WO2004069897A1 - Polyester, enthaltend mit aktinischer strahlung aktivierbare gruppen, verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Polyester, enthaltend mit aktinischer strahlung aktivierbare gruppen, verfahren zu ihrer herstellung und ihre verwendung Download PDF

Info

Publication number
WO2004069897A1
WO2004069897A1 PCT/EP2004/000541 EP2004000541W WO2004069897A1 WO 2004069897 A1 WO2004069897 A1 WO 2004069897A1 EP 2004000541 W EP2004000541 W EP 2004000541W WO 2004069897 A1 WO2004069897 A1 WO 2004069897A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
actinic radiation
hydroxyl
group
polyester
Prior art date
Application number
PCT/EP2004/000541
Other languages
English (en)
French (fr)
Inventor
Heinz-Peter Rink
Susanne Neumann
Uwe Meisenburg
Karl-Heinz Joost
Dietmar HÄRING
Bernhard Hauer
Original Assignee
Basf Coatings Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Coatings Ag filed Critical Basf Coatings Ag
Priority to US10/542,228 priority Critical patent/US20060235189A1/en
Priority to EP04704568A priority patent/EP1590394A1/de
Priority to JP2006501583A priority patent/JP2006520191A/ja
Publication of WO2004069897A1 publication Critical patent/WO2004069897A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds

Definitions

  • the present invention relates to new polyesters containing groups which can be activated with actinic radiation.
  • the present invention relates to a new process for the production of polyesters containing groups which can be activated with actinic radiation.
  • the present invention relates to the use of the new polyesters as new compositions curable with actinic radiation or for their production.
  • the present invention relates to the use of the new compositions curable with actinic radiation as coating materials, adhesives, sealants for the production of coatings, paints, adhesive layers and seals and for the production of molded parts and self-supporting films.
  • Polyesters which contain at least one pendant and / or terminal group which can be activated with actinic radiation have long been known. They are used for the production of compositions curable with actinic radiation, which are used as coating materials, adhesives and sealants for the production of coatings, paints, adhesive layers and seals as well as for the production of molded parts and self-supporting films.
  • the polyesters can be obtained by polymer-analogous reactions of hydroxyl group-containing polyesters with carboxylic acids or carboxylic acid esters which contain bonds which can be activated with actinic radiation, for example acrylic acid or acrylic acid esters, or of pendant and / or terminal carboxylic acid groups or carboxylic acid ester groups with hydroxyl group-containing compounds which contain actinic radiation contain activatable bonds, such as hydroxyethyl acrylate.
  • Polyesters which contain at least one pendant and / or terminal group which can be activated with actinic radiation are frequently used due to their advantageous performance properties for the preparation of compositions curable with actinic radiation.
  • their preparation by the polymer-analogous reactions described above is problematic because the direct reaction of hydroxyl-containing polyesters with carboxylic acids or carboxylic acid ester groups can lead to polyester cleavage.
  • the reaction of carboxylic acid groups or polyesters containing carboxylic acid ester groups with compounds containing hydroxyl groups such as hydroxyethyl acrylate can lead to a reduction in molecular weight.
  • the resulting polyesters can then no longer be used for the production of compositions curable with actinic radiation, because these no longer meet the requirements of the users.
  • European patent application EP 0 999 299 A1 discloses the production of (meth) acrylic acid esters of polyoxyalkylenes by esterification of acrylic acid and / or methacrylic acid or transesterification of (meth) acrylic acid esters with polyoxyalkylene glycols in the presence of an enzyme which catalyzes the transesterification or esterification.
  • European patent application EP 0 999 230 A 1 describes the preparation of (meth) acrylic acid esters of hydroxy-functional siloxanes and / or polyoxyalkylene-modified siloxanes by esterification of acrylic acid and / or methacrylic acid or transesterification of (meth) acrylic acid esters with hydroxy-functional siloxanes and / or polyoxyalkylene-modified siloxanes in the presence of an enzyme which catalyzes the transesterification or esterification.
  • European patent application EP 1 035 153A 1 describes the preparation of (meth) acrylic acid esters of carbonate groups-containing siloxanes modified with linear polyesters by esterification of acrylic acid and / or methacrylic acid or transesterification of (meth) acrylic acid esters with carbonate groups and siloxanes modified with linear polyesters and / or polyoxyalkylene-modified siloxanes in the presence of an enzyme which catalyzes the transesterification or esterification.
  • the object of the present invention was to find new polyesters containing at least one pendant and / or terminal group which can be activated with actinic radiation and which no longer have the disadvantages of the prior art, but which can be removed with the aid of a gentle and safety-related method advantageous process, in which there is no damage, in particular no molecular weight reduction, the polyester.
  • the new polyesters should have an advantageously low viscosity.
  • the new polyesters are said to be particularly suitable as compositions curable with actinic radiation or for their production.
  • compositions curable with actinic radiation are said to have a high solids content and are particularly suitable as coating materials, adhesives and sealants for the production of coatings, coatings, adhesive layers and seals and for the production of molded parts and self-supporting films.
  • a polyester containing at least one pendant and / or terminal hydroxyl group with at least one carboxylic acid (i) or at least one ester (i) of a carboxylic acid
  • polyesters containing at least one lateral and / or terminal group that can be activated with actinic radiation are referred to as “polyesters according to the invention”.
  • polyesters containing at least one pendant and / or terminal group which can be activated with actinic radiation was implemented
  • a polyester containing at least one pendant and / or terminal hydroxyl group with at least one carboxylic acid (i) or at least one ester (i) of a carboxylic acid (i) containing at least one bond which can be activated with actinic radiation, or
  • the catalyst being at least one enzyme that catalyzes the transesterification or esterification and / or at least one organism that catalyzes the transesterification or esterification.
  • the new process for the production of polyesters containing at least one lateral and / or terminal group which can be activated with actinic radiation is referred to as the “process according to the invention”.
  • polyesters according to the invention showed no damage caused by the production process, in particular no molecular weight reduction.
  • the process according to the invention delivered the polyesters according to the invention in a particularly gentle and particularly advantageous manner in terms of safety. There was no damage, especially no degradation in molecular weight, of the polyester.
  • the property profile of the polyesters according to the invention which is required for the respective intended use, could be reproduced excellently with the aid of the method according to the invention.
  • the new polyesters were particularly suitable as compositions curable with actinic radiation or for their production.
  • the new compositions curable with actinic radiation were particularly suitable as coating materials, adhesives and sealants for the production of coatings, paints, adhesive layers and seals as well as for the production of molded parts and self-supporting films.
  • the coatings, paints, adhesive layers, seals, moldings and foils according to the invention had excellent performance properties.
  • Oligomers generally contain 2 to 15 monomeric building blocks; Polymers generally contain more than 10 monomeric building blocks (see also Römpp Online, 2002, »Oligomere «, »Polymers«).
  • polyesters according to the invention containing at least one pendant and / or terminal group which can be activated with actinic radiation. They preferably contain at least two side and / or terminal groups of this type.
  • electromagnetic radiation such as near infrared (NIR), visible light, UV radiation, X-rays and gamma radiation, in particular UV radiation
  • corpuscular radiation such as electron radiation, proton radiation, alpha radiation, beta radiation and neutron radiation, in particular, are used under actinic radiation Electron radiation, understood.
  • the groups which can be activated with actinic radiation via carbonyloxy groups are -C (O) -O-, seen from the groups which can be activated with actinic radiation, with the oligomer or Polymer main chain linked.
  • the groups which can be activated with actinic radiation are linked to the main oligomer or polymer chain via carbonyloxy groups -C (O) -O-, viewed from the main chains
  • the groups that can be activated with actinic radiation contain at least one, in particular one, bond that can be activated with actinic radiation.
  • bonds This is understood to mean a bond that occurs when irradiated with actinic Radiation becomes reactive and enters into other activated bonds of its kind, polymerization reactions and / or crosslinking reactions, which take place according to radical and / or ionic mechanisms.
  • suitable bonds are carbon-hydrogen single bonds or carbon-carbon, carbon-oxygen, carbon-nitrogen, carbon-phosphorus or carbon-silicon single bonds or double bonds or carbon-carbon triple bonds.
  • the carbon-carbon double bonds and triple bonds are advantageous and are therefore preferably used according to the invention.
  • the carbon-carbon double bonds are particularly advantageous, which is why they are used with particular preference. For the sake of brevity, they are referred to below as "double bonds".
  • Carbonyloxy group or linking organic radical preferably a pair of bonding electrons
  • R 1 , R 2 and R 3 are hydrogen or an organic radical; where at least two of the radicals R, R, R and R 3 - can be cyclically linked to one another.
  • suitable linking organic radicals R contain or consist of alkylene, cycloalkylene and / or arylene groups. Highly suitable alkylene groups contain one carbon atom or 2 to 6 carbon atoms. Highly suitable cycloalkylene groups contain 4 to 10, in particular 6, carbon atoms. Well-suited arylene groups contain 6 to 10, especially six, carbon atoms.
  • suitable organic radicals R, R and R contain or consist of alkyl, cycloalkyl and / or aryl groups. Highly suitable alkyl groups contain one carbon atom or 2 to 6 carbon atoms. Highly suitable cycloalkyl groups contain 4 to 10, in particular 6, carbon atoms. Well-suited aryl groups contain 6 to 10, especially 6, carbon atoms.
  • the organic radicals R, R 1 , R 2 and R 3 can be substituted or unsubstituted. However, the substituents must not interfere with the implementation of the method according to the invention and / or inhibit the activation of the groups with actinic radiation.
  • the organic radicals R, R 1 , R 2 and R 3 are preferably unsubstituted.
  • Examples of particularly suitable groups of the general formula I are vinyl, 1-methylvinyl, 1-ethylvinyl, propen-1-yl, styryl, cyclohexenyl, endomethylenecyclohexyl, norbomenyl and
  • Dicyclopentadienyl groups especially vinyl groups.
  • the particularly preferred groups which can be activated with actinic radiation are (meth) acrylate, ethacrylate, crotonate,
  • polyesters according to the invention can be prepared by polymer-analogous reactions.
  • polyesters according to the invention and for the process according to the invention that the reactions in the presence of at least one, in particular one, enzyme which catalyzes the transesterification or esterification, and / or at least one, in particular one organism, which catalyzes the transesterification or esterification , is carried out as a catalyst.
  • Hydrolases [EC 3.x.x.x], in particular esterases [EC 3.1.x.x.] and proteases [EC 3.4.x.x], are used as enzymes.
  • the carboxyl ester hydrolases [EC 3.1.1.x] are preferred.
  • Lipases are particularly preferably used as hydrolases. In particular, lipases from Achromobacter sp., Aspergillus sp., Burholderia sp., Candida sp., Mucor sp., Penicillium sp., Pseudomonas sp., Rhizopus sp., Thermomyces sp. or pork pancreas.
  • the enzymes and their functions are described, for example, in Römpp Online, 2002, "Hydrolases", “Lipases” and "Proteases”. You can be mobilized or immobilized.
  • Suitable organisms are all naturally occurring or genetically modified microorganisms, unicellular organisms or cells which carry out the transesterification or esterification using a hydrolase [EC 3.xxx], preferably an esterase [EC 3.1.xx] or protease [EC 3.4.xx] , particularly preferably catalyze a carboxyl ester hydrolase [EC 3.1.1.x] and in particular a lipase. All organisms known to the person skilled in the art which contain hydrolases can be used. Organisms which comprise lipases as hydrolases are preferably used.
  • Achromobacter sp. Aspergillus sp., Burholderia sp., Candida sp., Mucor sp., Penicillium sp., Pseudomonas sp., Rhizopus sp., Thermomyces sp. and cells from pig pancreas use.
  • These can be the unchanged organisms themselves or genetically modified organisms that originally do not express the enzymes, or express them only to an insufficient extent, and only have sufficiently high enzyme activity and productivity after modification.
  • the organisms can be adapted to the reaction conditions and / or cultivation conditions by the genetic modification.
  • the amount of the enzyme and / or the organism used can vary widely and depends on the requirements of the individual case, in particular on the reactivity of the starting products and the catalytic activity and selectivity of the enzyme or organism and the chosen conditions.
  • the enzyme is preferably obtained in an amount of 0.1 to 20, preferably 0.2 to 16, particularly preferably 0.2 to 14, very particularly preferably 0.3 to 12, in particular 0.5 to 10% by weight on the total amount of the starting products.
  • suitable polyesters and their preparation are described, for example, in German patent application DE 42 04 518 A1, page 4, line 43, to page 5, line 2.
  • Carboxylic acid esters (i) and hydroxyl group-containing compounds (ii) can be used in the process according to the invention. It is essential that these connections have at least one, in particular one, with contain bond that can be activated by actinic radiation.
  • the carboxylic acids (i) or carboxylic acid esters (i) and the hydroxyl-containing compounds (ii) are preferably selected from the group consisting of compounds of the general formula II:
  • the monovalent organic radical preferably contains R 4
  • Alkyl radicals R 4 are preferably used.
  • the hydroxyl-free alkyl radical R 4 is particularly preferably a methyl radical, ethyl radical, propyl radical, butyl radical or 2-ethylhexyl radical, in particular a methyl radical
  • the hydroxyl-containing alkyl radical R 4 is a hydroxyethyl radical, a 2- or 3-hydroxypropyl radical or a 4-hydroxybutyl radical, in particular a 4 -Hydroxybutylrest.
  • the carboxylic acids (i) are preferably selected from the group consisting of acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, cinnamic acid, cyclohexenecarboxylic acid, endomethylenecyclohexanecarboxylic acid, norbomene carboxylic acid and dicyclopentadienecarboxylic acid, in particular acrylic acid.
  • the carboxylic acid esters (i) are preferably selected from the group consisting of hydroxyl-free esters of acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, cinnamic acid,
  • the hydroxyl-containing compounds (ii) are preferably selected from the group consisting of hydroxyl-containing esters of acrylic acid, methacrylic acid, ethacrylic acid, crotonic acid, cinnamic acid, cyclohexenecarboxylic acid, endomethylenecyclohexanecarboxylic acid,
  • Norbomene carboxylic acid and dicyclopentadienecarboxylic acid especially acrylic acid, selected.
  • the carboxylic acid (i) acrylic acid, the carboxylic acid ester (i) methyl acrylate and the hydroxyl group-containing compound (ii) is 4-hydroxybutyl acrylate.
  • the molar ratio of the polyesters (i) to the carboxylic acids or the carboxylic acid esters (i) and the molar ratio of the polyesters (ii) to the hydroxyl-containing compounds (ii) can vary very widely and depend on the requirements of the individual case, in particular on the Number of reactive functional groups in polyesters (i) and (ii), the desired degree of implementation of the reactive functional groups and the intended application.
  • the person skilled in the art can therefore easily determine the appropriate molar ratios on the basis of his general specialist knowledge, possibly with the aid of a few orienting experiments.
  • the reactions according to the process of the invention can be carried out in a single-phase or multi-phase, aqueous and / or organic reaction medium.
  • the starting products can be dissolved, suspended or emulsified.
  • the reactions can be carried out with or without the addition of solvents.
  • Solvents which are inert with respect to the reactions are preferably used.
  • Conventional and known organic, in particular aprotic, non-polar solvents are preferably used.
  • an excess of carboxylic acids (i) or carboxylic acid esters (i) or of hydroxyl-containing compounds (ii) can be used as the reaction medium.
  • the method according to the invention can be carried out at different temperatures.
  • the selection of the temperature range depends on the requirements of the individual case, in particular on the reactivity of the starting products and their thermal stability as well as on the catalytic activity and selectivity of the enzyme and / or the organism and their thermal stability.
  • the process according to the invention is preferably carried out at temperatures from 0 to 100, preferably 10 to 80, particularly preferably 15 to 75 and in particular 20 to 70 ° C.
  • the duration of the reactions can also vary widely and also depends on the requirements of the individual, in particular on the reactivity of the starting products and the catalytic activity and selectivity of the enzyme and / or the organism.
  • the duration is preferably one hour to one week, preferably two hours to five days, particularly preferably three hours to four days and in particular four hours to three days.
  • the process according to the invention can be carried out in batch mode, in which all starting products are placed in a suitable reaction vessel, or in semi-batch mode, in which individual or all starting products are metered into the reaction medium in the course of the reaction,
  • water or at least one, in particular a compound containing hydroxyl groups for example methanol, ethanol, propanol or butanol. It is advisable to remove the hydroxyl-containing compound which forms or the water from the reaction mixtures during or immediately after formation. All customary and known methods, such as vacuum distillation or azeotropic distillation, pervaporation or the passage of inert gases, can be used. It is essential that the starting products, the catalysts and the end products are not thermally damaged. Substances which absorb compounds containing hydroxyl groups and / or water can also be added to the reaction mixtures.
  • a compound containing hydroxyl groups for example methanol, ethanol, propanol or butanol
  • absorbent substances are molecular sieves with corresponding pore sizes (see also Römpp Online, 2002, “Molecular Sieves” and “Zeolites”).
  • compositions according to the invention can be used for a wide variety of purposes. For this purpose, they can be isolated from the reaction mixtures as substances or used directly in solution. They are preferably used as new compositions curable with actinic radiation or for their production.
  • compositions according to the invention are referred to below as "compositions according to the invention”.
  • compositions according to the invention can contain all customary and known constituents which are curable with actinic radiation, such as additional radiation-curable binders which differ from the polyesters according to the invention, radiation-curable reactive diluents and photoinitiators.
  • additional radiation-curable binders which differ from the polyesters according to the invention, radiation-curable reactive diluents and photoinitiators.
  • they can contain customary and known auxiliaries and additives, such as catalysts, plasticizers, light stabilizers, adhesion promoters (tackifiers), slip additives, leveling agents,
  • Polymerization inhibitors, matting agents, nanoparticles and film-forming aids contain.
  • Curable compositions are known, for example, from German patent DE 197 09 467 C1, page 4, line 30, to page 6, line 30, or German patent application DE 19947 523 A1.
  • composition according to the invention also thermally curable, i. H. Dual-cure-curable, it preferably also contains conventional and known thermosetting binders and crosslinking agents, which may additionally contain groups which can be activated with actinic radiation, and / or thermosetting reactive diluents, as is the case, for example, in German patent applications DE 198 187 735 A1 and DE 19920 799 A1 or the European patent application EP 0 928 800 A1.
  • compositions according to the invention are preferably produced by mixing the constituents described above in suitable mixing units such as stirred kettles, agitator mills, extruders, kneaders, Ultraturrax, in-line dissolvers, static mixers, micromixers, gear rim dispersers, pressure relief nozzles and / or microfluidizers.
  • suitable mixing units such as stirred kettles, agitator mills, extruders, kneaders, Ultraturrax, in-line dissolvers, static mixers, micromixers, gear rim dispersers, pressure relief nozzles and / or microfluidizers.
  • work is preferably carried out with the exclusion of light of a wavelength ⁇ ⁇ 550 nm or with the complete exclusion of light in order to prevent premature crosslinking of the compositions according to the invention.
  • compositions according to the invention can be in a wide variety of forms. They are conventional, organic solvent-containing compositions, aqueous compositions, essentially or completely solvent-free and water-free liquid compositions (100% systems), essentially or completely solvent-free and water-free solid powders or essentially or completely solvent-free powder suspensions (powder slurries) , In addition, they can be one-component systems in which the binders and the crosslinking agents are present side by side, or two- or Multi-component systems in which the binders and the crosslinking agents are present separately from one another until shortly before application.
  • compositions according to the invention are used to manufacture compositions hardened with actinic radiation, in particular coatings, paints, moldings and self-supporting films.
  • compositions according to the invention are applied to customary and known temporary or permanent substrates.
  • Customary and known temporary substrates are preferably used for the production of the films and molded parts according to the invention, such as metal and plastic strips or hollow bodies made of metal, glass, plastic, wood or ceramic, which can be easily removed without damaging the films and molded parts according to the invention ,
  • compositions according to the invention are used for the production of coatings, adhesive layers and seals, permanent substrates are used, such as means of transportation, including aircraft, ships, rail vehicles, muscle-powered vehicles and motor vehicles, and parts thereof, indoor and outdoor structures and parts thereof , Doors, windows and furniture as well as substrates such as hollow glass bodies, coils, containers, packaging, industrial small parts such as nuts, screws or hubcaps, optical components, electrotechnical components such as winding goods, including coils and stators and rotors of electric motors, as part of industrial painting. mechanical components and components for white goods, including household appliances, boilers and radiators.
  • the films and moldings according to the invention can also serve as substrates.
  • the application of the liquid compositions according to the invention has no peculiarities, but can be carried out by all customary and known application methods, such as spraying, spraying, knife coating, brushing, pouring, dipping, trickling or rolling.
  • the application of the pulverulent composition according to the invention also has no special features in terms of method, but instead takes place, for example, using the customary and known fluidized bed processes, such as those found in the company publications of BASF Coatings AG, “Powder coatings for industrial applications”, January 2000, or “Coatings Partner, powder coating Spezial «, 1/2000, or Römpp Lexikon Lacke und Druckmaschine, Georg Thieme Verlag, Stuttgart, New York, 1998, pages 187 and 188,» Electrostatic Powder Spraying «,» Electrostatic Spraying «and» Electrostatic Whirl Bath Process «.
  • the applied compositions according to the invention are preferably cured with UV radiation.
  • a radiation dose of 100 to 6,000, preferably 200 to 3,000, preferably 300 to 2,000 and particularly preferably 500 to 1,800 mJcm "2 is preferably used for the irradiation, the range ⁇ 1,700 mJcm " 2 being very particularly preferred.
  • the radiation intensity can vary widely. It depends in particular on the radiation dose on the one hand and the
  • Irradiation time on the other hand.
  • the radiation duration depends on the band or Feed rate of the substrates in the radiation system and vice versa.
  • UV lamps can be used as radiation sources for the UV radiation. Flash lamps can also be used.
  • Mercury vapor lamps preferably mercury low, medium and high pressure vapor lamps, are preferred as UV lamps, in particular
  • Unmodified mercury vapor lamps plus suitable filters or modified, in particular doped, mercury vapor lamps are particularly preferably used.
  • Gallium-doped and / or iron-doped, especially iron-doped, mercury vapor lamps are preferably used, as described, for example, in R. Stephen Davidson, "Exploring the Science, Technology and Applications of U.V. and E.B. Curing «, Sita Technology Ltd., London, 1999, Chapter I,» An Overview «, page 16, Figure 10, or Dipl.-Ing. Peter Klamann, “eltosch system competence, UV technology, guidelines for users”, page 2, October 1998.
  • Suitable flash lamps are flash lamps from VISIT.
  • the distance between the UV lamps and the applied compositions according to the invention can vary surprisingly widely and can therefore be adjusted very well to the requirements of the individual case.
  • the distance is preferably 2 to 200, preferably 5 to 100, particularly preferably 10 to 50 and in particular 15 to 30 cm.
  • Their arrangement can also be adapted to the conditions of the substrate and the process parameters.
  • the areas (shadow areas) which are not accessible to direct radiation, such as cavities, Folds and other design-related undercuts, with point, small area or all-round emitters, combined with an automatic movement device for irradiating cavities or edges, are cured.
  • the irradiation can be carried out under an oxygen-depleted atmosphere.
  • Oxygen-depleted means that the content of oxygen in the atmosphere is lower than the oxygen content of air (20.95% by volume).
  • the atmosphere can basically also be oxygen-free, ie it is an inert gas. Because of the lack of However, the inhibiting effect of oxygen can cause a strong acceleration of radiation curing, which can result in inhomogeneities and stresses in the hardened compositions according to the invention. It is therefore advantageous not to reduce the oxygen content of the atmosphere to zero% by volume.
  • thermal curing can be carried out, for example, using a gaseous, liquid and / or solid, hot medium, such as hot air, heated oil or heated rollers, or using microwave radiation, infrared light and / or near infrared light (NIR).
  • the heating is preferably carried out in a forced air oven or by irradiation with IR and / or NIR lamps.
  • thermal curing can also be carried out in stages. The thermal curing advantageously takes place at temperatures from room temperature to 200.degree.
  • Radiation can be carried out in stages. They can take place one after the other (sequentially) or simultaneously. Sequential curing is advantageous according to the invention and is therefore preferred used. It is particularly advantageous to carry out the thermal curing after the curing with actinic radiation.
  • the resulting films, moldings, coatings, adhesive layers and seals according to the invention are outstandingly suitable for coating, gluing, sealing, wrapping and packaging of means of transportation, including aircraft, ships, rail vehicles, muscle-powered vehicles and motor vehicles, and parts thereof, structures inside - and outdoor areas and parts thereof, doors, windows and furniture as well as in the context of industrial painting of hollow glass bodies, coils, containers, packaging, small industrial parts such as nuts, screws or hub caps, optical components, electrical engineering components such as winding materials, including coils and stators and rotors for electric motors, mechanical components and components for white goods, including household appliances, boilers and radiators.
  • compositions according to the invention are preferably used as coating materials as fillers, primers, basecoats and topcoats or clearcoats, preferably as topcoats or clearcoats, in particular as clearcoats for the production of coloring and / or effect-giving, electrically conductive, magnetically shielding or fluorescent multi-layer coatings - and / or effect-giving multi-layer coatings, used.
  • Conventional and known wet-on-wet processes and paint structures can be used to produce the multi-layer coatings.
  • the resulting clearcoats according to the invention are the outermost layers of the multi-coat paint systems, which essentially determine the overall optical impression (appearance) and the coloring and / or effect layers before mechanical and Protect chemical damage and radiation damage. Therefore, deficits in hardness, scratch resistance, chemical resistance and stability against yellowing in the clear coat are particularly noticeable.
  • the clearcoats according to the invention show only slight yellowing. They are highly scratch-resistant and show very little loss of gloss after scratching. At the same time, they are extremely hard. Last but not least, they have a particularly high chemical resistance and adhere very firmly to the coloring and / or effect layers.
  • the substrates according to the invention which are coated and / or impregnated with coatings according to the invention, bonded with adhesive layers according to the invention, sealed with a seal according to the invention and / or enveloped or packaged with films and / or moldings according to the invention, are therefore outstanding
  • 1,050.9 parts by weight of phthalic anhydride, 452.2 parts by weight of neopentyl glycol, 228.4 parts by weight of hexanediol and 289.8 parts by weight of trimethylolpropane were weighed out and continuously condensed to a hydroxyl number of 180 mg KOH / g in a reactor suitable for the production of polyesters. The polyester was then drained from the reactor.
  • the polyester containing acrylate groups was outstandingly suitable for the production of compositions curable with UV radiation.
  • a hydroxyl-containing polyacrylate resin was first produced for the production of the dual-cure clearcoat.
  • 810 parts by weight of Solventnaphtha ® were placed in a steel reactor suitable for the polymerization, equipped with a stirrer, reflux condenser and oil heating, and heated to the polymerization temperature of 140.degree.
  • a mixture of 148.2 parts by weight of tert-butyl peroxy-2-ethylhexanoate and 111 parts by weight of Solventnaphtha ® was then metered in over the course of 4.75 hours.
  • a base coat comprising 35 parts by weight of the hydroxyl-containing polyacrylate resin, 30 parts by weight of the polyester of Example 1 containing acrylate groups, 2.9 parts by weight of an Aerosil ⁇ paste, 1 part by weight of Irgacure® (commercially available photoinitiator), 0.5 part by weight of Lucirin ® TPO (commercially available photoinitiator from BASF Aktiengesellschaft), 0.8 part by weight of Byk ® 358 (commercially available paint additive from Byk Chemie), 1 part by weight of Tinuvin ® 292 and 1 part by weight of Tinuvin ® 400 (both commercially available light stabilizers from Ciba Specialty Chemicals) and 22.8 parts by weight of butyl acetate.
  • Irgacure® commercially available photoinitiator
  • Lucirin ® TPO commercially available photoinitiator from BASF Aktiengesellschaft
  • Byk ® 358 commercially available paint additive from Byk Chemie
  • a hardener solution consisting of 64 parts by weight of isocyanato acrylate Roskydal ® UA VPLS 2337 (basis: trimers of hexamethylene diisocyanate; content of isocyanate groups: 12% by weight), 16 parts by weight of isocyanato acrylate Roskydal ® UA VP FWO 303-77 (basis: trimeres of isophorone diisocyanate, 70 , 5% in butyl acetate, viscosity: 1,500 mPas; content of isocyanate groups: 6.7% by weight;) and 11.5 parts by weight of Desmodur ® N 3300 (isocyanate based on the trimers of hexamethylene diisocyanate) (all three products from the company Bayer AG) and 8 parts by weight of butyl acetate.
  • the base coat and hardener were mixed in a weight ratio of 95: 36.5, which resulted in the dual-cure clear coat.
  • steel panels were coated in succession with a cathodically deposited electro-coating and baked at 170 ° C. for 20 minutes with a dry layer thickness of 18 to 22 ⁇ m.
  • the steel sheets were then coated with a commercially available two-component water filler from BASF Coatings AG, as is usually used for plastic substrates.
  • the resulting filler layer was baked at 90 ° C. for 30 minutes, so that a dry layer thickness of 35 to 40 ⁇ m resulted.
  • the water-based lacquer layer and the clear lacquer layer were cured for 5 minutes at room temperature, for 10 minutes at 80 ° C., followed by exposure to UV light at a dose of 1,500 mJ / cm 2 , and finally for 20 minutes at 140 ° C.
  • the multi-layer coating was very brilliant and had a gloss (20 °) according to DIN 67530 of 89.7.
  • the clear coat was free from surface defects, from high adhesion to the base coat, hard, flexible, scratch-resistant, weather-resistant, chemical-resistant, yellowing-resistant and resistant to bird droppings.

Abstract

Polyester, enthaltend mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe, herstellbar, indem man 1. einen Polyester (i), enthaltend mindestens eine seitenständige und/oder endständige Hydroxylgruppe, mit mindestens einer Carbonsäure (i) oder mindestens einem Ester (i) einer Carbonsäure (i), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung, oder 2. einen Polyester (ii), enthaltend mindestens eine seitenständige und/oder endständige Carbonsäuregruppe oder mindestens eine seitenständige und/oder endständige Carbonsäureestergruppe, mit mindestens einer hydroxylgruppenhaltigen Verbindung (ii), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung, in der Gegenwart mindestens eines die Umesterung oder Veresterung katalysierenden Enzyms und/oder Organismus umsetzt; Verfahren zu ihrer Herstellung und ihre Verwendung.

Description

Polyester, enthaltend mit aktinischer Strahlung aktivierbare Gruppen, Verfahren zu ihrer Herstellung und ihre Verwendung
Die vorliegende Erfindung betrifft neue Polyester, enthaltend mit aktinischer Strahlung aktivierbare Gruppen. Außerdem betrifft die vorliegende Erfindung ein neues Verfahren zur Herstellung von Polyestern, enthaltend mit aktinischer Strahlung aktivierbare Gruppen. Des Weiteren betrifft die vorliegende Erfindung die Verwendung der neuen Polyester als neue, mit aktinischer Strahlung härtbare Massen oder zu deren Herstellung. Des Weiteren betrifft die vorliegende Erfindung die Verwendung der neuen, mit aktinischer Strahlung härtbaren Massen als Beschichtungsstoffe, Klebstoffe, Dichtungsmassen für die Herstellung von Beschichtungen, Lackierungen, Klebschichten und Dichtungen sowie für die Herstellung von Formteilen und freitragenden Folien.
Polyester, die mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe enthalten, sind seit langem bekannt. Sie dienen der Herstellung von mit aktinischer Strahlung härtbaren Massen, die als Beschichtungsstoffe, Klebstoffe und Dichtungsmassen für die Herstellung von Beschichtungen, Lackierungen, Klebschichten und Dichtungen sowie für die Herstellung von Formteilen und freitragenden Folien verwendet werden.
Die Polyester können durch polymeranaloge Umsetzungen von hydroxylgruppenhaltigen Polyestern mit Carbonsäuren oder Carbonsäureestern, die mit aktinischer Strahlung aktivierbare Bindungen enthalten, wie beispielsweise Acrylsäure oder Acrylsäureester, oder von seitenständigen und/oder endständigen Carbonsäuregruppen oder Carbonsäureestergruppen enthaltenden Polyestern mit hydroxylgruppenhaltigen Verbindungen, die mit aktinischer Strahlung aktivierbare Bindungen enthalten, wie beispielsweise Hydroxyethylacrylat, hergestellt werden.
Polyester, die mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe enthalten, werden aufgrund ihrer vorteilhaften anwendungstechnischen Eigenschaften häufig für die Herstellung von mit aktinischer Strahlung härtbaren Massen verwendet. Ihre Herstellung durch die vorstehend beschriebenen polymeranalogen Umsetzungen ist aber problematisch, weil die direkte Umsetzung hydroxylgruppenhaltiger Polyester mit Carbonsäuren oder Carbonsäureestergruppen zu einer Polyesterspaltung führen kann. Ebenso kann die Umsetzung Carbonsäuregruppen oder Carbonsäureestergruppen enthaltender Polyester mit hydroxylgruppenhaltigen Verbindungen wie Hydroxyethylacrylat zu einem Molekulargewichtsabbau führen. Die resultierenden Polyester können dann nicht mehr für die Herstellung von mit aktinischer Strahlung härtbaren Massen verwendet werden, weil diese nicht mehr die Anforderungen der Anwender erfüllen.
Aus der europäischen Patentanmeldung EP 0 999 299 A 1 ist die Herstellung von (Meth)Acrylsäureestem von Polyoxyalkylenen durch Veresterung von Acrylsäure und/oder Methacrylsäure oder Umesterung von (Meth)Acrylsäureestern mit Polyoxyalkylenglykolen in Anwesenheit eines die Umesterung oder Veresterung katalysierenden Enzyms bekannt.
Aus der europäischen Patentanmeldung EP 0 999 230 A 1 ist die Herstellung von (Meth)Acrylsäureestern von hydroxyfunktionellen Siloxanen und/oder polyoxyalkylenmodifizierten Siloxanen durch Veresterung von Acrylsäure und/oder Methacrylsäure oder Umesterung von (Meth)Acrylsäureestern mit hydroxyfunktionellen Siloxanen und/oder polyoxyalkylenmodifizierten Siloxanen in Anwesenheit eines die Umesterung oder Veresterung katalysierenden Enzyms bekannt.
Aus der europäischen Patentanmeldung EP 1 035 153A 1 ist die Herstellung von (Meth)Acrylsäureestern von Carbonatgruppen enthaltenden, mit linearen Polyestern modifizierten Siloxanen durch Veresterung von Acrylsäure und/oder Methacrylsäure oder Umesterung von (Meth)Acrylsäureestern mit Carbonatgruppen enthaltenden, mit linearen Polyestern modifizierten Siloxanen und/oder polyoxyalkylenmodifizierten Siloxanen in Anwesenheit eines die Umesterung oder Veresterung katalysierenden Enzyms bekannt.
Aus dem Artikel von Th. Laiot, M. Brigodiot und E. Marechal in Polymer Bulletin, Band 26, Seiten 55 bis 62, 1991 , ist die lipozymkatalysierte Umesterung von Oligo(methylacrylaten) mit Allylalkohol bekannt. Dabei werden nur die endständigen Estergruppen umgesetzt.
Ob und wenn ja inwieweit sich diese Reaktionen auf die Herstellung von Polyestern, die mit aktinischer Strahlung aktivierbare Gruppen enthalten, übertragen lassen, ist nicht bekannt.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, neue Polyester, enthaltend mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe, zu finden, die die Nachteile des Standes der Technik nicht mehr länger aufweisen, sondern die sich mit Hilfe eines schonenden und sicherheitstechnisch vorteilhaften Verfahrens herstellen lassen, bei dem es zu keiner Schädigung, insbesondere keinem Molekulargewichtsabbau, der Polyester kommt. Außerdem sollen die neuen Polyester eine vorteilhaft niedrige Viskosität aufweisen. Die neuen Polyester sollen sich insbesondere als mit aktinischer Strahlung härtbare Massen oder für deren Herstellung eignen. Die neuen, mit aktinischer Strahlung härtbaren Massen sollen einen hohen Festkörpergehalt aufweisen und vor allem als Beschichtungsstoffe, Klebstoffe und Dichtungsmassen für die Herstellung von Beschichtungen, Lackierungen, Klebschichten und Dichtungen sowie für die Herstellung von Formteilen und frei tragenden Folien geeignet sein.
Demgemäß wurden die neuen Polyester gefunden, enthaltend mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe, herstellbar, indem man
1. einen Polyester (i), enthaltend mindestens eine seitenständige und/oder endständige Hydroxylgruppe, mit mindestens einer Carbonsäure (i) oder mindestens einem Ester (i) einer Carbonsäure
(i), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung, oder
2. einen Polyester (ii), enthaltend mindestens eine seitenständige und/oder endständige Carbonsäuregruppe oder mindestens eine seitenständige und/oder endständige Carbonsäureestergruppe, mit mindestens einer hydroxylgruppenhaltigen Verbindung (ii), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung,
in der Gegenwart mindestens eines die Umesterung oder Veresterung katalysierenden Enzyms und/oder Organismus umsetzt.
Im Folgenden werden die neuen Polyester, enthaltend mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe, als »erfindungsgemäße Polyester« bezeichnet. Außerdem wurde das neue Verfahren zur Herstellung von Polyestern, enthaltend mindestens eine seitenständige und/oder endständige mit aktinischer Strahlung aktivierbare Gruppe, durch Umsetzung
1. eines Polyesters (i), enthaltend mindestens eine seitenständige und/oder endständige Hydroxylgruppe, mit mindestens einer Carbonsäure (i) oder mindestens einem Ester (i) einer Carbonsäure (i), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung, oder
2. eines Polyesters (ii), enthaltend mindestens eine seitenständige und/oder endständige Carbonsäuregruppe oder mindestens eine seitenständige und/oder endständige Carbonsäureestergruppe, mit mindestens einer hydroxylgruppenhaltigen Verbindung (ii), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung,
in der Gegenwart eines Katalysators, wobei der Katalysator mindestens ein die Umesterung oder Veresterung katalysierendes Enzym und/oder mindestens ein die Umesterung oder Veresterung katalysierender Organismus ist, gefunden.
Im Folgenden wird das neue Verfahren zur Herstellung von Polyestern, enthaltend mindestens eine seitenständige und/oder endständige mit aktinischer Strahlung aktivierbare Gruppe, als »erfindungsgemäßes Verfahren« bezeichnet.
Weitere Erfindungsgegenstände gehen aus der Beschreibung hervor. Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, die der vorliegenden Erfindung zugrunde lag mit Hilfe der erfindungsgemäßen Polyester und des erfindungsgemäßen Verfahrens gelöst werden konnte.
Insbesondere wiesen die erfindungsgemäßen Polyester keine durch das Herstellverfahren bedingte Schädigung, insbesondere keinen Molekulargewichtsabbau, auf.
Das erfindungsgemäße Verfahren lieferte die erfindungsgemäßen Polyester in besonders schonender und sicherheitstechnisch besonders vorteilhafter Weise. Dabei kam es zu keiner Schädigung, insbesondere keinem Molekulargewichtsabbau, der Polyester. Außerdem konnte mit Hilfe des erfindungsgemäßen Verfahrens das für den jeweiligen Verwendungszweck erforderliche Eigenschaftsprofil der erfindungsgemäßen Polyester hervorragend reproduziert werden.
Die neuen Polyester eigneten sich insbesondere hervorragend als mit aktinischer Strahlung härtbare Massen oder für deren Herstellung. Die neuen, mit aktinischer Strahlung härtbaren Massen waren vor allem als Beschichtungsstoffe, Klebstoffe und Dichtungsmassen für die Herstellung von Beschichtungen, Lackierungen, Klebschichten und Dichtungen sowie für die Herstellung von Formteilen und frei tragenden Folien geeignet.
Die erfindungsgemäßen Beschichtungen, Lackierungen, Klebschichten, Dichtungen, Formteile und Folien wiesen hervorragende anwendungstechnische Eigenschaften auf.
Die erfindungsgemäßen Produkte sind oligomere oder polymere Polyester. Oligomere enthalten im allgemeinen 2 bis 15 monomere Bausteine; Polymere enthalten im allgemeinen mehr als 10 monomere Bausteine (vgl. auch Römpp Online, 2002, »Oligomere«, »Polymere«).
Die erfindungsgemäßen Polyester, enthaltend mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe. Vorzugsweise enthalten sie mindestens zwei seitenständige und/oder endständige Gruppen dieser Art.
Im Rahmen der vorliegenden Erfindung wird unter aktinischer Strahlung elektromagnetische Strahlung, wie nahes Infrarot (NIR), sichtbares Licht, UV-Strahlung, Röntgenstrahlung und Gammastrahlung, insbesondere UV- Strahlung, und Korpuskularstrahlung, wie Elektronenstrahlung, Protonenstrahlung, Alphastrahlung, Betastrahlung und Neutronenstrahlung, insbesondere Elektronenstrahlung, verstanden.
Im Falle der erfindungsgemäßen Polyester, die nach der ersten Variante des erfindungsgemäßen Verfahrens erhältlich sind, sind die mit aktinischer Strahlung aktivierbaren Gruppen über Carbonyloxygruppen -C(O)-O-, von den mit aktinischer Strahlung aktivierbaren Gruppen her gesehen, mit der Oligomer- oder Polymerhauptkette verknüpft.
Im Falle der erfindungsgemäßen Polyester, die nach der zweiten Variante des erfindungsgemäßen Verfahrens erhältlich sind, sind die mit aktinischer Strahlung aktivierbaren Gruppen über Carbonyloxygruppen -C(O)-O-, von den Hauptketten her gesehen, mit der Oligomer- oder Polymerhauptkette verknüpft
Die mit aktinischer Strahlung aktivierbaren Gruppen enthalten mindestens eine, insbesondere eine, mit aktinischer Strahlung aktivierbare Bindung.
Hierunter wird eine Bindung verstanden, die bei Bestrahlen mit aktinischer Strahlung reaktiv wird und mit anderen aktivierten Bindungen ihrer Art Polymerisationsreaktionen und/oder Vernetzungsreaktionen eingeht, die nach radikalischen und/oder ionischen Mechanismen ablaufen. Beispiele geeigneter Bindungen sind Kohlenstoff-Wasserstoff-Einzelbindungen oder Kohlenstoff-Kohlenstoff-, Kohlenstoff-Sauerstoff-, Kohlenstoff-Stickstoff-, Kohlenstoff-Phosphor- oder Kohlenstoff-Silizium-Einzelbindungen oder - Doppelbindungen oder Kohlenstoff-Kohlenstoff-Dreifach- Bindungen. Von diesen sind die Kohlenstoff-Kohlenstoff-Doppelbindungen und - Dreifachbindungen vorteilhaft und werden deshalb erfindungsgemäß bevorzugt verwendet. Besonders vorteilhaft sind die Kohlenstoff- Kohlenstoff-Doppelbindungen, weswegen sie besonders bevorzugt verwendet werden. Der Kürze halber werden sie im Folgenden als „Doppelbindungen" bezeichnet.
Vorzugsweise sind die Doppelbindungen in Gruppen der allgemeinen Formel I enthalten:
Figure imgf000009_0001
In der allgemeinen Formel I haben die Variablen die folgende Bedeutung:
R Bindungselektronenpaar zwischen dem olefinischen Kohlenstoffatom und dem Kohlenstoffatom einer
Carbonyloxygruppe oder verknüpfender organischer Rest, vorzugsweise Bindungselektronenpaar; und
R1, R2 uhd R3 Wasserstoffatom oder organischer Rest; wobei mindestens zwei der Reste R, R , R und R3- cyclisch miteinander verknüpft sein können.
Beispiele geeigneter verküpfender organischer Reste R enthalten Alkylen- , Cycloalkylen- und/oder Arylengruppen oder sie bestehen aus diesen. Gut geeignete Alkylengruppen enthalten ein Kohlenstoffatom oder 2 bis 6 Kohlenstoffatome. Gut geeignete Cycloalkylengruppen enthalten 4 bis 10, insbesondere 6, Kohlenstoffatome. Gut geeignete Arylengruppen enthalten 6 bis 10, insbesondere sechs, Kohlenstoffatome.
Beispiele geeigneter organischer Reste R , R und R enthalten Alkyl-, Cycloalkyl- und/oder Arylgruppen oder sie bestehen aus diesen. Gut geeignete Alkylgruppen enthalten ein Kohlenstoffatom oder 2 bis 6 Kohlenstoffatome. Gut geeignete Cycloalkylgruppen enthalten 4 bis 10, insbesondere 6, Kohlenstoffatome. Gut geeignete Arylgruppen enthalten 6 bis 10, insbesondere 6, Kohlenstoffatome.
Die organischen Reste R, R1, R2 und R3 können substituiert oder unsubstituiert sein. Die Substituenten dürfen jedoch nicht die Durchführung des erfindungsgemäßen Verfahrens stören und/oder die Aktivierung der Gruppen mit aktinischer Strahlung inhibieren. Vorzugsweise sind die organischen Reste R, R1, R2 und R3 unsubstituiert.
Beispiele für besonders gut geeignete Gruppen der allgemeinen Formel I sind Vinyl-, 1-Methylvinyl-, 1-Ethylvinyl-, Propen-1-yl, Styryl-, Cyclohexenyl-, Endomethylencyclohexyl-, Norbomenyl- und
Dicyclopentadienylgruppen, insbesondere Vinylgruppen.
Demnach handelt es sich bei den besonders bevorzugten, mit aktinischer Strahlung aktivierbaren Gruppen um (Meth)Acrylat-, Ethacrylat-, Crotonat-,
Cinnamat-, Cyclohexencarboxylat-, Endomethylencyclohexancarboxylat-, Norbornencarboxylat- und Dicyclopentadiencarboxylatgruppen, insbesondere aber (Meth)Acrylatgruppen, speziell Acrylatgruppen. Diese sind im Falle der erfindungsgemäßen Polyester, die nach der ersten Variante des erfindungsgemäßen Verfahrens erhältlich sind, direkt mit den Oligomer- oder Polymerhauptketten verbunden (R der allgemeinen Formel I = Bindungselektronenpaar zwischen dem olefinischen Kohlenstoffatom und dem Kohlenstoffatom der Carbonyloxygruppe). Im Falle der erfindungsgemäßen Polyester, die nach der zweiten Variante des erfindungsgemäßen Verfahrens erhältlich sind, sind sie über einen verküpfenden organischen Rest und eine Oxycarbonylgruppe -O-C(O)- mit den Hauptketten der Polyester verbunden.
Die erfindungsgemäßen Polyester sind durch polymeranaloge Umsetzungen herstellbar.
Gemäß der ersten Variante des erfindungsgemäßen Verfahrens wird ein Polyester (i), enthaltend mindestens eine seitenständige und/oder endständige Hydroxylgruppe, vorzugsweise mindestens zwei und insbesondere mindestens drei seitenständige und/oder endständige Hydroxylgruppen mit mindestens einer Carbonsäure (i) oder mindestens einem Ester (i) einer Carbonsäure (i), die mindestens eine, insbesondere eine, der vorstehend beschriebenen, mit aktinischer Strahlung aktivierbaren Bindungen enthält, umgesetzt.
Gemäß der zweiten Variante des erfindungsgemäßen Verfahrens wird ein Polyester (ii), enthaltend mindestens eine seitenständige und/oder endständige Carbonsäuregruppe, vorzugsweise mindestens zwei und insbesondere mindestens drei seitenständige und/oder endständige Carbonsäuregruppen, oder mindestens eine seitenständige und/oder endständige Carbonsäureestergruppe, vorzugsweise mindestens zwei und insbesondere mindestens drei seitenständige und/oder endständige Carbonsäureestergruppen, mit mindestens einer, insbesondere einer, hydroxylgruppenhaltigen Verbindung (ii), enthaltend mindestens eine, insbesondere eine, der vorstehend beschriebenen, mit aktinischer Strahlung aktivierbaren Bindungen, umgesetzt.
Für die erfindungsgemäßen Polyester sowie für das erfindungsgemäße Verfahren ist es wesentlich, dass die Umsetzungen in der Gegenwart mindestens eines, insbesondere eines, Enzyms, das die Umesterung oder Veresterung katalysiert, und/oder mindestens eines, insbesondere eines Organismus, der die Umesterung oder Veresterung katalysiert, als Katalysator durchgeführt wird.
Als Enzyme werden Hydrolasen [EC 3.x.x.x], insbesondere Esterasen [EC 3.1.x.x.] und Proteasen [EC 3.4.x.x], eingesetzt. Bevorzugt sind die Carboxyl Ester Hydrolasen [EC 3.1.1.x]. Besonders bevorzugt werden Lipasen als Hydrolasen eingesetzt. Insbesondere werden Lipasen aus Achromobacter sp., Aspergillus sp., Burholderia sp., Candida sp., Mucor sp., Penicillium sp., Pseudomonas sp., Rhizopus sp., Thermomyces sp. oder Schweinepankreas verwendet. Die Enzyme und ihre Funktionen werden beispielsweise in Römpp Online, 2002, »Hydrolasen«, »Lipasen« und »Proteasen«, beschrieben. Sie können mobilisiert oder immobilisiert sein.
Als Organismen kommen alle natürlich vorkommenden oder gentechnisch veränderten Mikroorganismen, einzellige Lebewesen oder Zellen in Betracht, die die Umesterung oder Veresterung mittels einer Hydrolase [EC 3.x.x.x], bevorzugt einer Esterase [EC 3.1.x.x.] oder Protease [EC 3.4.x.x], besonders bevorzugt einer Carboxyl Ester Hydrolase [EC 3.1.1.x] und insbesondere einer Lipase katalysieren. Es sind alle dem Fachmann bekannten Organismen einsetzbar, die Hydrolasen beinhalten. Bevorzugt werden Organismen eingesetzt, die als Hydrolasen Lipasen umfassen. Insbesondere finden Achromobacter sp., Aspergillus sp., Burholderia sp., Candida sp., Mucor sp., Penicillium sp., Pseudomonas sp., Rhizopus sp., Thermomyces sp. und Zellen aus Schweinepankreas Verwendung. Dabei kann es sich um die unveränderten Organismen selbst oder um gentechnisch veränderte Organismen handeln, die die Enzyme ursprünglich nicht oder nur ungenügend stark exprimieren und erst nach Veränderung eine genügend hohe Enzymaktivität und Produktivität aufweisen. Ferner können die Organismen durch die gentechnische Veränderung an die Reaktionsbedingungen und/oder Kultivierungsbedingungen angepasst werden.
Die eingesetzte Menge des Enzyms und/oder des Organismus kann breit variieren und richtet sich nach den Erfordernissen des Einzelfalls, insbesondere nach der Reaktionsfähigkeit der Ausgangsprodukte und der katalytischen Wirksamkeit und Selektivität des Enzyms bzw. Organismus und der gewählten Bedingungen.
Vorzugsweise wird das Enzym in einer Menge von 0,1 bis 20, bevorzugt 0,2 bis 16, besonders bevorzugt 0,2 bis 14, ganz besonders bevorzugt 0,3 bis 12 insbesondere 0,5 bis 10 Gew.-%, jeweils bezogen auf die Gesamtmenge der Ausgangsprodukte, eingesetzt.
Das erfindungsgemäße Verfahren kann mit unterschiedlichsten Polyester (i) oder (ii) durchgeführt werden. Beispiele geeigneter Polyester und ihre Herstellung werden beispielsweise in der deutschen Patentanmeldung DE 42 04 518 A 1, Seite 4, Zeile 43, bis Seite 5, Zeile 2, beschrieben.
Es können die unterschiedlichsten Carbonsäuren (i) oder
Carbonsäureester (i) und hydroxylgruppenhaltigen Verbindungen (ii) bei dem erfindungsgemäßen Verfahren eingesetzt werden. Wesentlich ist, dass diese Verbindungen mindestens eine, insbesondere eine, mit aktinischer Strahlung aktivierbare Bindung enthalten. Vorzugsweise werden die Carbonsäuren (i) oder Carbonsäureester (i) und die hydroxylgruppenhaltigen Verbindungen (ii) aus der Gruppe, bestehend aus Verbindungen der allgemeinen Formel II:
Figure imgf000014_0001
worin die Variablen R, R , R2 und R3 die vorstehend angegebene Bedeutung haben und die Variable R4
1. im Falle der Carbonsäuren (i) für ein Wasserstoffatom und im Falle der Carbonsäureester (i) für einen hydroxylgruppenfreien, einbindigen organischen Rest und
2. im Falle der hydroxylgruppenhaltigen Verbindungen (ii) für einen hydroxylgruppenhaltigen, einbindigen organischen Rest steht;
ausgewählt.
Bevorzugt enthält der einbindige organische Rest R4
1. im Falle der Carbonsäureester (i) mindestens einen Rest, ausgewählt aus der Gruppe, bestehend aus hydroxylgruppenfreien
Alkyl-rCycloalkyl- und Arylresten, und
2. im Falle der hydroxylgruppenhaltigen Verbindungen (ii) mindestens einen Rest, ausgewählt aus der Gruppe, bestehend aus hydroxylgruppenhaltigen, insbesondere primäre Hydroxylgruppen enthaltenden, Alkyl-, Cycloalkyl- und Arylresten, oder er besteht hieraus.
Beispiele geeigneter Alkyl-, Cycloalkyl- und Arylreste sind die vorstehend beschriebenen. Bevorzugt werden Alkylreste R4 eingesetzt. Besonders bevorzugt ist der hydroxylgruppenfreie Alkylrest R4 ein Methylrest, Ethylrest, Propylrest, Butylrest oder 2-Ethylhexylrest, insbesondere ein Methylrest, und der hydroxylgruppenhaltige Alkylrest R4 ein Hydroxyethylrest, ein 2- oder 3-Hydroxypropylrest oder ein 4- Hydroxybutylrest, insbesondere ein 4-Hydroxybutylrest.
Vorzugsweise werden die Carbonsäuren (i) aus der Gruppe, bestehend aus Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Zimtsäure, Cyclohexencarbonsäure, Endomethylencyclohexancarbonsäure, Norbomencarbonsäure und Dicyclopentadiencarbonsäure, insbesondere Acrylsäure, ausgewählt.
Vorzugsweise werden die Carbonsäureester (i) aus der Gruppe, bestehend aus hydroxylgruppenfreien Estern der Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Zimtsäure,
Cyclohexencarbonsäure, Endomethylencyclohexancarbonsäure,
Norbomencarbonsäure und Dicyclopentadiencarbonsäure, insbesondere der Acrylsäure, ausgewählt.
Vorzugsweise werden die hydroxylgruppenhaltigen Verbindungen (ii) aus der Gruppe, bestehend aus hydroxylgruppenhaltigen Estern der Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Zimtsäure, Cyclohexencarbonsäure, Endomethylencyclohexancarbonsäure,
Norbomencarbonsäure und Dicyclopentadiencarbonsäure, insbesondere der Acrylsäure, ausgewählt. Insbesondere ist die Carbonsäure (i) Acrylsäure, der Carbonsäureester (i) Methylacrylat und die hydroxylgruppenhaltige Verbindung (ii) 4- Hydroxybutylacrylat.
Das molare Verhältnis der Polyester (i) zu den Carbonsäuren der oder den Carbonsäureestern (i) sowie das molare Verhältnis der Polyester (ii) zu den hydroxylgruppenhaltigen Verbindungen (ii) können sehr breit variieren und richten sich nach den Erfordernissen des Einzelfalls, insbesondere nach der Anzahl der reaktiven funktionellen Gruppen in den Polyestern (i) und (ii), dem angestrebten Grad der Umsetzung der reaktiven funktioneilen Gruppen und der vorgesehenen Anwendung. Der Fachmann kann daher die jeweils geeigneten molaren Verhältnisse anhand seines allgemeinen Fachwissens gegebenenfalls unter Zuhilfenahme einiger orientierender Versuche leicht ermitteln.
Die Umsetzungen nach dem erfindungsgemäßen Verfahren können in einem einphasigen oder mehrphasigen, wässrigen und/oder organischen Reaktionsmedium durchgeführt werden. Dabei können die Ausgangsprodukte gelöst, suspendiert oder emulgiert vorliegen. Die Umsetzungen können mit oder ohne Lösemittelzusatz durchgeführt werden. Vorzugsweise werden Lösemittel verwendet, die bezüglich der Umsetzungen inert sind. Bevorzugt werden übliche und bekannte organische, insbesondere aprotisch unpolare Lösemittel eingesetzt. Außerdem kann ein Überschuss an Carbonsäuren (i) oder Carbonsäureestern (i) oder von hydroxylgruppenhaltigen Verbindungen (ii) als Reaktionsmedium eingesetzt werden. Besonders bevorzugt werden die Umsetzungen in Substanz, d. h. in Abwesenheit von organischen Lösemitteln oder in der Gegenwart geringer Mengen durchgeführt.
Das erfindungsgemäße Verfahren kann bei unterschiedlichen Temperaturen durchgeführt werden. Die Auswahl des Temperaturbereichs richtet sich nach den Erfordernissen des Einzelfalls, insbesondere nach der Reaktionsfähigkeit der Ausgangsprodukte und ihrer thermischen Stabilität sowie nach der katalytischen Wirksamkeit und Selektivität des Enzyms und/oder des Organismus und ihrer thermischen Stabilität. Vorzugsweise wird das erfindungsgemäße Verfahren bei Temperaturen von 0 bis 100, bevorzugt 10 bis 80, besonders bevorzugt 15 bis 75 und insbesondere 20 bis 70°C durchgeführt.
Auch die Dauer der Umsetzungen kann breit variieren und richtet sich ebenfalls nach den Erfordernissen des Einze!falls, insbesondere nach der Reaktionsfähigkeit der Ausgangsprodukte und der katalytischen Wirksamkeit und Selektivität des Enzyms und/oder des Organismus. Vorzugsweise liegt die Dauer bei einer Stunde bis einer Woche, bevorzugt zwei Stunden bis fünf Tagen, besonders bevorzugt drei Stunden bis vier Tagen und insbesondere vier Stunden bis drei Tagen.
Das erfindungsgemäße Verfahren kann in Batch-Fahrweise, bei der alle Ausgangsprodukte in einem geeigneten Reaktiongefäss vorgelegt werden, oder in Semjbatch-Fahrweise, bei der einzelne oder alle Ausgangsprodukte im Verlauf der Umsetzung zum Reaktionsmedium zudosiert werden, durchgeführt werden,
Bei der Umsetzung gemäß der ersten und der zweiten Variante des erfindungsgemäßen Verfahrens bildet sich Wasser oder mindestens eine, insbesondere eine hydroxylgruppenhaltige Verbindung, beispielsweise Methanol, Ethanol, Propanol oder Butanol. Es empfiehlt sich, die sich bildende hydroxylgruppenhaltige Verbindung bzw. das Wasser während oder unmittelbar nach der Bildung aus den Reaktionsgemischen zu entfernen. Dabei können alle üblichen und bekannten Methoden, wie beispielsweise Vakuumdestillation oder azeotrope Destillation, Pervaporation oder Durchleiten von Inertgasen, angewandt werden. Wesentlich ist dabei, dass die Ausgangsprodukte, die Katalysatoren und die Endprodukte nicht thermisch geschädigt werden. Es können den Reaktionsgemischen auch Stoffe zugesetzt werden, die hydroxylgruppenhaltige Verbindungen und/oder Wasser absorbieren. Diese Stoffe dürfen allerdings nicht das erfindungsgemäße Verfahren stören, indem sie beispielsweise die katalytische Wirksamkeit des Enzyms und/oder des Organismus verringern und/oder eine eigene katalytische Wirksamkeit entfalten. Beispiele geeigneter absorbierender Stoffe sind Molekularsiebe mit entsprechenden Porengrößen (vgl. auch Römpp Online, 2002, »Molekularsiebe« und »Zeolithe«).
Die resultierenden erfindungsgemäßen Polyester können den unterschiedlichsten Verwendungszwecken zugeführt werden. Dazu können sie aus den Reaktionsgemischen als Substanzen isoliert werden oder direkt in Lösung eingesetzt werden. Vorzugsweise werden sie als neue, mit aktinischer Strahlung härtbare Massen oder zu deren Herstellung verwendet. Im Folgenden werden die neuen, mit aktinischer Strahlung härtbare Massen als »erfindungsgemäße Massen« bezeichnet.
Die erfindungsgemäßen Massen können alle üblichen und bekannten Bestandteile mit aktinischer Strahlung härtbarer Massen enthalten, wie zusätzliche strahlenhärtbare Bindemittel, die von den erfindungsgemäßen Polyestern verschieden sind, strahlenhärtbare Reaktiwerdünner und Photoinitiatoren. Darüber hinaus können sie übliche und bekannte Hilfs- und Zusatzstoffe, wie Katalysatoren, Weichmacher, Lichtschutzmittel, Haftvermittler (Tackifier), Slipadditive, Verlaufmittel,
Polymerisationsinhibitoren, Mattierungsmittel, Nanopartikel und filmbildende Hilfsmittel, enthalten.
Beispiele geeigneter, üblicher und bekannter Bestandteile mit aktinischer Strahlung oder thermisch und mit aktinischer Strahlung (Dual-Cure) härtbarer Massen sind beispielsweise aus dem deutschen Patent DE 197 09 467 C 1 , Seite 4, Zeile 30, bis Seite 6, Zeile 30, oder der deutschen Patentanmeldung DE 19947 523 A 1 bekannt.
Ist die erfindungsgemäße Masse auch noch thermisch härtbar, d. h. Dual- Cure-härtbar, enthält sie vorzugsweise noch übliche und bekannte thermisch härtende Bindemittel und Vernetzungsmittel, die zusätzlich noch mit aktinischer Strahlung aktivierbare Gruppen enthalten können, und/oder thermisch härtende Reaktiwerdünner, sowie dies beispielsweise in den deutschen Patentanmeldungen DE 198 187 735 A 1 und DE 19920 799 A 1 oder der europäischen Patentanmeldung EP 0 928 800 A 1 beschrieben wird.
Die Herstellung der erfindungsgemäßen Massen erfolgt vorzugsweise durch Vermischen der vorstehend beschriebenen Bestandteile in geeigneten Mischaggregaten wie Rührkessel, Rührwerksmühlen, Extruder, Kneter, Ultraturrax, In-Iine-Dissolver, statische Mischer, Mikromischer, Zahnkranzdispergatoren, Druckentspannungsdüsen und/oder Microfluidizer. Vorzugsweise wird hierbei unter Ausschluss von Licht einer Wellenlänge λ < 550 nm oder unter völligem Ausschluss von Licht gearbeitet, um eine vorzeitige Vernetzung der erfindungsgemäßen Massen zu verhindern.
Die erfindungsgemäße Massen können in den unterschiedlichsten Formen vorliegen. So sind sie konventionelle, organische Lösemittel enthaltende Massen, wässrige Massen, im wesentlichen oder völlig lösemittel- und wasserfreie flüssige Massen (100%-Systeme), im wesentlichen oder völlig lösemittel- und wasserfreie feste Pulver oder im wesentlichen oder völlig lösemittelfreie Pulversuspensionen (Pulverslurries). Außerdem können sie Einkomponentensysteme, in denen die Bindemittel und die Vernetzungsmittel nebeneinander vorliegen, oder Zwei- oder Mehrkomponentensysteme, in denen die Bindemittel und die Vernetzungsmittel bis kurz vor der Applikation getrennt voneinander vorliegen, sein.
Die erfindungsgemäßen Massen dienen der Herstellung mit aktinischer Strahlung gehärteter Massen, insbesondere von Beschichtungen, Lackierungen, Formteilen und frei tragenden Folien.
Zur Herstellung der erfindungsgemäßen Formteile und Folien werden die erfindungsgemäßen Massen auf übliche und bekannte temporäre oder permanente Substrate appliziert. Vorzugsweise werden für die Herstellung der erfindungsgemäßen Folien und Formteile übliche und bekannte temporäre Substrate verwendet, wie Metall- und Kunststoffbänder oder Hohlkörper aus Metall, Glas, Kunststoff, Holz oder Keramik, die leicht entfernt werden können, ohne dass die erfindungsgemäßen Folien und Formteile beschädigt werden.
Werden die erfindungsgemäßen Massen für die Herstellung von Beschichtungen, Klebschichten und Dichtungen verwendet, werden permanente Substrate eingesetzt, wie Fortbewegungsmittel, inklusive Fluggeräte, Schiffe, Schienenfahrzeuge, mit Muskelkraft betriebene Fahrzeuge und Kraftfahrzeuge, und Teile hiervon, Bauwerke im Innen- und Außenbereich und Teile hiervon, Türen, Fenster und Möbel sowie im Rahmen der industriellen Lackierung Substrate wie Glashohlkörper, Coils, Container, Emballagen, industrielle Kleinteile, wie Muttern, Schrauben oder Radkappen, optische Bauteile, elektrotechnische Bauteile, wie Wickelgüter, inklusive Spulen und Statoren und Rotoren von Elektromotoren, mechanische Bauteile und Bauteile für weiße Ware, inklusive Haushaltsgeräte, Heizkessel und Radiatoren. Die erfindungsgemäßen Folien und Formteile können ebenfalls als Substrate dienen. Methodisch weist die Applikation der flüssigen erfindungsgemäßen Massen keine Besonderheiten auf, sondern kann durch alle üblichen und bekannten Applikationsmethoden, wie z.B. Spritzen, Sprühen, Rakeln, Streichen, Gießen, Tauchen, Träufeln oder Walzen erfolgen.
Auch die Applikation der pulverförmigen erfindungsgemäßen Masse weist keine methodischen Besonderheiten auf, sondern erfolgt beispielsweise nach den üblichen und bekannten Wirbelschichtverfahren, wie sie beispielsweise aus den Firmenschriften von BASF Coatings AG, »Pulverlacke für industrielle Anwendungen«, Januar 2000, oder »Coatings Partner, Pulverlack Spezial«, 1/2000, oder Römpp Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York, 1998, Seiten 187 und 188, »Elektrostatisches Pulversprühen«, »Elektrostatisches Sprühen« und »Elektrostatisches Wirbelbadverfahren«, bekannt sind.
Bei der Applikation empfiehlt es sich, unter Ausschluss von aktinischer Strahlung zu arbeiten, um eine vorzeitige Vernetzung der erfindungsgemäßen Masse zu vermeiden.
Vorzugsweise werden die applizierten erfindungsgemäßen Massen mit UV-Strahlung gehärtet. Bevorzugt wird bei der Bestrahlung eine Strahlendosis von 100 bis 6.000, vorzugsweise 200 bis 3.000, bevorzugt 300 bis 2.000 und besonders bevorzugt 500 bis 1.800 mJcm"2 eingesetzt, wobei der Bereich < 1.700 mJcm"2 ganz besonders bevorzugt ist.
Dabei kann die Strahlenintensität breit variieren. Sie richtet sich insbesondere nach der Strahlendosis einerseits und der
Bestrahlungsdauer andererseits. Die Bestrahlungsdauer richtet sich bei einer vorgegebenen Strahlendosis nach der Band- oder Vorschubgeschwindigkeit der Substrate in der Bestrahlungsanlage und umgekehrt.
Als Strahlenquellen für die UV-Strahlung können alle üblichen und bekannten UV-Lampen verwendet werden. Es kommen auch Blitzlampen in Betracht. Vorzugsweise werden als UV-Lampen Quecksilberdampflampen, bevorzugt Quecksilbernieder-, -mittel- und - hochdruckdampflampen, insbesondere
Quecksilbermitteldruckdampflampen, verwendet. Besonders bevorzugt werden unmodifizierte Quecksilberdampflampen plus geeignete Filter oder modifizierte, insbesondere dotierte, Quecksilberdampflampen verwendet.
Bevorzugt werden galliumdotierte und/oder eisendotierte, insbesondere eisendotierte, Quecksilberdampflampen verwendet, wie sie beispielsweise in R. Stephen Davidson, »Exploring the Science, Technology and Applications of U.V. and E.B. Curing«, Sita Technology Ltd., London, 1999, Chapter I, »An Overview«, Seite 16, Figure 10, oder Dipl.-Ing. Peter Klamann, »eltosch System-Kompetenz, UV-Technik, Leitfaden für Anwender«, Seite 2, Oktober 1998, beschrieben werden.
Beispiele geeigneter Blitzlampen sind Blitzlampen der Firma VISIT.
Der Abstand der UV-Lampen von den applizierten erfindungsgemäßen Massen kann überraschend breit variieren und daher sehr gut auf die Erfordernisse des Einzelfalls eingestellt werden. Vorzugsweise liegt der Abstand bei 2 bis 200, bevorzugt 5 bis 100, besonders bevorzugt 10 bis 50 und insbesondere 15 bis 30 cm. Deren Anordnung kann außerdem den Gegebenheiten des Substrats und der Verfahrensparameter angepasst werden. Bei kompliziert geformten Substraten, wie sie für Automobilkarosserien vorgesehen sind, können die nicht direkter Strahlung zugänglichen Bereiche (Schattenbereiche), wie Hohlräume, Falzen und andere konstruktionsbedingte Hinterschneidungen, mit Punkt- , Kleinflächen- oder Rundumstrahlern, verbunden mit einer automatischen Bewegungseinrichtung für das Bestrahlen von Hohlräumen oder Kanten, ausgehärtet werden.
Die Bestrahlung kann unter einer sauerstoffabgereicherten Atmosphäre durchgeführt. „Sauerstoffabgereichert" bedeutet, dass der Gehalt der Atmosphäre an Sauerstoff geringer ist als der Sauerstoffgehalt von Luft (20,95 Vol.-%). Die Atmosphäre kann im Grunde auch sauerstofffrei sein, d. h., es handelt sich um ein Inertgas. Wegen der fehlenden inhibierenden Wirkung von Sauerstoff kann dies aber eine starke Beschleunigung der Strahlenhärtung bewirken, wodurch Inhomogenitäten und Spannungen in den erfindungsgemäßen gehärteten Massen entstehen können. Es ist daher von Vorteil, den Sauerstoffgehalt der Atmosphäre nicht auf Null Vol.-% abzusenken.
Bei den applizierten, Dual-Cure-härtbaren, erfindungsgemäßen Massen kann die thermische Härtung beispielsweise mit Hilfe eines gasförmigen, flüssigen und/oder festen, heißen Mediums, wie heiße Luft, erhitztes Öl oder erhitzte Walzen, oder mit Hilfe von Mikrowellenstrahlung, Infrarotlicht und/oder nahem Infrarotlicht (NIR) erfolgen. Vorzugsweise erfolgt das Erhitzen in einem Umluftofen oder durch Bestrahlen mit IR- und/oder NIR- Lampen. Wie bei der Härtung mit aktinischer Strahlung kann auch die thermische Härtung stufenweise erfolgen. Vorteilhafterweise erfolgt die thermische Härtung bei Temperaturen von Raumtemperatur bis 200°C.
Sowohl die thermische Härtung als auch die Härtung mit aktinischer
Strahlung können stufenweise durchgeführt werden. Dabei können sie hintereinander (sequenziell) oder gleichzeitig erfolgen. Erfindungsgemäß ist die sequenzielle Härtung von Vorteil und wird deshalb bevorzugt verwendet. Es ist dabei von besonderem Vorteil, die thermische Härtung nach der Härtung mit aktinischer Strahlung durchzuführen.
Die resultierenden erfindungsgemäßen Folien, Formteile, Beschichtungen, Klebschichten und Dichtungen eignen sich hervorragend für das Beschichten, Verkleben, Abdichten, Umhüllen und Verpacken von Fortbewegungsmitteln, inklusive Fluggeräte, Schiffe, Schienenfahrzeuge, mit Muskelkraft betriebene Fahrzeuge und Kraftfahrzeuge, und Teilen hiervon, Bauwerken im Innen- und Außenbereich und Teilen hiervon, Türen, Fenstern und Möbeln sowie im Rahmen der industriellen Lackierung von Glashohlkörpern, Coils, Container, Emballagen, industriellen Kleinteilen, wie Muttern, Schrauben oder Radkappen, optischen Bauteilen, elektrotechnischen Bauteile, wie Wickelgüter, inklusive Spulen und Statoren und Rotoren für Elektromotoren, mechanischen Bauteilen und Bauteilen für weiße Ware, inklusive Haushaltsgeräte, Heizkessel und Radiatoren.
Vor allem aber werden die erfindungsgemäßen Massen als Beschichtungsstoffe vorzugsweise als Füller, Grundierungen, Basislacke und Decklacke oder Klarlacke, bevorzugt als Decklacke oder Klarlacke, insbesondere als Klarlacke zur Herstellung färb- und/oder effektgebender, elektrisch leitfähiger, magnetisch abschirmender oder fluoreszierender Mehrschichtlackierungen, speziell färb- und/oder effektgebender Mehrschichtlackierungen, eingesetzt. Für die Herstellung der Mehrschichtlackierungen können übliche und bekannte Nass-in-nass- Verfahren und Lackaufbauten angewandt werden.
Bei den resultierenden erfindungsgemäßen Klarlackierungen handelt es sich um die äußersten Schichten der Mehrschichtlackierungen, die wesentlich den optischen Gesamteindruck (Appearance) bestimmen und die färb- und/oder effektgebenden Schichten vor mechanischer und chemischer Schädigung und Schädigung durch Strahlung schützen. Deswegen machen sich auch Defizite in der Härte, Kratzfestigkeit, Chemikalienbeständigkeit und der Stabilität gegenüber Vergilbung bei der Klarlackierung besonders stark bemerkbar. So aber weisen die erfindungsgemäßen Klarlackierungen nur eine geringe Vergilbung auf. Sie sind hoch kratzfest und zeigen nach dem Zerkratzen nur sehr geringe Glanzverluste. Gleichzeitig haben sie eine hohe Härte. Nicht zuletzt haben sie eine besonders hohe Chemikalienfestigkeit und haften sehr fest auf den färb- und/oder effektgebenden Schichten.
Die erfindungsgemäßen Substrate, die mit erfindungsgemäßen Beschichtungen beschichtet und/oder imprägniert, mit erfindungsgemäßen Klebschichten verklebt, mit erfindungsgemäßen Dichtung abgedichtet und/oder mit erfindungsgemäßen Folien und/oder Formteilen umhüllt oder verpackt sind, weisen daher hervorragende
Dauergebrauchseigenschaften und eine besonders lange Gebrauchsdauer auf.
Beispiele
Beispiel 1
Die Herstellung eines Polyesters mit Acrylatgruppen
In einem für die Herstellung von Polyestern geeigneten Reaktor wurden 1.050,9 Gewichtsteile Phthalsäureanhydrid, 452,2 Gewichtsteile Neopentylglykol, 228,4 Gewichtsteile Hexandiol und 289,8 Gewichtsteile Trimethylolpropan eingewogen und kontinuierlich bis zu einer Hydroxylzahl von 180 mg KOH/g kondensiert. Anschließend wurde der Polyester aus dem Reaktor abgelassen. In einem Reaktiongefäß wurden 200 Gewichtsteile des Polyesters, 30 Gewichtsteile Methylisobutylketon, 140 Gewichtsteile Methylacrylat, 0,028 Gewichtsteile Methylhydrochinolin, 16 Gewichtsteile Novozym ® 435 (Lipase der Firma Novozyme, Dänemark) und 100 Gewichtsteile Molekularsieb 5 Angstrom miteinander vermischt und während 24 Stunden bei 40 °C gerührt. Anschließend wurde vom Molekularsieb abfiltriert und mit wenig Methylacrylat gewaschen. Überschüssiges Methylacrylat und 4-Methoxyphenol wurden durch Vakuumdestillation bei 40 °C aus dem Filtrat entfernt. Der zurückbleibende, Acrylatgruppen enthaltende Polyester wies eine Hydroxylzahl von 65 mg KOH/g auf, was einem Umsatz von 64% entsprach.
Der Acrylatgruppen enthaltende Polyester war hervorragend für die Herstellung von mit UV-Strahlung härtbaren Massen geeignet.
Beispiel 2
Die Herstellung eines mit UV-Strahlung und thermisch härtbaren Dual-Cure-Klarlacks und einer farbgebenden Mehrschichtlackierung hieraus
Für die Herstellung des Dual-Cure-Klarlacks wurde zunächst ein hydroxylgruppenhaltiges Polyacrylatharz hergestellt. Dazu wurden in einem für die Polymerisation geeigneten Stahlreaktor, ausgerüstet mit Rührer, Rückflusskühler und Ölheizung, 810 Gewichtsteile Solventnaphtha ® vorgelegt und auf die Polymerisationstemperatur von 140 °C aufgeheizt. Anschließend wurde während 4,75 Stunden eine Mischung aus 148,2 Gewichtsteilen tert.-Butylperoxy-2-ethylhexanoat und 111 Gewichtsteilen Solventnaphtha ® zudosiert. 15 Minuten nach Beginn des Zulaufs der Initiatormischung wurde während 4 Stunden eine Mischung aus 185 Gewichtsteilen Styrol, 862 Gewichtsteilen Ethylhexylacrylat, 500 Gewichtsteilen Hydroxyethylmethacrylat, 278 Gewichtsteilen Hydroxybutylacryiat und 28 Gewichtsteilen Acrylsäure zudosiert. Nach Beendigung der Polymerisation wurde die Lösung mit weiterem Solventnaphtha ® auf einen Festkörpergehalte von 65 Gew.-% eingestellt. Das Polyacrylatharz wies eine Hydroxylzahl von 175 mg KOH/g auf.
Für die Herstellung des Dual-Cure-Klarlacks wurde des weiteren ein Stammlack aus 35 Gewichtsteilen des hydroxylgruppenhaltigen Polyacrylatharzes, 30 Gewichtsteilen des Acrylatgruppen enthaltenden Polyesters des Beispiels 1 , 2,9 Gewichtsteilen einer Aerosil ©-Paste, 1 Gewichtsteil Irgacure ® (handelsüblicher Photoinitiator), 0,5 Gewichtsteilen Lucirin ® TPO (handelsüblicher Photoinitiator der Firma BASF Aktiengesellschaft), 0,8 Gewichtsteilen Byk ® 358 (handelsübliches Lackadditiv der Firma Byk Chemie), 1 Gewichtsteil Tinuvin ® 292 und 1 Gewichtsteil Tinuvin ® 400 (beides handelsübliche Lichtschutzmittel der Firma Ciba Specialty Chemicals) sowie 22,8 Gewichtsteilen Butylacetat hergestellt.
Außerdem wurde eine Härterlösung aus 64 Gewichtsteilen Isocyanatoacrylat Roskydal ® UA VPLS 2337 (Basis: Trimeres von Hexamethylendiisocyanat; Gehalt an Isocyanatgruppen: 12 Gew.-%), 16 Gewichtsteilen Isocyanatoacrylat Roskydal ® UA VP FWO 303-77 (Basis: Trimeres von Isophorondiisocyanat, 70,5 %ig in Butylacetat, Viskosität: 1.500 mPas; Gehalt an Isocyanatgruppen: 6,7 Gew.-%;) und 11 ,5 Gewichtsteilen Desmodur ® N 3300 (Isocyanat auf Basis des Trimeren von Hexamethylendiisocyanat) (alle drei Produkte von der Firma Bayer AG) sowie 8 Gewichtsteilen Butylacetat hergestellt.
Stammlack und Härter wurden im Gewichtsverhältnis von 95 : 36,5 gemischt, wodurch der Dual-Cure-Klarlack resultierte. Zur Herstellung der Mehrschichtlackierung wurden Stahltafeln nacheinander mit einer kathodisch abgeschiedenen und während 20 Minuten bei 170 °C eingebrannten Elektrotauch lackierung einer Trockenschichtdicke von 18 bis 22 μm beschichtet. Anschließend wurden die Stahltafeln mit einem handelsüblichen Zweikomponenten-Wasserfüller von BASF Coatings AG, wie er üblicherweise für Kunststoffsubstrate verwendet wird, beschichtet. Die resultierende Füllerschicht wurde während 30 Minuten bei 90 °C eingebrannt, so dass eine Trockenschichtdicke von 35 bis 40 μm resultierte. Hiernach wurde ein handelsüblicher schwarzer Wasserbasislack von BASF Coatings AG mit einer Schichtdicke von 12 bis 15 μm appliziert, wonach die resultierende Wasserbasislackschicht während zehn Minuten bei 80 °C abgelüftet wurde. Anschließend wurde der Dual-Cure-Klarlack mit einer Schichtdicke von 40 bis 45 μm in einem Kreuzgang mit einer Fließbecherpistole pneumatisch appliziert. Die Härtung der Wasserbasislackschicht und der Klarlackschicht erfolgte während 5 Minuten bei Raumtemperatur, während 10 Minuten bei 80 °C, gefolgt von einer Bestrahlung mit UV-Licht einer Dosis von 1.500 mJ/cm2, und abschließend während 20 Minuten bei 140 °C.
Die Mehrschichtlackierung war sehr brillant und wies einen Glanz (20 °) nach DIN 67530 von 89,7 auf. Außerdem war die Klarlackierung frei von Oberflächenstörungen, von hoher Haftung auf der Basislackierung, hart, flexibel kratzfest, witterungsbeständig, chemikalienbeständig, vergilbungsbeständig und beständig gegenüber Vogelkot.

Claims

Patentansprüche
1. Polyester, enthaltend mindestens eine seitenständige und/oder endständige, mit aktinischer Strahlung aktivierbare Gruppe, herstellbar, indem man
1. einen Polyester (i), enthaltend mindestens eine seitenständige und/oder endständige Hydroxylgruppe, mit mindestens einer Carbonsäure (i) oder mindestens einem Ester (i) einer Carbonsäure (i), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung, oder
2. ein Polyester (ii), enthaltend mindestens eine seitenständige und/oder endständige Carbonsäuregruppe oder mindestens eine seitenständige und/oder endständige
Carbonsäureestergruppe, mit mindestens einer hydroxylgruppenhaltigen Verbindung (ii), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung,
in der Gegenwart mindestens eines die Umesterung oder Veresterung katalysierenden Enzyms und/oder Organismus umsetzt.
2. Polyester nach Anspruch 1 , dadurch gekennzeichnet, dass das Enzym aus der Gruppe der Hydrolasen [EC 3.x.x.x] ausgewählt ist.
3. Polyester Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Hydrolasen [EC 3.x.x.x] Esterasen [EC 3.1.x.x] und Proteasen [EC 3.4.x.x] sind.
4. Polyester nach Anspruch 3, dadurch gekennzeichnet, dass die Hydrolasen Carboxyl Ester Hydrolysen [EC 3.1.1.x] sind.
5. Polyester nach Anspruch 4, dadurch gekennzeichnet, dass die Hydrolasen Lipasen sind.
6. Polyester nach Anspruch 5, dadurch gekennzeichnet, dass die Lipasen aus aus Achromobacter sp., Aspergillus sp., Burholderia sp., Candida sp., Mucor sp., Penicillium sp., Pseudomonas sp., Rhizopus sp., Thermomyces sp. oder Schweinepankreas gewinnbar sind.
7. Polyester nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Organismen natürlich vorkommende oder gentechnisch veränderte Mikroorganismen, einzellige Lebewesen oder Zellen sind, die mindestens ein die Umesterung oder Veresterung katalysierende Enzym umfassen.
8. Polyester nach Anspruch 7, dadurch gekennzeichnet, dass die Organismen aus der Gruppe, bestehend aus Achromobacter sp.,
Aspergillus sp., Burholderia sp., Candida sp., Mucor sp., Penicillium sp., Pseudomonas sp., Rhizopus sp., Thermomyces sp. und Zellen aus Schweinepankreas, ausgewählt sind.
9. Polyestern nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Carbonsäure (i), der Carbonsäureester (i) und die hydroxylgruppenhaltige Verbindung (ii) jeweils eine mit aktinischer Strahlung aktivierbare Bindung enthält.
10. Polyester nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die mit aktinischer Strahlung aktivierbare Bindung eine Kohlenstoff-Kohlenstoff-Doppelbindung und/oder - Dreifachbindung ist.
11. Polyester nach Anspruch 10, dadurch gekennzeichnet, dass die mit aktinischer Strahlung aktivierbare Bindung eine Kohlenstoff- Kohlenstoff-Doppelbindung ist.
12. Polyester nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Carbonsäure (i) eine Monocarbonsäure ist und die hydroxylgruppenhaltige Verbindung (ii) eine primäre
Hydroxylgruppe enthält.
13. Polyester nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die mit aktinischer Strahlung aktivierbare Bindung in Gruppen der allgemeinen Formel I:
R2\ -P (I),
# .
worin die Variablen die folgende Bedeutung haben:
R Bindungselektronenpaar zwischen dem olefinisch
Kohlenstoffatom und dem Kohlenstoffatom einer Carbonyloxygruppe und verknüpfender organischer
Rest; und
R1, R2 und R3 Wasserstoffatom oder organischer Rest; wobei mindestens zwei der Reste R, R1, R2 und R3 cyclisch miteinander verknüpft sein können;
enthalten ist.
14. Polyester nach einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, dass die Carbonsäureester (i) und die hydroxylgruppenhaltigen Verbindungen (ii) aus der Gruppe, bestehend aus Verbindungen der allgemeinen Formel II:
Figure imgf000032_0001
worin die Variablen R, R , R2 und R die vorstehend angegebene
Bedeutung haben und die Variable R4
1. im Falle der Carbonsäuren (i) ein Wasserstoffatom und im Falle der Carbonsäureester (i) für einen hydroxylgruppenfreien, einbindigen organischen Rest sowie
2. im Falle der hydroxylgruppenhaltigen Verbindungen (ii) für einen hydroxylgruppenhaltigen, einbindigen organischen Rest steht;
ausgewählt werden.
15. Polyester nach Anspruch 14, dadurch gekennzeichnet, dass der einbindige organische Rest R4
1. im Falle der Carbonsäureester (i) mindestens einen Rest, ausgewählt aus der Gruppe, bestehend aus hydroxylgruppenfreien Alkyl-, Cycloalkyl- und Arylresten, und
2. im Falle der hydroxylgruppenhaltigen Verbindungen (ii) mindestens einen Rest, ausgewählt aus der Gruppe, bestehend aus hydroxylgruppenhaltigen Alkyl-, Cycloalkyl- und Arylresten,
enthält oder hieraus besteht.
16. Polyester nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die Carbonsäure (i) Acrylsäure, der Carbonsäureester (i) Methylacrylat und die hydroxylgruppenhaltige Verbindung (ii) 4- Hydroxybutylacrylat ist.
17. Verfahren zur Herstellung eines Polyesters gemäß einem der Ansprüche 1 bis 18, enthaltend mindestens eine seitenständige und/oder endständige mit aktinischer Strahlung aktivierbare Gruppe, durch Umsetzung
1. eines Polyesters (i), enthaltend mindestens eine seitenständige und/oder endständige Hydroxylgruppe, mit mindestens einer Carbonsäure (i) oder mindestens einem Ester (i) einer Carbonsäure (i), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung, oder
2. eines Polyesters (ii), enthaltend mindestens eine seitenständige und/oder endständige Carbonsäuregruppe oder mindestens eine seitenständige und/oder endständige
Carbonsäureestergruppe, mit mindestens einer hydroxylgruppenhaltigen Verbindung (ii), enthaltend mindestens eine mit aktinischer Strahlung aktivierbare Bindung,
in der Gegenwart eines Katalysators, dadurch gekennzeichnet, dass der Katalysator mindestens ein die Umesterung oder Veresterung katalysierendes Enzym und/oder mindestens ein die Umesterung oder Veresterung katalysierender Organismus ist.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die bei der Veresterung der Polyester (i) und (ii) resultierende Wasser oder die resultierenden hydroxylgruppenhaltigen Verbindungen bei oder unmittelbar nach der Bildung aus dem Reaktionsgemisch entfernt wird oder werden.
19. Verwendung der Polyester gemäß einem der Ansprüche 1 bis 16 und der nach dem Verfahren gemäß Anspruch 17 oder 18 .hergestellten Polyester als mit aktinischer Strahlung oder thermisch und mit aktinischer Strahlung (Dual Cure) härtbare Massen oder zu deren Herstellung.
21. Verwendung nach Anspruch 21 dadurch gekennzeichnet, dass die mit härtbaren Massen als Beschichtungsstoffe, Klebstoffe oder Dichtungsmassen für die Herstellung von Beschichtungen, Lackierungen, Klebschichten, und Dichtungen sowie für die
Herstellung von Formteilen und freitragenden Folien verwendet werden.
PCT/EP2004/000541 2003-02-05 2004-01-23 Polyester, enthaltend mit aktinischer strahlung aktivierbare gruppen, verfahren zu ihrer herstellung und ihre verwendung WO2004069897A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/542,228 US20060235189A1 (en) 2003-02-05 2004-01-23 Polyesters comprising groups that can be activated by actinic radiation, corresponding method and use
EP04704568A EP1590394A1 (de) 2003-02-05 2004-01-23 Polyester, enthaltend mit aktinischer strahlung aktivierbare gruppen, verfahren zu ihrer herstellung und ihre verwendung
JP2006501583A JP2006520191A (ja) 2003-02-05 2004-01-23 化学線により活性化可能な基を有するポリエステル、その製造方法およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10304625A DE10304625A1 (de) 2003-02-05 2003-02-05 Polyester, enthaltend mit aktinischer Strahlung aktivierbare Gruppen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10304625.9 2003-02-05

Publications (1)

Publication Number Publication Date
WO2004069897A1 true WO2004069897A1 (de) 2004-08-19

Family

ID=32747561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000541 WO2004069897A1 (de) 2003-02-05 2004-01-23 Polyester, enthaltend mit aktinischer strahlung aktivierbare gruppen, verfahren zu ihrer herstellung und ihre verwendung

Country Status (6)

Country Link
US (1) US20060235189A1 (de)
EP (1) EP1590394A1 (de)
JP (1) JP2006520191A (de)
CN (1) CN1742034A (de)
DE (1) DE10304625A1 (de)
WO (1) WO2004069897A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100231A1 (de) * 2005-03-23 2006-09-28 Basf Aktiengesellschaft Zwei-stufiges verfahren zur herstellung von polyesterolen
JP2007186678A (ja) * 2005-11-29 2007-07-26 Bayer Materialscience Ag 被覆フィルム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2373340T3 (es) * 2006-08-30 2012-02-02 Basf Se Método para la preparación de poliesteroles.
WO2010030216A1 (en) * 2008-09-09 2010-03-18 Nexam Chemical Ab Acetylenic poly(alkylene phthalate)
WO2010036170A1 (en) * 2008-09-23 2010-04-01 Nexam Chemical Ab Acetylenic polyamide
HUE027100T2 (en) * 2011-09-01 2016-08-29 Senosan Gmbh body Structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330643A (en) * 1980-02-22 1982-05-18 Toagosei Chemical Industry Co., Ltd. Process for production of acryloyloxy- or methacryloyloxy-terminated polyesters
US5069929A (en) * 1984-09-19 1991-12-03 Sumitomo Metal Industries, Ltd. Actinic radiation-curable rust-preventive coating compositions for steel products
JPH06220148A (ja) * 1993-01-22 1994-08-09 Nippon Kayaku Co Ltd 放射線硬化性樹脂組成物、光学材料用樹脂組成物及びその硬化物
JPH09302054A (ja) * 1996-05-10 1997-11-25 Nippon Synthetic Chem Ind Co Ltd:The ポリエステル系樹脂組成物及びその用途
WO1999008802A2 (de) * 1997-08-20 1999-02-25 Basf Coatings Ag Mehrschichtlackierungen und verfahren zu deren herstellung
JPH11209730A (ja) * 1998-01-23 1999-08-03 Toyobo Co Ltd ラミネート缶用接着剤組成物およびラミネート金属板および金属缶
EP0992480A1 (de) * 1998-10-09 2000-04-12 Ucb, S.A. Verfahren zur Herstellung von (Meth)acrylate Estern und Polyestern
US6150458A (en) * 1998-07-30 2000-11-21 Bayer Aktiengesellschaft Process for preparing esters of (meth) acrylic acid
US6194596B1 (en) * 1999-03-09 2001-02-27 Goldschmidt Ag Polysiloxanes containing carbonate groups and modified with linear polyesters and their use as additives in coatings

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204518A1 (de) * 1992-02-15 1993-08-19 Basf Lacke & Farben Verfahren zur herstellung einer zweischichtigen lackierung und fuer dieses verfahren geeignete nicht-waessrige lacke
WO1996013632A1 (en) * 1994-10-28 1996-05-09 Novo Nordisk A/S A process for chemical finishing of insoluble polymers
JP3690028B2 (ja) * 1997-01-13 2005-08-31 東洋インキ製造株式会社 ポリエステルの製造方法
DE19850541C1 (de) * 1998-11-03 2000-06-15 Goldschmidt Ag Th Verfahren zur Herstellung von Acrysäureestern und/oder Methacrylsäureestern von Polyoxyalkylenen und deren Verwendung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330643A (en) * 1980-02-22 1982-05-18 Toagosei Chemical Industry Co., Ltd. Process for production of acryloyloxy- or methacryloyloxy-terminated polyesters
US5069929A (en) * 1984-09-19 1991-12-03 Sumitomo Metal Industries, Ltd. Actinic radiation-curable rust-preventive coating compositions for steel products
JPH06220148A (ja) * 1993-01-22 1994-08-09 Nippon Kayaku Co Ltd 放射線硬化性樹脂組成物、光学材料用樹脂組成物及びその硬化物
JPH09302054A (ja) * 1996-05-10 1997-11-25 Nippon Synthetic Chem Ind Co Ltd:The ポリエステル系樹脂組成物及びその用途
WO1999008802A2 (de) * 1997-08-20 1999-02-25 Basf Coatings Ag Mehrschichtlackierungen und verfahren zu deren herstellung
JPH11209730A (ja) * 1998-01-23 1999-08-03 Toyobo Co Ltd ラミネート缶用接着剤組成物およびラミネート金属板および金属缶
US6150458A (en) * 1998-07-30 2000-11-21 Bayer Aktiengesellschaft Process for preparing esters of (meth) acrylic acid
EP0992480A1 (de) * 1998-10-09 2000-04-12 Ucb, S.A. Verfahren zur Herstellung von (Meth)acrylate Estern und Polyestern
US6194596B1 (en) * 1999-03-09 2001-02-27 Goldschmidt Ag Polysiloxanes containing carbonate groups and modified with linear polyesters and their use as additives in coatings

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199436, Derwent World Patents Index; Class A12, AN 1994-290946, XP002278905 *
DATABASE WPI Section Ch Week 199806, Derwent World Patents Index; Class A23, AN 1998-059235, XP002278906 *
DATABASE WPI Section Ch Week 199941, Derwent World Patents Index; Class A23, AN 1999-489027, XP002278904 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100231A1 (de) * 2005-03-23 2006-09-28 Basf Aktiengesellschaft Zwei-stufiges verfahren zur herstellung von polyesterolen
JP2007186678A (ja) * 2005-11-29 2007-07-26 Bayer Materialscience Ag 被覆フィルム

Also Published As

Publication number Publication date
US20060235189A1 (en) 2006-10-19
DE10304625A1 (de) 2004-08-26
EP1590394A1 (de) 2005-11-02
CN1742034A (zh) 2006-03-01
JP2006520191A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
EP1987073B1 (de) Wässrige zweikomponentensysteme, verfahren zu ihrer herstellung und ihre verwendung
EP1216278B2 (de) Mit nanopartikeln modifizierte bindemittel für überzugsmittel und deren verwendung
DE10130972C1 (de) Verfahren zur Herstellung von Beschichtungen aus thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen und mit dem Verfahren herstellbare Lackierungen
EP1549692A1 (de) Nanopartikel, verfahren zur modifizierung ihrer oberfläche, dispersion der nanopartikel, verfahren zu ihrer herstellung und ihre verwendung
EP1828276A1 (de) Strukturviskose härtbare gemische, verfahren zu ihrer herstellung und ihre verwendung
EP0003966A1 (de) Durch einen Klarlacküberzug abgedeckte Mehrschichtlackierung und Verfahren zu ihrer Herstellung
EP0730011A1 (de) UV-härtbare Kratzfestlacke mit einpolymerisierendem Verdicker
EP1322689A1 (de) Lösemittelhaltiges, thermisch und mit aktinischer strahlung härtbares mehrkomponentensystem und seine verwendung
DE10316890A1 (de) Mit aktinischer Strahlung aktivierbare Initiatoren enthaltende Mischungen sowie Zwei- und Mehrkomponentensysteme, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1590394A1 (de) Polyester, enthaltend mit aktinischer strahlung aktivierbare gruppen, verfahren zu ihrer herstellung und ihre verwendung
DE10202565A1 (de) Gehärtete Materialien, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2004046220A1 (de) Mit aktinischer strahlung aktivierbare, urethangruppenhaltige verbindungen, verfahren zu ihrer herstellung und ihre verwendung
EP1720923B1 (de) Mehrkomponentensysteme, verfahren zu ihrer herstellung und ihre verwendung
DE10305076A1 (de) Ester von alpha, omega-Poly(meth)acrylatdiolen mit Carbonsäuren, enthaltend mit aktinischer Strahlung aktivierbare Gruppen, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1440103A1 (de) Härtbares stoffgemisch, verfahren zu seiner herstellung und seine verwendung
EP1910428B1 (de) Laterale carbamatgruppen und mit aktinischer strahlung aktivierbare gruppen enthaltende copolymerisate, verfahren zu ihrer herstellung und ihre verwendung
WO2004069969A2 (de) Ester konjugiert ungesättigter carbonsäuren (konjugensäurester) verfahren zu ihrer herstellung und ihre verwendung
EP1467863A1 (de) Verwendung von polyhydroxyfunktionalisierten alkanen als haftvermittler in verbunden aus beschichtung, klebschicht und verbundglasscheibe sowie verbunde dieser art, verfahren zu ihrer herstellung und ihre verwendung
EP1470448B1 (de) Thermisch und mit aktinischer strahlung härtbares stoffgemisch, verfahren zu seiner herstellung und seine verwendung
DE10314981A1 (de) Härtbare Massen, Verfahren zur ihrer Herstellung und ihre Verwendung
DE102005057925A1 (de) Radikalisch polymerisierbare Gemische, Verfahren zu ihrer Herstellung und ihre Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004704568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048027846

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006501583

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006235189

Country of ref document: US

Ref document number: 10542228

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004704568

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10542228

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004704568

Country of ref document: EP