WO2004068239A1 - Image forming method - Google Patents

Image forming method Download PDF

Info

Publication number
WO2004068239A1
WO2004068239A1 PCT/JP2003/000988 JP0300988W WO2004068239A1 WO 2004068239 A1 WO2004068239 A1 WO 2004068239A1 JP 0300988 W JP0300988 W JP 0300988W WO 2004068239 A1 WO2004068239 A1 WO 2004068239A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
silver halide
color
image
image forming
Prior art date
Application number
PCT/JP2003/000988
Other languages
French (fr)
Japanese (ja)
Inventor
Toyoki Nishijima
Original Assignee
Konica Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Corporation filed Critical Konica Corporation
Priority to PCT/JP2003/000988 priority Critical patent/WO2004068239A1/en
Publication of WO2004068239A1 publication Critical patent/WO2004068239A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/3041Materials with specific sensitometric characteristics, e.g. gamma, density
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/09Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/09Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
    • G03C2001/097Selenium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/04Photo-taking processes

Definitions

  • the present invention relates to an image forming method using a silver halide color photographic light-sensitive material, in which the density fluctuation in a high-speed digital print and the gradation fluctuation in a multiple exposure are improved and excellent in sharpness.
  • Image information captured by a digital camera or image information that has been converted into digital data from a film or print using a scanner, etc. can be edited and processed on a computer, and data such as character first can be added. Can be done relatively easily.
  • Hard copy materials for producing hard copies based on such digitized image information include, for example, sublimation type thermal transfer prints, fusion type thermal transfer prints, ink jet prints, electrostatic transfer type prints, Photochromic materials and silver halide color photographic light-sensitive materials can be mentioned.
  • silver halide color photographic light-sensitive materials (hereinafter, also referred to as color prints or light-sensitive materials) are high. It has excellent properties compared to other print materials, such as sensitivity, excellent gradation, excellent image preservation, and low cost. Especially today for creating high quality hard copy It has been.
  • Image information that has been converted into digital data using a scanner or the like can be edited and processed on a computer, or data such as character diasts can be added relatively easily.For example, people, landscapes, still life, etc.
  • image output based on digital data it is necessary to simultaneously satisfy the two requirements of reproducing scene images more naturally and character images without blurring.
  • gradation degradation due to reciprocity failure characteristics in short-time exposure of a silver halide color photographic light-sensitive material is likely to occur.
  • a high illuminance such as a laser can be obtained by adjusting the amount of a doped metal, for example, iridium, in a silver halide emulsion. It is known that high gradation can be obtained by short-time exposure.
  • the output is due to differences in the exposure model and changes in the light source suitability of the laser exposure unit when printing large amounts. Fluctuates in the printed print (concentration variation) The problem that g) occurs has been identified, and urgent improvement is required.
  • An image forming method in which a silver halide color photographic light-sensitive material is subjected to scanning exposure with a light beam such that the exposure time per pixel is 10 to 3 seconds or less and then color development processing is performed. adjusts the maximum exposure amount at the time more image formed on the output of the patch (E max), and said silver halide color - photographic light-sensitive material, a pair of exposure amount giving a reflection density 0. 3 (E ..
  • the difference ⁇ L 0 g E between the numerical value and the logarithmic value of E max is as follows in the blue-sensitive yellow-color image forming layer, the green-sensitive magenta image forming layer, and the red-sensitive cyan image forming layer, respectively. 0.35 or more, 0.6 or less and the number of color image forming layers is small. Both one layer, the image forming how, characterized in that it contains a silver halide that has been subjected to by Ri chemical sensitization selenium compound.
  • the horizontal axis is obtained by performing exposure and color development processing in (2) 10 6 seconds or less exposure time: exposure (L o g E), vertical axis: on the characteristic curve consisting of color density, density 0.
  • exposure (L o g E) exposure (L o g E)
  • vertical axis on the characteristic curve consisting of color density, density 0.
  • the exposure time is obtained by performing exposure and color development processing at 90 seconds and 10 one 6 seconds, the yellow color image (B), magenta color image (G ) And the density ratio (D maxB / D maxG , D raaxR D raaxG ) of each maximum density D ma on the characteristic curves of the cyan image (R) are in the range of 0.7 to 1.3 , respectively.
  • the present inventors have conducted intensive studies in view of the above problems, and as a result, have found that a blue-sensitive yellow image forming layer containing a photosensitive silver halide, a green photosensitive magenta image forming layer, After subjecting a silver halide color photographic material having at least one photosensitive cyan image forming layer to scanning exposure with a light beam such that the exposure time per pixel is 10 to 3 seconds or less,
  • the maximum exposure amount (E max ) during image formation is adjusted by the output of a calibration patch, and the silver halide color photographic material has a reflection density of 0.3. and the logarithm of the exposure amount (E ..
  • the output of the calibration patch is adjusted according to, and the logarithm of the exposure (Eo. 3 ) which gives the silver halide color photographic light-sensitive material a reflection density of 0.3,
  • the difference ⁇ LogE from the logarithmic value of max is 0.35 or more for the blue-sensitive yellow one-color image forming layer, the green-sensitive magenta color image-forming layer, and the red-sensitive cyan color image-forming layer.
  • One feature is that it is less than 6.
  • the logarithmic value in the present invention is a common logarithmic value with a base of 10.
  • image information is digitized and handled, it is common to divide the original image into small squares and digitize and handle the density information for each square.
  • the minimum unit in the case where the original image is divided into squares and handled is one pixel. Therefore, the exposure time per pixel can be considered as the time during which the intensity or the irradiation time of the light beam is controlled based on the digital data for one pixel.
  • Scanning exposure with a light beam is usually performed by linear exposure with a light beam (raster exposure: main scanning) and relative movement (sub-scanning) of the photosensitive material in a direction perpendicular to the linear exposure direction.
  • a photosensitive material is fixed to the outer or inner circumference of a cylindrical drum, and the drum is rotated while irradiating a light beam to perform main scanning, and at the same time, the light source is moved perpendicular to the rotation direction of the drum.
  • a sub-scanning method drum method
  • the drum method is performed by irradiating a rotated polygon mirror with a light beam, and the reflected beam is scanned (horizontal scanning) horizontally with the rotation direction of the polygon mirror.
  • a method of performing sub-scanning by transporting the polygon perpendicular to the rotation direction of the polygon (polygon method) is often used.
  • a portion corresponding to main scanning is substituted by an array light source. Can be considered.
  • Era ax refers to data representing the maximum density on image data when exposing based on digitized image data (for example, processed on Adobe's P hot 0 Sh 0 p
  • digitized image data for example, processed on Adobe's P hot 0 Sh 0 p
  • the exposure amount when exposure is performed based on (R, G, B) (0, 0, 0) is the image data representing the maximum density).
  • E o. 3 stearyl one task A reflection density (R, G, B) and outputs the gray patches of the secondary (0.3 0, 0.3 0, 0.3 0) It is defined as the amount of exposure necessary for each color image forming layer.
  • the horizontal axis is obtained by performing exposure ⁇ beauty color development following the exposure time 10- 6 seconds: exposure (L 0 g E), vertical axis: or color density It is preferable that the variation of the average gradient of a straight line passing through the point giving the density of 0.5 and the point giving the density of 1.5 on the characteristic curve be within 10% in multiple exposure.
  • the characteristic curve referred to in the present invention is that, after performing high illuminance exposure for 10 to 16 seconds or less, and performing an image obtained by performing a standard color development process, the horizontal axis represents Log E (E is the exposure amount), The vertical axis is the curve plotted with D (color density).
  • the multiple exposure the time of the high intensity exposure below 10- 6 seconds, exposed to the same pixel more than once which means that pressurized Erareru.
  • the variation of the average gradient at that time means that after performing one and two exposures, the characteristic curve obtained by color development passes through the points where density 0.5 and density 1.5 are given. It means the difference gradient (ta n) when a straight line is drawn.
  • the fluctuation of the density gradient due to multiple exposure is a state where there is no fluctuation of the average gradient.
  • a silver halide color one photographic light-sensitive material the exposure time is obtained by performing exposure and color development processing at 90 seconds and 10 6 seconds, the yellow color image (B) , Magenta color image (G) and cyan color image (R) on each characteristic curve, the density ratio of each maximum density Dmax ( DmaxB / DmaxG , D / D power, each in the range of 0.7 to 1.3) Is preferred.
  • the maximum exposure amount (E max ) during image formation is adjusted by the output of the calibration patch, and each of the yellow, magenta, and cyan image forming layers is exposed at the exposure amount E max.
  • Cyan image reflection density of black image area The ratio of (D maxR ) to the magenta color image reflection density (D maxG ) (Dma ZD xG) and the ratio of the yellow one-color image reflection density (D maxB ) to (D raaxG ) (D maxB / D raaxG ) are: Each is preferably from 0.7 to 1.3, more preferably from 0.8 to 1.2, and still more preferably from 0.9 to 1.2.
  • the reflection density here indicates the status A reflection density.
  • the types of light sources that can be used in the image forming method of the present invention include a light emitting diode (LED), a gas laser, a semiconductor laser (LD), a solid laser using an LD or an LD as an excitation light source, and a second laser.
  • LED light emitting diode
  • LD semiconductor laser
  • a solid laser using an LD or an LD as an excitation light source and a second laser.
  • Well-known such as a combination with a harmonic change element (so-called SHG element), a combination of a tungsten light and a bandpass filter, a combination of a halogen lamp, a PLZT element and a color filter, a combination of a VF PH element and a color filter, etc. Any light source can be used.
  • blue light sources with a wavelength of 400 to 450 nm are currently being vigorously researched and developed, mainly for high-density recording on optical discs such as digital video discs (DVDs).
  • a semiconductor laser with an oscillation wavelength of 800 to 900 nm - e.g., G a A s system
  • the second harmonic generation (S HG) element e.g., L i N b 0 3 system, L Inorganic crystals such as iTa03 series, organic crystals such as 2-methyl-14-nitroaniline
  • oscillation wavelengths of 380 to 380 nm using InGaN-based materials for example, a semiconductor laser with an oscillation wavelength of 800 to 900 nm - (e.g., G a A s system) and the second harmonic generation (S HG) element (e.g., L i N b 0 3 system, L Inorganic crystals such as iTa03 series, organic crystals such as 2-methyl-14-nitroaniline), and
  • a blue semiconductor laser with a wavelength of 430 nm and a dye laser using a scintillator dye or a coumarin dye are known.
  • the overlap with the spectral sensitivity distribution of the green photosensitive layer is slightly smaller for solid-state lasers in combination with SHG and for semiconductor lasers whose oscillation wavelength is 380 to 430 nm compared to 431 to 480 nm.
  • the green photosensitive layer This is a particularly preferable exposure light source in the present invention, because unnecessary color development can be reduced, and bleeding of a yellow image, which is considered to be caused by a decrease in light scattering in the support, can be reduced.
  • the characteristics of the photosensitive silver halide contained in the photosensitive material are appropriately controlled, Reproduction density on data that represents maximum density on digitized image data, by appropriately controlling the amount of neutral silver halide, coupler, or anti-irradiation dye, or by setting calibration
  • the methods for appropriately controlling the target values can be used alone or in combination.
  • the composition of the silver halide emulsion used in the light-sensitive material according to the present invention may be any halogen composition such as silver chloride, silver bromide, silver chlorobromide, silver iodobromide, silver chloroiodobromide, and silver chloroiodide.
  • halogen composition such as silver chloride, silver bromide, silver chlorobromide, silver iodobromide, silver chloroiodobromide, and silver chloroiodide.
  • silver chlorobromide containing 95 mol% or more of silver chloride and containing substantially no silver iodide the effect of the present invention is remarkable, which is preferable.
  • a silver halide emulsion containing preferably 97 mol% or more, more preferably 98 to 99.9 mol% of silver chloride is preferable.
  • silver halide having a high-concentration portion of silver bromide is used.
  • Emulsions can also be preferably used.
  • the portion containing a high concentration of silver bromide may be formed by epitaxy bonding to silver halide grains, a so-called core-shell emulsion, or simply a partial formation without forming a complete layer.
  • the composition may be changed continuously or discontinuously.
  • the part where silver bromide is present in high concentration It is particularly preferred that the surface be the surface of silver gemide grains or the apex of crystal grains.
  • silver halide grains containing heavy metal ions from the viewpoint of reducing softening caused by high-illuminance short-time scanning exposure.
  • Heavy metal ions that can be used for such purposes include irons, iridium, platinum, palladium, nickel, rhodium, osmium, ruthenium, cobalt and other Group 8-10 metals, cadmium, zinc, mercury, etc.
  • metal ions of iron, iridium, platinum, ruthenium, gallium, and osmium are preferred. These metal ions can be added to the silver halide emulsion in the form of a salt or a complex salt.
  • its ligand or ion may be a cyanide ion, a thiocyanate ion, a cyanate ion, an isothiocyanate ion, a chloride ion, a bromide ion, an iodide ion, or nitric acid. Ions, carbonyl, ammonia and the like. Among them, cyanide ion, thiocyanate ion, isothiocyanate ion, chloride ion, bromide ion and the like are preferable.
  • the heavy metal compound is physically added before forming silver halide grains, during silver halide grains, after forming silver halide grains, or the like. What is necessary is just to add in arbitrary places in each process during ripening.
  • the solution of the heavy metal compound can be continuously added over the whole or a part of the particle forming step.
  • the amount is more preferably 1 ⁇ 10 to 9 mol or more and 1 ⁇ 10 to 2 mol or less, more preferably 1 ⁇ 10 to 2 mol per mol of silver halide.
  • X 10- 8 mol 5 X 10_ 5 moles or less is preferable.
  • any shape can be used for the silver halide grains.
  • One preferable example is a cube having a (100) plane as a crystal surface.
  • Particles having shapes such as octahedron, tetrahedron, and dodecahedron can be prepared and used by methods described in documents such as 21, 39 (1973). Further, particles having twin planes may be used.
  • silver halide grains having a single shape are preferably used, but it is particularly preferable to add two or more monodispersed silver halide emulsions to the same layer. .
  • the grain size of the silver halide grains according to the invention is not particularly limited, but is preferably 0.1 to 1.2 ⁇ m, more preferably 0.1 to 1.2 ⁇ m, in consideration of other photographic properties such as rapid processing and sensitivity. , 0.2-1.0 m.
  • This particle size can be measured using the projected area of the particle or its approximate diameter. If the particles are substantially uniform, the size distribution can represent this fairly accurately as a diameter or projected area o
  • the particle size distribution of the silver halide grains used in the light-sensitive material according to the present invention is preferably a monodispersed silver halide grain having a coefficient of variation of 0.22 or less, more preferably 0.15 or less, and particularly preferably. Is to add two or more monodisperse emulsions having a coefficient of variation of 0.15 or less to the same layer.
  • the particle size referred to here is the diameter of a spherical silver halide particle, or the diameter of a cubic or non-spherical particle when the projected image is converted into a circular image of the same area. Represent.
  • the silver halide emulsion used in the light-sensitive material according to the present invention may be obtained by any of an acid method, a neutral method, and an ammonium method.
  • the particles may be grown at one time or may be grown after seed particles have been made.
  • the method for producing the seed particles and the method for growing them may be the same or different.
  • the form of reacting the soluble silver salt with the soluble halide salt may be any of a forward mixing method, a reverse mixing method, a simultaneous mixing method, a combination thereof, and the like, but a method obtained by a simultaneous mixing method is preferable. Further, as one form of the simultaneous mixing method, a pAg control single-jet method described in JP-A-54-48521 can be used.
  • a device for supplying an aqueous solution of a water-soluble silver salt and a water-soluble haeganide salt from an addition device disposed in a reaction mother liquor described in JP-A Nos. 57-92523 and 57-92524, published in Germany Apparatus for continuously changing the concentration of water-soluble silver salt and water-soluble halide salt aqueous solution described in Patent No. 2,921,164, etc., and reaction outside the reactor described in JP-B-56-501776, etc.
  • An apparatus may be used in which the mother liquor is taken out and concentrated by an ultrafiltration method to form grains while keeping the distance between silver halide grains constant.
  • a silver halide solvent such as polyester may be used.
  • a compound having a mercapto group, a nitrogen-containing heterocyclic compound or a compound such as a sensitizing dye may be added at the time of forming silver halide grains or after the completion of grain formation.
  • At least one of the color image forming layers contains silver halide chemically sensitized with a selenium compound (hereinafter, also referred to as a selenium sensitizer). Containing is one feature.
  • a selenium compound hereinafter, also referred to as a selenium sensitizer
  • an unstable selenium compound that can react with silver nitrate in an aqueous solution to form a silver selenide precipitate is preferably used.
  • Useful selenium sensitizers include colloid selenium metal, isoselenosocyanates (eg, aryliselenosinate), selenoureas (eg, N, N-dimethylselenourea, N, N, N ′).
  • a preferable addition amount of the selenium sensitizer according to the present invention 1 X 1 0- 9 ⁇ 1 X 1 0- 1 molar Z moles A g X, more preferably 1 X 1 0- 8 ⁇ 1 X 1 0 mol / Mol A g X
  • a method generally used in the art for adding an additive to a photographic emulsion can be applied.
  • the compound is a water-soluble compound
  • an aqueous solution having an appropriate concentration is used.
  • any organic solvent that can be mixed with water for example, alcohols, glycols, and ketones.
  • Can be added as a solution by dissolving in a solvent that does not adversely affect the photographic properties such as alcohols, esters and amides.
  • a known chemical sensitization method for example, a sensitization method using a gold compound, or a sensitization method using a chalcogen sensitizer is used together with the selenium sensitizer. Sensitization can be used.
  • a chalcogen sensitizer applied to the silver halide emulsion an io sensitizer, a tellurium sensitizer and the like can be used, and an io sensitizer is preferable.
  • zeosensitizer examples include thiosulfate, trithiothiolbamidothiourea, T-lylisothiocyanate, cystine, p-toluenethiosulfonate, rhodanine, and inorganic zeolite.
  • the addition amount of the sensitizer is preferably changed depending on the type of the silver halide emulsion to be applied and the size of the expected effect, but is preferably from 5 ⁇ 10 to 10 ⁇ 5 to 1 ⁇ 10 per mol of silver halide. ID- 5 mols, preferably 5 X 1 0 one 8 ⁇ 3 X 1 0- 5 mole range is preferred.
  • gold sensitizer various gold complexes such as chloroauric acid and gold sulfide can be added.
  • the ligand compound to be used include dimethyl rhodanine, thiocyanate, mercaptotetrazol, and mercaptotriazole.
  • the amount of the gold compound, the kind of silver halide emulsion, the type of compound used, but are not and ripening conditions, is usually 1 mol of silver halide per 1 X 1 0 one 4 mol ⁇ 1 X 1 It is preferably 0-1 s mole. More preferably, it is from 1 ⁇ 10 to 5 mol to 1 ⁇ 10 to 8 mol.
  • a silver halide emulsion can be optically spectrally sensitized to a desired wavelength region by adding a dye (spectral sensitizing dye) that absorbs light in a wavelength region corresponding to a target spectral sensitivity.
  • a dye spectral sensitizing dye
  • the spectral sensitizing dye used at this time is, for example, FM Hamer Hetercycling—IC co mp ounds—C vaninedesandrelatedco mp ounds (John Wileyand Sons; New York, 1964).
  • Examples of the spectral sensitizing dye used in the present invention include a cyanine dye, a merocyanine dye, and a complex merocyanine dye.
  • cyanine dyes there are complex cyanine dyes, horopora-cyanine dyes, hemicyanine dyes, styryl dyes, and hemioxonol dyes.
  • cyanine dye simple cyanine dye, carbocyanine dye, and dicarbocyanine dye are preferably used.
  • the support that can be used in the present invention is preferably a paper support in which a resin coating layer is applied to both surfaces of a substrate.
  • a paper support obtained by laminating both sides of the base paper with a polyolefin is preferable, and a paper support laminated with polyethylene is particularly preferable. is there.
  • the base paper used for the paper support is made of wood pulp as the main raw material, and if necessary, is made using synthetic pulp such as polypropylene or synthetic fibers such as Nyopen® polyester in addition to wood pulp. .
  • synthetic pulp such as polypropylene or synthetic fibers such as Nyopen® polyester in addition to wood pulp.
  • any of LBKP, LB SP, NBKP, NB SP, LDP, NDP, LUKP, NUKP can be used, but L BKP, NB SP, LB SP, NDP, L It is preferred to use more DP.
  • the ratio of LBSP and / or LDP is preferably from 10% by mass to 70% by mass.
  • the pulp a chemical pulp (sulfate / pulp or sulfite pulp) containing a small amount of impurities is preferably used, and a pulp having improved whiteness by a bleaching treatment is also useful.
  • the base paper contains sizing agents such as higher fatty acids and alkyl ketene dimers, white pigments such as calcium carbonate, talc, and titanium oxide; paper strength agents such as starch, polyacrylamide, and polyvinyl alcohol; and polyethylene glycol.
  • a water-retaining agent such as water, a dispersant, a softening agent such as quaternary ammonium, and the like can be appropriately added.
  • the oil-soluble fluorescent whitening agent according to the present invention can also be used.
  • the freeness of the pulp used in papermaking is preferably 200 to 50 Om1 according to the CSF regulations, and the fiber length after beating is specified in JIS-P-8207. It is preferable that the sum of the mass and the mass% of the remaining 42 mesh is 30 to 70%. Preferably, the mass% of the four-mesh flower is 20% by mass or less.
  • the basis weight of the base paper is preferably 30 to 250 g / m 2 , particularly preferably 50 to 200 g / m 2 .
  • the thickness of the base paper is preferably from 40 to 250 m.
  • the base paper can be calendered at the papermaking stage or after papermaking to provide high smoothness.
  • the density of the base paper is generally 0.7 to 1.2 gZcm 3 (JIS-P-811).
  • the rigidity of the base paper is preferably 20 to 200 g under the conditions specified in JIS-P-8143.
  • a surface sizing agent may be applied to the surface of the base paper.
  • the surface sizing agent the same sizing agent as that which can be added to the base paper can be used.
  • the pH of the base paper is preferably 5 to 9 when measured by the hot water extraction method specified in JIS-P-8113.
  • the polyethylene that covers the front and back surfaces of the base paper is mainly low-density polyethylene (LDPE) and / or high-density polyethylene (HDPE), but some are also LLDPE (linear low-density-polyethylene) ⁇ polypropylene, etc. Can be used.
  • the polyethylene layer on the side of the photosensitive layer has improved opacity and whiteness by adding rutile or anatase type titanium oxide to polyethylene, as is widely practiced in photographic printing paper. preferable.
  • the content of titanium oxide is usually 3 to 20% by mass relative to polyethylene, preferably 4 to 13% by mass.
  • Polyethylene-coated paper can be used as glossy paper, or when polyethylene is melted and extruded onto the surface of a base paper to perform coating, a so-called molding process is performed to obtain a pine paper that can be obtained with ordinary photographic printing paper.
  • a material having a textured surface-silk surface can also be used in the present invention.
  • the amount of each polyethylene used on the front and back of the base paper is usually in the range of 20 to 40 m for the polyethylene layer on the side where the photosensitive layer is provided and 10 to 30 m for the back layer side.
  • polyethylene-coated paper support preferably has the following properties.
  • Tensile strength "The strength specified by IS-P-8113, preferably 20 to 300 N in the vertical direction and 10 to 200 N in the horizontal direction.
  • Tear strength According to the method specified in JIS-P-8116, it is preferable that the vertical direction is 0.1 to 20N and the horizontal direction is 2 to 2 ON.
  • Opacity 80% or more, particularly preferably 85 to 98%, as measured by the method specified in JIS_P-8138
  • Clark stiffness a support having a Clark stiffness of 50 to 300 cm10 in the recording medium transport direction is preferable.
  • Moisture content of middle paper usually 2 to 100% by mass, preferably 2 to 6% by mass based on the middle paper
  • constituent elements other than those described above for example, other silver halide photographic emulsions, emulsion additives, sensitization methods, anti-fog agents, stabilizers, Anti-syllable dyes, yellow couplers, magenta couplers, cyan couplers, spectral dyes, emulsification dispersion method, surfactants, anti-turbidity agents, binders, hardeners, slip agents and matting agents, supports , Bluing agents and reddish agents, coating methods, color developing agents, processing methods, development processing equipment, processing agents, etc. are described in JP-A-1113-147615, p. No.
  • the above-described configuration according to the present invention can improve sensitivity fluctuation, density fluctuation, and gradation fluctuation in multiple exposure even when a large amount of printing is performed by a high-speed printer.
  • a high-speed printer capable of outputting 1000 or more L-hour equivalent prints or more can exert the effects of the present invention, and more preferably a high-speed printer capable of printing 1500 L-hour prints or more.
  • Particularly preferred is a high-speed printer of 2000 sheets / L plate or more.
  • Each silver halide emulsion was prepared by the following method.
  • Emulsion EMP-1 was obtained as a monodisperse cubic emulsion having an average particle size of 0.40 m, a coefficient of variation of the particle size distribution of 0.07, and a silver chloride content of 99.5 mol% by mixing with an aqueous gelatin solution.
  • the average particle size was 0.38 in the same manner as in Emulsion EMP-1 except that the addition time of (A) and (B) and the addition time of (C) and (D) were changed.
  • the emulsion EMP-1B was obtained as a monodisperse cubic emulsion having a m of 0.07, a coefficient of variation of the particle size distribution of 0.07, and a silver chloride content of 99.5 mol%.
  • the above emulsion EMP-1 was optimally chemically sensitized at 60 ° C using the following compounds. Similarly, after optimally chemical sensitizing the emulsion EMP-1B, the sensitized emulsion EMP-1 and the emulsion EMP_1B were mixed at a silver ratio of 1: 1. A red-sensitive silver halide emulsion (101R) was obtained.
  • the average particle size was 0.40 m in the same manner except that the addition time of (solution A) and (solution B) and the addition time of (solution C) and (solution D) were changed.
  • the emulsion EMP-2 was obtained as a monodisperse cubic emulsion having a coefficient of variation of 0.08 and a silver chloride content of 99.5%.
  • the average particle size was adjusted in the same manner except that the addition time of (Solution A) and (Solution B) and the addition time of (Solution C) and (Solution D) were changed.
  • Emulsion EMP-2B was obtained as a monodisperse cubic emulsion having a particle size of 50 m, a coefficient of variation of 0.08 and a silver chloride content of 99.5%.
  • the emulsion EMP-2 prepared above was optimally chemically sensitized at 55 ° C using the following compounds. Similarly, after optimally chemical sensitizing the emulsion EMP-2B, the sensitized emulsion EMP-2 and emulsion EMP-2B were mixed at a silver ratio of 1: 1. To obtain a green photosensitive silver halide emulsion (101G).
  • the average particle size was 0.71 in the same manner except that the addition time of (Solution A) and (Solution B) and the addition time of (Solution C) and (Solution D) were changed.
  • the emulsion EMP-3 was obtained as a monodisperse cubic emulsion having a size of ⁇ m, a coefficient of variation of 0.08 and a silver chloride content of 99.5%.
  • the average particle size was adjusted in the same manner except that the addition time of (Solution A) and (Solution B) and the addition time of (Solution C) and (Solution D) were changed.
  • Emulsion EMP-3B was obtained as a monodisperse cubic emulsion having a length of 64 m, a coefficient of variation of 0.08 and a silver chloride content of 99.5%.
  • Sample 101 As a silver halide color photographic light-sensitive material.
  • the coating solution was prepared as described below.
  • DBP high-boiling organic solvent
  • DNP high-boiling organic solvent
  • SU-1 surfactant
  • the coating liquids for the second layer to the second layer were prepared using the following additives in the same manner as in the preparation method of the first layer coating liquid.
  • UV absorber UV-1) 0.12 UV absorber (UV-2) 0.04 UV absorber (UV-3) 0.16 Sting inhibitor (HQ-5) 0.04 PVP ( Polyvinylpyrrolidone) 0.03.
  • Anti-irradiation dye AI-1) 0.011 (5th layer: red-sensitive layer)
  • Gelatin 1 30 Red light-sensitive silver halide emulsion (10 1 R) 0 21 Cyan coupler (C-1) 0 25 Cyan coupler (C-2) 0 08 Dye image stabilizer (ST-1) 0 10 Sting inhibitor (HQ -1) 0 004 D 0 P 0 34 4th layer: UV absorbing layer>
  • UV absorber UV-1) 0.28 UV absorber (UV-2) 0.09 UV absorber (UV-3) 0.38 Sting inhibitor (HQ-3) 0.10 Anti-irradiation dye (AI-1) 0.02
  • Second layer Green photosensitive layer>
  • H-1 Tetrakis (vinylsulfonylmethyl) methane
  • HQ—1 2,5—G-t-octyl high droquinone
  • HQ—2 2,5-di-sec—dodecylhydroquinone
  • Image stabilizer A P-t one-year-old octylphenol
  • sample 101 In the preparation of Sample 101, the silver halide amount and the coupler addition amount of the first layer (blue-sensitive layer), the third layer (green-sensitive layer), and the fifth layer (red-sensitive layer) were appropriately increased.
  • a sample 102 was prepared in the same manner except that AL og E was 0.39 for the first layer, 0.40 for the third layer, and 0.37 for the fifth layer.
  • Sample 103 In the preparation of Sample 103, the amounts of silver halide and couplers in the first layer (blue-sensitive layer), the third layer (green-sensitive layer), and the fifth layer (red-sensitive layer) were appropriately changed. Samples 104 to 109 having ⁇ L 0 gE shown in the following table were prepared in the same manner except for the above.
  • each photosensitive silver halide emulsion in the preparation of each photosensitive silver halide emulsion, a chemical sensitizer (sodium thiosulfate, trifrinylphosphine serenide, chloroauric acid) and a stabilizer (ST By changing the amount of AB_1 to STAB-3) and the chemical sensitization conditions (temperature and time) as appropriate, each photosensitive silver halide emulsion with different suitability for multiple exposure was prepared and used.
  • a sample 110 was prepared in the same manner except for the above.
  • Sample 11 was prepared in the same manner except that the amounts of couplers of the first layer, the third layer, and the fifth layer were appropriately changed and the Dma X balance was changed. . * 1 ⁇ L 0 g E Remarks
  • the present invention * 1 The chalcogen sensitizer of each of the first, third and fifth layers of the photosensitive silver halide emulsions Constituent ratio (molar ratio): sodium thiosulfate / triphenylphosphine resin
  • each sample is subjected to scanning exposure based on the image data created on PhotoShop 5.0, and the Processing was performed.
  • dpi refers to the number of dots per 2.54 cm.
  • a helium-power laser beam (about 422 nm) was used as the blue light source, a purple neon laser (about 544 nm) as the green light source, and a red light source (about 544 nm).
  • An optical system using a gallium aluminum arsenic semiconductor laser (approximately 780 nm) as the light source.
  • a beam diameter of approximately 80 m, a polygon mirror is used, and a scanning speed of 16 Om / s, 1 pixel
  • the following three types of exposure were performed under the conditions of an exposure time of 5 ⁇ 10 17 seconds.
  • Time replenishment rate color developing 38 0 ⁇ 0. 3 ° C 45 seconds 80 m 1 / m 2 blix 3 5. 0 ⁇ 0. 5 ° C 45 sec 1 20 m 1 / m 2 depreciation in the constant I inhibit 3 0-34 6 0 seconds 1 50 m 1 / m 2 drying 6 0 to 80 ° C 3 0 seconds
  • composition of each developing solution used in the developing step is shown below.
  • Diethylene triammonium pentaacetate diammonium dihydrate 65 g Getilent rimamine pentaacetic acid 3 g Ammonium thiosulfate (70% aqueous solution) 100 ml 2-amino-5-mercapto-1,3,4-thiadiazole 2.0 g Ammonium sulfite (40% aqueous solution) 27.5 ml water was added to make up the whole volume to 1 liter, and the pH was adjusted to 5.0 with potassium carbonate or glacial acetic acid.
  • Stabilizing solution tank solution and replenisher>
  • 1-Hydroxyshethylidene_1,1-diphosphonic acid 1.8 g Bismuth chloride (45% aqueous solution) 0.65 g Magnesium sulfate / 7 hydrate 0.2 g PVP l. O g Ammonia water (ammonium hydroxide 2.5 g Trisodium triacetate trisodium salt 1.5 g Water was added to make up to 1 liter, and the pH was adjusted to 7.5 with sulfuric acid or aqueous ammonia. I adjusted it.
  • the obtained gradation image was measured with a reflection densitometer (X-Rite 938 manufactured by X-Rite), and the horizontal axis was the exposure amount (L 0 g E), vertical axis: After creating a characteristic curve consisting of the color density (D), the gradient ry of the density change with respect to the exposure amount between each density 0.5 and 1.5 of yellow, magenta, and cyan images. For rm, rc, tilt at l exposures? The absolute value of the rate of change of the slope r2 in the two exposures to ⁇ was determined as the gradation variation rates ⁇ ry, Arm, and Arc according to the following equation, and this was used as a measure of the suitability for multiple exposure.
  • the sharpness chart image of each sample prepared above was visually observed by 10 people. If there were ⁇ , 7 or 8 ⁇ , 5 or 6 ⁇ , and 4 or less X.
  • the present invention * 1 The image density area after printing for 1 hour continuously with a high-speed digital printer.
  • samples 106 to 111 using the selenium compound and having a structure defined by the present invention in which ⁇ .Log E is in the range of 0.35 to 0.6 in all three layers are: Compared to the comparative example, even after continuous printing with a high-speed digital printer, a stable image was obtained with less variation in the image density portion. In addition, an image having excellent image clarity was obtained. Also, it can be seen that the effects of the present invention are greater in the samples 109 to 111 in which the gradation variation in the multiple exposure is less than 10%. In addition, it can be seen that the sample 110 in which each Dmax concentration ratio is in the range of 0.7 to 1.3 has a greater effect of the present invention.
  • the sample having the configuration specified by the present invention has less variation in the image density portion and excellent sharpness even after continuous printing with a high-speed digital printer compared to the comparative example. It was confirmed that a stable image could be obtained.
  • an image forming apparatus that can provide a stable image with less variation in the image density portion and excellent sharpness can be obtained.
  • a method can be provided.

Abstract

An image forming method for forming a stable image excellent in sharpness with no variation in density in the image part even after continuous printing by means of a high-speed digital printer. The method in which a silver halide color photosensitive material that includes blue, green, and red photosensitive layers containing silver halide and formed on a support is scanned for exposure with a light beam for an exposure time of 1×10-3 second or less per pixel and subjected to color development is characterized in that the maximum exposure (Emax) for image forming is adjusted by the output of a calibration patch, the difference Δlog E between the logarithm of the exposure (E0.3) at which the reflection density of the silver halide color photosensitive material is 0.3 and the logarithm of Emax is 0.35 to 0.6 for the blue, green, and red photosensitive layers, and at least one of the color image forming layers contains silver halide chemically sensitized by a selenium compound.

Description

画像形成方法 技術分野  Image forming method Technical field
本発明は、 ハロゲン化銀カラ一写真感光材料を用いて、 高速デジタルプリ ン 卜における濃度変動及び多重露光における階調変動が改良され、 かつ鮮明度に 優れた画像形成方法に関する。 背景技術  The present invention relates to an image forming method using a silver halide color photographic light-sensitive material, in which the density fluctuation in a high-speed digital print and the gradation fluctuation in a multiple exposure are improved and excellent in sharpness. Background art
近年、 コンピュータ一の演算能力の向上ゃネッ トワーク技術の進歩に合わせ て、 画像をデジタルデータとして取り扱う機会が急速に増加している。 デジタ ルカメラで撮影された画像情報、 あるいはフィルム、 プリントからスキャナな どを用いてデジタルデータ化された画像情報は、 コンピュータ一上で編集加工 したり、 さらには文字ゃィラスト等のデータを付加したりすることも比較的容 易に行える。 このようなデジタル化された画像情報に基づいたハードコピ一を 作成するハードコピー材料には、 例えば、 昇華型熱転写プリ ント、 溶融型熱転 写プリ ント、 ィンクジェツ トプリ ント、 静電転写型プリ ント、 サ一モォ一トク ロームプリ ント、ハロゲン化銀力ラ―写真感光材料等が挙げられるが、中でも、 ハロゲン化銀カラ一写真感光材料 (以下、 カラ一プリ ントあるいは感光材料と もいう) は、 高感度であること、 階調性に優れていること、 画像保存性に優れ ていること、 低コストであること等、 他のプリ ント材料に比べて非常に優れた 特性を有している。 特に高品質なハードコピーの作成用として、 今日盛んに用 いられている。 In recent years, the number of opportunities for handling images as digital data has been rapidly increasing in accordance with the improvement in the computing power of computers and network technology. Image information captured by a digital camera or image information that has been converted into digital data from a film or print using a scanner, etc., can be edited and processed on a computer, and data such as character first can be added. Can be done relatively easily. Hard copy materials for producing hard copies based on such digitized image information include, for example, sublimation type thermal transfer prints, fusion type thermal transfer prints, ink jet prints, electrostatic transfer type prints, Photochromic materials and silver halide color photographic light-sensitive materials can be mentioned. Among them, silver halide color photographic light-sensitive materials (hereinafter, also referred to as color prints or light-sensitive materials) are high. It has excellent properties compared to other print materials, such as sensitivity, excellent gradation, excellent image preservation, and low cost. Especially today for creating high quality hard copy It has been.
スキャナなどを用いてデジタルデータ化された画像情報は、 コンピュータ一 上で編集加工したり、 あるいは文字ゃィラスト等のデータを付加することも比 較的容易に行えるため、 例えば人物、 風景、 静物等の写真撮影データに基づい た画像等 (以下 「シーン画像」 と称す) と、 文字画像 (特に細くて小さな黒文 字画像) が混在する画像を扱う機会が増加している。 そのため、 デジタルデ一 タに基づく画像出力においては、 シーン画像はより自然に、 文字画像は滲みな く再現するという 2つの要求を同時に満足する必要がある。  Image information that has been converted into digital data using a scanner or the like can be edited and processed on a computer, or data such as character diasts can be added relatively easily.For example, people, landscapes, still life, etc. There is an increasing number of opportunities to handle images that contain both images (such as “scene images”) based on photographic data and character images (especially thin, small black character images). Therefore, in image output based on digital data, it is necessary to simultaneously satisfy the two requirements of reproducing scene images more naturally and character images without blurring.
デジタル化された画像データをハロゲン化銀写真として再生するためには、 画像デ一タに応じて露光量を変化させながら露光を行う必要がある。このとき、 画像デ一タに基づいてプリ ント上に再現された画像の濃度が目標濃度と一致す るように、 キャリブレーション操作を行うことが知られている。 従来、 シーン 画像の自然な再現 (特に中間濃度部から高濃度域にかけての色再現やディテ一 ル再現性) に注目してキャリブレーション操作を行うと、 文字画像の滲みが生 じやすくなり、 逆に文字画像の滲みを生じにく くするという点に注目してキヤ リブレ——ンョン操作を行うと、シ一ン画像の再現に不自然さが生じやすくなり、 シ―ン画像再現と文字画像再現を両立するためには、 少しずつ露光条件を変え ながら試行錯誤的にキャリブレ一ショ ン操作を繰り返す必要があり、 その改善 が望まれていた。  In order to reproduce digitized image data as a silver halide photograph, it is necessary to perform exposure while changing the exposure amount according to the image data. At this time, it is known that a calibration operation is performed so that the density of the image reproduced on the print based on the image data matches the target density. Conventionally, if the calibration operation is performed with a focus on natural reproduction of the scene image (particularly color reproduction and detail reproduction from the middle density area to the high density area), blurring of the character image tends to occur. Carrying out the rebalancing operation, paying attention to the fact that the character image is less likely to bleed, makes the reproduction of the scene image more likely to be unnatural. In order to achieve both reproduction, it was necessary to repeat the calibration operation by trial and error while changing the exposure conditions little by little, and improvements were desired.
上記課題に対し、 デジタル露光時の最大ガンマ及びフィルイン D m a Xを規 定することで高濃度域における鮮鋭感を改良することで文字画像の滲みを生じ にく くする方法が開示されている (例えば、 特許文献 1参照。)が、 フィルイン D m a Xを越える濃度を再現した場合には文字品質の劣化が大きく、 またシ一 ン画像の自然な再現については記載されていない。 また、 マゼンタ画像形成層 におけるダイナミ ックレンジと N値 (滲み度) を規定することで文字品質を向 上させる技術が開示されている (例えば、 特許文献 2参照。)が、 この技術ではIn order to solve the above problem, a method has been disclosed in which the maximum gamma and the fill-in Dmax at the time of digital exposure are specified to improve the sharpness in a high-density region so that the blur of a character image does not easily occur. For example, see Patent Document 1), when a density exceeding the fill-in Dmax is reproduced, the character quality is greatly degraded. It does not describe the natural reproduction of the image. Also, a technique for improving the character quality by defining a dynamic range and an N value (degree of bleeding) in the magenta image forming layer is disclosed (for example, see Patent Document 2).
2 . 0を越える高濃度域における文字画像輪郭部の色バランスが崩れやすく、 その改良が望まれていた。 The color balance of the outline of a character image in a high density range exceeding 2.0 tends to be lost, and improvement thereof has been desired.
また、 デジタル画像露光装置は現在多くの機種が販売されており、 さらに露 光光源や制御装置等の進歩と相まつて新しいデジタル画像露光装置も数多く研 究開発されている。これらのデジタル画像露光装置の中でも、露光光源として、 レーザ一や L E Dのように光源波長分布がシャープなものを用いている装置が 主流になりつつある。 しかし、 各種デジタル画像露光装置が搭載しているレ一 ザ一や L E Dの種類は統一されているわけではなく、 露光装置毎に露光波長が 異なる場合が多く、 ある露光装置では滲みの発生がなく美しいプリ ントが再現 できるのに対し、 露光波長の異なる別の露光装置では高濃度域で滲みが発生し やすかつたり、 シーン画像再現に不自然さが生じやすくなる現象があることが わ力、つた。  Also, many digital image exposure apparatuses are currently being sold, and a number of new digital image exposure apparatuses are being researched and developed along with advances in exposure light sources and control devices. Among these digital image exposure apparatuses, apparatuses using sharp light source wavelength distributions such as lasers and LEDs as exposure light sources are becoming mainstream. However, the types of lasers and LEDs mounted on various digital image exposure apparatuses are not uniform, and the exposure wavelength often differs for each exposure apparatus. While beautiful prints can be reproduced, different exposure systems with different exposure wavelengths tend to cause bleeding in the high-density region and unnatural scene image reproduction. I got it.
また、 デジタル走査露光においては、 ハロゲン化銀カラ一写真感光材料の短 時間露光での相反則不軌特性に起因する階調劣化が生じやすい。 一般に、 ハロ ゲン化銀力ラ一写真感光材料の相反則不軌特性の改良方法として、 ハロゲン化 銀乳剤中へのドープ金属、 例えばィ リジゥムの添加量を調整することにより、 レーザ一等の高照度短時間露光での高階調が得られることが知られている。 しかしながら、 レーザ一露光装置を用いて、 長時間にわたり多量のプリ ント を出力する場合に、 露光機種の違いや、 多量にプリントするときのレーザ一露 光部の光源適性の変化等により、 出力されたプリ ントで濃度変動 (濃度バラッ キ) が生じるという課題が判明し、 早急な改良が求められている。 In digital scanning exposure, gradation degradation due to reciprocity failure characteristics in short-time exposure of a silver halide color photographic light-sensitive material is likely to occur. Generally, as a method of improving the reciprocity failure characteristic of a silver halide photographic material, a high illuminance such as a laser can be obtained by adjusting the amount of a doped metal, for example, iridium, in a silver halide emulsion. It is known that high gradation can be obtained by short-time exposure. However, when a large amount of prints are output over a long period of time using a laser exposure device, the output is due to differences in the exposure model and changes in the light source suitability of the laser exposure unit when printing large amounts. Fluctuates in the printed print (concentration variation) The problem that g) occurs has been identified, and urgent improvement is required.
(特許文献 1 )  (Patent Document 1)
特開平 9一 171 237号公報 (特許請求の範囲)  JP-A-9-1171237 (Claims)
(特許文献 2 )  (Patent Document 2)
特開平 10— 2046 1号公報 (特許請求の範囲) 発明の開示  Japanese Patent Application Laid-Open No. 10-20461 (Claims) Disclosure of the Invention
本発明の上記目的は、 下記の各々の構成により達成される。  The above object of the present invention is achieved by each of the following constitutions.
( 1 ) 支持体上に、 感光性ハロゲン化銀を含有する青感光性イェロー色画像 形成層、 緑感光性マゼンタ色画像形成層及び赤感光性シアン色画像形成層を各 々少なく とも 1層有するハロゲン化銀カラ一写真感光材料に、 1画素当たりの 露光時間が 10— 3秒以下となるような光ビームによる走査露光を施した後、 発 色現像処理を行う画像形成方法において、 キヤリブレーションパッチの出力に より画像形成時の最大露光量( Emax)の調整を行い、 かつ該ハロゲン化銀カラ —写真感光材料が、 反射濃度 0. 3を与える露光量( E。.3) の対数値と、 該 E maxの対数値との差 Δ L 0 g Eが、該青感光性イエロ—色画像形成層、緑感光性 マゼンタ色画像形成層及び赤感光性シアン色画像形成層で、各々 0. 3 5以上、 0. 6以下であり、 かつ色画像形成層の少なく とも 1層が、 セレン化合物によ り化学増感を施されたハロゲン化銀を含有することを特徴とする画像形成方 法。 (1) A blue-sensitive yellow image forming layer containing a photosensitive silver halide, a green photosensitive magenta image forming layer, and a red photosensitive cyan image forming layer each containing at least one layer on a support. An image forming method in which a silver halide color photographic light-sensitive material is subjected to scanning exposure with a light beam such that the exposure time per pixel is 10 to 3 seconds or less and then color development processing is performed. adjusts the maximum exposure amount at the time more image formed on the output of the patch (E max), and said silver halide color - photographic light-sensitive material, a pair of exposure amount giving a reflection density 0. 3 (E .. 3) The difference ΔL 0 g E between the numerical value and the logarithmic value of E max is as follows in the blue-sensitive yellow-color image forming layer, the green-sensitive magenta image forming layer, and the red-sensitive cyan image forming layer, respectively. 0.35 or more, 0.6 or less and the number of color image forming layers is small. Both one layer, the image forming how, characterized in that it contains a silver halide that has been subjected to by Ri chemical sensitization selenium compound.
( 2 ) 10— 6秒以下の露光時間で露光及び発色現像処理を行って得られた横 軸:露光量( L o g E )、 縦軸:発色濃度からなる特性曲線上で、 濃度 0. 5を 与える点と濃度 1. 5を与える点とを通る直線の平均勾配の変動が、 多重露光 において 1 QQ/6以内であることを特徵とする ( 1 ) に記載の画像形成方法。 ( 3 ) 前記ハロゲン化銀カラ一写真感光材料が、 露光時間が 90秒及び 10 一6秒で露光及び発色現像処理を行って得られた、 イエロ一色画像( B )、 マゼン タ色画像(G) 及びシアン色画像(R) の特性曲線上における各最大濃度 Dma の濃度比( DmaxB/DmaxG、 DraaxR DraaxG) が、 各々 0. 7〜1. 3の範囲 にあることを特徴とする ( 1 ) または ( 2 ) に記載の画像形成方法。 発明を実施するための最良の形態 The horizontal axis is obtained by performing exposure and color development processing in (2) 10 6 seconds or less exposure time: exposure (L o g E), vertical axis: on the characteristic curve consisting of color density, density 0. The image forming method according to (1), wherein the variation of the average gradient of a straight line passing through the point giving 5 and the point giving density 1.5 is within 1 QQ / 6 in multiple exposure. (3) the silver halide color one photographic light-sensitive material, the exposure time is obtained by performing exposure and color development processing at 90 seconds and 10 one 6 seconds, the yellow color image (B), magenta color image (G ) And the density ratio (D maxB / D maxG , D raaxR D raaxG ) of each maximum density D ma on the characteristic curves of the cyan image (R) are in the range of 0.7 to 1.3 , respectively. The image forming method according to (1) or (2). BEST MODE FOR CARRYING OUT THE INVENTION
本発明者は、 上記課題に鑑み鋭意検討を行った結果、 支持体上に、 感光性ハ ロゲン化銀を含有する青感光性イェロー色画像形成層、 緑感光性マゼンタ色画 像形成層及び赤感光性シアン色画像形成層を各々少なくとも 1層有するハロゲ ン化銀カラ一写真感光材料に、 1画素当たりの露光時間が 10— 3秒以下となる ような光ビームによる走査露光を施した後、 発色現像処理を行う画像形成方法 において、キヤリブレーションパッチの出力により画像形成時の最大露光量( E max)の調整を行い、 かつ該ハロゲン化銀カラ一写真感光材料が、反射濃度 0. 3を与える露光量( E。.3)の対数値と、該 Emaxの対数値との差 Δ L o g Eが、 該青感光性ィェ口一色画像形成層、 緑感光性マゼンタ色画像形成層及び赤感光 性シアン色画像形成層で、 各々 0. 35以上、 0. 6以下であり、 かつ色画像 形成層の少なくとも 1層が、 セレン化合物により化学増感を施されたハロゲン 化銀を含有する画像形成方法により、 高速デジタルプリントにおける感度変動 (感度バラツキ)、 濃度変動(特に最高濃度バラツキ)及び多重露光における階 調変動が改良された画像形成方法を実現できることを見出し、 本発明に至った 次第である。 The present inventors have conducted intensive studies in view of the above problems, and as a result, have found that a blue-sensitive yellow image forming layer containing a photosensitive silver halide, a green photosensitive magenta image forming layer, After subjecting a silver halide color photographic material having at least one photosensitive cyan image forming layer to scanning exposure with a light beam such that the exposure time per pixel is 10 to 3 seconds or less, In an image forming method for performing color development processing, the maximum exposure amount (E max ) during image formation is adjusted by the output of a calibration patch, and the silver halide color photographic material has a reflection density of 0.3. and the logarithm of the exposure amount (E .. 3) to give the difference delta L og E between the logarithmic value of the E max is該青photosensitive I E port color image forming layer, green-sensitive magenta color image forming layer And 0.35 or less each for the red-sensitive cyan image forming layer , 0.6 or less, and at least one of the color image forming layers contains silver halide chemically sensitized with a selenium compound. It has been found that an image forming method in which density fluctuation (particularly, maximum density variation) and gradation fluctuation in multiple exposure can be improved can be realized, and the present invention has been reached.
上記構成に加えて、 1 0— 6秒以下の露光時間で露光及び発色現像処理を行つ て得られた横軸:露光量( L 0 g E)、縦軸:発色濃度からなる特性曲線上で、 濃度 0. 5を与える点と濃度 1. 5を与える点とを通る直線の平均勾配の変動 を、 多重露光において 10%以内とすること、 あるいはハロゲン化銀カラ一写 真感光材料として、 露光時間が 90秒及び 10— 6秒で露光及び発色現像処理を 行って得られた、 イエロ一色画像( B )、 マゼンタ色画像( G )及びシアン色画 像( R ) の特性曲線上における各最大濃度 Dmaxの濃度比( DmaxBZDmaxG、 D maxRZDmaxG)力、 各々 0. 7〜1. 3の範囲にあることにより、 上記効果が より一層発揮されることを見出したものである。 In addition to the above configuration, Gyotsu exposure and color development processing in the following exposure time 1 0 6 seconds Horizontal axis: exposure amount (L0gE), vertical axis: average slope of a straight line passing through a point giving density 0.5 and a point giving density 1.5 on the characteristic curve consisting of color density the variation of it is within 10% in the multiple exposure, or silver halide color one photograph photosensitive material, the exposure time is obtained by performing exposure and color development processing at 90 seconds and 10 6 seconds, yellow color image (B), the concentration ratio of the maximum density D max on the characteristic curve of the magenta image (G) and cyan Iroga image (R) (D maxB ZD maxG , D maxR ZD maxG) force, each 0.7 It has been found that the above effects can be further exhibited by being within the range of ~ 1.3.
以下、 本発明の詳細について説明する。  Hereinafter, details of the present invention will be described.
本発明の画像形成方法では、 1画素当たりの露光時間が 10— 3秒以下となる ような光ビームによる走査露光を施した後、 発色現像処理を行う画像形成方法 において、キヤリブレーションパッチの出力により画像形成時の最大露光量( Ε max)の調整を行い、 かつ該ハロゲン化銀カラ一写真感光材料が、 反射濃度 0. 3を与える露光量( Eo.3)の対数値と、該 Emaxの対数値との差 Δ L o g Eが、 該青感光性イエロ一色画像形成層、 緑感光性マゼンタ色画像形成層及び赤感光 性シアン色画像形成層で、 各々 0. 35以上、 0. 6以下であることが 1つの 特徴である。 本発明でいう対数値とは、 10を底とする常用対数値である。 通常、 画像情報をデジタル化して扱う場合、 オリジナル画像を細かいマス目 状に区切り、各マス目毎に濃度情報をデジタル化して扱う方式が一般的である。 本発明においては、 このオリジナル画像をマス目状に区切って取り扱った場合 の、 最小単位を 1画素とする。 従って、 1画素当たりの露光時間とは、 この 1 画素分のデジタルデータに基づいて、 光ビームの強度或レ、は照射時間を制御し ている時間と考えることができる。 . 光ビームによる走査露光は、 通常、 光ビームによる線状露光 (ラスタ一露光 :主走査) と、 この線状露光方向に対して垂直方向への感光材料の相対的な移 動 (副走査) の組み合わせで行われることが一般的である。 例えば、 円筒状の ドラムの外周あるいは内周に感光材料を固定し、 光ビームを照射しながらドラ ムを回転させることで主走査を行うと同時に、 光源をドラムの回転方向に対し て垂直に移動させることで副走査を行う方式 ( ドラム方式) や、 回転させたポ リゴンミラ一に光ビームを照射することで反射ビームをポリゴンミラーの回転 方向と水平に走査 (主走査) するとともに、 感光材料をポリゴンの回転方向に 対して垂直に搬送することで副走査を行う方式 (ポリゴン方式) 等が多く用い られている。 また、 露光する感光材料の幅以上に光源をアレイ状に並べた露光 装置を用いる場合には、 主走査に相当する部分をアレイ状光源で代用したと捉 えることができ、 本発明の走査露光に含めて考えることができる。 According to the image forming method of the present invention, in the image forming method of performing a color developing process after performing a scanning exposure with a light beam such that an exposure time per pixel is 10 to 3 seconds or less, the output of the calibration patch The maximum exposure (時max ) at the time of image formation is adjusted according to, and the logarithm of the exposure (Eo. 3 ) which gives the silver halide color photographic light-sensitive material a reflection density of 0.3, The difference ΔLogE from the logarithmic value of max is 0.35 or more for the blue-sensitive yellow one-color image forming layer, the green-sensitive magenta color image-forming layer, and the red-sensitive cyan color image-forming layer. One feature is that it is less than 6. The logarithmic value in the present invention is a common logarithmic value with a base of 10. Usually, when image information is digitized and handled, it is common to divide the original image into small squares and digitize and handle the density information for each square. In the present invention, the minimum unit in the case where the original image is divided into squares and handled is one pixel. Therefore, the exposure time per pixel can be considered as the time during which the intensity or the irradiation time of the light beam is controlled based on the digital data for one pixel. . Scanning exposure with a light beam is usually performed by linear exposure with a light beam (raster exposure: main scanning) and relative movement (sub-scanning) of the photosensitive material in a direction perpendicular to the linear exposure direction. It is common to do this in combination. For example, a photosensitive material is fixed to the outer or inner circumference of a cylindrical drum, and the drum is rotated while irradiating a light beam to perform main scanning, and at the same time, the light source is moved perpendicular to the rotation direction of the drum. In this way, a sub-scanning method (drum method) is performed by irradiating a rotated polygon mirror with a light beam, and the reflected beam is scanned (horizontal scanning) horizontally with the rotation direction of the polygon mirror. A method of performing sub-scanning by transporting the polygon perpendicular to the rotation direction of the polygon (polygon method) is often used. In the case of using an exposure apparatus in which light sources are arranged in an array beyond the width of the photosensitive material to be exposed, it is possible to regard that a portion corresponding to main scanning is substituted by an array light source. Can be considered.
本発明でいう E ra a xとは、デジタル化された画像データに基づき露光する場合 において、 画像データ上で最大濃度を表すデータ (例えば、 アドビ社の P h o t 0 S h 0 p上で加工された 8 b i t階調を有する画像データにおいては( R、 G、 B ) = ( 0、 0、 0 ) が最大濃度を表す画像データとなる) に基づいて露 光が行われるときの露光量として定義される。 In the present invention, Era ax refers to data representing the maximum density on image data when exposing based on digitized image data (for example, processed on Adobe's P hot 0 Sh 0 p For image data having 8-bit gradation, it is defined as the exposure amount when exposure is performed based on (R, G, B) = (0, 0, 0) is the image data representing the maximum density). You.
また、本発明でいう E o.3とは、ステ一タス A反射濃度が( R、 G、 B )二( 0 . 3 0、 0 . 3 0、 0 . 3 0 ) のグレーパッチを出力するのに必要な、 各色画像 形成層における露光量として定義される。 In addition, the E o. 3 referred to in the present invention, stearyl one task A reflection density (R, G, B) and outputs the gray patches of the secondary (0.3 0, 0.3 0, 0.3 0) It is defined as the amount of exposure necessary for each color image forming layer.
E o. 3の対数値と E m a xの対数値の差が 0 . 6より大きい場合には、 文字画像 の輪郭に滲みが発生しやすくなり、 また 0 . 3 5未満の場合には、 デジタル露 光制御がし難くなる。 また、 イエロ一、 マゼンタ、 シアンの各画像形成層の全 てが上述の条件を満たしていない場合、 文字画像の輪郭に色滲みが発生しやす くなる。 E o. If the difference between the logarithm of the third logarithm and E max to zero. Greater than 6, the bleeding of the character image contour is likely to occur, also 0.3 in the case of less than 5, the digital dew Light control becomes difficult. Also, all yellow, magenta, and cyan image forming layers If the above conditions are not satisfied, the color blur is likely to occur in the outline of the character image.
また、 本発明の画像形成方法においては、 10— 6秒以下の露光時間で露光及 び発色現像処理を行って得られた横軸:露光量( L 0 g E )、縦軸:発色濃度か らなる特性曲線上で、 濃度 0. 5を与える点と濃度 1. 5を与える点とを通る 直線の平均勾配の変動が、多重露光において 10%以内であることが好ましい。 本発明でいう特性曲線とは、 10一6秒以下の高照度露光を施した後、 基準の 発色現像処理を行って得られる画像について、 横軸に L o g E ( Eは露光量) を、 縦軸に D (発色濃度) をとつてプロッ トした曲線である。 また、 多重露光 とは、 10— 6秒以下の高照度露光の際に、 2度以上同じ画素に対して露光が加 えられることを意味する。 また、 その際の平均勾配の変動とは、 1回と 2回の 露光を行った後、 発色現像により得られる特性曲線上で濃度 0. 5を与える点 と濃度 1. 5を与える点を通る直線を引いた際の勾配 ( t a n ) の差を意味 する。 多重露光による濃度勾配の変動は、 全く平均勾配変動がない状態が理想 である。 In the image forming method of the present invention, the horizontal axis is obtained by performing exposure及beauty color development following the exposure time 10- 6 seconds: exposure (L 0 g E), vertical axis: or color density It is preferable that the variation of the average gradient of a straight line passing through the point giving the density of 0.5 and the point giving the density of 1.5 on the characteristic curve be within 10% in multiple exposure. The characteristic curve referred to in the present invention is that, after performing high illuminance exposure for 10 to 16 seconds or less, and performing an image obtained by performing a standard color development process, the horizontal axis represents Log E (E is the exposure amount), The vertical axis is the curve plotted with D (color density). Further, the multiple exposure, the time of the high intensity exposure below 10- 6 seconds, exposed to the same pixel more than once which means that pressurized Erareru. In addition, the variation of the average gradient at that time means that after performing one and two exposures, the characteristic curve obtained by color development passes through the points where density 0.5 and density 1.5 are given. It means the difference gradient (ta n) when a straight line is drawn. Ideally, the fluctuation of the density gradient due to multiple exposure is a state where there is no fluctuation of the average gradient.
また、 本発明の画像形成方法においては、 ハロゲン化銀カラ一写真感光材料 が、露光時間が 90秒及び 10— 6秒で露光及び発色現像処理を行って得られた、 イエロ一色画像( B )、 マゼンタ色画像( G )及びシァン色画像( R ) の各特性 曲線上における各最大濃度 Dmaxの濃度比( DmaxB/DmaxG、 D /D 力、 各々 0. 7〜1. 3の範囲にあることが好ましい。 In the image forming method of the present invention, a silver halide color one photographic light-sensitive material, the exposure time is obtained by performing exposure and color development processing at 90 seconds and 10 6 seconds, the yellow color image (B) , Magenta color image (G) and cyan color image (R) on each characteristic curve, the density ratio of each maximum density Dmax ( DmaxB / DmaxG , D / D power, each in the range of 0.7 to 1.3) Is preferred.
すなわち、 キヤリブレーションパッチの出力により画像形成時の最大露光量 ( Emax )の調整を行い、 かつイェロー、 マゼンタ、 シアン色画像形成層の各々 に対して露光量 Emaxで露光して得られる黒色画像部のシアン色画像反射濃度 (DmaxR) とマゼンタ色画像反射濃度 (DmaxG) との比 (Dma ZD xG) 及 びイエロ一色画像反射濃度 ( DmaxB) と ( DraaxG) との比 ( DmaxB/DraaxG) が、 各々 0. 7〜1. 3であることが好ましく、 より好ましくは 0. 8〜1. 2、 更に好ましくは 0. 9〜1. 2である。 ここでいう反射濃度とは、 ステ一 タス A反射濃度を表す。 That is, the maximum exposure amount (E max ) during image formation is adjusted by the output of the calibration patch, and each of the yellow, magenta, and cyan image forming layers is exposed at the exposure amount E max. Cyan image reflection density of black image area The ratio of (D maxR ) to the magenta color image reflection density (D maxG ) (Dma ZD xG) and the ratio of the yellow one-color image reflection density (D maxB ) to (D raaxG ) (D maxB / D raaxG ) are: Each is preferably from 0.7 to 1.3, more preferably from 0.8 to 1.2, and still more preferably from 0.9 to 1.2. The reflection density here indicates the status A reflection density.
本発明の画像形成方法に用いることができる光源の種類としては、 発光ダイ ォ一ド ( LED )ヽ ガスレーザ一、 半導体レーザ一 ( LD )、 LDあるいは LD を励起光源として用いた固体レーザーと第 2高調波変化素子 (いわゆる S HG 素子)との組み合わせ、タンダステン光とバンドパスフィルターの組み合わせ、 ハロゲンランプと P L Z T素子とカラ一フィルターの組み合わせ、 VF PH素 子とカラ一フィルタ一の組み合わせ等、 公知の光源をいずれも用いることがで きる。 特に波長が 400〜450 n mの青色光源は、 主としてデジタルビデオ ディスク ( DVD ) などの光ディスクへの高密度記録のために、 現在精力的に 研究開発されており、 露光用光源への展開も検討されている。 一つの方式とし て、 例えば、 発振波長 800〜900 n mの半導体レーザ— (例えば、 G a A s系) と第 2高調波発生 ( S HG )素子 (例えば、 L i N b 03系、 L i T a 0 3系のような無機結晶や、 2—メチル一4—二トロアニリンのような有機結晶な ど) を組み合わせたものや、 I n G a N系材料を用いた発振波長が 380〜4 30 n mの青色半導体レーザ一や、 シンチレ一タ一系あるいはクマリ ン系色素 を用いた色素レーザ一等が知られている。 中でも S HGとの組み合わせによる 固体レーザ一や、 半導体レーザーで発振波長が 380〜430 n mとなる光源 は、 431〜480 n mの光源に比べて緑感光性層の分光感度分布との重なり が若干小さく、 記録材料面上の青色光強度を大きく しても、 緑感光性層におけ る不要な発色を軽減でき、 また支持体中での光散乱の低下に起因すると思われ るイエロ一画像の滲みを軽減できるため、 本発明において特に好ましい露光光 源である。 The types of light sources that can be used in the image forming method of the present invention include a light emitting diode (LED), a gas laser, a semiconductor laser (LD), a solid laser using an LD or an LD as an excitation light source, and a second laser. Well-known, such as a combination with a harmonic change element (so-called SHG element), a combination of a tungsten light and a bandpass filter, a combination of a halogen lamp, a PLZT element and a color filter, a combination of a VF PH element and a color filter, etc. Any light source can be used. In particular, blue light sources with a wavelength of 400 to 450 nm are currently being vigorously researched and developed, mainly for high-density recording on optical discs such as digital video discs (DVDs). ing. As one of methods, for example, a semiconductor laser with an oscillation wavelength of 800 to 900 nm - (e.g., G a A s system) and the second harmonic generation (S HG) element (e.g., L i N b 0 3 system, L Inorganic crystals such as iTa03 series, organic crystals such as 2-methyl-14-nitroaniline), and oscillation wavelengths of 380 to 380 nm using InGaN-based materials. A blue semiconductor laser with a wavelength of 430 nm and a dye laser using a scintillator dye or a coumarin dye are known. Above all, the overlap with the spectral sensitivity distribution of the green photosensitive layer is slightly smaller for solid-state lasers in combination with SHG and for semiconductor lasers whose oscillation wavelength is 380 to 430 nm compared to 431 to 480 nm. Even if the blue light intensity on the recording material surface is increased, the green photosensitive layer This is a particularly preferable exposure light source in the present invention, because unnecessary color development can be reduced, and bleeding of a yellow image, which is considered to be caused by a decrease in light scattering in the support, can be reduced.
本発明の画像形成方法で規定する各要件を達成する手段に特に制限はない が、 例えば、 感光材料中に含まれる感光性ハロゲン化銀の特性を適切にコント ロールしたり、 塗設される感光性ハロゲン化銀、 カプラー、 あるいはィラジェ ーション防止染料等の量を適切にコントロールしたり、 あるいはキヤリブレー ションで設定する、 デジタル化された画像データ上で最大濃度を表すデータの プリ ント上での再現濃度の目標値を適切にコントロールする方法等を単独、 あ るいは組み合わせて用いることができる。  There is no particular limitation on means for achieving the requirements specified in the image forming method of the present invention. For example, for example, the characteristics of the photosensitive silver halide contained in the photosensitive material are appropriately controlled, Reproduction density on data that represents maximum density on digitized image data, by appropriately controlling the amount of neutral silver halide, coupler, or anti-irradiation dye, or by setting calibration The methods for appropriately controlling the target values can be used alone or in combination.
本発明に係る感光材料に用いられるハロゲン化銀乳剤の組成は、 塩化銀、 臭 化銀、 塩臭化銀、 沃臭化銀、 塩沃臭化銀、 塩沃化銀等任意のハロゲン組成を有 するものであってもよいが、 中.でも塩化銀を 9 5モル%以上含有する実質的に 沃化銀を含有しない塩臭化銀の場合に本発明の効果が顕著となり好ましい。 ま た、 迅速処理性、 処理安定性からは、 好ましくは 9 7モル%以上、 より好まし くは 9 8〜9 9 . 9モル%の塩化銀を含有するハロゲン化銀乳剤が好ましい。 本発明に係る感光材料においては、 高照度短時間露光における高濃度域での 特性曲線の軟調化を軽減する観点から、 臭化銀を高濃度に含有する部分を有す るハ口ゲン化銀乳剤も好ましく用いることができる。 この場合、 高濃度に臭化 銀を含有する部分は、 ハロゲン化銀粒子にエピタキシー接合していても、 いわ ゆるコア · シェル乳剤であってもよいし、 完全な層を形成せず単に部分的に組 成の異なる領域が存在するだけであってもよい。 また、 組成は連続的に変化し てもよいし不連続に変化してもよい。 臭化銀が高濃度に存在する部分は、 ハロ ゲン化銀粒子の表面、 あるいは結晶粒子の頂点である事が特に好ましい。 The composition of the silver halide emulsion used in the light-sensitive material according to the present invention may be any halogen composition such as silver chloride, silver bromide, silver chlorobromide, silver iodobromide, silver chloroiodobromide, and silver chloroiodide. However, in the case of silver chlorobromide containing 95 mol% or more of silver chloride and containing substantially no silver iodide, the effect of the present invention is remarkable, which is preferable. From the viewpoint of rapid processing and processing stability, a silver halide emulsion containing preferably 97 mol% or more, more preferably 98 to 99.9 mol% of silver chloride is preferable. In the light-sensitive material according to the present invention, from the viewpoint of reducing softening of the characteristic curve in a high-density region in short-time exposure with high illuminance, silver halide having a high-concentration portion of silver bromide is used. Emulsions can also be preferably used. In this case, the portion containing a high concentration of silver bromide may be formed by epitaxy bonding to silver halide grains, a so-called core-shell emulsion, or simply a partial formation without forming a complete layer. There may be only regions having different compositions. Further, the composition may be changed continuously or discontinuously. The part where silver bromide is present in high concentration It is particularly preferred that the surface be the surface of silver gemide grains or the apex of crystal grains.
本発明に係る感光材料においては、 高照度短時間の走査露光での軟調化を軽 減する観点から重金属イオンを含有させたハロゲン化銀粒子を用いることが好 ましい。 このような目的に用いることのできる重金属イオンとしては、 鉄、 ィ リジゥム、 白金、 パラジウム、 ニッケル、 ロジウム、 オスミウム、 ルテニウム、 コバルト等の第 8〜1 0族金属や、 カ ドミウム、 亜鉛、 水銀などの第 1 2族遷 移金属や、 鉛、 レニウム、 モリブデン、 タングステン、 ガリウム、 クロムの各 イオンを挙げることができる。 中でも鉄、 イ リジウム、 白金、 ルテニウム、 ガ リウム、 オスミウムの金属イオンが好ましい。 これらの金属イオンは、 塩や、 錯塩の形でハロゲン化銀乳剤に添加することができる。  In the light-sensitive material according to the present invention, it is preferable to use silver halide grains containing heavy metal ions from the viewpoint of reducing softening caused by high-illuminance short-time scanning exposure. Heavy metal ions that can be used for such purposes include irons, iridium, platinum, palladium, nickel, rhodium, osmium, ruthenium, cobalt and other Group 8-10 metals, cadmium, zinc, mercury, etc. Group 1 and 2 transition metals, and ions of lead, rhenium, molybdenum, tungsten, gallium, and chromium. Of these, metal ions of iron, iridium, platinum, ruthenium, gallium, and osmium are preferred. These metal ions can be added to the silver halide emulsion in the form of a salt or a complex salt.
前記重金属ィォンが錯体を形成する場合には、 その配位子またはイオンとし てはシアン化物イオン、 チォシアン酸イオン、 シアン酸イオン、 イソチオシァ ン酸イオン、 塩化物イオン、 臭化物イオン、 沃化物イオン、 硝酸イオン、 カル ボニル、 アンモニア等を挙げることができる。 中でも、 シアン化物イオン、 チ オシアン酸イオン、 イソチォシアン酸イオン、 塩化物イオン、 臭化物イオン等 が好ましい。  When the heavy metal ion forms a complex, its ligand or ion may be a cyanide ion, a thiocyanate ion, a cyanate ion, an isothiocyanate ion, a chloride ion, a bromide ion, an iodide ion, or nitric acid. Ions, carbonyl, ammonia and the like. Among them, cyanide ion, thiocyanate ion, isothiocyanate ion, chloride ion, bromide ion and the like are preferable.
ハ口ゲン化銀粒子に上述の重金属イオンを含有させるためには、 該重金属化 合物をハロゲン化銀粒子の形成前、 ハロゲン化銀粒子の形成中、 ハロゲン化銀 粒子の形成後等、 物理熟成中の各工程における任意の場所で添加すればよい。 また、 添加においては、 重金属化合物の溶液を粒子形成工程の全体或いは一部 にわたつて連続的に行う事ができる。  In order for the heavy metal ions to be contained in the silver halide grains, the heavy metal compound is physically added before forming silver halide grains, during silver halide grains, after forming silver halide grains, or the like. What is necessary is just to add in arbitrary places in each process during ripening. In addition, the solution of the heavy metal compound can be continuously added over the whole or a part of the particle forming step.
前記重金属イオンをハロゲン化銀乳剤中に添加するときの量はハロゲン化銀 1モル当り 1 X 1 0— 9モル以上、 1 X 1 0— 2モル以下がより好ましく、 特に 1 X 10— 8モル以上 5 X 10_5モル以下が好ましい。 When the heavy metal ion is added to the silver halide emulsion, the amount is more preferably 1 × 10 to 9 mol or more and 1 × 10 to 2 mol or less, more preferably 1 × 10 to 2 mol per mol of silver halide. X 10- 8 mol 5 X 10_ 5 moles or less is preferable.
本発明に係る感光材料において、 ハロゲン化銀粒子の形状は任意のものを用 いることができる。好ましい一つの例は、 ( 100 )面を結晶表面として有する 立方体である。 また、 米国特許 4, 183, 756号、 同 4, 225, 666 号、 特開昭 55— 26589号、 特公昭 55-42737号や、 ザ ' ジャーナ ノレ ' ォブ ' フォ トグラフィック 'サイエンス ( J. P h 0 t 0 g r . S c i . ) In the light-sensitive material according to the present invention, any shape can be used for the silver halide grains. One preferable example is a cube having a (100) plane as a crystal surface. In addition, U.S. Pat. Nos. 4,183,756 and 4,225,666, JP-A-55-26589, JP-B-55-42737, and the "Journa Nore Obove" Photographic Science (J P h 0 t 0 gr. S ci.)
21、 39 ( 1973 ) 等の文献に記載された方法等により、 八面体、 十四面 体、 十二面体等の形状を有する粒子をつく り、 これを用いることもできる。 さ らに、 双晶面を有する粒子を用いてもよい。 Particles having shapes such as octahedron, tetrahedron, and dodecahedron can be prepared and used by methods described in documents such as 21, 39 (1973). Further, particles having twin planes may be used.
本発明に係る感光材料において、 ハ口ゲン化銀粒子は単一の形状からなる粒 子が好ましく用いられるが、 単分散のハロゲン化銀乳剤を二種以上同一層に添 加する事が特に好ましい。  In the light-sensitive material according to the present invention, silver halide grains having a single shape are preferably used, but it is particularly preferable to add two or more monodispersed silver halide emulsions to the same layer. .
本発明に係るハロゲン化銀粒子の粒径は特に制限はないが、迅速処理性及び、 感度など、 他の写真性能などを考慮すると好ましくは、 0. 1〜1. 2 ^m、 更に好ましくは、 0. 2〜1. 0 mの範囲である。  The grain size of the silver halide grains according to the invention is not particularly limited, but is preferably 0.1 to 1.2 ^ m, more preferably 0.1 to 1.2 ^ m, in consideration of other photographic properties such as rapid processing and sensitivity. , 0.2-1.0 m.
この粒径は、 粒子の投影面積か直径近似値を使つてこれを測定することがで きる。 粒子が実質的に均一形状である場合は、 粒径分布は直径か投影面積とし てかなり正確にこれを表すことができる o  This particle size can be measured using the projected area of the particle or its approximate diameter. If the particles are substantially uniform, the size distribution can represent this fairly accurately as a diameter or projected area o
本発明に係る感光材料に用いられるハロゲン化銀粒子の粒径分布は、 好まし くは変動係数が 0. 22以下、 更に好ましくは 0. 15以下の単分散ハロゲン 化銀粒子であり、 特に好ましくは変動係数 0. 15以下の単分散乳剤を 2種以 上同一層に添加する事である。 ここで変動係数は、 粒径分布の広さを表す係数 であり、 次式によって定義される。 変動係数 = SZR The particle size distribution of the silver halide grains used in the light-sensitive material according to the present invention is preferably a monodispersed silver halide grain having a coefficient of variation of 0.22 or less, more preferably 0.15 or less, and particularly preferably. Is to add two or more monodisperse emulsions having a coefficient of variation of 0.15 or less to the same layer. Here, the coefficient of variation is a coefficient representing the width of the particle size distribution, and is defined by the following equation. Coefficient of variation = SZR
(ここに、 Sは粒径分布の標準偏差、 Rは平均粒径を表す。)  (Where S is the standard deviation of the particle size distribution and R is the average particle size.)
ここでいう粒径とは、 球状のハロゲン化銀粒子の場合はその直径、 また、 立方 体や球状以外の形状の粒子においては、 その投影像を同面積の円像に換算した ときの直径を表す。 The particle size referred to here is the diameter of a spherical silver halide particle, or the diameter of a cubic or non-spherical particle when the projected image is converted into a circular image of the same area. Represent.
ハロゲン化銀乳剤の調製装置、 方法としては、 当業界において公知の種々の 方法を用いることができる。  Various methods known in the art can be used as a device and method for preparing a silver halide emulsion.
本発明に係る感光材料に用いられるハロゲン化銀乳剤は、 酸性法、 中性法、 ァンモニァ法の何れで得られたものであってもよい。 該粒子は一時に成長させ たものであってもよいし、 種粒子を作った後で成長させてもよい。 種粒子を作 る方法と成長させる方法は同じであっても、 異なってもよい。  The silver halide emulsion used in the light-sensitive material according to the present invention may be obtained by any of an acid method, a neutral method, and an ammonium method. The particles may be grown at one time or may be grown after seed particles have been made. The method for producing the seed particles and the method for growing them may be the same or different.
また、 可溶性銀塩と可溶性ハロゲン化物塩を反応させる形式としては、 順混 合法、 逆混合法、 同時混合法、 それらの組合せなど、 いずれでもよいが、 同時 混合法で得られたものが好ましい。 更に同時混合法の一形式として特開昭 54 - 48521号等に記載されている p A gコント口一ルド ' ダブルジェッ ト法 を用いることもできる。  The form of reacting the soluble silver salt with the soluble halide salt may be any of a forward mixing method, a reverse mixing method, a simultaneous mixing method, a combination thereof, and the like, but a method obtained by a simultaneous mixing method is preferable. Further, as one form of the simultaneous mixing method, a pAg control single-jet method described in JP-A-54-48521 can be used.
また、 特開昭 57 - 92523号、 同 57— 92524号等に記載の反応母 液中に配置された添加装置から水溶性銀塩及び水溶性ハ口ゲン化物塩水溶液を 供給する装置、 ドイツ公開特許 2, 921, 164号等に記載された水溶性銀 塩及び水溶性ハロゲン化物塩水溶液を連続的に濃度変化して添加する装置、 特 公昭 56— 501776号等に記載の反応器外に反応母液を取り出し、 限外濾 過法で濃縮することによりハロゲン化銀粒子間の距離を一定に保ちながら粒子 形成を行なう装置などを用いてもよい。 更に必要で有ればチォェ一テル等のハロゲン化銀溶剤を用いてもよい。また、 メルカプト基を有する化合物、 含窒素へテロ環化合物または増感色素のような 化合物をハロゲン化銀粒子の形成時、 または、 粒子形成終了の後に添加して用 いてもよい。 Further, a device for supplying an aqueous solution of a water-soluble silver salt and a water-soluble haeganide salt from an addition device disposed in a reaction mother liquor described in JP-A Nos. 57-92523 and 57-92524, published in Germany Apparatus for continuously changing the concentration of water-soluble silver salt and water-soluble halide salt aqueous solution described in Patent No. 2,921,164, etc., and reaction outside the reactor described in JP-B-56-501776, etc. An apparatus may be used in which the mother liquor is taken out and concentrated by an ultrafiltration method to form grains while keeping the distance between silver halide grains constant. If necessary, a silver halide solvent such as polyester may be used. Further, a compound having a mercapto group, a nitrogen-containing heterocyclic compound or a compound such as a sensitizing dye may be added at the time of forming silver halide grains or after the completion of grain formation.
本発明に係るハロゲン化銀カラ一写真感光材料においては、 色画像形成層の 少なく とも 1層が、 セレン化合物 (以下、 セレン増感剤ともいう) により化学 増感を施されたハロゲン化銀を含有することが、 1つの特徴である。  In the silver halide color photographic light-sensitive material according to the present invention, at least one of the color image forming layers contains silver halide chemically sensitized with a selenium compound (hereinafter, also referred to as a selenium sensitizer). Containing is one feature.
本発明で用いることのできるセレン増感剤としては、 特に、 水溶液中で硝酸 銀と反応して銀セレニドの沈殿を形成しうる不安定セレン化合物が好ましく用 いられる。 例えば、 米国特許第 1, 574, 944号、 同第 1, 602, 59 2号、 同第 1, 623, 499号、 特開昭 60— 150046号、 特開平 4一 25832号、 同 4— 109240号、 同 4一 147250号等に記載されて いる。  As the selenium sensitizer that can be used in the present invention, particularly, an unstable selenium compound that can react with silver nitrate in an aqueous solution to form a silver selenide precipitate is preferably used. For example, U.S. Patent Nos. 1,574,944, 1,602,592, 1,623,499, JP-A-60-150046, JP-A-4-125832, and 4-109240. And No. 414, 147, 250, etc.
有用なセレン増感剤としては、 コロイ ドセレン金属、 イソセレノシァネート 類(例えば、 ァリルイソセレノシァネート等)、 セレノ尿素類(例えば、 N, N 一ジメチルセレノ尿素、 N, N, N' 一トリェチルセレノ尿素、 N, N, Ν' , Ν' ーテ トラメチルセレノ尿素、 Ν, Ν, Ν' —ト リメチル一N' 一へプタフ ルォロセレノ尿素、 Ν, Ν' —ジメチル一 Ν, Ν' —ビス (カルボキシメチル) セレノ尿素、 Ν, Ν, Ν' 一トリメチル一 N' 一ヘプタフル才ロプロピルカル ボニルセレノ尿素、 Ν, Ν, Ν' 一 ト リメチルー: NT 一 4—ニ トロフエ二ルカ ルポ二ルセレノ尿素等)、 セレノケ ト ン類(例えば、 セレノアセ トン、 セレノア セトフヱノ ン等)、 セレノアミ ド (例えば、 セレノアセトアミ ド、 N, N—ジメ チルセレノベンズァミ ド、 N, N—ジェチルー 4ーォクチルアミノスルホニル セレノベンズアミ ド等)、 セレノカルボン酸類及びセレノエステル類(例えば、 2—セレノプロピオン酸、メチル一3—セレノブチレート等)、セレノフォスフ ヱ—ト類 (例えば、 ト リ 一 p— ト リルセレノフ ォスフヱ一ト、 ペンタフルォロ フエ二ルージフエ二ルセレノフォスフェート等)、 セレニド類(例えば、 ジメチ ルセレニ ド、 ト リブチルフォスフ ィ ンセレニド、 ト リフヱニルフォスフ ィ ンセ レニド、 ト リ一 P— ト リルフォスフィ ンセレニ ド、 ペンタフルオロフェニルー ジフエニルフォスフ ィ ンセレニド、 ト リフ リルフォスフ ィ ンセレニド、 ト リ ピ リジルフォスフィ ンセレニド等) が挙げられる。 特に好ましいセレン増感剤は セレノ尿素、 セレノアミ ド類、 セレニ ド類である。 Useful selenium sensitizers include colloid selenium metal, isoselenosocyanates (eg, aryliselenosinate), selenoureas (eg, N, N-dimethylselenourea, N, N, N ′). 1-Triethylselenourea, N, N, ', ー' Tetramethylselenourea, Ν, Ν, — '—Trimethyl-1N' 1-Heptafluoroselenourea, Ν, Ν '—Dimethyl-1-Ν, —' — Bis (carboxymethyl) selenourea, Ν, Ν, Ν'-trimethyl-1-N'-heptaful-l-propylcarbonylselenourea, Ν, Ν, Ν'-trimethyl-: NT-14-nitrophenyl selenourea, etc.) Selenoketones (for example, selenoacetone, selenoacetophenonone, etc.), selenoamides (for example, selenoacetamide, N, N-dimethylselenobenzamide, N, N-ethylethyl 4-) Chi le aminosulfonyl Selenobenzamide, etc.), selenocarboxylic acids and selenoesters (eg, 2-selenopropionic acid, methyl-13-selenobutyrate, etc.), and selenophosphates (eg, tri-p-tolylselenophosphate, Pentafluorene phenyldiphenylselenophosphate, etc., selenides (eg, dimethylselenide, tributylphosphineselenide, triphenylphosphineselenide, tri-P-triphenylphosphineselenide, pentafluorophenyl) Diphenylphosphinselenide, triphenylphosphineselenide, tripridylphosphineselenide, etc.). Particularly preferred selenium sensitizers are selenoureas, selenoamides, and selenides.
これらのセレン増感剤の使用技術の具体例は、 下記特許に開示されている。 米国特許第 1, 574, 944号、 同第 1, 602, 592号、 同第 1, 62 3, 499号、 同第 3, 297, 466号、 同第 3, 297, 447号、 同第 3, 320, 069号、 同第 3, 408, 196号、 同第 3, 408, 197 号、 同第 3, 442, 653号、 同第 3, 420, 670号、 同第 3, 59 1, 385号、 フランス特許第 2, 693, 038号、 同第 2, 093, 209号、 特公昭 52— 34491号、 同 52— 34492号、 同 53— 295号、 同 5 7— 22090号、 特開昭 59— 180536号、 同 59— 185330号、 同 59— 181337号、同 59— 187338号、同 59— 192241号、 同 60— 150046号、同 60— 151637号、同 61— 246738号、 特開平 3— 4221号、 同 3— 24537号、 同 3— 111838号、 同 3— 116132号、 同 3— 148648号、 同 3— 237450号、 同 4一 16 838号、 同 4— 25832号、 同 4— 32831号、 同 4一 33043号、 同 4一 96059号、 同 4一 109240号、 同 4— 140738号、 同 4一 140 7 3 9号、 同 4一 147 2 50号、 同 4— 1 843 3 1号、 同 4— 1 9 02 2 5号、 同 4— 1 9 1 7 29号、 同 4·一 1 9 503 5号、 同 5— 1 1 3 8 5号、 同 5— 403 24号、 同 5— 243 3 2号、 同 5— 243 3 3号、 同 5 一 3 0 3 1 5 7号、 同 5— 3 0 6 2 6 8号、 同 6— 3 0 62 6 9号、 同 6— 2 7.5 7 3号、 同 6— 7 5 3 2 8号、 同 6— 1 7 5 2 5 9号、 同 6— 208 1 8 4号、 同 6— 2 08 1 8 6号、 同 6— 3 1 78 67号、 同 7— 9 2 59 9号、 同 7— 9 848 3号、 同 7— 1 044 1 5号、 同 7— 140 5 79号、 同 7— 3 0 1 8 7 9号、 同 7— 30 1 880号、 同 8— 1 1488 2号、 同 9一 1 9 7 6 0号、 同 9— 1 3847 5号、 同 9— 1 6 684 1号、 同 9一 1 3 847 5号、 同 9— 1 89 9 7 9号、 同 1 0— 1 06 6 6号、 特開 200 1— 343 7 2 1号、 英国特許第 2 5 5, 846号、.同第 8 6 1, 984号等に記載され ており、 また、 H. E. S p e n c e r等著 J o u r n a l o f P h o t o g r a p h i c S c i e n c e 3 1 、 1 58— 1 6 9 ( 1 9 83 ) 等の研究論文にも開示されている。 Specific examples of techniques for using these selenium sensitizers are disclosed in the following patents. U.S. Patent Nos. 1,574,944, 1,602,592, 1,623,499, 3,297,466, 3,297,447, and 3 , 320, 069, 3,408,196, 3,408,197, 3,442,653, 3,420,670, 3,591,385 Patent Nos. 2,693,038, 2,093,209, JP-B-52-34491, 52-34492, 53-295, 57-22090, JP 59-180536, 59-185330, 59-181337, 59-187338, 59-192241, 60-150046, 60-151637, 61-246738, and JP-A-Heisei 3 — No. 4221, No. 3— 24537, No. 3— 111838, No. 3— 116132, No. 3— 148648, No. 3— 237450, No. 4-1 81638, No. 4— 25832, No. 4— 32831, 4-1 33043, 4-196059, 4-1109240, 4-140738, 4-1 140 7 339, 4-1 147 2,500, 4-1 843 31 4-1 902 0 25, 4-191 729, 4-1 503 No. 5, No. 5-1 1 1 3 8 5, No. 5-403 24, No. 5-243 32, No. 5-243 33, No. 5-310 3 1 57, No. 5- 3 0 6 2 6 8 and 6- 3 0 6 6 9 and 6- 2 7.5 7 3 and 6- 7 5 3 2 8 and 6- 1 7 5 2 5 9 and 6 — 208 1 84, 6—2 08 186, 6—3 1 7867, 7—9 2599, 7—9 8483, 7—1 044 15 No. 7-140 5 79, No. 7-3 01 8 79, No. 7- 30 1880, No. 8 1 1488 2, No. 9-197 6 60, No. 9 138475, 9-16-16841, 9-13-18475, 9-1899779, 10-106666, JP2001-3437 No. 21, UK Patent No. 255,846, and No. 861, 984, and the like, and the Journal of P hotographic Sciences 31, 158—1 by HE S pencer et al. 6 9 (1 9 83).
本発明に係るセレン増感剤の好ましい添加量は、 1 X 1 0— 9〜1 X 1 0— 1モ ル Zモル A g X、 更に好ましくは 1 X 1 0— 8〜 1 X 1 0 モル/モル A g Xで める。 A preferable addition amount of the selenium sensitizer according to the present invention, 1 X 1 0- 9 ~1 X 1 0- 1 molar Z moles A g X, more preferably 1 X 1 0- 8 ~ 1 X 1 0 mol / Mol A g X
本発明に係るセレン増感剤をハロゲン化銀乳剤に添加するには、 当業界で写 真乳剤に添加剤を加える場合に通常用いられる方法を適用できる。 例えば、 水 溶性の化合物である場合は、 適当な濃度の水溶液とし、 水に不溶または難溶性 の化合物の場合は、 水と混合しうる任意の有機溶媒、 例えば、 アルコール類、 グリコール類、 ケト ン類、 エステル類、 アミ ド類等の写真特性に悪影響を与え ない溶媒に溶解し、 溶液として添加することができる。 また、 本発明に係る感光材料に用いられるハロゲン化銀乳剤では、 上記セレ ン増感剤と共に、 公知の化学増感法、 例えば、 金化合物を用いる増感法、 カル コゲン增感剤を用いる増感法を用いることができる。 ハロゲン化銀乳剤に適用 するカルコゲン増感剤としては、 ィォゥ増感剤、 テルル増感剤などを用いるこ とができるが、 ィォゥ増感剤が好ましい。ィォゥ増感剤としては、チォ硫酸塩、 了リルチオ力ルバミ ドチォ尿素、 Tリルイソチアシァネ一ト、 シスチン、 p - トルエンチォスルホン酸塩、 ローダニン、 無機ィォゥ等が挙げられる。 ィォゥ 増感剤の添加量としては、 適用されるハロゲン化銀乳剤の種類や期待する効果 の大きさなどにより変えることが好ましいが、 ハロゲン化銀 1モル当たり 5 X 1 0-10〜5 X 1 ID—5モルの範囲、好ましくは 5 X 1 0一8〜 3 X 1 0— 5モルの範 囲が好ましい。 In order to add the selenium sensitizer according to the present invention to a silver halide emulsion, a method generally used in the art for adding an additive to a photographic emulsion can be applied. For example, when the compound is a water-soluble compound, an aqueous solution having an appropriate concentration is used. When the compound is insoluble or hardly soluble in water, any organic solvent that can be mixed with water, for example, alcohols, glycols, and ketones. Can be added as a solution by dissolving in a solvent that does not adversely affect the photographic properties such as alcohols, esters and amides. In the silver halide emulsion used in the light-sensitive material according to the present invention, a known chemical sensitization method, for example, a sensitization method using a gold compound, or a sensitization method using a chalcogen sensitizer is used together with the selenium sensitizer. Sensitization can be used. As the chalcogen sensitizer applied to the silver halide emulsion, an io sensitizer, a tellurium sensitizer and the like can be used, and an io sensitizer is preferable. Examples of the zeosensitizer include thiosulfate, trithiothiolbamidothiourea, T-lylisothiocyanate, cystine, p-toluenethiosulfonate, rhodanine, and inorganic zeolite. The addition amount of the sensitizer is preferably changed depending on the type of the silver halide emulsion to be applied and the size of the expected effect, but is preferably from 5 × 10 to 10 × 5 to 1 × 10 per mol of silver halide. ID- 5 mols, preferably 5 X 1 0 one 8 ~ 3 X 1 0- 5 mole range is preferred.
金増感剤としては、 塩化金酸、 硫化金等の他各種の金錯体として添加するこ とができる。 用いられる配位子化合物としては、 ジメチルローダニン、 チ才シ ァン酸、 メルカプトテ トラゾ一ル、 メルカプト ト リァゾ一ル等を挙げることが できる。 金化合物の使用量は、 ハロゲン化銀乳剤の種類、 使用する化合物の種 類、 熟成条件などによって一様ではないが、 通常はハロゲン化銀 1モル当たり 1 X 1 0一4モル〜 1 X 1 0一 sモルであることが好ましい。 更に好ましくは 1 X 1 0— 5モル〜 1 X 1 0— 8モルである。 As a gold sensitizer, various gold complexes such as chloroauric acid and gold sulfide can be added. Examples of the ligand compound to be used include dimethyl rhodanine, thiocyanate, mercaptotetrazol, and mercaptotriazole. The amount of the gold compound, the kind of silver halide emulsion, the type of compound used, but are not and ripening conditions, is usually 1 mol of silver halide per 1 X 1 0 one 4 mol ~ 1 X 1 It is preferably 0-1 s mole. More preferably, it is from 1 × 10 to 5 mol to 1 × 10 to 8 mol.
本発明において、 ハロゲン化銀乳剤は目的とする分光感度に対応する波長域 の光を吸収する色素 (分光増感色素) を添加して、 所望の波長領域に光学的に 分光増感できる。 この時用いられる分光増感色素としては、 例えば、 F. M. H a m e r H e t e r o c y c l— I C c o mp o u n d s— C v a n i n e d e s a n d r e l a t e d c o mp o u n d s ( J o h n W i l e y a n d S o n s ; N e w Y o r k, 1 9 64年) に記載され ている化合物を挙げることができる。 本発明に用いられる分光増感色素として はシァニン色素、 メロシアニン色素、複合メロシアニン色素等がある。 この他、 複合シァニン色素、 ホロポーラ一シァニン色素、 へミシァニン色素、 スチリル 色素及びへミオキソノール色素がある。 シァニン色素としてはシンプルシァニ ン色素、 カルボシァニン色素、 ジカルボシァニン色素が好ましく用いられる。 本発明で用いることのできる支持体としては、 基材の両面に樹脂被覆層が塗 設された紙支持体であることが好ましい。 In the present invention, a silver halide emulsion can be optically spectrally sensitized to a desired wavelength region by adding a dye (spectral sensitizing dye) that absorbs light in a wavelength region corresponding to a target spectral sensitivity. The spectral sensitizing dye used at this time is, for example, FM Hamer Hetercycling—IC co mp ounds—C vaninedesandrelatedco mp ounds (John Wileyand Sons; New York, 1964). Examples of the spectral sensitizing dye used in the present invention include a cyanine dye, a merocyanine dye, and a complex merocyanine dye. In addition, there are complex cyanine dyes, horopora-cyanine dyes, hemicyanine dyes, styryl dyes, and hemioxonol dyes. As the cyanine dye, simple cyanine dye, carbocyanine dye, and dicarbocyanine dye are preferably used. The support that can be used in the present invention is preferably a paper support in which a resin coating layer is applied to both surfaces of a substrate.
基紙の両面に樹脂被覆層が塗設された紙支持体としては、 基紙の両面をポリ ォレフィンでラミネ一卜した紙支持体が好ましく、 特に好ましくは、 ポリェチ レンでラミネートした紙支持体である。  As the paper support having a resin coating layer coated on both sides of the base paper, a paper support obtained by laminating both sides of the base paper with a polyolefin is preferable, and a paper support laminated with polyethylene is particularly preferable. is there.
紙支持体に用いられる基紙は、 木材パルプを主原料とし、 必要に応じて、 木 材パルプに加えてポリプロピレンなどの合成パルプあるいはナイ口ンゃポリェ ステルなどの合成繊維を用いて抄紙される。 木材パルプとしては、 LBKP、 LB S P、 NBKP、 NB S P、 LDP、 NDP、 LUKP、 NUKPのいず れも用いることができるが、 短繊維分の多い L BKP、 NB S P、 LB S P、 NDP、 L DPをより多く用いることが好ましい。 ただし、 L B S Pおよびま たは L D Pの比率は 1 0質量%以上、 7 0質量? 以下が好ましい。  The base paper used for the paper support is made of wood pulp as the main raw material, and if necessary, is made using synthetic pulp such as polypropylene or synthetic fibers such as Nyopen® polyester in addition to wood pulp. . As wood pulp, any of LBKP, LB SP, NBKP, NB SP, LDP, NDP, LUKP, NUKP can be used, but L BKP, NB SP, LB SP, NDP, L It is preferred to use more DP. However, the ratio of LBSP and / or LDP is preferably from 10% by mass to 70% by mass.
上記パルプには、 不純物の少な 、化学パルプ (硫酸塩/、°ルプや亜硫酸塩パル プ) が好ましく用いられ、 また、 漂白処理を行って白色度を向上させたパルプ も有用である。 基紙中には、 高級脂肪酸、 アルキルケテンダイマ一等のサイズ 剤、 炭酸カルシウム、 タルク、 酸化チタンなどの白色顔料、 スターチ、 ポリア クリルアミ ド、 ポリ ビニルアルコール等の紙力増強剤、 ポリエチレングリコ一 ル類等の水分保持剤、 分散剤、 四級アンモニゥム等の柔軟化剤などを適宜添加 することができる。 また、 本発明に係る油溶性蛍光増白剤も用いることができ る。 As the pulp, a chemical pulp (sulfate / pulp or sulfite pulp) containing a small amount of impurities is preferably used, and a pulp having improved whiteness by a bleaching treatment is also useful. The base paper contains sizing agents such as higher fatty acids and alkyl ketene dimers, white pigments such as calcium carbonate, talc, and titanium oxide; paper strength agents such as starch, polyacrylamide, and polyvinyl alcohol; and polyethylene glycol. A water-retaining agent such as water, a dispersant, a softening agent such as quaternary ammonium, and the like can be appropriately added. Further, the oil-soluble fluorescent whitening agent according to the present invention can also be used.
抄紙に使用するパルプの濾水度は、 C S Fの規定で 200〜50 Om 1が好 ましく、 また、 叩解後の繊維長が J I S -P - 8207に規定される 24メッ シュ残分の質量%と 42メッシュ残分の質量%との和が 30〜70 %が好まし い。なお、 4メッシュ華分の質量%は、 20質量%以下であることが好ましい。 基紙の坪量は、 30〜250 g/m2が好ましく、 特に 50〜200 g/m2が 好ましい。 基紙の厚さは 40〜250 mが好ましい。 基紙は、 抄紙段階また は抄紙後にカレンダ一処理して、 高平滑性を与えることもできる。 基紙密度は 0. 7〜1. 2 gZc m3 ( J I S—P— 8 1 1 8 ) が一般的である。 更に、 基 紙剛度は J I S— P— 8 143に規定される条件で 20〜200 gが好まし い。 基紙表面には表面サイズ剤を塗布しても良く、 表面サイズ剤としては前記 基紙中添加できるサイズと同様のサイズ剤を使用できる。 基紙の pHは、 J I S— P— 8 1 13で規定された熱水抽出法により測定された場合、 5〜 9であ ることが好ましい。 The freeness of the pulp used in papermaking is preferably 200 to 50 Om1 according to the CSF regulations, and the fiber length after beating is specified in JIS-P-8207. It is preferable that the sum of the mass and the mass% of the remaining 42 mesh is 30 to 70%. Preferably, the mass% of the four-mesh flower is 20% by mass or less. The basis weight of the base paper is preferably 30 to 250 g / m 2 , particularly preferably 50 to 200 g / m 2 . The thickness of the base paper is preferably from 40 to 250 m. The base paper can be calendered at the papermaking stage or after papermaking to provide high smoothness. The density of the base paper is generally 0.7 to 1.2 gZcm 3 (JIS-P-811). Further, the rigidity of the base paper is preferably 20 to 200 g under the conditions specified in JIS-P-8143. A surface sizing agent may be applied to the surface of the base paper. As the surface sizing agent, the same sizing agent as that which can be added to the base paper can be used. The pH of the base paper is preferably 5 to 9 when measured by the hot water extraction method specified in JIS-P-8113.
基紙表面および裏面を被覆するポリエチレンは、 主として低密度のポリェチ レン( L D P E )および/または高密度のポリェチレン( H D P E )であるが、 他に L L D P E (リニアローデンシティ一ポリェチレン) ゃポリプロピレン等 も一部使用することができる。 特に、 感光性層側のボリエチレン層は、 写真用 印画紙で広く行われているように、 ルチルまたはアナタ一ゼ型の酸化チタンを ポリエチレン中に添加し、 不透明度および白色度を改良したものが好ましい。 酸化チタン含有量は、 ポリエチレンに対して通常 3〜20質量%、 好ましくは 4〜13質量%である。 The polyethylene that covers the front and back surfaces of the base paper is mainly low-density polyethylene (LDPE) and / or high-density polyethylene (HDPE), but some are also LLDPE (linear low-density-polyethylene) ゃ polypropylene, etc. Can be used. In particular, the polyethylene layer on the side of the photosensitive layer has improved opacity and whiteness by adding rutile or anatase type titanium oxide to polyethylene, as is widely practiced in photographic printing paper. preferable. The content of titanium oxide is usually 3 to 20% by mass relative to polyethylene, preferably 4 to 13% by mass.
ポリエチレン被覆紙は、 光沢紙として用いることも、 また、 ポリエチレンを 基紙表面上に溶融押し出してコ一ティ ングする際に、 いわゆる型付け処理を行 つて、 通常の写真印画紙で得られるようなマツ ト面ゃ絹目面を形成した物も本 発明で使用できる。  Polyethylene-coated paper can be used as glossy paper, or when polyethylene is melted and extruded onto the surface of a base paper to perform coating, a so-called molding process is performed to obtain a pine paper that can be obtained with ordinary photographic printing paper. A material having a textured surface-silk surface can also be used in the present invention.
基紙表裏の各ポリエチレン使用量は、 通常、 感光性層を設ける側のポリェチ レン層が 2 0〜40 m、 バック層側が 1 0〜30 mの範囲である。  The amount of each polyethylene used on the front and back of the base paper is usually in the range of 20 to 40 m for the polyethylene layer on the side where the photosensitive layer is provided and 10 to 30 m for the back layer side.
更に、 上記ポリエチレンで被覆紙支持体は、 以下の特性を有していることが 好ましい。  Further, the polyethylene-coated paper support preferably has the following properties.
1. 引っ張り強さ : ]" I S— P— 81 1 3で規定される強度で、 縦方向が 2 0〜300 N、 横方向が 10〜200 Nであることが好ましい  1. Tensile strength:] "The strength specified by IS-P-8113, preferably 20 to 300 N in the vertical direction and 10 to 200 N in the horizontal direction.
2. 引き裂き強度: J I S— P— 81 1 6に規定される方法で、縦方向が 0. 1〜20N、 横方向が 2〜2 ONであることが好ましい  2. Tear strength: According to the method specified in JIS-P-8116, it is preferable that the vertical direction is 0.1 to 20N and the horizontal direction is 2 to 2 ON.
3. 圧縮弾性率≥ 98. IMP a  3. Compression modulus ≥ 98. IMP a
4. 表面ベック平滑度: J I S—P— 8 1 19に規定される条件で、 20秒 以上が光沢面としては好ましいが、 いわゆる型付け品ではこれ以下であっても 良い  4. Surface Beck Smoothness: Under the conditions specified in JIS-P-8119, 20 seconds or more is preferable for the glossy surface, but it may be less for so-called molded products.
5.表面粗さ : J I S— B— 0601に規定される表面粗さ 、基準長さ 2. 5 mm当たり、 最大高さは 10〃 m以下であることが好ましい  5.Surface roughness: Surface roughness specified in JIS-B-0601, standard length 2.5 mm, maximum height is preferably 10〃m or less
6. 不透明度: J I S _P— 8 138に規定された方法で測定したとき、 8 0%以上、 特に 85〜98%が好ましい  6. Opacity: 80% or more, particularly preferably 85 to 98%, as measured by the method specified in JIS_P-8138
7. 白さ : J I S— Z— 8729で規定される L*、 a *、 b *が、 L *=80 〜95、 a *=- 3〜十 5、 b *=— 6〜十 2であることが好ましい 8. 表面光沢度: J I S— Z— 8741に規定される 60度鏡面光沢度が、 10〜95 %であることが好ましい 7. Whiteness: L *, a *, and b * specified by JIS—Z—8729 are L * = 80 to 95, a * = − 3 to 10, and b * = — 6 to 12, Preferably 8. Surface gloss: The 60-degree specular gloss specified in JIS-Z-8741 is preferably 10 to 95%
9. クラーク剛直度:記録媒体の搬送方向のクラーク剛直度が 50〜300 c m l 00である支持体が好ましい  9. Clark stiffness: a support having a Clark stiffness of 50 to 300 cm10 in the recording medium transport direction is preferable.
10. 中紙の含水率: 中紙に対して、 通常 2〜100質量%、 好ましくは 2 〜6質量%  10. Moisture content of middle paper: usually 2 to 100% by mass, preferably 2 to 6% by mass based on the middle paper
本発明のハロゲン化銀カラ一写真感光材料においては、 上記説明した以外の 構成要素、 例えば、 その他のハロゲン化銀写真乳剤、 乳剤添加剤、 増感方法、 力ブリ防止剤、 安定剤、 ィラジェ一シヨン防止染料、 イエロ一カプラー、 マゼ ンタカプラー、 シアンカプラー、 分光增感色素、 乳化分散法、 界面活性剤、 色 濁りを防止剤、 バイ ンダ一、 硬膜剤、 滑り剤やマツ ト剤、 支持体、 青味付剤や 赤味付剤、 塗布方法、 発色現像主薬、 処理方法、 現像処理装置、 処理剤などは、 特開平 1 1一 3476 1 5号公報明細書 9頁左 22行目の段落番号 0044〜 14頁左 17行目の段落番号 0 106に記載の各化合物及び方法を用いることがで きる。 また、 リサーチ 'ディスク口ジャー N o. 1 7643, 同 N o . 187 16及び同 N o . 308 1 19 (それぞれ、 以下 RD 1 7643、 RD 187 16及び RD 308 1 19と略す) に記載されている各構成要素を適宜選択し て用いることもできる。  In the silver halide color photographic light-sensitive material of the present invention, constituent elements other than those described above, for example, other silver halide photographic emulsions, emulsion additives, sensitization methods, anti-fog agents, stabilizers, Anti-syllable dyes, yellow couplers, magenta couplers, cyan couplers, spectral dyes, emulsification dispersion method, surfactants, anti-turbidity agents, binders, hardeners, slip agents and matting agents, supports , Bluing agents and reddish agents, coating methods, color developing agents, processing methods, development processing equipment, processing agents, etc. are described in JP-A-1113-147615, p. No. 0044 to page 14, left column, line 17, paragraph No. 0106 can be used for each compound and method. Also, Research Disc Entrance Jar No. 1 7643, No. 18716 and No. 308 1 19 (hereinafter abbreviated as RD 1 7643, RD 18716 and RD 308 119, respectively) Can be selected and used as appropriate.
本発明においては、 上述した本発明に係る構成とすることにより、 高速プリ ンタ一による大量のプリ ントを行っても、 感度変動、 濃度変動及び多重露光に おける階調変動が改良することができ、 特に、 毎時 L版相当のプリ ントを 10 00枚以上出力する高速プリンタ一で、 本発明の効果をいかんなく発揮するこ とができ、より好ましくは 1500枚 ZL版 ·時以上の高速プリンタ一であり、 特に好ましくは、 2000枚/ L版 ·時以上の高速プリ ンタ一である。 In the present invention, the above-described configuration according to the present invention can improve sensitivity fluctuation, density fluctuation, and gradation fluctuation in multiple exposure even when a large amount of printing is performed by a high-speed printer. In particular, a high-speed printer capable of outputting 1000 or more L-hour equivalent prints or more can exert the effects of the present invention, and more preferably a high-speed printer capable of printing 1500 L-hour prints or more. And Particularly preferred is a high-speed printer of 2000 sheets / L plate or more.
次に、 実施例を挙げて本発明を具体的に説明するが、 本発明の実施態様はこ れらに限定されるものではない。  Next, the present invention will be described specifically with reference to examples, but embodiments of the present invention are not limited thereto.
《ハ口ゲン化銀力ラー写真感光材料:試料 101の作製》  《Silver halide photographic photosensitive material: Preparation of sample 101》
〔ハロゲン化銀乳剤の調製〕  (Preparation of silver halide emulsion)
以下の方法により、 各ハロゲン化銀乳剤を調製した。  Each silver halide emulsion was prepared by the following method.
(赤感光性ハ口ゲン化銀乳剤の調製)  (Preparation of red-sensitive silver halide emulsion)
40°Cに保温した 2%ゼラチン水溶液 1 リ ッ トル中に、下記( A液).及び( B 液)を、 p A gを 7. 3、 p Hを 3. 0に制御しつつ 30分かけて同時添加し、 更に、 下記 ( C液) 及び ( D液) を p A gを 8. 0、 pHを 5. 5に制御しつ つ 180分かけて同時添加した。 この時、 p A gの制御は、 特開昭 59— 45 37号記載の方法により行い、 p Hの制御は硫酸又は水酸化ナト リゥム水溶 液を用いて行つた。  In 1 liter of 2% gelatin aqueous solution kept at 40 ° C, the following (Solution A) and (Solution B) were added for 30 minutes while controlling pAg to 7.3 and pH to 3.0. Then, the following (Solution C) and (Solution D) were simultaneously added over 180 minutes while controlling pAg at 8.0 and pH at 5.5. At this time, the pH was controlled by the method described in JP-A-59-4537, and the pH was controlled by using an aqueous solution of sulfuric acid or sodium hydroxide.
( A液)  (A liquid)
塩化ナ ト リウム 3. 42 g 臭化力リウム 0. 03 g 水を加えて 200m l Sodium chloride 3.42 g Potassium bromide 0.03 g 200 ml with water
( B液) (Solution B)
硝酸銀 1 0 g 水を加えて 200 m l Silver nitrate 10 g Add water 200 ml
( C液) (C solution)
塩化ナト リ ウム 102. 7 g Sodium chloride 102.7 g
K2 I r C 16 X 10— 8モル/モノレ A g K4F e ( CN ) 6 2 X 1 0— 5モル Zモル A g 臭化力 リウム 1. 0 g 水を加えて 600m l K 2 I r C 16 X 10- 8 mol / Monore A g K 4 F e (CN) 6 2 X 1 0- 5 mole Z moles A g bromide force tumefaciens 1. 0 g Water to make 600 meters l
( D液) (D solution)
. 硝酸銀 300 g 水を加えて 600 m l 上記各液の添加が終了した後、 花王ァトラス社製のデモ一ル Nの 5 %水溶液 と硫酸マグネシウムの 20%水溶液を用いて脱塩を行った後、 ゼラチン水溶液 と混合して、 平均粒径 0. 40 m、 粒径分布の変動係数 0. 07、 塩化銀含 有率 99. 5モル%の単分散立方体乳剤である乳剤 E M P— 1を得た。 After adding 300 g of silver nitrate and 600 ml of water to complete the addition of each of the above solutions, desalting was performed using a 5% aqueous solution of Demol N and 20% aqueous magnesium sulfate manufactured by Kao Atlas. Emulsion EMP-1 was obtained as a monodisperse cubic emulsion having an average particle size of 0.40 m, a coefficient of variation of the particle size distribution of 0.07, and a silver chloride content of 99.5 mol% by mixing with an aqueous gelatin solution.
次いで、 上記( A液) と (B液) の添加時間及び ( C )液と (D ) 液の添加 時間を変更した以外は、 上記乳剤 EMP— 1と同様にして、 平均粒径 0. 38 m、 粒径分布の変動係数 0. 07、 塩化銀含有率 99. 5モル%の単分散立 方体乳剤である乳剤 EMP— 1 Bを得た。  Next, the average particle size was 0.38 in the same manner as in Emulsion EMP-1 except that the addition time of (A) and (B) and the addition time of (C) and (D) were changed. The emulsion EMP-1B was obtained as a monodisperse cubic emulsion having a m of 0.07, a coefficient of variation of the particle size distribution of 0.07, and a silver chloride content of 99.5 mol%.
上記乳剤 EMP— 1に対し、 下記化合物を用いて 60°Cにて最適に化学増感 を行った。 また、 乳剤 EMP— 1 Bに対しても同様に最適に化学増感した後、 増感された乳剤 EMP— 1と乳剤 EMP _ 1 Bを銀量比で 1 : 1の割合で混合 して、 赤感光性ハロゲン化銀乳剤 ( 10 1 R) を得た。  The above emulsion EMP-1 was optimally chemically sensitized at 60 ° C using the following compounds. Similarly, after optimally chemical sensitizing the emulsion EMP-1B, the sensitized emulsion EMP-1 and the emulsion EMP_1B were mixed at a silver ratio of 1: 1. A red-sensitive silver halide emulsion (101R) was obtained.
チォ硫酸ナ ト リ ウム 1 X 1◦— 4モル/モル A g X 塩化金酸 1. 2 X 10— 4モルノモル A g X 安定剤: S TAB— 1 3 X 10— 4モル Zモル A g X 安定剤: S TAB— 2 3 X 10— 4モル Zモル A g X 安定剤: S TAB— 3 3 X 10— 4モル Zモル A g X 増感色素: RS— 1 1 X 10— 4モル Zモル A g X 増感色素: RS— 2 1 X 10— 4モル Zモル A g XChio sulfate Na Application Benefits um 1 X 1◦- 4 mol / mol A g X chloroauric acid 1. 2 X 10- 4 Morunomoru A g X Stabilizer: S TAB- 1 3 X 10- 4 mole Z moles A g X stabilizers: S tAB- 2 3 X 10- 4 mole Z moles A g X stabilizer: S tAB- 3 3 X 10- 4 mole Z moles A g X Sensitizing dye: RS- 1 1 X 10- 4 mole Z moles A g X Sensitizing dye: RS- 2 1 X 10- 4 mole Z moles A g X
S TAB— 1 : 1— ( 3—ァセ トアミ ドフヱニル) 一 5—メルカプトテトラ ゾ一ル S TAB— 1: 1— (3-acetamidophenyl) -1-5-mercaptotetrazole
S TAB— 2 : 1—フヱニル一 5—メルカプトテ トラゾール  S TAB-2: 1-Phenyl-5-mercaptote tolazole
S TAB— 3 : 1― ( 4—エトキシフエニル) 一 5—メルカプトテトラゾ一 ノレ  S TAB-3: 1- (4-ethoxyphenyl) -1-5-mercaptotetrazo
また赤感光性乳剤には、 S S— 1をハロゲン化銀 1モル当り 2. 0 X 10-3 添加した。 Also the red-sensitive emulsion, SS- 1 was added per mol of silver halide 2. 0 X 10- 3.
(緑感光性ハロゲン化銀乳剤の調製)  (Preparation of green photosensitive silver halide emulsion)
上記乳剤 EMP— 1の調製において、 (A液) と (B液)の添加時間及び(C 液) と ( D液) の添加時間を変更した以外は同様にして、 平均粒径 0. 40 m、 変動係数 0. 08、 塩化銀含有率 99. 5%の単分散立方体乳剤である乳 剤 EMP - 2を得た。次いで、 上記乳剤 EMP— 1の調製において、( A液) と ( B液) の添加時間及び( C液) と (D液) の添加時間を変更した以外は同様 にして、 平均粒径 0. 50 m、 変動係数 0. 08、 塩化銀含有率 99. 5% の単分散立方体乳剤である乳剤 E MP— 2 Bを得た。  In the preparation of the above emulsion EMP-1, the average particle size was 0.40 m in the same manner except that the addition time of (solution A) and (solution B) and the addition time of (solution C) and (solution D) were changed. The emulsion EMP-2 was obtained as a monodisperse cubic emulsion having a coefficient of variation of 0.08 and a silver chloride content of 99.5%. Next, in the preparation of the emulsion EMP-1, the average particle size was adjusted in the same manner except that the addition time of (Solution A) and (Solution B) and the addition time of (Solution C) and (Solution D) were changed. Emulsion EMP-2B was obtained as a monodisperse cubic emulsion having a particle size of 50 m, a coefficient of variation of 0.08 and a silver chloride content of 99.5%.
上記調製した乳剤 EMP— 2に対し、 下記化合物を用い 55 °Cにて最適に化 学増感を行った。 また、 乳剤 E M P— 2 Bに対しても同様に最適に化学増感し た後、 増感された乳剤 E MP— 2と乳剤 E MP— 2 Bとを、 銀量比で 1 : 1の 割合で混合し、 緑感光性ハロゲン化銀乳剤 ( 101 G) を得た。  The emulsion EMP-2 prepared above was optimally chemically sensitized at 55 ° C using the following compounds. Similarly, after optimally chemical sensitizing the emulsion EMP-2B, the sensitized emulsion EMP-2 and emulsion EMP-2B were mixed at a silver ratio of 1: 1. To obtain a green photosensitive silver halide emulsion (101G).
チォ硫酸ナト リ ウム 1 X 10— 4モル/モル A g X 塩化金酸 1. 2 X 10— 4モル Zモル A g X 安定剤: S T A B— 1 2. 5 X 1 0一4モル/モル A g x 安定剤: S T A B— 2 3. 1 X 1 0— 4モル/モル A gx 安定剤: S T A B— 3 3. 1 X 1 O—4モル/モル A g X 増感色素: G S - 1 X 1 0_4モル/モル A g X (青感光性ハ口ゲン化銀乳剤の調製) Chio sulfate isocyanatomethyl Li um 1 X 10- 4 mol / mol A g X chloroauric acid 1. 2 X 10- 4 mole Z moles A g X Stabilizer: STAB- 1 2. 5 X 1 0 one 4 mol / mol A gx Stabilizer: STAB- 2 3. 1 X 1 0- 4 mol / mol A gx Stabilizer: STAB- 3 3. 1 X 1 O — 4 mol / mol Ag X sensitizing dye: GS-1 X 10_ 4 mol / mol Ag X (Preparation of blue-sensitive silver halide emulsion)
前記乳剤 EMP— 1の調製において、 (A液) と ( B液)の添加時間及び( C 液) と ( D液) の添加時間を変更した以外は同様にして、 平均粒径 0. 7 1 μ m、 変動係数 0. 08、 塩化銀含有率 9 9. 5 %の単分散立方体乳剤である乳 剤 EMP— 3を得た。また、前記乳剤 EMP— 1の調製において、( A液)と( B 液) の添加時間及び ( C液) と ( D液) の添加時間を変更した以外は同様にし て、 平均粒径 0. 64 m、 変動係数 0. 08、 塩化銀含有率 9 9. 5 %の単 分散立方体乳剤である乳剤 EMP— 3 Bを得た。  In the preparation of the emulsion EMP-1, the average particle size was 0.71 in the same manner except that the addition time of (Solution A) and (Solution B) and the addition time of (Solution C) and (Solution D) were changed. The emulsion EMP-3 was obtained as a monodisperse cubic emulsion having a size of μm, a coefficient of variation of 0.08 and a silver chloride content of 99.5%. Also, in the preparation of the emulsion EMP-1, the average particle size was adjusted in the same manner except that the addition time of (Solution A) and (Solution B) and the addition time of (Solution C) and (Solution D) were changed. Emulsion EMP-3B was obtained as a monodisperse cubic emulsion having a length of 64 m, a coefficient of variation of 0.08 and a silver chloride content of 99.5%.
上記乳剤 EMP— 3に対し、 下記化合物を用い 60 °Cにて最適に化学增感を 行った。 また、 乳剤 EMP— 3 Bに対しても同様に最適に化学増感した後、 增 感された乳剤 EMP— 3と乳剤 EMP— 3 Bとを、 銀量比で 1 : 1の割合で混 合し、 ( 1 0 1 B ) を得た。  The above emulsion EMP-3 was subjected to optimal chemical sensation at 60 ° C using the following compounds. Similarly, after optimally chemical sensitizing Emulsion EMP-3B, 增 Emulsified EMP-3 and EMP-3B were mixed at a silver ratio of 1: 1. Then, (101 B) was obtained.
チォ硫酸ナト リウム 1 X 1 0— 4モル/モル A g X 塩化金酸 1. 2 X 1 0— 4モル/モル A g X 安定剤: S T A B— 1 2 X 1 0— 4モル/モル A g X 安定剤: S T A B— 2 2. X 1 0— 4モル/モル A g X 安定剤: S T A B— 3 2. 1 X 1 0— 4モル Zモル A g X 増感色素: B S _ 1 X 1 0— 4モル/モル A g X 增感色素: B S - 2 1 X 1 0— 4モル/モル A g X 26 Chio sodium sulfate 1 X 1 0- 4 mol / mol A g X chloroauric acid 1. 2 X 1 0- 4 mol / mol A g X Stabilizer: STAB- 1 2 X 1 0- 4 mol / mol A g X stabilizer: STAB- 2 2. X 1 0- 4 mol / mol A g X stabilizer: STAB- 3 2. 1 X 1 0- 4 mol Z moles A g X sensitizing dye: BS _ 1 X 1 0 — 4 mol / mol Ag X 增 Dye: BS-21 1 X 10 — 4 mol / mol Ag X 26
BS-1 BS-1
(CH2)3S03 (CH 2 ) 3 S0 3
Figure imgf000027_0001
Figure imgf000027_0001
《ハ口ゲン化銀力ラ一写真感光材料の作製》 << Production of silver halide photographic light-sensitive material >>
坪量 180 g/m2の紙パルプの両面に、高密度ポリエチレンをラミネートし た反射支持体を作製した。 但し、 感光性層を塗布する面側には、 表面処理を施 したアナターゼ型酸化チタンを 15質量%の含有量で分散して含む溶融ポリェ チレンをラミネートした。 On both sides of paper pulp having a basis weight of 180 g / m 2, laminated with high density polyethylene A reflective support was prepared. However, on the side to which the photosensitive layer was applied, a molten polyethylene containing surface-treated anatase-type titanium oxide dispersed at a content of 15% by mass was laminated.
この反射支持体をコロナ放電処理した後、 ゼラチン下塗層を設け、 さらに以 下に示す構成の各層を塗設し、 ハロゲン化銀カラ一写真感光材料である試料 1 0 1を作製した。 塗布液は下記のごとく調製した。  After subjecting this reflective support to a corona discharge treatment, a gelatin undercoat layer was provided, and each layer having the following constitution was further provided thereon, to prepare Sample 101 as a silver halide color photographic light-sensitive material. The coating solution was prepared as described below.
(第 1層塗布液の調製) ,  (Preparation of first layer coating solution)
イエロ一カプラー( Y— 1 ) 23. 4 g、 色素画像安定化剤( S T_ 1 ) 3. 34 g、 ( S T— 2 ) 3. 34 g、 ( S T— 5 ) 3. 34 g、 スティン防止剤 ( H Q— 1 ) 0. 34 g、 画像安定剤 A 5. 0 g、 高沸点有機溶媒( D B P ) 3. 33 gおよび高沸点有機溶媒 ( D N P ) 1. 67 gに酢酸ェチル 60 m 1を加 えて溶解し、 この溶液を 20%界面活性剤 ( S U— 1 ) 7m 1を含有する 10 %ゼラチン水溶液 220m l中に、 超音波ホモジナイザ一を用いて乳化分散さ せてイエロ一カプラー分散液を調製した。 このイエロ一カプラー分散液を前記 作製した青感光性ハロゲン化銀乳剤 ( 10 1 B ) と混合して第 1層塗布液を調 製した。  Yellow coupler (Y-1) 23.4 g, dye image stabilizer (ST_1) 3.34 g, (ST-2) 3.34 g, (ST-5) 3.34 g, stin prevention 0.34 g of agent (HQ-1), 5.0 g of image stabilizer A, 3.33 g of high-boiling organic solvent (DBP) and 1.67 g of high-boiling organic solvent (DNP), and 60 ml of ethyl acetate The solution was then emulsified and dispersed in 220 ml of a 10% aqueous gelatin solution containing 7 ml of 20% surfactant (SU-1) using an ultrasonic homogenizer to obtain a yellow coupler dispersion. Prepared. The yellow coupler dispersion was mixed with the blue-sensitive silver halide emulsion (101B) prepared above to prepare a first layer coating solution.
(第 2層〜第 7層塗布液の調製 )  (Preparation of coating solution for 2nd to 7th layers)
第 2層〜第マ層塗布液についても、 上記第 1層塗布液の調製方法と同様にし て、 下記の各添加剤を用いて調製した。  The coating liquids for the second layer to the second layer were prepared using the following additives in the same manner as in the preparation method of the first layer coating liquid.
(試料 101の構成)  (Configuration of sample 101)
く第 7層 :保護層〉 g/m2 ゼラチン 1. 00 D I D P 0. 0 O 5 二酸化珪素 0. 003 く第 6層:紫外線吸収層〉 7th layer: protective layer> g / m 2 gelatin 1.00 DIDP 0.0 O 5 Silicon dioxide 0.0003 layer 6: UV absorbing layer>
ゼラチン 0. 40 紫外線吸収剤 (UV— 1 ) 0. 12 紫外線吸収剤 (UV— 2 ) 0. 04 紫外線吸収剤 ( U V - 3 ) 0. 16 スティン防止剤 (HQ— 5 ) 0. 04 P V P (ポリ ビニルピロ リ ドン ) 0. 03 . ィラジェ一ション防止染料( A I— 1 ) 0. 01 く第 5層:赤感光性層〉 Gelatin 0.40 UV absorber (UV-1) 0.12 UV absorber (UV-2) 0.04 UV absorber (UV-3) 0.16 Sting inhibitor (HQ-5) 0.04 PVP ( Polyvinylpyrrolidone) 0.03. Anti-irradiation dye (AI-1) 0.011 (5th layer: red-sensitive layer)
ゼラチン 1 30 赤感光性ハロゲン化銀乳剤 ( 10 1 R ) 0 21 シァンカプラー ( C一 1 ) 0 25 シァンカプラー ( C - 2 ) 0 08 色素画像安定化剤 ( S T— 1 ) 0 10 スティン防止剤 (HQ- 1 ) 0 004 D 0 P 0 34 く第 4層:紫外線吸収層 > Gelatin 1 30 Red light-sensitive silver halide emulsion (10 1 R) 0 21 Cyan coupler (C-1) 0 25 Cyan coupler (C-2) 0 08 Dye image stabilizer (ST-1) 0 10 Sting inhibitor (HQ -1) 0 004 D 0 P 0 34 4th layer: UV absorbing layer>
ゼラチン 0. 94 紫外線吸収剤 (UV— 1 ) 0. 28 紫外線吸収剤 (UV— 2 ) 0. 09 紫外線吸収剤 (UV - 3 ) 0. 38 スティン防止剤 (HQ— 3 ) 0. 10 ィラジェ一ショ ン防止染料( A I— 1 ) 0. 02 く第 3層:緑感光性層〉 Gelatin 0.94 UV absorber (UV-1) 0.28 UV absorber (UV-2) 0.09 UV absorber (UV-3) 0.38 Sting inhibitor (HQ-3) 0.10 Anti-irradiation dye (AI-1) 0.02 Third layer: Green photosensitive layer>
ゼラチン 1 30 緑感光性ハロゲン化銀乳剤( 101 G ) 0 1 マゼンタカプラー ( M— 1 ) 0 20 色素画像安定化剤 ( S T - 3 ) 0 20 色素画像安定化剤 ( S T— 4 ) 0 17 D I D P 0 13 D B P 0 13 ィラジェーシヨ ン防止染料( A I— 2 ) 0 01 く第 2層:中間層〉 Gelatin 1 30 Green photosensitive silver halide emulsion (101G) 0 1 Magenta coupler (M-1) 0 20 Dye image stabilizer (ST-3) 0 20 Dye image stabilizer (ST-4) 0 17 DIDP 0 13 DBP 0 13 Anti-irradiation dye (AI-2) 0 01 2nd layer: middle layer>
ゼラチン 1 20 スティン防止剤 (HQ— 2 ) 0 03 スティン防止剤(HQ— 3 ) 0 03 スティン防止剤 (HQ— 4 ) 0 05 スティン防止剤 (HQ— 5 ) 0 23 D I D P 0 06 蛍光増白剤 (W— 1 ) 0 10 ィラジェーシ 3ン防止染料 ( A I - 3 ) 0 01 〈第 1層:青感光性層〉 Gelatin 1 20 Stin inhibitor (HQ-2) 0 03 Stin inhibitor (HQ-3) 0 03 Stin inhibitor (HQ-4) 0 05 Stin inhibitor (HQ-5) 0 23 DIDP 006 Optical brightener (W- 1) 0 10 Irradiation dye (AI-3) 0 01 <First layer: blue-sensitive layer>
ゼラチン 1. 20 青感光性ハロゲン化銀乳剤 ( 101 B ) 0. 26 イエロ一カプラー ( Y— 1 ) 0. 70 色素画像安定化剤 ( S T _ 1 ) 0, 10 色素画像安定化剤 ( S T— 2 ) 0, 10 スティ ン防止剤 (HQ— 1 ) 0, 01 色素画像安定化剤 ( S T - 5 ) 0, 10 画像安定剤 A 0, 1 5 DNP 0 05 D B P 0. 10 支持体:反射支持体 1 ポリエチレンラミネート紙(微量の着色剤を含有) なお、上記の各ハロゲン化銀乳剤の添加量は、銀に換算して表示した。また、 上記各塗布液には、 硬膜剤として (H— 1 )、 (H— 2 ) を添加し、 塗布助剤と しては、界面活性剤( S U— 2 )、( S U— 3 )を添加し、表面張力を調整した。 また、 防腐剤 F— 1を適宜添加した。 Gelatin 1.20 Blue-sensitive silver halide emulsion (101B) 0.26 Yellow coupler (Y—1) 0.70 Dye image stabilizer (ST_1) 0,10 Dye image stabilizer (ST-2) 0,10 Stain inhibitor (HQ-1) 0,01 Dye image stabilizer (ST-5) 0, 10 Image stabilizer A 0, 15 DNP 005 DBP 0.10 Support: Reflective support 1 Polyethylene laminated paper (contains a trace amount of colorant) The amount of each silver halide emulsion mentioned above is Converted and displayed. Further, (H-1) and (H-2) are added to each of the above coating solutions as a hardening agent, and surfactants (SU-2) and (SU-3) are used as coating aids. Was added to adjust the surface tension. Preservative F-1 was added as appropriate.
S U - 1 : ト リー i—プロピルナフタレンスルホン酸ナトリウム  S U-1: Tri sodium i-propyl naphthalene sulfonate
S U- 2 : スルホ琥珀酸ジ ( 2—ェチルへキシル) 'ナトリゥム塩  S U-2: Sulfosuccinate di (2-ethylhexyl) 'sodium salt
S U— 3 : スルホ琥珀酸ジ ( 2, 2, 3, 3, 4, 4, 5, 5—才クタフル ォロペンチル) ·ナト リゥム塩  S U—3: di-sulfosuccinate (2,2,3,3,4,4,5,5-taktolopentyl) and sodium salt
D B P : ジブチルフタ レー ト  DBP: dibutyl phthalate
DN P : ジノニルフタ レート  DN P: dinonyl phthalate
D 0 P : ジォクチルフタレート  D 0 P: Dioctyl phthalate
D I D P : ジ一 i ーデシルフタレ一卜  DIDP: Di-i-decylphthalate
H- 1 :テトラキス (ビニルスルホニルメチル) メタン  H-1: Tetrakis (vinylsulfonylmethyl) methane
H- 2 : 2, 4—ジクロロ ー 6—ヒ ドロキシ _ s—ト リアジン ' ナト リウム H-2: 2,4-dichloro-6-hydroxy_s-triazine 'sodium
HQ— 1 : 2, 5—ジー t—ォクチルハイ ドロキノン HQ— 2 : 2, 5—ジ一 s e c—ドデシルハイ ドロキノン HQ—1: 2,5—G-t-octyl high droquinone HQ—2: 2,5-di-sec—dodecylhydroquinone
HQ— 3 : 2, 5ージ一 s e c—テトラデシルハイ ドロキノン  HQ-3: 2,5-di-sec-tetradecylhydroquinone
HQ— 4 : 2— s e c—ドデシノレ一 5— s e c—テトラデシノレノヽィ ドロキノ ン '  HQ—4: 2—sec—dodecinoleone 5—sec—tetradecinolenodidroquinone
HQ— 5 : 2, 5—ジ〔( 1, 1一ジメチルー 4一へキシルォキシ力ルボニル) ブチル〕 ハイ ドロキノン .  HQ—5: 2,5-di [(1,1-dimethyl-4-hexyloxycarbonyl) butyl] hydroquinone.
画像安定剤 A : P - t一才クチルフヱノール  Image stabilizer A: P-t one-year-old octylphenol
Y— 1 Y— 1
Figure imgf000032_0001
Figure imgf000032_0001
M-1
Figure imgf000032_0002
M-1
Figure imgf000032_0002
c一 1 c-1
Figure imgf000032_0003
Figure imgf000032_0003
C-2  C-2
Figure imgf000032_0004
Figure imgf000032_0004
Figure imgf000033_0001
Figure imgf000033_0001
S—丄 S
Figure imgf000033_0002
S— 丄 S
Figure imgf000033_0002
17—丄 S οτ
Figure imgf000033_0003
17— 丄 S οτ
Figure imgf000033_0003
£—丄 S
Figure imgf000033_0004
£ — 丄 S
Figure imgf000033_0004
Ζ—丄 S
Figure imgf000033_0005
Ζ— 丄 S
Figure imgf000033_0005
レー丄 S  Ray S
886000/C00Zdf/X3d 6£Z890請 OAV UV— 2
Figure imgf000034_0001
UV— 3
886000 / C00Zdf / X3d 6 £ Z890 contract OAV UV— 2
Figure imgf000034_0001
UV— 3
Figure imgf000034_0002
Figure imgf000034_0002
1-1
Figure imgf000034_0003
1-1
Figure imgf000034_0003
AI-2 AI-2
Figure imgf000034_0004
Figure imgf000034_0004
AI-3AI-3
Figure imgf000034_0005
W-1
Figure imgf000034_0005
W-1
Figure imgf000035_0001
Figure imgf000035_0001
F-1  F-1
, 、 、 + ,,, +
Cに S CH3
Figure imgf000035_0002
C to S CH 3
Figure imgf000035_0002
(50%) (46%) (4%) モル比 なお、 上記作製した試料 101の後述の方法で測定した反射濃度 0. 3を与 える露光量(Eo.3) の対数値と、 Emaxの対数値との差 AL 0 g Eは、 青感光 性イエロ—色画像形成層 (第 1層) で 0. 33、 緑感光性マゼンタ色画像形成 層 (第 3層) で 0. 32、 赤感光性シアン色画像形成層 (第 5層) で 0. 34 であった。 (50%) (46%) (4%) Molar ratio The logarithmic value of the exposure amount (Eo. 3 ) that gives the reflection density of 0.3 measured on the sample 101 prepared above by the method described later, and E max AL 0 g E is 0.33 for the blue-sensitive yellow-color image forming layer (first layer), 0.32 for the green-sensitive magenta image forming layer (third layer), and red It was 0.34 in the photosensitive cyan image forming layer (fifth layer).
〔試料 102の作製〕  (Preparation of Sample 102)
上記試料 101の作製において、第 1層(青感光性層)、第 3層(緑感光性層) 及び第 5層 (赤感光性層) のハロゲン化銀量及びカプラー添加量を適宜増量し て、 A L o g Eを、 第 1層で 0. 39、 第 3層で 0. 40、 第 5層で 0. 37 とした以外は同様にして、 試料 102を作製した。  In the preparation of Sample 101, the silver halide amount and the coupler addition amount of the first layer (blue-sensitive layer), the third layer (green-sensitive layer), and the fifth layer (red-sensitive layer) were appropriately increased. A sample 102 was prepared in the same manner except that AL og E was 0.39 for the first layer, 0.40 for the third layer, and 0.37 for the fifth layer.
〔試料 103の作製〕  (Preparation of Sample 103)
上記試料 1◦ 1の作製において、第 1層(青感光性層)、第 3層(緑感光性層) 及び第 5層 (赤感光性層) で用いた各乳剤の化学増感時に、 チォ硫酸ナトリゥ ムの添加量を 0. 5 X 1 0— 4モル Zモル A g Xに変更し、 更にト リフヱニルフ ォスフィ ンセレニドを 0. 5 X 1 0— 4モル /モル A g X添加した以外は同様に して、 試料 1 03を作製した。 In the preparation of the above sample 1◦1, when the emulsions used in the first layer (blue-sensitive layer), the third layer (green-sensitive layer) and the fifth layer (red-sensitive layer) were chemically sensitized, Sodium sulfate Change the amount of beam to 0. 5 X 1 0- 4 mol Z moles A g X, is in the same manner except for adding further preparative Rifuwenirufu Osufi Nserenido a 0. 5 X 1 0- 4 mol / mol A g X Thus, Sample 103 was prepared.
〔試料 1 0 :〜 1 09の作製〕  [Preparation of Sample 10: ~ 109]
上記試料 1 03の作製において、第 1層(青感光性層)、第 3層(緑感光性層) 及び第 5層 (赤感光性層) のハロゲン化銀量及びカプラー添加量を適宜変更し た以外は同様にして、 下表に示す各 Δ L 0 g Eを有する試料 1 04〜1 09を 作製した。  In the preparation of Sample 103, the amounts of silver halide and couplers in the first layer (blue-sensitive layer), the third layer (green-sensitive layer), and the fifth layer (red-sensitive layer) were appropriately changed. Samples 104 to 109 having ΔL 0 gE shown in the following table were prepared in the same manner except for the above.
〔試料 1 1 0の作製〕  [Preparation of Sample 110]
上記試料 1 09の作製において、各感光性ハロゲン化銀乳剤の調製において、 化学増感時の化学増感剤 (チォ硫酸ナトリウム、 トリフヱニルフォスフィ ンセ レニド、 塩化金酸) と安定剤 ( S T AB_ 1〜S TA B— 3 ) の添加量及び化 学増感条件 (温度、 時間) を適宜変更して、 多重露光適性の異なる各感光性ハ ロゲン化銀乳剤を調製し、 これらを用いた以外は同様にして、 試料 1 1 0を作 製した。  In the preparation of Sample 109 above, in the preparation of each photosensitive silver halide emulsion, a chemical sensitizer (sodium thiosulfate, trifrinylphosphine serenide, chloroauric acid) and a stabilizer (ST By changing the amount of AB_1 to STAB-3) and the chemical sensitization conditions (temperature and time) as appropriate, each photosensitive silver halide emulsion with different suitability for multiple exposure was prepared and used. A sample 110 was prepared in the same manner except for the above.
〔試料 1 1 1の作製〕  [Preparation of sample 1 1 1]
上記試料 1 1 0の作製において、 第 1層、 第 3層、 第 5層のカプラー付量を 適宜変更し、 Dm a Xバランスを変更した以外は同様にして、 試料 1 1 1を作 製した。 * 1 Δ L 0 g E 備考 In the preparation of Sample 110, Sample 11 was prepared in the same manner except that the amounts of couplers of the first layer, the third layer, and the fifth layer were appropriately changed and the Dma X balance was changed. . * 1 ΔL 0 g E Remarks
Y M C  Y M C
10 1 1/0 0. 33 0. 32 0. 34 比較例 102 /O 0. 39 0. 40 0. 37 比率父例10 1 1/0 0.33 0.32 0.34 Comparative example 102 / O 0.39 0.40 0.37 Ratio father
103 0. 5 / 0. 5 0. 30 0. 33 0. 3 1 比卑父例103 0.5 / 0.5 0.5 0.30 0.33 0.3 1
104 0. 5 / 0. 5 0. 64 0. 65 0. 63 比早交例104 0.5 / 0.5 0.5 0.64 0.65 0.63
105 0. 5 0. 5 0. 5 1 0. 32 0. 52 比率交例105 0.5 0.5 0.5 0.5 0.5 0 32 0.552
106 0. 5 0. 5 0. 51 0. 52 0. 52 本発明 107 0. 5/0. 5 0. 37 0. 38 0. 36 本発明106 0.5 0.5 0.5 0.51 0.52 0.52 The present invention 107 0.5 / 0.5 0.50 37 0.38 0.36 The present invention
108 0. 5/0. 5 0. 57 . 0. 59 0. 58 本発明108 0.5 / 0.5 0.5 0.57 .0.59 0.58
109 0. 5/0. 5 0. 5 1 0. 52 0. 52 本発明109 0.5 / 0.5 0.5 0.5 1 0.52 0.52
1 10 0. 5/0. 5 0. 5 1 0. 52 0. 52 本発明1 10 0.5 / 0.5 0.5 0.5 1 0.52 0.52
1 1 1 0. 5/0. 5 0. 5 1 0. 52 0. 52 本発明 * 1 :第 1層、 第 3層、 第 5層の各感光性ハロゲン化銀乳剤のカルコゲン増 感剤の構成比(モル比):チォ硫酸ナ ト リ ウム/ト リフエニルフォスフ ィ ンセレ 二ド 1 1 10.5 / 0.5.0.5 1 0.52 0.52 The present invention * 1: The chalcogen sensitizer of each of the first, third and fifth layers of the photosensitive silver halide emulsions Constituent ratio (molar ratio): sodium thiosulfate / triphenylphosphine resin
《ハ口ゲン化銀力ラー写真感光材料の評価》 《Evaluation of silver halide photographic light-sensitive material》
〔露光〕  (Exposure)
以上のようにして作製した各試料について、 以下のような走査露光、 処理を 行つた。走査露光は光源として、 半導体レーザ一(発振波長 650 n m )、 H e 一 N eガスレーザ一(発振波長 544 n m ) A rガスレーザ一(発振波長 45 8 n m ) を用い、 画像データに基づき各々のレーザ一ビームに対して A OMに より光量を変調しながら、 ポリゴンに反射させて、 感光材料上に主走査を行う と同時に、 主走査方向に対して垂直方向に感光材料を搬送する (副走査) こと により行った。 この時、 ビーム径は B、 G、 R各々 100〃 mであることを、 ビームモニターを用いて確認した。 また、 目標最高濃度値 ( P h 0 t 0 s h 0 p 5. 0 (ァドビ社製) で作成した画像データ (R、 G、 B ) = ( 0、 0、 0 ) のプリ ント上での再現目標値) を、 (R、 G、 B ) = ( 2. 30、 2. 17、 1.Scanning exposure and processing as described below were performed on each sample manufactured as described above. For scanning exposure, a semiconductor laser (oscillation wavelength 650 nm), He-Ne gas laser (oscillation wavelength 544 nm), and an Ar gas laser (oscillation wavelength 45 8 nm), the amount of light for each laser beam is modulated by AOM based on image data, reflected on polygons, and main scanning is performed on the photosensitive material. The photosensitive material was conveyed vertically (sub-scan). At this time, it was confirmed using a beam monitor that the beam diameter was 100 m for each of B, G, and R. Reproduction of image data (R, G, B) = (0, 0, 0) created on the print with the target maximum density value (Ph0t0sh0p5.0 (manufactured by Adobe)) Target value), (R, G, B) = (2.30, 2.17, 1.
97 ) に設定し、 最低濃度から最高濃度までを、 21ステップに分割してグレ —パッチの出力を行い、 下記現像処理工程による処理を施して得られたグレ一 パッチの濃度測定結果から、 画像データと露光量制御値を対応づける制御用変 換テ一ブル ( C— LUT ) を書き換える作業 (キヤリブレーシヨン) を 3回繰 り返した。 3回のキャ リブレーショ ン作業終了後いずれの場合も、 画像データ と目標濃度を対応づける変換テーブル (D— LUT ) に予め設定されていた目 標濃度と、 実際にプリ ン トされたダレ一パッチ濃度との差が、 目標濃度に対し て平均で 5%以内となっていることを確認した。 また、 キヤリブレーシ aンが 終了した段階で、 最高濃度を得るのに必要な露光量を制御用変換テーブルから 読みとり、 各画像形成層における最大露光量 ( Em a X ) を求めた。 97), from the lowest density to the highest density, it is divided into 21 steps, and the output of the gray patch is performed. From the density measurement result of the gray patch obtained by processing by the following development process, The work of rewriting the control conversion table (C-LUT) that associates data with the exposure control value (calibration) was repeated three times. In each case after the three calibration operations, the target density set in advance in the conversion table (D-LUT) that associates the image data with the target density, and the actual printed patch It was confirmed that the difference from the concentration was within 5% of the target concentration on average. At the end of the calibration process, the exposure required to obtain the highest density was read from the control conversion table, and the maximum exposure (EmaX) for each image forming layer was determined.
このようにして、 目標最高濃度の設定及びキヤリブレ一ションが終了した状 態で、 P h o t o S h o p 5. 0上で作成した画像データに基づき、 各試料に 走査露光を行い、 下記現像処理工程による処理を行った。 なお、 使用した画像 データは、 解像度 300 d p iで作成されており、 1画素幅の黒線((R、 G、 B ) = ( 0、 0、 0 )) パターン及び、 3種類の黒色データ (( R、 G、 B ) = ( 0、 0、 0 )、 ( 13、 13、 1 3 )ヽ ( 26、 26、 26 )) で描かれている 2 ボイント及び 4ボイントのテキスト画像、 背景は黒色((R、 G、 B ) = ( 0、 0、 0 )) で、 白色 ((R、 G、 B ) = ( 255、 255、 255 )) で作成した 白抜き文字テキスト画像、 RGBの画像データを少しずつ変化させながら組み 合わせて作成したダレ一パッチ群及びイエロ一、 マゼンタ、 シアン単色のパッ チ群及び鮮明度チャート画像の組み合わせで構成した。 なお、 本発明でいう d p i とは、 2. 54 c m当たりのドッ ト数を表す。 With the target maximum density set and calibration completed in this way, each sample is subjected to scanning exposure based on the image data created on PhotoShop 5.0, and the Processing was performed. The image data used is created at a resolution of 300 dpi, and has a 1-pixel wide black line ((R, G, B) = (0, 0, 0)) pattern and three types of black data (( R, G, B) = (0, 0, 0), 2 drawn as (13, 13, 13) ヽ (26, 26, 26)) Point and 4-point text images, black background ((R, G, B) = (0, 0, 0)) and white ((R, G, B) = (255, 255, 255)) It consisted of a combination of a single patch group, a patch group of yellow, magenta, and cyan, and a sharpness chart image created by combining white character text images and RGB image data with little change. In the present invention, dpi refers to the number of dots per 2.54 cm.
このようにして得られた各プリ ント画像において、 グレーパッチ群の濃度を X- i t e 938反射型分光測色/濃度計 (X— R i t e社製) で測定し、 ステータス A反射濃度が (R、 G、 B ) = ( 0. 30、 0. 30、 0. 30 ) となるパッチの画像データと制御用変換テ一ブルから各画像形成層において、 反射濃度 0. 3を与える露光量( Eo.3) を求めた。 これらから、 L o g E (D ma x ) L o g E ( Do. 3 ) を求め、 その差を AL o g Eとした。 In each print image obtained in this way, the density of the gray patch group was measured with an Xite 938 reflection spectrophotometer / densitometer (manufactured by X-Rite), and the status A reflection density was (R , G, B) = (0.30, 0.30, 0.30) From the image data of the patch and the control conversion table, in each image forming layer, an exposure amount (Eo 3 ) was asked. From these, L og E (D max) L og E (Do. 3) was obtained, and the difference was defined as AL og E.
また、 このようにして作製した各感光材料試料について、 青光源にヘリウム ' 力 ドミゥムレ一ザ一(約 422 nm)、緑の光源としてはへリゥム · ネオンレ —ザ一(約 544 n m )、赤の光源としてガリゥムアルミニウム '砒素半導体レ —ザ一 (約 780 n m) を利用した光学系で、 ビーム径が約 80〃 m、 ポリゴ ンミラ一を使用し走査速度 1 6 O m/秒、 1画素当たりの露光時間は 5 X 10 一7秒の条件で下記の 3種類の露光を行つた。 In addition, for each of the photosensitive material samples prepared in this manner, a helium-power laser beam (about 422 nm) was used as the blue light source, a purple neon laser (about 544 nm) as the green light source, and a red light source (about 544 nm). An optical system using a gallium aluminum arsenic semiconductor laser (approximately 780 nm) as the light source. A beam diameter of approximately 80 m, a polygon mirror is used, and a scanning speed of 16 Om / s, 1 pixel The following three types of exposure were performed under the conditions of an exposure time of 5 × 10 17 seconds.
1 :露光量を外部変調器により制御することにより、 グレー階調露光を 1度 施した試料及び 2度施した試料  1: A sample that has been subjected to gray-scale exposure once and a sample that has been subjected twice by controlling the exposure amount using an external modulator.
2 :濃度 1. 0のダレ一パッチが得られるよう均一走査露光した試料 〔現像処理〕  2: Sample subjected to uniform scanning exposure to obtain a patch with a density of 1.0 [Development processing]
上記の露光を施した各試料について、 下記の現像処理を行った。 〈現像処理工程〉 Each of the exposed samples was subjected to the following development processing. <Development process>
処理工程 処 理 温 度 時間 補充量 発色現像 38. 0 ± 0. 3 °C 45秒 80 m 1 /m2 漂白定着 3 5. 0 ± 0. 5°C 45秒 1 20 m 1 / m 2 安 定 ィヒ 3 0〜 34で 6 0秒 1 50 m 1 / m 2 乾 燥 6 0〜 80 °C 3 0秒 Process treatment temperature Time replenishment rate color developing 38. 0 ± 0. 3 ° C 45 seconds 80 m 1 / m 2 blix 3 5. 0 ± 0. 5 ° C 45 sec 1 20 m 1 / m 2 depreciation in the constant I inhibit 3 0-34 6 0 seconds 1 50 m 1 / m 2 drying 6 0 to 80 ° C 3 0 seconds
現像工程で用いた各現像処理液の組成を下記に示す。  The composition of each developing solution used in the developing step is shown below.
く発色現像液〉  Color developing solution>
タンク液 補充液 純水 8 00 m l 80 0 m l ト リェチレンジァミン 2 g 3 g ンェチレンク リ コーノレ 1 0 g 1 0 g 臭化力 リ ウム 0. 0 1 g  Tank liquid Replenisher Pure water 8000 ml 800 ml ml Triethylene diamine 2 g 3 g Nethylen konori 10 g 10 g Lithium bromide 0.0 1 g
塩化カ リ ウム 3. 5 g  3.5 g of potassium chloride
亜硫酸力リウム 0. 2 5 g 0. 5 g Potassium sulphite 0.25 g 0.5 g
Ν—ェチルー Ν— ( βメタンスルホンァミ ドェチル) ― 3ーメチルー 4—ァ ミノァニリ ン硫酸塩 6. 0 g 1 0. 0 gェ —Ethyl Ν— (β-methanesulfonamidoethyl) ― 3-methyl-4-aminoaminolinyl sulfate 6.0 g 1 0.0 g
Ν, Ν—ジェチルヒ ドロキシルァミ ン 6. 8 g 6. 0 g ト リエタノ一ルァミ ン 1 0. 0 g 1 0. 0 g ジェチレント リアミ ン五酢酸五ナト リウム塩 2. 0 g 2. 0 g 蛍光増白剤 ( 4, 4' —ジアミノスチルベンジスルホン酸誘導体) Ν, Ν-Jetylhydroxylamine 6.8 g 6.0 g Triethanolamine 1.00.0 g10.0 g (4, 4'-Diaminostilbene disulfonic acid derivative)
2. 0 g 2. 5 g 炭酸力 リゥム 3 0 g 3 0 g 水を加えて全量を 1 リッ トルとし、 タンク液は pHを 10. 10に、 補充液 は pHを 10. 60に調整した。 2.0 g 2.5 g Carbonated rim 30 g 30 g The total volume was adjusted to 1 liter by adding water, and the pH of the tank solution was adjusted to 10.10 and the pH of the replenisher was adjusted to 10.60.
く漂白定着液: タンク液及び補充液〉  Bleach-fixer: tank solution and replenisher>
ジエチレント リアミ ン五酢酸第二鉄ァンモニゥム 2水塩 65 g ジェチレント リアミ ン五酢酸 3 g チォ硫酸アンモニゥム ( 70%水溶液) 100m l 2—ァミノ一 5 _メルカプト一 1 , 3, 4—チアジアゾール 2. 0 g 亜硫酸ァンモニゥム ( 40 %水溶液) 27. 5 m l 水を加えて全量を 1 リ ッ トルとし、 炭酸カリウム又は氷酢酸で p Hを 5. 0 に調整した。  Diethylene triammonium pentaacetate diammonium dihydrate 65 g Getilent rimamine pentaacetic acid 3 g Ammonium thiosulfate (70% aqueous solution) 100 ml 2-amino-5-mercapto-1,3,4-thiadiazole 2.0 g Ammonium sulfite (40% aqueous solution) 27.5 ml water was added to make up the whole volume to 1 liter, and the pH was adjusted to 5.0 with potassium carbonate or glacial acetic acid.
く安定化液: タンク液及び補充液〉  Stabilizing solution: tank solution and replenisher>
o—フヱニルフヱノール l. O g 5—クロロ ー 2—メチル一 4—イソチアゾリ ンー 3—オン 0. 02 g o-Phenylphenol l. O g 5-Chloro-2-methyl-1-4-isothiazolin-3-one 0.02 g
2—メチル一 4一イソチアゾリ ンー 3—オン 0. 02 g ジエチレングリコール 1. 0 g 蛍光増白剤 (チノパール S FP ) 2. 0 g2-Methyl-1-isothiazolin-3-one 0.02 g Diethylene glycol 1.0 g Optical brightener (Tinopal S FP) 2.0 g
1—ヒ ドロキシェチリデン _ 1 , 1一ジホスホン酸 1. 8 g 塩化ビスマス ( 45 %水溶液) 0. 65 g 硫酸マグネシウム · 7水塩 0. 2 g P V P l. O g アンモニア水 (水酸化アンモニゥム 25 %水溶液) . 2. 5 g 二トリ口三酢酸三ナト リウム塩 1. 5 g 水を加えて全量を 1 リ ッ トルとし、 硫酸又はアンモニア水で p Hを 7. 5に 調した。 1-Hydroxyshethylidene_1,1-diphosphonic acid 1.8 g Bismuth chloride (45% aqueous solution) 0.65 g Magnesium sulfate / 7 hydrate 0.2 g PVP l. O g Ammonia water (ammonium hydroxide 2.5 g Trisodium triacetate trisodium salt 1.5 g Water was added to make up to 1 liter, and the pH was adjusted to 7.5 with sulfuric acid or aqueous ammonia. I adjusted it.
(多重露光適性の評価)  (Evaluation of suitability for multiple exposure)
上記露光及び発色現像処理を施した各試料について、 得られた階調画像を反 射濃度計(X— R i t e社製の X— R i t e 938 ) で測定し、 横軸:露光量 ( L 0 g E )、縦軸:発色濃度( D)からなる特性曲線を作成した後、イエロ一、 マゼンタ、 シアン画像の各濃度 0. 5と 1. 5の間で露光量に対する濃度変化 の傾き r y、 r m、 r cについて、 l回露光での傾き?^に対する 2回露光での 傾き r 2の変化率の絶対値を下式に従つて階調変動率 Δ r y、 A rm、 A r cを 求め、 これを多重露光適性の尺度とした。 For each sample subjected to the above exposure and color development processing, the obtained gradation image was measured with a reflection densitometer (X-Rite 938 manufactured by X-Rite), and the horizontal axis was the exposure amount (L 0 g E), vertical axis: After creating a characteristic curve consisting of the color density (D), the gradient ry of the density change with respect to the exposure amount between each density 0.5 and 1.5 of yellow, magenta, and cyan images. For rm, rc, tilt at l exposures? The absolute value of the rate of change of the slope r2 in the two exposures to ^ was determined as the gradation variation rates Δry, Arm, and Arc according to the following equation, and this was used as a measure of the suitability for multiple exposure.
階調変動率 (%) = { | 2— r i i Zr i } x i o o  Gradation change rate (%) = {| 2— r i Zr i} x i o o
(各最大濃度 Dmaxの測定) (Measurement of each maximum concentration D max )
上記発色現像処理済み試料について、 反射濃度計(X— R i t e社製の X— R i t e 938 ) を用いて、 Y、 M、 Cの最大濃度( DmaxBヽ DmaxG、 DmaxR) を測定し、 0„^;: 01„^(5及び131^!^701^^を求めた。 For the color development processed samples, using a reflection densitometer (X- R ite Co. X- R ite 938), Y, M, the maximum concentration of C (D maxBD maxG, D maxR) was measured , 0 „^ ; : 0 1 „ ^ (5 and 13 1 ^ ! ^ 70 1 ^^ were determined.
(鮮明度の評価)  (Evaluation of sharpness)
上記作製した各試料の鮮明度チヤ一ト画像について 10人で目視観察を行 い、 鮮明度 (画像の鮮やかさ) が良好であると判定した人が 10人であれば◎ ◎、 9人であれば◎、 7、 8人であれば〇、 5、 6人であれば△、 4人以下で あれば Xと判定した。  The sharpness chart image of each sample prepared above was visually observed by 10 people. If there were ◎, 7 or 8 〇, 5 or 6 △, and 4 or less X.
(高速デジタルプリント適性の評価)  (Evaluation of suitability for high-speed digital printing)
各試料を用いて、 高速レーザ一プリンタ一 (ノーリツ社製のノ一リツ QS S 3101デジタルプリンタ一) で、 L版を毎時 2350枚の条件で、 濃度 1. 0のダレ一パッチが得られるよう均一走查露光した画像を 1時間連続してプリ ントした後、 最終プリ ントについて画像濃度部のバラツキについて下記の評価 を行った。 Using each sample, with a high-speed laser printer (Noritsu QS S 3101 digital printer manufactured by Noritz), it is possible to obtain a patch with a density of 1.0 under the condition of 2350 sheets per hour of L plate. Uniform scanning Pre-exposed image for 1 hour After the printing, the following evaluation was performed for the variation in the image density portion of the final print.
く画像濃度部のバラツキ評価〉  Evaluation of variation in image density area>
最終プリントの濃度 1 . 0のダレ一パッチ部について反射濃度計を用いて、 5 1 0 0力所について各色反射濃度を測定し、 各最大濃度と最小濃度の差 ( ι . ο ) を求め、 その差の平均値を画像濃度部のバラツキの尺度とした。  Using a reflection densitometer on the patch of the final print with a density of 1.0, measure the reflection density of each color at 5100 points, and find the difference (ι.ο) between the maximum density and the minimum density. The average value of the differences was used as a measure of the variation in the image density portion.
以上により得られた結果を、 下表に示す。 The results obtained above are shown in the table below.
多重露光適性 Dmax/ ランス 氺丄 1 PR F0= Multiple exposure suitability D max / Lance 氺 丄 1 PR F0 =
鮮明度 備 Sharpness
Λ Λ
y H γ m 厶 r c B/G R/G 丄 U 丄 丄 b 1 1 0 . 61 0 . 62 U · u 1 、/  y H γ m m r c B / G R / G 丄 U 丄 b 1 1 0 .61 0 .62 U · u 1, /
y X 比較例 丄 U ^ 丄 1  y X Comparative example 丄 U ^ 丄 1
b 13 12 0 . 63 0 . 61 U . U 1 o X しレ 六 /TTrl  b 13 12 0 .63 0 .61 U. U 1 o X
比早父例 丄 U d 丄 ( 15 ' 1 0 . 63 0 . 62 u · U 1 O X ΐΏ\ 比早父例 丄 U 1 ο  早 U d 丄 (15 '10 .63 0 .62 u · U 1 O X ΐΏ \
4· 丄 b 19 18 0 . 62 0 • 62 r  4 丄 b 19 18 0 .62 0 • 62 r
U . U 11 o o Λ レレ 六/ ΏΙ 比早父例 丄 1 n U O 丄 ί 13 1 0 . 63 0 • 62 U . U 1 Λ  U 11 U o Λ レ レ レ レ n n 1 n U O 丄 ί 13 1 0. 63 0 • 62 U.
7 比較例 丄 U 1  7 Comparative example 丄 U 1
b 丄 ワ ί 丄 1 A  b ワ Wah ί A 1 A
b 丄 r 0 . 64 u . Ό O U . (J 11 υ 9¾明 107 16 1 1 0 . 63 0 . 62 0. 013 〇 本発明 b 丄 r 0 .64 u. Ό O U. (J11 υ 9 Description 107 16 1 1 0 .63 0 .62 0. 013 〇 The present invention
108 18 16 15 0 . 64 0 . 62 0. 012 〇 本発明108 18 16 15 0 .64 0 .62 0 .012 〇 The present invention
109 9 9 8 0 . 63 0 . 64 0. 009 ◎ 本発明109 9 98 0 .63 0 .64 0 .009 ◎ The present invention
110 9 9 8 0 . 89 0 . 93 0. 006 本発明110 9 98 0 .89 0 .93 0 .006 The present invention
111 9 9 8 1 . 36 1 . 37 0. 0 9 ◎ 本発明 * 1 :高速デジタルプリ ンタ一で連続 1時間プリ ントした後の画像濃度部の 111 9 9 8 1.36 1.37 0. 0 9 ◎ The present invention * 1: The image density area after printing for 1 hour continuously with a high-speed digital printer.
上記結果より明らかなように、 セレン化合物を使用し、 かつ Δ. L o g Eが 3 層とも 0. 35〜0. 6の範囲にある本発明で規定する構成からなる試料 10 6〜111は、 比較例に対し、 高速デジタルプリンタ一で、 連続してプリ ント した後でも、 画像濃度部のバラツキが少なく、 安定した画像が得られた。 また 画像の鮮明度に優れた画像が得られた。 また、 多重露光での階調変動が 10% より少ない試料 109〜111では、より本発明の効果が大きいことが分かる。 加えて、 各 D m a x濃度比が 0 . 7〜1 . 3の範囲にある試料 1 1 0は、 更に本 発明の効果が大きいことが分かる。 As is evident from the above results, samples 106 to 111 using the selenium compound and having a structure defined by the present invention in which Δ.Log E is in the range of 0.35 to 0.6 in all three layers are: Compared to the comparative example, even after continuous printing with a high-speed digital printer, a stable image was obtained with less variation in the image density portion. In addition, an image having excellent image clarity was obtained. Also, it can be seen that the effects of the present invention are greater in the samples 109 to 111 in which the gradation variation in the multiple exposure is less than 10%. In addition, it can be seen that the sample 110 in which each Dmax concentration ratio is in the range of 0.7 to 1.3 has a greater effect of the present invention.
以上のように、 本発明で規定する構成からなる試料は、 比較例に対し、 高速 デジタルプリンタ一で、 連続してプリ ントした後でも、 画像濃度部のバラツキ が少なく、 かつ鮮明度に優れた安定な画像が得られることを確認することがで きた。 産業上の利用の可能性  As described above, the sample having the configuration specified by the present invention has less variation in the image density portion and excellent sharpness even after continuous printing with a high-speed digital printer compared to the comparative example. It was confirmed that a stable image could be obtained. Industrial potential
以上のように、 本発明の構成により、 高速デジタルプリ ンタ一で連続してプ リ ン卜した後でも、 画像濃度部のバラツキが少なく、 かつ鮮明度に優れた安定 な画像が得られる画像形成方法を提供することができる。  As described above, according to the configuration of the present invention, even after continuous printing with a high-speed digital printer, an image forming apparatus that can provide a stable image with less variation in the image density portion and excellent sharpness can be obtained. A method can be provided.

Claims

請求の範囲 The scope of the claims
1. 支持体上に、 感光性ハロゲン化銀を含有する青感光性イエロ一色画像形 成層、 緑感光性マゼンタ色画像形成層及び赤感光性シアン色画像形成層を各々 少なくとも 1層有するハロゲン化銀カラ一写真感光材料に、 1画素当たりの露 光時間が 10— 3秒以下となるような光ビームによる走査露光を施した後、 発色 現像処理を行う画像形成方法において、 キヤリブレーションパッチの出力によ り画像形成時の最大露光量( Eraax)の調整を行い、 かつ該ハロゲン化銀カラ一 写真感光材料が、 反射濃度 0. 3を与える露光量( E。.3) の対数値と、 該 Em axの対数値との差 A L o g Eが、 該青感光性イエロ一色画像形成層、 緑感光性 マゼンタ色画像形成層及び赤感光性シアン色画像形成層で、各々 0. 3 5以上、1. A silver halide having at least one blue-sensitive yellow monochromatic image forming layer containing a photosensitive silver halide, at least one green-sensitive magenta image-forming layer and at least one red-sensitive cyan image-forming layer on a support In an image forming method that performs a color developing process after subjecting a color photographic material to scanning exposure with a light beam so that the exposure time per pixel is 10 to 3 seconds or less, the output of a calibration patch adjusts the maximum exposure amount at the time by Ri image formed (E raax), and said silver halide color one photographic light-sensitive material, the logarithm of the exposure amount (E .. 3) providing a reflection density 0.3 , difference AL o g E between the logarithmic value of the E m ax is該青photosensitive yellow color image forming layer, green light sensitive magenta image forming layer and a red-sensitive cyan color image forming layer, each 0.3 5 or more,
0. 6以下であり、 かつ色画像形成層の少なく とも 1層が、 セレン化合物によ り化学增感を施されたハロゲン化銀を含有することを特徴とする画像形成方 法。 0.6 or less, and at least one of the color image forming layers contains silver halide chemically sensitized with a selenium compound.
2. 10— 6秒以下の露光時間で露光及び発色現像処理を行って得られた横軸 :露光量( L o g E )、 縦軸:発色濃度からなる特性曲線上で、 濃度 0. 5を与 える点と濃度 1. 5を与える点とを通る直線の平均勾配の変動が、 多重露光に おいて 10 %以内であることを特徴とする請求の範囲第 1項に記載の画像形成 方法。 2. The horizontal axis is obtained by performing exposure and color development processing in 10-6 seconds or less exposure time: exposure (L og E), vertical axis: on the characteristic curve consisting of color density, a density 0.5 2. The image forming method according to claim 1, wherein the variation of the average gradient of a straight line passing through the point to be given and the point to give a density of 1.5 is within 10% in multiple exposure.
3. 前記ハロゲン化銀カラー写真感光材料が、 露光時間が 90秒及び 10一6 秒で露光及び発色現像処理を行って得られた、 イエロ一色画像( B )、 マゼンタ 色画像( G)及びシアン色画像(R)の特性曲線上における各最大濃度 Dmaxの 濃度比 ( DmaxBZDraaxG、 DmaxR/DmaxG) が、 各々 0. 7〜; L. 3の範囲に あることを特徴とする請求の範囲第 1項または第 2項に記載の画像形成方法 c 3. The above-mentioned silver halide color photographic light-sensitive material is subjected to exposure and color development processing with an exposure time of 90 seconds and 10 to 16 seconds to obtain a yellow one-color image (B), a magenta color image (G), and cyan. the concentration ratio of each maximum density D max on the characteristic curve of the color image (R) (D maxB ZD raaxG , D maxR / D maxG) are each 0. 7; the range of L. 3 The image forming method c according to claim 1 or 2, wherein
PCT/JP2003/000988 2003-01-31 2003-01-31 Image forming method WO2004068239A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/000988 WO2004068239A1 (en) 2003-01-31 2003-01-31 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/000988 WO2004068239A1 (en) 2003-01-31 2003-01-31 Image forming method

Publications (1)

Publication Number Publication Date
WO2004068239A1 true WO2004068239A1 (en) 2004-08-12

Family

ID=32800841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000988 WO2004068239A1 (en) 2003-01-31 2003-01-31 Image forming method

Country Status (1)

Country Link
WO (1) WO2004068239A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816918A1 (en) * 1996-06-28 1998-01-07 Fuji Photo Film Co., Ltd. Silver halide color photographic material
EP0967518A2 (en) * 1998-06-26 1999-12-29 Konica Corporation Silver halide photographic light sensitive materials and image forming method by use thereof
JP2000214559A (en) * 1999-01-27 2000-08-04 Konica Corp Silver halide photographic sensitive material
JP2000227638A (en) * 1999-02-05 2000-08-15 Konica Corp Image forming method
EP1048976A2 (en) * 1999-04-26 2000-11-02 Konica Corporation Silver halide color photographic light sensitive material and image forming method by use thereof
US6221569B1 (en) * 1997-08-05 2001-04-24 Fuji Photo Film Co., Ltd. Method of forming color images and picture-taking color photographic material used therein
EP1098221A2 (en) * 1999-11-04 2001-05-09 Konica Corporation Image forming method
JP2001133922A (en) * 1999-11-04 2001-05-18 Konica Corp Silver halide color photographic sensitive material and image forming method
JP2001356433A (en) * 2000-06-14 2001-12-26 Konica Corp Image forming method
US20020001783A1 (en) * 1999-12-28 2002-01-03 Akito Yokozawa Silver halide color photographic light-sensitive material
US6348302B1 (en) * 1999-07-13 2002-02-19 Fuji Photo Film Co., Ltd. Image forming method
JP2002296737A (en) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material, processing method and color proof image forming method
JP2002351022A (en) * 2001-05-23 2002-12-04 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816918A1 (en) * 1996-06-28 1998-01-07 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US6221569B1 (en) * 1997-08-05 2001-04-24 Fuji Photo Film Co., Ltd. Method of forming color images and picture-taking color photographic material used therein
EP0967518A2 (en) * 1998-06-26 1999-12-29 Konica Corporation Silver halide photographic light sensitive materials and image forming method by use thereof
JP2000214559A (en) * 1999-01-27 2000-08-04 Konica Corp Silver halide photographic sensitive material
JP2000227638A (en) * 1999-02-05 2000-08-15 Konica Corp Image forming method
EP1048976A2 (en) * 1999-04-26 2000-11-02 Konica Corporation Silver halide color photographic light sensitive material and image forming method by use thereof
US6348302B1 (en) * 1999-07-13 2002-02-19 Fuji Photo Film Co., Ltd. Image forming method
EP1098221A2 (en) * 1999-11-04 2001-05-09 Konica Corporation Image forming method
JP2001133922A (en) * 1999-11-04 2001-05-18 Konica Corp Silver halide color photographic sensitive material and image forming method
US20020001783A1 (en) * 1999-12-28 2002-01-03 Akito Yokozawa Silver halide color photographic light-sensitive material
JP2001356433A (en) * 2000-06-14 2001-12-26 Konica Corp Image forming method
JP2002296737A (en) * 2001-03-30 2002-10-09 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material, processing method and color proof image forming method
JP2002351022A (en) * 2001-05-23 2002-12-04 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material

Similar Documents

Publication Publication Date Title
WO2004068239A1 (en) Image forming method
JP4140376B2 (en) Proof image creation device, proof image creation system and program
JPH10148916A (en) Image forming method
JPH04285950A (en) Image forming method
WO2004068236A1 (en) Silver halide color photography photosensitive material
JP2006078536A (en) Silver halide color photosensitive material
JP2007226103A (en) Silver halide photosensitive material and area gradation image forming method
WO2004010217A1 (en) Silver halide color photographic sensitive material and it image forming method
JP2000227638A (en) Image forming method
JP2002122970A (en) Image forming method for silver halide photographic material
JP2006235599A (en) Silver halide photosensitive material and area gradation image forming method
JP2003029387A (en) Processing method for silver halide color photographic sensitive material
JP2006259492A (en) Silver halide color photosensitive material and dot area image forming method using the same
JP2006235032A (en) Silver halide photographic sensitive material
JP2006258879A (en) Silver halide color photosensitive material and area coverage modulation image forming method
JP2006259491A (en) Silver halide color photosensitive material and dot area image forming method using the same
JP2001147507A (en) Color image forming method
JP2006259318A (en) Silver halide color photosensitive material, dot area image forming method and method for manufacturing silver halide color photosensitive material
JP2002365745A (en) Image forming method
JP2004219895A (en) Color image forming method
WO2005010610A1 (en) Silver halide color photographic material
JP2003029385A (en) Developing processing method for silver halide photosensitive material
JP2001075182A (en) Image forming device and image forming method
JP2004219700A (en) Area-multilevel image forming method
WO2005015307A1 (en) Silver halide color photography sensitive material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN JP KR MX PH PL RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP