TWI243201B - Method for producing lower olefin - Google Patents

Method for producing lower olefin Download PDF

Info

Publication number
TWI243201B
TWI243201B TW093102750A TW93102750A TWI243201B TW I243201 B TWI243201 B TW I243201B TW 093102750 A TW093102750 A TW 093102750A TW 93102750 A TW93102750 A TW 93102750A TW I243201 B TWI243201 B TW I243201B
Authority
TW
Taiwan
Prior art keywords
catalyst
raw material
propylene
ethylene
reaction
Prior art date
Application number
TW093102750A
Other languages
Chinese (zh)
Other versions
TW200424162A (en
Inventor
Phala Heng
Michiaki Umeno
Teruo Muraishi
Toshihiro Takai
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of TW200424162A publication Critical patent/TW200424162A/en
Application granted granted Critical
Publication of TWI243201B publication Critical patent/TWI243201B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

This invention provides a method for producing lower olefin, which uses a zeolite catalyst to perform contact cracking on hydrocarbons having olefin of 4 to 12 carbon atoms to produce lower olefins such as ethylene and propylene and allows the suppression of the formation of by-products such as hydrogen, a saturated hydrocarbon, an aromatic hydrocarbon and coke, the reduction of the deterioration of the catalyst for a long period of time, and the selective production of ethylene and propylene with high productivity, even when use is made of a raw material containing a relatively large amount of a diene which frequently lowers the activity of a catalyst. The invented method for producing a lower olefin product containing ethylene and propylene as main components in which a hydrocarbon raw material containing olefins is subjected to a catalytic cracking by the use of a zeolite catalyst to produce an olefin lower that in the raw material, in which a raw material comprising at least one olefin having 4 to 12 carbon atoms and 10 to 70 wt % of at least one saturated hydrocarbon having 1 to 12 carbon atoms is contacted with a catalyst comprising a MFI zeolite catalyst under a reaction pressure of 0.05 to 2 MPa, with a feed rate of the raw material per unit weight of the catalyst (WHSV) of 32 to 256 hr<-1>, at a reaction temperature of 400 to 580 DEG C, to thereby produce ethylene and propylene.

Description

1243201 玖、發明說明: 【發明所屬之技術領域】 本發明係關於使用觸媒進行接觸裂解,藉以自碳數4〜1 2 之烯烴類製造較原料更為低級之烯烴(尤其是乙烯及丙烯) 之方法。 【先前技術】 乙烯及丙烯係作為各種化學品與樹脂之基礎原料的重 要物質。習知方法中,該等烯烴係於石油腦裂解器中,以 熱或觸媒方式進行裂解而製得,然而,其生成比約為1對 0.6,成為產生乙烯或丙烯之供需不平衡的原因。因此,近 年來,由含有碳數4〜1 2之烯烴類如丁烯、戊烯等利用價值 低之成分的碳氫化合物原料,選擇性地製造丙烯之製造方 法日趨重要。作為使用沸石觸媒將該等含有碳數4〜1 2之烯 烴類的碳氫化合物原料與以接觸轉化之方法,已有多種方 法廣為周知。然而,使用觸媒將含有碳數4〜1 2之烯烴類的 碳氫化合物原料予以接觸裂解,以高生產性及長時間的穩 定性製造乙烯及丙烯,乃因下述理由而有其困難之處。 例如,於歐洲專利第 1 0 9 0 5 9 號公報中,揭示了使用質 子型 Z S Μ - 5沸石(M F I沸石之另一名稱)來將丁烯接觸裂 解,以製造丙烯之方法。該方法中記載之反應條件為 4 0 ◦ 及 5 0 0 °C之低反應溫度與6 0 h r 1以上之高的每觸媒單位重 量之原料供給速度(W H S V )。然而,此方法所使用之原料丁 烯濃度高達1 0 0 %,且使用之沸石觸媒之S i 0 2 / A 12 ◦ 3莫耳比 低達2 8,其中雖未記載,但在此條件下,煤焦之生成量多, 5 312/發明說明書(補件)/93-04/93102750 1243201 因此觸媒活性快速降低,無法長時間使用。 於歐洲專利第 1 0 9 0 6 0號公報中,揭示了使用質子型矽 沸石(s i 1 i c a 1 i t e )將丁烯接觸裂解,以製造丙烯之方法。 該方法中所使用之矽沸石係為具有M F I型沸石構造之沸石 乙事,於其後之研究中已明確化。然而,此方法所使用之 原料丁烯濃度高達1 0 0 %,在可獲得高生產性之高的每觸媒 單位重量之原料供給速度(W H S V )條件下,觸媒活性快速 降低。此外,在實施例中所記載之觸媒可長時間使用的低 溫 5 0 0 °C之反應條件下,每觸媒單位重量之原料供給速度 (WHS V )低達6 h r_ 1,因此丙烯與乙烯之生產性低。 於美國專利第5,9 8 1,8 1 9號中,揭示有使水共存於烯烴 原料中,並於 5 0 0 °C以下之低反應條件溫度下使用 p e n t a s i 1型沸石以製造丙烯之方法。然而,該方法中,每 觸媒單位重量之原料供給速度(W H S V )低達1〜3 h r _1左右, 無法獲得高丙稀與乙稀之生產性。 於曰本專利特開平 6 - 7 3 3 8 2號公報中,記載有質子型 Z S Μ - 5之實例。為得到設定為流體化床之高生產性,其反 應溫度高達 6 0 0 °C ,且實施例中記載相當於相對所供給之 原料總重量為6 0 0 P P Μ之大量煤焦的析出,可想像於使用固 定化床之情況,觸媒之活性會快速降低。 於日本專利特開平1 1 - 2 4 6 4 4 5號公報(對應於W 0 9 9 2 9 8 0 5 號)、特開平1 1 - 2 4 6 8 6 9號公報(對應於W 0 9 9 2 9 8 0 2號)、 特開平1 1 - 2 4 6 8 7 0號公報(對應於W 0 9 9 2 9 8 0 8號)、特開平 1 1 - 2 4 6 8 7 1 號公報(對應於 W 0 9 9 2 9 8 0 4 號)、特開平 6 3 12/發明說明書(補件)/93-〇4/9310275〇 1243201 1 1 - 2 4 6 8 7 2 號公報(對應於 W 0 9 9 2 9 8 0 6 號)、特開平 1 1 - 2 6 3 9 8 3 號公報(對應於 W Ο 9 9 2 9 8 Ο 7 號)、特開平 1 1 - 2 6 7 5 1 0 號公報(對應於 W 0 9 9 2 9 4 2 1 號)、特開平 2 0 0 1 - 2 6 7 8 6 號公報(對應於 WOO 0 7 7 1 2 2 號)、特開平 2 0 0 1 - 3 1 9 7 9 號公報(對應於 WO 0 0 7 7 1 2 3 號)、特開平 2 0 0 1 - 3 1 9 8 0 號公報(對應於 WO 0 1 0 0 7 4 9 號)、特開平 2 0 0 1 - 4 0 3 6 9號公報(對應於W0 0 0 7 8 8 9 4號)、及歐洲專利 第1 1 9 5 4 2 4號公報中,揭示有使用M F I型沸石將含有烯烴 類之碳氫化合物原料予以接觸裂解,以製造含有乙烯與丙 稀之生成物之方法。 根據所記載之實施例,該等方法中係使用 S i 0 2 / A 1 2 0 3莫 耳比為3 6 0以上之M F I觸媒,於反應溫度5 5 0 °C及比較溫 和的反應條件下,經過某種程度的長時間後觸媒活性便不 再降低,可進行丁烯之接觸裂解反應。然而,該等方法中, 每觸媒單位重量之原料供給速度(W H S V )低達3 0 h厂1以下, 因此無法得到高的乙烯及丙烯生產性。 又,在該等一連串之專利公報中記載,藉由氫化處理可 將原料中之二烯化合物減少而抑制活性之降低,並記載由 二烯化合物造成觸媒活性降低之觀點而言,原料中之二烯 化合物在 0 . 1 w t %以下為佳。例如,根據日本專利特開平 1 1 - 2 4 6 8 7 1號公報(對應於W0 9 9 2 9 8 0 4號)之記載,在原 料中之二稀化合物為0 . 5 w t %之情況中,活性無法穩定,丙 烯之產率隨時間而降低(該案第1 6頁比較實施例4及第 38頁圖8 )。 7 312/發明說明書(補件)/93-04/93102750 1243201 於國際專利公報W 0 0 0 1 0 9 4 8號中,記載了以銀進行離子 交換之Z S Μ - 5觸媒之使用。於此種使用經修飾之M F I觸媒 之方法中,觸媒的活性降低,因此即使於較高溫的 6 0 0 °C 下進行反應,雖可將煤焦析出量降低某種程度,但相對於 所供給之原料總重量,煤焦析出量仍達到如74重量PPM。 又,此方法中,難以在高的每觸媒單位重量之原料供給速 度(W H S V )條件下進行反應,無法獲得乙烯與丙烯之高生 產性。 亦即,於較高之反應溫度條件下,煤焦之生成加速,觸 媒之活性快速降低,因此原料供給速度(W H S V )必須降低, 副生成之氫、飽和碳氫化合物及芳香族碳氫化合物之產率 增力口 ,導致無法得到高的乙稀及丙稀生產性。另一方面, 由於進行修飾,於使用較低活性之沸石觸媒、或在較低反 應溫度之條件下進行接觸裂解反應時,烯烴原料無法充分 轉化,未反應之原料增多,結果使乙烯及丙烯之產率降低, 無法得到高生產性。於此種條件下,若為了獲得高生產性 而以高速度供給碳數4〜1 2之烯烴原料(高W H S V ),反而加 速煤焦之生成,結果快速降低觸媒之活性。 緣是,本發明之課題在於提供一種製造方法,其係於使 用沸石觸媒將含有碳數 4〜1 2之烯烴的碳氫化合物予以接 觸裂解而製造以乙烯及丙烯為主成分之低級烯烴時,可抑 制氫、飽和碳氫化合物、芳香族碳氫化合物及煤焦等之副 生成,又,即便為含有較多之二烯化合物的原料,仍可抑 制煤焦於觸媒上之析出,觸媒之經時劣化少,並可具選擇 8 3 12/發明說明書(補件)/93-04/93102750 1243201 性地以高生產性來製造乙烯及丙烯。 【發明内容】 本案發明者等為解決上述問題點,重複進行深入的研 究。結果,開發出一種顯示低煤焦生成率及高生產性的製 造技術,其對乙烯及丙烯之高選擇率與長久的觸媒壽命均 值得期待。 此製造技術係對於目前為止均未受到系統性探討之接 觸裂解反應機構進行考察,而得到之結果。該結果即,自 碳數 4〜1 2 之烯烴生成乙烯及丙烯之反應機構,於碳數 4 之烯烴(丁烯)與碳數超過4之烯烴中大不相同。亦即, 於碳數超過4之烯烴中,係在觸媒的酸性活性點產生碳正 離子(c a r b 〇 c a t i ο η ),藉由切斷碳-碳鍵結而生成較低級之 稀烴。另一方面,於丁稀之情況,可以AppliedCatalysis A:General 206 (2001) 57-66中所報告之稀烴之異構化反 應機構為參考,進行如下說明。 即,於丁稀之情況,首先係藉由二量化生成辛稀,經由 較穩定之2級碳正離子而成為丙烯與戊烯。由於反應中間 體穩定,故此反應快速進行。接著,已生成之戊烯裂解, 可得到乙烯與丙烯,但由於乙烯之生成係經由不穩定的 1 級碳正離子,因此該反應較慢。此外,本發明者等,利用 化學計量法進行檢討,得到可證實此推測之結果。即,自 丁烯製得丙烯之反應中,雖存在複數個反應,但由於反映 進行容易度有差別,因此,為了更選擇性地獲得乙烯與丙 烯,精確地控制觸媒活性、反應溫度、接觸時間等反應條 9 312/發明說明書(補件)/93-04/93102750 1243201 件,以選擇性地進行較佳之反應係為重要的。 本發明中,係將於原料中含有至少1種碳數 4〜1 2 烴、且含有1 0〜7 0 w t %之至少1種碳數1〜1 2之飽和碳 合物之原料,於0 . 0 5〜2 M p a之反應壓力下,以每觸媒 重量之原料供給速度(W H S V )為3 2〜2 5 6 h r 1、反應溫 4 0 0〜5 8 0 °C之條件對含M F I型沸石觸媒的觸媒進行接声 較佳情況為藉由將反應生成物流出液中戊稀對丙稀之 比控制在 0 . 2 0〜0 . 8 0,以抑制氫、飽和碳氫化合物、 族碳氫化合物及煤焦等之副生成,並在原料含有較多 化合物之情況抑制煤焦在觸媒上的析出,即可得到高 烯與丙烯之選擇性及生產性,以及長的觸媒壽命。 【實施方式】 若根據本發明,則經由使用觸媒將於原料中含有至 種碳數4〜1 2之烯烴、且含有1 0〜7 0 w t %之至少1種碳數 之飽和碳氫化合物之原料予以接觸裂解,可由烯烴成 主而選擇性地得到乙烯及丙烯。本發明者等驚訝地發 藉由使用此種烯烴與飽和碳氫化合物之混合原料,可 煤焦之生成,並抑制觸媒活性之降低。此外,更發現 料含有較多二烯化合物之情況中亦可抑制煤焦在觸媒 析出,且抑制觸媒活性之降低。又,於使用之原料中 氫也同樣可以抑制煤焦之生成。該情況,氫之分壓 0 . 1〜0 . 9之範圍内的值為佳。 根據本發明,作為使用之原料中碳數 4〜1 2之烯烴 舉如:1 - 丁烯、順-2-丁烯、反-2-丁烯、異丁烯、1-Λ 312/發明說明書(補件)/93-04/93102750 之彿 氫化 單位 度為 5,且 重量 芳香 二稀 的乙 少1 卜1 2 分為 現, 抑制 於原 上的 含有 以在 可列 烯、 10 1243201 順-2-戊烯、反-2-戊烯、2 -曱基-1-丁烯、2 -甲基-2-丁烯、 3 -甲基-1- 丁烤、環戍稀、1-己稀、2 -己稀、3-己稀、曱基 丁烯類、二曱基丁烯類、新己烯、環己烯、曱基環戊烯、 直鏈狀戊烯類、分枝狀戊烯類、環狀戊烯類、甲基環己烯 類、及碳數9〜1 2之直鏈狀、分枝狀或環狀之烯烴類。 根據本發明,使用原料中的碳數 1〜1 2飽和碳氫化合物 類之含有量為 1 0〜7 0 w t %,較佳為 1 0〜6 0 w t %,更佳為 2 0〜5 0 w t %。於本發明之條件下,此種飽和碳氫化合物實質 上並不發生轉化,但本發明者等驚訝地發現,若此等碳氫 化合物於使用原料中之含有量低於此範圍,則觸媒活性的 降低變快。碳數1〜1 2之飽和碳氫化合物之例可列舉如:甲 烷;乙烷;丙烷;正丁烷;異丁烷;直鏈、分枝與環狀戊 烷;直鏈、分枝與環狀己烷;直鏈、分枝與環狀庚烷;直 鏈、分枝與環狀辛烷。作為此外之成分,亦可含有苯、曱 苯、二曱苯等芳香族碳氫化合物。 又,根據本發明,使用原料中所含之二烯化合物為碳數 3〜12 之碳氫化合物二烯類,亦可含有丙二烯、1,2 -丁二 烯、1,3 -丁 二烯、1,2 -戊二烯、1,3 -戊二烯、1,4 -戊二烯、 2,3 -戊二烯、1,2 -己二烯、1,3 -己二烯、1,4 -己二烯、1,5-己二烯、2, 3 -己二烯、2, 4 -己二烯、1,2-庚二烯、1,3_庚 二稀、1,4-庚二稀、1,5_庚二烤、1,6 -庚二稀、2,3_ 庚二 烯、2,4 -庚二烯、2,5-庚二烯、3,4-庚二烯、1,2 -辛二烯、 1,3 -辛二烯、1,4 -辛二烯、1,5 -辛二烯、1,6 -辛二烯、1,7 -辛二稀、2,3 -辛二稀、2,4 -辛二稀、2,5 -辛二稀、2,6 -辛 11 3 12/發明說明書(補件)/93-04/93102750 1243201 二烯、3, 4 -辛二烯、3, 5 -辛二烯等直鏈狀二烯化合物;2-曱基-1,3 - 丁 二稀、3 -曱基 _1,2 -丁 二稀、2,3_二曱基 _1,3-丁 二稀、2 -乙基 -1,3_ 丁 二稀、3_ 乙基-1,2 丁二細ϊ 、2 -曱 基-1,3-戊二烯、3 -甲基-1,3-戊二烯、4 -曱基-1,3-戊二 烯、2-甲基-1,4-戊二烯、3 -曱基-1,4-戊二烯、2, 3-二甲 基-1,3-戊二烯、2, 4-二曱基-1,3-戊二烯、3, 4-二甲基 -1,3 -戊二炼、2,3 -二曱基-1,4 -戊二稀、2,4_二甲基 _1,4_ 戊二烯、2 -甲基-1,3 -己二烯、3 -曱基-1,3 -己二烯、4 -曱 基-1,3 -己二烯、5 -曱基-1,3 -己二烯、2 -曱基-1,4 -己二 烯、3 -甲基-1,4_己二烯、4-甲基-1,4 -己二烯、5 -曱基-1,4-己二烯等分枝狀二烯化合物;環戊二烯、1 -曱基環戊-1,3 -二烯、2-甲基環戊-1,3二烯、5-甲基環戊-1,3 -二烯、1,3-環己二烯、1,4 -環己二烯等環狀二烯化合物,但由於其具 有引起觸媒活性降低之可能性,故含有量以 2wt %以下為 佳,又以1 w t %以下更佳。 作為具有此種成分之原料,可列舉如:由以石油腦熱裂 解爐或石油腦接觸裂解爐所得之混合物分離出C 1〜C 3餾分 後送至脫丁烷塔的塔頂而得之餾分中(原油C4餾分),將 丁二烯萃取去除後之餾分(萃餘物-1 );或不將丁二烯自原 油C 4顧分中萃取出,將該總量進行選擇性的接觸氫化而使 二烯成分成為2 w t %以下之烯烴餾分;或從自萃餘物-1分離 出異丁烯後之餾分(萃餘物,-2 )、或自脫丁烯塔的塔底所得 之餾分(原油 C5餾分)中將異戊二烯萃取去除之後的餾 分;或不將異戊二烯自原油C5餾分中萃取出,將該總量進 12 312/發明說明書(補件)/93-04/93102750 1243201 行選擇性的接觸氫化而使二烯成分成為 2 w t %以下之烯烴 餾分;或不將由以石油腦熱裂解爐或石油腦接觸裂解爐所 得之混合物分離出C 1〜C 3餾分後送至脫丁烷塔的塔頂而得 之餾分中,將丁二烯或異戊二烯予以萃取,將該總量進行 選擇性的接觸氫化而使二烯成分成為 2 w t %以下之烯烴餾 分 此等原料可單獨使用,以任意份量混合使用亦無妨。原 料不限於上述者,只要含有碳數4〜1 2之烯烴及 1 0〜7 0 w t % 之至少1種碳數1〜1 2之飽和碳氫化合物類,不論何種原料 均可使用。 使用於本發明之觸媒,係使用M F I型沸石觸媒。沸石之 Si〇2/Al2〇3莫耳比通常為超過 120至 5000為止,較佳為 200〜5000 ,更佳為 280〜5000 ,特佳為 280〜2000 。若 S i 0 2 / A 1 2 0 3莫耳比較此為低則觸媒活性過高,因此於在熱 力學上有利於裂解反應之發生的溫度區域中煤焦之析出速 度高,或重複使用觸媒時於其穩定性方面有問題,故為不 佳。另一方面,於具有較上述範圍更高之Si〇2/Al2〇3莫耳 比的情況,活性點之數量減少,已無法發揮作為酸觸媒之 作用,故為不佳。 M F I型沸石觸媒可直接使用具有目的 S i 0 2 / A 1 2 0 3莫耳比 之市售品,亦可以組成超出範圍之沸石作為原料,藉由周 知之方法而製得。亦即,亦可使低S i 0 2 / A 1 ‘2 0 3莫耳比之市 售品脫i呂,以轉化為較高之石夕型沸石(s i 1 i c a - z e ο 1 i t e )。 作為脫I呂之方法,可列舉如 Catalysis and zeolites, 13 3 12/發明說明書(補件)/93-04/93102750 12432011243201 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to the use of catalysts for contact cracking to produce lower-grade olefins (especially ethylene and propylene) than raw materials from olefins having a carbon number of 4 to 12 Method. [Prior technology] Ethylene and propylene are important substances as basic raw materials for various chemicals and resins. In the conventional method, these olefins are produced in a petroleum brain cracker by thermal or catalytic cracking. However, the generation ratio is about 1 to 0.6, which is the cause of the imbalance between supply and demand of ethylene or propylene. . Therefore, in recent years, a method for selectively producing propylene from hydrocarbon raw materials containing olefins having a carbon number of 4 to 12, such as butene, pentene, and the like having low utilization value components has become increasingly important. Various methods have been widely known as a method for converting these hydrocarbon raw materials containing olefins having a carbon number of 4 to 12 using a zeolite catalyst into contact. However, it is difficult to produce ethylene and propylene with high productivity and long-term stability by contacting and cracking a hydrocarbon raw material containing olefins with a carbon number of 4 to 12 by using a catalyst. Office. For example, in European Patent Publication No. 10,095, a method for producing a propylene by contacting and cracking butene using a proton-type Z S M-5 zeolite (another name of M F I zeolite) is disclosed. The reaction conditions described in this method are a low reaction temperature of 40 ° and 500 ° C and a high feed rate (W H S V) per catalyst unit weight of 60 h r 1 or more. However, the butene concentration of the raw material used in this method is as high as 100%, and the S i 0 2 / A 12 of the zeolite catalyst used is as low as 2 8; although it is not described, it is in this condition. In the following, the amount of coal coke produced is large. 5 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 Therefore, the catalyst activity decreases rapidly and cannot be used for a long time. In European Patent No. 10906, a method for producing propylene by contacting and cracking butene using proton-type silicalite (s i 1 i c a 1 i t e) is disclosed. The silicalite used in this method is a zeolite having an M F I zeolite structure, which has been clarified in subsequent studies. However, the butene concentration of the raw material used in this method is as high as 100%. Under the condition that a high feed rate per unit weight of the catalyst (W H S V) can be obtained, the catalyst activity is rapidly reduced. In addition, under the reaction conditions where the catalyst described in the example can be used for a long time at a low temperature of 500 ° C, the raw material supply rate (WHS V) per unit weight of the catalyst is as low as 6 h r_ 1, so propylene and The productivity of ethylene is low. In U.S. Patent No. 5,98,1,8,19, a method for producing propylene by coexisting water in an olefin raw material and using a pentasi type 1 zeolite at a low reaction condition temperature below 500 ° C is disclosed. . However, in this method, the raw material supply rate (W H S V) per unit weight of the catalyst is as low as about 1 to 3 h r _1, so that the productivity of high acryl and ethylene cannot be obtained. An example of the proton type Z S M-5 is described in Japanese Patent Application Laid-Open No. 6-7 3 3 8 2. In order to obtain a high productivity set to a fluidized bed, the reaction temperature is as high as 600 ° C, and in the examples, it is described that a large amount of coal coke equivalent to the total weight of the supplied raw materials is 600 PP M, which can be precipitated. Imagine the use of a fixed bed, the catalyst's activity will quickly decrease. In Japanese Patent Laid-Open Publication No. 1 1-2 4 6 4 4 5 (corresponding to W 0 9 9 2 9 8 0 5), Japanese Patent Laid-Open Publication No. 1 1-2 4 6 8 6 9 (corresponds to W 0 9 9 2 9 8 0 2), JP-A Hei 1 1-2 4 6 8 7 0 (corresponding to W 0 9 9 2 9 8 0 8), JP-A 1-2 4 6 8 7 1 (Corresponding to No. W 0 9 9 2 9 8 0 4), JP-A 6 3 12 / Invention Specification (Supplement) / 93-〇4 / 9310275〇1243201 1 1-2 4 6 8 7 2 (corresponding to W 0 9 9 2 9 8 0 6), JP 1 1-2 6 3 9 8 3 (corresponding to W 0 9 9 2 9 8 Ο 7), JP 1 1-2 6 7 5 1 Announcement 0 (corresponding to W 0 9 9 2 9 4 2 1), JP-A Hei 2 0 0 1-2 6 7 8 6 (corresponding to WOO 0 7 7 1 2 2), JP-A Hei 2 0 0 1-3 1 9 7 9 (corresponding to WO 0 0 7 7 1 2 3), JP-A Hei 2 0 0 1-3 1 9 8 0 (corresponding to WO 0 1 0 0 7 4 9) Japanese Patent Application Laid-Open No. 2 0 1-4 0 3 6 9 (corresponding to WO 0 0 7 8 8 9 4) and European Patent No. 1 1 5 4 2 4 disclose the use of MFI zeolites Will contain enes A method of contacting and cracking hydrocarbon raw materials to produce products containing ethylene and propylene. According to the described examples, in these methods, MFI catalysts with a S i 0 2 / A 1 2 0 3 molar ratio of 3 60 or more are used, at a reaction temperature of 5 50 ° C and relatively mild reaction conditions. In this way, after a certain period of time, the catalyst activity no longer decreases, and the contact cracking reaction of butene can be performed. However, in these methods, the raw material supply rate (W H S V) per catalyst unit weight is as low as 30 h or less at the plant 1, so high ethylene and propylene productivity cannot be obtained. Further, in these series of patent publications, it is described that the diene compound in the raw material can be reduced by hydrogenation treatment to suppress the decrease in activity, and from the viewpoint that the catalytic activity is reduced by the diene compound, the The diene compound is preferably at most 0.1 wt%. For example, according to Japanese Patent Laid-Open No. 1 1-2 4 6 8 71 (corresponding to WO 9 9 2 9 8 0 4), in the case where the two dilute compounds in the raw material are 0.5 wt% The activity cannot be stabilized, and the yield of propylene decreases with time (Comparative Example 4 on page 16 of this case and Figure 8 on page 38). 7 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 In International Patent Publication No. W 0 0 0 1 0 9 4 8, the use of the Z S M-5 catalyst for ion exchange with silver is described. In this method using a modified MFI catalyst, the activity of the catalyst is reduced, so even if the reaction is carried out at a relatively high temperature of 600 ° C, although the amount of coal coke can be reduced to some extent, According to the total weight of the supplied raw materials, the amount of coal coke precipitation still reached 74 weight PPM. In addition, in this method, it is difficult to perform the reaction at a high feed rate (W H S V) per catalyst unit weight, and the high productivity of ethylene and propylene cannot be obtained. That is, under higher reaction temperature conditions, the formation of coal char is accelerated, and the activity of the catalyst is rapidly reduced. Therefore, the raw material supply rate (WHSV) must be reduced, and by-produced hydrogen, saturated hydrocarbons, and aromatic hydrocarbons The yield increases, leading to high ethylene and acrylic productivity. On the other hand, due to the modification, when a lower activity zeolite catalyst is used or the contact cracking reaction is carried out at a lower reaction temperature, the olefin raw materials cannot be fully converted, and the unreacted raw materials are increased, resulting in ethylene and propylene. The yield is reduced, and high productivity cannot be obtained. Under these conditions, if an olefin feedstock (high W H S V) with a carbon number of 4 to 12 is supplied at a high rate in order to obtain high productivity, the formation of coal coke will be accelerated instead, and the catalyst activity will be rapidly reduced as a result. The reason is that the object of the present invention is to provide a production method for producing a lower olefin containing ethylene and propylene as a main component by contacting and cracking a hydrocarbon containing an olefin having 4 to 12 carbons using a zeolite catalyst. It can suppress the by-products of hydrogen, saturated hydrocarbons, aromatic hydrocarbons, and coal coke, and even if it is a raw material containing a large amount of diene compounds, it can still suppress the precipitation of coal coke on the catalyst. The medium has less deterioration over time, and can be selected to produce ethylene and propylene with high productivity. 8 3 12 / Invention Manual (Supplement) / 93-04 / 93102750 1243201. [Summary of the Invention] In order to solve the above-mentioned problems, the inventors of this case repeated intensive research. As a result, a manufacturing technology showing low coal coke formation rate and high productivity has been developed. Both of its high selectivity to ethylene and propylene and long catalyst life are worth looking forward to. This manufacturing technology is the result of examining the contact cracking reaction mechanism that has not been systematically explored so far. As a result, the reaction mechanism for producing ethylene and propylene from olefins having 4 to 12 carbons is very different from olefins (butenes) having 4 carbons and olefins having more than 4 carbons. That is, in olefins having a carbon number of more than 4, carbon positive ions (ca a r b o c a t i ο η) are generated at the acidic active site of the catalyst, and lower-level rare hydrocarbons are generated by cutting off the carbon-carbon bond. On the other hand, in the case of dilute hydrocarbons, the isomerization reaction mechanism of the dilute hydrocarbons reported in Applied Catalysis A: General 206 (2001) 57-66 can be used as a reference for the following description. That is, in the case of dilute dilute, first, dilute quantification is used to generate propylene, which is converted into propylene and pentene through the relatively stable second-order carbocation. Since the reaction intermediate is stable, the reaction proceeds rapidly. Next, the generated pentene is cracked to obtain ethylene and propylene, but the reaction is slow because the generation of ethylene is via unstable first-order carbocations. In addition, the present inventors conducted a review using a stoichiometric method and obtained results that can confirm this guess. That is, although there are several reactions in the reaction for producing propylene from butene, there are differences in the ease of reflection. Therefore, in order to obtain ethylene and propylene more selectively, the catalyst activity, reaction temperature, and contact are accurately controlled. Time and other reaction bars 9 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201, it is important to selectively perform a better reaction system. In the present invention, a raw material containing at least one kind of saturated carbon compound having a carbon number of 4 to 12 in the raw material and at least one kind of carbon number of 1 to 12 carbon in a range of 10 to 70 wt% is used. . Under the reaction pressure of 0 5 ~ 2 M pa, the raw material supply rate (WHSV) per catalyst weight is 3 2 ~ 2 5 6 hr 1. The reaction temperature is 4 0 0 ~ 5 8 0 ° C. The catalyst of the type zeolite catalyst is preferably used to control the ratio of ammonium to acrylic in the effluent of the reaction product to 0.20 ~ 0.80 to suppress hydrogen and saturated hydrocarbons. Group hydrocarbons, coal coke, and other by-products, and in the case that the raw material contains more compounds, the precipitation of coal coke on the catalyst is suppressed, and the selectivity and productivity of high olefins and propylene can be obtained, as well as long contact time. MEDIA LIFE. [Embodiment] According to the present invention, a saturated hydrocarbon compound containing at least one carbon number of 4 to 12 carbon atoms and at least 1 carbon number of 10 to 70 wt% is contained in the raw material by using a catalyst. The raw materials are contacted and cracked, and ethylene and propylene can be selectively obtained from olefins. The present inventors have surprisingly found that by using such a mixed raw material of olefin and saturated hydrocarbon, the formation of coal coke can be suppressed, and the decrease in catalyst activity can be suppressed. In addition, it has been found that in the case where the material contains a large amount of diene compounds, it is also possible to suppress the precipitation of coal coke in the catalyst, and to suppress the decrease in catalyst activity. Also, hydrogen in the raw materials used can similarly suppress the formation of coal coke. In this case, a value in the range of the partial pressure of hydrogen from 0.1 to 0.9 is preferable. According to the present invention, olefins having 4 to 12 carbon atoms as raw materials used are, for example, 1-butene, cis-2-butene, trans-2-butene, isobutene, 1-Λ 312 / Invention Specification (Supplement Pieces) / 93-04 / 93102750 The Buddha's hydrogenation unit degree is 5, and the weight of the aromatic dioxane is less than 1 1 1 2 现, which is suppressed to the original content of the acetylene, 10 1243201 cis-2- Pentene, trans-2-pentene, 2-fluorenyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentane, 1-hexane, 2 -Hexane, 3-Hexane, fluorenyl butenes, difluorenyl butenes, neohexene, cyclohexene, fluorenyl cyclopentene, linear pentenes, branched pentenes, Cyclic pentenes, methylcyclohexenes, and linear, branched or cyclic olefins having 9 to 12 carbon atoms. According to the present invention, the content of the saturated hydrocarbons having a carbon number of 1 to 12 in the used raw material is 10 to 70 wt%, preferably 10 to 60 wt%, and more preferably 20 to 50. wt%. Under the conditions of the present invention, such saturated hydrocarbons are not substantially converted, but the inventors have surprisingly found that if the content of these hydrocarbons in the raw materials used is lower than this range, the catalyst The decrease in activity becomes faster. Examples of saturated hydrocarbons having 1 to 12 carbons include: methane; ethane; propane; n-butane; isobutane; straight chain, branched and cyclic pentane; straight chain, branched and cyclic Hexane; linear, branched and cyclic heptane; linear, branched and cyclic octane. Other components may include aromatic hydrocarbons such as benzene, toluene, and xylene. In addition, according to the present invention, the diene compound contained in the raw material is a hydrocarbon diene having 3 to 12 carbon atoms, and may also include allene, 1,2-butadiene, and 1,3-butadiene. Ene, 1,2-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 2,3-pentadiene, 1,2-hexadiene, 1,3-hexadiene, 1,4-hexadiene, 1,5-hexadiene, 2,3-hexadiene, 2,4-hexadiene, 1,2-heptadiene, 1,3-heptadiene, 1, 4-heptadiene, 1,5-heptadiene roast, 1,6-heptadiene, 2,3-heptadiene, 2,4-heptadiene, 2,5-heptadiene, 3,4-heptadiene Diene, 1,2-octadiene, 1,3-octadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene 2,3 -octylene, 2,4-octylene, 2,5-octylene, 2,6-oct 11 3 12 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 diene, Linear diene compounds such as 3,4-octadiene, 3,5-octadiene, etc .; 2-fluorenyl-1,3-butadiene, 3-fluorenyl_1,2-butadiene, 2 , 3_Difluorenyl_1,3-butanediene, 2-ethyl-1,3-butadiene, 3_ethyl-1,2 butanepine, 2-fluorenyl-1,3-pentane Alkenes, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2-methyl-1,4-pentadiene, 3-methyl-1,4-pentadiene Pentadiene, 2, 3-dimethyl-1, 3-pentadiene, 2, 4-difluorenyl-1, 3-pentadiene, 3, 4-dimethyl-1, 3-pentadiene Refining, 2,3-difluorenyl-1,4-pentadiene, 2,4-dimethyl-1,4-pentadiene, 2-methyl-1,3-hexadiene, 3-fluorenyl -1,3-hexadiene, 4-fluorenyl-1,3-hexadiene, 5-fluorenyl-1,3-hexadiene, 2-fluorenyl-1,4-hexadiene, 3- Branched diene compounds such as methyl-1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-fluorenyl-1,4-hexadiene; cyclopentadiene, 1 -Fluorenylcyclopentane-1,3-diene, 2-methylcyclopentane-1,3diene, 5-methylcyclopentane-1,3-diene, 1,3-cyclohexadiene, 1 4,4-cyclohexadiene and other cyclic diene compounds, but since it may cause a reduction in catalyst activity, the content is preferably 2% by weight or less, and more preferably 1% by weight or less. Examples of the raw material having such a component include a fraction obtained by separating a C 1 to C 3 fraction from a mixture obtained by a petroleum brain thermal cracking furnace or a petroleum brain contact cracking furnace and then sending the fraction to the top of a debutane tower. Medium (crude oil C4 fraction), butadiene extraction and removal of the fraction (extract residue-1); or without extracting butadiene from crude oil C4 fraction, the total amount is subjected to selective contact hydrogenation While the diene component is less than 2 wt% of the olefin fraction; or the fraction obtained after isobutene is separated from the raffinate-1 (the raffinate, -2), or the fraction obtained from the bottom of the debutene column ( Crude oil C5 fraction) The fraction after isoprene extraction and removal; or without isoprene being extracted from the crude oil C5 fraction, add the total to 12 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 Selective contact hydrogenation so that the diene component becomes less than 2 wt% olefin fraction; or the C 1 ~ C 3 fraction is not separated from the mixture obtained from petroleum brain thermal cracking furnace or petroleum brain contact cracking furnace and sent In the fraction obtained from the top of the debutane column, butadiene or isoprene Be extracted, the total amount for the selective catalytic hydrogenation diene component become 2 w t% or less of an olefin fraction such material may be used alone, in an arbitrary mixture harmless amount. The raw materials are not limited to those described above, and as long as they contain olefins having 4 to 12 carbons and at least one type of saturated hydrocarbons having 1 to 12 carbons of 10 to 70 wt%, any kind of raw materials can be used. The catalyst used in the present invention is an M F I zeolite catalyst. The SiO2 / Al203 mol ratio of the zeolite is usually more than 120 to 5000, preferably 200 to 5000, more preferably 280 to 5000, and particularly preferably 280 to 2000. If S i 0 2 / A 1 2 0 3 is lower than this, the catalyst activity is too high, so the coal coke precipitation rate is high in the temperature region that is thermodynamically favorable for the cracking reaction to occur, or the contact is repeatedly used. The medium is not good because of its stability. On the other hand, when the molar ratio of Si02 / Al203 is higher than the above range, the number of active sites is reduced, and the function as an acid catalyst cannot be exhibited, which is not preferable. The M F I zeolite catalyst may be a commercially available product having a target S i 0 2 / A 1 2 0 3 mol ratio, or may be composed of a zeolite having an out-of-range composition as a raw material and produced by a known method. That is, a commercially available pint of low S i 0 2 / A 1 ′ 203 may be used to convert it to a higher lithoselite type zeolite (s i 1 i c a-z e ο 1 i t e). As a method for removing I Lu, for example, Catalysis and zeolites, 13 3 12 / Invention Specification (Supplement) / 93-04 / 93102750 1243201

Fundamentals and Applications ( J . Wei takamp, L . Puppe 編著,Springer, 1999)第 127〜155頁所記載之水蒸氣處 理、四氣化矽處理、六氟矽酸鹽處理等方法。 M F I型沸石之市售品多含有鈉或銨作為陽離子,若施以 下述處理,則不論何者均可使用於本發明。亦即,以銨陽 離子交換之沸石,例如可以5 0 °C處理5小時,藉以將其轉 換為質子型後,再作為接觸裂解反應觸媒使用。另一方面, 具有鈉等鹼金屬離子者,可以周知之方法,亦即於 1〜1 0 % 左右之硝酸銨水溶液中,在6 0 °C下攪拌6小時之後,予以 過濾、洗淨,之後於5 0 0 °C下處理5小時,藉以將其轉換 為質子型再使用。 由於上述 M F I 型沸石觸媒顯示酸性為其必要條件,因 此,該沸石除了質子型以外,可使用經金屬離子交換後顯 示酸性之沸石。該金屬離子之具體例,1價金屬離子可列 舉Cu、Ag等ΙΒ族金屬,又,2價以上之金屬離子可列舉 M g、C a、S r、B a等驗土類金屬;L a、C e等稀土類金屬;F e、 N i、Μ η、C ο、V 等過渡金屬。該等可與質子以任意比例同 時存在。此時,可將沸石之交換容量全部取代為上述質子 或上述金屬,但在活性過高之情況,可將該交換容量之一 部分,以任意比例取代為L i、N a、Κ等鹼金屬,以降低酸 性度。其中,若以鹼金屬交換之容量所佔比例超過 90%, 則酸性度過低,因此比例為9 0 %以下為佳。 上述M F I性沸石亦可使用含有其他顯現出酸性之P等元 素者。此時,Ρ之含有量以莫耳表示,較佳為質子或其他 14 312/發明說明書(補件)/93-04/93102750 1243201 金屬陽離子含有量以上。 作為使該等元素含有於觸媒之方法,可使用周知之方 法。例如,可列舉以離子交換法使金屬原子之陽離子與質 子型M F I沸石之質子進行交換之方法,或將含有該等元素 之鹽或錯體之化合物含浸於M F I沸石中之方法。 於上述M F I型沸石觸媒中,可以控制活性、提升選擇性、 抑制煤焦生成及抑制觸媒裂化速度為目的,使用根據周知 之方法於MFI型沸石構造之骨架中含有 B、Sn、Ga、Mn、 Fe及Ti作為Si與A1以外之第3金屬。 上述M F I型沸石觸媒可以周知方法進行水蒸氣處理後再 使用。上述處理方法以溫度 5 0 0〜7 5 0 °C 、 蒸氣壓 ◦ . 1 Μ P a〜1 Μ P a、處理時間1 0〜4 8小時為佳。又,上述處理亦 可於以下述方法將觸媒成型後進行。 上述之觸媒係以如下形態填充於反應器。亦即,經由水 熱合成(hydrothermal synthesis )所得到之MFI沸石本 質上係屬微粉末狀態。可將所得之微粉末M F I沸石觸媒直 接填充於固定床反應器,但為防止壓力損失變大,亦可於 本接觸裂解物理性地混合如矽石球、礬土球等不活性填充 劑再予以填充。並且,亦可將所得之微粉末M F I沸石觸媒 與不會改變觸媒性能之燒結劑(b i n d e r )混練後成形。燒結 劑係以矽石系為代表,其他亦可從礬土系、鈦白系、氧化 鍅系、矽藻土系中任意選擇。 燒結於 5 0 0〜8 0 0 °C之範圍内進行為佳。又,成形之形狀 可例示如錠狀(T a b 1 e t s );擠出狀(E X t r u s i ο n s );小塊狀 312/發明說明書(補件)/93-04/93102750 15 1243201 (Pellets);球;小球(Spheres、Micro spheres); CDS 擠出狀(CDS Extrusions);三葉片狀(Trilobes);四葉 片狀(Quardlobes);環狀(Ring); 2 輪幅環狀(2Sp〇kes r 1 n g s )、H G S、E W、L D P 等特殊輪幅環狀;肋環(R i b r i n g s ); 及碎粒狀(G r a n u 1 e s )等。 根據本發明,接觸裂解可於固定床、流體化床、移動化 床等任一型式之反應器中進行,但以設備簡單的固定床反 應器為佳。藉由於此種反應器中填充上述觸媒,並供給含 烯烴之碳氫化合物原料,以進行接觸裂解反應。於該接觸 裂解反應進行之時,反應條件精準地控制於如下範圍中。 反應溫度為 4 0 0〜5 8 0 °C ,較佳為 4 8 0〜5 8 0 °C ,更佳為 4 8 0〜5 6 0 °C。於反應溫度低於該範圍之情況,所供給之烯烴 轉化率降低,無法獲得充足的乙烯及丙烯生產性,故不佳。 另一方面,於高於該範圍之反應溫度下,煤焦之生成速度 加速,觸媒之活性快速降低。 反應壓力為 0.05〜2MPa,較佳為 0.05〜IMPa,更佳為 0· 05〜0. 5MPa 〇 M F I 每觸媒單位重量之總原料供給速度 (W H S V )為 32〜256hr—',較佳為 40〜256hr_i,更佳為 40〜128hr-1。於 原料供給速度(W H S V )低於該範圍之情況,反應生成餾出 物中之戊烯含有量變低,且觸媒之活性降低速度被抑制某 種程度,氫、飽和碳氫化合物及芳香族碳氫化合物之產率 增加,無法獲得高的乙烯及丙烯選擇率與生產性。另一方 面,於較該範圍大的原料供給速度(W H S V )之反應條件下, 16 312/發明說明書(補件)/93-04/93102750 1243201 煤焦之生成速度變快,故不佳。 又,反應器可為單一反應器,亦可為複數個反應器,特 別係於複數個反應器之情況,藉由將反應器串聯設置,可 更精密地控制反應條件。又,於並聯設置之情況,於其一 之反應器進行接觸裂解運轉,並於其他反應器進行再生 等,藉由一邊切換該等一邊進行運轉,可維持一定的生產 量。於此種反應條件下,可得到最大限度之丙烯選擇率、 產率及生產性,並可抑制觸媒活性降低原因之煤焦的生成。 根據本發明之方法,於反應器出口之反應生成餾出物 中,戊稀對丙稀之重量比通常定為 0.20〜0.80,較佳為 0 · 2 5〜0 . 8 0,更佳為0 . 3 0〜0 . 8 0。又,於以串聯方式設置複 數個反應器之情況,於第一個反應器出口之反應生成餾出 物中,戊烯對丙烯之重量比通常定為 0 . 2 0〜0 . 8 0,較佳為 0 . 2 5 〜0 · 8 0,更佳為 0 . 3 0 〜0 . 8 0。 亦即,於接觸裂解反應中,如上所述,使反應速度不同 之複數個反應同時進行,並將其中反應速度較慢的戊烯裂 解反應抑制於某種程度,藉以抑制不希望發生的煤焦之累 積,其結果為可以充足的長時間維持一定的觸媒活性。於 從設置複數個之反應器的第一反應器之生成物中除去乙烯 及丙烯之情況,可藉由使第二反應器之反應在更嚴苛的條 件下進行,以使所供給的原料整體大部份均轉化。 另一方面,於僅使用一個反應器之情況,可將含有戊:):希 之碳數4以上的烯烴在分離反應生成餾出物後,回收至接 觸裂解反應器中,與新鮮的原料混合而使用,又,該等碳 17 312/發明說明書(補件)/93-04/93102750 1243201 數4以上之烯烴可在分離後,送至石油腦裂解器與新鮮的 石油腦原料混合而使用。 於本發明中,係將於原料中含有至少1種碳數 4〜1 2之 烯烴、且含有1 0〜7 0 w t %之至少1種碳數1〜1 2之飽和碳氫 化合物、並視情況而含有2 w t %以下之二稀化合物的原料, 對含M F I型沸石觸媒的觸媒,於0 . 0 5〜2 M p a之反應壓力下, 以每觸媒單位重量之總原料供給速度 (WHSV ) 為 3 2〜2 5 6 h r _1、反應溫度為4 0 0〜5 8 0 °C之條件進行接觸,並經 由將反應生成餾出物中戊烯對丙烯之重量比控制為 0 . 2 0〜0 . 8 0,以抑制氫、飽和碳氫化合物、芳香族碳氫化合 物及煤焦等之副生成,並對含有較多二烯化合物之原料亦 抑制煤焦於觸媒上之析出,藉以得到高丙烯選擇性及長的 觸媒壽命。 以下,根據實施例更詳細地說明本發明,但本發明並不 僅限定於此等實施例。 (實施例1 ) 將市售品之粉末狀銨鹽型 Z S Μ - 5 ( S i 0 2 / A卜2 0 3莫耳比·· 2 8 0 )粉末於5 5 0 °C下燒成5小時。燒成後,經由壓縮成型、 粉碎、分篩,得到粒徑2 5 0〜5 0 0 μ m之觸媒。 反應係使用固定床流通式反應器(内徑 1 0 . 7 ηι η〗,長 2 5 0 m in )。將0 · 1 2 5 g之上述觸媒 '作為保持材之石英絨與石 英砂填充入石英管,使整體長度成為 2 5 0 m m。將該石英管 裝填於反應器,使觸媒層之溫度保持在 5 5 0 °C ,並以每小 時8g之流量供給以裂解所得之石油腦的C4餾分原料C(表 18 3 12/發明說明書(補件)/93-04/93102750 1243201 1 ),於0 . 0 5 Μ P a之反應壓力下進行接觸裂解反應。將流出 之反應生成物保持於氣相狀態,並利用氣體氣相層析儀進 行分析。 進行了指定時間之反應後,停止原料之供給,並將觸媒 層之溫度下降至 4 5 0 °C 。於停止原料供給之 1小時後,以 經氮稀釋之空氣開始燃燒累積之煤焦。空氣之供給一直持 續到累積之煤焦燃燒完畢為止。以氣相層析儀進行燃燒反 應所產生之氫、一氧化碳及二氧化碳之定量,由該等氣體 之生成重量計算煤焦之生成重量。 原料之轉化率及生成物之產率係以下式計算出。 (1 ) 丁烯轉化率(% )二(1 -(未反應之丁烯重量/供給丁 烯重量))X10 0 (2 ) 生成物之產率(% )二(各成分生成重量/供給丁烯 重量)X 1 00 (3 ) 煤焦之產率(P P Μ )=(煤焦生成總重量/供給丁烯 總重量)X 1,0 0 0 , 0 0 0 反應之結果示於表2。該結果為,經過9 0小時,乙烯及 丙烯之生產性仍可穩定地獲得。又,由於煤焦之生成產率 亦低,可移除將累積之煤焦予以燃燒而除去之方法,因此 煤焦之燃燒所產生之熱量小,且使觸媒劣化的蒸氣產生量 變少。因此,於重複使用觸媒時,其壽命之增長是值得期 待的。 (比較例1 ) 以與實施例1相同之條件進行接觸裂解反應,但實施例 19 312/發明說明書(補件)/93-04/93102750 1243201 1中之原料C變更為正丁烯原料。結果示於表3。在使用未 含有飽和碳氫化合物丁烷之此條件下,可獲得穩定的乙烯 及丙烯生產性之時間僅有20小時。 表1 (原料組成) 原料A 原料B 原料C 原料D 原料E 成分 w t % 飽和碳氫化合物 甲烷 0. 1 0.0 0. 0 0. 0 0.0 乙烧 &lt;0. 1 0.0 0 . 0 0. 0 0. 0 丙烷 &lt;0. 1 &lt;0. 1 &lt;0.1 &lt;0. 1 &lt;0.1 異丁烷 3. 3 5.8 4. 5 10.6 15.6 正丁烷 14.6 24.4 35.3 33.2 45.5 戊烧 0. 2 0.3 0. 2 0. 1 0. 1 飽和碳氫化合物合計 18.4 30.6 40.0 43.9 6 1.2 烯烴 反-2- 丁烯 18.4 24.3 20.6 23.0 7. 6 1 - 丁烯 22.4 17.9 18.3 16.3 20.5 異丁烯 12.3 13.1 0. 3 3. 2 3. 6 順-2 - 丁烯 27.3 13.3 20.5 12.8 5.2 丁烯類合計 80.4 68.6 59.6 55.3 36.9 丙稀 0.1 0.1 0. 1 0. 1 0.1 1,3 - 丁二少希 0.045 0.11 0.051 0.49 0.075 其他 1 . 2 0. 7 0 . 3 0. 3 1 . 8 總計 100.0 100.0 100.0 100.0 100.0 表2 (實施例1 )Fundamentals and Applications (ed. J. Wei takamp, L. Puppe, Springer, 1999), pp. 127 ~ 155, water vapor treatment, tetragasification silicon treatment, hexafluorosilicate treatment and other methods. Many commercially available M F I zeolites contain sodium or ammonium as a cation, and any of the following treatments can be used in the present invention. That is, the zeolite exchanged with ammonium cations can be treated at 50 ° C for 5 hours, for example, and then converted to a proton type, and then used as a catalyst for contact cracking reaction. On the other hand, those who have alkali metal ions, such as sodium, can use a well-known method, that is, in an ammonium nitrate aqueous solution of about 1 to 10%, after stirring at 60 ° C for 6 hours, filtering and washing, and then It is treated at 500 ° C for 5 hours to convert it into a proton type and reuse it. Since the above M F I type zeolite catalyst exhibits acidity as a necessary condition, in addition to the proton type, a zeolite that exhibits acidity after metal ion exchange can be used for the zeolite. Specific examples of the metal ions include monovalent metal ions such as IB metals such as Cu and Ag, and metal ions having a divalent or higher valence include earth testing metals such as M g, C a, S r, and B a; L a , C e and other rare earth metals; F e, Ni, M η, C ο, V and other transition metals. These can be present in any ratio with protons. At this time, the exchange capacity of the zeolite can be completely replaced by the above-mentioned protons or the above-mentioned metals, but in the case of too high activity, a part of this exchange capacity can be replaced with alkali metals such as Li, Na, and K in any proportion. To reduce acidity. Among them, if the proportion of the capacity exchanged by the alkali metal exceeds 90%, the acidity is too low, so the proportion is preferably 90% or less. The M F I zeolite may be one containing other elements such as P which exhibit acidity. At this time, the content of P is expressed in moles, and it is preferably proton or other. 14 312 / Explanation of the Invention (Supplement) / 93-04 / 93102750 1243201 The content of metal cations is more than that. As a method for including these elements in the catalyst, a known method can be used. For example, a method of exchanging a cation of a metal atom with a proton of a proton-type M F I zeolite by an ion exchange method, or a method of impregnating a M F I zeolite with a salt or a complex compound containing these elements. In the above-mentioned MFI zeolite catalyst, the purpose of controlling the activity, improving the selectivity, suppressing the formation of coal coke, and suppressing the cracking speed of the catalyst is to use a well-known method to contain B, Sn, Ga, Mn, Fe, and Ti are third metals other than Si and A1. The M F I zeolite catalyst can be used after being subjected to steam treatment in a known manner. The above-mentioned treatment method is preferably a temperature of 5000 to 750 ° C, a vapor pressure of ◦. 1 MPa to 1 MPa, and a treatment time of 10 to 48 hours. The above treatment may be performed after the catalyst is molded by the following method. The catalyst was filled in the reactor in the following manner. That is, the MFI zeolite obtained by hydrothermal synthesis is essentially in a fine powder state. The obtained fine powder MFI zeolite catalyst can be directly filled in a fixed bed reactor, but in order to prevent the pressure loss from increasing, it can also be physically mixed with inactive fillers such as silica balls, alumina balls, etc. Fill it. In addition, the obtained fine powder M F I zeolite catalyst may be mixed with a sintering agent (b i n d e r) which does not change the catalyst performance, and then formed. The sintering agent is represented by silica, and others can be selected arbitrarily from alumina, titanium white, hafnium oxide, and diatomite. It is better to sinter in the range of 500 ~ 800 ° C. In addition, the shape of the shape can be exemplified as ingot shape (T ab 1 ets); extruded shape (EX trusi ο ns); small block shape 312 / Specification of the Invention (Supplement) / 93-04 / 93102750 15 1243201 (Pellets); Ball; small ball (Spheres, Micro spheres); CDS extrusions (CDS Extrusions); trilobes (Trilobes); quadlobes (Quardlobes); ring (Ring); 2 spokes ring (2Sp〇kes r 1 ngs), HGS, EW, LDP and other special spoke rings; rib rings (R ibrings); and granular (Granu 1 es). According to the present invention, the contact cracking can be performed in any type of reactor such as a fixed bed, a fluidized bed, a moving bed, etc., but a fixed bed reactor with simple equipment is preferred. Since such a reactor is filled with the above-mentioned catalyst and an olefin-containing hydrocarbon raw material is supplied, a contact cracking reaction is performed. As the contact cleavage reaction proceeds, the reaction conditions are accurately controlled in the following ranges. The reaction temperature is 4 0 to 5 8 0 ° C, preferably 4 8 0 to 5 8 0 ° C, and more preferably 4 8 0 to 5 6 0 ° C. When the reaction temperature is lower than this range, the supplied olefin conversion rate is lowered, and sufficient ethylene and propylene productivity cannot be obtained, which is not preferable. On the other hand, at a reaction temperature higher than this range, the formation rate of coal char is accelerated, and the catalyst activity is rapidly reduced. The reaction pressure is 0.05 to 2 MPa, preferably 0.05 to 1 MPa, and more preferably 0.05 to 0.5 MPa. The total raw material supply rate (WHSV) per catalyst unit weight is 32 to 256 hr— ', preferably 40. ~ 256hr_i, more preferably 40 ~ 128hr-1. When the feed rate of raw materials (WHSV) is lower than this range, the content of pentene in the distillate formed by the reaction becomes low, and the reduction rate of the catalyst activity is suppressed to some extent. Hydrogen, saturated hydrocarbons, and aromatic carbon The yield of hydrogen compounds increases, and high selectivity and productivity of ethylene and propylene cannot be obtained. On the other hand, under the reaction conditions of the raw material supply rate (W H S V) larger than this range, 16 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 coal coke generation speed becomes fast, so it is not good. In addition, the reactor may be a single reactor or a plurality of reactors, especially in the case of a plurality of reactors. By setting the reactors in series, the reaction conditions can be controlled more precisely. In the case of parallel installation, contact cracking operation is performed in one of the reactors, and regeneration is performed in the other reactors. By operating while switching these, a certain amount of production can be maintained. Under such reaction conditions, the maximum propylene selectivity, yield, and productivity can be obtained, and the formation of coal coke, which is the reason for the decrease in catalyst activity, can be suppressed. According to the method of the present invention, in the distillate produced by the reaction at the outlet of the reactor, the weight ratio of pentene to propylene is usually set to 0.20 to 0.80, preferably 0. 2 5 to 0.8, more preferably 0. . 3 0 ~ 0. 8 0. In addition, in the case where a plurality of reactors are arranged in series, the weight ratio of pentene to propylene in the distillate produced by the reaction at the outlet of the first reactor is usually set to 0.2 to 0. 0.8, It is preferably 0.25 to 0 · 8 0, and more preferably 0.30 to 0.80. That is, in the contact cracking reaction, as described above, a plurality of reactions with different reaction rates are performed simultaneously, and the pentene cracking reaction with a slower reaction rate is suppressed to a certain degree, thereby suppressing undesired coal coke As a result, a certain catalyst activity can be maintained for a sufficient period of time. In the case of removing ethylene and propylene from the product of the first reactor provided with a plurality of reactors, the reaction of the second reactor can be performed under more severe conditions, so that the whole of the supplied raw materials Most were converted. On the other hand, in the case of using only one reactor, olefins containing penta :): Greek carbon number 4 or more can be recovered in a contact cracking reactor after being separated into distillate, and mixed with fresh raw materials. For use, the carbon 17 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 olefins with a number of 4 or more can be separated and sent to a petroleum brain cracker to be mixed with fresh petroleum brain raw materials for use. In the present invention, the raw material contains at least one kind of olefin having 4 to 12 carbon atoms, and contains at least 1 kind of saturated hydrocarbon having 1 to 12 carbon atoms in an amount of 10 to 70 wt%. In the case of raw materials containing two dilute compounds below 2 wt%, for catalysts containing MFI-type zeolite catalysts, at a reaction pressure of 0.05 to 2 M pa, the total raw material supply rate per unit weight of catalyst (WHSV) is contacted under the conditions of 3 2 ~ 2 5 6 hr _1 and the reaction temperature is 4 0 ~ 5 8 0 ° C, and the weight ratio of pentene to propylene in the distillate produced by the reaction is controlled to 0. 2 0 to 0.8, to suppress the by-products of hydrogen, saturated hydrocarbons, aromatic hydrocarbons and coal coke, and also to suppress the precipitation of coal coke on the catalyst for raw materials containing more diene compounds In order to obtain high propylene selectivity and long catalyst life. Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. (Example 1) A commercially available powdered ammonium salt type ZS Μ-5 (S i 0 2 / A 2 2 3 3 mol · · 2 8 0) powder was fired at 5 5 0 ° C for 5 hour. After firing, through compression molding, crushing, and sieving, a catalyst having a particle size of 250 to 500 μm is obtained. The reaction system uses a fixed-bed flow-through reactor (inner diameter 10.7 η η〗, length 250 mm in). Quartz tube and quartz sand as the holding material of the catalyst "0.125 g" were filled into the quartz tube so that the overall length was 250 m. The quartz tube was filled in a reactor, the temperature of the catalyst layer was maintained at 550 ° C, and the C4 fraction raw material C of petroleum brain obtained by cracking was supplied at a flow rate of 8 g per hour (Table 18 3 12 / Instruction Manual) (Supplement) / 93-04 / 93102750 1243201 1), and the contact cleavage reaction was performed at a reaction pressure of 0.05 MPa. The effluent reaction product was maintained in a gas phase state and analyzed by a gas chromatography. After the reaction for a specified time, the supply of raw materials was stopped and the temperature of the catalyst layer was reduced to 450 ° C. One hour after the supply of raw materials was stopped, the accumulated coal coke was started to burn with nitrogen-diluted air. The supply of air is continued until the accumulated coal char is burned. The gas chromatograph was used to quantify the hydrogen, carbon monoxide and carbon dioxide produced by the combustion reaction, and the generated weight of coal coke was calculated from the generated weight of these gases. The conversion of the raw material and the yield of the product are calculated by the following formulas. (1) Butene conversion rate (%) Di (1-(weight of unreacted butene / weight of supplied butene)) X10 0 (2) Yield of product (%) Weight of olefins) X 1 00 (3) Yield of coal coke (PP M) = (total weight of coal coke produced / total weight of butenes supplied) X 1, 0 0 0, 0 0 0 The results of the reaction are shown in Table 2. As a result, after 90 hours, the productivity of ethylene and propylene was stably obtained. In addition, because the coal coke production rate is also low, the method of burning and removing the accumulated coal coke can be removed, so the heat generated by the combustion of coal coke is small, and the amount of steam that deteriorates the catalyst is reduced. Therefore, when the catalyst is reused, the increase in its service life is worth the wait. (Comparative Example 1) The contact cracking reaction was performed under the same conditions as in Example 1, except that the raw material C in Example 19 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 1 was changed to a n-butene raw material. The results are shown in Table 3. Under the condition that no saturated hydrocarbon butane is used, stable ethylene and propylene productivity can be obtained in only 20 hours. Table 1 (Composition of raw materials) Raw material A Raw material B Raw material C Raw material D Raw material E Ingredient wt% Saturated hydrocarbon methane 0.1 1 0.0 0. 0 0. 0 0.0 Ethyl alcohol &lt; 0. 1 0.0 0. 0 0. 0 0 . 0 propane &lt; 0. 1 &lt; 0. 1 &lt; 0.1 &lt; 0. 1 &lt; 0.1 isobutane 3. 3 5.8 4. 5 10.6 15.6 n-butane 14.6 24.4 35.3 33.2 45.5 pentyl 0.2 2 0.3 0. 2 0. 1 0. 1 Total saturated hydrocarbons 18.4 30.6 40.0 43.9 6 1.2 Alkenes trans-2-butene 18.4 24.3 20.6 23.0 7. 6 1-Butene 22.4 17.9 18.3 16.3 20.5 Isobutylene 12.3 13.1 0. 3 3 2 3. 6 Cis-2-Butene 27.3 13.3 20.5 12.8 5.2 Total Butenes 80.4 68.6 59.6 55.3 36.9 Acrylic 0.1 0.1 0. 1 0. 1 0.1 1, 3-Butyl Shaoxi 0.045 0.11 0.051 0.49 0.075 Others 1. 2 0. 7 0. 3 0. 3 1. 8 Total 100.0 100.0 100.0 100.0 100.0 Table 2 (Example 1)

反應條件 觸媒H-ZSM-5 (SiCh/AhCh 280 ),原料C(飽和碳氫 物 40. Owt%)、溫度 550°C , WHSV 6 4hr' 壓力◦. 0 化合 5MPa 反應時間(hr) 4 12 20 30 42 54 66 78 84 90 丁烯轉化率(% ) 76.5 74. 9 75.1 76. 3 69. 8 72. 5 66,4 65· 5 70. 1 68. 6 產率(wt%) 氫 0.10 0. 08 0. 11 0. 09 0. 06 0.05 0.05 0. 03 0.04 0. 05 曱烷 0.43 0.33 0. 48 0. 41 0.28 0.24 0.23 0. 18 0. 26 0.28 乙院 0.54 0. 40 0.61 0. 53 0. 32 0.26 0.24 0. 17 0. 27 0. 28 丙烧 4.7 3.5 4.7 4. 2 2. 7 2. 2 2. 0 1. 3 1. 9 2. 0 丁烷 2.3 0. 1 4. 2 1. 0 2.5 3. 0 3. 1 0. 9 3.2 4. 1 乙烯 10. 1 8. 3 10.4 9.2 7.3 6. 5 6.0 4. 8 6.0 6.2 丙烯 31. 4 30. 7 33. 2 30.5 32.0 30. 0 31. 3 28. 9 29.5 32.2 丁烯 9. 5 10. 0 9. 8 9.4 11.5 10.6 12.5 12. 4 10.7 12.6 C 5以上非芳香族 17. 2 17. 1 17. 7 16.3 18. 6 16.7 19.0 18.1 16. 4 19. 1 芳香族 5. 1 4. 0 5.4 4. 6 3.0 2. 7 2. 6 1.7 2. 4 2.6 煤焦 35PPM 20 312/發明說明書(補件)/93-04/93102750 1243201 表3 (比較例1 )Reaction conditions Catalyst H-ZSM-5 (SiCh / AhCh 280), raw material C (saturated hydrocarbon 40. Owt%), temperature 550 ° C, WHSV 6 4hr 'pressure ◦ 0 compound 5MPa reaction time (hr) 4 12 20 30 42 54 66 78 84 90 Butene conversion (%) 76.5 74. 9 75.1 76. 3 69. 8 72. 5 66, 4 65 · 5 70. 1 68. 6 Yield (wt%) Hydrogen 0.10 0. 08 0. 11 0. 09 0. 06 0.05 0.05 0. 03 0.04 0. 05 Pinane 0.43 0.33 0. 48 0. 41 0.28 0.24 0.23 0. 18 0. 26 0.28 Yiyuan 0.54 0. 40 0.61 0. 53 0. 32 0.26 0.24 0. 17 0. 27 0. 28 Propane 4.7 3.5 4.7 4. 2 2. 7 2. 2 2. 0 1. 3 1. 9 2. 0 Butane 2.3 0. 1 4.2 1. 0 2.5 3. 0 3. 1 0. 9 3.2 4. 1 Ethylene 10. 1 8. 3 10.4 9.2 7.3 6. 5 6.0 4. 8 6.0 6.2 Acrylic 31. 4 30. 7 33. 2 30.5 32.0 30. 0 31. 3 28. 9 29.5 32.2 Butene 9. 5 10. 0 9. 8 9.4 11.5 10.6 12.5 12. 4 10.7 12.6 C 5 or more non-aromatic 17. 2 17. 1 17. 7 16.3 18. 6 16.7 19.0 18.1 16. 4 19. 1 Aromatic 5. 1 4. 0 5.4 4. 6 3.0 2. 7 2. 6 1.7 2. 4 2.6 Coal coke 35PPM 20 312 / Specification of the invention (Supplement) / 93-04 / 93102750 1243201 Table 3 (Comparative Example 1)

反應條件 觸媒 H-ZSM-5 (Si〇2/A12〇3 280 ),原料 η-丁烯 溫度 550°C,WHSV 壓力 0.05MPa 反應時間(h r) 2 8 14 20 26 32 38 44 丁烯轉化率(%) 79. 1 78. 0 74. 5 68. 6 57. 4 41. 6 26.3 14.5 產率(wt%) 氫 0.18 0. 13 0. 08 0. 05 0. 03 0. 02 0. 01 0. 01 曱烷 0. 46 0.37 0. 27 0. 22 0. 16 0. 13 0. 11 0. 09 乙坑 0. 45 0. 37 0.26 0. 18 0. 09 0. 06 0. 04 0. 03 丙烧 4.2 3. 3 2. 4 1.6 0. 75 0. 30 0. 11 0. 04 丁烷 6. 3 5.3 4. 5 3. 9 2.8 2.0 1.3 0· 8 乙稀 10. 3 8. 9 7.5 5.8 3. 3 1.6 0. 7 0. 3 丙稀 28.1 27.5 28.5 29.1 24. 8 17. 5 9.7 4. 3 戊稀 8.8 9.1 10. 6 12. 2 12. 7 10.6 6. 9 3. 5 C5以上非芳香族 16.6 15. 7 16. 7 17. 5 16.1 12. 4 7. 8 3. 8 芳香族 7.1 5.7 4. 4 3. 3 1.9 1. 0 0. 47 0. 18 煤焦 103PPM (實施例2至4 ) 實施例2至4係除了分別使用表4所示之原料之外,以 與實施例1相同之條件進行接觸裂解之例,主要係含有丁 烷類之飽和碳氫化合物1 8 . 4 w t %、3 0 · 6 w t %、及6 1 . 2 w t %之 原料,結果則示於表4。由結果可知,相較於比較例1,原 料中只要含有 1 8 . 4 w t %之飽和碳氫化合物,煤焦之生成率 便可減半,可穩定地獲得乙烯及丙烯生產性之反應時間亦 從2 0小時快速增加至4 2小時。實施例4係為飽和碳氫化 合物含有料高至 6 1 . 2 w t %之原料之接觸裂解例。雖運轉至 1 0 0小時即停止,但此時觸媒之活性僅有些微降低。 2! 312/發明說明書(補件)/93-04/93102750 1243201 表4 (實施例1〜4、比較例1)Reaction conditions catalyst H-ZSM-5 (Si〇2 / A12〇3 280), raw material η-butene temperature 550 ° C, WHSV pressure 0.05MPa reaction time (hr) 2 8 14 20 26 32 38 44 butene conversion Rate (%) 79. 1 78. 0 74. 5 68. 6 57. 4 41. 6 26.3 14.5 Yield (wt%) Hydrogen 0.18 0. 13 0. 08 0. 05 0. 03 0. 02 0. 01 0. 01 Pinane 0.46 0.37 0. 27 0. 22 0. 16 0. 13 0. 11 0. 09 Ekeng 0. 45 0. 37 0.26 0. 18 0. 09 0. 06 0. 04 0. 03 Propane 4.2 3. 3 2. 4 1.6 0. 75 0. 30 0. 11 0. 04 Butane 6. 3 5.3 4. 5 3. 9 2.8 2.0 1.3 0 · 8 Ethylene 10.3 8. 9 7.5 5.8 3. 3 1.6 0. 7 0. 3 Acrylic 28.1 27.5 28.5 29.1 24. 8 17. 5 9.7 4. 3 Ethylene 8.8 9.1 10. 6 12. 2 12. 7 10.6 6. 9 3. 5 C5 or higher Aromatic 16.6 15. 7 16. 7 17. 5 16.1 12. 4 7. 8 3. 8 Aromatic 7.1 5.7 4. 4 3. 3 1.9 1. 0 0. 47 0. 18 Coal char 103PPM (Examples 2 to 4) Examples 2 to 4 are examples in which contact cracking was performed under the same conditions as in Example 1, except that the raw materials shown in Table 4 were used respectively, mainly saturated hydrocarbons containing butanes 18.4 wt. %, 3 0 · 6 wt%, and 6 1.2 w t% of the raw materials are shown in Table 4. As can be seen from the results, compared with Comparative Example 1, as long as the raw material contains 18.4 wt% of saturated hydrocarbons, the coal coke production rate can be halved, and the reaction time for the stable production of ethylene and propylene can be obtained. It increased rapidly from 20 hours to 42 hours. Example 4 is a contact cracking example of a raw material with saturated hydrocarbons up to 6 1.2 wt%. Although it stopped after running for 100 hours, the catalyst activity was only slightly reduced at this time. 2! 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 Table 4 (Examples 1 to 4, Comparative Example 1)

比較例1 實施例2 實施例3 實施例1 實施例4 反應條件 觸媒H-ZSM-壓力0. 05 -5(Si〇2/Ah(h 280 ),溫度 550°C,WHSV 64hr ', i?a 原料 丁烯 A B c E 飽和碳氫化合物 (wt%) 0 18. 4 30. 6 40. 0 61. 2 反應時間(hr) 2 20 4 42 4 58 4 90 4 100 丁烯轉化率(%) 79.1 68. 6 77. 1 68. 5 77. 0 66. 4 76. 5 68. 6 77. 0 72. 8 產率(wt%) 氫 0.18 0.05 0. 14 0. 06 0.14 0. 05 0.10 0. 05 0. 11 0.06 曱烷 0.46 0. 22 0.50 0.36 0. 56 0. 28 0. 43 0. 28 0.35 0. 33 乙烷 0.45 0.18 0.55 0. 39 0. 68 0. 26 0. 54 0. 28 0. 50 0. 44 丙院 4. 2 1.6 5. 2 2.1 5.3 1· 9 4. 7 2. 0 4. 6 3.8 丁烧 6.3 3.9 5.0 2. 1 3. 3 1.7 2. 3 4. 1 1.7 1. 3 乙稀 10. 3 5.8 10. 1 6. 4 11.1 6. 2 10. 1 6.2 9. 1 8. 9 丙稀 28. 1 29. 1 30. 7 30. 5 31.4 30. 5 31. 4 32. 2 32.1 31. 3 戊烯 8. 8 12. 2 9. 5 12. 5 9. 2 11.9 9.5 12. 6 9. 2 10. 4 C5以上非芳香族 16.6 17. 5 16. 5 17. 6 17. 2 18. 0 17. 2 19. 1 18. 6 18. 1 芳香族 7. 1 3.3 6.6 3.5 6. 8 3.0 5.1 2. 6 4. 2 3. 4 煤焦 103PPM 57PPM 52PPM 35PPM 26PPM (實施例5至6及比較例2 ) 實施例 5、6及比較例 2中,除了將反應溫度定為 500 °C 、WHSV分別定為表5所示者、且使用原料D之外,以與 實施例1相同之反應條件進行接觸裂解反應。結果示於表 5。如實施例 5 所示,於每觸媒重量單位之原料供給速度 (W H S V )值高至 1 2 8 h ι~ _1之條件下,戊烯對於丙烯之重量 比成為0 . 5以上。由此可知於此條件下煤焦之生成極低。 然而,如比較例2所示,於抑制生產性之反應條件下,亦 即當W H S V之值低至8 h r _1時,戊稀之產率減少,而飽和碳 氫化合物、芳香族碳氫化合物及煤焦等不希望產生之副生 成物之產率則反而大幅提高。 22 312/發明說明書(補件)/93-04/93102750 1243201 表5 (實施例5〜6、比較例2 )Comparative Example 1 Example 2 Example 3 Example 1 Example 4 Reaction conditions Catalyst H-ZSM-Pressure 0.05-5 (Si〇2 / Ah (h 280), temperature 550 ° C, WHSV 64hr ', i ? a Raw material Butene AB c E Saturated hydrocarbon (wt%) 0 18. 4 30. 6 40. 0 61. 2 Reaction time (hr) 2 20 4 42 4 58 4 90 4 100 Butene conversion (% ) 79.1 68. 6 77. 1 68. 5 77. 0 66. 4 76. 5 68. 6 77. 0 72. 8 Yield (wt%) Hydrogen 0.18 0.05 0. 14 0. 06 0.14 0. 05 0.10 0 .05 0. 11 0.06 Pentane 0.46 0. 22 0.50 0.36 0. 56 0. 28 0. 43 0. 28 0.35 0. 33 Ethane 0.45 0.18 0.55 0. 39 0. 68 0. 26 0. 54 0. 28 0. 50 0. 44 Bingyuan 4. 2 1.6 5. 2 2.1 5.3 1 · 9 4. 7 2. 0 4. 6 3.8 Ding 6.3 3.9 5.0 2. 1 3. 3 1.7 2. 3 4. 1 1.7 1 3 Ethylene 10.3 5.8 10. 1 6. 4 11.1 6. 2 10. 1 6.2 9. 1 8. 9 Acrylic 28. 1 29. 1 30. 7 30. 5 31.4 30. 5 31. 4 32 2 32.1 31. 3 pentene 8. 8 12. 2 9. 5 12. 5 9. 2 11.9 9.5 12. 6 9. 2 10. 4 Non-aromatic C5 or higher 16.6 17. 5 16. 5 17. 6 17 . 2 18. 0 17. 2 19. 1 18. 6 18. 1 Aromatic 7. 1 3.3 6.6 3.5 6. 8 3.0 5.1 2. 6 4. 2 3. 4 Coal coke 103PPM 57PPM 52PPM 35PPM 26PPM (Examples 5 to 6 and Comparative Example 2) In Examples 5, 6 and Comparative Example 2, except that the reaction temperature was set to 500 ° C, WHSV was set to those shown in Table 5, and raw materials were used Except D, the contact cracking reaction was performed under the same reaction conditions as in Example 1. The results are shown in Table 5. As shown in Example 5, the value of the raw material supply rate (WHSV) per catalyst weight unit was as high as 1 2 8 Under the condition of h ι ~ _1, the weight ratio of pentene to propylene becomes 0.5 or more. It can be seen that under this condition, the formation of coal coke is extremely low. However, as shown in Comparative Example 2, under reaction conditions that inhibit productivity, that is, when the value of WHSV is as low as 8 hr _1, the yield of pentylene is reduced, and saturated hydrocarbons, aromatic hydrocarbons, and On the contrary, the yield of undesired by-products such as coal coke has increased significantly. 22 312 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 Table 5 (Examples 5 to 6, Comparative Example 2)

實施例5 實施例6 比較例2 反應條件 觸媒 H-ZSM-5 (S1O2/AL 280 ),原料 D (飽和碳氫化合物43.9wt%),溫度5 0 0°C, 壓力 0. 05 MPa ffHSV (hr ') 128 32 8 反應時間(hr) 7 43 7 43 8 44 丁烯轉化率(%) 73. 4 70.8 82.9 78. 3 88.6 89. 0 產率(w t °/〇) 氫 0.04 0. 03 0.14 0. 11 0.42 0. 33 曱烷 0. 10 0. 06 0. 36 0. 31 1. 4 1. 2 乙烧 0.12 0. 06 0. 61 0. 52 2.6 2. 3 丙烧 2. 0 2. 7 7.4 6.5 20. 7 17. 4 丁烷 0. 4 0. 4 1. 7 1. 8 2. 8 2. 1 丁烯 1. 5 1. 1 4. 1 2. 0 1.2 5. 0 乙烯 4. 8 2.8 8. 1 8. 0 8. 2 7.4 丙稀 25. 6 22. 7 21. 0 24. 8 15. 9 14.9 戊烯 13. 2 13. 5 8. 3 8.8 2.5 2. 9 C 5以上非芳香族 21. 5 21. 9 17. 6 19. 8 13. 2 14. 3 芳香族 2. 3 3. 01 6. 3 7. 2 19. 4 19. 3 煤焦 1 1PPM 33PPM 120PPM (實施例7 ) S i 0 2 / A 1 2 0 3莫耳比5 0 0之沸石 此實施例係為除了使用S i 0 2 / A 1 2 0 3莫耳比為5 0 0之M F I 沸石觸媒之外,以與實施例1相同之條件進行1 3 7小時之 接觸裂解的例,結果示於表6。經由使用高 S i 0 2 / A 1 2 0 3莫 耳比之沸石,乙烯及丙烯之生產性實質上並未減少,相較 於使用S i 0 2 / A 1 2 0 3莫耳比為2 8 ◦之M F I沸石觸媒的實施例 1,可進行1 . 5倍以上之反應。 23 3 12/發明說明書(補件)/93-04/93102750 1243201 表6 (實施例7 ) 反應條件 觸媒Η-Ζί 原料C(飽 WHSV 64 5Μ-5 (S1O2/AI2O3 5 00 ), 和碳氫化合物4 0. 0 w t %)、溫度5 5 0 °C, ir1,壓力 0.05MPa 反應時間(h r ) 6 36 72 108 137 丁烯轉化率(% ) 75. 1 77.9 72. 1 70. 3 67. 7 產率(%) 氫 0. 07 0. 06 0. 07 0. 04 0. 03 曱烷 0.25 0. 23 0. 24 0. 17 0.14 乙烧 0.31 0. 24 0. 21 0. 17 0. 19 丙烧 3. 8 3. 5 2.5 2. 0 2. 3 丁烷 0.9 2. 5 1.0 2. 3 1.4 乙烯 11.7 11.1 8.4 9.0 7. 9 丙烯 31. 3 30. 1 32.4 31.3 30. 9 戊稀 11.6 12.2 10.5 12. 0 12. 7 C 5以上非芳香族 16. 7 18. 5 17. 4 19. 3 19. 3 芳香族 4,4 3.2 3. 7 2.4 2. 8 煤焦 32ΡΡΜ (實施例8 ) 本例表示觸媒重複使用之例。於實施例1中係進行 反應,進行生成煤焦之燃燒。將觸媒留置於反應器中 與實施例 1相同之條件供給原料並再次開始接觸裂 應,反應後於相同條件下進行煤焦之燃燒。重複此操 次,結果完全未發現觸媒之劣化現象。 (實施例9、1 0 ) 實施例9、1 0中,除了於原料C中添加丁二烯,使 二烯之含有量分別為 0 . 5 1及1 . 1 w t %原料以外,以與 例1相同之反應條件進行接觸裂解。結果示於圖1。 於丁二稀含有量為〇 . 〇 5 w t %之實施例1,即使丁二稀含 為1 . 1 w t %,仍可持續 6 0小時以上穩定地得到丙烯產 又,煤焦之生成產率亦稍微增加至3 7 p p m、4 0 ρ ρ η〗左; 312/發明說明書(補件)/93-04/93102750 接觸 , 以 解反 作 6 用丁 實施 相較 有量 〇 24 1243201 【圖式簡單說明】 化率、 實施例 圖形表 ,中段 圖1係顯示實施例9、1 0及實施例1中,丁烯轉 乙烯、丙烯產率之經時變化。菱形標記之圖形表示 9,正方形標記之圖形表示實施例 1 0,圓形標記之 示實施例 1。又,最上段之圖形表示丁烯之轉化率 之圖形表示丙烯產率,最下段之圖形表示乙烯產率 25 312/發明說明書(補件)/93-04/93102750Example 5 Example 6 Comparative Example 2 Reaction conditions Catalyst H-ZSM-5 (S1O2 / AL 280), raw material D (saturated hydrocarbon 43.9wt%), temperature 50 0 ° C, pressure 0.05 MPa ffHSV (hr ') 128 32 8 Reaction time (hr) 7 43 7 43 8 44 Butene conversion (%) 73. 4 70.8 82.9 78. 3 88.6 89. 0 Yield (wt ° / 〇) Hydrogen 0.04 0.03 0.14 0. 11 0.42 0. 33 pinane 0. 10 0. 06 0. 36 0. 31 1. 4 1. 2 Ethanol 0.12 0. 06 0. 61 0. 52 2.6 2. 3 Propane 2.10 2 .7 7.4 6.5 20. 7 17. 4 Butane 0.4 4 0. 4 1. 7 1. 8 2. 8 2. 1 Butene 1. 5 1. 1 4. 1 2. 0 1.2 5. 0 Ethylene 4 8 2.8 8. 1 8. 0 8. 2 7.4 Acrylic 25. 6 22. 7 21. 0 24. 8 15. 9 14.9 Pentene 13. 2 13. 5 8. 3 8.8 2.5 2. 9 C 5 or more Non-aromatic 21. 5 21. 9 17. 6 19. 8 13. 2 14. 3 Aromatic 2. 3 3. 01 6. 3 7. 2 19. 4 19. 3 Coal coke 1 1PPM 33PPM 120PPM (Example 7) S i 0 2 / A 1 2 0 3 zeolite with a mole ratio of 5 0 0 This example is an example of using MFI zeolite catalysts with a S 0 2 / A 1 2 0 3 mole ratio of 5 0 0 In addition, an example in which contact cleavage was performed for 1 37 hours under the same conditions as in Example 1, The results are shown in Table 6. By using a high S i 0 2 / A 1 2 0 3 mole ratio zeolite, the productivity of ethylene and propylene has not been substantially reduced, compared with the use of S i 0 2 / A 1 2 0 3 mole ratio of 2 8 ◦ Example 1 of MFI zeolite catalyst, the reaction can be more than 1.5 times. 23 3 12 / Invention Specification (Supplement) / 93-04 / 93102750 1243201 Table 6 (Example 7) Reaction conditions Catalyst Η-Zί Raw material C (saturated WHSV 64 5M-5 (S1O2 / AI2O3 5 00), and carbon Hydrogen compound 4 0. 0 wt%), temperature 5 5 0 ° C, ir1, pressure 0.05 MPa, reaction time (hr) 6 36 72 108 137 butene conversion (%) 75. 1 77.9 72. 1 70. 3 67 7 Yield (%) Hydrogen 0.07 0. 06 0. 07 0. 04 0. 03 Pinane 0.25 0. 23 0. 24 0. 17 0.14 Ethane 0.31 0. 24 0. 21 0. 17 0. 19 Propane 3. 8 3. 5 2.5 2. 0 2. 3 Butane 0.9 2. 5 1.0 2. 3 1.4 Ethylene 11.7 11.1 8.4 9.0 7. 9 Propylene 31. 3 30. 1 32.4 31.3 30. 9 Ethylene 11.6 12.2 10.5 12. 0 12. 7 C 5 or more non-aromatic 16. 7 18. 5 17. 4 19. 3 19. 3 Aromatic 4, 4 3.2 3. 7 2.4 2. 8 Coal char 32PPM (Example 8) This example shows an example of repeated use of the catalyst. The reaction was carried out in Example 1 to perform combustion of coal char. The catalyst was left in the reactor, and the raw materials were supplied under the same conditions as in Example 1 and contact cracking was started again. After the reaction, coal coke was burned under the same conditions. Repeat this operation, and as a result, no catalyst degradation was found. (Examples 9 and 10) In Examples 9 and 10, except that butadiene was added to the raw material C so that the contents of the diene were 0.5 1 and 1.1 wt%, respectively. 1 Contact lysis was performed under the same reaction conditions. The results are shown in Fig. 1. In Example 1 in which the content of butadiene was 0.05% by weight, even if the content of butadiene was 1.1% by weight, propylene production could be stably obtained for more than 60 hours, and the yield of coal coke was stable. It also slightly increased to 37 ppm, 40 ρ ρ η. Left; 312 / Invention Specification (Supplements) / 93-04 / 93102750 contact, in order to solve the reverse reaction 6 using D to implement a relatively large amount 024 1243201 [Schematic Brief description] The graph of chemical conversion rates and examples, the middle section of Figure 1 shows the changes over time in the yields of butene to ethylene and propylene in Examples 9, 10 and 1. The diamond mark shows the figure 9; the square mark shows the embodiment 10; the circle mark shows the embodiment 1. In addition, the graph in the upper stage represents the conversion rate of butene, and the graph in the lower stage represents the yield of propylene. The graph in the lower stage represents the yield of ethylene. 25 312 / Invention Specification (Supplement) / 93-04 / 93102750

Claims (1)

1243201 (WHSV )為 40 〜2 5 6 hr-1。 烯之製造方 為碳數4〜8 烯之製造方 為碳數1〜8 烯之製造方 7. 如申請專利範圍第 1 或 2 項之乙烯及丙 法,其中,於上述原料中至少含有1種之烯烴 之烯烴。 8. 如申請專利範圍第 1或 2 項之乙烯及丙 法,其中,於上述原料中含有之飽和碳氫化合物 之飽和碳氫化合物。 9. 如申請專利範圍第 1 或 2項之乙烯及丙 法,其中,上述原料中含有2 w t %以下之二烯。 27 312/發明說明書(補件)/93-04/931027501243201 (WHSV) is 40 to 2 5 6 hr-1. The manufacturer of olefins is 4 to 8 carbons. The manufacturer of olefins is 1 to 8 carbons. 7. For example, the ethylene and propylene methods of item 1 or 2 of the scope of patent application, wherein the above raw materials contain at least 1 Olefin olefins. 8. For the ethylene and propylene processes of item 1 or 2 of the scope of patent application, wherein the saturated hydrocarbons contained in the above raw materials are saturated hydrocarbons. 9. For the ethylene and propylene processes in the first or second scope of the patent application, the above-mentioned raw materials contain less than 2 w t% of diene. 27 312 / Invention Specification (Supplement) / 93-04 / 93102750
TW093102750A 2003-02-14 2004-02-06 Method for producing lower olefin TWI243201B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003037318 2003-02-14
JP2003150857 2003-05-28

Publications (2)

Publication Number Publication Date
TW200424162A TW200424162A (en) 2004-11-16
TWI243201B true TWI243201B (en) 2005-11-11

Family

ID=32871195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093102750A TWI243201B (en) 2003-02-14 2004-02-06 Method for producing lower olefin

Country Status (4)

Country Link
JP (1) JP4335144B2 (en)
KR (1) KR100714257B1 (en)
TW (1) TWI243201B (en)
WO (1) WO2004072002A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319108B2 (en) 2004-01-25 2008-01-15 Sanofi-Aventis Deutschland Gmbh Aryl-substituted heterocycles, process for their preparation and their use as medicaments
KR100632563B1 (en) * 2004-09-10 2006-10-09 에스케이 주식회사 Solid acid catalyst for catalytic cracking and process for selectively preparing light olefins from full range naphtha
CN100368359C (en) * 2005-08-15 2008-02-13 中国石油化工股份有限公司 Production system for increasing production of propylene
HUE033165T2 (en) 2005-09-16 2017-11-28 Asahi Chemical Ind Process for production of ethylene and propylene
HUE035051T2 (en) 2005-09-16 2018-05-02 Asahi Chemical Ind Process for production of ethylene and propylene
JP4921788B2 (en) * 2005-09-16 2012-04-25 旭化成ケミカルズ株式会社 Process for producing ethylene and propylene
FR2905122B1 (en) * 2006-08-24 2009-07-24 Inst Francais Du Petrole PROCESS FOR PRODUCTION OF PROPYLENE IN THE PRESENCE OF A MACROPOROUS CATALYST IN THE FORM OF SPHERICAL BALLS
CN101348409B (en) * 2007-07-19 2011-06-15 中国石油化工股份有限公司 Method for producing low carbon alkene
US8137631B2 (en) 2008-12-11 2012-03-20 Uop Llc Unit, system and process for catalytic cracking
US8246914B2 (en) 2008-12-22 2012-08-21 Uop Llc Fluid catalytic cracking system
US8889076B2 (en) 2008-12-29 2014-11-18 Uop Llc Fluid catalytic cracking system and process
JP2011020045A (en) * 2009-07-15 2011-02-03 Mitsui Chemicals Inc Modified zeolite catalyst and method of producing unsaturated hydrocarbons using the modified zeolite catalyst
EA019862B1 (en) * 2009-07-30 2014-06-30 Мицубиси Кемикал Корпорейшн Method for producing propylene and catalyst for producing propylene
KR101298871B1 (en) * 2011-02-24 2013-08-21 롯데케미칼 주식회사 Manufacturing method of ethylene and propylene
JP6228682B2 (en) * 2014-08-01 2017-11-08 千代田化工建設株式会社 Propylene production method and propylene production catalyst
US9656928B2 (en) 2014-11-12 2017-05-23 King Fahd University Of Petroleum And Minerals Processes and catalysts for production of light olefins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313366B1 (en) * 1998-05-05 2001-11-06 Exxonmobile Chemical Patents, Inc. Process for selectively producing C3 olefins in a fluid catalytic cracking process
US6455750B1 (en) * 1998-05-05 2002-09-24 Exxonmobil Chemical Patents Inc. Process for selectively producing light olefins

Also Published As

Publication number Publication date
JPWO2004072002A1 (en) 2006-06-01
KR100714257B1 (en) 2007-05-02
JP4335144B2 (en) 2009-09-30
KR20050097513A (en) 2005-10-07
WO2004072002A1 (en) 2004-08-26
TW200424162A (en) 2004-11-16

Similar Documents

Publication Publication Date Title
TWI243201B (en) Method for producing lower olefin
JP5828975B2 (en) Catalyst regeneration
CN102143929B (en) Olefin isomerization and metathesis catalyst
JP5784647B2 (en) A method for producing propylene by simultaneous dehydration and skeletal isomerization of isobutanol over an acid catalyst followed by a metathesis step
CA2448532C (en) Olefin isomerization process
KR920002241B1 (en) Process for preparation of lower aliphatic hydrocarbons
JPH02306926A (en) Method for oligomerization of olefin
KR20130138855A (en) Catalyst for metathesis of ethylene and 2-butene and / or double bond isomerization
CZ297855B6 (en) Process of selective hydrogenation of highly saturated compounds
JP2008519033A (en) Catalyst and process for producing propylene by metathesis of ethylene and butene
JP2016519681A (en) Process for converting paraffin to olefin and catalyst for use therein
TWI729287B (en) Processes for regenerating catalysts
TWI680799B (en) Processes for rejuvenating catalysts
JP6728351B2 (en) Formation of acyclic C5 compound
PL102873B1 (en) METHOD OF SKELETAL ISOMERIZATION OF ALKENOV
JP2018534299A (en) Method for converting acyclic C5 compound to cyclic C5 compound and catalyst composition used therefor
JP6876424B2 (en) Selective hydrogenation of olefin feedstocks using a single primary reactor and a small size protective reactor
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
JP4026047B2 (en) Process for producing propylene from olefin streams
EP3335792B1 (en) Catalyst system and process for the conversion of a hydrocarbon feed comprising a saturated hydrocarbon compound to olefin products
WO2007135058A1 (en) Process for the preparation of propylene from a hydrocarbon feed
WO2015006071A1 (en) Manufacture of butadiene from ethylene
JP6527364B2 (en) Process for producing a product containing butadiene
WO2018204025A1 (en) Processes for rejuvenating catalysts
WO2013106039A1 (en) Dehydrogenation reactions of n-butene to butadiene

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees