WO2004067807A1 - Method for forming anodic oxide coating on surface of aluminum or aluminum alloy - Google Patents

Method for forming anodic oxide coating on surface of aluminum or aluminum alloy Download PDF

Info

Publication number
WO2004067807A1
WO2004067807A1 PCT/JP2004/000684 JP2004000684W WO2004067807A1 WO 2004067807 A1 WO2004067807 A1 WO 2004067807A1 JP 2004000684 W JP2004000684 W JP 2004000684W WO 2004067807 A1 WO2004067807 A1 WO 2004067807A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
aluminum alloy
aluminum
forming
present
Prior art date
Application number
PCT/JP2004/000684
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Mitani
Original Assignee
Nihon Alumina Kakou Kabushiki Kaisha
Kirihata, Takashi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Alumina Kakou Kabushiki Kaisha, Kirihata, Takashi filed Critical Nihon Alumina Kakou Kabushiki Kaisha
Priority to MXPA05008032A priority Critical patent/MXPA05008032A/en
Priority to BR0407080-1A priority patent/BRPI0407080A/en
Priority to US10/542,533 priority patent/US20070267299A1/en
Priority to EP04705515A priority patent/EP1593758A4/en
Priority to JP2005504706A priority patent/JP4069135B2/en
Priority to AU2004207220A priority patent/AU2004207220A1/en
Priority to CA002514271A priority patent/CA2514271A1/en
Publication of WO2004067807A1 publication Critical patent/WO2004067807A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon

Definitions

  • the present invention relates to an improvement in a method for forming an anodic oxide film on the surface of aluminum or an aluminum alloy. Background technology
  • Anodizing aluminum or its alloy in an electrolytic solution such as nitric acid, sulfuric acid, or chromic acid aqueous solution mainly to improve its corrosion resistance to form a corrosion-resistant oxide film is alumite.
  • an electrolytic solution such as nitric acid, sulfuric acid, or chromic acid aqueous solution mainly to improve its corrosion resistance to form a corrosion-resistant oxide film
  • alumite Known as a treatment, the alumite-treated product thus obtained is widely used in various fields, mainly for daily necessities such as pots and kettles.
  • the upper layer of the alumite film is generally porous, the corrosion resistance is still insufficient, and the abrasion resistance, the ease of coloring and the like have not been satisfactory.
  • Patent Documents 1 to 3 below disclose a technique for forming a composite film of an aluminum oxide film and an acryl resin composition, and further relates to a shape of an object to be processed.
  • a technique for forming a dense composite film in a short period of time, and a technique for improving its coloring property are disclosed.
  • Patent Document 1 Japanese Patent Publication No. 0 1—0 1 9 4 7 9
  • Patent Document 2 Japanese Patent Application Laid-Open No. H02-09976998
  • Patent Document 3 Japanese Patent Publication No. 0 5—0 1 4 0 3 3
  • anodic oxide film can be easily formed on an A1-Mn-based alloy, but a treatment can be performed on a duralumin-die-cast alloy. It is impossible, and there is a problem that it is difficult to treat other aluminum alloys.
  • Films formed by the conventional method are also relatively thin, about 30 to 50 / m in thickness, and have low hardness and other limitations.
  • the present invention has been made to solve the above-mentioned problems, and has an object In addition to aluminum itself, it can be applied to all kinds of aluminum alloys including duralumin and die-casting alloys. Surface treatment of aluminum or aluminum alloy, which has many advantages such as high heat resistance, excellent heat resistance and antibacterial properties, and can produce various aluminum materials that can be used in a much wider range of fields than before It is to provide a method.
  • the above object of the present invention is to
  • process of the present invention (1) for convenience of description, and the product obtained thereby is referred to as “product of the present invention (1)”.
  • product of the present invention (1) By using a bath solution to which a low-polymerized acrylic resin composition is added in the range of 280 gr / 1 to 320 gr / 1 to the bath solution used in the above treatment (1) of the present invention, The object can be achieved more suitably.
  • present invention processing (2) This processing according to the present invention is referred to as “present invention processing (2)” for convenience of explanation, and the product obtained thereby is referred to as “present invention product (2)”.
  • a bath solution containing tartaric acid in the range of 5 gr / 1 or more and 15 gr Z1 or less may be used for the bath solution. Recommended.
  • process of the present invention (3) Such a process according to the present invention is referred to as “process of the present invention (3)” for convenience of explanation, and a product obtained thereby is referred to as “product of the present invention (3)”.
  • the object of the present invention is further to form an anodic oxide film having a thickness of 300 m or more and 600 m or less on the surface of aluminum or an aluminum alloy by the above-mentioned various treatment methods, and further performing the silver impregnation thereon,
  • the method can also be achieved by forming an anodized film on the surface of aluminum or aluminum alloy, characterized in that the surface layer is removed to a thickness of 50 m or more and 100 m or less by polishing to obtain a superhard smooth surface.
  • FIG. 1 is an explanatory view showing one embodiment of an apparatus for implementing a method for forming an anodized film on a surface of aluminum or an aluminum alloy according to the present invention.
  • FIG. 2 is an enlarged sectional view of a portion to be coated with aluminum or an aluminum alloy which has been subjected to the treatment (2) of the present invention.
  • 1 is an electrolytic cell
  • 2 is an AC power supply
  • 3 is an aluminum or aluminum alloy member to be treated by the method of the present invention
  • 4 and 4 are non-consumable electrodes such as rubber and graphite
  • 5 Is a bath solution composed of a predetermined electrolytic solution.
  • an apparatus as shown in Fig. 1 was used, and as a bath solution, sulfuric acid of 250 gr / 1 or more and 350 gr / l or less, and 15 gr / 1 or more and 25 gr / 1 or less Using an aqueous solution containing sulphate nigel,
  • the anodizing treatment is performed under the conditions described above.
  • the present invention is completely different from the conventional method in that the anodic oxidation treatment is performed under the processing conditions of high sulfate ion concentration, low temperature, and high current density.
  • Nigel sulfate is added to improve the hardness of the formed film.
  • Examples of the aluminum or aluminum alloy material forming the anodic oxide film by the treatment method of the present invention include those listed in Table 1 below. table 1
  • an anodic oxide film could be easily formed on A1-Mn alloys, but it was not possible to treat duralumin and die cast alloys, and to treat other alloys. Was difficult.
  • the method of the present invention can be applied to all kinds of aluminum alloys such as duralumin, die cast alloys and the like.
  • the film formed by the conventional method has a hard surface layer (however, a Pickers hardness of 400 or less), but has a porous inside and low hardness.
  • the coating formed by the method of the present invention has a high surface hardness and a Vickers hardness of about 450 to 500.
  • the lower layer is denser and harder than the surface, and when removed from the surface by 50 to 150 m, the Vickers hardness becomes 800 to 1000.
  • the film formed by the method of the present invention has high thermal conductivity, which is comparable to that of copper.
  • the coating formed by the method of the present invention has low surface heat transmission resistance.
  • the ice melts twice as fast as an untreated tray. Therefore, for example, it can be suitably used as a tray for thawing frozen foods.
  • the time from the start of heating to the first explosion of the popcorn is reduced from 6 minutes of the conventional product to 3 minutes.
  • the film formed by the method of the present invention has a high heat resistance and is about 800 ° C.
  • the film formed by the method of the present invention has antibacterial properties.
  • the aluminum material or aluminum alloy material on which the anodized film is formed by the method of the present invention is, for example, a tray for ice making and thawing, a rice cooker, a pot, a pot, a kettle, other heating cookers, and an instantaneous boiling water.
  • a low-polymerized acrylic resin composition is further added to the bath used in the treatment (1) of the present invention in a range of 280 gr / 1 or more and 320 gr / 1 or less. Anodizing treatment is performed using the added bath solution.
  • Examples of the low-polymerized acrylic resin composition to be added include, for example, 68% of hydroxypropyl methacrylate, 10% of neopentyl dalichol dimethacrylate, 19.5% of polypropylene glycol methyl acrylate, and 6 Hexanediol diglycidyl ether 1%, butyl peroxyctoate 1%, hydroquinone monomethyl ether 500ppra, and dicyandiamide 0.3% are preferably used.
  • tartaric acid be further added to the above bath solution in a range of 5 gr / 1 or more and 15 gr / 1 or less.
  • an oxide film in which aluminum oxide and the acrylic resin composition are combined is formed. That is, since the porous oxide film on the metallurgy and the acrylic resin fabric are polymerized by acid ionization to form a strong and dense composite film, the corrosion resistance and the abrasion resistance are greatly improved. In addition, since the film is generated while evacuating the gas from the pinholes, the number of pinholes is extremely small. Furthermore, the oxide film is formed slowly at low temperatures, so it has excellent denseness and the film is hard to peel off, so it is machined. And the surface roughness does not change.
  • reference numeral 21 denotes a base metal aluminum or aluminum alloy material
  • 22 denotes an anodized film
  • 23 denotes a barrier layer thereof
  • 24 denotes a porous film portion
  • 25 denotes an acrylic resin composition film portion.
  • the anodic oxide film 22 is composed of a barrier layer 23 formed on an aluminum material or an aluminum alloy material 21, a porous film portion 24 formed thereon, and an acryl resin composition penetrated and fixed in the porous layer. And a coating layer 25.
  • a strong and dense composite coating is formed by the coating layers 24 and 25. Since the hardness of the composite coating increases as the portion is closer to the barrier layer 23 and becomes denser, a region closer to the surface can be removed by machining to obtain a surface with higher hardness as described later.
  • the process (3) of the present invention will be described.
  • the decrease in silver ion concentration with the progress of processing is compensated for by replenishment of silver sulfate or silver nitrate.
  • Boric acid is mainly added for adjusting the conductivity of the electrolyte.
  • the processing efficiency is poor. If the voltage is more than 15 V, silver is deposited too rapidly, so that the porous layer of the oxide film is not sufficiently impregnated. Almost occur.
  • silver ions are formed in the porous anodic oxide film. Penetrates deeply (electrolytically impregnated by AC voltage), and forms a strong and dense composite film by combining with aluminum oxide, so the surface has excellent thermal conductivity, corrosion resistance, abrasion resistance, antibacterial properties, etc. A coating is formed.
  • the surface coating is conductive, has a low coefficient of friction on the surface, and has little change in color over time. It also has the effect of generating far infrared rays and removing static electricity.
  • the treatment (3) of the present invention can be applied to all aluminum materials or aluminum alloy materials, and a thick film having the above-mentioned various excellent properties can be formed on the surface thereof.
  • the present invention further provides an anodic oxide film having a thickness of not less than 300 m and not more than 600 im on the surface of aluminum or an aluminum alloy by the above various treatment methods, and further performing the above silver impregnation thereon.
  • the present invention provides an aluminum material or an aluminum alloy material having a superhard smooth surface by removing a surface layer from 50 / xm to 100 m by polishing.
  • the coating formed by the method of the present invention has a high surface hardness, and has a Vickers hardness of about 450 to 500.
  • the lower layer is denser and harder than the surface. Therefore, removing 50 to 50 L from the surface gives an aluminum or aluminum alloy material with a smooth surface with a Vickers hardness of 800 to 1000, which is very hard.
  • Table 2 shows the properties of the products treated according to the present invention for each material.
  • the thermal conductivity is 0.9 for the product of the present invention, 0.94 for copper, and 0.53 for aluminum, assuming that silver is 1. Therefore, the thermal conductivity of the product of the present invention is higher than that of aluminum of the base material and about the same as that of copper.
  • This property indicates that it is excellent as a material for various heat transfer members, heat transmission members, and heat radiation members.
  • the hardness (Hv) is 80 for aluminum, 200 for stainless steel, and 450 for the product of the present invention, and the product of the present invention has twice or more the hardness of stainless steel.
  • the heat resistance temperature (t :) is 260 ° C for polytetrafluoroethylene, 660 ° C for aluminum, and 800 ° C for the surface coating of the product of the present invention.
  • the amount of abrasion of the product of the present invention was 1 Z10 of ordinary hard alumite.
  • an abrasion test was performed with the test piece on the rotating side and the resin-based oilless bearing material on the fixed side.
  • the test conditions were a vibration speed of 1 mZs, a surface pressure of 20 kgf cm2 and a test time of 3 hr.
  • the wear amount of the hard anodized was 2.5 m
  • the wear amount of the product of the present invention was 0.25 m.
  • the seizure surface pressure of the product of the present invention was twice that of ordinary hard alumite.
  • the wear coefficient was measured with the test piece on the rotating side and the resin-based oil-free bearing material on the fixed side, and the load at which the wear coefficient increased sharply was evaluated as the seizure limit load.
  • ordinary hard alumite was 160 kgf / cm2
  • that of the product of the present invention was 320 kgf / cm2.
  • the product of the present invention showed that the initial cracks were smaller than that of Tafram (trade name; a product in which hard alumite was sintered and impregnated with polytetrafluoroethylene). The number of cracks increased by heating was small.
  • the product of the present invention was 0 before heating, but became 12 after heating, whereas the evening flam was before heating. From 263 to 321 after heating. An antibacterial test was performed. The contents are as follows.
  • sample a sample
  • viable cell count of the sample after storage at 35 ° C. for 24 hours was measured.
  • Escherichia coli IFO 3301 E. coli
  • Staphylococcus aureus IFO 12732 Staphylococcus aureus
  • Vibrio parahaemolyticus RIMD 2210100 Vibrio parahaemolyticus
  • Salmonella enteritidis IFO 3313 (Salmonella)
  • NA medium normal agar medium
  • NB medium normal broth medium supplemented with 0.2% meat extract
  • SA medium Standard agar medium
  • test bacteria were cultured in NA medium at 35 ° C for 16 to 24 hours, they were inoculated again into NA medium and cultured at 35 ° C for 16 to 20 hours. After the cultivation, so Nigosa suspended bacterial cells obtained test bacteria to 1 Z200 concentration NB medium, appropriately diluted with 1/200 concentration NB medium so that the number of bacteria is 10 5 to 10 6 ml, was used as a cell solution .
  • an NA medium and a 1Z200 concentration NB medium supplemented with 3% of sodium chloride were used for Vibrio parahaemolyticus.
  • test surface of the sample was gently wiped with absorbent cotton containing 99.9% (V / V) ethanol, and then thoroughly dried.
  • Test operation 0.5 ml of the bacterial solution was added dropwise to the sample, and a polyethylene film was adhered to the sample. The solution was stored at 35 ° C, and the number of viable cells after storage for 24 hours was measured. Also, 0.5 ml of the bacterial solution was dropped on a plastic dish, and a polyethylene film was adhered to the sample, which was used as a control sample for the same test. The trial was performed three times in parallel measurement.
  • SCDLP medium Nahon Pharmaceutical Co., Ltd.
  • the number of viable bacteria was measured by a pour plate method (cultured at 35 ° C. for 48 hours) using an SA medium and converted to a sample.
  • SCDLP medium and SA medium supplemented with 3% of salt were used.
  • an anodic oxide film could be easily formed on A1-Mn alloy.
  • Duralumin and die casting alloys could not be treated, and other alloys were difficult to treat.
  • the method of the present invention can be applied to all kinds of aluminum alloys such as duralumin, die cast alloys and the like.
  • the film formed by the conventional method has a hard surface layer (however, a Pickers hardness of 400 or less), but has a porous inside and low hardness.
  • the coating formed by the method of the present invention has a high surface hardness and a Vickers hardness of about 450 to 500.
  • the lower layer is denser and harder than the surface, and when removed from the surface by 50 to 150 m, the pickers hardness becomes 800 to 1000.
  • the film formed by the method of the present invention has high thermal conductivity, which is comparable to that of copper.
  • the coating formed by the method of the present invention has low surface heat transmission resistance.
  • the ice melts twice as fast as an untreated tray. Therefore, for example, it can be suitably used as a tray for thawing frozen foods.
  • the aluminum heating container for popcorn is treated by the method of the present invention, the time from the start of heating to the first explosion of the popcorn is reduced from 6 minutes to 3 minutes of the conventional product.
  • the film formed by the method of the present invention has a high heat resistance and is about 800 ° C.
  • the film formed by the method of the present invention has antibacterial properties. Therefore, as described above, the aluminum material or the aluminum alloy material on which the anodized film is formed by the method of the present invention is, for example, a tray for ice making and thawing, a rice cooker, a pot, a pot, a kettle and other heating cookers, Water heaters, heat exchangers, air conditioners, refrigerators, refrigerators, oil heaters, radiators, cooling fins, air-cooled and water-cooled engines (promoting heat dissipation), aircraft wings (anti-icing prevention), semiconductor heat dissipation boards, Semiconductor packages, heat pipes, bearings, various sliding members, plastics, popcorn and ice cream It can be suitably used in a wide range of fields, such as manufacturing equipment, electrical equipment chassis, motors and casings for transformers, etc.

Abstract

A surface treatment method enabling to form a thick film on the surface of any kind of aluminum materials, which film is very hard and excellent in heat resistance and antibacterial properties and has a thickness of 300-500 μm, is disclosed. The method is characterized by using a bath liquid composed of a water solution containing 250-350 gr/l of sulfuric acid and 15-25 gr/l of nickel sulfate and performing anodizing under following conditions: (a) at a bath liquid temperature from -10˚C to +25˚C, (b) at a DC voltage between 100 V and 200 V, and (c) at a current density from 0.5 A/dm2 to 20 A/dm2. A low-polymerized acrylic resin composition may be added to the bath liquid within a range of 280-320 gr/l.

Description

明 細 書 アルミニウム又はアルミニウム合金の表面に陽極酸化皮膜を形成する方法 技 術 分 野  Description Method of forming anodized film on aluminum or aluminum alloy surface
本発明は、 アルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成す る方法の改良に関する。 背 景 技 術  The present invention relates to an improvement in a method for forming an anodic oxide film on the surface of aluminum or an aluminum alloy. Background technology
アルミニウム又はその合金を、 主にその耐蝕性を向上させる目的で、 硝酸、 硫 酸、 クロム酸水溶液系等の電解液中で陽極酸化して、 耐蝕性の酸化被膜を形成す る方法は、 アルマイト処理として公知であり、 これにより得られたアルマイト処 理品は、 鍋、 やかん等の日用品を中心として各種分野で広く使用されている。 然しながら、 アルマイト被膜の上層は一般に多孔質であるため、 耐蝕性がいま だ不十分であり、耐摩耗性、着色容易性等の点でも満足のゆくものではなかった。 このような問題点を解決するため、 下記の特許文献 1〜 3においては、 アルミ ニゥム酸化被膜とァクリル樹脂組成物との複合被膜を形成する技術や、 更にこれ を被処理物の形状等に関係なく、 短時間で、 緻密な複合被膜として形成する技術 や、 その着色性を向上させる技術等々が開示されている。  Anodizing aluminum or its alloy in an electrolytic solution such as nitric acid, sulfuric acid, or chromic acid aqueous solution mainly to improve its corrosion resistance to form a corrosion-resistant oxide film is alumite. Known as a treatment, the alumite-treated product thus obtained is widely used in various fields, mainly for daily necessities such as pots and kettles. However, since the upper layer of the alumite film is generally porous, the corrosion resistance is still insufficient, and the abrasion resistance, the ease of coloring and the like have not been satisfactory. In order to solve such a problem, Patent Documents 1 to 3 below disclose a technique for forming a composite film of an aluminum oxide film and an acryl resin composition, and further relates to a shape of an object to be processed. A technique for forming a dense composite film in a short period of time, and a technique for improving its coloring property are disclosed.
特許文献 1 : 特公平 0 1— 0 1 9 4 7 9号公報  Patent Document 1: Japanese Patent Publication No. 0 1—0 1 9 4 7 9
特許文献 2 : 特開平 0 2— 0 9 7 6 9 8号公報  Patent Document 2: Japanese Patent Application Laid-Open No. H02-09976998
特許文献 3 : 特公平 0 5— 0 1 4 0 3 3号公報  Patent Document 3: Japanese Patent Publication No. 0 5—0 1 4 0 3 3
然しながら、 これらの表面処理方法その他の従来公知のアルマイト処理方法に よるときは、 A1— Mn系合金に対しては容易に陽極酸化被膜を形成できるが、 ジ ユラルミンゃダイカスト合金に対しては処理が不可能であり、 また、 他のアルミ ニゥム合金に対しては処理が困難であるという問題点があった。  However, when these surface treatment methods and other conventionally known alumite treatment methods are used, an anodic oxide film can be easily formed on an A1-Mn-based alloy, but a treatment can be performed on a duralumin-die-cast alloy. It is impossible, and there is a problem that it is difficult to treat other aluminum alloys.
形成される被膜も、従来方法によるものは、 その厚さが 30〜50/ m程度と比較 的薄く、 硬度も低い等の制約があり、 そのため用途にも一定の限界があった。 本発明は、 上記の如き問題点を解決するためなされたものであって、 その目的 とするところは、 アルミニウム自体のほか、 ジュラルミン、 ダイカスト合金を含 むあらゆる種類のアルミ合金に施工でき、 300〜500 mの厚膜加工が可能であ るばかりでなく、 得られる被膜は、 表面硬度が高く、 耐熱性にも優れ、 抗菌性も 有している等々、 多くの利点を備え、 従来に比べて格段に広い分野で利用可能な 各種アルミニウム素材を製造し得るアルミニウム又はアルミニウム合金の表面 処理方法を提供することにある。 Films formed by the conventional method are also relatively thin, about 30 to 50 / m in thickness, and have low hardness and other limitations. The present invention has been made to solve the above-mentioned problems, and has an object In addition to aluminum itself, it can be applied to all kinds of aluminum alloys including duralumin and die-casting alloys. Surface treatment of aluminum or aluminum alloy, which has many advantages such as high heat resistance, excellent heat resistance and antibacterial properties, and can produce various aluminum materials that can be used in a much wider range of fields than before It is to provide a method.
本発明の上記の目的は、  The above object of the present invention is to
250 gr/1以上、 350 gr/1以下の硫酸と、 15 gr /\以上、 25 grZl以下 の硫酸ニッケルとを含む水溶液からなる浴液を用い、 下記の処理条件、 即ち、 Using a bath solution consisting of an aqueous solution containing sulfuric acid of 250 gr / 1 or more and 350 gr / 1 or less and nickel sulfate of 15 gr / \ or more and 25 grZl or less, the following processing conditions, that is,
(a) 浴液温度 一 10°C以上、 +25°C以下、 (a) Bath temperature-10 ° C or higher, + 25 ° C or lower,
(b) 電圧 DC100V以上、 200V以下、  (b) Voltage 100V DC or more, 200V or less,
(c) 電流密度 0.5 A /dm2 以上、 20 A dm2 以下、  (c) Current density 0.5 A / dm2 or more, 20 A dm2 or less,
の条件で陽極酸化処理を行なうことによって達成できる。 Can be achieved by performing anodizing treatment under the following conditions.
本発明に係る上記の処理を、 説明の便宜上、 『本発明処理 (1 )』 と言い、 これ により得られる製品を 『本発明製品 (1 )』 と言う。 上記本発明処理 (1 ) で用いる浴液に、 更に、 280 gr/1以丄 320 gr/1以 下の範囲で、 低重合アクリル樹脂組成物を添加した浴液を用いることによって、 本発明の目的は一層好適に達成できる。  The above process according to the present invention is referred to as “process of the present invention (1)” for convenience of description, and the product obtained thereby is referred to as “product of the present invention (1)”. By using a bath solution to which a low-polymerized acrylic resin composition is added in the range of 280 gr / 1 to 320 gr / 1 to the bath solution used in the above treatment (1) of the present invention, The object can be achieved more suitably.
本発明に係るこの処理を、 説明の便宜上、 『本発明処理 (2 )』 と言い、 これに より得られる製品を 『本発明製品 (2 )』 と言う。  This processing according to the present invention is referred to as “present invention processing (2)” for convenience of explanation, and the product obtained thereby is referred to as “present invention product (2)”.
上記本発明処理 (2 ) において、 いわゆる 「焼け」 を防止するために、 その浴 液に、 更に、 5 gr/1以上、 15 gr Z1以下の範囲で、 酒石酸を添加した浴液を 用いることが推奨される。  In the above treatment (2) of the present invention, in order to prevent so-called “burn”, a bath solution containing tartaric acid in the range of 5 gr / 1 or more and 15 gr Z1 or less may be used for the bath solution. Recommended.
従来の表面処理方法では困難であったジユラルミン、 ダイカス卜用アルミ合金、 又は、 Mnを含有しないアルミニウム合金からなる群の中から選ばれるアルミ二 ゥム合金に対して本発明方法を適用する場合には、 上記いずれかの浴液を用いる と共に、 下記の処理条件、 即ち、  When applying the method of the present invention to an aluminum alloy selected from the group consisting of duralumin, a die-cast aluminum alloy, or an aluminum alloy containing no Mn, which was difficult with a conventional surface treatment method. Uses any of the above bath solutions and the following processing conditions:
(d) 浴液温度 一 10で以上、 一 5 以下、 (e) 電圧 DC130V以上、 170V以下、 (d) Bath liquid temperature above 10 and below 1 and below 5, (e) Voltage 130VDC or more, 170V or less,
(f) 電流密度 8A/dm2 以上、 12 A/dm2 以下、  (f) Current density 8 A / dm2 or more, 12 A / dm2 or less,
の条件で陽極酸化処理を行なうことが望ましい。 It is desirable to perform the anodic oxidation treatment under the following conditions.
Milを含むアルミニウム合金の表面に陽極酸化処理を行なう場合には、 上記い ずれかの浴液を用いると共に、 下記の処理条件、 即ち、  When performing anodic oxidation treatment on the surface of an aluminum alloy containing Mil, use one of the above bath solutions and the following treatment conditions, namely,
(g) 浴液温度 +15°C以上、 +18 以下、  (g) Bath temperature + 15 ° C or higher, +18 or lower,
(h) 電圧 DC130V以上、 170V以下、  (h) Voltage 130VDC or more, 170V or less,
(i)電流密度 8AZdm2 以上、 12 A/dm2 以下、  (i) Current density 8AZdm2 or more, 12A / dm2 or less,
の条件で処理を行なうことが望ましい。 本発明の更に望ましい形態においては、 上記各種の処理方法のいずれかによつ てアルミニウム又はアルミニウム合金の表面に陽極酸ィ匕被膜を形成した後、 更に、It is desirable to perform the processing under the following conditions. In a further preferred embodiment of the present invention, after forming an anodized film on the surface of aluminum or aluminum alloy by any of the various treatment methods described above,
10 gr /1以上、 30 gr /1以下の硫酸銀又は硝酸銀と、 15 gr /1以上、 20 g r /\以下のホウ酸と、 1 gr/1以上、 2 gr/1以下の硫酸二ッケルを含む水溶 液からなる浴液を用い、 下記の処理条件、 即ち、 10 gr / 1 or more, 30 gr / 1 or less silver sulfate or silver nitrate, 15 gr / 1 or more, 20 gr / \ or less boric acid, 1 gr / 1 or more, 2 gr / 1 or less nickel sulfate Using the bath solution consisting of the aqueous solution containing
浴液温度 +10°C以上、 +20°C以下、  Bath temperature + 10 ° C or higher, + 20 ° C or lower,
(k) 電圧 AC10V以上、 15V以下、  (k) Voltage AC10V or more, 15V or less,
(1) 電流密度 lA/dm2 以上、 2 A /dm2 以下、 (1) current density lA / dm @ 2 or more, 2 A / dm 2 or less,
(πι) 通電時間 2分以上、 3分以下、  (πι) Energization time 2 minutes or more, 3 minutes or less,
という条件で処理することにより、 陽極酸化被膜中に銀を含浸させることが推奨 される。 It is recommended to impregnate the anodic oxide film with silver by treating under the following conditions.
本発明に係るこのような処理を、 説明の便宜上、 『本発明処理 (3 )』 と言い、 これにより得られる製品を 『本発明製品 (3 )』 と言う。 本発明の前記目的は、 更に、 上記各種の処理方法によって、 アルミニウム又は アルミニウム合金の表面に厚み 300 m以上、 600 m以下の陽極酸化被膜を形成 し、 更にこれに上記銀含浸を行なった後、 研磨により 50 m以上、 lOO m以下 まで表層を除去し、 超硬度の平滑面を得ることを特徴とする、 アルミニウム又は アルミニウム合金の表面に陽極酸化被膜を形成する方法によっても達成される。 図 面 の 簡 単 な 説 明 Such a process according to the present invention is referred to as “process of the present invention (3)” for convenience of explanation, and a product obtained thereby is referred to as “product of the present invention (3)”. The object of the present invention is further to form an anodic oxide film having a thickness of 300 m or more and 600 m or less on the surface of aluminum or an aluminum alloy by the above-mentioned various treatment methods, and further performing the silver impregnation thereon, The method can also be achieved by forming an anodized film on the surface of aluminum or aluminum alloy, characterized in that the surface layer is removed to a thickness of 50 m or more and 100 m or less by polishing to obtain a superhard smooth surface. Brief explanation of drawings
第 1図は、 本発明に係るアルミニウム又はアルミニウム合金の表面に陽極酸化 被膜を形成する方法を実施するための装置の一実施例を示す説明図である。 第 2図は、 本発明処理 (2 ) を施したアルミニウム又はアルミニウム合金の被 膜部分の拡大断面図である。 発明を実施するための最良の形態 以下、 図面等を参照しつ 本発明を具体的に説明する。  FIG. 1 is an explanatory view showing one embodiment of an apparatus for implementing a method for forming an anodized film on a surface of aluminum or an aluminum alloy according to the present invention. FIG. 2 is an enlarged sectional view of a portion to be coated with aluminum or an aluminum alloy which has been subjected to the treatment (2) of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described with reference to the drawings and the like.
第 1図中、 1は電解槽、 2は交流電源、 3は本発明方法により処理すべきアル ミニゥム又はアルミニウム合金部材、 4 , 4は力一ボン、 グラフアイト等の非消 耗性電極、 5は所定の電解液から成る浴液である。  In FIG. 1, 1 is an electrolytic cell, 2 is an AC power supply, 3 is an aluminum or aluminum alloy member to be treated by the method of the present invention, 4 and 4 are non-consumable electrodes such as rubber and graphite, 5 Is a bath solution composed of a predetermined electrolytic solution.
本発明処理 (1 ) は、 第 1図に示すような装置を用い、 浴液として、 250 gr/1 以上、 350 gr/l以下の硫酸と、 15 gr /1以上、 25 gr/1以下の硫酸ニッ ゲルとを含む水溶液を用い、  In the treatment (1) of the present invention, an apparatus as shown in Fig. 1 was used, and as a bath solution, sulfuric acid of 250 gr / 1 or more and 350 gr / l or less, and 15 gr / 1 or more and 25 gr / 1 or less Using an aqueous solution containing sulphate nigel,
(a) 浴液温度 —10°C以上、 +25で以下、  (a) Bath temperature -10 ° C or higher, +25 or lower,
(b) 電圧 DC100V以上、 200V以下、  (b) Voltage 100V DC or more, 200V or less,
(c)電流密度 0.5 A dm2 以上、 20 A dm2 以下、  (c) Current density 0.5 Adm2 or more, 20 Adm2 or less,
という条件で陽極酸化処理を行うものである。 The anodizing treatment is performed under the conditions described above.
このように、 本発明は、 高硫酸イオン濃度、 低温、 高電流密度という処理条件 で陽極酸化処理を行う点が従来方法と全く異なるものである。  Thus, the present invention is completely different from the conventional method in that the anodic oxidation treatment is performed under the processing conditions of high sulfate ion concentration, low temperature, and high current density.
上記処理条件の各数値が、 その下限値未満であると処理効率が悪く、 また、 そ の上限値を超えると被膜の硬度が低下し、 所望の膜厚が得られない等の問題を生 じる。  If each numerical value of the above processing conditions is less than the lower limit value, the processing efficiency is poor, and if it exceeds the upper limit value, the hardness of the coating film is reduced and a desired film thickness cannot be obtained. You.
硫酸二ッゲルは、 形成される被膜の硬度を向上させるために加えられる。 本発明の処理方法により陽極酸化被膜を形成するアルミニウム又はアルミ二 ゥム合金の素材としては、 下記の表 1に記載のものが挙げられる。 表 1 Nigel sulfate is added to improve the hardness of the formed film. Examples of the aluminum or aluminum alloy material forming the anodic oxide film by the treatment method of the present invention include those listed in Table 1 below. table 1
Figure imgf000007_0001
Figure imgf000007_0001
なお、 従来の方法では困難であったジュラルミン、 ダイカスト用アルミ合金を 始め、 Mnを含有しないアルミニウム合金などの難処理性アルミニウム合金その 他のアルミニウム合金に対して本発明方法を適用する場合には、 上記いずれかの 浴液を用いて、 下記の処理条件、 即ち、 In addition, when the method of the present invention is applied to durlumin, an aluminum alloy for die casting, a difficult-to-treat aluminum alloy such as an aluminum alloy containing no Mn, and other aluminum alloys, which were difficult with the conventional method, Using any of the above bath solutions, the following processing conditions:
(d) 浴液温度 一 10°C以上、 _ 5 °C以下、  (d) Bath temperature -10 ° C or higher, _5 ° C or lower,
(e) 電圧 DC130V以上、 170V以下、  (e) Voltage 130VDC or more, 170V or less,
( ) 電流密度 8AZdm2 以上、 12 A dm^ 以下、  () Current density 8AZdm2 or more, 12Adm ^ or less,
という条件を採用することにより、 所望の陽極酸化皮膜を形成することができる 他方、 Mnを含むアルミニウム合金の表面に陽極酸化処理を行なう場合には、 下記の処理条件、 即ち、 On the other hand, when the anodic oxidation treatment is performed on the surface of the aluminum alloy containing Mn, the following treatment conditions, that is,
(g)浴液温度 +15°C以上、 +18で以下、  (g) Bath temperature + 15 ° C or higher, +18 or lower,
(h)電圧 DC130V以上、 170V以下、  (h) Voltage 130VDC or more, 170V or less,
(i) 電流密度 8A/dm2 以上、 12 A/dm2 以下、 (i) the current density 8A / dm 2 or more, 12 A / dm 2 or less,
という条件を採用することにより、 所望の陽極酸化皮膜を形成することができる c 上記の如く構成される本発明を従来方法と比較すると、 次のような利点を挙げ ることができる。 By adopting the condition, a desired anodic oxide film can be formed.c When the present invention configured as described above is compared with the conventional method, the following advantages can be obtained.
(1) 従来方法では、 A1— Mn系合金には容易に陽極酸化被膜を形成できたが、 ジュラルミン、 ダイカスト合金に対しては処理が不可能であり、 また、 他の合金 に対しては処理が困難であった。  (1) With the conventional method, an anodic oxide film could be easily formed on A1-Mn alloys, but it was not possible to treat duralumin and die cast alloys, and to treat other alloys. Was difficult.
これに対して、 本発明方法では、 ジュラルミン、 ダイカスト合金その他のあら ゆる種類のアルミ合金に施工できる。  On the other hand, the method of the present invention can be applied to all kinds of aluminum alloys such as duralumin, die cast alloys and the like.
(2) 従来方法では、 30〜50 i m程度、最大でも lOO m程度の厚さの被膜まで しか形成できなかったが、 本発明方法によれば、 300〜500 mの厚膜が容易に 形成できる。  (2) In the conventional method, only a film having a thickness of about 30 to 50 im, at most about 100 m can be formed, but according to the method of the present invention, a thick film of 300 to 500 m can be easily formed. .
(3) 従来方法で形成される被膜は、 その表層は硬いが (但し、 ピッカース硬度 で 400以下)、 内部はポーラスで、 硬度が低い。  (3) The film formed by the conventional method has a hard surface layer (however, a Pickers hardness of 400 or less), but has a porous inside and low hardness.
これに対して、 本発明方法で形成される被膜は表面硬度が高く、 ビッカース硬 度で 450〜500程度ある。特に、表面より下層の方が緻密で硬度が高く、表面か ら 50〜; 150 m除去すると、 ビッカース硬度で 800〜1000の硬度となる。  On the other hand, the coating formed by the method of the present invention has a high surface hardness and a Vickers hardness of about 450 to 500. In particular, the lower layer is denser and harder than the surface, and when removed from the surface by 50 to 150 m, the Vickers hardness becomes 800 to 1000.
(4) 本発明方法で形成される被膜は、 熱伝導度が高く、 銅と同程度である。 (4) The film formed by the method of the present invention has high thermal conductivity, which is comparable to that of copper.
(5) 本発明方法で形成される被膜は、 表面熱透過抵抗が低い。 (5) The coating formed by the method of the present invention has low surface heat transmission resistance.
そこで、 本発明方法で形成された被膜を有するアルミニウム又はその合金材で 作製したトレーの上に氷を置くと、 未処理のトレーに比べ、 2倍の速さで氷が融 ける。 従って、 例えば冷凍食品の解凍用トレーとして好適に利用できる。 また、 ポプコーン用のアルミ製加熱容器に本発明方法による処理を施すと、 加熱を開始 してから最初にポプコーンが爆ぜるまでの時間が、 従来品の 6分から 3分に短縮 される。  Thus, when ice is placed on a tray made of aluminum or an alloy thereof having a coating formed by the method of the present invention, the ice melts twice as fast as an untreated tray. Therefore, for example, it can be suitably used as a tray for thawing frozen foods. In addition, when the aluminum heating container for popcorn is treated by the method of the present invention, the time from the start of heating to the first explosion of the popcorn is reduced from 6 minutes of the conventional product to 3 minutes.
(6) 本発明方法で形成される被膜は、 耐熱度が高く、 800°C程度である。 (7) 本発明方法で形成される被膜は、 抗菌性がある。  (6) The film formed by the method of the present invention has a high heat resistance and is about 800 ° C. (7) The film formed by the method of the present invention has antibacterial properties.
従って、 本発明方法により陽極酸化被膜を形成したアルミニウム材又はアルミ ニゥム合金材は、 例えば、 製氷用及び解凍用トレー、 炊飯器, 鍋, 釜, やかんそ の他の加熱用調理器、 瞬間湯沸器、 熱交換器、 空調機、 冷凍機、 冷蔵庫、 オイル ヒーター、 ラジエーター、 冷却フィン、 空冷及び水冷エンジン (放熱の促進)、 航空機の翼 (着氷防止)、 半導体放熱基板、 半導体パッケージ、 ヒートパイプ、 軸受、 各種摺動部材、 ブレーキシュ一、 ポプコーンやアイスクリーム製造器、 電 気機器シャシ一、 モーターや変圧器等のケ一シング、 等々のように幅広い分野で 好適に利用できる。 Therefore, the aluminum material or aluminum alloy material on which the anodized film is formed by the method of the present invention is, for example, a tray for ice making and thawing, a rice cooker, a pot, a pot, a kettle, other heating cookers, and an instantaneous boiling water. Heaters, heat exchangers, air conditioners, refrigerators, refrigerators, oil heaters, radiators, cooling fins, air-cooled and water-cooled engines (promoting heat dissipation), Aircraft wings (anti-icing), semiconductor heat dissipation boards, semiconductor packages, heat pipes, bearings, various sliding members, brake shoes, popcorn and ice cream manufacturing equipment, electrical equipment chassis, motors and transformers It can be suitably used in a wide range of fields, such as singles and so on.
これらは特に本発明品がよく熱を通すという性質を利用したものである。 次に、 本発明処理 (2 ) について説明する。  These use the property that the product of the present invention conducts heat well. Next, the process (2) of the present invention will be described.
本発明処理 (2 ) を行う場合には、 上記本発明処理 (1 ) で用いる浴液に、 更 に、 280 gr/1以上、 320 gr/1以下の範囲で、 低重合アクリル樹脂組成物を添 加した浴液を用いて陽極酸化処理を行うことを特徴とする。  In the case of performing the treatment (2) of the present invention, a low-polymerized acrylic resin composition is further added to the bath used in the treatment (1) of the present invention in a range of 280 gr / 1 or more and 320 gr / 1 or less. Anodizing treatment is performed using the added bath solution.
添加すべき低重合アクリル樹脂組成物としては、 例えば、 重量百分比で、 ヒド ロキシプロピルメタクリレート 68%と、 ネオペンチルダリコールジメタクリレ一 ト 10%と、 ポリプロピレングリコールメ夕クリレート 19.5 %と、 1,6へキサン ジオールジグリシジルエーテル 1 %と、 プチルパーォキシォクトエイト 1 %と、 ハイドロキノンモノメチルエーテル 500ppraと、 ジシアンジアミド 0.3 %とから 成るものが好適に用いられる。  Examples of the low-polymerized acrylic resin composition to be added include, for example, 68% of hydroxypropyl methacrylate, 10% of neopentyl dalichol dimethacrylate, 19.5% of polypropylene glycol methyl acrylate, and 6 Hexanediol diglycidyl ether 1%, butyl peroxyctoate 1%, hydroquinone monomethyl ether 500ppra, and dicyandiamide 0.3% are preferably used.
「焼け」 防止の目的で、 上記浴液に更に、 5 gr/1以上、 15 gr /1以下の範 囲で、 酒石酸を添加することが推奨される。  For the purpose of preventing "burn", it is recommended that tartaric acid be further added to the above bath solution in a range of 5 gr / 1 or more and 15 gr / 1 or less.
このような本発明処理 (2 ) によって、 酸化アルミとアクリル樹脂組成物の複 合した酸化被膜が形成される。 即ち、 治金上の多孔性酸化被膜とアクリル樹脂組 織物が酸イオン化されて重合し、 強固且つ緻密な複合被膜を形成するため、 耐蝕 性、 耐磨耗性が大幅に向上する。 また、 ピンホール部のガスを抜きながら被膜を 生成するため、 ピンホールが極めて少なく、 更にまた、 低温で酸化被膜をゆつく り生成するため、緻密性に優れ、被膜が剥離しにくいので機械加工が可能であり、 表面粗さも変化しないという特徴を有する。  By the treatment (2) of the present invention, an oxide film in which aluminum oxide and the acrylic resin composition are combined is formed. That is, since the porous oxide film on the metallurgy and the acrylic resin fabric are polymerized by acid ionization to form a strong and dense composite film, the corrosion resistance and the abrasion resistance are greatly improved. In addition, since the film is generated while evacuating the gas from the pinholes, the number of pinholes is extremely small. Furthermore, the oxide film is formed slowly at low temperatures, so it has excellent denseness and the film is hard to peel off, so it is machined. And the surface roughness does not change.
上記本発明処理 (2 ) により得られた陽極酸化被膜を、 図 2の被膜部分拡大断 面図を用いて説明する。  The anodic oxide film obtained by the treatment (2) of the present invention will be described with reference to an enlarged cross-sectional view of the film in FIG.
図 2中、 21は地金のアルミニウム材又はアルミニウム合金材、 22は陽極酸化被 膜、 23はそのバリア層、 24は多孔性被膜部、 25はアクリル樹脂組成物被膜部であ る。 In FIG. 2, reference numeral 21 denotes a base metal aluminum or aluminum alloy material, 22 denotes an anodized film, 23 denotes a barrier layer thereof, 24 denotes a porous film portion, and 25 denotes an acrylic resin composition film portion. You.
陽極酸化被膜 22は、アルミニウム材又はアルミニウム合金材 21上に形成された バリア層 23と、 その上に形成された多孔性被膜部 24と、 その多孔質層内に浸透、 固定されたァクリル樹脂組成物被膜部 25とから成り、 これらの両被膜部 24及び 2 5によって強固かつ緻密な複合被膜が形成されている。 この複合被膜は、 バリア 層 23に近い部分ほど硬度が上がり緻密となるので、 後述する如く、 表面に近い領 域を機械加工により除去して、 より一層高硬度の表面を得ることができる。 次に、 本発明処理 (3 ) について説明する。  The anodic oxide film 22 is composed of a barrier layer 23 formed on an aluminum material or an aluminum alloy material 21, a porous film portion 24 formed thereon, and an acryl resin composition penetrated and fixed in the porous layer. And a coating layer 25. A strong and dense composite coating is formed by the coating layers 24 and 25. Since the hardness of the composite coating increases as the portion is closer to the barrier layer 23 and becomes denser, a region closer to the surface can be removed by machining to obtain a surface with higher hardness as described later. Next, the process (3) of the present invention will be described.
本発明処理 (3 ) を行う場合には、 上記各種の処理方法のいずれかによつてァ ルミニゥム又はアルミニウム合金の表面に陽極酸化被膜を形成した後、 更に、 10 gr /\以上、 30 gr /1以下の硫酸銀又は硝酸銀と、 15 gr /1以上、 20 gr Λ以下のホウ酸と、 1 gr/1以上、 2 gr/1以下の硫酸ニッケルを含む水溶液 からなる浴液を用い、 下記の処理条件、 即ち、  In the case of performing the treatment (3) of the present invention, after forming an anodic oxide film on the surface of the aluminum or aluminum alloy by any of the above-mentioned various treatment methods, it is further treated at least 10 gr / \ and 30 gr / Using a bath solution consisting of an aqueous solution containing silver sulfate or silver nitrate of 1 gr or less, boric acid of 15 gr / 1 or more and 20 gr gr or less, and nickel sulfate of 1 gr / 1 or more and 2 gr / 1 or less, the following Processing conditions, ie,
(j)浴液温度 +10°C以上、 +20°C以下、  (j) Bath temperature + 10 ° C or higher, + 20 ° C or lower,
(k) 電圧 AC10V以上、 15V以下、  (k) Voltage AC10V or more, 15V or less,
(1) 電流密度 lA/dm2 以上、 2 A /dm2 以下、 (1) current density lA / dm 2 or more, 2 A / dm @ 2 or less,
(m) 通電時間 2分以上、 3分以下、  (m) Energization time 2 minutes or more, 3 minutes or less,
という条件で陽極酸化処理を行うことによって、 陽極酸化被膜中に銀を含浸させ ることを特徴とする。 By performing anodic oxidation treatment under such conditions, silver is impregnated in the anodic oxide film.
処理の進行に伴う銀イオン濃度の低下は硫酸銀又は硝酸銀の補充によって補 うようにする。  The decrease in silver ion concentration with the progress of processing is compensated for by replenishment of silver sulfate or silver nitrate.
ホウ酸は主に電解液の電導度の調整のために添加される。  Boric acid is mainly added for adjusting the conductivity of the electrolyte.
電圧が 10V未満であると処理効率が悪く、 また、 15Vを超えると銀の沈着が急 激に行なわれ過ぎて酸化被膜の多孔質層内への充分な含浸が行なわれず、 色むら や剥離等を生じ易くなる。  If the voltage is less than 10 V, the processing efficiency is poor.If the voltage is more than 15 V, silver is deposited too rapidly, so that the porous layer of the oxide film is not sufficiently impregnated. Easily occur.
同様に、電解液の温度が +10°C未満であると、処理効率が悪く、 +20°Cを超える と、 色むらを生じやすい。  Similarly, if the temperature of the electrolytic solution is lower than + 10 ° C, the processing efficiency is poor, and if it exceeds + 20 ° C, color unevenness is likely to occur.
このような本発明処理 (3 ) によって、 多孔性の陽極酸化被膜内に銀イオンが 深く侵入し (交流電圧によって電解含浸させる)、 酸化アルミと複合して強固且 つ緻密な複合被膜を形成するため、 熱伝導性、 耐蝕性、 耐磨耗性、 抗菌性等に優 れた表面被膜が形成される。 また、 この表面被膜は、 導電性があり、 表面の摩擦 係数が小さく、 色彩の経時変化が少ない。 また、 遠赤外線発生、 静電気除去等の 効果も有している。 By the treatment (3) of the present invention, silver ions are formed in the porous anodic oxide film. Penetrates deeply (electrolytically impregnated by AC voltage), and forms a strong and dense composite film by combining with aluminum oxide, so the surface has excellent thermal conductivity, corrosion resistance, abrasion resistance, antibacterial properties, etc. A coating is formed. The surface coating is conductive, has a low coefficient of friction on the surface, and has little change in color over time. It also has the effect of generating far infrared rays and removing static electricity.
このような本発明処理 (3 ) は、 全てのアルミニウム材又はアルミニウム合金 材に対して可能で、 その表面に前記の如き優れた各種特性を有する厚膜を形成で きる。 本発明は、 更に、 上記各種の処理方法によって、 アルミニウム又はアルミニゥ ム合金の表面に厚み 300^ m以上、 600 i m以下の陽極酸化被膜を形成し、更にこ れに上記銀含浸を行なった後、 研磨により 50/x m以上、 100 m以下まで表層を 除去することにより、 超硬度の平滑面を有するアルミニウム材又はアルミニウム 合金材を提供するものである。  The treatment (3) of the present invention can be applied to all aluminum materials or aluminum alloy materials, and a thick film having the above-mentioned various excellent properties can be formed on the surface thereof. The present invention further provides an anodic oxide film having a thickness of not less than 300 m and not more than 600 im on the surface of aluminum or an aluminum alloy by the above various treatment methods, and further performing the above silver impregnation thereon. The present invention provides an aluminum material or an aluminum alloy material having a superhard smooth surface by removing a surface layer from 50 / xm to 100 m by polishing.
即ち、 本発明方法で形成される被膜は、 表面硬度が高く、 ビッカース硬度で 4 50〜500程度ある。特に、 表面より下層の方が緻密で硬度が高い。 そこで、 表面 から 50〜: L50 m除去すると、 ビッカース硬度で 800〜1000の超硬度の平滑面を 有するアルミ二ゥム材又はアルミニゥム合金材が得られることになる。 以下に、 本発明品の各種特性を示す。  That is, the coating formed by the method of the present invention has a high surface hardness, and has a Vickers hardness of about 450 to 500. In particular, the lower layer is denser and harder than the surface. Therefore, removing 50 to 50 L from the surface gives an aluminum or aluminum alloy material with a smooth surface with a Vickers hardness of 800 to 1000, which is very hard. Hereinafter, various characteristics of the product of the present invention will be described.
表 2には、 本発明処理を施した製品の特性が材料別に示されている。 Table 2 shows the properties of the products treated according to the present invention for each material.
一般アル 本 発 明 品 General Al This invention
マイ卜 膜 厚 銀含浸 硬度 絶緣 熱伝導 抗菌 滑り度 Mite film Thickness Silver impregnation Hardness Thermal conductivity Antibacterial Antibacterial smoothness
AL00系 Δ 60 Z 可 450 大幅アップ 有る 2、 5AL00 series Δ 60 Z Possible 450 Significant increase Yes 2, 5
ALIO系 Δ 60 可 450 大幅アップ 有る 2、 5ALIO system Δ 60 OK 450 Significant increase Yes 2, 5
AL20系 X 60W 可 450 大幅アップ 有る 2、 5AL20 series X 60W OK 450 Significant increase Yes 2, 5
AL30系 Δ 60 可 450 大幅アップ 有る 2、 5AL30 series Δ60 OK 450 Significantly increase Yes 2, 5
AL40系 Δ 60 i 可 450 大幅アップ 有る 2、 5AL40 series Δ60i Possible 450 Significant increase Yes 2, 5
AL50系 ◎ lQQii 可 450 大幅アップ 有る 2、 5AL50 series ◎ lQQii Yes 450 Significant increase Yes 2, 5
AL60系 ◎ 100 i 可 450 大幅アップ 有る 2、 5AL60 series ◎ 100 i Possible 450 Significant increase Yes 2, 5
AL70系 Δ 60 x 可 450 大幅アップ 有る 2、 5AL70 series Δ60 x OK 450 Significant increase Yes 2, 5
AL80系 Δ 60 可 450 大幅アップ 有る 2、 5 AL80 series Δ60 OK 450 Significantly up Yes 2, 5
AC2 Δ 可 370 大幅アップ 有る AC2 Δ OK 370 Significantly up
AC3 Δ 60M 可 370 大幅アップ 有る  AC3 Δ60M OK 370 Significantly up
AC4 Δ 60 可 370 大幅アップ 有る  AC4 Δ 60 OK 370 Significantly up
AC7 Δ 60 可 370 大幅アップ 有る  AC7 Δ 60 OK 370 Significantly up
ADC1 X 30/2 可 370 大幅アップ 有る ADC1 X 30/2 OK 370 Significant increase Yes
ADC5 X 30 可 370 大幅アップ 有る  ADC5 X 30 OK 370 Significantly up
ADC8 X 30M 可 370 大幅アップ 有る  ADC8 X 30M OK 370 Significantly up Yes
ADC12 X 30^ 可 370 大幅アップ 有る  ADC12 X 30 ^ Possible 370 Significantly up
(注記)  (Note)
一般アルマイ卜記号 X 加工できない  General alumite symbol X Cannot be processed
Δ 加工が難しい  Δ difficult to process
® 加工が容易 熱伝導率は、銀を 1とした場合、本発明品は 0.9、銅は 0.94、 アルミニウムは 0. 53である。 従って、 本発明品の熱伝導率は、 母材のアルミニウムより高く、 銅と 同程度である。  ® Easy processing The thermal conductivity is 0.9 for the product of the present invention, 0.94 for copper, and 0.53 for aluminum, assuming that silver is 1. Therefore, the thermal conductivity of the product of the present invention is higher than that of aluminum of the base material and about the same as that of copper.
この性質は、 各種伝熱部材、 透熱部材、 放熱部材用材料として優れていること を示すものである。  This property indicates that it is excellent as a material for various heat transfer members, heat transmission members, and heat radiation members.
硬度 (H v ) は、 アルミニウムが 80、 ステンレスが 200、 本発明品が 450で あり、 本発明品はステンレスの 2倍以上の硬度を有する。  The hardness (Hv) is 80 for aluminum, 200 for stainless steel, and 450 for the product of the present invention, and the product of the present invention has twice or more the hardness of stainless steel.
この性質を利用して、 ギア、 ローラー、 ガイドレール、 軸、 軸受、 ブレーキシ ユー、 シリンダライナー及びピストン、 バルブ、 ピストンポンプ、 スクリュウポ ^ Utilizing this property, gears, rollers, guide rails, shafts, bearings, brake shoes, cylinder liners and pistons, valves, piston pumps, screw pumps ^
ンプなど、 耐磨耗性を必要とする各種部品を製造し得る。 It can manufacture various parts that require wear resistance, such as pumps.
耐熱温度 (t:) は、 ポリテトラフルォロエチレンが 260°C、 アルミニウムが 66 0°C、 本発明品の表面被膜が 800°Cである。  The heat resistance temperature (t :) is 260 ° C for polytetrafluoroethylene, 660 ° C for aluminum, and 800 ° C for the surface coating of the product of the present invention.
この性質を利用して、防火シャッター、耐熱壁材などを提供することができる。 磨耗試験を行った結果、 本発明品の磨耗量は、 通常の硬質アルマイトの 1 Z10 であった。  By utilizing this property, a fireproof shutter, a heat-resistant wall material, and the like can be provided. As a result of the abrasion test, the amount of abrasion of the product of the present invention was 1 Z10 of ordinary hard alumite.
即ち、 試験片を回転側とし、 樹脂系無給油軸受材を固定側として磨耗試験を行 つた。 試験条件は、 振動速度 l m Zs、 面圧 20kgf cm2 、 試験時間 3 hrで 試験した結果、 硬質アルマイトの磨耗量は 2.5^ m、 本発明品の磨耗量は 0. 25 mであった。 焼付き試験を行った結果、 本発明品の焼付き面圧は、 通常の硬質アルマイトの 2倍であった。  That is, an abrasion test was performed with the test piece on the rotating side and the resin-based oilless bearing material on the fixed side. The test conditions were a vibration speed of 1 mZs, a surface pressure of 20 kgf cm2 and a test time of 3 hr. As a result, the wear amount of the hard anodized was 2.5 m, and the wear amount of the product of the present invention was 0.25 m. As a result of a seizure test, the seizure surface pressure of the product of the present invention was twice that of ordinary hard alumite.
即ち、 耐焼付き試験として、 試験片を回転側とし、 樹脂系無給油軸受材を固定 側として磨耗係数を測定し、 磨耗係数が急激な増加を示した荷重を焼付き限界荷 重として評価したところ、 通常の硬質アルマイトが 160 kgf /cm2 であったの に対して、 本発明品は 320 kgf /cm.2 であった。 高温試験によるクラックの進行を測定したところ、 本発明品は、 タフラム (商 品名。 硬質アルマイトをシンタ一処理してポリテトラフルォロエチレンを含浸さ せた製品。) に比べて、 初期クラックが少なく、 加熱によるクラック増加数も少 なかった。  That is, as a seizure resistance test, the wear coefficient was measured with the test piece on the rotating side and the resin-based oil-free bearing material on the fixed side, and the load at which the wear coefficient increased sharply was evaluated as the seizure limit load. In contrast, ordinary hard alumite was 160 kgf / cm2, whereas that of the product of the present invention was 320 kgf / cm2. When the progress of cracks was measured by a high-temperature test, the product of the present invention showed that the initial cracks were smaller than that of Tafram (trade name; a product in which hard alumite was sintered and impregnated with polytetrafluoroethylene). The number of cracks increased by heating was small.
即ち、 平坦部の測定面積 16.4nmi2 中のクラック数を測定したところ、 本発明 品は加熱前に 0であったものが、 加熱後には 12となったのに対して、 夕フラムは 加熱前に 263 であったものが、 加熱後には 321 となった。 抗菌力の試験を行った。 その内容は次のとおりである。 That is, when the number of cracks in the measured area of the flat portion of 16.4 nmi 2 was measured, the product of the present invention was 0 before heating, but became 12 after heating, whereas the evening flam was before heating. From 263 to 321 after heating. An antibacterial test was performed. The contents are as follows.
(a) 検 体 検体 1 · ·アルミニウム 本発明の銀含浸処理による表面処理品 (a) Specimen Sample 1 ·· Aluminum Surface treated product by silver impregnation treatment of the present invention
(表面被膜厚さ 25μπΐ)  (Surface coating thickness 25μπΐ)
検体 2 · ·アルミニウム 未処理品  Specimen 2
(b) 試験目的  (b) Test purpose
検体の抗菌力試験を行う。  Conduct an antibacterial test on the sample.
(c) 試験概要  (c) Test outline
検体 (以下 「試料」 と言う。) に大腸菌、 黄色ブドウ球菌、 腸炎ビブリオ及び サルモネラの菌液をそれぞれ滴下後、 35°Cで 24時間保存した後の試料の生菌数を 測定した。  Escherichia coli, Staphylococcus aureus, Vibrio parahaemolyticus, and Salmonella were each added dropwise to a sample (hereinafter referred to as “sample”), and the viable cell count of the sample after storage at 35 ° C. for 24 hours was measured.
(d) 試験方法  (d) Test method
i) 試験菌  i) Test bacteria
Escherichia coli IFO 3301 (大腸菌)  Escherichia coli IFO 3301 (E. coli)
Staphylococcus aureus IFO 12732 (黄色ブドウ球菌)  Staphylococcus aureus IFO 12732 (Staphylococcus aureus)
Vibrio parahaemolyticus RIMD 2210100 (腸炎ビブリオ)  Vibrio parahaemolyticus RIMD 2210100 (Vibrio parahaemolyticus)
Salmonella enteritidis IFO 3313 (サルモネラ)  Salmonella enteritidis IFO 3313 (Salmonella)
ii) 培 地  ii) Medium
NA培地:普通寒天培地  NA medium: normal agar medium
NB培地:肉エキスを 0.2 %添加した普通ブイヨン培地  NB medium: normal broth medium supplemented with 0.2% meat extract
SA培地:標準寒天培地  SA medium: Standard agar medium
iii) 菌液の調整  iii) Preparation of bacterial solution
試験菌を NA培地で 35°C、 16〜24時間培養後、 再度 NA培地に接種し、 35°C、 1 6〜20時間培養した。培養後、得られた試験菌の菌体を 1 Z200濃度 NB培地に懸 濁させ、 菌数が 105〜106 mlとなるように 1 /200濃度 NB培地で適宜希釈し、 菌液とした。 但し、 腸炎ビブリオは NA培地及び 1 Z200濃度 NB培地に食塩を 3 %添加したものを用いた。 After the test bacteria were cultured in NA medium at 35 ° C for 16 to 24 hours, they were inoculated again into NA medium and cultured at 35 ° C for 16 to 20 hours. After the cultivation, so Nigosa suspended bacterial cells obtained test bacteria to 1 Z200 concentration NB medium, appropriately diluted with 1/200 concentration NB medium so that the number of bacteria is 10 5 to 10 6 ml, was used as a cell solution . However, for Vibrio parahaemolyticus, an NA medium and a 1Z200 concentration NB medium supplemented with 3% of sodium chloride were used.
iv) 試料の調整  iv) Sample preparation
99.9 % (V/V) エタノールを含ませた脱脂綿で検体の試験面を軽く拭いた後、 充分に乾燥させた。  The test surface of the sample was gently wiped with absorbent cotton containing 99.9% (V / V) ethanol, and then thoroughly dried.
V) 試験操作 試料に菌液 0.5ml を滴下し、 ポリエチレンフィルムを密着させた後、 35°Cで保 存し、 24時間保存後の生菌数を測定した。 また、 菌液 0.5ml をプラスチックシャ —レに滴下し、 ポリエチレンフィルムを密着させたものを対照試料とし、 同様に 試験した。 なお、 平行測定で 3回試行した. V) Test operation 0.5 ml of the bacterial solution was added dropwise to the sample, and a polyethylene film was adhered to the sample. The solution was stored at 35 ° C, and the number of viable cells after storage for 24 hours was measured. Also, 0.5 ml of the bacterial solution was dropped on a plastic dish, and a polyethylene film was adhered to the sample, which was used as a control sample for the same test. The trial was performed three times in parallel measurement.
vi) 生菌数の測定  vi) Measurement of viable cell count
試料を SCDLP培地 [日本製薬 (株) ] 9.5mlでそれぞれ洗い出した。 この洗 い出し液について SA培地を用いた混釈平板培養法 (35°C、 48時間培養) により 生菌数を測定し、 試料当たりに換算した。 但し、 腸炎ビブリオについては食塩を 3 %添加した SCDLP培地及び SA培地を用いた。  Each sample was washed out with 9.5 ml of SCDLP medium [Nihon Pharmaceutical Co., Ltd.]. The number of viable bacteria was measured by a pour plate method (cultured at 35 ° C. for 48 hours) using an SA medium and converted to a sample. However, for Vibrio parahaemolyticus, SCDLP medium and SA medium supplemented with 3% of salt were used.
(e) 試験結果  (e) Test results
試料に滴下した試験菌の生菌数の測定結果は、 下記の表 3の通りであった。  The measurement results of the viable cell count of the test bacteria dropped on the sample were as shown in Table 3 below.
Figure imgf000015_0001
Figure imgf000015_0001
* 1 菌浮遊液: 1 / 2 0 0濃度 N B培地(ただし、 腸炎ビブリオは食塩を 3 %添加した„ * 2 プラスチックシャーレ  * 1 Bacterial suspension: 1/200 concentration NB medium (However, for Vibrio parahaemolyticus, 3% salt was added.) * 2 Plastic Petri dish
Φ 3 く 1 1):本試験で用いた菌数測定法により菌が検出されなかったことを意味す 下記の表 4には、 比較例として前記特許文献 1及び 2による処理品 (夕フコー ト:商品名) 及び特許文献 3による処理品 (メタルコート:商品名) の成績が示 されている。 これらの成績は、 他の公知品のものと比較すれば格段に優れている ものであるが、 これらはいずれも前述の本発明品に及ばないものである。 Φ 3 1 1): This means that no bacteria were detected by the bacterial counting method used in this test. Table 4 below shows the treated products according to Patent Documents 1 and 2 as comparative examples (Yufu Coat) : Product name) and processed products according to Patent Document 3 (Metal coat: Product name) Have been. These results are remarkably superior to those of other known products, but all of them are inferior to the above-mentioned products of the present invention.
表 4  Table 4
Figure imgf000016_0001
Figure imgf000016_0001
工業上の利用可能性 Industrial applicability
本発明は以上の如く構成されるので、 本発明によるときは、 前記の如く、 次の ような作用効果を達成することができる。  Since the present invention is configured as described above, according to the present invention, the following operation and effect can be achieved as described above.
(1) 従来方法では、 A1— Mn系合金には容易に陽極酸化被膜を形成できたが、 ジュラルミン、 ダイカスト合金に対しては処理が不可能であり、 また、 他の合金 に対しては処理が困難であった。 (1) According to the conventional method, an anodic oxide film could be easily formed on A1-Mn alloy. Duralumin and die casting alloys could not be treated, and other alloys were difficult to treat.
これに対して、 本発明方法では、 ジュラルミン、 ダイカスト合金その他のあら ゆる種類のアルミ合金に施工できる。  On the other hand, the method of the present invention can be applied to all kinds of aluminum alloys such as duralumin, die cast alloys and the like.
(2) 従来方法では、 30〜50 / m程度、最大でも 100/2 m程度の厚さの被膜まで しか形成できなかったが、本発明方法によれば、 300〜500 mの厚膜が容易に形 成できる。  (2) In the conventional method, a film having a thickness of only about 30 to 50 / m, at most about 100/2 m can be formed, but according to the method of the present invention, a thick film of 300 to 500 m can be easily formed. Can be formed.
(3) 従来方法で形成される被膜は、 その表層は硬いが (但し、 ピツカ一ス硬度 で 400 以下)、 内部はポ一ラスで、 硬度が低い。  (3) The film formed by the conventional method has a hard surface layer (however, a Pickers hardness of 400 or less), but has a porous inside and low hardness.
これに対して、 本発明方法で形成される被膜は表面硬度が高く、 ビッカース硬 度で 450〜500程度ある。特に、表面より下層の方が緻密で硬度が高く、 表面か ら 50〜: 150 m除去すると、 ピッカース硬度で 800〜: 1000の硬度となる。  On the other hand, the coating formed by the method of the present invention has a high surface hardness and a Vickers hardness of about 450 to 500. In particular, the lower layer is denser and harder than the surface, and when removed from the surface by 50 to 150 m, the pickers hardness becomes 800 to 1000.
(4) 本発明方法で形成される被膜は、 熱伝導度が高く、 銅と同程度である。 (4) The film formed by the method of the present invention has high thermal conductivity, which is comparable to that of copper.
(5) 本発明方法で形成される被膜は、 表面熱透過抵抗が低い。 (5) The coating formed by the method of the present invention has low surface heat transmission resistance.
そこで、 本発明方法で形成された被膜を有するアルミニウム又はその合金材で 作製したトレーの上に氷を置くと、 未処理のトレーに比べ、 2倍の速さで氷が融 ける。 従って、 例えば冷凍食品の解凍用トレーとして好適に利用できる。 また、 ポプコ一ン用のアルミ製加熱容器に本発明方法による処理を施すと、 加熱を開始 してから最初にポプコーンが爆ぜるまでの時間が、 従来品の 6分から 3分に短縮 される。  Thus, when ice is placed on a tray made of aluminum or an alloy thereof having a coating formed by the method of the present invention, the ice melts twice as fast as an untreated tray. Therefore, for example, it can be suitably used as a tray for thawing frozen foods. In addition, when the aluminum heating container for popcorn is treated by the method of the present invention, the time from the start of heating to the first explosion of the popcorn is reduced from 6 minutes to 3 minutes of the conventional product.
(6) 本発明方法で形成される被膜は、 耐熱度が高く、 800°C程度である。 (6) The film formed by the method of the present invention has a high heat resistance and is about 800 ° C.
(7) 本発明方法で形成される被膜は、 抗菌性がある。 従って、 本発明方法により陽極酸化被膜を形成したアルミニウム材又はアルミ ニゥム合金材は、 前記の如く、 例えば、 製氷用及び解凍用トレー、 炊飯器, 鍋, 釜, やかんその他の加熱用調理器、 瞬間湯沸器、 熱交換器、 空調機、 冷凍機、 冷 蔵庫、 オイルヒーター、 ラジエーター、 冷却フィン、 空冷及び水冷エンジン (放 熱の促進)、 航空機の翼 (着氷防止)、 半導体放熱基板、 半導体パッケージ、 ヒー 卜パイプ、 軸受、 各種摺動部材、 プレーキシュ一、 ポプコーンやアイスクリーム 製造器、 電気機器シャシ一、 モー夕一や変圧器等のケーシング、 等々のように幅 広い分野で好適に利用できる。 (7) The film formed by the method of the present invention has antibacterial properties. Therefore, as described above, the aluminum material or the aluminum alloy material on which the anodized film is formed by the method of the present invention is, for example, a tray for ice making and thawing, a rice cooker, a pot, a pot, a kettle and other heating cookers, Water heaters, heat exchangers, air conditioners, refrigerators, refrigerators, oil heaters, radiators, cooling fins, air-cooled and water-cooled engines (promoting heat dissipation), aircraft wings (anti-icing prevention), semiconductor heat dissipation boards, Semiconductor packages, heat pipes, bearings, various sliding members, plastics, popcorn and ice cream It can be suitably used in a wide range of fields, such as manufacturing equipment, electrical equipment chassis, motors and casings for transformers, etc.

Claims

請 求 の 範 囲 The scope of the claims
1. 250 gr/1以上、 350 gr/1以下の硫酸と、 15 gr /1以上、 25 gr/1 以下の硫酸二ッケルとを含む水溶液からなる浴液を用い、 下記の条件で陽極酸化 処理を行なうことを特徴とする、 アルミニウム又はアルミニウム合金の表面に陽 極酸化被膜を形成する方法。 1. Using an aqueous solution containing an aqueous solution containing sulfuric acid of 250 gr / 1 or more and 350 gr / 1 or less and nickel sulfate of 15 gr / 1 or more and 25 gr / 1 or less, anodizing under the following conditions Forming an anodized film on the surface of aluminum or an aluminum alloy.
(a) 浴液温度 一 10°C以上、 +25°C以下、  (a) Bath temperature-10 ° C or higher, + 25 ° C or lower,
(b) 電圧 DC100V以上、 200V以下、  (b) Voltage 100V DC or more, 200V or less,
(c) 電流密度 0.5 A /dm2 以上、 20 A/dn^ 以下。  (c) Current density 0.5 A / dm2 or more and 20 A / dn ^ or less.
2. 更に、 280 grZl以上、 320 grZl以下の範囲で、 低重合アクリル樹脂組 成物を添加した浴液を用いることを特徴とする、 請求項 1に記載のアルミニウム 又はアルミニウム合金の表面に陽極酸化被膜を形成する方法。 2. Anodizing the surface of aluminum or aluminum alloy according to claim 1, further comprising using a bath solution containing a low-polymerized acrylic resin composition in a range of 280 grZl or more and 320 grZl or less. A method of forming a coating.
3. 更に、 5 gr/1以上、 15 gr /1以下の範囲で、 酒石酸を添加した浴液を 用いることを特徴とする、 請求項 1又は 2に記載のアルミニウム又はアルミニゥ ム合金の表面に陽極酸化被膜を形成する方法。 3. An anode or aluminum alloy surface according to claim 1 or 2, wherein a bath solution to which tartaric acid is added is used in a range of 5 gr / 1 or more and 15 gr / 1 or less. A method of forming an oxide film.
4. 下記の条件で陽極酸化処理を行なうことを特徴とする、 請求項 1乃至 3の 何れか一に記載のアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を 形成する方法。 4. The method for forming an anodized film on a surface of aluminum or an aluminum alloy according to claim 1, wherein anodizing treatment is performed under the following conditions.
(d) 浴液温度 一 10°C以上、 一 5で以下、  (d) Bath temperature-10 ° C or higher, 1-5 or lower,
(e) 電圧 DC130V以上、 170V以下、  (e) Voltage 130VDC or more, 170V or less,
( ) 電流密度 8AZdm2 以上、 12 A/dm2 以下。  () Current density 8AZdm2 or more, 12A / dm2 or less.
5. 処理されるアルミ合金が、 ジュラルミン、 ダイカスト用アルミ合金、 Mn を含有しないアルミニウム合金からなる群の中から選ばれるアルミニウム合金 である請求項 4に記載のアルミニウム合金の表面に陽極酸化被膜を形成する方 法。 5. An anodic oxide film is formed on the surface of the aluminum alloy according to claim 4, wherein the aluminum alloy to be treated is an aluminum alloy selected from the group consisting of duralumin, an aluminum alloy for die casting, and an aluminum alloy containing no Mn. how to.
6. Mnを含むアルミニウム合金の表面に、下記の条件で陽極酸化処理を行なう ことを特徴とする、 請求項 1乃至 3の何れか一に記載のアルミニウム合金の表面 に陽極酸化被膜を形成する方法。 6. The method for forming an anodized film on the surface of an aluminum alloy according to claim 1, wherein anodizing treatment is performed on the surface of the aluminum alloy containing Mn under the following conditions. .
(g) 浴液温度 +15°C以上、 +18で以下、  (g) Bath temperature + 15 ° C or higher, +18 or lower,
(h) 電圧 DC130V以上、 170V以下、  (h) Voltage 130VDC or more, 170V or less,
(i) 電流密度 8AZdm2 以上、 12 AZdm2 以下。 (i) Current density 8 AZdm 2 or more, 12 AZdm 2 or less.
7. アルミニウム又はアルミニウム合金の表面に、 請求項 1乃至 6の何れか一 に記載の方法により陽極酸化被膜を形成した後、 10 gr /1以上、 30 gr /1以 下の硫酸銀又は硝酸銀と、 15 gr /1以上、 20 gr /1以下のホウ酸と、 1 grZ 1以上、 2 gr/1以下の硫酸ニッケルを含む水溶液からなる浴液を用い、 下記の 条件により、 陽極酸化被膜中に銀を含浸させることを特徴とする、 アルミニウム 又はアルミニウム合金の表面に陽極酸化被膜を形成する方法。 7. After forming an anodic oxide coating on the surface of aluminum or aluminum alloy by the method according to any one of claims 1 to 6, 10 gr / 1 or more and 30 gr / 1 or less of silver sulfate or silver nitrate. An aqueous solution containing boric acid of 15 gr / 1 or more and 20 gr / 1 or less and nickel sulfate of 1 grZ 1 or more and 2 gr / 1 or less is used in the anodic oxide film under the following conditions. A method for forming an anodic oxide film on a surface of aluminum or an aluminum alloy, wherein the method comprises impregnating silver.
(j) 浴液温度 +10°C以上、 +20°C以下、  (j) Bath temperature + 10 ° C or higher, + 20 ° C or lower,
(k) 電圧 AC10V以上、 15V以下、  (k) Voltage AC10V or more, 15V or less,
(1)電流密度 lAZdm2 以上、 2 A /dm2 以下、  (1) Current density lAZdm2 or higher, 2 A / dm2 or lower,
(m) 通電時間 2分以上、 3分以下。  (m) Energization time 2 minutes or more, 3 minutes or less.
8. 請求項 1乃至 6の何れか一に記載の方法により、 アルミニウム又はアルミ ニゥム合金の表面に厚み 300 ^ m以上、 600 m以下の陽極酸化被膜を形成し、請 求項 7に記載の銀含浸を行なった後、 研磨により 50 x m以上、 100 m以下まで 表層を除去し、 超硬度の平滑面を得ることを特徴とする、 アルミニウム又はアル ミニゥム合金の表面に陽極酸化被膜を形成する方法。 8. A method according to any one of claims 1 to 6, wherein an anodic oxide film having a thickness of 300 m or more and 600 m or less is formed on the surface of aluminum or aluminum alloy, and the silver according to claim 7 is formed. A method of forming an anodic oxide film on the surface of aluminum or an aluminum alloy, comprising removing the surface layer from 50 xm to 100 m by polishing after impregnation to obtain a superhard smooth surface.
PCT/JP2004/000684 2003-01-30 2004-01-27 Method for forming anodic oxide coating on surface of aluminum or aluminum alloy WO2004067807A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MXPA05008032A MXPA05008032A (en) 2003-01-30 2004-01-27 Method for forming anodic oxide coating on surface of aluminum or aluminum alloy.
BR0407080-1A BRPI0407080A (en) 2003-01-30 2004-01-27 Method for forming an anodic oxide layer on the aluminum surface or an aluminum alloy
US10/542,533 US20070267299A1 (en) 2003-01-30 2004-01-27 Method for Forming Anodic Oxide Layer on Surface of Aluminum or Aluminum Alloy
EP04705515A EP1593758A4 (en) 2003-01-30 2004-01-27 Method for forming anodic oxide coating on surface of aluminum or aluminum alloy
JP2005504706A JP4069135B2 (en) 2003-01-30 2004-01-27 Method for forming an anodized film on the surface of aluminum or aluminum alloy
AU2004207220A AU2004207220A1 (en) 2003-01-30 2004-01-27 Method for forming anodic oxide coating on surface of aluminum or aluminum alloy
CA002514271A CA2514271A1 (en) 2003-01-30 2004-01-27 Method for forming anodic oxide coating on surface of aluminum or aluminum alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003022682 2003-01-30
JP2003-22682 2003-01-30

Publications (1)

Publication Number Publication Date
WO2004067807A1 true WO2004067807A1 (en) 2004-08-12

Family

ID=32820698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000684 WO2004067807A1 (en) 2003-01-30 2004-01-27 Method for forming anodic oxide coating on surface of aluminum or aluminum alloy

Country Status (11)

Country Link
US (1) US20070267299A1 (en)
EP (1) EP1593758A4 (en)
JP (1) JP4069135B2 (en)
KR (1) KR20050103284A (en)
CN (1) CN1745200A (en)
AU (1) AU2004207220A1 (en)
BR (1) BRPI0407080A (en)
CA (1) CA2514271A1 (en)
MX (1) MXPA05008032A (en)
TW (1) TW200417635A (en)
WO (1) WO2004067807A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030736A (en) * 2007-07-27 2009-02-12 Nitto Seiko Co Ltd High-hardness aluminum alloy screw component
JP2009120892A (en) * 2007-11-13 2009-06-04 Sumitomo Electric Ind Ltd Self-supported film of alumina by anodization and production method therefor
WO2020067500A1 (en) 2018-09-28 2020-04-02 株式会社三菱ケミカルホールディングス Antimicrobial material, layered body, antimicrobial layered body, medical member, antimicrobial material production method, antimicrobial layered body production method, and antimicrobial method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629316B (en) * 2009-06-19 2011-06-08 常州佳得顺抗菌材料科技有限公司 Surface processing technique for bacterium resistance, erosion resistance and tarnish resistance of aluminum or aluminum alloy material
IT1398287B1 (en) * 2009-09-18 2013-02-22 Unical A G S P A METHOD OF ANODIZING METAL ALLOYS, PARTICULARLY FOR HEAT EXCHANGERS IN ALUMINUM ALLOYS AND SIMILAR FOR CONDENSING BOILERS.
CN101886285A (en) * 2010-06-25 2010-11-17 广东工业大学 Method for preparing stainless steel with antibacterial surface
CN101994142B (en) * 2010-12-09 2012-05-30 沈阳大学 Method for preparing titanium dioxide/copper nano composite antibacterial coating on surface of aluminum material
CN102888643B (en) * 2011-07-18 2015-09-02 汉达精密电子(昆山)有限公司 Hard Anodic Oxidation of Aluminum Alloy electrolytic solution and method
JP5441082B2 (en) 2011-07-21 2014-03-12 国立大学法人東北大学 Gas exhaust pump screw rotor and manufacturing method thereof, and gas exhaust pump including the screw rotor, manufacturing method and assembly method thereof
CN102312263A (en) * 2011-08-22 2012-01-11 吴江市精工铝字制造厂 Porcelain oxidation method of aluminum piece
JP2013211523A (en) * 2012-03-02 2013-10-10 Canon Components Inc Flexible circuit board
EP3040450A4 (en) * 2013-08-30 2016-08-31 Fujifilm Corp Method for manufacturing metal-filled microstructure
CN103498179B (en) * 2013-10-22 2014-08-06 哈尔滨三泳金属表面技术有限公司 Aluminum or aluminum alloy surface oxide film and method for preparing same
CN105530785B (en) * 2014-12-26 2016-11-23 比亚迪股份有限公司 A kind of electronic product metal shell being formed with antenna slot and preparation method thereof
CN107164797A (en) * 2017-04-11 2017-09-15 浙江洋铭工贸有限公司 A kind of electrophoresis process of die casting aluminium heating radiating fin
CN113089049A (en) * 2017-06-26 2021-07-09 石狮市星火铝制品有限公司 Antibacterial aluminum and manufacturing method thereof
CN107937953B (en) * 2017-12-12 2019-10-25 北京小米移动软件有限公司 Al-alloy casing and preparation method thereof
CN109943873B (en) * 2017-12-21 2021-02-05 李文熙 Thick film aluminum electrode for electroplated metal pretreatment
CN111778537A (en) * 2020-07-06 2020-10-16 上海脉诺金属表面处理技术有限公司 Normal-temperature hard oxidation liquid for antibacterial and mildewproof aluminum alloy
CN114260312A (en) * 2021-12-22 2022-04-01 福建省欧麦鑫自动化科技有限公司 High-strength sterile metal can and processing technology thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128453A (en) * 1978-03-16 1979-10-05 Hoechst Ag Anodizing aluminum or aluminum material of belt*sheet or plate shape*and substrate for making printe plate
JPS556489A (en) * 1978-05-18 1980-01-17 Sanford Process Corp Low voltage hard anode oxidizing method
JPH0297698A (en) * 1988-10-04 1990-04-10 Minoru Mitani Surface treatment of aluminum or alloy thereof
JPH10280191A (en) * 1997-04-01 1998-10-20 Kobe Steel Ltd Aluminum or aluminum alloy material having excellent antimicrobial property and its production
JP2001152391A (en) * 1999-11-25 2001-06-05 Soken:Kk Surface treating method for aluminum and aluminum alloy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1496891B2 (en) * 1966-12-10 1976-04-22 Langbein-Pfanhauser Werke Ag, 4040 Neuss PROCESS FOR THE PRODUCTION OF HARD ANODIC OXIDE COATINGS ON ALUMINUM AND ITS ALLOYS
JPS5315014B2 (en) * 1972-05-18 1978-05-22
US4225399A (en) * 1979-04-25 1980-09-30 Setsuo Tomita High speed aluminum anodizing
US4822458A (en) * 1988-04-25 1989-04-18 The United States Of America As Represented By The Secretary Of The Navy Anodic coating with enhanced thermal conductivity
JPH02301596A (en) * 1989-05-16 1990-12-13 Minoru Mitani Surface treatment of aluminum or alloy thereof
DE10033434A1 (en) * 2000-07-10 2002-01-24 Basf Ag Process for the production of gold-colored surfaces of aluminum or aluminum alloys using formulations containing silver salt
ITTO20010149A1 (en) * 2001-02-20 2002-08-20 Finmeccanica S P A Alenia Aero LOW ECOLOGICAL ANODIZATION PROCEDURE OF A PIECE OF ALUMINUM OR ALUMINUM ALLOYS.
US20080274375A1 (en) * 2007-05-04 2008-11-06 Duracouche International Limited Anodizing Aluminum and Alloys Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128453A (en) * 1978-03-16 1979-10-05 Hoechst Ag Anodizing aluminum or aluminum material of belt*sheet or plate shape*and substrate for making printe plate
JPS556489A (en) * 1978-05-18 1980-01-17 Sanford Process Corp Low voltage hard anode oxidizing method
JPH0297698A (en) * 1988-10-04 1990-04-10 Minoru Mitani Surface treatment of aluminum or alloy thereof
JPH10280191A (en) * 1997-04-01 1998-10-20 Kobe Steel Ltd Aluminum or aluminum alloy material having excellent antimicrobial property and its production
JP2001152391A (en) * 1999-11-25 2001-06-05 Soken:Kk Surface treating method for aluminum and aluminum alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030736A (en) * 2007-07-27 2009-02-12 Nitto Seiko Co Ltd High-hardness aluminum alloy screw component
JP2009120892A (en) * 2007-11-13 2009-06-04 Sumitomo Electric Ind Ltd Self-supported film of alumina by anodization and production method therefor
WO2020067500A1 (en) 2018-09-28 2020-04-02 株式会社三菱ケミカルホールディングス Antimicrobial material, layered body, antimicrobial layered body, medical member, antimicrobial material production method, antimicrobial layered body production method, and antimicrobial method
CN112770900A (en) * 2018-09-28 2021-05-07 三菱化学株式会社 Antibacterial material, laminate, antibacterial laminate, medical member, method for producing antibacterial material, method for producing antibacterial laminate, and antibacterial method
EP3858596A4 (en) * 2018-09-28 2021-11-24 Mitsubishi Chemical Corporation Antimicrobial material, layered body, antimicrobial layered body, medical member, antimicrobial material production method, antimicrobial layered body production method, and antimicrobial method

Also Published As

Publication number Publication date
EP1593758A4 (en) 2006-11-29
MXPA05008032A (en) 2006-01-27
KR20050103284A (en) 2005-10-28
CA2514271A1 (en) 2004-08-12
JP4069135B2 (en) 2008-04-02
BRPI0407080A (en) 2006-01-24
TW200417635A (en) 2004-09-16
US20070267299A1 (en) 2007-11-22
CN1745200A (en) 2006-03-08
AU2004207220A1 (en) 2004-08-12
EP1593758A1 (en) 2005-11-09
JPWO2004067807A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
WO2004067807A1 (en) Method for forming anodic oxide coating on surface of aluminum or aluminum alloy
Yerokhin et al. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy
Li et al. Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys
Qin et al. Adaptive-lubricating PEO/Ag/MoS2 multilayered coatings for Ti6Al4V alloy at elevated temperature
Kumar et al. Corrosion protection performance of single and dual Plasma Electrolytic Oxidation (PEO) coating for aerospace applications
Durdu et al. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation
Krishna et al. Relative hardness and corrosion behavior of micro arc oxidation coatings deposited on binary and ternary magnesium alloys
Laleh et al. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy
CN101307477A (en) Method for preparing high-wear-resistant antifriction self-lubricating composite membrane layer on surface of aluminum alloy
Rama Krishna et al. Aqueous corrosion behavior of micro arc oxidation (MAO)-coated magnesium alloys: a critical review
Li et al. Preparation and properties of micro-arc oxidation self-lubricating composite coatings containing paraffin
Guo et al. Tribological behavior of plasma electrolytic oxidation coating on magnesium alloy with oil lubrication at elevated temperatures
Qin et al. Characterization and friction behavior of LST/PEO duplex-treated Ti6Al4V alloy with burnished MoS2 film
Li et al. The microstructure and wear resistance of microarc oxidation composite coatings containing nano-hexagonal boron nitride (HBN) particles
CN109023468B (en) Preparation method of 2XXX aluminum and aluminum alloy surface high-wear-resistance self-lubricating micro-arc oxidation film layer
Lv et al. Effect of different electrolytes in micro-arc oxidation on corrosion and tribological performance of 7075 aluminum alloy
Ovundur et al. Characterization and Tribological Properties of Hard Anodized and Micro Arc Oxidized 5754 Quality Aluminum Alloy.
Tang et al. Microarc oxidation coatings containing TiC and NbC on magnesium alloy
Wang et al. Analysis and self-lubricating treatment of porous anodic alumina film formed in a compound solution
Molak et al. Functional properties of the novel hybrid coatings combined of the oxide and DLC layer as a protective coating for AZ91E magnesium alloy
CN105648499B (en) A kind of titanium alloy surface gradient anti-friction wear-resistant coating and preparation method thereof
CN106591920A (en) Method for controlling tinning plate surface dark grey degree
KR101168749B1 (en) Processing method of the surface for aluminum or aluminum alloy materials
Gencer et al. Plasma electrolytic oxidation of binary Al-Sn alloys
CN1644760B (en) Manufacture of composite aluminum products

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 541327

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2005504706

Country of ref document: JP

Ref document number: 3207/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2514271

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1-2005-501364

Country of ref document: PH

Ref document number: PA/a/2005/008032

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020057013998

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048033090

Country of ref document: CN

Ref document number: 2004705515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3582/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004207220

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1200501209

Country of ref document: VN

ENP Entry into the national phase

Ref document number: 2004207220

Country of ref document: AU

Date of ref document: 20040127

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004207220

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057013998

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004705515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0407080

Country of ref document: BR