WO2004072002A1 - Method for producing lower olefin - Google Patents

Method for producing lower olefin Download PDF

Info

Publication number
WO2004072002A1
WO2004072002A1 PCT/JP2004/000676 JP2004000676W WO2004072002A1 WO 2004072002 A1 WO2004072002 A1 WO 2004072002A1 JP 2004000676 W JP2004000676 W JP 2004000676W WO 2004072002 A1 WO2004072002 A1 WO 2004072002A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
raw material
propylene
ethylene
reaction
Prior art date
Application number
PCT/JP2004/000676
Other languages
French (fr)
Japanese (ja)
Inventor
Phala Heng
Michiaki Umeno
Teruo Muraishi
Toshihiro Takai
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2004544182A priority Critical patent/JP4335144B2/en
Publication of WO2004072002A1 publication Critical patent/WO2004072002A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for producing lower-order olefins, particularly ethylene and propylene, from a raw material by catalytically cracking a 4- to 12-carbon olefin using a catalyst.
  • Ethylene and propylene are important substances as basic raw materials for various chemicals and resins.
  • these olefins are obtained by thermal or catalytic decomposition in naphtha crackers, but their production ratio is around 1: 0.6, which is the source of the difference between the supply and demand of ethylene or propylene. It has become. Therefore, in recent years, a method for selectively obtaining propylene from a hydrocarbon material containing C4 to C12 olefins, which are components of low utility such as butene and pentene, has become important. Many methods are known for catalytically converting these hydrocarbon raw materials containing 4 to 12 olefins using a zeolite catalyst.
  • European Patent No. 1 909 59 states that butene is catalytically cracked using Proton-type ZSM-5 zeolite (another name for MFI zeolite) to produce propylene.
  • a method is disclosed. The process describes reaction conditions of low reaction temperatures at 400 and 500 and a high feed rate per unit weight of catalyst (WHSV) of 60 hr- 1 or more.
  • the raw material butene concentration used in this method 1 0 0% and high and, for low and S i O 2 / A 1 2 0 3 molar ratio of 2 8 Zeorai bets catalyst used, but the description is not However, under these conditions, the amount of coke generated is large, and therefore the activity of the catalyst decreases rapidly, so that it cannot be used for a long time.
  • European Patent No. 1,090,600 discloses a method for producing propylene by catalytic decomposition of butene using a protonated silica light. Subsequent studies revealed that the silicalite used in this method was a zeolite having an MFI type zeolite structure. However, the raw material butene concentration used in this method is as high as 100%, and the catalyst activity decreases rapidly under the conditions of high feed rate per unit weight of catalyst (WHSV), which provides high productivity. . Also described in Example, the reaction conditions of low temperature 5 0 0 catalyst for a long time can be used, per unit weight of the catalyst feeding rate of (WH SV) is 6 hr 1 and low and therefore the propylene and Echiren Low productivity.
  • WHSV high feed rate per unit weight of catalyst
  • U.S. Pat.No. 5,981,181 discloses a process for producing propylene using pentasil-type zeolite under the following low-reaction temperature conditions at 500 in the presence of water in the raw material. Is disclosed. However, with this method, the feed rate of raw material per unit weight of catalyst (WH SV) is as low as 1 to 3 hr1, and high propylene and ethylene productivity cannot be obtained.
  • WH SV feed rate of raw material per unit weight of catalyst
  • Japanese Patent Application Laid-Open Publication No. Hei 6-73332 discloses an example of proton type ZSM-5.
  • the reaction temperature is as high as 600 X: a large amount of coke is deposited, equivalent to 6 OOP PM based on the total weight of the supplied raw materials. Is described in the Examples, and it is expected that the catalyst activity decreases rapidly when used in a fixed bed.
  • Japanese Unexamined Patent Publication No. Hei 11 — 2464445 (corresponding to WO9928905), Japanese Unexamined Patent Publication No. Hei11-24669 (Japanese Patent No. Japanese Patent Application Laid-Open No. H11-246680 (corresponding to WO9928980), Japanese Patent Application Laid-Open No. H11-246981 (W09929) No. 804), Japanese Patent Application Laid-Open No. H11 — 2464872 (WO 9292980)
  • Japanese Unexamined Patent Application Publication No. 06 Japanese Unexamined Patent Application Publication No. 11-26639 (corresponding to WO992907), Japanese Unexamined Patent Application Publication No. 11-266710 (WO9) 9 2 9 4 2 1), Japanese Unexamined Patent Publication No.
  • Patent Application Laid-Open No. 2000-41069 corresponds to WO078894
  • European Patent 1 195 542 No. 4 discloses a method for producing a product containing ethylene and propylene by catalytically cracking a hydrocarbon feedstock containing olefins using proton-type MFI zeolite.
  • the gen compound in the raw material is reduced by hydrogenation treatment to suppress the decrease in the activity.
  • the amount of the gen compound in the raw material is 0.5 wt%, the activity of propylene is not stable. Over time (Comparative Example 4, page 16 and FIG. 8, page 38).
  • the present invention uses a zeolite catalyst to catalytically crack a hydrocarbon containing 4 to 12 carbon atoms to form a lower molecular weight material mainly composed of ethylene and propylene.
  • a zeolite catalyst to catalytically crack a hydrocarbon containing 4 to 12 carbon atoms to form a lower molecular weight material mainly composed of ethylene and propylene.
  • by-products such as hydrogen, saturated hydrocarbons, aromatic hydrocarbons, and coke are suppressed, and coke precipitates on the catalyst even in raw materials containing relatively large amounts of gen compounds.
  • An object of the present invention is to provide a method for producing ethylene and propylene selectively and with high productivity while suppressing the deterioration of the catalyst over a long period of time. Disclosure of the invention
  • the present inventors have intensively studied to solve the above problems. As a result, we have developed a production technology that exhibits high ethylene and propylene selectivity, low coke accumulation, which can be expected for long catalyst life, and high productivity.
  • This manufacturing technology was created as a result of studying the catalytic cracking reaction mechanism, which had not been systematically studied. That is, the mechanism of the reaction for producing ethylene and propylene from carbon atoms having 4 to 12 carbon atoms is significantly different from those of carbon atoms having 4 carbon atoms (butene). That is, in the case of an olefin having more than 4 carbon atoms, a carpocation is generated at an acidic active site of the catalyst, and a lower carbon olefin is generated by breaking a carbon-carbon bond.
  • butene it can be explained as follows with reference to the mechanism of isolemination of olefin reported in Applied Catalysis A: General 206 (2001) 57-66. That is, in the case of butene, octene is first formed by dimerization, and becomes propylene and pentene via a more stable secondary carpocation. This reaction proceeds rapidly because the reaction intermediate is stable. The resulting pentene then decomposes, yielding ethylene and propylene, but the reaction is slow because the primary primary force lipocation is used to produce ethylene. Further, the present inventors have studied using a computational chemistry technique, and have obtained results supporting this estimation.
  • the raw material contains at least one kind of carbon having 4 to 12 carbon atoms, and contains 10 to 70 wt% of at least one kind of carbon having 1 to 12 saturated hydrocarbons.
  • the feed rate (WH SV) per unit weight of catalyst (WH SV) is 32 to 25 under the reaction pressure of 0.05 to 2 MPa.
  • FIG. 1 shows the changes over time in butene conversion, ethylene and propylene yield in Examples 9, 10 and 1.
  • a graph connecting diamonds represents Example 9, a graph connecting squares represents Example 10, and a graph connecting a circle represents Example 1.
  • the top graph shows the conversion of the putene, the middle graph shows the propylene yield, and the bottom graph shows the ethylene yield.
  • BEST MODE FOR CARRYING OUT THE INVENTION the raw material contains at least one or more carbon atoms of 4 to 12 olefins, and contains 10 to 70 wt% of at least one or more carbon atoms of 1 to 12 saturated hydrocarbons.
  • Ethylene and propylene can be selectively obtained mainly from the olefin component by catalytic cracking of a contained raw material using a catalyst.
  • the present inventors have surprisingly found that by using such a mixed raw material of olefin and saturated hydrocarbon, the generation of coke is suppressed, and the decrease in catalytic activity is suppressed. Furthermore, they have found that even with a raw material containing a relatively large amount of a gen compound, the deposition of coke on the catalyst is suppressed, and a decrease in catalyst activity is suppressed. Also, even if hydrogen is contained in the raw materials used, coke generation can be similarly suppressed. In this case, the value of the partial pressure of hydrogen is preferably in the range of 0.1 to 0.9.
  • the starting material used has 4 to 12 carbon atoms, for example, 1-butene, cis-1-butene, trans-1-butene, isobutene, 1-pentene, cis-1-pentene , Trans-1-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-11-butene, cyclopentene, 1-1hexene, 2-hexene, 3-hexene, methylbutenes, dimethyl Butenes, neohexene, cyclohexene, methylcyclopentene, linear heptene, branched heptene, cyclic heptene, methylcyclohexene, C9-C12 linear, branched, or cyclic Olefins.
  • the content of the saturated hydrocarbon having 1 to 12 carbon atoms in the raw material used is 10 to 70 wt%, preferably 10 to 60 wt%, more preferably 20 to 20 wt%. Expressed as ⁇ 50wt%. Under the conditions of the present invention, substantially no such conversion of saturated hydrocarbons occurs, but surprisingly, if the content of these saturated hydrocarbons in the feedstock used is below this range, the activity of the catalyst is reduced. Be faster.
  • hydrocarbons 1 to 12 carbon atoms
  • hydrocarbons include methane, ethane, propane, n-butane, isobutane, linear, branched and cyclic pentane, linear, branched and cyclic, hexane, linear, branched and cyclic heptane, linear and branched And cyclic octane.
  • aromatic hydrocarbons such as benzene, toluene and xylene may be contained.
  • the gen compound contained in the raw material used in accordance with the present invention is a hydrocarbon gen having 3 to 12 carbon atoms, such as propagene, 1,2-butadiene, 1,3-butadiene, 1,2-pentadiene, 1,3-Penyugen, 1,4-Penyugen, 2,3-Penyugen, 1,2-Hexagen, 1,3-Hexagen, 1,4-Hexagen, 1,5-Hexagen , 2,3-hexadiene, 2,4-hexadiene, 1,2-heptadiene, 1,3-heptadiene, 1,4-heptadiene, 1,5-heptadiene, 1,6-heptadiene , 2,3-Heptadiene, 2,4-Heptogen, 2,5-Heptogen, 3,4-Heptogen, 1,2-Octadien, 1,3-Octogen, 1 , 4-Octadien, 1,5-Octadien, 1,6-Oc
  • Examples of the raw material having such a component include a naphtha pyrolysis furnace or a distillate obtained from the top of a debutane tower sent after separating a C1 to C3 fraction from a mixture obtained in a naphtha catalytic cracking furnace.
  • a fraction obtained by extracting and removing isoprene from a fraction (a C5 fraction of a cloud), or the entire amount thereof is selectively catalytically hydrogenated without extracting an isoprene from a C5 fraction of a crude to reduce the gen component.
  • Off-line distillation with wt% or less Butadiene disolen is extracted from the fraction obtained from the top of the depentanizer sent after separating the C1 to C3 fraction from the mixture obtained in the naphtha pyrolysis furnace or the naphtha catalytic cracking furnace.
  • an orefin fraction in which the total amount is selectively catalytically hydrogenated to reduce the gen component to 2 wt% or less.
  • raw materials may be used alone, or may be used as a mixture in an arbitrary amount.
  • the raw materials are not limited to those described above, and may be those containing at least one kind of saturated hydrocarbons having 4 to 12 carbon atoms and 10 to 70 wt% of at least one carbon atom. Any material can be used.
  • an MFI type zeolite catalyst is used as the catalyst used in the present invention. S i 0 2 / A 1 2 0 3 molar ratio of Zeorai Bok until 5 0 0 0 beyond normal .1 2 0, preferably 2 0 0 5 0 0 0, more preferably 2 8 0 5 0 0 0 And particularly preferably 280 000.
  • the molar ratio S i 0 2 / A 1 2 ⁇ 3 is lower than this, the catalytic activity is too high, so that the coke deposition rate is high in the temperature range where the decomposition reaction is thermodynamically favorable, Is not preferred because of its stability when repeatedly used.
  • the molar ratio of SiO 2 / A 12 O 3 is higher than this range, the number of active points decreases, and it is not preferable because the active point can no longer function as an acid catalyst.
  • MF I type Zeorai DOO catalyst may be used as a commercial product having a S i ⁇ 2 ZA 1 2 O 3 molar ratio of purpose, a known method by the Zeorai bets composition deviating these ranges as a starting material It is also possible to obtain by That is, a commercial product having a low SiO 2 SZAlz O 3 molar ratio can be dealuminated and converted to a higher silica zeolite. Examples of the method for dealumination are described in Catalysis and Zeolites, Fundamentals and Applications J. Weitkamp, .Puppe Hi Collection, Springer, 1999, 1 271 155, steam treatment, treatment with silicon tetrachloride, Hexaful mouth silicate treatment and the like can be mentioned.
  • MFI zeolite products contain sodium or ammonium as a cation, but any of them can be used in the present invention if the following treatment is performed. That is, the zeolite exchanged with the ammonium cation is converted, for example, to a proton type by treating it at 500 with 5 hours, and then used as a catalytic cracking reaction catalyst.
  • those having an alkali metal ion such as sodium are stirred by a known method, that is, in an aqueous solution of about 110% ammonium nitrate at 60 for 6 hours, filtered, washed, and then washed at 500X. 5 hours This can be converted to a proton type and used.
  • the zeolite may be a zeolite exhibiting acidity exchanged with a metal ion in addition to the protonic zeolite.
  • a metal ion include monovalent metal ions such as Group IB metals such as Cu and Ag, and divalent or higher metal ions include Mg, Ca, and S Examples thereof include alkaline earth metals such as r and Ba, rare earth metals such as La and Ce, and transition metals such as Fe, Ni, Mn, Co, and V. These may be present at the same time as the protons in any proportion.
  • MFI zeolite those containing an element such as P which shows acidity can be used.
  • the content of P is preferably equal to or more than the content of protons and other metal thiones in terms of mole.
  • known methods are used. For example, a method of exchanging the cation of a metal atom with proton by ion exchange with a proton-type MFI zeolite, or a method of impregnating a salt-complex compound containing these elements into the MFI zeolite Is mentioned.
  • the above-mentioned MFI type zeolite catalyst is used as a third metal other than Si and A1 for the purpose of controlling activity, improving selectivity, suppressing coke formation and suppressing catalyst deterioration rate.
  • B, S n, G a, M n, F e and T i are converted to MFI zeolite Those contained in the skeleton of the structure can also be used.
  • the above MFI zeolite catalyst can be used after being subjected to steam treatment by a known method.
  • the temperature is preferably 5,000 to 750: the vapor pressure is preferably 0.1 to 1 MPa, and the processing time is preferably 10 to 48.
  • the above treatment can be performed after the catalyst is molded by the method described below.
  • the aforementioned catalyst is charged to the reactor in the following form. That is, MFI zeolite obtained by hydrothermal synthesis is essentially in a fine powder state.
  • the resulting finely powdered MFI zeolite catalyst may be directly charged into a fixed bed reactor, but in order to prevent pressure loss from increasing, a filler inert to the catalytic cracking, for example, silica pole However, it may be physically mixed with aluminum balls and filled. Further, the obtained fine powdered MFI zeolite catalyst may be kneaded with a sintering agent (binder) which does not change the catalytic performance, and then molded.
  • the sintering agent is typically a silica type, but may be selected from alumina, titania, zirconia, and diatomaceous types. ,
  • Sintering is preferably performed in the range of 500-800.
  • the shapes to be molded are: Tablets, Extrusion, Pellets, Spheres, Micro spheres, CDS Extrusion (CDS Extrusions)> Trilobes, Trilobes ), Quardlobes, Rings, Two-spoke rings (2 Sporkes rings;), HGS, EW, LDP and other special spokes, Ribs rings, Granules, etc. Can be exemplified.
  • catalytic cracking can be used in any type of reactor, such as a fixed bed, a fluidized bed, and a moving bed, but a fixed bed reactor with simple equipment can be used. preferable.
  • the catalytic cracking reaction is carried out by filling the above-mentioned catalyst into such a reactor and supplying the olefin-containing hydrocarbon raw material.
  • the reaction conditions are precisely controlled as follows.
  • the reaction temperature is 400 to 580, preferably 480 to 580 ° (:, more preferably 480 to 560. If the reaction temperature is lower than this range, supply On the other hand, if the reaction temperature is higher than this range, the rate of coke formation accelerates, and the catalyst conversion rate decreases. ⁇ The activity of the product decreases faster.
  • the reaction pressure is adjusted to 0.05 MPa to 2 MPa, preferably 0.05 to: L MPa, more preferably 0.05 to 0.5 MPa.
  • the feed rate (WHSV) of the entire raw material per unit weight of the MFI catalyst is 32 to 256 hr-1 or more, preferably 40 to 256 hr-1, more preferably 40 to: L28 hr-1. i. If the feed rate (WHSV) is lower than this range, the pentene content in the reaction distillate is reduced and the rate of catalyst activity reduction is suppressed to some extent, but hydrogen, saturated hydrocarbon and aromatic The yield of aromatic hydrocarbons increases and high selectivity and productivity of ethylene and propylene cannot be obtained. On the other hand, under the reaction conditions of the raw material supply rate (WHSV) larger than this range, the rate of coke formation is increased, which is not preferable.
  • the reactor may be a single reactor or a plurality of reactors.
  • the reaction conditions are more precisely controlled by installing the reactors in series. it can.
  • catalytic cracking operation is performed in one of the reactors, and regeneration and other operations are performed in the other reactor. It becomes. Under these reaction conditions, This maximizes the selectivity, yield and productivity of len, and suppresses the formation of coke, which causes a decrease in catalyst activity.
  • the weight ratio of pentene to propylene in the reaction product distillate at the reactor outlet is usually from 0.20 to 0.80, preferably from 0.25 to 0.8. It is preferably 80, more preferably 0.30 to 0.80.
  • the weight ratio of pentene to propylene in the reaction product distillate at the outlet of the first reactor is usually 0.20 to 0.80. It is preferably 0.25 to 0.80, more preferably 0.30 to 0.80.
  • the olefins having 4 or more carbon atoms, including pentene are separated from the distillate of the reaction product and then recycled to the catalytic cracking reactor to be combined with new raw materials. It is also possible to use these naphtha crackers together with new naphtha raw materials after separation of these carbons having 4 or more carbon atoms.
  • the raw material contains at least one kind of carbon having 4 to 12 carbon atoms, and contains 10 to 70 wt% of at least one kind of carbon having 1 to 12 saturated hydrocarbons.
  • the raw material containing 2 wt% or less of the gen compound in some cases
  • the feed rate (WH SV) of all raw materials per unit weight of the MFI catalyst is 32 to 256 hri, 400 to 5 at a reaction pressure of 0.05 to 2 MPa.
  • hydrogen and saturated hydrocarbons are controlled by controlling the weight ratio of pentene to propylene in the reaction product distillate to 0.20 to 0.80.
  • Example 1 In addition, it suppresses by-products such as aromatic hydrocarbons and coke, and also suppresses the deposition of coke on the catalyst, even in raw materials containing relatively large amounts of gen compounds, resulting in high propylene selectivity and long catalyst life. can get.
  • the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
  • Anmoniumu salt Z SM- 5 (S i 0 2 ZA l 2 0 3 molar ratio of 2 8 0) powder in 5 5 0 ° C, was calcined for 5 hours. After firing, a catalyst having a particle size of 250 to 500 m was obtained by compression molding, pulverization and classification.
  • the reaction was carried out in a fixed-bed flow reactor (10.7 mm ID, 250 mm length).
  • a quartz tube was filled with 0.125 g of the above catalyst and quartz wool and quartz sand as a holding material so that the entire length became 250 mm.
  • This quartz tube was charged into the reactor, the temperature of the catalyst layer was maintained at 550, and the C4 fraction raw material C (Table 1) obtained by cracking of naphtha was supplied at a flow rate of 8 g / hour.
  • the catalytic cracking reaction was performed under a reaction pressure of 0.5 MPa.
  • the effluent reaction product was kept in a gaseous state and analyzed using a gas chromatograph.
  • Table 2 shows the results of the reaction. This is a result that the productivity of ethylene and propylene can be stably obtained over 90 hours. In addition, the production yield of coke is low, and a method of burning and removing accumulated coke is used, so the amount of heat generated by coke combustion is small and the amount of steam generated that is not desirable for catalyst deterioration Less. Therefore, when the catalyst is used repeatedly, its life can be expected to be longer. Comparative Example 1
  • Example 1 A catalytic cracking reaction was carried out under the same conditions as in Example 1 except that the raw material C in Example 1 was changed to an n-butene raw material. Table 3 shows the results. Under these conditions, which use a raw material that does not contain the saturated hydrocarbon butane, the reaction time for stable production of ethylene and propylene was only 20 hours. Table 1 (Raw material composition)
  • Example 2 the same conditions as in Example 1 were used except that the raw materials shown in Table 4 were used, respectively, to obtain saturated hydrocarbons mainly of butanes at 18.4 wt%, 30.6 wt% and This is an example of catalytic cracking of a raw material containing 61.2 wt%.
  • Table 4 Compared to Comparative Example 1, the raw material contains only 18.4 wt% of saturated hydrocarbons, the coke production yield is reduced by half, and the reaction time for stable production of ethylene and propylene is 20 hours. It can be seen that the time has rapidly increased from 42 hours to 42 hours.
  • Example 4 is an example of catalytic cracking of a raw material having a saturated hydrocarbon content as high as 61.2 wt%. The operation was stopped at 100 hours, at which point the catalyst activity was slightly reduced. Table 4 (Examples 1 to 4, Comparative Example 1)
  • Example 5 catalytic cracking was carried out under the same reaction conditions as in Example 1 except that the reaction temperature was 500 ° C, the WHSV shown in Table 5 was used, and raw material D was used. . Table 5 shows the results. As shown in Example 5, the value of 1 2 8 hr 1 and higher conditions of feed rate of raw material (WHSV) of catalyst per weight unit, the weight ratio flop propylene pentenes to zero. 5 or more since it I have. Under these conditions, it can be seen that the formation of coke is extremely low.
  • Example 9 shows an example of repeated use of the catalyst.
  • the catalytic cracking reaction was performed, and the produced coke was burned.
  • the catalyst was held in the reactor, the raw materials were supplied under the same conditions as in Example 1, and the catalytic cracking reaction was restarted. After the reaction, coke combustion was performed under the same conditions. As a result of repeating this operation six times, no deterioration of the catalyst was observed.
  • Example 9, 10
  • Example 9 the same reaction conditions as in Example 1 were used except that butadiene was added to raw material C, and raw materials having butadiene contents of 0.51 and 1.1 wt% were used, respectively. Catalytic cracking was carried out. The results are shown in Figure 1. Compared with the butadiene content of Example 1 of 0.05 wt%, the propylene yield could be stably obtained for 60 hours or more even with the butadiene content of 1 lwt%. In addition, the production yield of coke was 37 ppm and 40 ppm, which was a slight increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

A method for producing a lower olefin product containing ethylene and propylene as main components in which a hydrocarbon raw material containing olefins is subjected to a catalytic cracking by the use of a zeolite catalyst to produce an olefin lower that in the raw material, wherein a raw material comprising at least one olefin having 4 to 12 carbon atoms and 10 to 70 wt % of at least one saturated hydrocarbon having 1 to 12 carbon atoms is contacted with a catalyst comprising a MFI zeolite catalyst under a reaction pressure of 0.05 to 2 MPa, with a feed rate of the raw material per unit weight of the catalyst (WHSV) of 32 to 256 hr-1, at a reaction temperature of 400 to 580°C, to thereby produce ethylene and propylene. The method allows the suppression of the formation of by-products such as hydrogen, a saturated hydrocarbon, an aromatic hydrocarbon and coke, the reduction of the deterioration of the catalyst for a long period of time, and the selective production of ethylene and propylene with high productivity, even when use is made of a raw material containing a relatively large amount of a diene which frequently lowers the activity of a catalyst.

Description

低級ォレフィ ンの製造方法  Manufacturing method of low-grade off-line
技術分野 本発明は、 炭素数 4〜 1 2ォレフィ ン類から、 触媒を使用して接触分解するこ とにより、 原料よりも低級ォレフィ明ン、 特にエチレン及びプロピレンを製造する 方法に関する。 , TECHNICAL FIELD The present invention relates to a process for producing lower-order olefins, particularly ethylene and propylene, from a raw material by catalytically cracking a 4- to 12-carbon olefin using a catalyst. ,
書 背景技術 エチレン及びプロピレンは各種化学品と樹脂の基礎原料として重要な物質であ る。 従来これらのォレフィンはナフサクラッカ一において熱、 または触媒的な分 解で得られているが、 その生成比は 1対 0 . 6付近であり、 エチレンまたはプロ ピレンの需要と供給の乖離を生む根源となっている。 そこで近年、 ブテン、 ペン テン等の利用価値の少ない成分である炭素数 4〜 1 2ォレフィン類を含む炭化水 素原料からプロピレンを選択的に得る製造法が重要になっている。 これら炭素数 4〜 1 2ォレフィン類を含む炭化水素原料を、 ゼォライ ト触媒を使用して接触転 化する方法としては、 多くの方法が知られている。 しかし、 炭素数 4 ~ 1 2ォレ フィ ンを含む炭化水素原料を、 触媒を使用して接触分解し、 エチレン及びプロピ レンを高い生産性で、 かつ長時間にわたり安定的に製造することは、 以下述べる 理由により困難であった。 例えば、 欧州特許第 1 0 9 0 5 9には、 プロ トン型 Z S M— 5ゼォライ ト (M F Iゼォライ トの別名称) を使用してブテンを接触分解し、 プロピレンを製造す る方法が開示されている。 この方法には、 40 0と 5 0 0での低反応温度及ぴ 6 0 h r - 1 以上の高い触媒単位重量あたりの原料の供給速度 (WHS V)という 反応条件が記載されている。 しかし、 この方法で用いられた原料ブテン濃度は 1 0 0 %と高く、 また、 使用したゼォライ ト触媒の S i O 2/A 1 203モル比 2 8 と低いため、 その記載はないが、 この条件下では、 コークの生成量が多く、 従つ て触媒の活性低下が速く、 長時間での使用はできない。 Background Art Ethylene and propylene are important substances as basic raw materials for various chemicals and resins. Conventionally, these olefins are obtained by thermal or catalytic decomposition in naphtha crackers, but their production ratio is around 1: 0.6, which is the source of the difference between the supply and demand of ethylene or propylene. It has become. Therefore, in recent years, a method for selectively obtaining propylene from a hydrocarbon material containing C4 to C12 olefins, which are components of low utility such as butene and pentene, has become important. Many methods are known for catalytically converting these hydrocarbon raw materials containing 4 to 12 olefins using a zeolite catalyst. However, it is difficult to stably produce ethylene and propylene with high productivity over a long period of time by catalytically cracking a hydrocarbon raw material containing 4 to 12 carbon atoms using a catalyst. It was difficult for the following reasons. For example, European Patent No. 1 909 59 states that butene is catalytically cracked using Proton-type ZSM-5 zeolite (another name for MFI zeolite) to produce propylene. A method is disclosed. The process describes reaction conditions of low reaction temperatures at 400 and 500 and a high feed rate per unit weight of catalyst (WHSV) of 60 hr- 1 or more. However, the raw material butene concentration used in this method 1 0 0% and high and, for low and S i O 2 / A 1 2 0 3 molar ratio of 2 8 Zeorai bets catalyst used, but the description is not However, under these conditions, the amount of coke generated is large, and therefore the activity of the catalyst decreases rapidly, so that it cannot be used for a long time.
欧州特許第 1 0 9 0 6 0には、 プロトン型シリカライ トを使用してブテンを接 触分解し、 プロピレンを製造する方法が開示されている。 この方法で使用されて いるシリカライ トが MF I型ゼォライ ト構造を有するゼォライ トであることは、 その後の研究で明らかとなった。 しかし、 この方法で用いられた原料ブテン濃度 は 1 0 0 %と高く、 高い生産性が得られる高触媒単位重量あたりの原料の供給速 度 (WHS V)条件下では、 触媒の活性低下は速い。 また、 実施例に記載される、 触媒を長時間使用できる低温 5 0 0でという反応条件では、 触媒単位重量あたり の原料の供給速度 (WH S V)が 6 h r 1と低く、 従ってプロピレンとェチレン の生産性が低い。 European Patent No. 1,090,600 discloses a method for producing propylene by catalytic decomposition of butene using a protonated silica light. Subsequent studies revealed that the silicalite used in this method was a zeolite having an MFI type zeolite structure. However, the raw material butene concentration used in this method is as high as 100%, and the catalyst activity decreases rapidly under the conditions of high feed rate per unit weight of catalyst (WHSV), which provides high productivity. . Also described in Example, the reaction conditions of low temperature 5 0 0 catalyst for a long time can be used, per unit weight of the catalyst feeding rate of (WH SV) is 6 hr 1 and low and therefore the propylene and Echiren Low productivity.
米国特許 5, 9 8 1 , 8 1 9号には、 ォレフィ ン原料に水を共存させて、 5 0 0で以下の低反応温度条件下、 ペンタシル型ゼォライ トを使用してプロピレンを 製造する方法が開示されている。 しかし、 この方法では、 触媒単位重量あたりの 原料の供給速度 (WH S V)が 1〜 3 h r 1程度と低く、 高いプロピレンとェチ レンの生産性が得られない。 U.S. Pat.No. 5,981,181 discloses a process for producing propylene using pentasil-type zeolite under the following low-reaction temperature conditions at 500 in the presence of water in the raw material. Is disclosed. However, with this method, the feed rate of raw material per unit weight of catalyst (WH SV) is as low as 1 to 3 hr1, and high propylene and ethylene productivity cannot be obtained.
特開平 6 - 7 3 3 8 2号公報には、 プロ トン型 Z SM— 5の例が記載されてい る。 流動床を想定した高い生産性を得るため、 6 0 0 X:という高い反応温度であ り、 供給した原料の総重量に対して 6 O O P PMに相当する多量のコ一クの析出 が実施例に記載されており、 固定床で用いる場合触媒の活性低下が速いことが予 想される。 Japanese Patent Application Laid-Open Publication No. Hei 6-73332 discloses an example of proton type ZSM-5. In order to obtain high productivity assuming a fluidized bed, the reaction temperature is as high as 600 X: a large amount of coke is deposited, equivalent to 6 OOP PM based on the total weight of the supplied raw materials. Is described in the Examples, and it is expected that the catalyst activity decreases rapidly when used in a fixed bed.
特開平 1 1 — 2 4 6 4 4 5号公報(WO 9 9 2 9 8 0 5号に対応)、 特開平 1 1 - 2 4 6 8 6 9号公報 (WO 9 9 2 9 8 0 2号に対応)、 特開平 1 1 — 2 4 6 8 7 0号公報 (WO 9 9 2 9 8 0 8号に対応)、 特開平 1 1 一 2 4 6 8 7 1号公報 (W 09 9 2 9 8 0 4号に対応)、 特開平 1 1 — 2 4 6 8 7 2号公報(WO 9 9 2 9 8 Japanese Unexamined Patent Publication No. Hei 11 — 2464445 (corresponding to WO9928905), Japanese Unexamined Patent Publication No. Hei11-24669 (Japanese Patent No. Japanese Patent Application Laid-Open No. H11-246680 (corresponding to WO9928980), Japanese Patent Application Laid-Open No. H11-246981 (W09929) No. 804), Japanese Patent Application Laid-Open No. H11 — 2464872 (WO 9292980)
0 6号に対応)、特開平 1 1 — 2 6 3 9 8 3号公報(WO 9 9 2 9 8 0 7号に対応)、 特開平 1 1 — 2 6 7 5 1 0号公報(WO 9 9 2 9 4 2 1号に対応)、 特開平 2 0 0No. 06), Japanese Unexamined Patent Application Publication No. 11-26639 (corresponding to WO992907), Japanese Unexamined Patent Application Publication No. 11-266710 (WO9) 9 2 9 4 2 1), Japanese Unexamined Patent Publication No.
1 - 2 6 7 8 6号公報 (W〇 0 0 7 7 1 2 2号に対応)、 特開平 2 0 0 1 — 3 1 9 7 9号公報 (WO 0 0 7 7 1 2 3号に対応)、 特開平 2 0 0 1 — 3 1 9 8 0号公報1-266786 Publication (corresponding to W〇07071222), Japanese Patent Application Laid-Open No. H02-31-1997 (corresponding to WO077123) ), Japanese Patent Application Laid-Open No. 2000-31980
(WO 0 1 0 0 7 4 9号に対応)、 特開平 2 0 0 1 — 4 0 3 6 9号公報(WO 0 0 7 8 8 9 4号に対応) と欧州特許 1 1 9 5 4 2 4号には、 プロ トン型 MF Iゼォ ライ トを使用してォレフィ ン類を含有する炭化水素原料を接触分解し、 エチレン とプロピレンを含有する生成物を製造する方法が開示されている。 (Corresponding to WO0100749), Japanese Patent Application Laid-Open No. 2000-41069 (corresponding to WO078894) and European Patent 1 195 542 No. 4 discloses a method for producing a product containing ethylene and propylene by catalytically cracking a hydrocarbon feedstock containing olefins using proton-type MFI zeolite.
記載された実施例によると、 これらの方法では、 . S i 〇 2/A 1 23モル比が 3 6 0以上の M F I触媒が使用され、 反応温度 5 5 0 °Cと比較的に温和な反応条 件下では、 ある程度長 Β#間にわたり触媒の活性低下がなくブテンの接触分解反応 が行われたことが開示された。 しかし、 これらの方法では、 触媒単位重量あたり の原料の供給速度 (WH S V)が 3 0 h r— 1以下と低く、 従って高いエチレン及 びプロピレンの生産性が得られない。 According to the described embodiments, these methods,. S i 〇 2 / A 1 23 molar ratio is used 3 6 0 or more MFI catalyst, reaction temperature 5 5 0 ° C and relatively mild Under such reaction conditions, it was disclosed that the catalytic cracking reaction of butene was performed without a decrease in the activity of the catalyst for a long period of time. However, in these methods, the feed rate of raw material per unit weight of catalyst (WH SV) is as low as 30 hr- 1 or less, so that high ethylene and propylene productivity cannot be obtained.
また、 この一連の特許の中には、 原料中のジェン化合物を水添処理により減ら して活性低下を抑制ずる記載があり、 ジェン化合物が触媒の活性低下をもたらす ことから、 原料中のジェン化合物を 0. 1 w t %以下にすることが好ましいと記 載されている。 たとえば特開平 1 1— 246 8 7 1号公報 (W〇 9 9 2 9 8 04 号に対応) の記載によると、 原料中のジェン化合物が 0. 5 w t %では活性が安 定することなくプロピレンの収率が経時的に低下する (比較実施例 4、 ページ 1 6、 及び図 8、 ページ 3 8)。 Further, in this series of patents, there is a description that the gen compound in the raw material is reduced by hydrogenation treatment to suppress the decrease in the activity. Is preferably set to 0.1 wt% or less. It is listed. For example, according to the description in JP-A-11-246871 (corresponding to W992 9804), when the amount of the gen compound in the raw material is 0.5 wt%, the activity of propylene is not stable. Over time (Comparative Example 4, page 16 and FIG. 8, page 38).
国際特許 WO 0 0 1 0 948号では、銀でイオン交換した Z SM— 5触媒の使 用が記載されている。 このような修飾された MF I触媒を使用した方法では、 触 媒活性が低下し、 そのため 6 0 0 °Cとやや高い温度で反応が行われても、 コーク 析出量はある程度低減されているが、 供給した原料の総重量に対してのコ一ク析 出量は例えば 74重量 P PMと未だ多い。 また、 この方法では高い触媒単位重量 あたりの原料の供給速度 (WH S V)条件下で反応を行うことが困難で、 エチレン とプロピレンの高い生産性を得ることができない。  International patent WO 010948 describes the use of silver-exchanged ZSM-5 catalysts. In the method using such a modified MFI catalyst, the catalytic activity is reduced, so that even when the reaction is performed at a slightly higher temperature of 600 ° C, the amount of coke deposited is reduced to some extent. However, the amount of co-precipitation with respect to the total weight of the supplied raw materials is still large, for example, 74 weight ppm. In addition, in this method, it is difficult to carry out the reaction under the condition of a high feed rate of raw material per unit weight of catalyst (WHSV), and high productivity of ethylene and propylene cannot be obtained.
即ち、 より高い反応温度条件では、 コークの生成が加速され、 触媒の活性が速 く低下するため、 原料の供給速度 (WHS V) を低く しなければならず、 副生す る水素、 飽和炭化水素及び芳香族炭化水素の収率が増加する上に、 高いエチレン 及びプロピレンの生産性を得ることができない。 一方、 修飾することにより、 よ り低活性のゼォライ ト触媒を使用したり、 又はより低反応温度の条件下で接触分 解反応を行う場合、 ォレフィ ン原料が充分に転化せず未反応の原料が多くなり、 エチレン及びプロピレンの収率が低下し、 高い生産性が得られない結果になる。 このような条件下では、 高生産性を得るために、 炭素 ¾4〜 1 2ォレフィ ン原料 を高い速度で供給すると (高 WHSV)、 かえってコークの生成が加速され、 触媒 の活性が速く低下する結果になる。  In other words, under higher reaction temperature conditions, coke formation is accelerated, and the activity of the catalyst is rapidly reduced. Therefore, the feed rate (WHSV) of the raw material must be lowered, and the by-product hydrogen and saturated carbon In addition to increasing the yield of hydrogen and aromatic hydrocarbons, high ethylene and propylene productivity cannot be obtained. On the other hand, by modification, when a lower activity zeolite catalyst is used, or when the catalytic decomposition reaction is carried out at a lower reaction temperature, the unreacted raw material is not sufficiently converted because the orefin raw material is not sufficiently converted. And the yields of ethylene and propylene decrease, resulting in that high productivity cannot be obtained. Under these conditions, if carbon 生産 4 to 12-olefin feedstock is supplied at a high rate (high WHSV) in order to obtain high productivity, the production of coke is accelerated, and the activity of the catalyst decreases rapidly. become.
本発明は、 ゼォライ ト触媒を使用して、 炭素数 4〜 1 2ォレフィ ンを含有する 炭化水素を接触分解して、 エチレン及びプロピレンを主成分とする低級ォレフィ ンを製造する際、 水素、 飽和炭化水素、 芳香族炭化水素及びコーク等の副生を抑 制し、 また、 ジェン化合物が比較的多く含まれる原料でも触媒上へのコ一クの析 出を抑制し、 長期的に触媒の劣化が少なく、 エチレン及びプロピレンを選択的に かつ高い生産性で製造する方法を提供することを課題とする。 発明の開示 The present invention uses a zeolite catalyst to catalytically crack a hydrocarbon containing 4 to 12 carbon atoms to form a lower molecular weight material mainly composed of ethylene and propylene. In the production of benzene, by-products such as hydrogen, saturated hydrocarbons, aromatic hydrocarbons, and coke are suppressed, and coke precipitates on the catalyst even in raw materials containing relatively large amounts of gen compounds. An object of the present invention is to provide a method for producing ethylene and propylene selectively and with high productivity while suppressing the deterioration of the catalyst over a long period of time. Disclosure of the invention
本発明者らは、 上記問題点を解決すべく、 鋭意研究を重ねた。 その結果、 高い エチレン及びプロピレン選択率、 長い触媒の寿命が期待できる低コーク蓄積、 高 い生库性を示す製造技術を開発した。  The present inventors have intensively studied to solve the above problems. As a result, we have developed a production technology that exhibits high ethylene and propylene selectivity, low coke accumulation, which can be expected for long catalyst life, and high productivity.
この製造技術はこれまで系統的な検討がなされていなかった接触分解反応の機 構について考察した結果生まれたものである。 すなわち炭素数 4 ~ 1 2ォレフィ ンからエチレン及びプロピレンが生成する反応の機構は、 炭素数 4のォレフイ ン (ブテン). と、 炭素数が 4を超えるォレフィ ンでは大きく異なる。 すなわち、 炭 素数が 4を超えるォレフィンでは、 触媒の酸性活性点においてカルポカチオンが 発生し、 炭素一炭素結合が切断されることにより、 より低級なォレフィ ンが生成 する。 一方、 ブテンの場合には、 Applied Catalysis A: General 206 (2001) 57-66 に報告されているォレフィンの異性化反応機構を参考に以下のように説明できる。 すなわち、 ブテンの場合、 まず二量化によりォクテンが生成し、 より安定な 2 級のカルポカチオンを経由して、 プロピレンとペンテンとなる。 反応中間体が安 定であるためこの反.応は速く進行する。 次いで生成したペンテンが分解し、 ェチ レンとプロピレンが得られるが、 エチレンが生成するためには不安定な 1級の力 ルポカチオンを経由するため、 この反応は遅い。 更に、 本発明者らは、 計算化学 手法を用いて検討したところ、 この推定が裏付けられる結果を得た。 すなわち、 ブテンからプロピレンを得る反応には、 複数の反応が存在するが、 その反応の進 行しやすさに差があるため、 より選択的にエチレンとプロピレンを得るためには 触媒活性、 反応温度、 接触時間等の反応条件を精密に制御し、 好ましい反応を選 択的に進行させることが重要である。 This manufacturing technology was created as a result of studying the catalytic cracking reaction mechanism, which had not been systematically studied. That is, the mechanism of the reaction for producing ethylene and propylene from carbon atoms having 4 to 12 carbon atoms is significantly different from those of carbon atoms having 4 carbon atoms (butene). That is, in the case of an olefin having more than 4 carbon atoms, a carpocation is generated at an acidic active site of the catalyst, and a lower carbon olefin is generated by breaking a carbon-carbon bond. On the other hand, in the case of butene, it can be explained as follows with reference to the mechanism of isolemination of olefin reported in Applied Catalysis A: General 206 (2001) 57-66. That is, in the case of butene, octene is first formed by dimerization, and becomes propylene and pentene via a more stable secondary carpocation. This reaction proceeds rapidly because the reaction intermediate is stable. The resulting pentene then decomposes, yielding ethylene and propylene, but the reaction is slow because the primary primary force lipocation is used to produce ethylene. Further, the present inventors have studied using a computational chemistry technique, and have obtained results supporting this estimation. That is, There are multiple reactions to obtain propylene from butene, but there are differences in the ease with which the reaction can proceed.To obtain ethylene and propylene more selectively, catalytic activity, reaction temperature, and contact It is important to precisely control reaction conditions such as time and to selectively advance a preferable reaction.
本発明では、 原料中少なく とも 1種の炭素数 4〜 1 2ォレフィ ンを含有し、 か つ、 1 0〜 7 0 w t %の少なく とも 1種の炭素数 1〜 1 2飽和炭化水素を含有す る原料を、 MF I型ゼオライ ト触媒を含む触媒に、 0. 0 5 ~ 2 MP aの反応圧 力下、 '触媒単位重量あたりの原料の供給速度 (WH S V)が 3 2〜 2 5 6 h r一 i、 4 0 0 - 5 8 0での反応温度で接触させることにより、 また好ましくは反応生成 物流出液中ペンテンのプロピレンに対する重量比を 0. 2 0 ~ 0. 8 0に制御す ることによって、 水素、 飽和炭化水素、 芳香族炭化水素及びコーク等の副生を抑 制し、 また、 ジェン化合物が比較的多く含まれる原料でも触媒上へのコ一クの析 出を抑制し、 高いエチレンとプロピレンの選択性と生産性、 及び長い触媒寿命が 得られる。 . 図面の簡単な説明  In the present invention, the raw material contains at least one kind of carbon having 4 to 12 carbon atoms, and contains 10 to 70 wt% of at least one kind of carbon having 1 to 12 saturated hydrocarbons. Under the reaction pressure of 0.05 to 2 MPa, the feed rate (WH SV) per unit weight of catalyst (WH SV) is 32 to 25 under the reaction pressure of 0.05 to 2 MPa. By contacting at a reaction temperature of 400 to 580 for 6 hours, preferably, the weight ratio of pentene to propylene in the reaction product effluent is controlled to 0.20 to 0.80. As a result, by-products such as hydrogen, saturated hydrocarbons, aromatic hydrocarbons, and coke are suppressed, and precipitation of coke on the catalyst is suppressed even in a raw material containing a relatively large amount of a gen compound. High ethylene and propylene selectivity and productivity, and long catalyst life are obtained. Brief description of the drawings
図 1は、 実施例 9、 1 0及び実施例 1における、 ブテン転化率、 エチレン、 プ ロピレン収率の経時的変化を示す。 菱形を繋いだグラフは実施例 9を、 正方形を 繋いだグラフは実施例 1 0を、 円形を繫いだグラフは実施例 1を表す。 また、 最 上段のグラフがプテンの転化率を、 中段のグラフがプロピレン収率を、 最下段の グラフがエチレン収率を表す。 発明を実施するための最良の形態 本発明によれば、 原料中少なく とも 1種類以上の炭素数 4〜 1 2ォレフィンを 含有し、 かつ、 1 0〜 7 0 w t %の少なくとも 1種類以上の炭素数 1〜 1 2飽和 炭化水素を含有する原料を、 触媒を使用した接触分解によって、 主としてォレフ ィ ン成分から選択的にエチレンとプロピレンを得ることができる。本発明者らは、 驚くべきことに、 このようなォレフィンと飽和炭化水素の混合原料を使用するこ とにより、コークの生成が抑制され、触媒活性の低下が抑制されることを見出した。 更に、ジェン化合物が比較的多く含まれる原料でも触媒上へのコークの析出を抑 制し、 触媒活性の低下が抑制されることを見出した。 また、 使用する原料に、 水 素が含まれても、 同様にコークの生成を抑制することができる。 この場合、 水素 の分圧が 0. 1〜0. 9の範囲内の値が好ましい。 FIG. 1 shows the changes over time in butene conversion, ethylene and propylene yield in Examples 9, 10 and 1. A graph connecting diamonds represents Example 9, a graph connecting squares represents Example 10, and a graph connecting a circle represents Example 1. The top graph shows the conversion of the putene, the middle graph shows the propylene yield, and the bottom graph shows the ethylene yield. BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the raw material contains at least one or more carbon atoms of 4 to 12 olefins, and contains 10 to 70 wt% of at least one or more carbon atoms of 1 to 12 saturated hydrocarbons. Ethylene and propylene can be selectively obtained mainly from the olefin component by catalytic cracking of a contained raw material using a catalyst. The present inventors have surprisingly found that by using such a mixed raw material of olefin and saturated hydrocarbon, the generation of coke is suppressed, and the decrease in catalytic activity is suppressed. Furthermore, they have found that even with a raw material containing a relatively large amount of a gen compound, the deposition of coke on the catalyst is suppressed, and a decrease in catalyst activity is suppressed. Also, even if hydrogen is contained in the raw materials used, coke generation can be similarly suppressed. In this case, the value of the partial pressure of hydrogen is preferably in the range of 0.1 to 0.9.
本発明に従って、 使用する原料中の、 炭素数 4〜 1 2ォレフィ ンとしては、 例 えば、 1ーブテン、 シス 一 2—ブテン、 トランス一 2—ブテン、 イソブテン、 1 一ペンテン、 シス一 2—ペンテン、 トランス一 2—ペンテン、 2—メチル一 1— ブテン、 2—メチルー 2—ブテン、 3ーメチル一 1一ブテン、 シクロペンテン、 1一へキセン、 2—へキセン、 3—へキセン、 メチルブテン類、 ジメチルブテン 類、 ネオへキセン、 シクロへキセン、 メチルシクロペンテン、 直鎖状ヘプテン類、 分岐状ヘプテン類、 環状ヘプテン類、 メチルシクロへキセン類、 炭素数 9〜 1 2 の直鎖状、 分岐状、 または環状のォレフィ ン類を挙げることができる。  According to the present invention, the starting material used has 4 to 12 carbon atoms, for example, 1-butene, cis-1-butene, trans-1-butene, isobutene, 1-pentene, cis-1-pentene , Trans-1-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-11-butene, cyclopentene, 1-1hexene, 2-hexene, 3-hexene, methylbutenes, dimethyl Butenes, neohexene, cyclohexene, methylcyclopentene, linear heptene, branched heptene, cyclic heptene, methylcyclohexene, C9-C12 linear, branched, or cyclic Olefins.
本発明に従って、 使用する原料中の、 炭素数 1〜 1 2飽和炭化水素類の含有量 は 1 0〜7 0w t %であり、 好ましくは 1 0〜6 0w t %.、 更に好ましくは 2 0 〜 50w t %で表される。 本発明の条件下では、 このような飽和炭化水素の転化 は実質起こらないが、 驚くべきことに、 使用する原料中にこれら飽和炭化水素の 含有量がこの範囲より低いと、 触媒の活性低下が速くなる。 炭素数 1〜 1 2飽和 炭化水素の例としては、 メタン、 ェタン、 プロパン、 n—ブタン、 イソブタン、 直鎖、 分岐と環状ペンタン、 直鎖、 分岐と環状,へキサン、 直鎖、 分岐と環状ヘプ タン、直鎖、分岐と環状オクタンを挙げることができる。それ以外の成分として、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素が含まれてもよい。 According to the present invention, the content of the saturated hydrocarbon having 1 to 12 carbon atoms in the raw material used is 10 to 70 wt%, preferably 10 to 60 wt%, more preferably 20 to 20 wt%. Expressed as ~ 50wt%. Under the conditions of the present invention, substantially no such conversion of saturated hydrocarbons occurs, but surprisingly, if the content of these saturated hydrocarbons in the feedstock used is below this range, the activity of the catalyst is reduced. Be faster. 1 to 12 carbon atoms Examples of hydrocarbons include methane, ethane, propane, n-butane, isobutane, linear, branched and cyclic pentane, linear, branched and cyclic, hexane, linear, branched and cyclic heptane, linear and branched And cyclic octane. As other components, aromatic hydrocarbons such as benzene, toluene and xylene may be contained.
また、 本発明に従って使用する原料中に含まれるジェン化合物は炭素数 3〜 1 2の炭化水素ジェン類であり、 プロパジェン、 1,2-ブタジエン、 1,3-ブタジエン、 1,2-ペンタジェン、 1,3-ペン夕ジェン、 1,4-ペン夕ジェン、 2, 3-ペン夕ジェン、 1,2- へキサジェン、 1,3-へキサジェン、 1,4-へキサジェン、 1,5-へキサジェン、 2, 3-へ キサジェン、 2, 4-へキサジェン、 1,2-へブタジエン、 1,3-へブタジエン、 1,4-ヘプ 夕ジェン、 1,5-ヘプタジ ン、 1,6-へブタジエン、 2,3-へブタジエン、 2,4-ヘプ夕 ジェン、 2,5-ヘプ夕ジェン、 3, 4-ヘプ夕ジェン、 1,2-ォクタジェン、 1,3-ォク夕ジ ェン、 1,4-ォクタジェン、 1,5-ォクタジェン、 1,6-ォクタジェン、 1,7-ォクタジェ ン、 2, 3-ォクタジェン、 2,4-ォク夕ジェン、 2, 5-ォクタジェン、 2, 6-ォクタジェン、 3, 4-ォクタジェン、 3,5-ォク夕ジェン等の直鎖状ジェン化合物、 2-メチル -1,3-ブ 夕ジェン、 3-メチル -1,2-ブタジエン、 2,3-ジメチル -1,3-ブタジェン、 2-ェチル -1,3· ブタジエン、 3-ェチル -1,2-ブタジエン、 2-メチル -1,3-ペン夕ジェン、 3-メチル -1,3- ペンタジェン、 4-メチル -1,3-ペンタジェン、 2-メチル -1,4-ペン夕ジェン、 3-メチ ル -1,4-ペンタジェン、 2,3-ジメチル -1,3-ペン夕ジェン、 2,4-ジメチル -1,3-ペンタ ジェン、 3,4-ジメチル -1,3-ペン夕ジェン、 2, 3-ジメチル -1,4-ペン夕ジェン、 2,4- ジメチル -1,4-ペン夕ジェン、 2-メチル -1,3-へキサジェン、 3-メチル -1,3-へキサジ ェン、 4-メチル -1,3-へキサジェン、 5-メチル -1,3-へキサジェン、 2-メチル -1,4-へ キサジェン、 3-メチル -1,4-へキサジェン、 4-メチル -1,4-へキサジェン、 5-メチル -1,4-へキサジェン等の分岐状ジェン化合物、 シクロペンタジェン、 1-メチルシク 口ペン夕- 1,3-ジェン、 2-メチルシクロペン夕- 1,3-ジェン、 5-メチルシクロペン夕 - 1,3-ジェン、 1,3-シクロへキサジェン、 1,4-シクロへ'キサジェン等の環状ジェン 化合物が含まれていてもよいが、 好ましからざる触媒活性の低下を引き起こす可 能性があるので、 その含有量は 2 w t %以下であることが好ましく、 より好まし くは l w t %以下である。 The gen compound contained in the raw material used in accordance with the present invention is a hydrocarbon gen having 3 to 12 carbon atoms, such as propagene, 1,2-butadiene, 1,3-butadiene, 1,2-pentadiene, 1,3-Penyugen, 1,4-Penyugen, 2,3-Penyugen, 1,2-Hexagen, 1,3-Hexagen, 1,4-Hexagen, 1,5-Hexagen , 2,3-hexadiene, 2,4-hexadiene, 1,2-heptadiene, 1,3-heptadiene, 1,4-heptadiene, 1,5-heptadiene, 1,6-heptadiene , 2,3-Heptadiene, 2,4-Heptogen, 2,5-Heptogen, 3,4-Heptogen, 1,2-Octadien, 1,3-Octogen, 1 , 4-Octadien, 1,5-Octadien, 1,6-Octadien, 1,7-Octadjen, 2,3-Octadjen, 2,4-Octoyjen, 2,5-Octadjen, 2,6-Octadjen , 3, 4-ok Linear gen compounds such as tajen, 3,5-octane, etc., 2-methyl-1,3-butane, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3- Butadiene, 2-ethyl-1,3-butadiene, 3-ethyl-1,2-butadiene, 2-methyl-1,3-pentane, 3-methyl-1,3-pentadiene, 4-methyl-1, 3-pentadiene, 2-methyl-1,4-pentane, 3-methyl-1,4-pentadiene, 2,3-dimethyl-1,3-pentane, 2,4-dimethyl-1,3 -Pentagen, 3,4-dimethyl-1,3-pentane, 2,3-dimethyl-1,4-pentane, 2,4-dimethyl-1,4-pentane, 2-methyl- 1,3-hexadiene, 3-methyl-1,3-hexadiene, 4-methyl-1,3-hexadiene, 5-methyl-1,3-hexadiene, 2-methyl-1,4- Hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene Branched Jen compounds such E down, cyclopentadiene, 1- Mechirushiku Mouth pen- 1,3-Gen, 2-Methylcyclopen- 1,3-Gen, 5-Methylcyclopen- 1,3-Gen, 1,3-Cyclohexadiene, 1,4-Cyclo 'A cyclic gen compound such as xadiene may be contained, but since it may cause undesired reduction in catalytic activity, its content is preferably 2 wt% or less, more preferably lwt% or less.
このような成分をもつ原料としては、 例えば、 ナフサ熱分解炉、 またはナフサ 接触分解炉で得られる混合物から C 1〜C 3留分を分離した後送られる脱ブタン 塔の塔頂より得られる 留分(クルード C 4留分)からブタジエンを抽出除去した 後の留分(ラフイネ一トー 1 )、 またはクル一ド C 4留分中のブタジエンを抽出す ることなくその全量を選択的に接触水添してジェン成分を 2 w t %以下としたォ レフイン留分、 またはラフイネ一ト一 1からイソプテンを分離した後の留分(ラフ イネ一トー 2 )、 または脱ブタン塔の塔底より得られる 留分(クル一ド C 5留分) からイソプレンを抽出除去した後の留分、 またはクルード C 5留分からイソプレ ンを抽出することなくその全量を選択的に接触水添してジェン成分を 2 w t %以 下としたォレフィ ン留分、 またはナフサ熱分解炉、 またはナフサ接触分解炉で得 られる混合物から C 1 ~ C 3留分を分離した後送られる脱ペンタン塔の塔頂より 得られる留分からブタジエンゃィソ レンを抽出することなくその全量を選択的 に接触水添してジェン成分を 2 w t %以下としたォレフィ ン留分などを挙げるこ とができる。  Examples of the raw material having such a component include a naphtha pyrolysis furnace or a distillate obtained from the top of a debutane tower sent after separating a C1 to C3 fraction from a mixture obtained in a naphtha catalytic cracking furnace. Fraction (cruft C1 fraction) after extraction and removal of butadiene from crude C4 fraction (crude C4 fraction) or butadiene in the C4 fraction of crude C4 without selectively extracting the total amount of contact water Fraction obtained by adding isotope to 2 wt% or less, or a fraction obtained by separating isopten from rough rice (rough rice 2), or obtained from the bottom of a debutanizer. A fraction obtained by extracting and removing isoprene from a fraction (a C5 fraction of a cloud), or the entire amount thereof is selectively catalytically hydrogenated without extracting an isoprene from a C5 fraction of a crude to reduce the gen component. Off-line distillation with wt% or less Butadiene disolen is extracted from the fraction obtained from the top of the depentanizer sent after separating the C1 to C3 fraction from the mixture obtained in the naphtha pyrolysis furnace or the naphtha catalytic cracking furnace. In addition, there can be mentioned, for example, an orefin fraction in which the total amount is selectively catalytically hydrogenated to reduce the gen component to 2 wt% or less.
これらの原料は単独で用いても良いし、 または任意の分量で混合して使用して も差し支えない。 原料は上述に限定されるものではなく、 炭素数 4〜1 2ォレフ ィン及び 1 0〜 7 0 w t %の少なく とも 1種の炭素数 1〜 1 2飽和炭化水素類を 含有するものであれば、 いずれの原料を用いることも可能である。 本発明で用いられる触媒は、 MF I型ゼオライ ト触媒が使用される。 ゼォライ 卜の S i 02/A 1 203モル比は通常 .1 2 0を超えて 5 0 0 0迄、 好ましくは 2 0 0 5 0 0 0、 更に好ましくは 2 8 0 5 0 0 0、 特に好ましくは 2 8 0 2 0 0 0である。 S i 02/A 1 23モル比がこれよりも低いものは、 触媒活性が 高すぎるため、 分解反応が熱力学的に有利に起こる温度領域ではコークの析出速 度が高く、 また触媒を繰り返し使用する際にその安定性に問題があるので好まし くない。 一方、 この範囲よりも高い S i O 2/A 1 2 O 3モル比を有する場合、 活 性点の数が減少し、 もはや酸触媒としては作用できなくなり好ましくない。 These raw materials may be used alone, or may be used as a mixture in an arbitrary amount. The raw materials are not limited to those described above, and may be those containing at least one kind of saturated hydrocarbons having 4 to 12 carbon atoms and 10 to 70 wt% of at least one carbon atom. Any material can be used. As the catalyst used in the present invention, an MFI type zeolite catalyst is used. S i 0 2 / A 1 2 0 3 molar ratio of Zeorai Bok until 5 0 0 0 beyond normal .1 2 0, preferably 2 0 0 5 0 0 0, more preferably 2 8 0 5 0 0 0 And particularly preferably 280 000. If the molar ratio S i 0 2 / A 1 23 is lower than this, the catalytic activity is too high, so that the coke deposition rate is high in the temperature range where the decomposition reaction is thermodynamically favorable, Is not preferred because of its stability when repeatedly used. On the other hand, when the molar ratio of SiO 2 / A 12 O 3 is higher than this range, the number of active points decreases, and it is not preferable because the active point can no longer function as an acid catalyst.
MF I型ゼォライ ト触媒は目的の S i 〇 2ZA 1 2 O 3モル比を有する市販品 をそのまま使用してもよいが、 これら範囲を逸脱する組成のゼォライ トを原料と して公知の方法により得ることも可能である。 すなわち、 低い S i O sZA l z O 3モル比の市販品を脱アルミさせて、 より高シリカゼォライ 卜に転化させるこ とも可能である。 脱アルミナの方法としては、 例えば、 Catalysis and Zeolites, Fundamentals and Applications J. Weitkamp, . Puppe Hi集、 Springer, 1999 1 2 7 1 5 5ページに記載され、 水蒸気処理、 四塩化ケィ素による処 理、 へキサフル口シリケ一ト処理等の方法を挙げることができる。 MF I type Zeorai DOO catalyst may be used as a commercial product having a S i 〇 2 ZA 1 2 O 3 molar ratio of purpose, a known method by the Zeorai bets composition deviating these ranges as a starting material It is also possible to obtain by That is, a commercial product having a low SiO 2 SZAlz O 3 molar ratio can be dealuminated and converted to a higher silica zeolite. Examples of the method for dealumination are described in Catalysis and Zeolites, Fundamentals and Applications J. Weitkamp, .Puppe Hi Collection, Springer, 1999, 1 271 155, steam treatment, treatment with silicon tetrachloride, Hexaful mouth silicate treatment and the like can be mentioned.
MF I型ゼォライ トの市販品はナトリウムやアンモニゥムをカチオンとして含 む物が多いが、 以下の処理を施せば、 いずれのものも本発明に用いることができ る。 すなわち、 アンモニゥムカチオンで交換されたゼオライ トは、 例えば、 5 0 0でで 5時間かけて処理することにより、 これをプロ トン型に変換させてから、 接触分解反応触媒として使用する。 一方、 ナトリウム等のアルカリ金属イオンを 有するものは、 公知の方法、 すなわち 1 1 0 %程度の硝酸アンモニゥム水溶液 中、 6 0でで 6時間攪拌したのち、 濾過、 洗浄し、 その後 5 0 0 X で 5時間かけ て処理することにより、 これをプロ トン型に変換させて使用することができる。 上記の M F I型ゼオライ ト触媒は、 酸性を示すことが必要な要件であるため、 そのゼォライ トはプロ トン型以外に、 金属イオンで交換された酸性を示すゼオラ イ トを用いることができる。 その金属イオンの具体的な例は、 1価の金属イオン では、 C u、 A gなどの I B族金属を挙げることができ、 また、 2価以上の金属 イオンでは、 M g、 C a、 S r、 B aなどのアルカリ土類金属、 L a、 C eなど の希土類金属、 F e、 N i 、 M n、 C o、 V、 等の遷移金属を挙げることができ る。これらはプロ トンと任意の割合で同時に存在しても差し支えない。このとき、 ゼォライ トの交換容量の全てを前述のプロ 卜ン、 または上記の金属で置き換えて も良いが、活性が高すぎる場合には、その交換容量の一部を、任意の割合で L 1 、 N a、 K等のアルカリ金属で置き換えて酸性度を下げてもよい。 ただし、 アル力 リ金属の交換容量に占める割合が 9 0 %を越すと酸性度が低くなりすぎるためこ れ以下の割合とすることが好ましい。 Many commercially available MFI zeolite products contain sodium or ammonium as a cation, but any of them can be used in the present invention if the following treatment is performed. That is, the zeolite exchanged with the ammonium cation is converted, for example, to a proton type by treating it at 500 with 5 hours, and then used as a catalytic cracking reaction catalyst. On the other hand, those having an alkali metal ion such as sodium are stirred by a known method, that is, in an aqueous solution of about 110% ammonium nitrate at 60 for 6 hours, filtered, washed, and then washed at 500X. 5 hours This can be converted to a proton type and used. Since the above-mentioned MFI-type zeolite catalyst is required to exhibit acidity, the zeolite may be a zeolite exhibiting acidity exchanged with a metal ion in addition to the protonic zeolite. Specific examples of the metal ion include monovalent metal ions such as Group IB metals such as Cu and Ag, and divalent or higher metal ions include Mg, Ca, and S Examples thereof include alkaline earth metals such as r and Ba, rare earth metals such as La and Ce, and transition metals such as Fe, Ni, Mn, Co, and V. These may be present at the same time as the protons in any proportion. At this time, all of the exchange capacity of the zeolite may be replaced with the above-mentioned proton or the above-mentioned metal. However, if the activity is too high, a part of the exchange capacity is reduced by L 1 at an arbitrary ratio. , Na, K or the like to reduce the acidity. However, if the ratio of the alkali metal to the exchange capacity exceeds 90%, the acidity becomes too low, so that it is preferable to set the ratio below this.
上記の M F I型ゼォライ トは、 その他に酸性を示す Pなどの元素を含むものを 用いることができる。 このとき、 Pの含有量はモル表示でプロ トンや他の金属力 チオンの含有量以上であることが好ましい。 - これらの元素を触媒に含有させる方法としては、 公知の方法がとられる。 例え ば、 プロ トン型 M F Iゼォライ トとイオン交換法で、 金属原子のカチオンをプロ トンと交換させる方法や、 これらの元素が含有する塩ゃ錯化体の化合物を M F I ゼォライ トに含浸させる方法などが挙げられる。  As the above-mentioned MFI zeolite, those containing an element such as P which shows acidity can be used. At this time, the content of P is preferably equal to or more than the content of protons and other metal thiones in terms of mole. -As a method for incorporating these elements into the catalyst, known methods are used. For example, a method of exchanging the cation of a metal atom with proton by ion exchange with a proton-type MFI zeolite, or a method of impregnating a salt-complex compound containing these elements into the MFI zeolite Is mentioned.
上記の M F I型ゼオライ ト触媒には、 活性の制御、 選択性の向上、 コーク生成 の抑制及び触媒劣化速度の抑制を目的で、 公知の方法に従って、 S i と A 1以外 の第 3金属として、 B、 S n、 G a、 M n、 F e及び T i を M F I型ゼオライ ト 構造の骨格に含有したものを用いることもできる。 According to a known method, the above-mentioned MFI type zeolite catalyst is used as a third metal other than Si and A1 for the purpose of controlling activity, improving selectivity, suppressing coke formation and suppressing catalyst deterioration rate. B, S n, G a, M n, F e and T i are converted to MFI zeolite Those contained in the skeleton of the structure can also be used.
上記の M F I.型ゼォライ ト触媒は、 公知の方法で水蒸気処理を行ってから使用 することができる。 上記処理の方法として、 温度が 5 ,0 0 - 7 5 0 :、 蒸気圧 0 . l M P a ~ l M P a、 処理時間 1 0— 4 8が好ましい。 また、 上記処理は以下述 ベる方法で触媒を成型した後で、 行うこともできる。 前述の触媒は以下の形態で反応器に充填される。 すなわち、 水熱合成により得 た M F Iゼォライ トは本質的には微粉末状態である。 得られた微粉末の M F Iゼ ォライ ト触媒をそのまま固定床反応器に充填しても良いが、 圧力損失が大きくな るのを防ぐため、 本接触分解に不活性な充填剤、 たとえば、 シリカポール、 アル ミナボールと物理的に混合して充填してもかまわない。 さらに、 得られた微粉末 の M F Iゼォライ ト触媒を、 触媒性能を変えることのない燒結剤 (バインダー) と混練したのち、成形してもかまわない。燒結剤は、 シリカ系が代表的であるが、 その他もアルミナ系、 チタニア系、 ジルコニァ系、 珪藻度系のいずれかより選択 することができる。 ,  The above MFI zeolite catalyst can be used after being subjected to steam treatment by a known method. As the method of the above treatment, the temperature is preferably 5,000 to 750: the vapor pressure is preferably 0.1 to 1 MPa, and the processing time is preferably 10 to 48. Further, the above treatment can be performed after the catalyst is molded by the method described below. The aforementioned catalyst is charged to the reactor in the following form. That is, MFI zeolite obtained by hydrothermal synthesis is essentially in a fine powder state. The resulting finely powdered MFI zeolite catalyst may be directly charged into a fixed bed reactor, but in order to prevent pressure loss from increasing, a filler inert to the catalytic cracking, for example, silica pole However, it may be physically mixed with aluminum balls and filled. Further, the obtained fine powdered MFI zeolite catalyst may be kneaded with a sintering agent (binder) which does not change the catalytic performance, and then molded. The sintering agent is typically a silica type, but may be selected from alumina, titania, zirconia, and diatomaceous types. ,
焼結は 5 0 0 - 8 0 0での範囲で行われることが好ましい。 また成形する形状 は、 タブレッ ト(Tablets)、 押し出し状 (Extrusions)、 ペレッ ト (Pellets)、 球 · 小球 (Spheres、 Micro spheres), CDS 押し出し状 (CDS Extrusions) > トリ口 , ーブ (Trilobes)、 クワード口一ブス (Quardlobes)、 リング (Ring)、 2 スポーク リング ( 2 Sporkes rings;)、 HGS、 EW、 LDP等の特殊スポークリングス、 リブ リング (Rib rings), 及び破砕状 (Granules)等を例示することができる。  Sintering is preferably performed in the range of 500-800. The shapes to be molded are: Tablets, Extrusion, Pellets, Spheres, Micro spheres, CDS Extrusion (CDS Extrusions)> Trilobes, Trilobes ), Quardlobes, Rings, Two-spoke rings (2 Sporkes rings;), HGS, EW, LDP and other special spokes, Ribs rings, Granules, etc. Can be exemplified.
本発明によれば、 接触分解は、 固定床、 流動床、 移動床等のいずれの型式の反 応器においても用いることができるが、 設備が簡単な固定床反応器であることが 好ましい。 このような反応器に上記触媒を充填し、 ォレフィ ン含有炭化水素原料 を供給することにより接触分解反応が行われる。 この接触分解反応を行う際に、 以下のように精緻に反応条件を制御する。 According to the present invention, catalytic cracking can be used in any type of reactor, such as a fixed bed, a fluidized bed, and a moving bed, but a fixed bed reactor with simple equipment can be used. preferable. The catalytic cracking reaction is carried out by filling the above-mentioned catalyst into such a reactor and supplying the olefin-containing hydrocarbon raw material. When performing this catalytic cracking reaction, the reaction conditions are precisely controlled as follows.
反応温度は 40 0〜 5 8 0で、 好ましくは 48 0~5 8 0 ° (:、 更に好ましくは 48 0〜 5 6 0でにする。 この範囲よりも反応温度が低い場合には、 供給するォ レフィ ンの転化率が低下し、 十分なエチレン及びプロピレンの生産性が得られな いので好ましくない。 一方、 この範囲よりも高い反応温度では、 コ一クの生成速 度が加速し、 触媒の活性低下が速くなる。 ·  The reaction temperature is 400 to 580, preferably 480 to 580 ° (:, more preferably 480 to 560. If the reaction temperature is lower than this range, supply On the other hand, if the reaction temperature is higher than this range, the rate of coke formation accelerates, and the catalyst conversion rate decreases. · The activity of the product decreases faster.
反応圧力は 0. 0 5 MP a〜2MP a、 好ましくは 0. 0 5〜: L MP a、 より 好ましくは 0. 0 5〜0. 5MP aにする。  The reaction pressure is adjusted to 0.05 MPa to 2 MPa, preferably 0.05 to: L MPa, more preferably 0.05 to 0.5 MPa.
MF I触媒単位重量あたりの全原料の供給速度 (WHS V)は 3 2〜 2 5 6 h r一 1以上、 好ましくは 40〜 2 5 6 h r— 1、 より好ましくは 40〜: L 2 8 h r一 i にする。 この範囲よりも原料供給速度 (WHSV) が低い場合は、 反応'生成留出 物中のペンテン含有量が低くなり、 また触媒の活性低下速度がある程度抑制され るものの、 水素、 飽和炭化水素及び芳香族炭化水素の収率が増加し、 高いェチレ ン及びプロピレンの選択率と生産性が得られない。 一方、 この範囲よりも大きな 原料供給速度 (WHS V) の反応条件下では、 コ一クの生成速度が速くなるので 好ましくない。  The feed rate (WHSV) of the entire raw material per unit weight of the MFI catalyst is 32 to 256 hr-1 or more, preferably 40 to 256 hr-1, more preferably 40 to: L28 hr-1. i. If the feed rate (WHSV) is lower than this range, the pentene content in the reaction distillate is reduced and the rate of catalyst activity reduction is suppressed to some extent, but hydrogen, saturated hydrocarbon and aromatic The yield of aromatic hydrocarbons increases and high selectivity and productivity of ethylene and propylene cannot be obtained. On the other hand, under the reaction conditions of the raw material supply rate (WHSV) larger than this range, the rate of coke formation is increased, which is not preferable.
また反応器は、 単一の反応器であっても、 複数の反応器からなってもよく、 特 に複数の反応器の場合、 直列に反応器を設置することにより反応条件をより精密 に制御できる。 また並列に設置した場合には、 片方の反応器で接触分解運転を行 レ 他の反応器では再生などを行い、 これらを切り替えながら運転することによ り一定の生産量を維持することが可能となる。 このような反応条件下で、 プロピ レンの選択率、 収率と生産性.を最大限得られ、 触媒の活性低下の原因となるコー クの生成が抑制される。 In addition, the reactor may be a single reactor or a plurality of reactors. In the case of a plurality of reactors, the reaction conditions are more precisely controlled by installing the reactors in series. it can. When the reactors are installed in parallel, catalytic cracking operation is performed in one of the reactors, and regeneration and other operations are performed in the other reactor. It becomes. Under these reaction conditions, This maximizes the selectivity, yield and productivity of len, and suppresses the formation of coke, which causes a decrease in catalyst activity.
本発明の方法によれば、 反応器出口における反応生成留出物中にペンテンのプ ロピレンに対する重量比は通常 0. 2 0 ~ 0. 8 0にするが、 好ましくは 0. 2 5〜 0. 8 0、 更に 0. 30 ~ 0. 8 0にすることが好ましい。 また、 直列に複 数設置された反応器の場合、 第一番目の反応器の出口における反応生成留出物中 にペンテンのプロピレンに対する重量比は通常 0. 2 0 ~ 0. 8 0にするが、 好 ましくは 0. 2 5〜 0. 8 0、 更に 0. 30 ~ 0. 8 0にすることが好ましい。 すなわち、 接触分解反応では以上述べたように反応速度の異なる複数の反応が 同時に進行しており、 この中で反応速度の遅いペンテンの分解をある程度抑制す ることにより、好ましからざるコ一クの蓄積を抑制し、その結果充分に長い時間、 一定の触媒活性を維持することが可能である。 複数設置された反応器の第 1の反 応器の生成物から, エチレン及びプロピレンを除去する場合、 第 2番目の反応器 での反応を.より過酷な条件で行うことにより、 全体として供給した原料の大部分 を転化させることが可能となる。 '  According to the process of the present invention, the weight ratio of pentene to propylene in the reaction product distillate at the reactor outlet is usually from 0.20 to 0.80, preferably from 0.25 to 0.8. It is preferably 80, more preferably 0.30 to 0.80. In the case of a plurality of reactors installed in series, the weight ratio of pentene to propylene in the reaction product distillate at the outlet of the first reactor is usually 0.20 to 0.80. It is preferably 0.25 to 0.80, more preferably 0.30 to 0.80. In other words, in the catalytic cracking reaction, as described above, a plurality of reactions having different reaction rates are proceeding simultaneously, and by suppressing the decomposition of pentene, which has a slow reaction rate, to a certain extent, accumulation of undesirable coke is achieved. Therefore, it is possible to maintain a constant catalytic activity for a sufficiently long time. When ethylene and propylene were removed from the products of the first reactor of multiple reactors, the reaction in the second reactor was carried out under more severe conditions to supply the whole. Most of the raw materials can be converted. '
一方、 反応器を一つしか使用しない場合には、 ペンテンを含む炭素数 4以上ォ レフィ ンは反応生成留出物から分離された後、 接触分解反応器にリサイクルして 新たな原料と合一して使用することも可能であり、 また、 これら炭素数 4以上ォ レフィ ンは分離後、 ナフサクラッカ一へ新たなナフサ原料と合一して使用するこ とも可能である。 '  On the other hand, when only one reactor is used, the olefins having 4 or more carbon atoms, including pentene, are separated from the distillate of the reaction product and then recycled to the catalytic cracking reactor to be combined with new raw materials. It is also possible to use these naphtha crackers together with new naphtha raw materials after separation of these carbons having 4 or more carbon atoms. '
本発明では、 原料中少なく とも 1種の炭素数 4~ 1 2ォレフィ ンを含有し、 か つ、 1 0〜 7 0w t %の少なくとも 1種の炭素数 1〜 1 2飽和炭化水素を含有し、 場合により 2 w t %以下のジェン化合物を含有する原料を、 MF I型ゼォライ ト 触媒を含む触媒に、 0. 0 5〜 2 MP aの反応圧力下、 MF I触媒単位重量あた りの全原料の供給速度 (WH S V)が 3 2 ~2 5 6 h r i、 40 0 ~ 5 8 0 °Cの反 応温度で接触させることにより、 反応生成留出物中ペンテンのプロピレンに対す る'重量比を 0. 2 0〜 0. 8 0に制御することによって、 水素、 飽和炭化水素、 芳香族炭化水素及びコークス等の副生を抑制し、 また、 ジェン化合物が比較的多 く含まれる原料でも触媒上へのコークの析出を抑制し、高いプロピレンの選択性、 及び長い触媒寿命が得られる。 以下本発明を実施例により更に詳細に説明するが、 本発明はこれらの実施例に 限定されるものではない。 実施例 1 In the present invention, the raw material contains at least one kind of carbon having 4 to 12 carbon atoms, and contains 10 to 70 wt% of at least one kind of carbon having 1 to 12 saturated hydrocarbons. The raw material containing 2 wt% or less of the gen compound in some cases At a reaction pressure of 0.05 to 2 MPa, the feed rate (WH SV) of all raw materials per unit weight of the MFI catalyst is 32 to 256 hri, 400 to 5 at a reaction pressure of 0.05 to 2 MPa. By contacting at a reaction temperature of 80 ° C, hydrogen and saturated hydrocarbons are controlled by controlling the weight ratio of pentene to propylene in the reaction product distillate to 0.20 to 0.80. In addition, it suppresses by-products such as aromatic hydrocarbons and coke, and also suppresses the deposition of coke on the catalyst, even in raw materials containing relatively large amounts of gen compounds, resulting in high propylene selectivity and long catalyst life. can get. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1
市販品の粉末状アンモニゥム塩型 Z SM— 5 (S i 02ZA l 203モル比 2 8 0) 粉末を 5 5 0 °Cで、 5時間かけて焼成した。 焼成後、 圧縮成型、 粉砕、 分級 により粒径 2 5 0〜 5 0 0 mの触媒を得た。 Commercially powdered Anmoniumu salt Z SM- 5 (S i 0 2 ZA l 2 0 3 molar ratio of 2 8 0) powder in 5 5 0 ° C, was calcined for 5 hours. After firing, a catalyst having a particle size of 250 to 500 m was obtained by compression molding, pulverization and classification.
反応は固定床流通式反応器 (内径 10. 7 mm、 長さ 250mm) を使用した。 上 記の触媒 0. 1 2 5 g、 保持材として石英ウールと石英砂を、 全体の長さが 2 5 0mmになるように石英管に充填した。 この石英管を反応器に装填し、 触媒層の 温度 5 5 0でに保持し、 ナフサのクラッキングで得られた C 4留分原料 C (表 1 ) を 8 g毎時の流量で供給し、 0. 0 5 MP aの反応圧力下、 接触分解反応を行つ た。 流出した反応生成物を気相状態に保持し、 ガスクロマトグラフを用い分析を 行つた。  The reaction was carried out in a fixed-bed flow reactor (10.7 mm ID, 250 mm length). A quartz tube was filled with 0.125 g of the above catalyst and quartz wool and quartz sand as a holding material so that the entire length became 250 mm. This quartz tube was charged into the reactor, the temperature of the catalyst layer was maintained at 550, and the C4 fraction raw material C (Table 1) obtained by cracking of naphtha was supplied at a flow rate of 8 g / hour. The catalytic cracking reaction was performed under a reaction pressure of 0.5 MPa. The effluent reaction product was kept in a gaseous state and analyzed using a gas chromatograph.
所定時間反応を行った後、 原料の供給を停止し、 触媒層の温度を 45 0 °Cに下 げた。 原料の供給を停止して 1時間後に、 窒素で希釈した空気で蓄積したコーク の燃焼を開始した。 蓄積したコークの燃焼が終了,するまで空気の供給を続けた。 燃焼反応によって生成した水素、 一酸化炭素及び二酸化炭素を、 ガスクロマトグ ラフにより定量を行い、 これらのガスの生成重量からコークの生成重量を算出し た。 After reacting for a predetermined time, supply of the raw material is stopped, and the temperature of the catalyst layer is lowered to 450 ° C. I got it. One hour after the feed was stopped, the combustion of coke accumulated with air diluted with nitrogen was started. The air supply was continued until the combustion of the accumulated coke was completed. Hydrogen, carbon monoxide and carbon dioxide generated by the combustion reaction were quantified by gas chromatography, and the weight of coke produced was calculated from the weight of these gases produced.
原料の転化率と生成物の収率を次式により算出した。  The conversion of the raw material and the yield of the product were calculated by the following formula.
( 1 ) プテン転化率 (%) = ( 1 — (未反応のブテン重量 Z供給ブテン重量)) X 1 0 0  (1) Putene conversion (%) = (1 — (weight of unreacted butene Z weight of butene supplied)) X 100
( 2 ) 生成物の収率 (%) = (各成分生成重量/供給ブテン重量) X I 0 0 ( 3 ) コークの収率 (P P M ) = (コーク生成全重量 供給ブテン全重量) X 1, 0 0 0 , 0 0 0  (2) Product yield (%) = (weight of each component produced / supply butene weight) XI 00 (3) Coke yield (PPM) = (total coke production weight total supplied butene weight) X 1,0 0 0, 0 0 0
反応の結果を表 2に示す。 9 0時間にわたり、 エチレン及びプロピレンの生産 性が安定的に得られる結果である。 また、 コークの生成収率も低く、 蓄積したコ —クを燃焼させて除去する方法が取られるので、 コ一クの燃焼によって発生する 熱量が小さく、かつ触媒の劣化に好ましくない蒸気の発生量が少くなる。従って、 触媒を繰り返して使用する際、 その寿命が長くなることが期待できる。 比較例 1  Table 2 shows the results of the reaction. This is a result that the productivity of ethylene and propylene can be stably obtained over 90 hours. In addition, the production yield of coke is low, and a method of burning and removing accumulated coke is used, so the amount of heat generated by coke combustion is small and the amount of steam generated that is not desirable for catalyst deterioration Less. Therefore, when the catalyst is used repeatedly, its life can be expected to be longer. Comparative Example 1
実施例 1 と同じ条件で、 但レ実施例 1の原料 Cを n —ブテン原料に変更して接 触分解反応を行った。 結果を表 3に示す。 飽和炭化水素であるブタンを含有しな い原料を使用するこの条件下では、 エチレン及びプロピレンの生産性が安定的に 得られる反応時間がわずか 2 0時間であった。 表 1 (原料組成) A catalytic cracking reaction was carried out under the same conditions as in Example 1 except that the raw material C in Example 1 was changed to an n-butene raw material. Table 3 shows the results. Under these conditions, which use a raw material that does not contain the saturated hydrocarbon butane, the reaction time for stable production of ethylene and propylene was only 20 hours. Table 1 (Raw material composition)
Figure imgf000018_0001
表 2 (実施例 1 )
Figure imgf000018_0001
Table 2 (Example 1)
触媒 H-ZS -5 (Si02/Al2Os 280), 原料 C (飽和炭化水素 反応条件 Catalyst H-ZS -5 (Si0 2 / Al 2 O s 280), the raw material C (saturated hydrocarbon reaction conditions
40.0 wt%)、温度 550°C, WHSV 64 hr-1, 圧力 0.05 MPa 反応時間 ( hr ) 4 12 20 30 42 54 66 78 84 90 プテン転化率(%) 76.5 74.9 75.1 76.3 69.8 72.5 66.4 65.5 70.1 68.6 収率(wt%) 40.0 wt%), temperature 550 ° C, WHSV 64 hr- 1 , pressure 0.05 MPa reaction time (hr) 4 12 20 30 42 54 66 78 84 90 conversion ratio of ptene (%) 76.5 74.9 75.1 76.3 69.8 72.5 66.4 65.5 70.1 68.6 Yield ( wt %)
水素 0.10 0.08 0.11 0.09 0.06 0.05 0.05 0.03 0.04 0.05 メタン 0.43 0.33 0.48 0.41 0.28 0.24 0.23 0.18 0.26 0.28 ェタン 0.54 0.40 0.61 0.53 0.32 0.26 0.24 0.17 0.27 0.28 プロパン 4.7 3.5 4.7 4.2 2.7 2.2 2.0 1.3 1.9 2.0 ブタン 2.3 0.1 4.2 1.0 2.5 3.0 3.1 0.9 3.2 4.1 エチレン 10.1 8.3 10.4 9.2 7.3 6.5 6.0 4.8 6.0 6.2 プロピレン 31.4 30.7 33.2 30.5 32.0 30.0 31.3 28.9 29.5 32.2 ペンテン 9.5 10.0 9.8 9.4 11.5 10.6 12.5 12.4 10.7 12.6 Hydrogen 0.10 0.08 0.11 0.09 0.06 0.05 0.05 0.03 0.04 0.05 methane 0.43 0.33 0.48 0.41 0.28 0.24 0.23 0.18 0.26 0.28 ethane 0.54 0.40 0.61 0.53 0.32 0.26 0.24 0.17 0.27 0.28 propane 4.7 3.5 4.7 4.2 2.7 2.2 2.0 1.3 1.9 2.0 butane 2.3 0.1 4.2 1.0 2.5 3.0 3.1 0.9 3.2 4.1 Ethylene 10.1 8.3 10.4 9.2 7.3 6.5 6.0 4.8 6.0 6.2 Propylene 31.4 30.7 33.2 30.5 32.0 30.0 31.3 28.9 29.5 32.2 Pentene 9.5 10.0 9.8 9.4 11.5 10.6 12.5 12.4 10.7 12.6
C5以上非芳香族 17.2 17.1 17.7 16.3 18.6 16.7 19.0 18.1 16.4 19.1 芳香族 5.1 4.0 5.4 4.6 3.0 2.7 2.6 1.7 2.4 2.6 コーク 35 PPM 表 3 (比較例 1 ) C5 or higher Non-aromatic 17.2 17.1 17.7 16.3 18.6 16.7 19.0 18.1 16.4 19.1 Aromatic 5.1 4.0 5.4 4.6 3.0 2.7 2.6 1.7 2.4 2.6 Cork 35 PPM Table 3 (Comparative Example 1)
Figure imgf000019_0001
Figure imgf000019_0001
実施例 2〜4 Examples 2 to 4
実施例 2~4では、 それぞれ表 4に示した原料を使用した以外は実施例 1と同 じ条件で、 主にブタン類の飽和炭化水素を 1 8. 4w t %、 30. 6w t %及び 6 1. 2 w t %含む原料の接触分解を行った例であり、 結果を表 4に示す。 比較 例 1と比べると、 原料が飽和炭化水素を 1 8. 4w t %含むだけで、 コークの生 成収率が半減し、 エチレン及びプロピレンの生産性が安定的に得られる反応時間 が 20時間から 42時間へと急激に長くなつたことがわかる。 実施例 4では飽和 炭化水素含有量が 6 1. 2 w t %と高い原料の接触分解例である。 運転を 1 0 0 時間で停止したが、 この時点での触媒の活性低下はわずかであった。 表 4 (実施例 1 ~ 4、 比較例 1 ) In Examples 2 to 4, the same conditions as in Example 1 were used except that the raw materials shown in Table 4 were used, respectively, to obtain saturated hydrocarbons mainly of butanes at 18.4 wt%, 30.6 wt% and This is an example of catalytic cracking of a raw material containing 61.2 wt%. The results are shown in Table 4. Compared to Comparative Example 1, the raw material contains only 18.4 wt% of saturated hydrocarbons, the coke production yield is reduced by half, and the reaction time for stable production of ethylene and propylene is 20 hours. It can be seen that the time has rapidly increased from 42 hours to 42 hours. Example 4 is an example of catalytic cracking of a raw material having a saturated hydrocarbon content as high as 61.2 wt%. The operation was stopped at 100 hours, at which point the catalyst activity was slightly reduced. Table 4 (Examples 1 to 4, Comparative Example 1)
Figure imgf000020_0001
実施例 5 ~ 6及び比較例 2
Figure imgf000020_0001
Examples 5 to 6 and Comparative Example 2
実施例 5 ~ 6及び比較例 2では、 反応温度を 5 0 0 °C、 それぞれ表 5に示した W H S Vとし、 かつ原料 Dを使用した以外は実施例 1 と同じ反応条件で接触分解 を行った。 結果を表 5に示す。 実施例 5に示すように、 触媒重量単位当たりの原 料の供給速度 (W H S V ) の値が 1 2 8 h r 1と高い条件下では、 ペンテンのプ ロピレンに対する重量比が 0 . 5以上になっている。 この条件下では、 コークの 生成が極めて低いことがわかる。 しかし、 比較例 2で示すように、 生産性を抑え た反応条件下、 即ち W H S Vの値が 8 h r— 1と低いと、 ペンテンの収率は減少 するものの、 飽和炭化水素、 芳香族炭化水素やコーク等の好ましくない副生物の 収率が逆に大変高くなつている。 表 5 (実施例 5〜 6、 比較例 2 ) In Examples 5 to 6 and Comparative Example 2, catalytic cracking was carried out under the same reaction conditions as in Example 1 except that the reaction temperature was 500 ° C, the WHSV shown in Table 5 was used, and raw material D was used. . Table 5 shows the results. As shown in Example 5, the value of 1 2 8 hr 1 and higher conditions of feed rate of raw material (WHSV) of catalyst per weight unit, the weight ratio flop propylene pentenes to zero. 5 or more since it I have. Under these conditions, it can be seen that the formation of coke is extremely low. However, as shown in Comparative Example 2, under reaction conditions with reduced productivity, that is, when the value of WHSV is as low as 8 hr- 1 , although the yield of pentene decreases, saturated hydrocarbons, aromatic hydrocarbons, On the contrary, the yield of undesired by-products such as coke is becoming very high. Table 5 (Examples 5 and 6, Comparative Example 2)
Figure imgf000021_0001
Figure imgf000021_0001
実施例 7 S i O 2ZA 12 O 3モル比 5 0 0のゼオライ ト Zeolite preparative Example 7 S i O 2 ZA 1 2 O 3 molar ratio 5 0 0
この実施例では、 S i〇2/A 1 203モル比が 5 00の MF Iゼォライ ト触媒 を使用した以外は、 実施例 1と同じ条件で、 1 3 7時間接触分解を行った例であ り、 結果を表 6に示す。 高 S i O 2/A 1 2 O 3モル比のゼォライ トを使用するこ とによって、 エチレン及びプロピレンの生産性を実質減少させることなく、 S i 〇 2/A 1 2 O 3モル比 2 8 0の MFゼォライ ト触媒を使用した実施例 1よりも、 1. 5倍以上も反応を行うことができた。 表 6 (実施例 7 ) In this embodiment, except that S I_〇 2 / A 1 2 0 3 molar ratio was used 5 00 MF I Zeorai DOO catalyst in the same conditions as in Example 1 was subjected to catalytic cracking 1 3 7 hours Example Table 6 shows the results. By that you use the high S i O 2 / A 1 2 O 3 molar ratio Zeorai DOO, without substantially reducing the productivity of ethylene and propylene, S i 〇 2 / A 1 2 O 3 molar ratio of 2 8 The reaction could be performed 1.5 times or more as compared with Example 1 using the MF zeolite catalyst of 0. Table 6 (Example 7)
Figure imgf000022_0001
Figure imgf000022_0001
実施例 8 Example 8
この例は触媒の繰り返し使用例を示す。 実施例 1では、 接触分解反応を行い、 生成コークの燃焼を行った。 触媒を反応器に保持し、 実施例 1 と同条件で原料を 供給して接触分解反応を再スタートし、反応後同じ条件でコークの燃焼を行った。 この操作を 6回繰り返した結果、 触媒の劣化がまったく認められなかった。 実施例 9、 1 0  This example shows an example of repeated use of the catalyst. In Example 1, the catalytic cracking reaction was performed, and the produced coke was burned. The catalyst was held in the reactor, the raw materials were supplied under the same conditions as in Example 1, and the catalytic cracking reaction was restarted. After the reaction, coke combustion was performed under the same conditions. As a result of repeating this operation six times, no deterioration of the catalyst was observed. Example 9, 10
実施例 9、 1 0では、 原料 Cにブタジエンを添加し、 それぞれブタジエン含有 量が 0 . 5 1、 及び 1 . 1 w t %の原料を使用した以外は実施例 1 と同じ反応条 件で接触分解を行った。 結果を図 1に示す。 実施例 1のブタジエン含有量が 0. 0 5w t %と比較して、 ブタジエン含有量 1. lw t %でも、 プロピレン収率を 6 0時間以上安定的に得ることができた。 また、 コ一クの生成収率も 3 7ppm、 40 ppmと若千増える程度であった。 In Examples 9 and 10, the same reaction conditions as in Example 1 were used except that butadiene was added to raw material C, and raw materials having butadiene contents of 0.51 and 1.1 wt% were used, respectively. Catalytic cracking was carried out. The results are shown in Figure 1. Compared with the butadiene content of Example 1 of 0.05 wt%, the propylene yield could be stably obtained for 60 hours or more even with the butadiene content of 1 lwt%. In addition, the production yield of coke was 37 ppm and 40 ppm, which was a slight increase.

Claims

請 求 の 範 囲 The scope of the claims
1. ォレフィ ンを含む炭化水素原料を、 触媒を使用して接触分解させることによ り、 原料よりも低級なォレフィ ンを製造する方法であって、 原料中少なく とも 1 種の炭素数 4 ~ 1 2ォレフィ ンを含有し、 かつ、 1 0 ~ 7 0 w t %の少なく とも 1種の炭素数 1 ~ 1 2飽和炭化水素を含有する原料を、 MF I型ゼォライ ト触媒 を含む触媒の存在下、 及び 0. 0 5〜 2 MP aの反応圧力下、 触媒単位重量あた りの原料の供給速度 (WH S V)が 3 2〜 2 5 6 h r- i、 反応温度 40 0 ~ 5 8 0 tで接触させることによるエチレン及びプロピレンの製造方法。 1. A method for producing lower-order olefins by catalytically cracking hydrocarbon raw materials containing orefins using a catalyst. A raw material containing 12 or more and at least 10 to 70 wt% of at least one kind of saturated hydrocarbon having 1 to 12 carbon atoms is produced in the presence of a catalyst including an MFI type zeolite catalyst. Under the reaction pressure of 0.05 to 2 MPa, the feed rate of raw material per unit weight of catalyst (WH SV) is 32 to 256 h r-i, and the reaction temperature is 400 to 580. A method for producing ethylene and propylene by contacting with t.
2. ォレフィ ンを含む炭化水素原料を、 触媒を使用して接触分解させることによ り、 原料よりも低級なォレフィンを製造する方法であって、 反応器の'出口におけ る反応生成留出物に含まれる、 ペンテンのプロピレンに対する重量比が、 0. 2 0〜0. 8 0であることを特徴とする、 請求項 1に記載のエチレン及びプロピレ ンの製造方法。 2. A process for producing lower-grade olefins by catalytically cracking hydrocarbon-containing raw materials using a catalyst, and distilling off the reaction products at the outlet of the reactor. 2. The method for producing ethylene and propylene according to claim 1, wherein the weight ratio of pentene to propylene contained in the product is from 0.20 to 0.80.
3. 前記 MF I型ゼォライ ト触媒の S i 02/A 1 203モル比が、 1 20を超え て 5 00 0迄である請求項 1または 2に記載のエチレン及びプロピレンの製造方 法。 3. The MF I type Zeorai S i 0 2 / A 1 2 0 3 molar ratio of bets catalyst, ethylene and propylene production how according to claim 1 or 2 is up to 5 00 0 exceed 1 20 .
4. 前記原料中の炭素数 1〜 1 2の飽和炭化水素の含有量が 1 0〜 6 0 w t %で ある請求項 1 ~ 3のいずれかに記載のエチレン及ぴプロピレンの製造方法。  4. The method for producing ethylene and propylene according to any one of claims 1 to 3, wherein the content of the saturated hydrocarbon having 1 to 12 carbon atoms in the raw material is 10 to 60 wt%.
5. 前記接触分解の反応温度が 48 0〜 5 8 0 :である請求項 1〜 4のいずれか に記載のエチレン及びプロピレンの製造方法。 5. The method for producing ethylene and propylene according to any one of claims 1 to 4, wherein the reaction temperature of the catalytic cracking is 480 to 580 :.
6. 前記原料の触媒単位重量あたりの原料の供給速度 (WHS V)が、 40 ~ 2 5 6 h r - 1 である請求項 1〜 5のいずれかに記載のエチレン及びプロピレンの製 造方法。 6. The production rate of ethylene and propylene according to any one of claims 1 to 5, wherein a feed rate (WHS V) of the raw material per unit weight of the catalyst is 40 to 256 hr-1. Construction method.
7 . 前記原料中に少なくとも 1種含まれるォレフィ ンが、 炭素数 4〜 8のォレフ ィンである請求項 1〜 6のいずれかに記載のエチレン及びプロピレンの製造方法。 7. The method for producing ethylene and propylene according to any one of claims 1 to 6, wherein the at least one kind of olefin contained in the raw material is an olefin having 4 to 8 carbon atoms.
8 . 前記原料中に含まれる飽和炭化水素が、 炭素数 1〜 8の飽和炭化水素である 請求項 1〜 7のいずれかに記載のエチレン及びプロピレンの製造方法。 8. The method for producing ethylene and propylene according to any one of claims 1 to 7, wherein the saturated hydrocarbon contained in the raw material is a saturated hydrocarbon having 1 to 8 carbon atoms.
9 . 前記原料中 2 w t %以下のジェンが含まれる請求項 1〜 8のいずれかに記載 のエチレン及びプロピレンの製造方法。  9. The method for producing ethylene and propylene according to any one of claims 1 to 8, wherein the raw material contains 2 wt% or less of gen.
PCT/JP2004/000676 2003-02-14 2004-01-27 Method for producing lower olefin WO2004072002A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004544182A JP4335144B2 (en) 2003-02-14 2004-01-27 Method for producing lower olefin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-37318 2003-02-14
JP2003037318 2003-02-14
JP2003150857 2003-05-28
JP2003-150857 2003-05-28

Publications (1)

Publication Number Publication Date
WO2004072002A1 true WO2004072002A1 (en) 2004-08-26

Family

ID=32871195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000676 WO2004072002A1 (en) 2003-02-14 2004-01-27 Method for producing lower olefin

Country Status (4)

Country Link
JP (1) JP4335144B2 (en)
KR (1) KR100714257B1 (en)
TW (1) TWI243201B (en)
WO (1) WO2004072002A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028333A1 (en) * 2004-09-10 2006-03-16 Sk Corporation Solid acid catalyst for producing light olefins and process using the same
WO2007019787A1 (en) * 2005-08-15 2007-02-22 China Petroleum & Chemical Corporation A method for preparing lower olefins under negative pressure
WO2007032447A1 (en) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation Process for production of ethylene and propylene
JP2007106739A (en) * 2005-09-16 2007-04-26 Asahi Kasei Chemicals Corp Method for producing ethylene and propylene
JP2008050359A (en) * 2006-08-24 2008-03-06 Ifp Method for producing propylene in presence of macroporous catalyst exhibiting spherical ball form
JP2010533743A (en) * 2007-07-19 2010-10-28 中国石油化工股▲ふん▼有限公司 Olefin production method
JP2011020045A (en) * 2009-07-15 2011-02-03 Mitsui Chemicals Inc Modified zeolite catalyst and method of producing unsaturated hydrocarbons using the modified zeolite catalyst
US7893311B2 (en) 2005-09-16 2011-02-22 Asahi Kasei Chemicals Corporation Method for producing ethylene and propylene
US8137631B2 (en) 2008-12-11 2012-03-20 Uop Llc Unit, system and process for catalytic cracking
US8246914B2 (en) 2008-12-22 2012-08-21 Uop Llc Fluid catalytic cracking system
US8299104B2 (en) 2004-01-25 2012-10-30 Sanofi-Aventis Deutschland Gmbh Aryl-substituted heterocycles, process for their preparation and their use as medicaments
US8889076B2 (en) 2008-12-29 2014-11-18 Uop Llc Fluid catalytic cracking system and process
JP5700376B2 (en) * 2009-07-30 2015-04-15 三菱化学株式会社 Propylene production method and propylene production catalyst
WO2016017793A1 (en) * 2014-08-01 2016-02-04 千代田化工建設株式会社 Method for producing propylene and propylene production catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298871B1 (en) * 2011-02-24 2013-08-21 롯데케미칼 주식회사 Manufacturing method of ethylene and propylene
US9656928B2 (en) 2014-11-12 2017-05-23 King Fahd University Of Petroleum And Minerals Processes and catalysts for production of light olefins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034727A1 (en) * 1999-11-10 2001-05-17 Exxon Research And Engineering Company Process for selectively producing light olefins
WO2001090279A2 (en) * 2000-05-19 2001-11-29 Exxonmobil Chemical Patents Inc. Process for selectively producing c3 olefins in a fluid catalytic cracking process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034727A1 (en) * 1999-11-10 2001-05-17 Exxon Research And Engineering Company Process for selectively producing light olefins
WO2001090279A2 (en) * 2000-05-19 2001-11-29 Exxonmobil Chemical Patents Inc. Process for selectively producing c3 olefins in a fluid catalytic cracking process

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299104B2 (en) 2004-01-25 2012-10-30 Sanofi-Aventis Deutschland Gmbh Aryl-substituted heterocycles, process for their preparation and their use as medicaments
WO2006028333A1 (en) * 2004-09-10 2006-03-16 Sk Corporation Solid acid catalyst for producing light olefins and process using the same
JP2009505983A (en) * 2005-08-15 2009-02-12 チャイナ ペトロリウム アンド ケミカル コーポレイション Production method of lower olefins under negative pressure
WO2007019787A1 (en) * 2005-08-15 2007-02-22 China Petroleum & Chemical Corporation A method for preparing lower olefins under negative pressure
US7875756B2 (en) 2005-08-15 2011-01-25 China Petroleum & Chemical Corporation Process for producing lower olefins under negative pressure
US7893311B2 (en) 2005-09-16 2011-02-22 Asahi Kasei Chemicals Corporation Method for producing ethylene and propylene
WO2007032447A1 (en) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation Process for production of ethylene and propylene
US7884257B2 (en) 2005-09-16 2011-02-08 Asahi Kasei Chemicals Corporation Method for producing ethylene and propylene
JP2007106739A (en) * 2005-09-16 2007-04-26 Asahi Kasei Chemicals Corp Method for producing ethylene and propylene
JP5014138B2 (en) * 2005-09-16 2012-08-29 旭化成ケミカルズ株式会社 Process for producing ethylene and propylene
JP2008050359A (en) * 2006-08-24 2008-03-06 Ifp Method for producing propylene in presence of macroporous catalyst exhibiting spherical ball form
US9024100B2 (en) 2007-07-19 2015-05-05 China Petroleum & Chemical Corporation Process for producing olefins
JP2010533743A (en) * 2007-07-19 2010-10-28 中国石油化工股▲ふん▼有限公司 Olefin production method
US8137631B2 (en) 2008-12-11 2012-03-20 Uop Llc Unit, system and process for catalytic cracking
US8246914B2 (en) 2008-12-22 2012-08-21 Uop Llc Fluid catalytic cracking system
US8889076B2 (en) 2008-12-29 2014-11-18 Uop Llc Fluid catalytic cracking system and process
JP2011020045A (en) * 2009-07-15 2011-02-03 Mitsui Chemicals Inc Modified zeolite catalyst and method of producing unsaturated hydrocarbons using the modified zeolite catalyst
JP5700376B2 (en) * 2009-07-30 2015-04-15 三菱化学株式会社 Propylene production method and propylene production catalyst
WO2016017793A1 (en) * 2014-08-01 2016-02-04 千代田化工建設株式会社 Method for producing propylene and propylene production catalyst
JPWO2016017793A1 (en) * 2014-08-01 2017-04-27 千代田化工建設株式会社 Propylene production method and propylene production catalyst

Also Published As

Publication number Publication date
KR20050097513A (en) 2005-10-07
JP4335144B2 (en) 2009-09-30
JPWO2004072002A1 (en) 2006-06-01
KR100714257B1 (en) 2007-05-02
TWI243201B (en) 2005-11-11
TW200424162A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
US7754934B2 (en) Process for producing ethylene and propylene
KR920002241B1 (en) Process for preparation of lower aliphatic hydrocarbons
WO2004072002A1 (en) Method for producing lower olefin
WO2007086839A1 (en) Selective conversion of oxygenate to propylene using moving bed technology and a hydrothermally stabilized dual-function catalyst system
WO1996013331A1 (en) Hydrocarbon conversion catalyst and method of catalytic conversion therewith
US8034987B2 (en) Process for producing propylene and aromatic hydrocarbons, and producing apparatus therefor
US9994499B2 (en) Production of cyclic C5 compounds
CN112739802B (en) Selective hydrogenolysis in combination with cracking
US20070246400A1 (en) Zeolite Catalysts
JP6728351B2 (en) Formation of acyclic C5 compound
TW201842969A (en) Processes for rejuvenating catalysts
CA3004303C (en) Process for conversion of acyclic c5 compounds to cyclic c5 compounds and catalyst composition for use therein
EP3237581A1 (en) Process for producing c2 and c3 hydrocarbons
US20230357654A1 (en) Process for converting naphtha to light olefins with separation
EP3371140B1 (en) Process for conversion of acyclic c5 compounds to cyclic c5 compounds
WO2011143306A2 (en) Process for the conversion of lower alkanes to aromatic hydrocarbons
US11135574B2 (en) Catalyst system and process for conversion of a hydrocarbon feed utilizing the catalyst system
US7875756B2 (en) Process for producing lower olefins under negative pressure
WO2015152159A1 (en) Method for producing unsaturated hydrocarbon
KR101021206B1 (en) Selective conversion of oxygenate to propylene using moving bed technology and a hydrothermally stabilized dual-function catalyst system
US20230357107A1 (en) Process for catalytically converting naphtha to light olefins
US20230399274A1 (en) Process for catalytically converting naphtha to light olefins with predominant modes
KR20220160107A (en) Method for producing propylene
WO2023097253A1 (en) An integrated process for producing ethylene and propylene from c4 and/or c5 hydrocarbons
JP4621000B2 (en) Method for producing high octane gasoline base material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004544182

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057013680

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048042051

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057013680

Country of ref document: KR

122 Ep: pct application non-entry in european phase