JP2005272853A - Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts - Google Patents

Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts Download PDF

Info

Publication number
JP2005272853A
JP2005272853A JP2004083323A JP2004083323A JP2005272853A JP 2005272853 A JP2005272853 A JP 2005272853A JP 2004083323 A JP2004083323 A JP 2004083323A JP 2004083323 A JP2004083323 A JP 2004083323A JP 2005272853 A JP2005272853 A JP 2005272853A
Authority
JP
Japan
Prior art keywords
oxide film
light metal
machine parts
present
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083323A
Other languages
Japanese (ja)
Inventor
Masaru Konno
大 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004083323A priority Critical patent/JP2005272853A/en
Publication of JP2005272853A publication Critical patent/JP2005272853A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide machine parts which are composed of titanium, aluminum, magnesium or alloys composed thereof as principal components and are additionally excellent in resistance to corrosion and wear while lightness in weight and thermal conductivity are maintained. <P>SOLUTION: The machine parts are composed of a base material of the alloy consisting of one or more kinds of light metals or light metal elements as principal components and have the oxide films of the light metal elements of hardness above 8 Gpa on their surfaces. The light metal oxide films are formed by being subjected to an anodic electrolysis treatment in an alkaline solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属酸化物被膜を備える機械部品に関するものであり、より詳細には、より広範な機械部品、たとえば、自動車や船舶あるいは航空機等に使用されるエンジン部品、医療機器の部品、化学繊維製造機械の部品、食品用機械、半導体製造装置、給排水ポンプ等の高温や腐食環境、境界潤滑環境で用いられる機械に広く適用可能な機械部品に関するものである。また、本発明は、この機械部品が適用された転動装置に関する。   The present invention relates to a machine part provided with a metal oxide film, and more particularly, to a wider range of machine parts, for example, engine parts, medical equipment parts, chemical fibers used in automobiles, ships, aircrafts, and the like. The present invention relates to machine parts that can be widely applied to machines used in high temperature, corrosive environments, boundary lubrication environments, such as parts of manufacturing machines, food machinery, semiconductor manufacturing equipment, and water supply / drainage pumps. The present invention also relates to a rolling device to which this mechanical component is applied.

チタン、アルミニウム、マグネシウムに代表される軽金属若しくはそれらを主成分とする合金は、耐腐食性及び非磁性に優れている。しかし、かかる合金は耐磨耗性においては、その性能は十分とはいえる状況ではない。他方、ステンレス鋼は、耐摩耗性においては優れる一方で、耐腐食性及び非磁性の要求に関しては、その性能は工業上の利用において満足いくものではない。   Light metals typified by titanium, aluminum, and magnesium, or alloys based on them are excellent in corrosion resistance and nonmagnetic properties. However, such an alloy is not at a sufficient level in terms of wear resistance. On the other hand, while stainless steel is excellent in wear resistance, its performance is not satisfactory for industrial use in terms of corrosion resistance and non-magnetic requirements.

そのため、腐食環境で耐磨耗性が要求される機械部品については、耐腐食性を犠牲にしてステンレス鋼を使用し、耐腐食性が重視される場合には、チタン合金等を使用するというように、一方の性能を犠牲にした選択を迫られることがあった。   Therefore, for mechanical parts that require wear resistance in corrosive environments, use stainless steel at the expense of corrosion resistance, and use titanium alloys etc. when corrosion resistance is important. On the other hand, there was a case where selection was made at the expense of one of the performances.

この問題を解決するため、チタン、アルミニウム、マグネシウムやこれらを主成分とする合金の表面硬度を向上させ、耐摩耗性を改善する試みが行われてきた。   In order to solve this problem, attempts have been made to improve the wear resistance by improving the surface hardness of titanium, aluminum, magnesium and alloys based on these.

たとえば、チタン合金の場合、β相領域あるいはα+β二相領域で溶体化処理後、時効処理により、βマトリクス中にα相を微細に析出させる析出効果処理が存在する。しかし、熱処理を施しても、析出硬化処理で得られる表面硬度は、せいぜい6Gpa程度が限界であった。   For example, in the case of a titanium alloy, there is a precipitation effect treatment in which the α phase is finely precipitated in the β matrix by aging treatment after the solution treatment in the β phase region or the α + β two phase region. However, even if heat treatment is performed, the surface hardness obtained by precipitation hardening is at most about 6 Gpa.

また、浸炭、浸炭窒化あるいは窒化処理におけるチタン又はチタン合金の表面に炭素、窒素、酸素を固溶させ、表面硬度を向上させる熱処理方法が開示されている(たとえば、特許文献1参照)。しかし、単位時間あたりの処理深さが浅く、表面硬度も5Gpa程度しか得られず、しかも、処理に時間を要するという問題がある。   In addition, a heat treatment method is disclosed in which carbon, nitrogen, and oxygen are dissolved in the surface of titanium or a titanium alloy in carburizing, carbonitriding, or nitriding to improve surface hardness (see, for example, Patent Document 1). However, there is a problem that the processing depth per unit time is shallow, the surface hardness is only about 5 Gpa, and the processing takes time.

一方、アルミニウム及びアルミニウム合金、マグネシウム及びマグネシウム合金は、熱伝導率が高く比重が小さいことから、内燃機関に使用されるレシプロエンジンのシリンダーピストンや過給器のタービンブレードに使用されている。これらのチタン系、アルミニウム系若しくはマグネシウム系の機械部品は、熱処理が施され、材料に強度を付与した後、表面処理の一種である、酸性溶液中で陽極電解処理を行い、表面に数十μmの酸化物被膜を形成させて表面強度を増大させている。かかる酸性溶液の具体例としては、通例、硫酸やシュウ酸がある。アルミニウム系の機械部品に対する酸性溶液中での陽極電解処理は、通例、アルマイト(商標)処理と称される。   On the other hand, aluminum and aluminum alloys, magnesium and magnesium alloys are used for cylinder pistons of reciprocating engines used in internal combustion engines and turbine blades of superchargers because of their high thermal conductivity and low specific gravity. These titanium-based, aluminum-based, or magnesium-based mechanical parts are subjected to heat treatment to impart strength to the material, and are then subjected to anodic electrolysis in an acidic solution, which is a kind of surface treatment, and several tens of μm on the surface. The oxide film is formed to increase the surface strength. Examples of such acidic solutions are typically sulfuric acid and oxalic acid. An anodic electrolysis treatment in an acidic solution for aluminum-based machine parts is commonly referred to as an alumite ™ treatment.

このように、酸性溶液中での陽極電解処理では、処理後の表面に微細な孔が形成されており、この孔を封じないと、耐腐食性が劣化するため、封孔処理を施す必要性がある。また、最大でも酸化物被膜の厚さが数十μmと薄膜であるため、耐磨耗性についての耐久性は不十分である等のさまざまな問題点を抱えているのが現状である。   As described above, in the anodic electrolysis treatment in an acidic solution, fine holes are formed on the surface after the treatment, and if the holes are not sealed, the corrosion resistance deteriorates. There is. Moreover, since the oxide film is a thin film having a thickness of several tens of μm at the maximum, it has various problems such as insufficient durability with respect to wear resistance.

ところで、チタン、アルミニウム、マグネシウムあるいはこれらを主成分とする合金では、大気での酸化処理により表面に酸化物被膜を形成させる方法もあるが、その表面強度は5GPaに留まることが報告されている。
特公昭61−2747号
By the way, in titanium, aluminum, magnesium, or an alloy containing these as main components, there is a method of forming an oxide film on the surface by an oxidation treatment in the atmosphere, but it has been reported that the surface strength remains at 5 GPa.
JP-B 61-2747

本発明は上記事情に鑑みに、軽金属系の機械部品であって、軽量かつ熱伝導性を維持しつつ、耐腐蝕性と耐磨耗性に優れた機械部品、及びそのための表面処理方法を提供することを目的とする。本発明の他の目的は、前記機械部品を備える転動装置を提供することにある。   SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a light-metal machine component that is lightweight and maintains thermal conductivity, and has excellent corrosion resistance and wear resistance, and a surface treatment method therefor. The purpose is to do. Another object of the present invention is to provide a rolling device comprising the mechanical component.

本発明者らは、鋭意研究を行った結果、アルカリ電解処理によって得られた酸化物被膜が機械部品の表面硬度を向上させるとの知見に基づき、本発明を完成するに至った。すなわち、本発明の第一の態様によれば、軽金属又は軽金属元素の1種以上を主成分とする合金の基材からなり、その表面に8GPa以上の硬度の前記軽金属元素の酸化物皮膜を備え、この軽金属酸化物被膜はアルカリ溶液中での陽極電解処理によって形成されてなる機械部品を提供する。   As a result of intensive studies, the present inventors have completed the present invention based on the knowledge that the oxide film obtained by alkaline electrolytic treatment improves the surface hardness of mechanical parts. That is, according to the first aspect of the present invention, the light metal or the base material of the alloy mainly containing one or more light metal elements is provided, and the oxide film of the light metal element having a hardness of 8 GPa or more is provided on the surface thereof. The light metal oxide coating provides a mechanical part formed by anodic electrolysis in an alkaline solution.

本発明による前記機械部品における好ましい態様によれば、前記軽金属は、チタン、アルミニウム、又はマグネシウムからなり、前記基材は、これら軽金属元素の1種以上を主成分とする合金から構成されてなることを特徴とする。   According to a preferred aspect of the mechanical component according to the present invention, the light metal is made of titanium, aluminum, or magnesium, and the base material is made of an alloy containing at least one of these light metal elements as a main component. It is characterized by.

本発明による前記機械部品における好ましい態様によれば、前記基材が、バナジウム、クロム、モリブデン、ジルコニウム、及びスズからなる群から選択される1種以上の金属元素を、さらに含有されてなることを特徴とする。   According to a preferred aspect of the mechanical component according to the present invention, the base material further contains one or more metal elements selected from the group consisting of vanadium, chromium, molybdenum, zirconium, and tin. Features.

本発明の第二の態様によれば、一部又は全部が、前記機械部品からなる、回転案内機能若しくは直動案内機能を有する転動装置を提供する。   According to a second aspect of the present invention, there is provided a rolling device having a rotation guide function or a linear motion guide function, part or all of which comprises the mechanical parts.

本発明の第三の態様によれば、軽金属又は軽金属元素の1種以上を主成分とする合金の基材からなる機械部品を、アルカリ溶液中での陽極電解処理を行い、その表面に8GPa以上の硬度の前記軽金属酸化物被膜を形成するようにした、機械部品の表面処理方法を提供する。   According to the third aspect of the present invention, a mechanical part made of a base material of a light metal or an alloy mainly composed of one or more light metal elements is subjected to an anodic electrolysis treatment in an alkaline solution, and the surface thereof is 8 GPa or more. A surface treatment method for a machine part, wherein the light metal oxide film having a hardness of 5 mm is formed.

なお、本発明で用いる用語「主成分」とは、合金中の全重量に対して、他の成分に比較して、最も含有量が多い成分をいい、たとえば、50質量%以上である成分を指称する。   The term “main component” used in the present invention refers to a component having the largest content compared to other components with respect to the total weight in the alloy, for example, a component having a content of 50% by mass or more. Refer to it.

本発明に陽極電解処理により形成された酸化物被膜は、従来の大気酸化法や酸性溶液を用いた陽極酸化処理法に比して、特段に表面硬度が高く、耐食性や耐摩耗性に優れる機械部品を提供することができる。   The oxide film formed by anodic electrolysis in the present invention is a machine that has a particularly high surface hardness and excellent corrosion resistance and wear resistance as compared with conventional atmospheric oxidation methods and anodic oxidation methods using acidic solutions. Parts can be provided.

次に、本発明の実施の形態について、図面を参照しつつ説明する。以下の実施形態は、本発明を説明するための例示であり、本発明をこの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。   Next, embodiments of the present invention will be described with reference to the drawings. The following embodiment is an example for explaining the present invention, and is not intended to limit the present invention only to this embodiment. The present invention can be implemented in various forms without departing from the gist thereof.

本発明による機械部品は、チタン、アルミニウム、又はマグネシウムの軽金属を基材とするか、あるいはこれらの1種以上を主成分とする合金を基材としたものである。本発明に係る機械部品は、機材の主成分である金属元素と酸素を必須成分とする金属酸化物被膜をその表面に有し、その金属酸化物被膜の硬度は、8Gpa以上である。   The mechanical component according to the present invention is based on a light metal such as titanium, aluminum, or magnesium, or based on an alloy mainly composed of one or more of these. The mechanical component according to the present invention has a metal oxide film containing, as essential components, a metal element and oxygen as main components of the equipment on the surface, and the hardness of the metal oxide film is 8 Gpa or more.

本発明に利用される合金としてのチタン合金の具体例には、Ti−6Al−4V、Ti−4.5Al−3V−2Fe−2Mo、Ti−15V−3Cr−3Sn−3Alを例示できる。また、αチタンなどのような純度の高い純チタンも使用可能であり、チタンに他の金属元素を添加したもの、たとえばα+βチタンなどのように、チタン90質量%にアルミニウム6質量%、バナジウム4質量%を加えたチタン合金も使用可能である。   Specific examples of the titanium alloy as an alloy used in the present invention include Ti-6Al-4V, Ti-4.5Al-3V-2Fe-2Mo, and Ti-15V-3Cr-3Sn-3Al. Also, pure titanium having high purity such as α titanium can be used, and titanium added with other metal elements, such as α + β titanium, for example, 90% by mass of titanium, 6% by mass of aluminum, and vanadium 4 A titanium alloy added with mass% can also be used.

本発明に利用される合金の他の例としては、アルミニウム合金があり、具体的には、Al−Mn合金(3000系)、Al−Si合金(4000系)、Al−Mg合金(5000系)、Al−Mg−Si合金(6000系)、Al−Zn−Mg合金(7000系)、Al−Cu合金(2000系)等がある。これらのアルミニウム合金の中でも、Al−Mg−Si合金(6000系)が好ましい。   Other examples of alloys used in the present invention include aluminum alloys, specifically, Al-Mn alloys (3000 series), Al-Si alloys (4000 series), Al-Mg alloys (5000 series). Al-Mg-Si alloy (6000 series), Al-Zn-Mg alloy (7000 series), Al-Cu alloy (2000 series), and the like. Among these aluminum alloys, an Al—Mg—Si alloy (6000 series) is preferable.

本発明に利用される合金の別の例としては、マグネシウム合金があり、具体的には、AZ91D、AM60B、AM50A、AS41B(JIS規格)等が使用可能である。   Another example of the alloy used in the present invention is a magnesium alloy. Specifically, AZ91D, AM60B, AM50A, AS41B (JIS standard), etc. can be used.

くわえて、本発明に利用される合金から構成される基材は、バナジウム、クロム、モリブデン、ジルコニウム、及びスズから選択される1種以上の金属元素を含有することが好ましい。バナジウム、クロム、モリブデン、ジルコニウム、スズから選択される1種以上の金属元素を含有する合金をアルカリ溶液中で陽極電解処理すると、これらの金属も酸化され、主成分の酸化物とともに、基材の表面に酸化物被膜を形成する。この付加金属元素をも含む酸化物被膜は、主成分からなる酸化物被膜の後記する種々の効果を強化する。   In addition, the substrate composed of the alloy used in the present invention preferably contains one or more metal elements selected from vanadium, chromium, molybdenum, zirconium, and tin. When an alloy containing one or more metal elements selected from vanadium, chromium, molybdenum, zirconium, and tin is subjected to anodic electrolysis in an alkaline solution, these metals are also oxidized, together with the main component oxide, An oxide film is formed on the surface. The oxide film containing the additional metal element reinforces various effects to be described later of the oxide film composed of the main component.

バナジウム、クロム、モリブデン、ジルコニウム、スズの含有量は、基材を構成する金属材料中、50質量%以下であって、0.001質量%以上含有されることが好ましい。50質量%を超える含有量では、主成分からなる酸化物被膜を強化による効果をさらに向上することは期待できず、コスト的に割高になる一方、0.001質量%未満の含有量ではその向上の程度は十分ではない。   The content of vanadium, chromium, molybdenum, zirconium, and tin is 50% by mass or less and preferably 0.001% by mass or more in the metal material constituting the substrate. If the content exceeds 50% by mass, the effect of strengthening the oxide film composed of the main component cannot be expected to be further improved, and the cost is high. On the other hand, if the content is less than 0.001% by mass, the improvement is achieved. The degree of is not enough.

本発明に係る金属酸化物被膜を基材表面へ形成することは、アルカリ溶液中の陽極電解処理により達成される。   Forming the metal oxide film according to the present invention on the substrate surface is achieved by anodic electrolysis in an alkaline solution.

かかる陽極電解処理により形成される被膜は、孔の存在しない緻密な結晶性の酸化物被膜であり、その表面硬度が8GPa以上となる。また、その酸化物被膜の厚さは、電気量を調整することにより、数十から数百μmとすることが可能である。ここで、かかる金属酸化物被膜中の孔の存在割合はごくわずかであり、この数十〜数百μmの厚さの酸化物被膜は、いわゆるセラミックと同質であり、耐摩耗性・耐腐食性に優れている。ただし、表面硬度が30GPaを超えると、酸化物被膜自体が脆くなり、好ましくない。   The film formed by such an anodic electrolytic treatment is a dense crystalline oxide film having no pores, and has a surface hardness of 8 GPa or more. Further, the thickness of the oxide film can be set to several tens to several hundreds μm by adjusting the amount of electricity. Here, the existence ratio of the pores in the metal oxide film is very small, and the oxide film having a thickness of several tens to several hundreds μm is the same quality as a so-called ceramic, and has wear resistance and corrosion resistance. Is excellent. However, when the surface hardness exceeds 30 GPa, the oxide coating itself becomes brittle, which is not preferable.

次に、本発明に係る金属酸化物被膜を機械部品の形成するための表面処理方法について説明する。米国特許第5616229号に開示されているように、アルカリ溶液中での陽極電解処理の際の通電方法は、不完全整流法のほか、直流法、定電流法、定電圧法、PR法、パルス法、交直畳重法等のいずれでもよい。これらの通電方法の中でも、不完全整流法、パルス法又は交直畳重法が好ましい。これらの三つの方法は、所定時間毎に、電流の流れる方向(電圧の極性)を変えるもので、これにより電極の分極作用と温度上昇が低減される。そのため、電流密度を向上することができ、被膜を厚くすることが可能となる。ただし、機械部品は陽極となっている割合(電流若しくは電圧の絶対値と時間の積)が50%を超えていなければならない。   Next, a surface treatment method for forming a metal oxide film according to the present invention on a machine part will be described. As disclosed in US Pat. No. 5,616,229, in addition to the incomplete rectification method, the energization method in the anodic electrolysis treatment in an alkaline solution is a direct current method, a constant current method, a constant voltage method, a PR method, a pulse Any of the law and the AC / DC tatami mat method may be used. Among these energization methods, the incomplete rectification method, the pulse method, or the AC / DC folding method is preferable. These three methods change the direction of current flow (voltage polarity) at predetermined time intervals, thereby reducing electrode polarization and temperature rise. Therefore, the current density can be improved and the film can be thickened. However, the proportion of mechanical parts that are anodes (the product of the absolute value of current or voltage and time) must exceed 50%.

なお、陽極電解処理を施す際、基材を部分的にマスキングし、所望の位置にのみ、本発明よる陽極電解処理に基づく表面処理を行うことが好ましい。   In addition, when performing an anodic electrolysis process, it is preferable to mask a base material partially and to perform the surface treatment based on the anodic electrolysis process by this invention only in a desired position.

本発明に利用される陽極電解処理に利用される電圧の範囲は、±100V〜±2000Vが好ましく、電流密度の範囲は5〜200A/dm3が好ましい。陽極電解処理時の電圧が±2000Vを超えると、相対的に設備費が高くなる以上に、均一な酸化物被膜が得られ難いという傾向になる。他方、電圧が±100V未満では分極作用低減効果が得られにくく、そのため均一な酸化物被膜が形成されにくい。また、陽極電解処理時の電流密度が200A/dm3を超えると、相対的に設備費が大きくなる以上に、均一な酸化物被膜が形成されにくく、一方、電流密度は5A/dm3未満では、必要な厚さの酸化物被膜を得るための時間が長くなりすぎるため好ましくない。 The voltage range used in the anodic electrolysis treatment used in the present invention is preferably ± 100 V to ± 2000 V, and the current density range is preferably 5 to 200 A / dm 3 . If the voltage during the anodic electrolytic treatment exceeds ± 2000 V, the equipment cost tends to be relatively high, and it tends to be difficult to obtain a uniform oxide film. On the other hand, if the voltage is less than ± 100 V, the effect of reducing the polarization effect is difficult to obtain, and therefore, a uniform oxide film is difficult to be formed. Also, if the current density during anodic electrolysis exceeds 200 A / dm 3 , a uniform oxide film is less likely to be formed than a relatively large equipment cost, while the current density is less than 5 A / dm 3. This is not preferable because it takes too long to obtain an oxide film having a required thickness.

次に、陽極電解処理に用いるアルカリ溶液を得るためのアルカリ化合物の具体例としては、水に溶解させた際にアルカリ性を示す物質であれば特に制限はなく使用できるが、好ましくは、水酸化ナトリウム、水酸化カリウム等に代表される金属の水酸化物が挙げられる。また、ケイ酸ナトリウムやアルミン酸ナトリウム、チタン酸ナトリウム等に複合酸化物塩等も好適に使用できる。さらに好ましくは、金属の水酸化物とケイ酸ナトリウム等を併用することでもよい。   Next, specific examples of the alkali compound for obtaining the alkaline solution used for the anodic electrolytic treatment can be used without particular limitation as long as it is a substance that exhibits alkalinity when dissolved in water, but preferably sodium hydroxide. And metal hydroxides typified by potassium hydroxide and the like. Also, composite oxide salts and the like can be suitably used for sodium silicate, sodium aluminate, sodium titanate and the like. More preferably, a metal hydroxide and sodium silicate may be used in combination.

本発明による陽極電解処理に利用されるアルカリ溶液の好ましいpHの範囲は、pH8〜13である。pHが8未満若しくは13を超えると、均一な酸化物被膜を形成することができなくなる。   A preferable pH range of the alkaline solution used for the anodic electrolysis according to the present invention is pH 8-13. If the pH is less than 8 or exceeds 13, a uniform oxide film cannot be formed.

本発明に利用される陽極酸化処理の設備内容等にも特に制約はないが、好ましくは、上記したアルカリ溶液をステンレス等の耐食性と導電性のある容器に入れ、pH、温度、攪拌速度等を適宜管理した上で、容器に触れないように酸化物被膜の対象となる機械部品を溶液に浸し、容器と部品との間に所定の時間、所定の電圧をかける。   There are no particular restrictions on the equipment content of the anodizing treatment used in the present invention, but preferably, the alkaline solution described above is placed in a corrosion-resistant and conductive container such as stainless steel, and the pH, temperature, stirring speed, etc. are adjusted. After appropriate management, a mechanical part to be coated with an oxide film is immersed in the solution so as not to touch the container, and a predetermined voltage is applied between the container and the part for a predetermined time.

本発明による陽極電解処理の条件は、処理する部品の材質、形状、所望の膜厚等により、好ましい範囲の中で、適宜調整することができる。陽極電解処理は、アルカリ溶液を利用する。そのため、通例、アルミニウムの陽極電解処理における酸性溶液を使用する場合では、非結晶性のアルミナが表面に形成されるのに対し、本発明においてアルカリ溶液を用いたことで、結晶性のアルミナが表面に形成され、当該結晶性のアルミナが、いわゆるセラミックであるため、耐食性・耐磨耗性に優れるものと推測される。   The conditions for the anodic electrolytic treatment according to the present invention can be appropriately adjusted within a preferred range depending on the material, shape, desired film thickness, etc. of the parts to be treated. The anodic electrolytic treatment uses an alkaline solution. Therefore, in general, when an acidic solution is used in an anodic electrolytic treatment of aluminum, amorphous alumina is formed on the surface, whereas in the present invention, crystalline alumina is formed on the surface by using an alkaline solution. Since the crystalline alumina is a so-called ceramic, it is presumed to be excellent in corrosion resistance and wear resistance.

さらに、本発明に係る機械部品を構成する基材が、バナジウム、クロム、モリブデン、ジルコニウムやスズを含有する合金からなる、あるいは不純物して含有する場合には、基材を構成する主成分である金属元素の酸化物被膜に起因する強度の向上に加えて、陽極酸化時に、これらバナジウム、クロム、モリブデン、ジルコニウム、スズによる酸化物被膜をも形成する。その結果として、かかる金属による被膜の耐食性・耐磨耗性・耐剥離性等が向上する。   Furthermore, when the base material constituting the mechanical component according to the present invention is made of an alloy containing vanadium, chromium, molybdenum, zirconium or tin, or is contained as an impurity, it is a main component constituting the base material. In addition to the improvement in strength caused by the oxide film of the metal element, an oxide film made of vanadium, chromium, molybdenum, zirconium, and tin is also formed during the anodic oxidation. As a result, the corrosion resistance, abrasion resistance, peel resistance, etc. of the coating film made of such metal are improved.

また、本発明による陽極電解処理を、パルス法等の電流電圧の方向が所定の時間で変化する処理方法とし、±100V以上、5A/dm3以上の電圧電流の作用により、陽極電解時に形成された被膜は、極表面にて、溶解―再結晶を繰り返しており、これによりさらに緻密な被膜となり、耐食性・耐摩耗性・耐剥離性等が一段と向上する。 The anodic electrolysis treatment according to the present invention is a treatment method in which the direction of the current voltage changes in a predetermined time, such as a pulse method, and is formed at the time of anodic electrolysis by the action of a voltage current of ± 100 V or more and 5 A / dm 3 or more. The coated film is repeatedly melted and recrystallized on the extreme surface, whereby it becomes a denser film, and the corrosion resistance, wear resistance, peel resistance and the like are further improved.

図1は、本発明に利用した陽極電解処理を実行するための装置の概略図を示す。本発明が適用される陽極酸化処理装置では、電力供給装置10から電流計(A)を介して被処理物11へ、リード線12により電力が供給される。ステンレス容器の対極13との間のリード線12と並列に電圧計(V)14が設置されている。   FIG. 1 shows a schematic view of an apparatus for carrying out an anodic electrolysis process used in the present invention. In the anodizing apparatus to which the present invention is applied, electric power is supplied from the power supply apparatus 10 to the workpiece 11 through the ammeter (A) through the lead wire 12. A voltmeter (V) 14 is installed in parallel with the lead wire 12 between the counter electrode 13 of the stainless steel container.

本発明の酸化物被膜の製造方法は、被処理物11である基材を陽極として、アルカリ性の電解液15中において、ステンレス容器の対極13との間に、約600Vの印加電圧と約70A/dm3の電流密度の電解条件を、電力供給装置10より30分、付与する方法である。 In the method for producing an oxide film of the present invention, an applied voltage of about 600 V is applied to a counter electrode 13 of a stainless steel container in an alkaline electrolyte 15 with a base material that is an object to be processed 11 as an anode, and about 70 A / In this method, electrolysis conditions with a current density of dm 3 are applied for 30 minutes from the power supply device 10.

以下に示す本発明の実施例及び比較例は例示的なものであり、本発明は以下の具体例に制限されるものではない。当業者は、以下に示す実施例に様々な変更を加えて本発明を実施することができ、かかる変更は本願特許請求の範囲に包含される。   The following examples and comparative examples of the present invention are illustrative, and the present invention is not limited to the following specific examples. Those skilled in the art can implement the present invention by making various modifications to the embodiments shown below, and such modifications are included in the scope of the claims of the present application.

実施例1
陽極に、チタン合金(Ti−15Mo−5Zr合金)を接続し、600Vの印加電圧で交直重畳法によって、50A/dm3での電解処理を行ったところ、チタン合金の表面に合金酸化物被膜が、20μmの厚みで形成された。なお、電解浴は水酸化カリウムとチタン酸ナトリウムからなり、そのpHは10〜11、液温は45〜55℃であった。
Example 1
When a titanium alloy (Ti-15Mo-5Zr alloy) was connected to the anode and electrolytic treatment was performed at 50 A / dm 3 by an AC / DC superposition method with an applied voltage of 600 V, an alloy oxide film was formed on the surface of the titanium alloy. And a thickness of 20 μm. The electrolytic bath was composed of potassium hydroxide and sodium titanate, and had a pH of 10 to 11 and a liquid temperature of 45 to 55 ° C.

比較例1
実施例1と同じチタン合金(Ti−15Mo−5Zr合金)を大気酸化処理により、ルチル型酸化チタン層を形成した。酸化物被膜は20μmの厚みであった。
Comparative Example 1
A rutile type titanium oxide layer was formed by atmospheric oxidation treatment of the same titanium alloy (Ti-15Mo-5Zr alloy) as in Example 1. The oxide coating was 20 μm thick.

比較例2
実施例1と同じチタン合金(Ti−15Mo−5Zr合金)を、酸性浴を用いて、印加電圧が40V、直流電解法で表面に合金酸化物被膜を形成させた。電解浴はシュウ酸にて、pHを1〜2とした。その結果得られた酸化物被膜の厚さは10μmであった。
Comparative Example 2
An alloy oxide film was formed on the surface of the same titanium alloy as in Example 1 (Ti-15Mo-5Zr alloy) using an acidic bath with an applied voltage of 40 V and direct current electrolysis. The electrolytic bath was oxalic acid and the pH was adjusted to 1-2. The resulting oxide film thickness was 10 μm.

実施例1並びに比較例1及び2で得られた機械部品の耐摩耗性を調べるため、ボールオンディスクによる比較実験を行った。具体的には、ディスクに、先の実施例及び比較例により得られた被処理物の表面を使用し、SUJ2のボールを一定の荷重で押し付け、接触面圧が1.8GPaの条件で、1m/sの速度で2時間回転させた。   In order to examine the wear resistance of the machine parts obtained in Example 1 and Comparative Examples 1 and 2, a comparative experiment using a ball-on-disk was performed. Specifically, the surface of the object to be processed obtained in the previous examples and comparative examples is used against the disk, the SUJ2 ball is pressed with a constant load, and the contact surface pressure is 1.8 GPa. Rotated at a speed of / s for 2 hours.

試験後の磨耗深さを表面粗さ計で形状を測定したところ、実施例1では5μm、比較例1では18μm、比較例2では15μmという結果が得られた。   When the shape of the wear depth after the test was measured with a surface roughness meter, the results were 5 μm in Example 1, 18 μm in Comparative Example 1, and 15 μm in Comparative Example 2.

実施例2
アルミニウム合金(JIS呼称6N01;Al−Mg−Si系合金)を、実施例1と同様に、陽極に取り付け、40分電解処理を行った。電解電圧は400V、電流密度50A/dm3にて、パルス電解法を採用した。電解浴は水酸化溶液とメタリン酸で調整して、pH10〜11のアルカリ溶液とした。液温は、45〜55℃に保持して陽極電解処理を行った。その結果、表面に厚さ20μmの合金化合物層が形成された。微小光度計で断面の硬さ測定を行ったところ、12GPaであった。
Example 2
An aluminum alloy (JIS name 6N01; Al—Mg—Si alloy) was attached to the anode in the same manner as in Example 1 and subjected to electrolytic treatment for 40 minutes. The electrolytic voltage was 400 V, the current density was 50 A / dm 3 , and the pulse electrolysis method was adopted. The electrolytic bath was adjusted with a hydroxide solution and metaphosphoric acid to obtain an alkaline solution having a pH of 10 to 11. The liquid temperature was maintained at 45 to 55 ° C., and anodic electrolysis was performed. As a result, an alloy compound layer having a thickness of 20 μm was formed on the surface. When the hardness of the cross section was measured with a microphotometer, it was 12 GPa.

比較例3
実施例2と同じアルミニウム合金を使用して、陽極電解処理(電解電圧:30V、電流密度:5A/dm2、直流電解でシュウ酸溶液にてpH1〜2に調整した酸性溶液)で、表面に厚さ10μmの酸化被膜を形成した。実施例2と同様に、硬さを測定したところ、5GPaであった。
Comparative Example 3
Using the same aluminum alloy as in Example 2, the surface was subjected to anodic electrolysis (electrolysis voltage: 30 V, current density: 5 A / dm 2 , acidic solution adjusted to pH 1-2 with oxalic acid solution by direct current electrolysis). An oxide film having a thickness of 10 μm was formed. When the hardness was measured in the same manner as in Example 2, it was 5 GPa.

図2は、本発明に係る機械部品が一部又は全部に適用された、直動案内の転動装置としてのボールねじの一例を示す。ボールねじ20は、一方の移動部材であり、かつその案内面となる外周面に螺旋状のねじ溝21が形成されたねじ軸22と、他方の移動部材であり、かつその案内面となる内周面23に前記ねじ溝21に対向する螺旋状のねじ溝24が形成されたナット25と、対向するねじ溝間に転動自在に介装された転動体である多数のボール26と、それらのボール26を循環させるチューブ式循環路27とを具備して概略構成される。   FIG. 2 shows an example of a ball screw as a linear motion rolling device to which part or all of the mechanical parts according to the present invention are applied. The ball screw 20 is one moving member and a screw shaft 22 in which a spiral screw groove 21 is formed on the outer peripheral surface serving as a guide surface thereof, and the other moving member and an inner surface serving as a guide surface thereof. A nut 25 having a spiral thread groove 24 opposed to the thread groove 21 formed on the peripheral surface 23, a large number of balls 26 that are rolling elements interposed between the opposed thread grooves so as to be freely rollable, and And a tube-type circulation path 27 through which the balls 26 are circulated.

チューブ式循環路27は外形略コ字状のチューブからなり、その両端部28に、それぞれナット25を両ねじ溝21、24の接線方向に貫通するチューブ取付孔29からナット25内のボール転動空間に差し込み、止め金30でナット25の外面に固定される。螺旋状のボール転動空間を転動するボール26は、ねじ溝21、24を複数回回って移動してから、チューブ式循環路27の一方の端部28ですくい上げられてチューブ式循環路27の中を通り、他方の端部(不図示)からナット25内のボール転動空間に戻る循環を繰り返すように構成されている。   The tube-type circulation path 27 is formed of a tube having a substantially U-shaped outer shape, and ball rolling in the nut 25 is performed at both end portions 28 from a tube mounting hole 29 penetrating the nut 25 in the tangential direction of both screw grooves 21 and 24, respectively. It is inserted into the space and fixed to the outer surface of the nut 25 with a stopper 30. The ball 26 that rolls in the spiral ball rolling space moves around the screw grooves 21 and 24 a plurality of times, and is then scooped up at one end 28 of the tube-type circulation path 27 to be tube-type circulation path 27. , And the circulation from the other end (not shown) back to the ball rolling space in the nut 25 is repeated.

転動体、ねじ軸、ナット等の部品を、本発明による陽極電解処理された陽極電解処理された機械部品とすることで、転動装置の耐食性、耐磨耗性を向上させる。   By using parts such as rolling elements, screw shafts, and nuts as machine parts subjected to anodic electrolysis according to the present invention, the corrosion resistance and wear resistance of the rolling device are improved.

図3は、本発明に係る機械部品が適用された深溝玉軸受の断面図を示す。図3に示す深溝玉軸受40は、内周面に深溝型の外輪軌道41を有する外輪42と、外周面に深溝型の内輪軌道43を有する内輪44と、これら外輪軌道41と内輪軌道43との間に保持器45により保持した状態で転動自在に設けられた、複数の玉46とから構成される。   FIG. 3 is a cross-sectional view of a deep groove ball bearing to which a mechanical component according to the present invention is applied. A deep groove ball bearing 40 shown in FIG. 3 includes an outer ring 42 having a deep groove type outer ring raceway 41 on an inner peripheral surface, an inner ring 44 having a deep groove type inner ring raceway 43 on an outer peripheral surface, the outer ring raceway 41 and the inner ring raceway 43. And a plurality of balls 46 which are provided so as to be able to roll while being held by a cage 45.

前記深溝玉軸受40の運転時に、上記各玉46は、上記外輪42と内輪44とが相対回転するのに伴って、上記外輪軌道41と上記内輪軌道43との間で自転しつつ、公転する。そして、上記各玉46の転動面と上記各軌道41、43との、剥離等の磨耗損傷が生じる蓋然性が極めて高い。そのため、本発明に係る機械部品を前記玉46に使用とする、その耐食性及び耐磨耗性の向上に起因して、磨耗損傷を低下させる効果を有する。   When the deep groove ball bearing 40 is operated, the balls 46 revolve while rotating between the outer ring raceway 41 and the inner ring raceway 43 as the outer ring 42 and the inner ring 44 rotate relative to each other. . And the probability that abrasion damage, such as peeling, between the rolling surfaces of the balls 46 and the tracks 41 and 43 will be extremely high. For this reason, the mechanical component according to the present invention is used for the ball 46, and this has the effect of reducing wear damage due to the improvement in corrosion resistance and wear resistance.

図2及び図3に例示した、本発明の態様では、装置の形状や用途、適用する部品の種類によって、好適な材質、膜厚等は異なる場合が多く、それらが耐食性や耐磨耗性はもちろん、耐久性や発塵性等にも影響を与えることが考えられるので、材質、陽極電解処理条件等を、適宜、好ましい範囲で選定することができる。   In the embodiment of the present invention illustrated in FIG. 2 and FIG. 3, suitable materials, film thicknesses, and the like are often different depending on the shape and use of the apparatus and the type of parts to be applied, and they have corrosion resistance and wear resistance. Of course, since it may be considered to affect the durability, dust generation and the like, the material, the anodic electrolytic treatment conditions, and the like can be appropriately selected within a preferable range.

本発明による酸化物被膜は、基本的には電気絶縁性であるため、たとえば、転がり軸受の外輪外面若しくは内輪外面に、本発明による酸化物被膜を形成するにとにより、軸受に電気絶縁作用を付与させることが可能である。本発明による酸化被膜の電気絶縁性を利用した軸受の好適な具体例としては、インバータモータ用等の軸受が挙げられる。   Since the oxide coating according to the present invention is basically electrically insulative, for example, by forming the oxide coating according to the present invention on the outer ring outer surface or the inner ring outer surface of a rolling bearing, the bearing is electrically insulated. It can be given. A preferred specific example of the bearing using the electrical insulation of the oxide film according to the present invention is a bearing for an inverter motor or the like.

図1は、本発明の一実施形態に係る陽極電解処理である陽極酸化処理を実行するための装置の概略図を示す。FIG. 1 is a schematic view of an apparatus for performing an anodic oxidation process that is an anodic electrolytic process according to an embodiment of the present invention. 図2は、本発明に係る機械部品を適用した、直動案内の転動装置であるボールねじの一例を示す図である。FIG. 2 is a view showing an example of a ball screw which is a linear motion rolling device to which a mechanical component according to the present invention is applied. 図3は、本発明に係る機械部品を適用した深溝玉軸受の断面図を示す。FIG. 3 shows a cross-sectional view of a deep groove ball bearing to which a mechanical component according to the present invention is applied.

符号の説明Explanation of symbols

10…電力供給装置、11…被処理物、 12…リード線、13…対極、14…電圧計、20…ボールねじ、21…ねじ溝、22…ねじ軸、23…内周面、24…ねじ溝、25…ナット、26…ボール、27…循環路、28…両端部、29…チューブ取付孔、30…止め金、40…深溝玉軸受、41…外輪軌道、42…外輪、43…内輪軌道、44…内輪、45…保持器、46…玉 DESCRIPTION OF SYMBOLS 10 ... Electric power supply apparatus, 11 ... To-be-processed object, 12 ... Lead wire, 13 ... Counter electrode, 14 ... Voltmeter, 20 ... Ball screw, 21 ... Screw groove, 22 ... Screw shaft, 23 ... Inner peripheral surface, 24 ... Screw Groove, 25 ... nut, 26 ... ball, 27 ... circulation path, 28 ... both ends, 29 ... tube mounting hole, 30 ... clasp, 40 ... deep groove ball bearing, 41 ... outer ring raceway, 42 ... outer ring, 43 ... inner ring raceway 44 ... Inner ring, 45 ... Cage, 46 ... Ball

Claims (5)

軽金属又は軽金属元素の1種以上を主成分とする合金の基材からなり、その表面に8GPa以上の硬度の前記軽金属元素の酸化物皮膜を備え、この軽金属酸化物被膜はアルカリ溶液中での陽極電解処理によって形成されてなる機械部品。   It is made of a base material of a light metal or an alloy containing at least one kind of light metal element as a main component, and has an oxide film of the light metal element having a hardness of 8 GPa or more on its surface. The light metal oxide film is an anode in an alkaline solution. Machine parts formed by electrolytic treatment. 前記軽金属は、チタン、アルミニウム、又はマグネシウムからなり、前記基材は、これら軽金属元素の1種以上を主成分とする合金から構成されてなる、請求項1に記載の機械部品。   The machine part according to claim 1, wherein the light metal is made of titanium, aluminum, or magnesium, and the base material is made of an alloy containing at least one of these light metal elements as a main component. 前記基材が、バナジウム、クロム、モリブデン、ジルコニウム、及びスズからなる群から選択される1種以上の金属元素を、さらに含有されてなる、請求項1又は2に記載の機械部品。   The machine part according to claim 1 or 2, wherein the base material further contains one or more metal elements selected from the group consisting of vanadium, chromium, molybdenum, zirconium, and tin. 一部又は全部が、請求項1ないし3のうち何れか一項に記載の機械部品からなる、回転案内機能若しくは直動案内機能を有する転動装置。   A rolling device having a rotation guide function or a linear motion guide function, part or all of which comprises the mechanical component according to any one of claims 1 to 3. 軽金属又は軽金属元素の1種以上を主成分とする合金の基材からなる機械部品を、アルカリ溶液中での陽極電解処理を行い、その表面に8GPa以上の硬度の前記軽金属酸化物被膜を形成するようにした、機械部品の表面処理方法。
A mechanical component made of a base material of a light metal or an alloy mainly composed of one or more light metal elements is subjected to an anodic electrolysis treatment in an alkaline solution, and the light metal oxide film having a hardness of 8 GPa or more is formed on the surface thereof. A method for treating the surface of a machine part.
JP2004083323A 2004-03-22 2004-03-22 Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts Pending JP2005272853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083323A JP2005272853A (en) 2004-03-22 2004-03-22 Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083323A JP2005272853A (en) 2004-03-22 2004-03-22 Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts

Publications (1)

Publication Number Publication Date
JP2005272853A true JP2005272853A (en) 2005-10-06

Family

ID=35172834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083323A Pending JP2005272853A (en) 2004-03-22 2004-03-22 Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts

Country Status (1)

Country Link
JP (1) JP2005272853A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097060A (en) * 2007-10-19 2009-05-07 Sumitomo Metal Ind Ltd Titanium material and method of manufacturing titanium material
JP2009526130A (en) * 2006-02-10 2009-07-16 オプレント エレクトロニクス インターナショナル ピーティーイー エルティーディー Anodized aluminum, dielectrics and methods
JP2010037607A (en) * 2008-08-06 2010-02-18 Aisin Seiki Co Ltd Aluminum alloy member and method of manufacturing the same
JP2012126978A (en) * 2010-12-16 2012-07-05 Seiko Instruments Inc Part, timepiece, and method for manufacturing part
JP2017520684A (en) * 2014-07-17 2017-07-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Electroceramic coating for magnesium alloys
CN112853425A (en) * 2020-12-31 2021-05-28 中核北方核燃料元件有限公司 Micro-arc oxidation tool for inner surface of connecting nut

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526130A (en) * 2006-02-10 2009-07-16 オプレント エレクトロニクス インターナショナル ピーティーイー エルティーディー Anodized aluminum, dielectrics and methods
JP2009097060A (en) * 2007-10-19 2009-05-07 Sumitomo Metal Ind Ltd Titanium material and method of manufacturing titanium material
JP2010037607A (en) * 2008-08-06 2010-02-18 Aisin Seiki Co Ltd Aluminum alloy member and method of manufacturing the same
JP2012126978A (en) * 2010-12-16 2012-07-05 Seiko Instruments Inc Part, timepiece, and method for manufacturing part
JP2017520684A (en) * 2014-07-17 2017-07-27 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Electroceramic coating for magnesium alloys
CN112853425A (en) * 2020-12-31 2021-05-28 中核北方核燃料元件有限公司 Micro-arc oxidation tool for inner surface of connecting nut
CN112853425B (en) * 2020-12-31 2023-06-13 中核北方核燃料元件有限公司 Micro-arc oxidation tool for inner surface of connecting nut

Similar Documents

Publication Publication Date Title
Pezzato et al. Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys
Xiang et al. Effects of current density on microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy
JP5345155B2 (en) Metal electrolytic ceramic coating method, metal electrolytic ceramic coating electrolyte and metal material
RU2373306C2 (en) Method of multistage electrolyte-plasma polishing of products made of titanium and titanium alloys
Qin et al. Adaptive-lubricating PEO/Ag/MoS2 multilayered coatings for Ti6Al4V alloy at elevated temperature
CN101307477A (en) Method for preparing high-wear-resistant antifriction self-lubricating composite membrane layer on surface of aluminum alloy
CN106762631B (en) A kind of scroll compressor thermomechanical components and its manufacturing method and scroll compressor
JPWO2004067807A1 (en) Method for forming an anodized film on the surface of aluminum or aluminum alloy
KR20040098575A (en) Electrolytic electrode and process of producing the same
JP2009062914A (en) Rotary apparatus and oil pump
Belozerov et al. The influence of the conditions of microplasma processing (microarc oxidation in anode-cathode regime) of aluminum alloys on their phase composition
JP2005272853A (en) Machine parts having oxide film, rolling equipment equipped with the machine parts, and surface treatment method for the machine parts
Loghman et al. Corrosion Behavior of PEO Coatings on 6061 Al Alloy: Effect of Sodium Fluoride Addition to Aluminate based Electrolyte.
CN104911664A (en) Method for lowering unit energy consumption of high-silicon aluminum alloy microarc oxidation
WO2014203919A1 (en) Method for manufacturing magnesium alloy product
CA2847014A1 (en) Lubricious composite oxide coating and process for making the same
JP2008081839A (en) Member made of aluminum alloy, method for producing the same, and fuel pump with the member made of aluminum alloy
CN110685000B (en) High-corrosion-resistance coating, preparation method, electrolyte and application thereof
JP2013049903A (en) Method for manufacturing aluminum anodic oxide coating being superior in productivity and having high voltage endurance
JP2008232366A (en) Fastener and fastening method using the same
JP5777939B2 (en) Anodized film generation method
Lee et al. Electroless Ni-P/diamond/graphene composite coatings and characterization of their wear and corrosion resistance in sodium chloride solution
JP5957075B2 (en) Non-supported vacuum pump member
KR101431055B1 (en) Stator for gas-evacuation pump, manufacturing method therefor, pump provided with said stator, and manufacturing method and assembly method therefor
Shi et al. Properties and structure of PEO treated aluminum alloy