de la figure 2b.A functional diagram of a modulation-multiplexing means 7 intended to produce a signal at two voltage levels is shown in FIG. 2a and it will be described, for a better understanding, with reference to the timing diagram of FIG. 2b.
Le signal à deux niveaux de tension qui est produit est constitué de trames périodiques comprenant chacune une cellule de synchronisation CEL0 suivie de cellules CEL1 à CELn correspondant respectivement à chacun des signaux SI à Sn à multiplexer et comportant chacune une transition unique de niveau de tension dont la position temporelle est fonction de la tension dudit signal électrique SI - Sn correspondant à l'instant de ladite transition.The signal at two voltage levels which is produced consists of periodic frames each comprising a synchronization cell CEL0 followed by cells CEL1 to CELn corresponding respectively to each of the signals S1 to Sn to be multiplexed and each comprising a single voltage level transition whose temporal position is a function of the voltage of said electrical signal SI - Sn corresponding to the instant of said transition.
Un oscillateur 11 produit un signal d'horloge CLK qui pilote un registre à décalage 12. Ce registre à décalage fonctionne en boucle de manière à produire périodiquement sur ses sorties des signaux de commande C0 à Cn correspondant aux cellules CELO à CELn. Le signal de commande C0 est dirigé vers un moyen de génération d'éléments de synchronisation 13 tandis que les signaux de commande Cl à Cn pilotent des moyens de génération de rampes de tension 14x à 14n destinés à produire des signaux de rampes RI à Rn. Ces signaux de rampes sont comparés, au moyen de comparateurs 15ι à 15n, aux signaux électriques d'entrée SI à Sn du moyen de modulation- multiplexage 7 de manière à produire les signaux Tl à Tn dont chaque transition montante est produite lorsque les tensions instantanées de rampe RI - Rn et de signal SI - Sn correspondant sont égales.An oscillator 11 produces a clock signal CLK which controls a shift register 12. This shift register operates in a loop so as to periodically produce on its outputs control signals C0 to Cn corresponding to cells CELO to CELn. The control signal C0 is directed to a means for generating synchronization elements 13 while the control signals C1 to Cn control means for generating voltage ramps 14 x to 14 n intended to produce ramp signals RI to Rn. These ramp signals are compared, by means of comparators 15ι to 15 n , to the electrical input signals SI to Sn of the modulation-multiplexing means 7 so as to produce the signals T1 to Tn of which each rising transition is produced when the voltages ramp RI - Rn and corresponding signal SI - Sn are equal.
Ainsi, chaque transition montante des signaux Tl à Tn a une position temporelle dans sa cellule CEL1 à CELn qui est proportionnelle à la tension instantanée du signal d'entrée SI à Sn correspondant, à l'instant de ladite transition. Pour un fonctionnement correct, l'amplitude des signaux de rampes doit bien entendu être supérieure à l'amplitude crête à crête maximale des signaux d'entrée SI à Sn. Les signaux Tl à Tn sont ensuite multiplexes de manière temporelle au moyen d'une première porte logique "OU" 16a qui reçoit les signaux des comparateurs 15 de rang d'une première parité, par exemple de rang impair, et d'une deuxième porte logique "OU" 16b qui reçoit les signaux des comparateurs 15 de rang de l'autre parité, c'est à dire de rang pair dans l'exemple. La porte "OU" 16a, respectivement 16b, est suivie par une bascule monostable 17a, respectivement 17b, qui délivre un signal Ta, respectivement Tb, comportant une impulsion courte pour chaque transition montante des signaux Tl - Tn de rang impair, respectivement pair. Les signaux Ta et Tb sont dirigés vers les entrées set et reset d'une bascule bistable 18 qui délivre sur sa sortie un signal de multiplex temporel TM à deux niveaux de tension apte à moduler en intensité lumineuse un émetteur optique.Thus, each upward transition of the signals Tl to Tn has a time position in its cell CEL1 to CELn which is proportional to the instantaneous voltage of the input signal SI to Sn corresponding to the instant of said transition. For correct operation, the amplitude of the ramp signals must of course be greater than the maximum peak-to-peak amplitude of the input signals SI to Sn. The signals Tl to Tn are then time-multiplexed by means of a first "OR" logic gate 16a which receives the signals from the comparators 15 of rank of a first parity, for example of odd rank, and of a second gate "OR" logic 16b which receives the signals from the rank comparators 15 of the other parity, i.e. even rank in the example. The "OR" gate 16a, respectively 16b, is followed by a monostable flip-flop 17a, respectively 17b, which delivers a signal Ta, respectively Tb, comprising a short pulse for each rising transition of the signals Tl - Tn of odd rank, respectively even. The signals Ta and Tb are sent to the set and reset inputs of a flip-flop 18 which delivers on its output a time multiplex signal TM with two voltage levels capable of modulating an optical transmitter in light intensity.
Il est à noter que les bascules monostables 17a et 17b ne sont pas fonctionnellement indispensables pour la production du signal TM. En fait, leur présence est avantageuse car elles diminuent le risque de mauvais fonctionnement de la bascule bistable 18 provoqué par un chevauchement des impulsions sur ses entrées set et reset. En effet, les signaux de rampe RI à Rn sont représentés sur la figure 2b de manière idéale pour des raisons de simplicité, mais, en pratique, il est bien évident que les fronts montants de ces signaux n'ont pas un temps de monté nul . Pour cette raison, les fronts descendants des signaux Tl à Tn peuvent empiéter dans la cellule immédiatement suivante ce qui constitue un risque de chevauchement entre deux impulsions Tl à Tn consécutives. De plus, comme il est difficile, en pratique, de produire une rampe bien linéaire dans les zones voisines de ses extrémités, on peut utiliser une rampe dont la durée est supérieure à la durée d'une cellule, mais cela augmente encore le risque de chevauchement entre deux impulsions Tl à Tn consécutives.It should be noted that the monostable flip-flops 17a and 17b are not functionally essential for the production of the signal TM. In fact, their presence is advantageous because they reduce the risk of malfunction of the flip-flop 18 caused by overlapping of the pulses on its set and reset inputs. Indeed, the ramp signals RI to Rn are represented in FIG. 2b in an ideal manner for reasons of simplicity, but, in practice, it is quite obvious that the rising edges of these signals do not have a zero rise time . For this reason, the falling edges of the signals Tl to Tn can encroach on the immediately next cell, which constitutes a risk of overlapping between two consecutive pulses Tl to Tn. In addition, since it is difficult, in practice, to produce a well-linear ramp in the areas close to its ends, it is possible to use a ramp whose duration is greater than the duration of a cell, but this further increases the risk of overlap between two consecutive pulses Tl to Tn.
Il est intéressant de remarquer que les signaux Tl à Tn correspondent à un type de modulation bien connu sous l'appellation PWM ("Puise Width Modulation" en anglais) .It is interesting to note that the signals T1 to Tn correspond to a type of modulation well known under the name PWM ("Puise Width Modulation" in English).
La modulation PWM est une modulation synchrone a échantillonnage irrégulier. En effet, les échantillons de tension du signal modulant ne sont pas prélevés régulièrement, mais a des instants qui dépendent de la valeur de ces échantillons. Pour cette raison, il est nécessaire d'utiliser une fréquence de répétition moyenne d'échantillonnage plus élevée que la fréquence minimale autorisée par la théorie de l'échantillonnage. Cette fréquence minimale est égale au double de la fréquence la plus élevée contenue dans les signaux SI à Sn à multiplexer. II est à noter que dans le cas de la présente invention, l'amplitude maximale des variations d'instant d'échantillonnage est égale à la durée d'une cellule. Pour cette raison, lorsque le nombre de cellules par trames est élevé, on peut considérer que l'échantillonnage est quasi régulier ce qui permet l'utilisation d'une fréquence de répétition de rampe proche de la fréquence minimale autorisée par la théorie de l'échantillonnage.PWM modulation is synchronous modulation with irregular sampling. Indeed, the samples of modulating signal voltages are not sampled regularly, but at times that depend on the value of these samples. For this reason, it is necessary to use an average sampling repetition frequency higher than the minimum frequency allowed by sampling theory. This minimum frequency is equal to twice the highest frequency contained in the signals S1 to Sn to be multiplexed. It should be noted that in the case of the present invention, the maximum amplitude of the variations in sampling instant is equal to the duration of a cell. For this reason, when the number of cells per frame is high, it can be considered that the sampling is almost regular which allows the use of a ramp repetition frequency close to the minimum frequency authorized by the theory of sampling.
Par exemple, à titre illustratif, dans le cas d'un signal ADSL en voie descendante, pour lequel il est rappelé que la fréquence la plus élevée est de l'ordre de 1,1 MHz, une fréquence de répétition de rampe de l'ordre de 3 MHz est suffisante avec une trame comportant 16 cellules, dont une réservée à la synchronisation et les 15 autres destinées au multiplexage de 15 signaux. La fréquence d'horloge CLK est alors de 3X16 = 48 MHz et la fréquence moyenne du signal TM de 48/2 = 24 MHz. A noter que pour conserver une bonne précision des instants de transition du signal TM, la fréquence de coupure haute du canal de transmission optique doit être de l'ordre de dix fois la fréquence moyenne du signal TM, soit 240 MHz.For example, by way of illustration, in the case of an ADSL signal in downlink mode, for which it is recalled that the highest frequency is of the order of 1.1 MHz, a ramp repetition frequency of the order of 3 MHz is sufficient with a frame comprising 16 cells, one of which is reserved for synchronization and the other 15 for multiplexing 15 signals. The CLK clock frequency is then 3X16 = 48 MHz and the average frequency of the TM signal is 48/2 = 24 MHz. Note that in order to maintain good precision of the moments of transition of the TM signal, the high cutoff frequency of the optical transmission channel must be of the order of ten times the average frequency of the TM signal, ie 240 MHz.
Un mode de réalisation d'un des moyens de génération de rampes 14ι est représenté sur la figure 3. Il comprend un premier transistor 19 pour alimenter un condensateur 20 en courant constant. A cette fin, ce transistor 19 comporte dans son circuit d'émetteur une résistance 21 reliée à un potentiel -V et sa base est reliée à un potentiel de référence Vref . Ainsi, le courant constant est déterminé par la résistance 21 et la différence entre Vref et -V. Le moyen de génération de rampes comporte également un deuxième transistor 22 pour réinitialiser la rampe de tension aux bornes du condensateur 20 et un moyen d'adaptation 23 destiné à rendre compatibles les niveaux logiques, par exemple TTL (de l'anglais "Transistor Transistor Logic") ou ECL (de l'anglais "Emitter-Coupled Logic"), du signal de commande Cl correspondant issu du registre à décalage 12 avec les tensions haute et basse requises sur la base du transistor 22. Ce moyen d'adaptation 23 peut être, par exemple, un simple pont de résistances. Les transistors représentés sur la figure 3 sont des transistors bipolaires, mais il est bien entendu possible d'utiliser des transistors à effet de champ.An embodiment of one of the ramp generation means 14ι is shown in Figure 3. It comprises a first transistor 19 for supplying a capacitor 20 with constant current. To this end, this transistor 19 includes in its emitter circuit a resistor 21 connected to a potential -V and its base is connected to a reference potential Vref. Thus, the constant current is determined by the resistor 21 and the difference between Vref and -V. The ramp generation means also comprises a second transistor 22 for resetting the voltage ramp across the capacitor 20 and an adaptation means 23 intended to make the logic levels compatible, for example TTL (from the English "Transistor Transistor Logic ") or ECL (from the English" Emitter-Coupled Logic "), of the corresponding control signal C1 coming from the shift register 12 with the high and low voltages required on the basis of the transistor 22. This adaptation means 23 can be, for example, a simple bridge of resistances. The transistors shown in Figure 3 are bipolar transistors, but it is of course possible to use field effect transistors.
Un mode de réalisation du moyen de génération d'éléments de synchronisation 13, utilisé dans le moyen de modulation - multiplexage de la figure 2a, est représenté sur la figure 4. Il comprend une bascule monostable 24 recevant le signal de commande C0 et délivrant un signal SY qui comporte une impulsion courte pour chaque transition montante du signal C0. Ce signal SY est dirigé vers trois moyens de retard, 25a, 25b et 25c, qui apportent un retard respectivement de %, %, et % de la durée de la cellule de synchronisation CEL0. Le signal SYa issu du moyen de retard 25a est dirigé vers une entrée de la porte logique "OU" 16a et les signaux issus des moyens de retard 25b et 25c sont appliqués sur les entrées d'une autre porte logique "OU" 26 qui délivre un signal SYb dirigé vers une entrée de la porte logique "OU" 16b.An embodiment of the means for generating synchronization elements 13, used in the modulation - multiplexing means of FIG. 2a, is shown in FIG. 4. It comprises a monostable flip-flop 24 receiving the control signal C0 and delivering a signal SY which comprises a short pulse for each rising transition of the signal C0. This signal SY is directed to three delay means, 25a, 25b and 25c, which provide a delay of%,%, and% respectively of the duration of the synchronization cell CEL0. The signal SYa from the delay means 25a is directed to an input of the "OR" logic gate 16a and the signals from the delay means 25b and 25c are applied to the inputs of another "OR" logic gate 26 which delivers a signal SYb directed to an input of the logic gate "OR" 16b.
Un élément de synchronisation ainsi produit est représenté sur la figure 2b par la partie du signal TM située à 1 ' intérieμr de la cellule CEL0. Il a bien entendu pour caractéristique de ne pas pouvoir être imité par une position particulière des transitions situées dans les cellules CEL1 à CELn. Il est centré dans la cellule de synchronisation CELO et est composé de trois transitions espacées entre elles du quart de sa durée. II est à noter que les circuits utilisés dans le moyen de modulation - multiplexage et qui viennent d'être décrits, présentent l'avantage d'être peu onéreux, peu volumineux et peu consommateurs d'énergie.A synchronization element thus produced is represented in FIG. 2b by the part of the signal TM situated inside the interior of the cell CEL0. It has of course the characteristic of not being able to be imitated by a particular position of the transitions located in cells CEL1 to CELn. It is centered in the CELO synchronization cell and is made up of three transitions spaced apart by a quarter of its duration. It should be noted that the circuits used in the modulation means - multiplexing and which have just been described, have the advantage of being inexpensive, not bulky and consuming little energy.
Un schéma fonctionnel d'un moyen de démultiplexage- démodulation 8 destiné à restituer, à partir du signal TM produit par le moyen de modulation-multiplexage 7, les signaux électriques SI à Sn, est représenté sur la figure 5a et il va être décrit, pour une meilleure compréhension, en se référant au chronogramme de la figure 5b. Le signal à deux niveaux de tension TM issu du récepteur optique 10 est appliqué à l'entrée d'un moyen de comparaison 27 à sorties symétriques. Ce comparateur 27 produit ainsi le signal TM et le signal inversé TMinv. Le moyen de démultiplexage - démodulation 8 comporte autant de portes logiques "ET" 28χ à 28n qu'il y a de signaux SI à Sn à restituer. Le signal TM, issu du comparateur 27 est appliqué sur une entrée de chaque porte ET 28 de rang d'une première parité, par exemple de rang impair, tandis que le signal inversé Tminv est appliqué sur une entrée de chaque porte 28 de rang de l'autre parité, c'est-à-dire de rang pair dans l'exemple. Les portes ET 28x à 28n reçoivent également des signaux de sélection SELl à SELn produits par un registre à décalage 29 qui, de même que le registre à décalage 12 de la figure 2a, fonctionne en boucle. Ce registre à décalage 29 est piloté par un oscillateur 30 dont la fréquence est commandée par une tension issue d'un moyen de récupération de synchronisation 31 recevant d'une part les signaux TM et TMinv et d'autre part un signal de sélection de synchronisation SEL0 généré par le registre à décalage 29. Le chronogramme de la figure 5b montre bien que les signaux PI à Pn obtenus à la sortie des portes ET 28x à 28n, respectivement identiques aux signaux Tl à Tn de la figure 2b, correspondent à une modulation de type PWM des signaux SI à Sn. Selon une propriété connue de la modulation PWM, les signaux PI à Pn comprennent dans leur spectre fréquentiel les signaux SI à Sn correspondants que l'on peut isoler par un simple filtrage passe-bas obtenu au moyen d'amplificateurs passe-bas 32χ à 32n. Le moyen de récupération de synchronisation 31, du moyen de démultiplexage - démodulation 8, destiné à détecter la présence des éléments de synchronisation produits par le moyen de génération 13 d'éléments de synchronisation, de la figure 4, est représenté sur la figure 6. Il comprend une bascule monostable 33a, respectivement 33b, produisant une impulsion courte pour chaque transition montante du signal à deux niveaux de tension TM, respectivement du signal inversé TMinv, un moyen de retard 34a, respectivement 34b, d'une valeur de A, respectivement y2 f de la durée de la cellule CEL0 et une porte logique "ET" à trois entrées 35 qui délivre ainsi une impulsion courte lorsque la présence d'un élément de synchronisation est détectée. Le signal RSY formé par ces impulsions courtes est appliqué sur une entrée d'un comparateur de phase 36 qui forme avec l'oscillateur 30 et le registre décalage 29 une boucle à verrouillage de phase dont le fonctionnement est bien connu de l'homme de l'art. Ce comparateur de phase 36 reçoit en outre un signal SELOa qui est obtenu en retardant le signal de sélection de synchronisation SEL0 via un moyen de retard 37. Le comparateur de phase 36 est par exemple du type produisant sur sa sortie une tension d'erreur nulle lorsque les impulsions arrivant sur ses entrées sont centrées entre elles. Cette configuration est représentée sur le chronogramme de la figure 5b par les signaux RSY et SELOa. Bien sûr le sens des signaux des chronogrammes des figures 2b et 5b n'est qu'un exemple illustrâtif car il est tout à fait possible de concevoir un mode de réalisation du moyen de modulation-multiplexage 7 et du moyen de démultiplexage-démodulation 8 avec des signaux inversés .A functional diagram of a demultiplexing-demodulation means 8 intended to restore, from the signal TM produced by the modulation-multiplexing means 7, the electrical signals SI to Sn, is shown in FIG. 5a and will be described, for a better understanding, by referring to the timing diagram of figure 5b. The signal at two voltage levels TM from the optical receiver 10 is applied to the input of a comparison means 27 with symmetrical outputs. This comparator 27 thus produces the signal TM and the inverted signal TMinv. The demultiplexing - demodulation means 8 comprises as many "AND" logic gates 28χ to 28 n as there are signals SI to Sn to be restored. The signal TM, coming from the comparator 27 is applied to an input of each AND gate 28 of rank of a first parity, for example of odd rank, while the inverted signal Tminv is applied to an input of each gate 28 of rank the other parity, that is to say of even rank in the example. The AND gates 28 x to 28 n also receive selection signals SEL1 to SELn produced by a shift register 29 which, like the shift register 12 of FIG. 2a, operates in a loop. This shift register 29 is controlled by an oscillator 30 whose frequency is controlled by a voltage from a synchronization recovery means 31 receiving on the one hand the signals TM and TMinv and on the other hand a synchronization selection signal SEL0 generated by the shift register 29. The timing diagram of FIG. 5b clearly shows that the signals PI to Pn obtained at the output of the AND gates 28 x to 28 n , respectively identical to the signals Tl to Tn of FIG. 2b, correspond to a PWM type modulation of the signals SI to Sn. According to a known property of PWM modulation, the signals PI to Pn include in their frequency spectrum the corresponding signals SI to Sn which can be isolated by simple low-pass filtering obtained by means of low-pass amplifiers 32χ to 32 n . The synchronization recovery means 31, of the demultiplexing - demodulation means 8, intended to detect the presence of the synchronization elements produced by the generation means 13 of synchronization elements, of FIG. 4, is represented in FIG. 6. It includes a monostable flip-flop 33a, respectively 33b, producing a short pulse for each rising transition of the signal at two voltage levels TM, respectively of the inverted signal TMinv, a delay means 34a, respectively 34b, of a value of A, respectively y 2 f of the duration of the cell CEL0 and a logic gate "AND" with three inputs 35 which thus delivers a short pulse when the presence of a synchronization element is detected. The RSY signal formed by these short pulses is applied to an input of a phase comparator 36 which forms with the oscillator 30 and the shift register 29 a phase locked loop whose operation is well known to those skilled in the art. 'art. This phase comparator 36 also receives a signal SELOa which is obtained by delaying the synchronization selection signal SEL0 via a delay means 37. The phase comparator 36 is for example of the type producing at its output a zero error voltage when the pulses arriving on its inputs are centered between them. This configuration is represented on the timing diagram of FIG. 5b by the signals RSY and SELOa. Of course, the direction of the signals of the timing diagrams of FIGS. 2b and 5b is only an illustrative example because it is entirely possible to conceive an embodiment of the modulation-multiplexing means 7 and the demultiplexing-demodulation means 8 with reverse signals.
Les circuits utilisés dans les moyens de modulation - multiplexage 7 et dans les moyens de démultiplexage - démodulation 8 qui viennent d'être décrits présentent l'avantage d'être des éléments simples, peu onéreux, peu volumineux et peu consommateurs d'énergie. The circuits used in the modulation means - multiplexing 7 and in the demultiplexing - demodulation means 8 which have just been described have the advantage of being simple elements, inexpensive, not bulky and consuming little energy.

Claims

REVENDICATIONS
1. Système de transmission optique, notamment pour le déport par fibres optiques de signaux électriques1. Optical transmission system, in particular for the offset by optical fibers of electrical signals
(SI- Sn) de type x-DSL, comprenant un équipement de centre (1) relié à un équipement distant (4) au moyen d'au moins un câble (5) à fibres optiques, ledit équipement de centre (1) et ledit équipement distant (4) comportant chacun un moyen de modulation-multiplexage (7) relié à un émetteur optique (9) pour convertir lesdits signaux électriques (SI - Sn) en un signal optique destiné à être véhiculé sur le câble (5) à fibres optiques, et un moyen de démultiplexage-démodulation (8) relié à un récepteur optique (10) pour restituer les signaux électriques (Sl-Sn) à partir dudit signal optique véhiculé sur ledit câble à fibres optiques, caractérisé en ce que le moyen de modulation - multiplexage (7) est agencé pour produire un signal à deux niveaux de tension (TM) et en ce que le démul iplexeur - démodulateur (8) est agencé pour restituer chacun des signaux électriques (SI - Sn) à partir dudit signal à deux niveaux de tension (TM) engendré par ledit moyen de modulation - multiplexage, le signal à deux niveaux de tension(SI-Sn) of x-DSL type, comprising center equipment (1) connected to remote equipment (4) by means of at least one fiber optic cable (5), said center equipment (1) and said remote equipment (4) each comprising a modulation-multiplexing means (7) connected to an optical transmitter (9) for converting said electrical signals (SI - Sn) into an optical signal intended to be conveyed on the cable (5) to optical fibers, and demultiplexing-demodulation means (8) connected to an optical receiver (10) for restoring the electrical signals (Sl-Sn) from said optical signal conveyed on said optical fiber cable, characterized in that the means modulation - multiplexing (7) is arranged to produce a signal at two voltage levels (TM) and in that the iplexer - demodulator demul (8) is arranged to restore each of the electrical signals (SI - Sn) from said signal at two voltage levels (TM) generated by said mo modulation yen - multiplexing, the signal at two voltage levels
(TM) étant constitué de trames périodiques comprenant chacune une cellule de synchronisation(TM) consisting of periodic frames each comprising a synchronization cell
(CEL0) suivie de cellules (CEL1 - CELn) correspondant respectivement à chacun desdits signaux électriques (SI - Sn) et comportant chacune une transition unique de niveau de tension dont la position temporelle est fonction de la tension dudit signal électrique (Sl-Sn) correspondant à l'instant de ladite transition. (CEL0) followed by cells (CEL1 - CELn) corresponding respectively to each of said electrical signals (SI - Sn) and each comprising a unique voltage level transition whose time position is a function of the voltage of said electrical signal (Sl-Sn) corresponding to the instant of said transition.
2. Système selon la revendication 1, caractérisé en ce que la cellule de synchronisation (CELO) comporte un élément de synchronisation centré dans ladite cellule de synchronisation et composé de trois transitions espacées entre elles du quart de sa durée .2. System according to claim 1, characterized in that the synchronization cell (CELO) comprises a synchronization element centered in said synchronization cell and composed of three transitions spaced apart from each other by a quarter of its duration.
3. Système selon l'une des revendications 1 ou 2, caractérisé en ce que le moyen, de modulation multiplexage (7) comporte :3. System according to one of claims 1 or 2, characterized in that the multiplexing modulation means (7) comprises:
- un moyen (13) de génération d'éléments de synchronisation,a means (13) for generating synchronization elements,
- des moyens (14ι - 14n) de génération de signaux de rampes de tension (RI - Rn) ,- means (14ι - 14 n ) for generating voltage ramp signals (RI - Rn),
- des moyens (15χ - 15n) de comparaison des signaux de rampe de tension (RI - Rn) aux signaux électriques (SI - Sn) , destinés à générer des signaux (Tl - Tn) présentant chacun une transition montante lorsque la tension instantanée d'un signal de rampe (RI - Rn) correspondant est égale à celle du signal (Sl-Sn) correspondant,- Means (15χ - 15 n ) for comparing the voltage ramp signals (RI - Rn) with the electrical signals (SI - Sn), intended to generate signals (Tl - Tn) each having a rising transition when the instantaneous voltage a corresponding ramp signal (RI - Rn) is equal to that of the corresponding signal (Sl-Sn),
- deux portes logiques "OU" (16a, 16b) recevant chacune les signaux issus des moyens de comparaison (15ι - 15n) de rangs respectivement de première et de deuxième parité.- two "OR" logic gates (16a, 16b) each receiving the signals from the comparison means (15ι - 15 n ) of rows of first and second parity respectively.
- une bascule bistable (18) délivrant ledit signal à deux niveaux de tension (TM) à partir des signaux issus desdites portes logiques "OU" (16a, 16b) .- a flip-flop (18) delivering said signal at two voltage levels (TM) from signals from said "OR" logic gates (16a, 16b).
4. Système selon la revendication 3, caractérisé en ce que le moyen de modulation - multiplexage (7) comporte en outre un oscillateur (11) délivrant un signal d'horloge destiné à piloter un registre à décalage (12) fonctionnant en boucle pour produire d'une part un signal de commande (C0) du moyen (13) de génération d'éléments de synchronisation, et d'autre part des signaux de commande (Cl - Cn) des moyens (14ι - 14n) de génération des signaux de rampes (RI - Rn) .4. System according to claim 3, characterized in that the modulation - multiplexing means (7) further comprises an oscillator (11) delivering a clock signal intended to drive a register at shift (12) operating in a loop to produce on the one hand a control signal (C0) of the means (13) for generating synchronization elements, and on the other hand control signals (Cl - Cn) of the means ( 14ι - 14 n ) generation of ramp signals (RI - Rn).
5. Système selon l'une des revendications précédentes, caractérisé en ce que le moyen (13) de génération d'éléments de synchronisation comporte une bascule monostable (24) recevant le signal de commande (C0) , trois moyens de retard (25a, 25b et 25c) qui apportent un retard respectivement de Y2, et de la durée de la cellule de synchronisation (CELO) et une porte logique "OU" (26) reliée à deux des moyens de retard (25b, 25c) .5. System according to one of the preceding claims, characterized in that the means (13) for generating synchronization elements comprises a monostable rocker (24) receiving the control signal (C0), three delay means (25a, 25b and 25c) which provide a delay of Y 2 respectively, and of the duration of the synchronization cell (CELO) and a logic "OR" gate (26) connected to two of the delay means (25b, 25c).
6. Système selon l'une des revendications précédentes, caractérisé en ce que chacune des portes logique "ou" (16a, 16b) , du moyen de modulation multiplexage, est reliée à une bascule monostable (17a, 17b) délivrant un signal (Ta, Tb) vers une entrée de la bascule bistable (18) , ledit signal (Ta, Tb) comportant une impulsion courte pour chaque transition montante des signaux (Tl - Tn) de rangs respectivement de première et deuxième parité.6. System according to one of the preceding claims, characterized in that each of the logic gates "or" (16a, 16b), of the multiplexing modulation means, is connected to a monostable rocker (17a, 17b) delivering a signal (Ta , Tb) to an input of the flip-flop (18), said signal (Ta, Tb) comprising a short pulse for each rising transition of the signals (Tl - Tn) of first and second parity ranks respectively.
7. Système selon l'une des revendications précédentes, caractérisé en ce que chaque moyen (14χ - 14n) de génération de signaux de rampe comporte : un premier transistor (19) pour alimenter un condensateur (20) en courant constant, ledit premier transistor comportant dans son circuit d'émetteur une résistance (21), un deuxième transistor (22) pour réinitialiser la rampe de tension aux bornes dudit condensateur (20) , et un moyen d'adaptation (23).7. System according to one of the preceding claims, characterized in that each means (14χ - 14 n ) for generating ramp signals comprises: a first transistor (19) for supplying a capacitor (20) with constant current, said first transistor comprising in its emitter circuit a resistor (21), a second transistor (22) for resetting the voltage ramp across said capacitor (20), and an adaptation means (23).
8. Système selon l'une des revendications précédentes, caractérisé en ce que le moyen de démultiplexage- démodulation (8) comporte : un comparateur (27) recevant ledit signal à deux niveaux de tension (TM) issu du récepteur optique (10) , des portes logiques "ET" (28χ - 28n) de rangs de première parité recevant chacune le signal à deux niveaux de tension (TM) issu dudit comparateur (27) et des signaux de sélection (SELl8. System according to one of the preceding claims, characterized in that the demultiplexing-demodulation means (8) comprises: a comparator (27) receiving said signal at two voltage levels (TM) coming from the optical receiver (10), "AND" logic gates (28χ - 28 n ) of rows of first parity each receiving the signal at two voltage levels (TM) from said comparator (27) and selection signals (SELl
- SELn) de rangs de ladite première parité, des portes logiques "ET" (28x - 28n) de rangs de deuxième parité recevant chacune un signal à deux niveaux de tension inversé (TMinv) issu dudit comparateur (27) et des signaux de sélection (SELl - SELn) de rangs de ladite deuxième parité, et des amplificateurs passe-bas (32χ à 32n) délivrant les signaux électriques (SI à Sn) .- SELn) of rows of said first parity, "AND" logic gates (28 x - 28 n ) of rows of second parity each receiving a signal with two inverted voltage levels (TMinv) from said comparator (27) and signals selection (SELl - SELn) of rows of said second parity, and low-pass amplifiers (32χ to 32 n ) delivering the electrical signals (SI to Sn).
9. Système selon la revendication 8, caractérisé en ce que le moyen de démultiplexage-démodulation (8) comporte en outre un registre à décalage (29) piloté par un oscillateur (30) et fonctionnant en boucle pour produire d'une part, les signaux de sélection9. System according to claim 8, characterized in that the demultiplexing-demodulation means (8) further comprises a shift register (29) controlled by an oscillator (30) and operating in a loop to produce on the one hand, the selection signals
(SEL 1 - SELn) et d'autre part, un signal de sélection de synchronisation (SEL0) destiné à être délivré à un moyen de récupération de synchronisation de trames (31) produisant une tension de commande de la fréquence de fonctionnement dudit oscillateur (30) .(SEL 1 - SELn) and on the other hand, a synchronization selection signal (SEL0) intended to be supplied to a frame synchronization recovery means (31) producing a control voltage of the operating frequency of said oscillator (30).
10. Système selon l'une des revendications 8 ou 9, caractérisé en ce que le moyen de récupération de synchronisation (31) comporte deux bascules monostables (33a et 33b) produisant une impulsion courte pour chaque transition montante du signal à deux niveaux de tension (TM) , respectivement du signal inversé (Tminv) , deux moyens de retard (34a et 34b) ayant pour valeur et y2 de la durée de la cellule de synchronisation (CEL0) , une porte logique "ET" (35) suivie d'un comparateur de phase (36) qui reçoit également un signal (SELOa) obtenu en retardant le signal de sélection de synchronisation10. System according to one of claims 8 or 9, characterized in that the synchronization recovery means (31) comprises two monostable flip-flops (33a and 33b) producing a short pulse for each rising transition of the signal at two voltage levels (TM), respectively of the inverted signal (Tminv), two delay means (34a and 34b) having the value and y 2 of the duration of the synchronization cell (CEL0), a logic "AND" gate (35) followed by '' a phase comparator (36) which also receives a signal (SELOa) obtained by delaying the synchronization selection signal
(SEL0) via un autre moyen de retard (37) . (SEL0) via another delay means (37).
PCT/FR2004/000046 2003-01-16 2004-01-13 Transmission system, particularly for optical fiber offset of x-dsl signals WO2004073221A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0300468A FR2850222A1 (en) 2003-01-16 2003-01-16 Optical transmission system, has modulation-multiplexing unit producing optical signal at two voltage levels, and demodulation-demultiplexing unit restoring electric signals from signal produced at two voltage levels
FR03/00468 2003-01-16

Publications (1)

Publication Number Publication Date
WO2004073221A1 true WO2004073221A1 (en) 2004-08-26

Family

ID=32605804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000046 WO2004073221A1 (en) 2003-01-16 2004-01-13 Transmission system, particularly for optical fiber offset of x-dsl signals

Country Status (2)

Country Link
FR (1) FR2850222A1 (en)
WO (1) WO2004073221A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169213A (en) * 1978-06-01 1979-09-25 Santa Barbara Research Center Apparatus and method for ordering independent signals
US4959828A (en) * 1988-05-31 1990-09-25 Corporation Of The President Of The Church Of Jesus Christ Of Latter-Day Saints Multi-channel infrared cableless communication system
US6108376A (en) * 1994-11-10 2000-08-22 Morgan; Harry Clark Reception and demodulation of widely spaced pulse position modulated signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169213A (en) * 1978-06-01 1979-09-25 Santa Barbara Research Center Apparatus and method for ordering independent signals
US4959828A (en) * 1988-05-31 1990-09-25 Corporation Of The President Of The Church Of Jesus Christ Of Latter-Day Saints Multi-channel infrared cableless communication system
US6108376A (en) * 1994-11-10 2000-08-22 Morgan; Harry Clark Reception and demodulation of widely spaced pulse position modulated signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DODDS D E ET AL: "Video distribution on optical fiber using pulse position modulation", PROCEEDINGS OF THE WESTERN CANADA CONFERENCE ON COMPUTER, POWER AND COMMUNICATIONS SYSTEMS IN A RURAL ENVIRONMENT. (WESCANEX). REGINA, MAY 29 - 30, 1991, NEW YORK, IEEE, US, 29 May 1991 (1991-05-29), pages 300 - 304, XP010037870, ISBN: 0-87942-594-6 *
MASARU FUSE: "Proposal of Multi-channel xDSL Access System for Multi-dwellings using Optical SCM Technology", PROCEEDINGS OF ECOC 2002, 12 September 2002 (2002-09-12), XP001158408 *

Also Published As

Publication number Publication date
FR2850222A1 (en) 2004-07-23

Similar Documents

Publication Publication Date Title
EP0792036B1 (en) Digital data optical transmission method
EP1969748B1 (en) Optical transmission between a central terminal and a plurality of client terminals via an optical network
EP1788736B1 (en) Improved data transmission apparatus for communication devices in a passive optical network
FR2750552A1 (en) RECEIVER FOR OPTICAL DIGITAL SIGNAL TRANSMISSION SYSTEM
EP1677422A1 (en) Apparatus for conversion of a transmitted signal into a binary signal
EP0559883A1 (en) Process for digital transmission and direct conversion receiver.
FR2732123A1 (en) Optical modulator with pulse compression and temp. compensation
FR2580130A1 (en)
FR2719957A1 (en) Method for the transmission of information coded in binary form by a train of solitons
EP0242915B1 (en) Device for clock recovery in an information transmission system using in one transmission direction the time division multiple access principle
EP0169093A1 (en) Receiver for time division multiplexed television transmission comprising a frequency demodulator
WO2004073221A1 (en) Transmission system, particularly for optical fiber offset of x-dsl signals
EP1497939A1 (en) Optical device and method of converting wdm signals into an otdm signal and vice versa
FR3078219A1 (en) CONTROL PLANE FOR AN OPTICAL NETWORK FOR TRANSMITTING DYNAMIC ADAPTATION DATA MULTIPLE CARRIER BURSTS OF LEARNING SEQUENCE.
EP1508984B1 (en) Method of creating a coded RZ or NRZ optical signal
FR2824973A1 (en) OPTICAL DEVICE FOR RECOVERING THE CLOCK OF AN OPTICAL SIGNAL
EP3987692A1 (en) Coherent detection with optimised local oscillator
EP0746070B1 (en) Method and device to combine optical signals
FR2796784A1 (en) Optical receiver for telecommunication signals includes optical addition and reduction circuit effecting compensation for chromatic dispersion
WO2021190963A1 (en) Method for communication according to a tdma protocol, between a master device and at least one slave device
FR2774832A1 (en) METHOD AND DEVICE FOR RESYNCHRONIZING OPTICAL SIGNALS
FR2519829A1 (en) COLOR TELEVISION CODING CIRCUIT
FR2672168A1 (en) METHOD AND DEVICE FOR RELATIVE POSITIONING OF FREQUENCY, IN PARTICULAR OPTICAL.
FR2731572A1 (en) SIGNAL MODULE IN PHASE AND HAVING A HIERARCHICAL SURMODULATION, TRANSMITTING DEVICE AND CORRESPONDING RECEIVERS
Fong Advanced clock recovery techniques for high-speed packet-switched optical networks

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase