JP4069135B2 - Method for forming an anodized film on the surface of aluminum or aluminum alloy - Google Patents

Method for forming an anodized film on the surface of aluminum or aluminum alloy Download PDF

Info

Publication number
JP4069135B2
JP4069135B2 JP2005504706A JP2005504706A JP4069135B2 JP 4069135 B2 JP4069135 B2 JP 4069135B2 JP 2005504706 A JP2005504706 A JP 2005504706A JP 2005504706 A JP2005504706 A JP 2005504706A JP 4069135 B2 JP4069135 B2 JP 4069135B2
Authority
JP
Japan
Prior art keywords
less
aluminum
aluminum alloy
present
anodized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005504706A
Other languages
Japanese (ja)
Other versions
JPWO2004067807A1 (en
Inventor
三谷佳之
Original Assignee
日本アルミナ加工株式会社
桐畑 卓始
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本アルミナ加工株式会社, 桐畑 卓始 filed Critical 日本アルミナ加工株式会社
Publication of JPWO2004067807A1 publication Critical patent/JPWO2004067807A1/en
Application granted granted Critical
Publication of JP4069135B2 publication Critical patent/JP4069135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • ing And Chemical Polishing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【発明の属する分野】
本発明は、アルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法の改良に関する。
【0002】
【従来の技術】
アルミニウム又はその合金を、主にその耐蝕性を向上させる目的で、硝酸、硫酸、クロム酸水溶液系等の電解液中で陽極酸化して、耐蝕性の酸化被膜を形成する方法は、アルマイト処理として公知であり、これにより得られたアルマイト処理品は、鍋、やかん等の日用品を中心として各種分野で広く使用されている。
然しながら、アルマイト被膜の上層は一般に多孔質であるため、耐蝕性がいまだ不十分であったり、耐摩耗性、着色容易性等の点でも満足のゆくものではなかった。
【0003】
このような問題点を解決するため、下記の特許文献1〜3においては、アルミニウム酸化被膜とアクリル樹脂組成物との複合被膜を形成する技術や、更にこれを被処理物の形状等に関係なく、短時間で、緻密な複合被膜として形成する技術や、その着色性を向上させる技術等々が開示されている。
【0004】
【特許文献1】
特公平01−019479号公報
【0005】
【特許文献2】
特開平02−097698号公報
【0006】
【特許文献3】
特公平05−014033号公報
【0007】
然しながら、これらの表面処理方法その他の従来公知のアルマイト処理方法によるときは、Al−Mn系合金に対しては容易に陽極酸化被膜を形成できるが、ジュラルミンやダイカスト合金に対しては処理が不可能であり、また、他のアルミニウム合金に対しては処理が困難であるという問題点があった。
形成される被膜も、従来方法によるものは、その厚さが30〜50μm程度と比較的薄く、硬度も低い等の制約があり、そのため用途にも一定の限界があった。
【0008】
【発明が解決しようとする課題】
本発明は、上記の如き問題点を解決するためなされたものであって、その目的とするところは、アルミニウム自体のほか、ジュラルミン、ダイカスト合金を含むあらゆる種類のアルミ合金に施工でき、300〜500μmの厚膜加工が可能であるばかりでなく、得られる被膜は、表面硬度が高く、耐熱性にも優れ、抗菌性も有している等々、多くの利点を備え、従来に比べて格段に広い分野で利用可能な各種アルミニウム素材を製造し得るアルミニウム又はアルミニウム合金の表面処理方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の上記の目的は、
250gr/l以上、350gr/l以下の硫酸と、15gr/l以上、25gr/l以下の硫酸ニッケルとを含む水溶液からなる浴液を用い、下記の処理条件、即ち、
(a)浴液温度 −10℃以上、+25℃以下、
(b)電圧 DC100V以上、200V以下、
(c)電流密度 0.5A/dm2 以上、20A/drn2 以下、
の条件で陽極酸化処理を行なうことによって達成できる。
本発明に係る上記の処理を、説明の便宜上、『本発明処理(1)』と言い、これにより得られる製品を『本発明製品(1)』と言う。
【0010】
上記本発明処理(1)で用いる浴液に、更に、280gr/l以上、320gr/l以下の範囲で、低重合アクリル樹脂組成物を添加した浴液を用いることによって、本発明の目的は一層好適に達成できる。
本発明に係るこの処理を、説明の便宜上、『本発明処理(2)』と言い、これにより得られる製品を『本発明製品(2)』と言う。
【0011】
上記本発明処理(2)において、いわゆる「焼け」を防止するために、その浴液に、更に、5gr/l以上、15gr/l以下の範囲で、酒石酸を添加した浴液を用いることが推奨される。
【0012】
従来の表面処理方法では困難であったジュラルミン、ダイカスト用アルミ合金、又は、Mnを含有しないアルミニウム合金からなる群の中から選ばれるアルミニウム合金に対して本発明方法を適用する場合には、上記いずれかの浴液を用いると共に、下記の処理条件、即ち、
(d)浴液温度 −10℃以上、−5℃以下、
(e)電圧 DC130V以上、170V以下、
(f)電流密度 8A/dm2 以上、12A/dm2 以下、
の条件で陽極酸化処理を行なうことが望ましい。
【0013】
Mnを含むアルミニウム合金の表面に陽極酸化処理を行なう場合には、上記いずれかの浴液を用いると共に、下記の処理条件、即ち、
(g)浴液温度 +15℃以上、+18℃以下、
(h)電圧 DC130V以上、170V以下、
(i)電流密度 8A/dm2 以上、12A/dm2 以下、
の条件で処理を行なうことが望ましい。
【0014】
本発明の更に望ましい形態においては、上記各種の処理方法のいずれかによってアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成した後、更に、10gr/l以上、30gr/l以下の硫酸銀又は硝酸銀と、15gr/l以上、20gr/l以下のホウ酸と、1gr/l以上、2gr/l以下の硫酸ニッケルを含む水溶液からなる浴液を用い、下記の処理条件、即ち、
(j)浴液温度 +10℃以上、+20℃以下、
(k)電圧 AC10V以上、15V以下、
(l)電流密度 1A/dm2 以上、2A/dm2以下、
(m)通電時間 2分以上、3分以下、
という条件で処理することにより、陽極酸化被膜中に銀を含浸させることが推奨される。
本発明に係るこのような処理を、説明の便宜上、『本発明処理(3)』と言い、これにより得られる製品を『本発明製品(3)』と言う。
【0015】
本発明の前記目的は、更に、上記各種の処理方法によって、アルミニウム又はアルミニウム合金の表面に厚み300μm以上、600μm以下の陽極酸化被膜を形成し、更にこれに上記銀含浸を行なった後、研磨により50μm以上、100μm以下まで表層を除去し、超硬度の平滑面を得ることを特徴とする、アルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法によっても達成される。
【0016】
【発明の実施の形態】
以下、図面等を参照しつゝ本発明を具体的に説明する。
図1は、本発明に係るアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法を実施するための装置の一実施例を示す説明図、図2は、本発明処理(2)を施したアルミニウム又はアルミニウム合金の被膜部分の拡大断面図である。
【0017】
図1中、1は電解槽、2は交流電源、3は本発明方法により処理すべきアルミニウム又はアルミニウム合金部材、4,4はカーボン、グラファイト等の非消耗性電極、5は所定の電解液から成る浴液である。
【0018】
本発明処理(1)は、図1に示すような装置を用い、浴液として、250gr/l以上、350gr/l以下の硫酸と、15gr/l以上、25gr/l以下の硫酸ニッケルとを含む水溶液を用い、
(a) 浴液温度 −10℃以上、+25℃以下、
(b) 電 圧 DC100V以上、200V以下、
(c) 電流密度 0.5A/dm2 以上、20A/dm2 以下、
という条件で陽極酸化処理を行うものである。
このように、本発明は、高硫酸イオン濃度、低温、高電流密度という処理条件で陽極酸化処理を行う点が従来方法と全く異なるものである。
上記処理条件の各数値が、その下限値未満であると処理効率が悪く、また、その上限値を超えると被膜の硬度が低下したり、所望の膜厚が得られない等の問題を生じる。
硫酸ニッケルは、形成される被膜の硬度を向上させるために加えられる。
本発明の処理方法により陽極酸化被膜を形成するアルミニウム又はアルミニウム合金の素材としては、下記の[表1]に記載のものが挙げられる。
【0019】
【表1】

Figure 0004069135
【0020】
なお、従来の方法では困難であったジュラルミン、ダイカスト用アルミ合金を始め、Mnを含有しないアルミニウム合金などの難処理性アルミニウム合金その他のアルミニウム合金に対して本発明方法を適用する場合には、上記いずれかの浴液を用いて、下記の処理条件、即ち、
(d) 浴液温度 −10℃以上、−5℃以下、
(e) 電 圧 DC130V以上、170V以下、
(f) 電流密度 8A/dm2 以上、12A/dm2 以下、
という条件を採用することにより、所望の陽極酸化被膜を形成することができる。
【0021】
他方、Mnを含むアルミニウム合金の表面に陽極酸化処理を行なう場合には、下記の処理条件、即ち、
(g)浴液温度 +15℃以上、+18℃以下、
(h)電 圧 DC130V以上、170V以下、
(i)電流密度 8A/dm2 以上、12A/dm2 以下、
という条件を採用することにより、所望の陽極酸化被膜を形成することができる。
【0022】
上記の如く構成される本発明を従来方法と比較すると、次のような利点を挙げることができる。
(1) 従来方法では、Al−Mn系合金には容易に陽極酸化被膜を形成できたが、ジュラルミン、ダイカスト合金に対しては処理が不可能であり、また、他の合金に対しては処理が困難であった。
これに対して、本発明方法では、ジュラルミン、ダイカスト合金その他のあらゆる種類のアルミ合金に施工できる。
(2) 従来方法では、30〜50μm程度、最大でも100μm程度の厚さの被膜までしか形成できなかったが、本発明方法によれば、300〜500μmの厚膜が容易に形成できる。
(3) 従来方法で形成される被膜は、その表層は硬いが(但し、ピッカース硬度で400以下)、内部はポーラスで、硬度が低い。
これに対して、本発明方法で形成される被膜は表面硬度が高く、ピッカース硬度で450〜500程度ある。特に、表面より下層の方が緻密で硬度が高く、表面から50〜150 μ m除去すると、ビッカース硬度で800〜1000の硬度となる。
(4) 本発明方法で形成される被膜は、熱伝導度が高く、銅と同程度である。
(5) 本発明方法で形成される被膜は、表面熱透過抵抗が低い。
そこで、本発明方法で形成された被膜を有するアルミニウム又はその合金材で作製したトレーの上に氷を置くと、未処理のトレーに比べ、2倍の速さで氷が融ける。従って、例えば冷凍食品の解凍用トレーとして好適に利用できる。また、ボブコーン用のアルミ製加熱容器に本発明方法による処理を施すと、加熱を開始してから最初にボブコーンが爆ぜるまでの時間が、従来品の6分から3分に短縮される。
(6) 本発明方法で形成される被膜は、耐熱度が高く、800℃程度である。
(7) 本発明方法で形成される被膜は、抗菌性がある。
【0023】
従って、本発明方法により陽極酸化被膜を形成したアルミニウム材又はアルミニウム合金材は、例えば、製氷用及び解凍用トレー、炊飯器,鍋,釜,やかんその他の加熱用調理器、瞬間湯沸器、熱交換器、空調機、冷凍機、冷蔵庫、オイルヒーター、ラジエーター、冷却フィン、空冷及び水冷エンジン(放熱の促進)、航空機の翼(着氷防止)、半導体放熱基板、半導体パッケージ、ヒートパイプ、軸受、各種摺動部材、ブレーキシュー、ボブコーンやアイスクリーム製造器、電気機器シャシー、モーターや変圧器等のケーシング、等々のように幅広い分野で好適に利用できる。
これらは特に本発明品がよく熱を通すという性質を利用したものである。
【0024】
次に、本発明処理(2)について説明する。
本発明処理(2)を行う場合には、上記本発明処理(1)で用いる浴液に、更に、280gr/l以上、320gr/l以下の範囲で、低重合アクリル樹脂組成物を添加した浴液を用いて陽極酸化処理を行うことを特徴とする。
添加すべき低重合アクリル樹脂組成物としては、例えば、重量百分比で、ヒドロキシプロピルメタクリレート68%と、ネオペンチルグリコールジメタクリレート10%と、ポリプロピレングリコールメタクリレート19.5%と、1,6ヘキサンジオールジグリシジルエーテル1%と、プチルパーオキシオクトエイト1%と、ハイドロキノンモノメチルエーテル500ppmと、ジシアンジアミド0.3%とから成るものが好適に用いられる。
「焼け」防止の目的で、上記浴液に更に、5gr/l以上、15gr/l以下の範囲で、酒石酸を添加することが推奨される。
【0025】
このような本発明処理(2)によって、酸化アルミとアクリル樹脂組成物の複合した酸化被膜が形成される。即ち、治金上の多孔性酸化被膜とアクリル樹脂組織物が酸イオン化されて重合し、強固且つ緻密な複合被膜を形成するため、耐蝕性、耐磨耗性が大幅に向上する。また、ピンホール部のガスを抜きながら被膜を生成するため、ピンホールが極めて少なく、更にまた、低温で酸化被膜をゆっくり生成するため、緻密性に優れ、被膜が剥離しにくいので機械加工が可能であり、表面粗さも変化しないという特徴を有する。
【0026】
上記本発明処理(2)により得られた陽極酸化被膜を、図2の被膜部分拡大断面図を用いて説明する。
図2中、21は地金のアルミニウム材又はアルミニウム合金材、22は陽極酸化被膜、23はそのバリア層、24は多孔性被膜部、25はアクリル樹脂組成物被膜部である。
陽極酸化被膜22は、アルミニウム材又はアルミニウム合金材21上に形成されたバリア層23と、その上に形成された多孔性被膜部24と、その多孔質層内に浸透、固定されたアクリル樹脂組成物被膜部25とから成り、これらの両被膜部24及び25によって強固かつ緻密な複合被膜が形成されている。この複合被膜は、バリア層23に近い部分ほど硬度が上がり緻密となるので、後述する如く、表面に近い領域を機械加工により除去して、より一層高硬度の表面を得ることができる。
【0027】
次に、本発明処理(3)について説明する。
本発明処理(3)を行う場合には、上記各種の処理方法のいずれかによってアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成した後、更に、10gr/l以上、30gr/1以下の硫酸銀又は硝酸銀と、15gr/l以上、20gr/l以下のホウ酸と、1gr/l以上、2gr/l以下の硫酸ニッケルを含む水溶液からなる浴液を用い、下記の処理条件、即ち、
(j)浴液温度 +10℃以上、+20℃以下、
(k)電圧 AC10V以上、15V以下、
(l)電流密度 1A/dm2 以上、2A/dm2 以下、
(m)通電時間 2分以上、3分以下、
という条件で陽極酸化処理を行うことによって、陽極酸化被膜中に銀を含浸させることを特徴とする。
処理の進行に伴う銀イオン濃度の低下は硫酸銀又は硝酸銀の補充によって補うようにする。
ホウ酸は主に電解液の電導度の調整のために添加される。
電圧が10V未満であると処理効率が悪く、また、15Vを超えると銀の沈着が急激に行なわれ過ぎて酸化被膜の多孔質層内への充分な含浸が行なわれず、色むらや剥離等を生じ易くなる。
同様に、電解液の温度が+10℃未満であると、処理効率が悪く、+20℃を超えると、色むらを生じやすい。
【0028】
このような本発明処理(3)によって、多孔性の陽極酸化被膜内に銀イオンが深く侵入し(交流電圧によって電解含浸させる)、酸化アルミと複合して強固且つ緻密な複合被膜を形成するため、熱伝導性、耐蝕性、耐磨耗性、抗菌性等に優れた表面被膜が形成される。また、この表面被膜は、導電性があり、表面の摩擦係数が小さく、色彩の経時変化が少ない。また、遠赤外線発生、静電気除去等の効果も有している。
このような本発明処理(3)は、全てのアルミニウム材又はアルミニウム合金材に対して可能で、その表面に前記の如き優れた各種特性を有する厚膜を形成できる。
【0029】
本発明は、更に、上記各種の処理方法によって、アルミニウム又はアルミニウム合金の表面に厚み300μm以上、600μm以下の陽極酸化被膜を形成し、更にこれに上記銀含浸を行なった後、研磨により50μm以上、100μm以下まで表層を除去することにより、超硬度の平滑面を有するアルミニウム材又はアルミニウム合金材を提供するものである。
即ち、本発明方法で形成される被膜は、表面硬度が高く、ピッカース硬度で450〜500程度ある。特に、表面より下層の方が緻密で硬度が高い。そこで、表面から50〜150μ mミクロン除去すると、ピッカース硬度で800〜1000の超硬度の平滑面を有するアルミニウム材又はアルミニウム合金材が得られることになる。
【0030】
以下に、本発明品の各種特性を示す。
[表2]には、本発明処理を施した製品の特性が材料別に示されている。
【0031】
【表2】
Figure 0004069135
【0032】
熱伝導率は、銀を1とした場合、本発明品は0.9、銅は0.94、アルミニウムは0.53である。従って、本発明品の熱伝導率は、母材のアルミニウムより高く、銅と同程度である。
この性質は、各種伝熱部材、透熱部材、放熱部材用材料として優れていることを示すものである。
【0033】
硬度(Hv)は、アルミニウムが80、ステンレスが200、本発明品が450であり、本発明品はステンレスの2倍以上の硬度を有する。
この性質を利用して、ギア、ローラー、ガイドレール、軸、軸受、ブレーキシュー、シリンダライナー及びピストン、バルブ、ピストンポンプ、スクリュウポンプなど、耐磨耗性を必要とする各種部品を製造し得る。
【0034】
耐熱温度(℃)は、ポリテトラフルオロエチレンが260℃、アルミニウムが660℃、本発明品の表面被膜が800℃である。
この性質を利用して、防火シャッター、耐熱壁材などを提供することができる。
【0035】
磨耗試験を行った結果、本発明品の磨耗量は、通常の硬質アルマイトの1/10であった。
即ち、試験片を回転側とし、樹脂系無給油軸受材を固定側として磨耗試験を行った。試験条件は、振動速度1m/s、面圧 20kgf/cm2、試験時間3hrで試験した結果、硬質アルマイトの磨耗量は2.5μm、本発明品の磨耗量は0.25μmであった。
【0036】
焼付き試験を行った結果、本発明品の焼付き面圧は、通常の硬質アルマイトの2倍であった。
即ち、耐焼付き試験として、試験片を回転側とし、樹脂系無給油軸受材を固定側として磨耗係数を測定し、磨耗係数が急激な増加を示した荷重を焼付き限界荷重として評価したところ、通常の硬質アルマイトが160kgf/cm2 であったのに対して、本発明品は320kgf/cm2 であった。
【0037】
高温試験によるクラックの進行を測定したところ、本発明品は、タフラム(商品名。硬質アルマイトをシンター処理してポリテトラフルオロエチレンを含浸させた製品。)に比べて、初期クラックが少なく、加熱によるクラック増加数も少なかった。
即ち、平坦部の測定面積16.4mm2 中のクラック数を測定したところ、本発明品は加熱前に0であったものが、加熱後には12となったのに対して、タフラムは加熱前に263であったものが、加熱後には321となった。
【0038】
抗菌力の試験を行った。その内容は次のとおりである。
(a) 検 体
検体1‥アルミニウム 本発明の銀含浸処理による表面処理品
(表面被膜厚さ 25μm)
検体2‥アルミニウム 未処理品
(b) 試験目的
検体の抗菌力試験を行う。
(c) 試験概要
検体(以下「試料」と言う。)に大腸菌、黄色ブドウ球菌、腸炎ビブリオ及びサルモネラの菌液をそれぞれ滴下後、35℃で24時間保存した後の試料の生菌数を測定した。
(d) 試験方法
i) 試験菌
Escherichia coli IFO 3301(大腸菌)
Staphylococcus aureus IFO 12732(黄色ブドウ球菌)
Vibrio parahaemolyticus RIMD 2210100(腸炎ビブリオ)
Salmonella enteritidis IFO 3313(サルモネラ)
ii) 培 地
NA培地: 普通寒天培地
NB培地: 肉エキスを0.2%添加した普通ブイヨン培地
SA培地: 標準寒天培地
iii) 菌液の調整
試験菌をNA培地で35℃、16〜24時間培養後、再度NA培地に接種し、35℃、16〜20時間培養した。培養後、得られた試験菌の菌体を1/200濃度NB培地に懸濁させ、菌数が105〜106mlとなるように1/200濃度NB培地で適宜希釈し、菌液とした。但し、腸炎ビブリオはNA培地及び1/200濃度NB培地に食塩を3%添加したものを用いた。
iv) 試料の調整
99.9%(V/V)エタノールを含ませた脱脂綿で検体の試験面を軽く拭いた後、充分に乾燥させた。
v) 試験操作
試料に菌液0.5mlを滴下し、ポリエチレンフィルムを密着させた後、35℃で保存し、24時間保存後の生菌数を測定した。また、菌液0.5mlをプラスチックシャーレに滴下し、ポリエチレンフィルムを密着させたものを対照試料とし、同様に試験した。なお、平行測定で3回試行した.
vi)生菌数の測定
試料をSCDLP培地[日本製薬(株)]9.5mlでそれぞれ洗い出した。この洗い出し液についてSA培地を用いた混釈平板培養法(35℃、48時間培養)により生菌数を測定し、試料当たりに換算した。但し、腸炎ビブリオについては食塩を3%添加したSCDLP培地及びSA培地を用いた。
(e) 試験結果
試料に滴下した試験菌の生菌数の測定結果は、下記の[表3]の通りであった。
【0039】
【表3】
Figure 0004069135
【0040】
下記の[表4]には、比較例として前記特許文献1及び2による処理品(タフコート‥商品名)及び特許文献3による処理品(メタルコート‥商品名)の成績が示されている。これらの成績は、他の公知品のものと比較すれば格段に優れているものであるが、これらはいずれも前述の本発明品に及ばないものである。
【0041】
【表4】
Figure 0004069135
【0042】
【発明の効果】
本発明は以上の如く構成されるので、本発明によるときは、前記の如く、次のような作用効果を達成することができる。
(1) 従来方法では、Al−Mn系合金には容易に陽極酸化被膜を形成できたが、ジュラルミン、ダイカスト合金に対しては処理が不可能であり、また、他の合金に対しては処理が困難であった。
これに対して、本発明方法では、ジュラルミン、ダイカスト合金その他のあらゆる種類のアルミ合金に施工できる。
(2) 従来方法では、30〜50μm程度、最大でも100μm程度の厚さの被膜までしか形成できなかったが、本発明方法によれば、300〜500μmの厚膜が容易に形成できる。
(3) 従来方法で形成される被膜は、その表層は硬いが(但し、ビッカース硬度で400以下)、内部はポーラスで、硬度が低い。
これに対して、本発明方法で形成される被膜は表面硬度が高く、ピッカース硬度で450〜500程度ある。特に、表面より下層の方が緻密で硬度が高く、表面から50〜150μ m除去すると、ピッカース硬度で800〜1000の硬度となる。
(4) 発明方法で形成される被膜は、熱伝導度が高く、銅と同程度である。
(5) 本発明方法で形成される被膜は、表面熱透過抵抗が低い。
そこで、本発明方法で形成された被膜を有するアルミニウム又はその合金材で作製したトレーの上に氷を置くと、未処理のトレーに比べ、2倍の速さで氷が融ける。従って、例えば冷凍食品の解凍用トレーとして好適に利用できる。また、ボブコーン用のアルミ製加熱容器に本発明方法による処理を施すと、加熱を開始してから最初にポプコーンが爆ぜるまでの時間が、従来品の6分から3分に短縮される。
(6) 本発明方法で形成される被膜は、耐熱度が高く、800℃程度である。
(7) 本発明方法で形成される被膜は、抗菌性がある。
【0043】
従って、本発明方法により陽極酸化被膜を形成したアルミニウム材又はアルミニウム合金材は、前記の如く、例えば、製氷用及び解凍用トレー、炊飯器,鍋,釜,やかんその他の加熱用調理器、瞬間湯沸器、熱交換器、空調機、冷凍機、冷蔵庫、オイルヒーター、ラジエーター、冷却フィン、空冷及び水冷エンジン(放熱の促進)、航空機の翼(着氷防止)、半導体放熱基板、半導体パッケージ、ヒートパイプ、軸受、各種摺動部材、ブレーキシュー、ポプコーンやアイスクリーム製造器、電気機器シャシー、モーターや変圧器等のケーシング、等々のように幅広い分野で好適に利用できる。
【図面の簡単な説明】
【図1】 本発明に係るアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法を実施するための装置の一実施例を示す説明図である。
【図2】 本発明処理(2)を施したアルミニウム又はアルミニウム合金の被膜部分の拡大断面図である。
【符号の説明】
1 電解槽
2 交流電源
3 アルミニウム部材又はアルミニウム合金部材
4 電極
5 浴液[0001]
[Field of the Invention]
The present invention relates to an improved method for forming an anodized film on the surface of aluminum or an aluminum alloy.
[0002]
[Prior art]
The method of anodizing aluminum or its alloys in an electrolytic solution such as nitric acid, sulfuric acid, or chromic acid aqueous solution mainly for the purpose of improving the corrosion resistance, and forming a corrosion-resistant oxide film is an alumite treatment. The anodized product obtained by this method is widely used in various fields mainly for daily necessities such as pots and kettles.
However, since the upper layer of the alumite coating is generally porous, the corrosion resistance is still insufficient, and it is not satisfactory in terms of wear resistance, coloration ease, and the like.
[0003]
In order to solve such problems, in the following Patent Documents 1 to 3, regardless of the technology for forming a composite film of an aluminum oxide film and an acrylic resin composition, and the shape of the object to be processed, etc. In addition, a technique for forming a dense composite film in a short time, a technique for improving the coloring property, and the like are disclosed.
0004
[Patent Document 1]
Japanese Patent Publication No. 01-019479 [0005]
[Patent Document 2]
Japanese Patent Laid-Open No. 02-097698 [0006]
[Patent Document 3]
Japanese Patent Publication No. 05-014033 [0007]
However, when these surface treatment methods and other conventionally known alumite treatment methods are used, an anodized film can be easily formed for Al-Mn alloys, but treatment for duralumin and die cast alloys is impossible. In addition, other aluminum alloys have a problem that they are difficult to process.
The film formed by the conventional method also has restrictions such as a relatively thin thickness of about 30 to 50 μm and a low hardness, and therefore has a certain limit in use.
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and the object of the present invention is that it can be applied to all kinds of aluminum alloys including duralumin and die cast alloys in addition to aluminum itself, and has a thickness of 300 to 500 μm. In addition to being capable of thick film processing, the resulting coating has many advantages such as high surface hardness, excellent heat resistance, and antibacterial properties, and is much wider than before An object of the present invention is to provide a surface treatment method of aluminum or an aluminum alloy capable of producing various aluminum materials usable in the field.
[0009]
[Means for Solving the Problems]
The above object of the present invention is to
Using a bath solution consisting of an aqueous solution containing 250 gr / l or more and 350 gr / l or less sulfuric acid and 15 gr / l or more and 25 gr / l or less nickel sulfate,
(A) Bath liquid temperature -10 ℃ or higher, + 25 ℃ or lower,
(B) Voltage DC100V or more, 200V or less,
(C) current density 0.5A / dm 2 or more, 20A / DRN 2 or less,
This can be achieved by anodizing under the following conditions.
The above processing according to the present invention is referred to as “present invention processing (1)” for convenience of explanation, and the product obtained thereby is referred to as “present invention product (1)”.
[0010]
The object of the present invention is further improved by using a bath liquid to which a low-polymerization acrylic resin composition is added in the range of 280 gr / l or more and 320 gr / l or less to the bath liquid used in the treatment (1) of the present invention. It can be suitably achieved.
This process according to the present invention is referred to as “present invention process (2)” for convenience of explanation, and a product obtained thereby is referred to as “present invention product (2)”.
[0011]
In the present invention treatment (2), in order to prevent so-called “burning”, it is recommended to use a bath solution to which tartaric acid is further added in the range of 5 gr / l or more and 15 gr / l or less. Is done.
[0012]
When applying the method of the present invention to an aluminum alloy selected from the group consisting of duralumin, an aluminum alloy for die casting, or an aluminum alloy not containing Mn, which is difficult with the conventional surface treatment method, any of the above As well as the following processing conditions:
(D) Bath liquid temperature −10 ° C. or higher, −5 ° C. or lower,
(E) Voltage 130VDC or more, 170V or less,
(F) current density 8A / dm 2 or more, 12A / dm 2 or less,
It is desirable to perform the anodizing treatment under the conditions described above.
[0013]
When anodizing the surface of the aluminum alloy containing Mn, using any one of the above bath solutions, the following processing conditions, that is,
(G) Bath liquid temperature + 15 ° C or higher, + 18 ° C or lower,
(H) Voltage DC130V or more, 170V or less,
(I) Current density 8A / dm 2 or more, 12A / dm 2 Less than,
It is desirable to perform the process under the following conditions.
[0014]
In a more desirable mode of the present invention, after an anodized film is formed on the surface of aluminum or an aluminum alloy by any of the above-described various processing methods, silver sulfate or silver nitrate of 10 gr / l or more and 30 gr / l or less is further added. , Using a bath solution composed of an aqueous solution containing boric acid of 15 gr / l or more and 20 gr / l or less and nickel sulfate of 1 gr / l or more and 2 gr / l or less, the following processing conditions:
(J) Bath temperature + 10 ° C or higher, + 20 ° C or lower,
(K) Voltage AC10V or more, 15V or less,
(L) Current density 1A / dm 2 or more, 2A / dm 2 or less,
(M) Energizing time 2 minutes or more, 3 minutes or less,
It is recommended that the anodized film be impregnated with silver by treatment under the conditions of
Such processing according to the present invention is referred to as “present invention processing (3)” for convenience of explanation, and a product obtained thereby is referred to as “present invention product (3)”.
[0015]
The object of the present invention is to further form an anodic oxide film having a thickness of 300 μm or more and 600 μm or less on the surface of aluminum or aluminum alloy by the above-mentioned various treatment methods, and further impregnate the silver with this, followed by polishing. It is also achieved by a method of forming an anodized film on the surface of aluminum or aluminum alloy, characterized in that the surface layer is removed to 50 μm or more and 100 μm or less to obtain a super-hard smooth surface.
0016
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is an explanatory view showing an embodiment of an apparatus for carrying out a method for forming an anodic oxide film on the surface of aluminum or an aluminum alloy according to the present invention, and FIG. 2 is a process (2) according to the present invention. It is an expanded sectional view of the coat part of aluminum or aluminum alloy.
[0017]
In FIG. 1, 1 is an electrolytic cell, 2 is an AC power source, 3 is an aluminum or aluminum alloy member to be treated by the method of the present invention, 4 and 4 are non-consumable electrodes such as carbon and graphite, and 5 is a predetermined electrolytic solution. A bath solution.
[0018]
The present invention treatment (1) uses an apparatus as shown in FIG. 1 and contains 250 gr / l or more and 350 gr / l or less sulfuric acid and 15 gr / l or more and 25 gr / l or less nickel sulfate as a bath solution. Using aqueous solution,
(A) Bath temperature -10 ℃ or higher, + 25 ℃ or lower,
(B) Voltage DC100V or more, 200V or less,
(C) Current density 0.5A / dm 2 or more, 20A / dm 2 Less than,
The anodizing process is performed under the conditions.
Thus, the present invention is completely different from the conventional method in that the anodic oxidation treatment is performed under the treatment conditions of high sulfate ion concentration, low temperature, and high current density.
If each numerical value of the above processing conditions is less than the lower limit, the processing efficiency is poor, and if it exceeds the upper limit, the hardness of the coating is lowered or a desired film thickness cannot be obtained.
Nickel sulfate is added to improve the hardness of the formed film.
Examples of the aluminum or aluminum alloy material that forms the anodized film by the treatment method of the present invention include those described in [Table 1] below.
[0019]
【table 1】
Figure 0004069135
[0020]
In addition, when applying the method of the present invention to difficult-to-process aluminum alloys such as aluminum alloys not containing Mn, such as duralumin and die-casting aluminum alloys, which were difficult with conventional methods, the above Using any of the bath solutions, the following processing conditions:
(D) Bath temperature -10 ° C or higher, -5 ° C or lower,
(E) Voltage 130VDC or more, 170V or less,
(F) current density 8A / dm 2 or more, 12A / dm 2 or less,
By adopting such a condition, a desired anodized film can be formed.
[0021]
On the other hand, when anodizing the surface of the aluminum alloy containing Mn, the following processing conditions,
(G) Bath temperature + 15 ° C or higher, + 18 ° C or lower,
(H) Voltage 130VDC or more, 170V or less,
(I) the current density 8A / dm 2 or more, 12A / dm 2 or less,
By adopting such a condition, a desired anodized film can be formed.
[0022]
When the present invention configured as described above is compared with the conventional method, the following advantages can be obtained.
(1) In the conventional method, an anodized film could be easily formed on Al-Mn alloys, but it was not possible to treat duralumin and die-cast alloys, and other alloys could be treated. It was difficult.
In contrast, the method of the present invention can be applied to all types of aluminum alloys such as duralumin, die-cast alloys and the like.
(2) In the conventional method, only a film having a thickness of about 30 to 50 μm and a maximum of about 100 μm can be formed. However, according to the method of the present invention, a thick film of 300 to 500 μm can be easily formed.
(3) The film formed by the conventional method has a hard surface layer (however, the picker hardness is 400 or less), but the inside is porous and the hardness is low.
On the other hand, the film formed by the method of the present invention has a high surface hardness and a Picker's hardness of about 450 to 500. In particular, high dense hardness towards the lower the surface and 50 to 150 mu m to remove from the surface, the hardness of 800 to 1000 in Vickers hardness.
(4) The film formed by the method of the present invention has a high thermal conductivity and is comparable to copper.
(5) The film formed by the method of the present invention has a low surface heat transmission resistance.
Therefore, when ice is placed on a tray made of aluminum having a film formed by the method of the present invention or an alloy material thereof, the ice melts twice as fast as an untreated tray. Therefore, for example, it can be suitably used as a thawing tray for frozen food. Moreover, when the treatment by the method of the present invention is applied to an aluminum heating container for bob cones, the time from the start of heating to the first explosion of the bob cones is shortened from 6 minutes of the conventional product to 3 minutes.
(6) The film formed by the method of the present invention has a high heat resistance and is about 800 ° C.
(7) The film formed by the method of the present invention has antibacterial properties.
[0023]
Therefore, the aluminum material or aluminum alloy material on which the anodized film is formed by the method of the present invention is, for example, ice-making and thawing trays, rice cookers, pots, kettles, kettles or other heating cookers, instantaneous water heaters, heat Exchangers, air conditioners, refrigerators, refrigerators, oil heaters, radiators, cooling fins, air and water cooling engines (promotion of heat dissipation), aircraft wings (anti-icing prevention), semiconductor heat dissipation substrates, semiconductor packages, heat pipes, bearings, It can be suitably used in a wide range of fields such as various sliding members, brake shoes, bob cones and ice cream makers, electrical equipment chassis, casings for motors and transformers, and the like.
These are those utilizing the property that the product of the present invention conducts heat well.
[0024]
Next, the processing (2) of the present invention will be described.
When performing the present invention treatment (2), a bath obtained by further adding a low-polymerization acrylic resin composition to the bath liquid used in the above-mentioned present invention treatment (1) in a range of 280 gr / l to 320 gr / l. Anodizing treatment is performed using a liquid.
Examples of the low-polymerization acrylic resin composition to be added include, by weight percentage, hydroxypropyl methacrylate 68%, neopentyl glycol dimethacrylate 10%, polypropylene glycol methacrylate 19.5%, 1,6-hexanediol diglycidyl ether 1 %, Butyl peroxy octoate 1%, hydroquinone monomethyl ether 500 ppm, and dicyandiamide 0.3% are preferably used.
For the purpose of preventing “burning”, it is recommended to add tartaric acid to the above bath liquid in the range of 5 gr / l to 15 gr / l.
[0025]
By such treatment (2) of the present invention, an oxide film in which aluminum oxide and an acrylic resin composition are combined is formed. That is, since the porous oxide film and the acrylic resin structure on the metallurgy are acid ionized and polymerized to form a strong and dense composite film, the corrosion resistance and wear resistance are greatly improved. In addition, since the film is generated while venting the pinhole gas, there are very few pinholes. Furthermore, since the oxide film is slowly generated at low temperature, it is excellent in denseness and the film is difficult to peel off, allowing machining. The surface roughness does not change.
[0026]
The anodized film obtained by the present invention treatment (2) will be described with reference to the enlarged partial sectional view of the film in FIG.
In FIG. 2, 21 is a bare aluminum material or aluminum alloy material, 22 is an anodic oxide coating, 23 is its barrier layer, 24 is a porous coating, and 25 is an acrylic resin composition coating.
The anodic oxide coating 22 is an acrylic resin composition that penetrates and is fixed in the barrier layer 23 formed on the aluminum material or aluminum alloy material 21, the porous coating portion 24 formed thereon, and the porous layer. The coating film portion 25 is formed, and a strong and dense composite coating film is formed by the coating film portions 24 and 25. Since this composite film has a higher hardness and becomes denser as it is closer to the barrier layer 23, a region near the surface can be removed by machining to obtain a surface with higher hardness, as will be described later.
[0027]
Next, the processing (3) of the present invention will be described.
In the case of carrying out the treatment (3) of the present invention, after an anodic oxide film is formed on the surface of aluminum or aluminum alloy by any of the above-mentioned various treatment methods, silver sulfate of 10 gr / l or more and 30 gr / 1 or less is further formed. Alternatively, a bath solution comprising an aqueous solution containing silver nitrate, boric acid of 15 gr / l or more and 20 gr / l or less, and nickel sulfate of 1 gr / l or more and 2 gr / l or less is used.
(J) Bath liquid temperature + 10 ° C or higher, + 20 ° C or lower,
(K) Voltage AC10V or more, 15V or less,
(L) Current density 1A / dm 2 or more, 2A / dm 2 Less than,
(M) Energizing time 2 minutes or more, 3 minutes or less,
The anodized film is impregnated with silver by performing an anodizing treatment under such conditions.
The decrease in the silver ion concentration accompanying the progress of the treatment is compensated by supplementation with silver sulfate or silver nitrate.
Boric acid is added mainly for adjusting the conductivity of the electrolyte.
If the voltage is less than 10V, the processing efficiency is poor, and if it exceeds 15V, the silver is deposited too rapidly and the oxide layer is not sufficiently impregnated in the porous layer, resulting in uneven color and peeling. It tends to occur.
Similarly, when the temperature of the electrolytic solution is less than + 10 ° C., the processing efficiency is poor, and when it exceeds + 20 ° C., uneven color tends to occur.
[0028]
By such treatment (3) of the present invention, silver ions penetrate deeply into the porous anodic oxide coating (electrolytically impregnated with an alternating voltage), and form a strong and dense composite coating by combining with aluminum oxide. A surface film excellent in thermal conductivity, corrosion resistance, abrasion resistance, antibacterial properties, etc. is formed. Further, this surface coating is conductive, has a small surface friction coefficient, and has little color change with time. It also has effects such as generation of far infrared rays and removal of static electricity.
Such treatment (3) of the present invention can be applied to all aluminum materials or aluminum alloy materials, and a thick film having various excellent properties as described above can be formed on the surface thereof.
[0029]
The present invention further provides an anodized film having a thickness of 300 μm or more and 600 μm or less on the surface of aluminum or an aluminum alloy by the above-described various treatment methods, and further impregnated with silver, and then polished to 50 μm or more, By removing the surface layer to 100 μm or less, an aluminum material or aluminum alloy material having an ultra-hard smooth surface is provided.
That is, the film formed by the method of the present invention has a high surface hardness and a picker hardness of about 450 to 500. In particular, the lower layer is denser and harder than the surface. Accordingly, when 50 to 150 mu m microns removed from the surface, so that the aluminum material or aluminum alloy material having a smooth surface of the ultra hardness of 800 to 1000 in Vickers hardness can be obtained.
[0030]
The various characteristics of the product of the present invention are shown below.
In [Table 2], the characteristics of the product subjected to the treatment of the present invention are shown for each material.
[0031]
[Table 2]
Figure 0004069135
[0032]
Assuming that silver is 1, the thermal conductivity is 0.9 for the present invention, 0.94 for copper, and 0.53 for aluminum. Therefore, the thermal conductivity of the product of the present invention is higher than that of aluminum as a base material and is comparable to copper.
This property shows that it is excellent as a material for various heat transfer members, heat transfer members, and heat dissipation members.
0033
The hardness (Hv) is 80 for aluminum, 200 for stainless steel, and 450 for the product of the present invention, and the product of the present invention has a hardness twice or more that of stainless steel.
Using this property, various parts that require wear resistance such as gears, rollers, guide rails, shafts, bearings, brake shoes, cylinder liners and pistons, valves, piston pumps, screw pumps, and the like can be manufactured.
[0034]
The heat-resistant temperature (° C.) is 260 ° C. for polytetrafluoroethylene, 660 ° C. for aluminum, and 800 ° C. for the surface coating of the product of the present invention.
By utilizing this property, a fire shutter, a heat-resistant wall material, etc. can be provided.
[0035]
As a result of the wear test, the amount of wear of the product of the present invention was 1/10 of that of normal hard anodized.
That is, the abrasion test was performed with the test piece as the rotation side and the resin-based oil-free bearing material as the fixed side. The test conditions were as follows: vibration speed 1 m / s, surface pressure 20 kgf / cm 2 , and test time 3 hr. As a result, the wear amount of hard anodized was 2.5 μm, and the wear amount of the product of the present invention was 0.25 μm.
[0036]
As a result of the seizure test, the seizure surface pressure of the product of the present invention was twice that of normal hard anodized.
That is, as a seizure resistance test, the wear coefficient was measured with the test piece as the rotation side and the resin-based oil-free bearing material as the fixed side, and the load showing a sharp increase in the wear coefficient was evaluated as the seizure limit load. The normal hard alumite was 160 kgf / cm 2 , whereas the product of the present invention was 320 kgf / cm 2.
[0037]
When the progress of cracks in the high temperature test was measured, the product of the present invention had less initial cracks compared to Tafram (a product name. A product obtained by sintering hard alumite and impregnating with polytetrafluoroethylene). There was also a small increase in cracks.
That is, when the number of cracks in the measurement area of 16.4 mm 2 of the flat part was measured, the product of the present invention was 0 before heating, but became 12 after heating, whereas the taphram was before heating. What was 263 became 321 after heating.
[0038]
Antibacterial activity was tested. The contents are as follows.
(A) Specimen Specimen 1. Aluminum Surface-treated product by silver impregnation treatment of the present invention
(Surface film thickness 25μm)
Specimen 2 ··· Aluminum untreated (b) Test purpose Tests the antibacterial activity of the specimen.
(C) Outline of the test Measure the number of viable bacteria in a sample (hereinafter referred to as “sample”) after dripping bacterial cells of Escherichia coli, Staphylococcus aureus, Vibrio parahaemolyticus and Salmonella, respectively, and storing at 35 ° C for 24 hours. did.
(D) Test method
i) Test bacteria
Escherichia coli IFO 3301
Staphylococcus aureus IFO 12732 (Staphylococcus aureus)
Vibrio parahaemolyticus RIMD 2210100 (Vibrio parahaemolyticus)
Salmonella enteritidis IFO 3313 (Salmonella)
ii) Culture medium
NA medium: Ordinary agar medium
NB medium: Ordinary bouillon medium supplemented with 0.2% meat extract
SA medium: Standard agar medium
iii) Preparation of bacterial solution The test bacteria were cultured in NA medium at 35 ° C. for 16 to 24 hours, then inoculated again into NA medium, and cultured at 35 ° C. for 16 to 20 hours. After culturing, the cells of the obtained test bacterium are suspended in a 1/200 concentration NB medium and appropriately diluted with a 1/200 concentration NB medium so that the number of bacteria becomes 10 5 to 10 6 ml. did. However, Vibrio parahaemolyticus used NA medium and 1/20 concentration NB medium with 3% salt added.
iv) Sample preparation
The test surface of the specimen was lightly wiped with absorbent cotton soaked with 99.9% (V / V) ethanol, and then thoroughly dried.
v) Test procedure 0.5 ml of the bacterial solution was dropped onto the sample and a polyethylene film was adhered to the sample, which was then stored at 35 ° C and the viable cell count was measured after storage for 24 hours. Further, 0.5 ml of the bacterial solution was dropped onto a plastic petri dish and a polyethylene film was adhered to the control sample, and the same test was performed. The parallel measurement was performed three times.
vi) Measurement of viable cell count Each sample was washed with 9.5 ml of SCDLP medium [Nippon Pharmaceutical Co., Ltd.]. With respect to this washing solution, the number of viable bacteria was measured by a pour plate culture method (cultured at 35 ° C. for 48 hours) using an SA medium, and converted per sample. However, for Vibrio parahaemolyticus, SCDLP medium and SA medium supplemented with 3% sodium chloride were used.
(E) Test result The measurement result of the viable count of the test bacteria dropped on the sample was as shown in [Table 3] below.
[0039]
[Table 3]
Figure 0004069135
[0040]
The following [Table 4] shows the results of the processed product (Tough Coat .. product name) according to Patent Documents 1 and 2 and the processed product (Metal Coat .. product name) according to Patent Document 3 as comparative examples. These results are markedly superior to those of other known products, but none of them is equivalent to the above-described product of the present invention.
[0041]
[Table 4]
Figure 0004069135
[0042]
【The invention's effect】
Since the present invention is configured as described above, according to the present invention, the following operational effects can be achieved as described above.
(1) In the conventional method, an anodized film could be easily formed on Al-Mn alloys, but it was not possible to treat duralumin and die-cast alloys, and other alloys could be treated. It was difficult.
In contrast, the method of the present invention can be applied to all types of aluminum alloys such as duralumin, die-cast alloys and the like.
(2) In the conventional method, only a film having a thickness of about 30 to 50 μm and a maximum of about 100 μm can be formed. However, according to the method of the present invention, a thick film of 300 to 500 μm can be easily formed.
(3) The film formed by the conventional method has a hard surface layer (however, the Vickers hardness is 400 or less), but the inside is porous and the hardness is low.
On the other hand, the film formed by the method of the present invention has a high surface hardness and a Picker's hardness of about 450 to 500. In particular, high dense hardness towards the lower the surface and 50 to 150 mu m to remove from the surface, the hardness of 800 to 1000 in Vickers hardness.
(4) The film formed by the inventive method has a high thermal conductivity and is comparable to copper.
(5) The film formed by the method of the present invention has a low surface heat transmission resistance.
Therefore, when ice is placed on a tray made of aluminum having a film formed by the method of the present invention or an alloy material thereof, the ice melts twice as fast as an untreated tray. Therefore, for example, it can be suitably used as a thawing tray for frozen food. Moreover, when the treatment according to the present invention is applied to an aluminum heating container for bob cones, the time from the start of heating to the first popcorn explosion is reduced from 6 minutes to 3 minutes of the conventional product.
(6) The film formed by the method of the present invention has a high heat resistance and is about 800 ° C.
(7) The film formed by the method of the present invention has antibacterial properties.
[0043]
Therefore, the aluminum material or aluminum alloy material on which the anodized film is formed by the method of the present invention is, for example, ice-making and thawing trays, rice cookers, pots, kettles, other heating cookers, and instant hot water. Boilers, heat exchangers, air conditioners, refrigerators, refrigerators, oil heaters, radiators, cooling fins, air cooling and water cooling engines (promotion of heat dissipation), aircraft wings (anti-icing prevention), semiconductor heat dissipation substrates, semiconductor packages, heat It can be suitably used in a wide range of fields such as pipes, bearings, various sliding members, brake shoes, popcorn and ice cream manufacturing machines, electrical equipment chassis, casings for motors and transformers, and the like.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of an apparatus for carrying out a method for forming an anodized film on the surface of aluminum or an aluminum alloy according to the present invention.
FIG. 2 is an enlarged cross-sectional view of a coating portion of aluminum or aluminum alloy that has been subjected to the treatment (2) of the present invention.
[Explanation of symbols]
1 Electrolysis tank
2 AC power supply
3 Aluminum member or aluminum alloy member
4 electrodes
5 bath solution

Claims (7)

250gr/l以上、350gr/l以下の硫酸と、15gr/l以上、25gr/l以下の硫酸ニッケルとを含む水溶液からなる浴液を用い、下記の条件で陽極酸化処理を行なうことを特徴とする、アルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法。
(a)浴液温度 −10℃以上、+25℃以下、
(b)電 圧 DC100V以上、200V以下、
(c)電流密度 0.5A/dm2 以上、20A/dm2 以下。
Anodizing is performed under the following conditions using a bath solution composed of an aqueous solution containing 250 gr / l or more and 350 gr / l or less sulfuric acid and 15 gr / l or more and 25 gr / l or less nickel sulfate. A method of forming an anodized film on the surface of aluminum or aluminum alloy.
(A) Bath liquid temperature -10 ℃ or higher, + 25 ℃ or lower,
(B) Voltage DC100V or more, 200V or less,
(C) Current density of 0.5 A / dm 2 or more and 20 A / dm 2 or less.
更に、280gr/l以上、320gr/l以下の範囲で、低重合アクリル樹脂組成物を添加した浴液を用いることを特徴とする、請求項1に記載のアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法。  2. The anodized film on the surface of aluminum or aluminum alloy according to claim 1, further comprising using a bath liquid to which a low-polymerization acrylic resin composition is added in a range of 280 gr / l to 320 gr / l. How to form. 更に、5gr/l以上、15gr/l以下の範囲で、酒石酸を添加した浴液を用いることを特徴とする、請求項1又は2に記載のアルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法。  3. The anodized film is formed on the surface of the aluminum or aluminum alloy according to claim 1 or 2, wherein a bath solution to which tartaric acid is added is used in a range of 5 gr / l to 15 gr / l. Method. ジュラルミン、ダイカスト用アルミ合金、 Mn を含有しないアルミニウム合金からなる群の中から選ばれるアルミニウム合金の表面に、下記の条件で陽極酸化処理を行なうことを特徴とする、請求項1乃至3の何れか一に記載のアルミニウム合金の表面に陽極酸化被膜を形成する方法。
(d) 浴液温度 −10℃以上、−5℃以下、
(e) 電 圧 DC130V以上、170V以下、
(f) 電流密度 8A/dm2 以上、12A/dm2 以下。
4. The surface of an aluminum alloy selected from the group consisting of duralumin, an aluminum alloy for die casting, and an aluminum alloy not containing Mn is subjected to anodizing treatment under the following conditions: A method for forming an anodized film on the surface of the aluminum alloy according to one.
(D) Bath temperature -10 ° C or higher, -5 ° C or lower,
(E) Voltage 130VDC or more, 170V or less,
(F) current density 8A / dm 2 or more, 12A / dm 2 or less.
Mnを含むアルミニウム合金の表面に、下記の条件で陽極酸化処理を行なうことを特徴とする、請求項1乃至3の何れか一に記載のアルミニウム合金の表面に陽極酸化被膜を形成する方法。
(g) 浴液温度 +15℃以上、+18℃以下、
(h) 電 圧 DC130V以上、170V以下、
(i) 電流密度 8A/dm2 以上、12A/dm2 以下。
4. The method for forming an anodized film on a surface of an aluminum alloy according to claim 1, wherein the anodizing treatment is performed on the surface of the aluminum alloy containing Mn under the following conditions.
(G) Bath liquid temperature + 15 ℃ or more, + 18 ℃ or less,
(H) Voltage 130VDC or more, 170V or less,
(I) the current density 8A / dm 2 or more, 12A / dm 2 or less.
アルミニウム又はアルミニウム合金の表面に、請求項1乃至5の何れか一に記載の方法により陽極酸化被膜を形成した後、10gr/l以上、30gr/l以下の硫酸銀又は硝酸銀と、15gr/l以上、20gr/l以下のホウ酸と、1gr/l以上、2gr/l以下の硫酸ニッケルを含む水溶液からなる浴液を用い、下記の条件により、陽極酸化被膜中に銀を含浸させることを特徴とする、アルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法。
(j) 浴液温度 +10℃以上、+20℃以下、
(k) 電 圧 AC10V以上、15V以下、
(1) 電流密度 1A/dm2以上、2A/dm2以下、
(m) 通電時間 2分以上、3分以下。
After an anodic oxide film is formed on the surface of aluminum or an aluminum alloy by the method according to any one of claims 1 to 5 , 10 gr / l or more and 30 gr / l or less of silver sulfate or silver nitrate, and 15 gr / l or more Using an aqueous solution containing boric acid of 20 gr / l or less and nickel sulfate of 1 gr / l or more and 2 gr / l or less, and impregnating silver into the anodic oxide coating under the following conditions: A method of forming an anodized film on the surface of aluminum or an aluminum alloy.
(J) Bath temperature + 10 ° C or higher, + 20 ° C or lower,
(K) Voltage AC10V or more, 15V or less,
(1) Current density 1A / dm 2 or more, 2A / dm 2 or less,
(M) Energization time 2 minutes or more, 3 minutes or less.
請求項1乃至5の何れか一に記載の方法により、アルミニウム又はアルミニウム合金の表面に厚み300μm以上、600μm以下の陽極酸化被膜を形成し、請求項6に記載の銀含浸を行なった後、研磨により50μm以上、100μm以下まで表層を除去し、超硬度の平滑面を得ることを特徴とする、アルミニウム又はアルミニウム合金の表面に陽極酸化被膜を形成する方法。A method according to any one of claims 1 to 5 , wherein an anodic oxide film having a thickness of 300 μm or more and 600 μm or less is formed on the surface of aluminum or an aluminum alloy, and after impregnating silver according to claim 6 , polishing is performed. A method of forming an anodized film on the surface of aluminum or an aluminum alloy, characterized in that the surface layer is removed to 50 μm or more and 100 μm or less to obtain a super-hard smooth surface.
JP2005504706A 2003-01-30 2004-01-27 Method for forming an anodized film on the surface of aluminum or aluminum alloy Expired - Fee Related JP4069135B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003022682 2003-01-30
JP2003022682 2003-01-30
PCT/JP2004/000684 WO2004067807A1 (en) 2003-01-30 2004-01-27 Method for forming anodic oxide coating on surface of aluminum or aluminum alloy

Publications (2)

Publication Number Publication Date
JPWO2004067807A1 JPWO2004067807A1 (en) 2006-05-18
JP4069135B2 true JP4069135B2 (en) 2008-04-02

Family

ID=32820698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005504706A Expired - Fee Related JP4069135B2 (en) 2003-01-30 2004-01-27 Method for forming an anodized film on the surface of aluminum or aluminum alloy

Country Status (11)

Country Link
US (1) US20070267299A1 (en)
EP (1) EP1593758A4 (en)
JP (1) JP4069135B2 (en)
KR (1) KR20050103284A (en)
CN (1) CN1745200A (en)
AU (1) AU2004207220A1 (en)
BR (1) BRPI0407080A (en)
CA (1) CA2514271A1 (en)
MX (1) MXPA05008032A (en)
TW (1) TW200417635A (en)
WO (1) WO2004067807A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030736A (en) * 2007-07-27 2009-02-12 Nitto Seiko Co Ltd High-hardness aluminum alloy screw component
JP5301810B2 (en) * 2007-11-13 2013-09-25 住友電気工業株式会社 Anodized alumina free-standing film and method for producing the same
CN101629316B (en) * 2009-06-19 2011-06-08 常州佳得顺抗菌材料科技有限公司 Surface processing technique for bacterium resistance, erosion resistance and tarnish resistance of aluminum or aluminum alloy material
IT1398287B1 (en) * 2009-09-18 2013-02-22 Unical A G S P A METHOD OF ANODIZING METAL ALLOYS, PARTICULARLY FOR HEAT EXCHANGERS IN ALUMINUM ALLOYS AND SIMILAR FOR CONDENSING BOILERS.
CN101886285A (en) * 2010-06-25 2010-11-17 广东工业大学 Method for preparing stainless steel with antibacterial surface
CN101994142B (en) * 2010-12-09 2012-05-30 沈阳大学 Method for preparing titanium dioxide/copper nano composite antibacterial coating on surface of aluminum material
CN102888643B (en) * 2011-07-18 2015-09-02 汉达精密电子(昆山)有限公司 Hard Anodic Oxidation of Aluminum Alloy electrolytic solution and method
WO2013011635A1 (en) 2011-07-21 2013-01-24 国立大学法人東北大学 Screw rotor for gas-evacuation pump, manufacturing method therefor, gas-evacuation pump provided with said screw rotor, and manufacturing method and assembly method therefor
CN102312263A (en) * 2011-08-22 2012-01-11 吴江市精工铝字制造厂 Porcelain oxidation method of aluminum piece
JP2013211523A (en) * 2012-03-02 2013-10-10 Canon Components Inc Flexible circuit board
CN105492659B (en) * 2013-08-30 2018-06-01 富士胶片株式会社 The manufacturing method of metal filled microstructure
CN103498179B (en) * 2013-10-22 2014-08-06 哈尔滨三泳金属表面技术有限公司 Aluminum or aluminum alloy surface oxide film and method for preparing same
CN105530785B (en) 2014-12-26 2016-11-23 比亚迪股份有限公司 A kind of electronic product metal shell being formed with antenna slot and preparation method thereof
CN107164797A (en) * 2017-04-11 2017-09-15 浙江洋铭工贸有限公司 A kind of electrophoresis process of die casting aluminium heating radiating fin
CN113089049A (en) * 2017-06-26 2021-07-09 石狮市星火铝制品有限公司 Antibacterial aluminum and manufacturing method thereof
CN107448638A (en) * 2017-09-20 2017-12-08 乐清市牵引机电厂 A kind of spherical aluminum valve element, ball valve and spherical aluminum valve element manufacturing process
CN107937953B (en) * 2017-12-12 2019-10-25 北京小米移动软件有限公司 Al-alloy casing and preparation method thereof
CN109943873B (en) * 2017-12-21 2021-02-05 李文熙 Thick film aluminum electrode for electroplated metal pretreatment
JP7204153B2 (en) * 2018-09-28 2023-01-16 三菱ケミカル株式会社 Antibacterial laminate and method for producing antibacterial laminate
CN111778537A (en) * 2020-07-06 2020-10-16 上海脉诺金属表面处理技术有限公司 Normal-temperature hard oxidation liquid for antibacterial and mildewproof aluminum alloy
CN114260312A (en) * 2021-12-22 2022-04-01 福建省欧麦鑫自动化科技有限公司 High-strength sterile metal can and processing technology thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1496891B2 (en) * 1966-12-10 1976-04-22 Langbein-Pfanhauser Werke Ag, 4040 Neuss PROCESS FOR THE PRODUCTION OF HARD ANODIC OXIDE COATINGS ON ALUMINUM AND ITS ALLOYS
JPS5315014B2 (en) * 1972-05-18 1978-05-22
DE2811396A1 (en) * 1978-03-16 1979-09-27 Hoechst Ag PROCESS FOR THE ANODIC OXIDATION OF ALUMINUM AND ITS USE AS PRINTING PLATE SUPPORT MATERIAL
US4133725A (en) * 1978-05-18 1979-01-09 Sanford Process Corporation Low voltage hard anodizing process
US4225399A (en) * 1979-04-25 1980-09-30 Setsuo Tomita High speed aluminum anodizing
US4822458A (en) * 1988-04-25 1989-04-18 The United States Of America As Represented By The Secretary Of The Navy Anodic coating with enhanced thermal conductivity
JPH0297698A (en) * 1988-10-04 1990-04-10 Minoru Mitani Surface treatment of aluminum or alloy thereof
JPH02301596A (en) * 1989-05-16 1990-12-13 Minoru Mitani Surface treatment of aluminum or alloy thereof
JPH10280191A (en) * 1997-04-01 1998-10-20 Kobe Steel Ltd Aluminum or aluminum alloy material having excellent antimicrobial property and its production
JP2001152391A (en) * 1999-11-25 2001-06-05 Soken:Kk Surface treating method for aluminum and aluminum alloy
DE10033434A1 (en) * 2000-07-10 2002-01-24 Basf Ag Process for the production of gold-colored surfaces of aluminum or aluminum alloys using formulations containing silver salt
ITTO20010149A1 (en) * 2001-02-20 2002-08-20 Finmeccanica S P A Alenia Aero LOW ECOLOGICAL ANODIZATION PROCEDURE OF A PIECE OF ALUMINUM OR ALUMINUM ALLOYS.
US20080274375A1 (en) * 2007-05-04 2008-11-06 Duracouche International Limited Anodizing Aluminum and Alloys Thereof

Also Published As

Publication number Publication date
CN1745200A (en) 2006-03-08
MXPA05008032A (en) 2006-01-27
EP1593758A1 (en) 2005-11-09
JPWO2004067807A1 (en) 2006-05-18
WO2004067807A1 (en) 2004-08-12
CA2514271A1 (en) 2004-08-12
BRPI0407080A (en) 2006-01-24
EP1593758A4 (en) 2006-11-29
US20070267299A1 (en) 2007-11-22
KR20050103284A (en) 2005-10-28
AU2004207220A1 (en) 2004-08-12
TW200417635A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4069135B2 (en) Method for forming an anodized film on the surface of aluminum or aluminum alloy
Qin et al. Adaptive-lubricating PEO/Ag/MoS2 multilayered coatings for Ti6Al4V alloy at elevated temperature
Li et al. Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys
Yerokhin et al. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy
Laleh et al. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy
JP5345155B2 (en) Metal electrolytic ceramic coating method, metal electrolytic ceramic coating electrolyte and metal material
CN101307477B (en) Method for preparing high-wear-resistant antifriction self-lubricating composite membrane layer on surface of aluminum alloy
Qin et al. Characterization and friction behavior of LST/PEO duplex-treated Ti6Al4V alloy with burnished MoS2 film
CN107281544A (en) A kind of wear-resisting composite coating of titanium or titanium alloy surface self-lubricating and preparation method thereof
Rahimi et al. Comparison of corrosion and antibacterial properties of Al alloy treated by plasma electrolytic oxidation and anodizing methods
Molak et al. Functional properties of the novel hybrid coatings combined of the oxide and DLC layer as a protective coating for AZ91E magnesium alloy
Wang et al. Analysis and self-lubricating treatment of porous anodic alumina film formed in a compound solution
JPWO2016076073A1 (en) Plated steel sheet and manufacturing method thereof
CN1644760B (en) Manufacture of composite aluminum products
KR101310598B1 (en) Tin-plated steel sheet and method for producing the same
Peibo et al. Plasma electrolytic oxidation of a low friction casting on ZK60 magnesium alloy
JP2005082848A (en) Surface treated aluminum material having excellent corrosion resistance, hydrophilicity retainability and formability
US3338805A (en) Process for anodizing titanium surfaces
Wang et al. Fabrication of self-lubricating coating on aluminum and its frictional behaviour
CN104120461A (en) Method for preparing gradient alloy plating layer on surface of thin strip continuous casting crystallization roller and plating solution
JP5777939B2 (en) Anodized film generation method
CN2762703Y (en) Durable and corrosion-proof iron pot
Jingyi et al. Preparation and properties of Micro-arc Oxide film with single dense layer on surface of 5083 aluminum alloy
JP2005272853A (en) Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts
CN107345309B (en) A kind of silumin plasma electrolytic oxidation ceramic coating preparation method

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20051104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees