WO2004065794A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2004065794A1
WO2004065794A1 PCT/JP2004/000364 JP2004000364W WO2004065794A1 WO 2004065794 A1 WO2004065794 A1 WO 2004065794A1 JP 2004000364 W JP2004000364 W JP 2004000364W WO 2004065794 A1 WO2004065794 A1 WO 2004065794A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
rotary compressor
vane groove
cylinder
groove
Prior art date
Application number
PCT/JP2004/000364
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Hasegawa
Fumitoshi Nishiwaki
Atsuo Okaichi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005508068A priority Critical patent/JP4008471B2/en
Publication of WO2004065794A1 publication Critical patent/WO2004065794A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution

Definitions

  • the present invention relates to a rotary compressor used for, for example, a refrigerator-freezer or an air conditioner.
  • Rotary compressors are often used in refrigerators and refrigerators and air conditioners because of their compactness and simple structure.
  • the main components of the compressor, the compression mechanism consisting of vanes, rollers, cylinders, etc., are described in, for example, Mutsuyoshi Kawahira, “Closed Refrigerator”, Japan Refrigeration Association, 1993 (for example, p. , Figure 6.1).
  • FIG. 7 a conventional rotary compressor will be described with reference to FIGS. 7, 8, and 9.
  • FIG. 7 is a longitudinal sectional view of a conventional rotary compressor
  • FIG. 8 is a transverse sectional view of a compression mechanism section of the conventional rotary compressor.
  • FIG. 8 is a cross-sectional view of the Z-section of FIG.
  • FIG. 10 which is a cross-sectional view of the compression mechanism of the compressor
  • the vane grooves 1105b, 1205b, 1305b, and 1405b are rollers 11 0
  • a sliding vane type rotary compressor in which the vanes 1109, 1209, 1309, and 1409 are reciprocated while touching the tip of the cylinder 1105 with the cylinder 1105. is there.
  • the rotary compressor includes an airtight container 1, a compression mechanism 2 disposed therein, and a rotary motor 3.
  • the compression mechanism 2 includes a shaft 4 rotatable about a central axis L, a cylinder 5 having a cylindrical surface 5 a therein, and an eccentric portion 4 a of the shaft 4.
  • Roller 6 that performs eccentric rotational movement inside 5, and reciprocates inside vane groove 5 b of cylinder 5 while contacting the tip with roller 6, and the space formed by cylinder 5 and roller 6 is a suction chamber. 7 and a compression chamber 8, a panel 10 installed at the rear end of the vane 9 and pressing the vane 9 against the roller 6, and an upper bearing 11 and a lower bearing 12 supporting the shaft 4. Be composed.
  • the vane 9 is pressed against the roller 6 by the action of a force due to a pressure difference between the back side and the tip side thereof. 0 is not necessary.
  • the rotary motor unit 3 includes a stator 13 shrink-fitted inside the closed casing 1 and a rotor 14 shrink-fitted on the shaft 4.
  • the working fluid of the rotary compressor is guided from the suction pipe 15 to the suction chamber 7 through the suction hole 11 a provided in the upper bearing 11.
  • a notch 5c is provided in a cylindrical surface 5a inside the cylinder 5 at a communication portion between the suction hole 11a and the suction chamber 7 to secure a flow path.
  • FIG. 8 is a view showing a state in which the vane 9 is most pushed out of the vane groove 5 b by the eccentric rotational movement of the roller 6.
  • the width ⁇ of the vane groove 5 b is set to the width t of the vane 9 in order to hold the vane 9 movably in the longitudinal direction.
  • the width ⁇ of the clearance is extremely small, and is actually about 10 m.
  • the vane 9 separates the suction chamber 7 from the compression chamber 8 while contacting the tip of the vane 9 with the roller 6, the working fluid pressure P 1 of the suction chamber 7 is provided on the side of the tip of the vane 9 on the suction chamber 7 side.
  • the pressure P 2 of the working fluid in the compression chamber 8 acts on the side surface on the compression chamber 8 side. Since the pressure P2 in the compression chamber 8 is higher than the pressure P1 in the suction chamber 7 ⁇ , the vicinity of the tip of the vane 9 always receives a force in the direction from the compression chamber 8 side to the suction chamber 7 side.
  • the vane 9 is inclined with respect to the vane groove 5 b within the range of the clearance width ⁇ , the edge portion 5 d of the vane groove 5 b on the suction chamber 7 side, and the edge at the diagonal position thereof Local contact with part 5e.
  • the force acting on the vane 9 from the edge 5 d is F 1
  • the force acting on the edge 5 e is F 2
  • the resultant force acting on the suction fluid 7 and the pressure of the working fluid in the compression chamber 8 is the resultant force.
  • F3 the length of the vane groove 5 b is a
  • the length of the portion of the vane 9 protruding from the vane groove 5 b is b.
  • the force F 3 exerted by the working fluid in the suction chamber 7 and the compression chamber 8 on the vane 9 is represented by P 1 for the pressure of the working fluid in the suction chamber 7, P 2 for the pressure of the working fluid in the compression chamber 8, and P 2 for the vane 9.
  • P 1 for the pressure of the working fluid in the suction chamber 7
  • P 2 for the pressure of the working fluid in the compression chamber 8
  • P 2 for the vane 9.
  • the suction pressure P s is about 5 ⁇ 2 0 X 1 0 5 P a
  • the discharge pressure P d is about 2. it is 0 7 X 1 0 6 P a
  • the length a of the vane groove 5 b is approximately 15 mm
  • the maximum length b of the portion protruding from the vane groove 5 b of the vane 9 is approximately 6 mm
  • the height of the vane 9 is approximately 20 mm. mm, length about 25 mm, thickness about 3 mm.
  • the pressure P 2 in the compression chamber 8 is equal to the average of the suction pressure and the discharge pressure (P s + P d) / 2, and the pressure P 1 in the suction chamber 7 is Assume equal to suction pressure Ps. Then, from (Equation 3), F 3 is about 9.32 31 ⁇ . Also, from (Equation 4), F 1 is about 1.12 ⁇ 10 2 N, and from (Equation 5), F 2 is about 1.86 ⁇ 10 N.
  • the pair is about 20 mmX 25 mmX 3 mm Noben 9 magnitude, concentrated load from the edge portion 5 d is about 1. 1 2 X 1 0 2 N is the edge portion 5 6 Applies a concentrated load of about 1.86 X 10 N.
  • the vane 9 receives the concentrated load from the edge portions 5 d and 5 e of the vane groove 5 b, and particularly, the edge of the vane groove 5 b on the suction chamber 7 side.
  • the concentrated load at section 5d was large.
  • the contact between the vane 9 and these edge portions 5d and 5e was almost a line contact, and the contact stress was extremely large.
  • the vane 9 reciprocates inside the vane groove 5b of the cylinder 5 while contacting the tip with the eccentrically rotating roller 6, so that when the direction of movement changes, the vane 9 moves at a speed relative to the vane groove 5b. Becomes zero.
  • the contact stress caused by the line contact of the concentrated loads F 1 and F 2 was liable to cause the oil film to break, and the sliding conditions were extremely severe. Therefore, the vane 9 and the vane groove 5b were liable to be damaged such as wear and seizure, and the reliability of the rotary compressor was sometimes reduced.
  • the rolling piston type rotary compressor (see Fig. 8) has mainly been described, but the sliding vane type rotary compressor has been described.
  • the vane 1109, 1209, 1309, 1409 and the 1114b, 1205 The b, 1405b, and 1405b were susceptible to wear, seizure, and other damage, which sometimes reduced the reliability of the rotary compressor. Disclosure of the invention
  • An object of the present invention is to solve the above-mentioned conventional problems.
  • an object of the present invention is to provide a rotary compressor having higher reliability by suppressing the occurrence of damage such as wear and seizure of vane-vane grooves.
  • a first aspect of the present invention provides a cylinder disposed inside a closed container
  • a van installed in the vane groove and reciprocating in the vane groove
  • At least a part of the wall of the vane groove, which contacts the vane when the vane reciprocates, is a rotary compressor having a predetermined elasticity.
  • a third aspect of the present invention is the rotary compressor according to the second aspect, wherein the elasticity is generated by a predetermined thin portion formed in advance.
  • the predetermined thin-walled portion is formed in a wall of the vane groove, and is more likely to have a lower pressure than the working chamber formed by being surrounded by the cylinder, the roller, and the vane.
  • a rotary compressor according to a third aspect of the present invention which is formed in an edge portion formed by the vane groove and the working chamber on the side of the rotary compressor.
  • the predetermined thin portion is formed by the vane groove and a predetermined notch formed in the cylinder,
  • the predetermined notch is also used as an opening for sucking a working fluid.
  • the predetermined thin-walled portion is formed in the wall of the vane groove, and is formed by the cylinder, the roller, and the vane.
  • a third or fourth rotary compressor according to the present invention which is formed at a predetermined portion on the side of the rotary compressor.
  • the length of the vane groove is shorter than the length of the vane.
  • a sixth aspect of the present invention is a rotary compressor of the present invention.
  • the length of the vane groove is longer than the length of the vane
  • the predetermined thin portion is formed on a wall of the vane groove, on a side of the working chamber where the pressure is more likely to be higher, and on a portion where a rear end of the vane slides.
  • 1 is a rotary compressor according to the present invention.
  • the length L of the vane groove, the width T of the vane groove, the length s of the thin portion, and the width w of the thin portion are L / T ⁇ s.
  • the vane groove is formed in the roller, and the vane reciprocates while contacting a tip of the vane with the cylinder.
  • 1 is a rotary compressor according to the present invention.
  • An eleventh invention is the rotary compressor according to the tenth invention, wherein the elasticity is generated by a predetermined thin portion formed in advance.
  • the predetermined thin portion is formed of a wall of the vane groove, which is formed by the cylinder, the roller, and the vane and is more likely to have a lower pressure than the working chamber.
  • 11 is a rotary compressor according to the eleventh aspect of the present invention, which is formed on an edge portion formed by the vane groove and the working chamber on the side.
  • the predetermined thin-walled portion is formed in the wall of the vane groove, and is more likely to have a higher pressure than the working chamber formed by being surrounded by the cylinder, the roller, and the vane.
  • a rotary compressor according to the eleventh or eleventh aspect of the present invention which is formed at a predetermined portion on the side of the rotary compressor.
  • the length of the vane groove is shorter than the length of the vane.
  • the predetermined thin portion is formed at an edge portion formed by the vane groove and a predetermined vane groove escape portion on the side of the working chamber where the pressure is more likely to be higher than the wall of the vane groove.
  • a rotary compressor according to a thirteenth aspect of the present invention According to a fifteenth aspect of the present invention, the length of the vane groove is longer than the length of the vane,
  • the predetermined thin portion is formed at a portion of the wall of the vane groove, on the side of the working chamber where the pressure is more likely to be higher, at a portion where the rear end of the vane slides.
  • the length L of the vane groove, the width of the vane groove, the length s of the thin portion, and the width w of the thin portion are LT ⁇ s.
  • a seventeenth invention is the rotary compressor according to the first invention, wherein the working fluid is carbon dioxide.
  • An eighteenth aspect of the present invention provides a cylinder disposed inside a closed container, a roller that rotates while contacting the cylinder, a vane groove formed in the cylinder or the roller, The vane installed in the groove A vane reciprocating in a groove, wherein the vane contacts the vane when the vane reciprocates, at least a portion of a wall of the vane groove.
  • a method for manufacturing a rotary compressor including a vane groove wall elasticity imparting step for imparting predetermined elasticity.
  • the present invention has an advantage that a rotary compressor having higher reliability can be provided by suppressing the occurrence of damage such as wear and seizure of vanes and vane grooves.
  • FIG. 1 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of a main part near a vane groove of the rotary compressor according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 3 of the present invention.
  • FIG. 5 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 4 of the present invention.
  • FIG. 6 is a cross-sectional view of a compression mechanism of the rotary compressor according to the embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view of a conventional rotary compressor.
  • FIG. 8 is a cross-sectional view of a compression mechanism of a conventional rotary compressor.
  • FIG. 9 is a cross-sectional view of a main part near a vane groove of a conventional rotary compressor.
  • FIG. 10 is a cross-sectional view of a compression mechanism of a conventional rotary compressor.
  • FIG. 11 is a cross-sectional view of a compression mechanism of the rotary compressor according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of a compression mechanism of the rotary press according to the embodiment of the present invention.
  • the configuration of the rotary compressor according to the first embodiment will be described.
  • the configuration of the rotary compressor according to the first embodiment is described. While describing, one embodiment of a method for manufacturing a rotary compressor will also be described (the same applies to other embodiments).
  • the rotary compressor according to the first embodiment of the present invention has a configuration similar to that of the conventional rotary compressor described in detail in FIGS. 7 to 9 except that a thin wall portion is provided. It is the same as FIG.
  • FIG. 1 is a cross-sectional view of a compression mechanism of a rotary compressor according to the first embodiment, and corresponds to a cross-sectional view taken along a Z-section in FIG.
  • 1 is a closed container
  • 4 is a shaft
  • 4a is an eccentric part of the shaft 4
  • 105 is a cylinder
  • 105a is a cylindrical surface that is the inner wall of the cylinder 105
  • 105b is Cylinder 105 vane groove
  • 105 c is cutout for suction of working fluid provided in cylinder 105
  • 6 is roller
  • 107 is suction chamber
  • 108 is compression chamber
  • 9 is a vane
  • 10 is a spring
  • 11a is a suction hole provided in the upper bearing 11
  • 15 is a suction pipe.
  • the vane groove 105 b is a continuous portion having a width to be fitted with the vane 9, and is shown using a thick line in FIG. 1.
  • FIG. 1 is a view showing a state in which the vane 9 is most pushed out of the vane groove 105 b by the eccentric rotational movement of the roller 6.
  • the thinned section 105 f is the vane on the wall of the vane groove 105 b, on the side of the working chamber where the pressure is lower than that formed by the cylinder 105, roller 6 and vane 9. It is formed in an edge portion formed by the groove 105b and the working chamber.
  • a thin portion 105 f is formed at an edge portion 105 d of the vane groove 105 b of the cylinder 105 on the suction chamber 107 side.
  • the thin portion 105 f is formed by providing a slit-shaped notch 105 g beside the vane groove 105 b.
  • the thickness of the thin part 105 f is sufficient for the thin part 105 f to have sufficient elasticity. It was decided to prepare.
  • FIG. 2 is a cross-sectional view of a main part near the vane groove of the rotary compressor according to the first embodiment.
  • the aspect ratio s Zw of the thin portion 105 f is determined to be larger than the aspect ratio L / T of the vane groove 105 b, so that the thin portion 105 f has sufficient elasticity. (The same applies to the following embodiments).
  • a clearance having a width ⁇ is provided between the vane groove 105 b and the vane 9.
  • 105 i is the space where the panel is installed beyond the vane groove 105 b.
  • the vane 9 separates the suction chamber 107 and the compression chamber 108 while the tip of the vane 9 is in contact with the roller 6, the working fluid pressure P 1 of the suction chamber 107 is provided on the side of the tip of the vane 9 on the suction chamber 107 side.
  • the pressure P 2 of the working fluid in the compression chamber 108 acts on the side surface on the compression chamber 108 side. Since the pressure P 2 in the compression chamber 108 is higher than the pressure P 1 in the suction chamber 107, the vicinity of the tip of the vane 9 always receives a force from the compression chamber 108 to the suction chamber 107.
  • the width of the clearance between vane 9 and vane groove 105 b is It is inclined within the range of ⁇ , and locally contacts the edge portion 105 d of the vane groove 105 b on the suction chamber 107 side and the edge portion 105 e at the diagonal position thereof.
  • the magnitude of the concentrated load at these edge portions 105 d and 105 e is characteristic at the edge portion 105 d on the suction chamber 107 side of the vane groove 105 b. Big.
  • the vane groove 105b of the cylinder 105 is formed with a thin wall portion 105f at the edge portion 105d of the suction chamber 107 side of the vane groove 105b.
  • the thin portion 105f becomes a cantilever beam that receives a concentrated load at the free end, and the edge portion Deflection occurs in 105 d.
  • the contact state between the vane 9 and the vane groove 105 b at the edge portion 105 d which has been close to the line contact becomes a surface contact state due to the bending of the thin portion 105 f.
  • the shape of the notch 105 g provided on the cylindrical surface 105 a of the cylinder 105 is not limited to the slit shape as long as the thin portion 105 f can be formed. .
  • the space created by the notch 105 g is included in the suction chamber 107, and the working fluid sealed in this space re-expands. There is almost no decrease in compressor performance due to the notch of 105 g.
  • the rotary compressor according to the second embodiment of the present invention has a configuration similar to the conventional rotary compressor described in detail in FIGS. 7 to 9 except that a thin wall portion is provided.
  • the longitudinal sectional view is the same as FIG.
  • FIG. 3 is a cross-sectional view of a compression mechanism of a rotary compressor according to the second embodiment, and corresponds to a cross-sectional view taken along a Z-section in FIG.
  • the thin portion 205 f is formed by a vane groove 205 b and a notch 205 c formed in the cylinder 205, and the notch 205 c is an opening for sucking a working fluid Department is also used.
  • the thin portion 205 f was formed by a notch 205 c provided in the cylinder 205.
  • the notch 205c is an opening of the suction port 11a into which the working fluid flows into the suction chamber 207.
  • 205 a is a cylindrical surface which is an inner wall of the cylinder 205
  • 205 d is a wedge portion of the vane groove 205 b of the cylinder 205 on the suction chamber 207 side.
  • 205 e is an edge portion at a diagonal position of the edge portion 205 d
  • 205 i is a space for installing a panel beyond the vane groove 205 b.
  • Reference numeral 208 denotes a compression chamber.
  • the suction hole 11a is provided in the upper bearing 11 (see FIG. 7), but the suction hole corresponding to the suction hole 11a is directly connected to the cylinder 205. It goes without saying that the same effect can be obtained even if a notch equivalent to the notch 205c is provided after the provision.
  • the rotary compressor according to the third embodiment of the present invention has a configuration similar to that of the conventional rotary compressor detailed in FIGS. 7 to 9 except that a thin-walled portion is provided.
  • the figure is similar to Figure 7.
  • FIG. 4 is a cross-sectional view of a compression mechanism of a rotary compressor according to the third embodiment, and corresponds to a cross-sectional view taken along a Z-section in FIG.
  • the thin-walled portion 300 h is provided at a predetermined position on the wall of the vane groove 300 b on the side of the working chamber, which is more likely to be higher in pressure than the cylinder formed by the cylinder 105, the roller 6, and the vane 9. Formed in the part.
  • a thinner portion 30.5 h is formed on the edge portion 30.5 e at the diagonal position of the edge portion 30.5 d of the suction chamber 3 07 d of the vane groove 3 05 b. .
  • the length of the vane groove 305 b is shorter than the length of the vane 9, and the thin wall portion 305 h is the vane groove on the wall of the vane groove 305 b, on the side of the working chamber where pressure tends to be higher. It is formed at the edge formed by the portion 105b and the relief portion 300b of the vane groove.
  • the vane groove 305b is a continuous portion having a width that fits with the vane 9, and is shown using a thick line in FIG.
  • the rotary compressor according to the third embodiment has a structure in which the length c of the vane groove 305 b is shorter than the length d of the vane 9. Therefore, when the vane 9 reciprocates, the portion near the rear end of the vane 9 enters the space 305 i where the spring beyond the vane groove 305 b is installed.
  • the part of the vane 9 that reciprocates and enters the space 3 05 i where the panel is installed is the vane groove relief part 5 j. As shown in FIG.
  • a corner portion formed by the vane groove 300 b and the vane groove escape portion 305 j is an edge portion 305 e.
  • the edge portion 2005 e is a portion that comes into contact with the vane 9 when the vane 9 reciprocates.
  • the thickness and length of the thin section 3 05 h are such that the thin section 3 0 5 h has sufficient elasticity and is generated in the thin section 3 0 5 h even under the concentrated load F 2 (see Fig. 9). The stress was determined so that it was less than the elastic limit.
  • the thin portion 305 h can be formed by expanding the space 305 i where the panel 10 at the rear end of the vane 9 is installed to the side of the vane groove 305 b.
  • reference numeral 300a denotes a cylindrical surface which is an inner wall of the cylinder 305
  • reference numeral 305c denotes a notch provided in the cylinder 305 for suction of a working fluid
  • reference numeral 305f denotes a cutout. This is a thin-walled portion formed in the edge portion 3105d of the vane groove 300b of the cylinder 3005 on the suction chamber 300 side.
  • Reference numeral 308 denotes a compression chamber.
  • a thin wall portion 30.5h is formed on the edge 30.5e at the diagonal position of the edge 30.5d on the suction chamber 30.5d side of the suction chamber 30.5b of the cylinder groove 30.5b. Therefore, when the vane 9 and the edge 3 05 e of the vane groove 3 05 b come into local contact, the thin wall 3 05 h becomes a cantilever beam that receives concentrated load at the free end, and the edge Deflection occurs in part 3 05 e. Then, the contact state between the vane 9 and the edge portion 305 e of the vane groove 305 b, which has conventionally been close to the line contact, becomes a surface contact state due to the bending of the thin portion 305 h. Therefore, the contact surface pressure between the vane 9 and the edge portion 3 05 e of the vane groove 3 05, for which reliability was an issue, is greatly reduced, and damage such as wear and seizure is reduced. And reliability can be improved.
  • the rotary compressor according to the fourth embodiment of the present invention is described in detail in FIGS. 7 to 9 except that a thin portion is provided and the length of the vane groove is different. It has a configuration similar to that of the conventional rotary compressor described above, and its vertical sectional view is the same as that of FIG.
  • FIG. 5 is a cross-sectional view of the compression mechanism of the rotary compressor according to the fourth embodiment, and corresponds to a cross-sectional view related to the Z-section in FIG.
  • the thin-walled section 405 m is located on the wall of the vane groove 405 b ′ on the side of the working chamber where the higher pressure is more likely to be formed by the cylinder 405, the opening 6 and the vane 9. It is formed in a predetermined portion.
  • the rear end 9a of the vane 9 contacts the vane groove 4 0 5 1 ⁇ with the thin wall 4 0 5 m was formed.
  • the rear end portion 9a of the vane 9 slides while contacting the thin portion 405m, and the inner wall portion of the vane groove 405b 'has elasticity.
  • the thickness of the thin part 405 m is such that the thin part 405 m has sufficient elasticity, and the contact between the rear end 9 a of the vane 9 and the vane groove 405 b ′ Even under the load acting on the inner wall part, the stress generated in the thin-walled part 405 m was determined to be below the elastic limit.
  • the thin portion 405 m can be formed by expanding the space 405 k for installing the panel 10 at the rear end of the vane 9 to the side of the vane groove 405 ′.
  • the length of the vane groove 405 is longer than the length of the vane 9, and the thin section 405 m is the length of the vane 9 on the side of the wall of the vane groove 405 b, on the side of the working chamber where higher pressure is more likely
  • the rear end 9a is formed in a sliding portion.
  • FIG. 5 is a view showing a state in which the vane 9 is most pushed into the vane groove 405 by the eccentric rotational movement of the roller 6. At this time, the tip of the vane 9 is located on substantially the same plane as the end of the vane groove 405 b ′ on the roller 6 side.
  • the vane groove 4 0 5 b ′ is a continuous part having a width that fits with the vane 9, Is shown using Unlike the third embodiment, the rotary compressor according to the fourth embodiment has a structure in which the length c ′ of the vane groove 405 is longer than the length d of the vane 9. Therefore, there is no vane groove escape portion 305 j as in the third embodiment.
  • 405a is a cylindrical surface which is an inner wall of the cylinder 205
  • 405c is a notch provided in the cylinder 405 for sucking working fluid
  • 405d is a cylinder 405 is the edge of the suction groove on the suction chamber side of the vane groove 405 b ′
  • 405 f is the edge of the cylinder groove 405 on the suction chamber side of the vane groove 405 b ′ This is a thin portion formed in the portion 405 d.
  • the thin-walled portion 405 m is formed on the inner wall of the vane groove 405 b ′ in contact with the reciprocating vane 9, so that the thin-walled portion 405 m is free when the vane 9 reciprocates.
  • the end becomes like a cantilever under concentrated load, causing deflection.
  • the contact state between the rear end portion 9a of the vane 9 and the vane groove 405, which has been close to the line contact in the past becomes the surface contact state due to the bending of the thin portion 405m. This makes it possible to reduce damage such as abrasion and seizure, thereby improving reliability.
  • the thin portion 405 m is extended to the space 405 k where the rear end blade 10 of the vane 9 is installed to the side of the vane groove 405 b ; Although it was formed by enlarging, the space may be enlarged from the inner wall portion of the vane groove 405 b ′ fitted when the vane 9 reciprocates to form a thin portion c. As will be described, a thin-walled portion that comes into contact when the vane 9 reciprocates is newly formed in a portion where the space is enlarged from the inner wall of the vane groove 405b ′.
  • the vane groove is a continuous portion having a width that fits with the vane 9.
  • FIG. 6 which is a cross-sectional view of the constriction mechanism of the rotary compressor according to the embodiment of the present invention, the panel 10 and the cylinder In the case of a cylindrical shape up to the joint of 05, the vane groove extends from the cylindrical surface inside the cylinder 505a to the joint of the panel 10 and the cylinder 505 from end to end.
  • the portion indicated by the bold line is the vane groove 5 05 b ”in this case.
  • 505c is a notch provided in cylinder 505 for suction of working fluid
  • 505d is a suction chamber side of vane groove 505b "of cylinder 505.
  • 505 f is a thin-walled portion formed at the suction chamber side edge 505 d of the vane groove 505 b "of the cylinder 505, and 505 m is The rear end portion 9a of the vane 9 is a thin portion formed on the inner wall portion that comes into contact with the vane groove 505b ⁇ .
  • Embodiments 3 and 4 also provide the same effects as Embodiments 1 and 2.
  • Embodiments 1 to 4 have been described in detail. In each of the embodiments, since the sliding surface pressure is reduced and the sliding loss is reduced, it goes without saying that the efficiency of the compressor is improved.
  • the vane groove may be formed of a material having a greater elasticity than the material forming the cylinder, or the elasticity may be formed on the wall of the vane groove. Components made of large materials may be joined.
  • FIG. 11 is a cross-sectional view of a compression mechanism of the rotary compressor in the embodiment of the present invention.
  • Vane grooves 1 105 b, 1205 b, 1305 b, 1405 b are formed in the roller 1106, and the vane 1 110
  • a sliding vane type rotary compressor in which 9, 1209, 1309, and 1409 reciprocate while contacting the tip of the cylinder 1105 may be used.
  • the thin-walled portion 1105 ⁇ , 1205f, 1305f, 1405f force vane groove 1 105b, 1205b, 1305b A 1405 b wall, cylinder 1 105 and roller 1
  • the vane groove 1 1 05 b on the side of the working chamber where the lower pressure tends to be formed, surrounded by 106 and the vane 1 109, 1209, 1309, 1409 It is formed in an edge portion formed by 1205b, 1305b, 1405b and the working chamber.
  • the lengths of the vane grooves 1105b, 1205b, 1305b, and 1405b are as follows. , 1309, 1409 longer than the length, thin section 1 105 h, 1 205 h 130 5 h N 140 5 h Force S, vane groove 1 105 b, 1 205 b, 1 30 5b, 140 5b wall, cylinder 1 105 and port Rear end of vanes 1109, 1209, 1309, 1409 on the side of the working chamber, which is more likely to be pressurized and formed by the surroundings of roller 1106 and vanes 1109, 1209, 1309, 1409 It is formed on the part where the part slides.
  • the volume of the working chamber changes according to the rotation of the roller 1106 in the direction of arrow A, but the working fluid is accordingly sucked from the suction port 1 1 1a, compressed, and discharged. It is discharged to the outside from the holes 1 1 16. Therefore, near the discharge port 1 1 16, the working chamber pressure becomes extremely high, and the vanes 1109, 1209, 1309, and 1409 are moved to the working chamber side where the pressure tends to be lower. Remarkable inclination occurs. For this reason, the portions where the thin portions 1 105 f, 1 205 f, 1 305 f, and 1405 f are provided are caused by the inclination of such vanes 1109, 1209, 1309, and 1409. The abrasion, seizure, etc. of the vanes 1109, 1209, 1309, 109 and the vane grooves 1105b, 1205b, 1305b, 1405b are determined so as to be further reduced.
  • the length of the vane groove is shorter than the length of the vane, and the thin portion is formed by the wall of the vane groove. It may be formed in an edge portion formed by the vane groove and the vane groove escape portion on the side of the working chamber where the pressure is more likely to be increased.
  • the thin portion of the present invention is provided in the wall of the vane groove, in the working chamber which is more likely to be lower in pressure than formed by being surrounded by the cylinder, the roller and the vane. It was always formed in the edge part formed by the vane groove and the working chamber on the side.
  • the present invention is not limited to this, and the thin portion of the present invention is not formed at such an edge portion, and is surrounded by a cylinder, a roller, and a vane on the wall of the vane groove. It may be formed only in a predetermined part on the side of the working chamber where the pressure is higher than that formed rarely. '
  • the thin portion 605 h is formed of the vane 605 b.
  • 605a is a cylindrical surface which is the inner wall of the cylinder 605
  • 605c is a notch provided in the cylinder 605 for sucking working fluid
  • 605i is This space is for installing panels that extend beyond the vane groove.
  • Reference numeral 608 denotes a compression chamber.
  • the processing for forming the thin-walled portion should be performed on the edge formed by the vane groove and the working chamber on the side of the working chamber where the pressure tends to be lower. It is often easier than doing it for a given part on the side. This is because a predetermined portion of the working chamber, which is likely to be at a higher pressure, is located farther from the working chamber.
  • the present invention is useful because it can suppress the occurrence of damage such as wear and seizure of vanes and vane grooves and can provide a rotary compressor having higher reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Rotary compressors are widely used in refrigerator-freezers, air conditioners, etc. because of their compactness and simple structure. However, problems, such as wear and seizure of a vane and a vane groove, are likely to occur, and this has sometimes impaired the reliability of rotary compressors. A rotary compressor has a cylinder (105) provided inside a closed container, a roller (6) rotating while being in contact with the cylinder (105), a vane groove (105b) formed in the cylinder (105), and a vane (9) provided in the vane groove (105b), reciprocating in the vane groove (105b). A wall of the vane groove (105b) is in contact with the vane (9) when the vane reciprocates, and at least part of the wall has a predetermined elasticity.

Description

明 細  Detail
ロータリ圧縮機 技術分野  Technical field of rotary compressor
本発明は、 たとえば、 冷凍冷蔵庫や空調機等に用いられるロータリ圧 縮機に関する。 背景技術  The present invention relates to a rotary compressor used for, for example, a refrigerator-freezer or an air conditioner. Background art
ロータリ圧縮機は、 そのコンパク ト性や構造が簡単なことから、 冷凍 冷蔵庫や空調機等に多く使用されている。 圧縮機の主要構成部品である ベーン、 ローラ、 シリンダ等から成る圧縮機構部は、 例えば、 川平睦義 著、 「密閉型冷凍機」 、 日本冷凍協会、 平成 5年、 (例えば、 p . 1 4 、 第 6. 1図) に記載されている。  Rotary compressors are often used in refrigerators and refrigerators and air conditioners because of their compactness and simple structure. The main components of the compressor, the compression mechanism consisting of vanes, rollers, cylinders, etc., are described in, for example, Mutsuyoshi Kawahira, “Closed Refrigerator”, Japan Refrigeration Association, 1993 (for example, p. , Figure 6.1).
ここに、 上記非特許文献の全ての開示は、 そっく りそのままここに引 用 (参照) することにより、 一体化される。  Here, the entire disclosure of the above-mentioned non-patent literature is incorporated by reference (reference) here as it is.
以下に、 従来のロータリ圧縮機を、 図 7、 図 8およぴ図 9を用いて説 明する。  Hereinafter, a conventional rotary compressor will be described with reference to FIGS. 7, 8, and 9. FIG.
図 7は従来のロータリ圧縮機の縦断面図であり、 図 8は従来のロータ リ圧縮機の圧縮機構部の横断面図である。 図 8は、 図 7の Z— 断面 に関する横断面図である。  FIG. 7 is a longitudinal sectional view of a conventional rotary compressor, and FIG. 8 is a transverse sectional view of a compression mechanism section of the conventional rotary compressor. FIG. 8 is a cross-sectional view of the Z-section of FIG.
なお、 ベーン溝 5 bがシリンダ 5に形成されており、 ベーン 9がロー ラ 6にその先端を接しながら往復運動するローリングビストン型のロー タリ圧縮機について主として説明するが、 たとえば、 従来のロータリ圧 縮機の圧縮機構部の横断面図である図 1 0に示されているように、 ベー ン溝 1 1 0 5 b、 1 20 5 b、 1 30 5 b、 1 40 5 bがローラ 1 1 0 6に形成されており、 ベーン 1 1 0 9、 1 2 0 9、 1 3 0 9、 1 4 0 9 がシリンダ 1 1 0 5にその先端を接しながら往復運動するスライディン グベーン型のロータリ圧縮機もある。 A description will be given mainly of a rolling piston-type rotary compressor in which a vane groove 5b is formed in the cylinder 5 and a vane 9 reciprocates while contacting the tip of the vane 9 with a roller 6. As shown in FIG. 10, which is a cross-sectional view of the compression mechanism of the compressor, the vane grooves 1105b, 1205b, 1305b, and 1405b are rollers 11 0 A sliding vane type rotary compressor in which the vanes 1109, 1209, 1309, and 1409 are reciprocated while touching the tip of the cylinder 1105 with the cylinder 1105. is there.
ロータリ圧縮機は、 密閉容器 1と、 その内部に配置された圧縮機構部 2と、 回転電動機部 3から構成される。  The rotary compressor includes an airtight container 1, a compression mechanism 2 disposed therein, and a rotary motor 3.
圧縮機構部 2は、 中心軸 Lを中心に回転可能なシャフト 4と、 内部に 円筒面 5 aを有するシリンダ 5と、 シャフト 4の偏心部 4 aに嵌合され 、 シャフト 4の回転に伴いシリンダ 5の内側で偏心回転運動を行うロー ラ 6と、 ローラ 6に先端を接しながらシリンダ 5のべーン溝 5 bの内部 を往復運動し、 シリンダ 5とローラ 6により形成される空間を吸入室 7 と圧縮室 8に分割するべーン 9と、 ベーン 9の後端に設置され、 ベーン 9をローラ 6に押し付けるパネ 1 0と、 シャフト 4を支える上軸受 1 1 および下軸受 1 2とから構成される。 なお、 ローラ 6が安定的に偏心回 転運動を行うようになると、 ベーン 9はその背面側とその先端側の圧力 差による力の作用などによってローラ 6に押し付けられるようになるた め、 パネ 1 0は必ずしも必要ではない。  The compression mechanism 2 includes a shaft 4 rotatable about a central axis L, a cylinder 5 having a cylindrical surface 5 a therein, and an eccentric portion 4 a of the shaft 4. Roller 6 that performs eccentric rotational movement inside 5, and reciprocates inside vane groove 5 b of cylinder 5 while contacting the tip with roller 6, and the space formed by cylinder 5 and roller 6 is a suction chamber. 7 and a compression chamber 8, a panel 10 installed at the rear end of the vane 9 and pressing the vane 9 against the roller 6, and an upper bearing 11 and a lower bearing 12 supporting the shaft 4. Be composed. When the roller 6 stably performs an eccentric rotation, the vane 9 is pressed against the roller 6 by the action of a force due to a pressure difference between the back side and the tip side thereof. 0 is not necessary.
回転電動機部 3は、 密閉容器 1の内部に焼嵌めされた固定子 1 3と、 シャフト 4に焼嵌めされた回転子 1 4から構成される。  The rotary motor unit 3 includes a stator 13 shrink-fitted inside the closed casing 1 and a rotor 14 shrink-fitted on the shaft 4.
ロータリ圧縮機の作動流体は、 吸入管 1 5から上軸受 1 1に設けられ た吸入孔 1 1 aを通じて吸入室 7に導かれる。 なお、 吸入孔 1 1 aと吸 入室 7の連通部のシリンダ 5内部の円筒面 5 aには、 流路を確保するた めに、 切欠き 5 cを設けている。  The working fluid of the rotary compressor is guided from the suction pipe 15 to the suction chamber 7 through the suction hole 11 a provided in the upper bearing 11. A notch 5c is provided in a cylindrical surface 5a inside the cylinder 5 at a communication portion between the suction hole 11a and the suction chamber 7 to secure a flow path.
回転電動機部 3に通電し、 回転子 1 4と一体のシャフト 4を回転させ ると、 ローラ 6は偏心回転運動を行い、 吸入室 7と圧縮室 8の容積が変 化し、 これに伴い作動流体は吸入、 圧縮される。  When power is supplied to the rotary motor unit 3 and the shaft 4 integral with the rotor 14 is rotated, the roller 6 performs eccentric rotational motion, and the volumes of the suction chamber 7 and the compression chamber 8 change, and the working fluid Is inhaled and compressed.
圧縮された作動流体は、 吐出孔 1 6の吐出弁 (図示せず) が開くと、 密閉容器 1の内部を経て、 吐出管 1 7より密閉容器 1の外部に吐出され る。 When the discharge valve (not shown) of the discharge hole 16 opens, the compressed working fluid is After passing through the inside of the sealed container 1, it is discharged from the discharge pipe 17 to the outside of the sealed container 1.
図 8は、 ローラ 6の偏心回転運動によって、 ベーン 9がべーン溝 5 b から最も押し出された状態を示した図である。  FIG. 8 is a view showing a state in which the vane 9 is most pushed out of the vane groove 5 b by the eccentric rotational movement of the roller 6.
ベーン溝近傍の要部断面図である図 9に示されているように、 ベーン 溝 5 bの幅亇は、 ベーン 9を長手方向へ運動自在に保持するために、 ベ ーン 9の幅 tよりも幅 δのタリァランスだけ広く形成されており、 δ = Τ一 tの関係を満たす。 なお、 クリアランスの幅 δは、 極めて微少であ り、 実際には 1 0 m程度である。  As shown in FIG. 9 which is a cross-sectional view of a main part near the vane groove, the width の of the vane groove 5 b is set to the width t of the vane 9 in order to hold the vane 9 movably in the longitudinal direction. The width is formed wider by a taller than the width δ, and satisfies the relation δ = Τ1t. The width δ of the clearance is extremely small, and is actually about 10 m.
ベーン 9はその先端をローラ 6に接しながら吸入室 7と圧縮室 8を分 離しているため、 ベーン 9の先端部の吸入室 7側の側面には吸入室 7の 作動流体の圧力 P 1、 圧縮室 8側の側面には圧縮室 8の作動流体の圧力 P 2が作用する。 圧縮室 8内の圧力 P 2は吸入室 7內の圧力 P 1よりも 高圧であるので、 ベーン 9の先端付近は常に圧縮室 8側から吸入室 7側 の方向に力を受ける。  Since the vane 9 separates the suction chamber 7 from the compression chamber 8 while contacting the tip of the vane 9 with the roller 6, the working fluid pressure P 1 of the suction chamber 7 is provided on the side of the tip of the vane 9 on the suction chamber 7 side. The pressure P 2 of the working fluid in the compression chamber 8 acts on the side surface on the compression chamber 8 side. Since the pressure P2 in the compression chamber 8 is higher than the pressure P1 in the suction chamber 7 內, the vicinity of the tip of the vane 9 always receives a force in the direction from the compression chamber 8 side to the suction chamber 7 side.
その結果、 ベーン 9はべーン溝 5 bに対して、 クリァランスの幅 δの 範囲内で傾斜し、 ベーン溝 5 bの吸入室 7側のエッジ部 5 d、 および、 その対角位置のエッジ部 5 eに対して局所的に接触する。  As a result, the vane 9 is inclined with respect to the vane groove 5 b within the range of the clearance width δ, the edge portion 5 d of the vane groove 5 b on the suction chamber 7 side, and the edge at the diagonal position thereof Local contact with part 5e.
ベーン 9に対してエッジ部 5 dから作用する力を F 1、 エッジ部 5 e から作用する力を F 2、 吸入室 7および圧縮室 8の作動流体の圧力によ り作用する力の合力を F 3とし、 ベーン溝 5 bの長さを a、 ベーン 9の ベーン溝 5 bから突出した部分の長さを bとする。  The force acting on the vane 9 from the edge 5 d is F 1, the force acting on the edge 5 e is F 2, and the resultant force acting on the suction fluid 7 and the pressure of the working fluid in the compression chamber 8 is the resultant force. F3, the length of the vane groove 5 b is a, and the length of the portion of the vane 9 protruding from the vane groove 5 b is b.
そして、 F 3がエッジ部 5 dからべーン 9の長手方向に b Z 2の位置 に作用すると仮定すると、 ベーン 9に作用する力とモーメントのパラン スは、 それぞれ (数 1 ) 、 (数 2 ) のように表される。  Then, assuming that F3 acts on the position of bZ2 in the longitudinal direction of the vane 9 from the edge portion 5d, the balance of the force and moment acting on the vane 9 becomes (Equation 1) and (Equation 1), respectively. It is expressed as 2).
(数 1 ) F l - F 2 - F 3 = 0 (Number 1) F l-F 2-F 3 = 0
(数 2)  (Equation 2)
a X F 2 - (b/2) X F 3 = 0  a X F 2-(b / 2) X F 3 = 0
ここで、 吸入室 7および圧縮室 8の作動流体がベーン 9に及ぼす力 F 3は、 吸入室 7の作動流体の圧力を P 1、 圧縮室 8の作動流体の圧力を P 2、 ベーン 9の高さ (図 9の紙面に垂直な方向に関して考える) を li とすると、 (数 3) で表される。  Here, the force F 3 exerted by the working fluid in the suction chamber 7 and the compression chamber 8 on the vane 9 is represented by P 1 for the pressure of the working fluid in the suction chamber 7, P 2 for the pressure of the working fluid in the compression chamber 8, and P 2 for the vane 9. Let li be the height (considering the direction perpendicular to the paper in Fig. 9), which is expressed by (Equation 3).
(数 3 )  (Equation 3)
F 3 = b X h X (P 2— P 1 )  F 3 = b X h X (P 2— P 1)
(数 1 ) および (数 2) より、 F 1および F 2は (数 4) 、 (数 5 ) のように表される。  From (Equation 1) and (Equation 2), F 1 and F 2 are expressed as (Equation 4) and (Equation 5).
(数 4)  (Equation 4)
F 1 = [ (b / 2 a ) + 1 ] X F 3  F 1 = [(b / 2 a) + 1] X F 3
(数 5 )  (Equation 5)
F 2 = (b / 2 a ) X F 3  F 2 = (b / 2 a) X F 3
ここで、 F 1、 F 2および F 3の大きさを実際のロータリ圧縮機を例 にとつて説明する。  Here, the sizes of F1, F2 and F3 will be described using an actual rotary compressor as an example.
ロータリ圧縮機の作動流体として HC F C 2 2を用い、 エアコンの J I S条件での動作を仮定すると、 吸入圧力 P sは約 5 · 2 0 X 1 05 P a 、 吐出圧力 P dは約 2. 0 7 X 1 06 P aである。 ベーン溝 5 bの長さ a を約 1 5 mm、 ベーン 9のべ一ン溝 5 bから突出した部分の長さ bの最 大値を約 6 mmとし、 ベーン 9の高さを約 2 0 mm、 長さを約 2 5 mm 、 厚さを約 3 mmとする。 With HC FC 2 2 as the working fluid of the rotary compressor, assuming operation in air conditioner JIS condition, the suction pressure P s is about 5 · 2 0 X 1 0 5 P a, the discharge pressure P d is about 2. it is 0 7 X 1 0 6 P a . The length a of the vane groove 5 b is approximately 15 mm, the maximum length b of the portion protruding from the vane groove 5 b of the vane 9 is approximately 6 mm, and the height of the vane 9 is approximately 20 mm. mm, length about 25 mm, thickness about 3 mm.
さらに、 bが最大値の約 6 mmのときに、 圧縮室 8の圧力 P 2が吸入 圧力と吐出圧力の平均値 (P s + P d) / 2に等しく、 吸入室 7の圧力 P 1が吸入圧力 P sに等しいと仮定する。 すると、 (数 3) より、 F 3は約 9. 3 2 Χ 1 Ό Νとなる。 また、 ( 数 4) より F 1は約 1. 1 2 X 1 02N、 (数 5 ) より F 2は約 1. 8 6 X 1 0 Nとなる。 Furthermore, when b is the maximum value of about 6 mm, the pressure P 2 in the compression chamber 8 is equal to the average of the suction pressure and the discharge pressure (P s + P d) / 2, and the pressure P 1 in the suction chamber 7 is Assume equal to suction pressure Ps. Then, from (Equation 3), F 3 is about 9.32 31ΌΌ. Also, from (Equation 4), F 1 is about 1.12 × 10 2 N, and from (Equation 5), F 2 is about 1.86 × 10 N.
このように、 大きさが約 20 mmX 25 mmX 3 mmのべーン 9に対 して、 エッジ部 5 dからは約 1. 1 2 X 1 02Nの集中荷重が、 エッジ部 5 6からは約 1. 8 6 X 1 0 Nの集中荷重が作用する。 Thus, the pair is about 20 mmX 25 mmX 3 mm Noben 9 magnitude, concentrated load from the edge portion 5 d is about 1. 1 2 X 1 0 2 N is the edge portion 5 6 Applies a concentrated load of about 1.86 X 10 N.
このように、 従来のロータリ圧縮機では、 ぺーン 9は、 ベーン溝 5 b のエッジ部 5 d、 5 eから集中荷重を受けており、 特にべーン溝 5 bの 吸入室 7側のエッジ部 5 dでの集中荷重が大きくなっていた。 そして、 ベーン 9とこれらエッジ部 5 d、 5 eの間の接触は線接触に近い状態で あり、 接触応力が非常に大きくなっていた。  As described above, in the conventional rotary compressor, the vane 9 receives the concentrated load from the edge portions 5 d and 5 e of the vane groove 5 b, and particularly, the edge of the vane groove 5 b on the suction chamber 7 side. The concentrated load at section 5d was large. The contact between the vane 9 and these edge portions 5d and 5e was almost a line contact, and the contact stress was extremely large.
また、 ベーン 9は、 偏心回転するローラ 6に先端を接しながらシリン ダ 5のべーン溝 5 bの内部を往復運動するため、 運動の方向が変わると きにベーン溝 5 bに対して速度がゼロとなる。 このとき、 エッジ部 5 d ' 、 5 eにおいて、 集中荷重 F 1、 F 2の線接触による接触応力によって 油膜切れが起こりやすく、 極めて厳しい摺動条件であった。 このため、 ベーン 9やべーン溝 5 bに摩耗、 焼き付き等の損傷が発生しやすく、 口 ータリ圧縮機の信頼性が低下してしまうことがあった。  In addition, the vane 9 reciprocates inside the vane groove 5b of the cylinder 5 while contacting the tip with the eccentrically rotating roller 6, so that when the direction of movement changes, the vane 9 moves at a speed relative to the vane groove 5b. Becomes zero. At this time, at the edge portions 5 d ′ and 5 e, the contact stress caused by the line contact of the concentrated loads F 1 and F 2 was liable to cause the oil film to break, and the sliding conditions were extremely severe. Therefore, the vane 9 and the vane groove 5b were liable to be damaged such as wear and seizure, and the reliability of the rotary compressor was sometimes reduced.
また、 (数 3) 、 (数 4) および (数 5) より、 集中荷重 F 1、 F 2 は、 吸入室 7および圧縮室 8の作動流体の圧力 P 1、 P 2の差とともに 増加する。 従って、 ロータリ圧縮機を吸入圧力 P s と吐出圧力 P dとの 差が著しく大きい二酸化炭素を作動流体とした遷臨界サイクルに用いる 場合には、 集中荷重 F l、 F 2がさらに増加し、 ベーン 9やべーン溝 5 bに摩耗、 焼き付き等の損傷がさらに発生しやすくなっていた。  From (Equation 3), (Equation 4) and (Equation 5), the concentrated loads F 1 and F 2 increase with the difference between the working fluid pressures P 1 and P 2 in the suction chamber 7 and the compression chamber 8. Therefore, when the rotary compressor is used in a transcritical cycle using carbon dioxide as a working fluid in which the difference between the suction pressure P s and the discharge pressure P d is extremely large, the concentrated loads F l and F 2 further increase, and the vane Damage such as wear and seizure was more likely to occur on 9 and vane groove 5b.
もちろん、 ローリングピストン型のロータリ圧縮機 (図 8参照) に関 して主として説明してきたが、 スライディングベーン型のロータリ圧縮 機 (図 1 0参照) に関しても、 同様の理由により、 ベーン 1 1 0 9、 1 2 0 9、 1 3 0 9、 1 4 0 9やべ一ン溝 1 1 0 5 b、 1 2 0 5 b、 1 3 0 5 b、 1 4 0 5 bに摩耗、 焼き付き等の損傷が発生しやすく、 ロータ リ圧縮機の信頼性が低下してしまうことがあった。 発明の開示 Of course, the rolling piston type rotary compressor (see Fig. 8) has mainly been described, but the sliding vane type rotary compressor has been described. For the same machine (see Fig. 10), for the same reason, the vane 1109, 1209, 1309, 1409 and the 1114b, 1205 The b, 1405b, and 1405b were susceptible to wear, seizure, and other damage, which sometimes reduced the reliability of the rotary compressor. Disclosure of the invention
本発明は上記従来の課題を解消するもので、 たとえば、 ベーンゃベー ン溝の摩耗、 焼き付き等の損傷の発生を抑制し、 より高い信頼性を有す るロータリ圧縮機を提供することを目的とする。  An object of the present invention is to solve the above-mentioned conventional problems. For example, an object of the present invention is to provide a rotary compressor having higher reliability by suppressing the occurrence of damage such as wear and seizure of vane-vane grooves. And
第 1の本発明は、 密閉容器の内部に配置されたシリンダと、  A first aspect of the present invention provides a cylinder disposed inside a closed container,
前記シリンダに接しながら回転運動するローラと、  A roller that rotates while contacting the cylinder,
前記シリンダまたは前記ローラに形成されたベーン溝と、  A vane groove formed in the cylinder or the roller,
前記べ一ン溝に設置された、 前記べ一ン溝を往復運動するべ一ンとを 備え、  A van installed in the vane groove and reciprocating in the vane groove;
前記べーンが往復運動する際に前記べ一ンと接する、 前記べ一ン溝の 壁の少なくとも一部は、 所定の弾性を有するロータリ圧縮機である。 第 2の本発明は、 前記べーン溝は、 前記シリンダに形成されており、 前記べーンは、 前記ローラにその先端を接しながら往復運動する請求 の範囲第 1項記載のロータリ圧縮機である。  At least a part of the wall of the vane groove, which contacts the vane when the vane reciprocates, is a rotary compressor having a predetermined elasticity. 2. The rotary compressor according to claim 1, wherein the vane groove is formed in the cylinder, and the vane reciprocates while contacting a tip of the vane with the roller. 3. It is.
第 3の本発明は、 前記弾性は、 あらかじめ形成された所定の薄肉部に よって生じる第 2の本発明のロータリ圧縮機である。  A third aspect of the present invention is the rotary compressor according to the second aspect, wherein the elasticity is generated by a predetermined thin portion formed in advance.
第 4の本発明は、 前記所定の薄肉部は、 前記べーン溝の壁の、 前記シ リンダと前記ローラと前記べーンとに囲まれて形成されるより低圧にな りやすい作動室の側の、 前記べ一ン溝と前記作動室とで形成されたェッ ジ部に形成されている第 3の本発明のロータリ圧縮機である。 第 5の本発明は、 前記所定の薄肉部は、 前記べーン溝と前記シリンダ に形成された所定の切欠きとにより形成され、 According to a fourth aspect of the present invention, the predetermined thin-walled portion is formed in a wall of the vane groove, and is more likely to have a lower pressure than the working chamber formed by being surrounded by the cylinder, the roller, and the vane. A rotary compressor according to a third aspect of the present invention, which is formed in an edge portion formed by the vane groove and the working chamber on the side of the rotary compressor. According to a fifth aspect of the present invention, the predetermined thin portion is formed by the vane groove and a predetermined notch formed in the cylinder,
前記所定の切欠きは、 作動流体を吸入するための開口部で兼ねられて いる第 4の本発明のロータリ圧縮機である。  In the rotary compressor according to a fourth aspect of the present invention, the predetermined notch is also used as an opening for sucking a working fluid.
第 6の本発明は、 前記所定の薄肉部は、 前記べーン溝の壁の、 前記シ リンダと前記ローラと前記べーンとに囲まれて形成されるより高圧にな りやすい作動室の側の所定の部分に形成されている第 3または第 4の本 発明のロータリ圧縮機である。  According to a sixth aspect of the present invention, the predetermined thin-walled portion is formed in the wall of the vane groove, and is formed by the cylinder, the roller, and the vane. A third or fourth rotary compressor according to the present invention, which is formed at a predetermined portion on the side of the rotary compressor.
第' 7の本発明は、 前記べーン溝の長さは、 前記べーンの長さよりも短 <、  According to a seventh aspect of the present invention, the length of the vane groove is shorter than the length of the vane.
前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べーン溝と所定のベーン溝逃げ部とで形成された エッジ部に形成されている第 6の本発明のロータリ圧.縮機である。  The predetermined thin portion is formed at an edge portion formed by the vane groove and a predetermined vane groove escape portion on the side of the working chamber where the pressure is more likely to be higher than the wall of the vane groove. A sixth aspect of the present invention is a rotary compressor of the present invention.
第 8の本発明は、 前記べーン溝の長さは、 前記べーンの長さよりも長 く、  In an eighth aspect of the present invention, the length of the vane groove is longer than the length of the vane,
前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べーンの後端部が摺動する部分に形成されている 第 6の本発明のロータリ圧縮機である。  The predetermined thin portion is formed on a wall of the vane groove, on a side of the working chamber where the pressure is more likely to be higher, and on a portion where a rear end of the vane slides. 1 is a rotary compressor according to the present invention.
第 9の本発明は、 前記べーン溝の長さ Lと、 前記ぺーン溝の幅 Tと、 前記薄肉部の長さ sと、 前記薄肉部の幅 wとは、 L / T≤ s / wを満足 する第 3の本発明のロータリ圧縮機である。  According to a ninth aspect of the present invention, the length L of the vane groove, the width T of the vane groove, the length s of the thin portion, and the width w of the thin portion are L / T≤s. A third aspect of the present invention, which satisfies / w.
第 1 0の本発明は、 前記べ一ン溝は、 前記ローラに形成されており、 前記べーンは、 前記シリンダにその先端を接しながら往復運動する第 In a tenth aspect of the present invention, the vane groove is formed in the roller, and the vane reciprocates while contacting a tip of the vane with the cylinder.
1の本発明のロータリ圧縮機である。 1 is a rotary compressor according to the present invention.
第 1 1の本発明は、 前記弾性は、 あらかじめ形成された所定の薄肉部 によって生じる第 1 0の本発明のロータリ圧縮機である。 第 1 2の本発明は、 前記所定の薄肉部は、 前記べーン溝の壁の、 前記 シリンダと前記ローラと前記べーンとに囲まれて形成されるより低圧に なりやすい作動室の側の、 前記べ一ン溝と前記作動室とで形成されたェ ッジ部に形成されている第 1 1の本発明のロータリ圧縮機である。 An eleventh invention is the rotary compressor according to the tenth invention, wherein the elasticity is generated by a predetermined thin portion formed in advance. According to a twelfth aspect of the present invention, the predetermined thin portion is formed of a wall of the vane groove, which is formed by the cylinder, the roller, and the vane and is more likely to have a lower pressure than the working chamber. 11 is a rotary compressor according to the eleventh aspect of the present invention, which is formed on an edge portion formed by the vane groove and the working chamber on the side.
第 1 3の本発明は、 前記所定の薄肉部は、 前記べ.ーン溝の壁の、 前記 シリンダと前記ローラと前記べーンとに囲まれて形成されるより高圧に なりやすい作動室の側の所定の部分に形成されている第 1 1または第 1 2の本発明のロータリ圧縮機である。  According to a thirteenth aspect of the present invention, the predetermined thin-walled portion is formed in the wall of the vane groove, and is more likely to have a higher pressure than the working chamber formed by being surrounded by the cylinder, the roller, and the vane. A rotary compressor according to the eleventh or eleventh aspect of the present invention, which is formed at a predetermined portion on the side of the rotary compressor.
第 1 4の本発明は、 前記べーン溝の長さは、 前記べーンの長さよりも 短く、  According to a fifteenth aspect of the present invention, the length of the vane groove is shorter than the length of the vane.
前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べーン溝と所定のベーン溝逃げ部とで形成された エッジ部に形成されている第 1 3の本発明のロータリ圧縮機である。 第 1 5の本発明は、 前記べーン溝の長きは、 前記べーンの長さよりも 長く、  The predetermined thin portion is formed at an edge portion formed by the vane groove and a predetermined vane groove escape portion on the side of the working chamber where the pressure is more likely to be higher than the wall of the vane groove. A rotary compressor according to a thirteenth aspect of the present invention. According to a fifteenth aspect of the present invention, the length of the vane groove is longer than the length of the vane,
前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べーンの後端部が摺動する部分に形成されている 第 1 3の本発明のロータリ圧縮機である。  The predetermined thin portion is formed at a portion of the wall of the vane groove, on the side of the working chamber where the pressure is more likely to be higher, at a portion where the rear end of the vane slides. Is a rotary compressor according to the present invention.
第 1 6の本発明は、 前記べーン溝の長さ Lと、 前記べーン溝の幅丁と 、 前記薄肉部の長さ sと、 前記薄肉部の幅 wとは、 L T≤ s Z wを満 足する第 1 1の本発明のロータリ圧縮機である。  According to a sixteenth aspect of the present invention, the length L of the vane groove, the width of the vane groove, the length s of the thin portion, and the width w of the thin portion are LT≤s. This is the eleventh rotary compressor of the present invention that satisfies Zw.
第 1 7の本発明は、 作動流体は、 二酸化炭素である第 1の本発明の口 ータリ圧縮機である。  A seventeenth invention is the rotary compressor according to the first invention, wherein the working fluid is carbon dioxide.
第 1 8の本発明は、 密閉容器の内部に配置されたシリンダと.、 前記シ リンダに接しながら回転運動するローラと、 前記シリンダまたは前記口 ーラに形成されたべーン溝と、 前記べーン溝に設置された、 前記べーン 溝を往復運動するべ一ンとを備えたロータリ圧縮機の製造方法であって 前記べーンが往復運動する際に前記べーンと接する、 前記べーン溝の 壁の少なくとも一部に、 所定の弾性を付与するべ一ン溝壁弾性付与ステ ップを備えたロータリ圧縮機の製造方法である。 An eighteenth aspect of the present invention provides a cylinder disposed inside a closed container, a roller that rotates while contacting the cylinder, a vane groove formed in the cylinder or the roller, The vane installed in the groove A vane reciprocating in a groove, wherein the vane contacts the vane when the vane reciprocates, at least a portion of a wall of the vane groove. A method for manufacturing a rotary compressor including a vane groove wall elasticity imparting step for imparting predetermined elasticity.
本発明は、 たとえば、 ベーンおよびべーン溝の摩耗、 焼き付き等の損 傷の発生を抑制し、 より高い信頼性を有するロータリ圧縮機を提供する ことができるという長所を有する。 図面の簡単な説明  The present invention has an advantage that a rotary compressor having higher reliability can be provided by suppressing the occurrence of damage such as wear and seizure of vanes and vane grooves. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1におけるロータリ圧縮機の圧縮機構部 の横断面図である。  FIG. 1 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 1 of the present invention.
図 2は、 本発明の実施の形態 1におけるロータリ圧縮機のベーン溝近 傍の要部断面図である。  FIG. 2 is a cross-sectional view of a main part near a vane groove of the rotary compressor according to Embodiment 1 of the present invention.
図 3は、 本発明の実施の形態 2におけるロータリ圧縮機の圧縮機構部 の横断面図である。  FIG. 3 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 2 of the present invention.
図 4は、 本発明の実施の形態 3におけるロータリ圧縮機の圧縮機構部 の横断面図である。  FIG. 4 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 3 of the present invention.
図 5は、 本発明の実施の形態 4におけるロータリ圧縮機の圧縮機構部 の横断面図である。  FIG. 5 is a cross-sectional view of a compression mechanism of a rotary compressor according to Embodiment 4 of the present invention.
図 6は、 本発明の実施の形態におけるロータリ圧縮機の圧縮機構部の 横断面図である。  FIG. 6 is a cross-sectional view of a compression mechanism of the rotary compressor according to the embodiment of the present invention.
図 7は、 従来のロータリ圧縮機の縦断面図である。  FIG. 7 is a longitudinal sectional view of a conventional rotary compressor.
図 8は、 従来のロータリ圧縮機の圧縮機構部の横断面図である。 図 9は、 従来のロータリ圧縮機のベーン溝近傍の要部断面図である。 図 1 0は、 従来のロータリ圧縮機の圧縮機構部の横断面図である。 図 1 1は、 本発明の実施の形態におけるロータリ圧縮機の圧縮機構部 の横断面図である。 FIG. 8 is a cross-sectional view of a compression mechanism of a conventional rotary compressor. FIG. 9 is a cross-sectional view of a main part near a vane groove of a conventional rotary compressor. FIG. 10 is a cross-sectional view of a compression mechanism of a conventional rotary compressor. FIG. 11 is a cross-sectional view of a compression mechanism of the rotary compressor according to the embodiment of the present invention.
図 1 2は、 本発明の実施の形態におけるロータリ圧寧機の圧縮機構部 の横断面図である。  FIG. 12 is a cross-sectional view of a compression mechanism of the rotary press according to the embodiment of the present invention.
(符号の説明) (Explanation of code)
1 密閉容器  1 closed container
4 シャフト  4 shaft
1 0 5 シリンダ  1 0 5 cylinder
1 0 5 b ベーン溝  1 0 5 b Vane groove
1 0 5 c、 1 0 5 g 切欠き  105 c, 105 g Notch
1 0 5 d、 1 0 5 e エツジ部  105 d, 105 e Edge
1 0 5 f 薄肉部  1 0 5 f Thin part
1 0 5 i パネを設置する空間  1 0 5 i Panel installation space
6 ローラ  6 rollers
1 0 7 吸入室  1 0 7 Suction chamber
1 0 8 圧縮室  1 0 8 Compression chamber
9 ベーン 焭明を実施するための最良の形態  9 Vane Best Practices for Implementing
以下、 本発明の実施の形態について、 図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1 ) .  (Embodiment 1).
はじめに、 本実施の形態 1におけるロータリ圧縮機の構成について説 明する。 なお、 本実施の形態 1におけるロータリ圧縮機の構成について 説明しながら、 ロータリ圧縮機の製造方法の一実施の形態についても説 明する (その他の実施の形態についても同様である) 。 First, the configuration of the rotary compressor according to the first embodiment will be described. The configuration of the rotary compressor according to the first embodiment is described. While describing, one embodiment of a method for manufacturing a rotary compressor will also be described (the same applies to other embodiments).
本発明の実施の形態 1におけるロータリ圧縮機は、 薄肉部を設けたこ とを除いて、 図 7から図 9で詳述した従来のロータリ圧縮機と類似した 構成を有し、 その縦断面図は図 7と同様である。  The rotary compressor according to the first embodiment of the present invention has a configuration similar to that of the conventional rotary compressor described in detail in FIGS. 7 to 9 except that a thin wall portion is provided. It is the same as FIG.
図 1は、 本実施の形態 1におけるロータリ圧縮機の圧縮機構部の横断 面図であり、 図 7の Z— 断面に関する横断面図に相当する。  FIG. 1 is a cross-sectional view of a compression mechanism of a rotary compressor according to the first embodiment, and corresponds to a cross-sectional view taken along a Z-section in FIG.
図 1において、 1は密閉容器、 4はシャフト、 4 aはシャフト 4の偏 心部、 1 0 5はシリンダ、 1 0 5 aはシリンダ 1 0 5の内壁である円筒 面、 1 0 5 bはシリンダ 1 0 5のべーン溝、 1 0 5 cはシリンダ 1 0 5 に設けた作動流体の吸入のための切欠き、 6はローラ、 1 0 7は吸入室 、 1 0 8は圧縮室、 9はべーン、 1 0はバネ、 1 1 aは上軸受 1 1に設 けられた吸入孔、 1 5は吸入管である。 ここで、 ベーン溝 1 0 5 bは、 ベーン 9と嵌合する幅を持つ連続した部分であって、 図 1では太線を利 用して示されている。  In FIG. 1, 1 is a closed container, 4 is a shaft, 4a is an eccentric part of the shaft 4, 105 is a cylinder, 105a is a cylindrical surface that is the inner wall of the cylinder 105, and 105b is Cylinder 105 vane groove, 105 c is cutout for suction of working fluid provided in cylinder 105, 6 is roller, 107 is suction chamber, 108 is compression chamber, 9 is a vane, 10 is a spring, 11a is a suction hole provided in the upper bearing 11, and 15 is a suction pipe. Here, the vane groove 105 b is a continuous portion having a width to be fitted with the vane 9, and is shown using a thick line in FIG. 1.
図 1は、 ローラ 6の偏心回転運動によって、 ベーン 9がべーン溝 1 0 5 bから最も押し出された状態を示した図である。  FIG. 1 is a view showing a state in which the vane 9 is most pushed out of the vane groove 105 b by the eccentric rotational movement of the roller 6.
薄肉部 1 0 5 f は、 ベーン溝 1 0 5 bの壁の、 シリンダ 1 0 5とロー ラ 6とべーン 9とに囲まれて形成されるより低圧になりやすい作動室の 側の、 ベーン溝 1 0 5 bと作動室とで形成されたェッジ部に形成されて いる。  The thinned section 105 f is the vane on the wall of the vane groove 105 b, on the side of the working chamber where the pressure is lower than that formed by the cylinder 105, roller 6 and vane 9. It is formed in an edge portion formed by the groove 105b and the working chamber.
より具体的には、 シリンダ 1 0 5のべーン溝 1 0 5 bの吸入室 1 0 7 側のエッジ部 1 0 5 dに薄肉部 1 0 5 f を形成している。 薄肉部 1 0 5 f は、 ベーン溝 1 0 5 bの側方に、 スリツト形状の切欠き 1 0 5 gを設 けることにより形成している。  More specifically, a thin portion 105 f is formed at an edge portion 105 d of the vane groove 105 b of the cylinder 105 on the suction chamber 107 side. The thin portion 105 f is formed by providing a slit-shaped notch 105 g beside the vane groove 105 b.
薄肉部 1 0 5 f の厚さおょぴ長さは、 薄肉部 1 0 5 f が十分な弾性を 備えるように決定した。 The thickness of the thin part 105 f is sufficient for the thin part 105 f to have sufficient elasticity. It was decided to prepare.
より具体的には、 図 2に示されているように、 ベーン溝 105 bの長 さ と、 ベーン溝 105 bの幅 Tと、 薄肉部 105 ίの長さ sと、 薄肉 部 105 f の幅 wとは、 LZT≤ sZwを満足するように決定した。 な お、 図 2は、 本実施の形態 1におけるロータリ圧縮機のベーン溝近傍の 要部断面図である。  More specifically, as shown in Fig. 2, the length of the vane groove 105b, the width T of the vane groove 105b, the length s of the thin portion 105mm, and the width of the thin portion 105f w was determined to satisfy LZT≤sZw. FIG. 2 is a cross-sectional view of a main part near the vane groove of the rotary compressor according to the first embodiment.
このように、 薄肉部 105 f の縦横比 s Zwが、 ベーン溝 105 bの 縦横比 L/Tよりも大きくなるように決定されていることにより、 薄肉 部 105 f は、 十分な弾性を備えることとなる (以下の実施の形態にお いても同様である) 。  As described above, the aspect ratio s Zw of the thin portion 105 f is determined to be larger than the aspect ratio L / T of the vane groove 105 b, so that the thin portion 105 f has sufficient elasticity. (The same applies to the following embodiments).
ただし、 集中荷重 F 1 (図 9参照) のもとでも、 薄肉部 105 f に発 生する応力が弾性限度以下となるようにすることはいうまでもない。 ベーン溝 105 bとべーン 9の間には、 幅 δのクリァランスが設けら れている。 クリアランスの幅 δは、 ベーン溝 105 bの幅 Τとべーン 9 の幅 tを用いて、 δ =τ— tで表される。  However, it goes without saying that even under the concentrated load F 1 (see FIG. 9), the stress generated in the thin-walled portion 105 f is kept below the elastic limit. A clearance having a width δ is provided between the vane groove 105 b and the vane 9. The width δ of the clearance is expressed as δ = τ−t using the width の of the vane groove 105 b and the width t of the vane 9.
なお、 105 iは、 ベーン溝 105 bを越えたパネを設置する空間で め  105 i is the space where the panel is installed beyond the vane groove 105 b.
次に、 本実施の形態 1におけるロータリ圧縮機の動作について説明す る。  Next, the operation of the rotary compressor according to the first embodiment will be described.
ベーン 9はその先端をローラ 6に接しながら吸入室 107と圧縮室 1 08を分離しているため、 ベーン 9の先端部の吸入室 107側の側面に は吸入室 107の作動流体の圧力 P 1、 圧縮室 108側の側面には圧縮 室 108の作動流体の圧力 P 2が作用する。 圧縮室 108内の圧力 P 2 は吸入室 1 07内の圧力 P 1よりも高圧であるので、 ベーン 9の先端付 近は常に圧縮室 108側から吸入室 107側の方向に力を受ける。  Since the vane 9 separates the suction chamber 107 and the compression chamber 108 while the tip of the vane 9 is in contact with the roller 6, the working fluid pressure P 1 of the suction chamber 107 is provided on the side of the tip of the vane 9 on the suction chamber 107 side. The pressure P 2 of the working fluid in the compression chamber 108 acts on the side surface on the compression chamber 108 side. Since the pressure P 2 in the compression chamber 108 is higher than the pressure P 1 in the suction chamber 107, the vicinity of the tip of the vane 9 always receives a force from the compression chamber 108 to the suction chamber 107.
その結果、 ベーン 9はべーン溝 105 bに対して、 クリアランスの幅 δの範囲内で傾斜し、 ベーン溝 1 0 5 bの吸入室 1 0 7側のエッジ部 1 0 5 dと、 その対角位置のエッジ部 1 0 5 eで局所的に接触する。 As a result, the width of the clearance between vane 9 and vane groove 105 b is It is inclined within the range of δ, and locally contacts the edge portion 105 d of the vane groove 105 b on the suction chamber 107 side and the edge portion 105 e at the diagonal position thereof.
これらエッジ部 1 0 5 d、 1 0 5 eでの集中荷重の大きさは、 前述し たように、 ベーン'溝 1 0 5 bの吸入室 1 0 7側のェッジ部 1 0 5 dで特 に大きい。  As described above, the magnitude of the concentrated load at these edge portions 105 d and 105 e is characteristic at the edge portion 105 d on the suction chamber 107 side of the vane groove 105 b. Big.
本実施の形態 1では、 シリンダ 1 0 5のべーン溝 1 0 5 bの吸入室 1 0 7側のエッジ部 1 0 5 dに薄肉部 1 0 5 f を形成したことにより、 ベ ーン 9とべーン溝 1 0 5 bのエッジ部 1 0 5 dが局所的に接触した場合 、 薄肉部 1 0 5 f は自由端に集中荷重を受ける片持梁のようになり、 ェ ッジ部 1 0 5 dにたわみを生じる。 そして、 従来、 線接触に近かったベ ーン 9とべーン溝 1 0 5 bのエッジ部 1 0 5 dでの接触状態が、 薄肉部 1 0 5 f のたわみにより、 面接触状となる。 従って、 特に信頼性が問題 となっていたべーン 9とベーン溝 1 0 5 bのエツジ部 1 0 5 dとの間の 接触面圧が大幅に緩和され、 ベーン 9およびべーン溝 1 0 5 bの摩耗、 焼き付き等の損傷を低減することが可能となり、 信頼性を向上させるこ とができる。  In the first embodiment, the vane groove 105b of the cylinder 105 is formed with a thin wall portion 105f at the edge portion 105d of the suction chamber 107 side of the vane groove 105b. 9 and the edge portion 105b of the vane groove 105b are in local contact, the thin portion 105f becomes a cantilever beam that receives a concentrated load at the free end, and the edge portion Deflection occurs in 105 d. Then, the contact state between the vane 9 and the vane groove 105 b at the edge portion 105 d which has been close to the line contact becomes a surface contact state due to the bending of the thin portion 105 f. Therefore, the contact pressure between the vane 9 and the edge portion 105 d of the vane groove 105 b, for which reliability was a problem, is greatly reduced, and the vane 9 and the vane groove 10 It is possible to reduce damage such as abrasion and seizure of 5b, thereby improving reliability.
なお、 シリンダ 1 0 5の円筒面 1 0 5 aに設けた切欠き 1 0 5 gの形 状は、 薄肉部 1 0 5 f が形成できる形状であればスリット形状に限らず 任意の形状で良い。  The shape of the notch 105 g provided on the cylindrical surface 105 a of the cylinder 105 is not limited to the slit shape as long as the thin portion 105 f can be formed. .
また、 切欠き 1 0 5 gが如何なる形状であっても、 切欠き 1 0 5 gに より生じる空間は吸入室 1 0 7に含まれ、 この空間に密閉された作動流 体が再膨張することは無いので、 切欠き 1 0 5 gを設けたことによる圧 縮機の性能の低下はほとんど生じない。  Also, regardless of the shape of the notch 105 g, the space created by the notch 105 g is included in the suction chamber 107, and the working fluid sealed in this space re-expands. There is almost no decrease in compressor performance due to the notch of 105 g.
(実施の形態 2 ) ,  (Embodiment 2),
つぎに、 本実施の形態 2におけるロータリ圧縮機の構成および動作に ついて説明する。 本発明の第 2の実施の形態におけるロータリ圧縮機は、 薄肉部を設け たことを除いて、 図 7から図 9で詳述した従来のロータリ圧縮機と類似 した構成を有し、 そ'の縦断面図は図 7と同様である。 Next, the configuration and operation of the rotary compressor according to Embodiment 2 will be described. The rotary compressor according to the second embodiment of the present invention has a configuration similar to the conventional rotary compressor described in detail in FIGS. 7 to 9 except that a thin wall portion is provided. The longitudinal sectional view is the same as FIG.
図 3は、 本実施の形態 2におけるロータリ圧縮機の圧縮機構部の横断 面図であり、 図 7の Z— 断面に関する横断面図に相当する。  FIG. 3 is a cross-sectional view of a compression mechanism of a rotary compressor according to the second embodiment, and corresponds to a cross-sectional view taken along a Z-section in FIG.
薄肉部 2 0 5 f は、 ベーン溝 2 0 5 bとシリンダ 2 0 5に形成された 切欠き 2 0 5 cとにより形成され、 切欠き 2 0 5 cは、 作動流体を吸入 するための開口部で兼ねられている。  The thin portion 205 f is formed by a vane groove 205 b and a notch 205 c formed in the cylinder 205, and the notch 205 c is an opening for sucking a working fluid Department is also used.
より具体的には、 薄肉部 2 0 5 f を、 シリンダ 2 0 5に設けた切欠き 2 0 5 cにより形成した。 切欠き 2 0 5 cは、 作動流体が流入する吸入 口 1 1 aの、 吸入室 2 0 7への開口部である。  More specifically, the thin portion 205 f was formed by a notch 205 c provided in the cylinder 205. The notch 205c is an opening of the suction port 11a into which the working fluid flows into the suction chamber 207.
なお、 2 0 5 aはシリンダ 2 0 5の内壁である円筒面であり、 2 0 5 dはシリンダ 2 0 5のべーン溝 2 0 5 bの吸入室 2 0 7側のェッジ部で あり、 2 0 5 eはエッジ部 2 0 5 dの対角位置のエッジ部であり、 2 0 5 iはべーン溝 2 0 5 bを越えたパネを設置する空間である。 また、 2 0 8は、 圧縮室である。  In addition, 205 a is a cylindrical surface which is an inner wall of the cylinder 205, and 205 d is a wedge portion of the vane groove 205 b of the cylinder 205 on the suction chamber 207 side. , 205 e is an edge portion at a diagonal position of the edge portion 205 d, and 205 i is a space for installing a panel beyond the vane groove 205 b. Reference numeral 208 denotes a compression chamber.
このような構成としたことにより、 薄肉部 2 0 5 f を形成するために 特別な切欠きを設ける必要が無いので、 シリンダ 2 0 5の加工が容易に なり、 かつ、 実施の形態 1と同様の効果を得ることができる。  With such a configuration, it is not necessary to provide a special notch for forming the thin-walled portion 205 f, so that machining of the cylinder 205 is facilitated, and the same as in the first embodiment. The effect of can be obtained.
なお、 本実施の形態 2では、 吸入孔 1 1 aを上軸受 1 1 (図 7参照) に設けているが、 吸入孔 1 1 aに相当する吸入孔をシリンダ 2 0 5に直 接的に設けた上で切欠き 2 0 5 cに相当する切欠きを設けた場合でも同 様の効果が得られることは言うまでもない。  In the second embodiment, the suction hole 11a is provided in the upper bearing 11 (see FIG. 7), but the suction hole corresponding to the suction hole 11a is directly connected to the cylinder 205. It goes without saying that the same effect can be obtained even if a notch equivalent to the notch 205c is provided after the provision.
(実施の形態 3 )  (Embodiment 3)
'はじめに、 本実施の形態 3におけるロータリ圧縮機の構成について説 明する。 本発明の第 3の実施の形態におけるロータリ圧縮機は、 薄肉部を設け たことを除いて、 図 7から図 9で詳述した従来のロータリ圧縮機と類似 した構成を有し、 その縦断面図は図 7と同様である。 'First, the configuration of the rotary compressor according to the third embodiment will be described. The rotary compressor according to the third embodiment of the present invention has a configuration similar to that of the conventional rotary compressor detailed in FIGS. 7 to 9 except that a thin-walled portion is provided. The figure is similar to Figure 7.
図 4は、 本実施の形態 3におけるロータリ圧縮機の圧縮機構部の横断 面図であり、 図 7の Z— 断面に関する横断面図に相当する。  FIG. 4 is a cross-sectional view of a compression mechanism of a rotary compressor according to the third embodiment, and corresponds to a cross-sectional view taken along a Z-section in FIG.
薄肉部 3 0 5 hは、 ベーン溝 3 0 5 bの壁の、 シリンダ 3 0 5とロー ラ 6とべーン 9とに囲まれて形成されるより高圧になりやすい作動室の 側の所定の部分に形成されている。  The thin-walled portion 300 h is provided at a predetermined position on the wall of the vane groove 300 b on the side of the working chamber, which is more likely to be higher in pressure than the cylinder formed by the cylinder 105, the roller 6, and the vane 9. Formed in the part.
より具体的には、 ベーン溝 3 0 5 bの吸入室 3 0 7側のエッジ部 3 0 5 dの対角位置のェッジ部 3 0 5 eに、 さらに薄肉部 3 0 5 hを形成し た。  More specifically, a thinner portion 30.5 h is formed on the edge portion 30.5 e at the diagonal position of the edge portion 30.5 d of the suction chamber 3 07 d of the vane groove 3 05 b. .
ベーン溝 3 0 5 bの長さは、 ベーン 9の長さよりも短く、 薄肉部 3 0 5 hは、 ベーン溝 3 0 5 bの壁の、 より高圧になりやすい作動室の側の 、 ベーン溝 3 0 5 bとべーン溝逃げ部 3 0 5 j とで形成されたエッジ部 に形成されている。  The length of the vane groove 305 b is shorter than the length of the vane 9, and the thin wall portion 305 h is the vane groove on the wall of the vane groove 305 b, on the side of the working chamber where pressure tends to be higher. It is formed at the edge formed by the portion 105b and the relief portion 300b of the vane groove.
より具体的には、 ベーン溝 3 0 5 bは、 ベーン 9と嵌合する幅を持つ 連続した部分であり、 図 4では太線を利用して示されている。 本実施の 形態 3のロータリ圧縮機では、 ベーン溝 3 0 5 bの長さ cがべーン 9の 長さ dよりも短い構造になっている。 従って、 ベーン 9が往復運動する 際、 ベーン 9の後端部に近い部分は、 ベーン溝 3 0 5 bを越えたバネを 設置する空間 3 0 5 iの部分まで入り込む。 このべ一ン 9 往復運動し てパネを設置する空間 3 0 5 iに入り込む部分が、 ベーン溝逃げ部 5 j である。 図 4に示されているように、 ベーン溝 3 0 5 bとべーン溝逃げ 部 3 0 5 j とで形成される角の部分が、 エッジ部 3 0 5 eである。 エツ ジ部 3 0 5 eは、 ベーン 9の往復運動の際にべーン 9と接する部分であ る。 薄肉部 3 0 5 hの厚さおよび長さは、 薄肉部 3 0 5 hが十分な弾性を 備え、 集中荷重 F 2 (図 9参照) のもとでも、 薄肉部 3 0 5 hに発生す る応力が弾性限度以下となるように決定した。 薄肉部 3 0 5 hは、 ベー ン 9の後端のパネ 1 0を設置する空間 3 0 5 iを、 ベーン溝 3 0 5 bの 側方まで拡大することにより形成できる。 More specifically, the vane groove 305b is a continuous portion having a width that fits with the vane 9, and is shown using a thick line in FIG. The rotary compressor according to the third embodiment has a structure in which the length c of the vane groove 305 b is shorter than the length d of the vane 9. Therefore, when the vane 9 reciprocates, the portion near the rear end of the vane 9 enters the space 305 i where the spring beyond the vane groove 305 b is installed. The part of the vane 9 that reciprocates and enters the space 3 05 i where the panel is installed is the vane groove relief part 5 j. As shown in FIG. 4, a corner portion formed by the vane groove 300 b and the vane groove escape portion 305 j is an edge portion 305 e. The edge portion 2005 e is a portion that comes into contact with the vane 9 when the vane 9 reciprocates. The thickness and length of the thin section 3 05 h are such that the thin section 3 0 5 h has sufficient elasticity and is generated in the thin section 3 0 5 h even under the concentrated load F 2 (see Fig. 9). The stress was determined so that it was less than the elastic limit. The thin portion 305 h can be formed by expanding the space 305 i where the panel 10 at the rear end of the vane 9 is installed to the side of the vane groove 305 b.
なお、 3 0 5 aはシリンダ 3 0 5の内壁である円筒面であり、, 3 0 5 cはシリンダ 3 0 5に設けた作動流体の吸入のための切欠きであり、 3 0 5 f はシリンダ 3 0 5のべーン溝 3 0 5 bの吸入室 3 0 7側のエッジ 部 3 0 5 dに形成された薄肉部である。 また、 3 0 8は、 圧縮室である c 次に、 本実施の形態 3におけるロータ V圧縮機の動作について説明す る。 Here, reference numeral 300a denotes a cylindrical surface which is an inner wall of the cylinder 305, reference numeral 305c denotes a notch provided in the cylinder 305 for suction of a working fluid, and reference numeral 305f denotes a cutout. This is a thin-walled portion formed in the edge portion 3105d of the vane groove 300b of the cylinder 3005 on the suction chamber 300 side. Reference numeral 308 denotes a compression chamber. Next, the operation of the rotor V compressor according to the third embodiment will be described.
シリンダ 3 0 5のべ一ン溝 3 0 5 bの吸入室 3 0 7側のエツジ部 3 0 5 dの対角位置のエッジ部 3 0 5 eに薄肉部 3 0 5 hを形成したことに より、 ベーン 9とべーン溝 3 0 5 bのエッジ部 3 0 5 eが局所的に接触 した場合、 薄肉部 3 0 5 hは自由端に集中荷重を受ける片持梁のように なり、 エッジ部 3 0 5 eにたわみを生じる。 そして、 従来、 線接触に近 かったベーン 9とべーン溝 3 0 5 bのエッジ部 3 0 5 eの接触状態が、 薄肉部 3 0 5 hのたわみにより、 面接触状となる。 従って、 信頼性が課 題となっていたべーン 9とべーン溝 3 0 5 のエッジ部 3 0 5 eとの間 の接触面圧が大幅に緩和され、 摩耗、 焼き付き等の損傷を低減すること が可能となり、 信頼性を向上させることができる。  A thin wall portion 30.5h is formed on the edge 30.5e at the diagonal position of the edge 30.5d on the suction chamber 30.5d side of the suction chamber 30.5b of the cylinder groove 30.5b. Therefore, when the vane 9 and the edge 3 05 e of the vane groove 3 05 b come into local contact, the thin wall 3 05 h becomes a cantilever beam that receives concentrated load at the free end, and the edge Deflection occurs in part 3 05 e. Then, the contact state between the vane 9 and the edge portion 305 e of the vane groove 305 b, which has conventionally been close to the line contact, becomes a surface contact state due to the bending of the thin portion 305 h. Therefore, the contact surface pressure between the vane 9 and the edge portion 3 05 e of the vane groove 3 05, for which reliability was an issue, is greatly reduced, and damage such as wear and seizure is reduced. And reliability can be improved.
(実施の形態 4 )  (Embodiment 4)
はじめに、 本実施の形態 4におけるロータリ圧縮機の構成について説 明する。  First, the configuration of the rotary compressor according to Embodiment 4 will be described.
本発明の第 4の実施の形態におけるロータリ圧縮機は、 薄肉部を設け たこと及びべーン溝の長さが異なることを除いて、 図 7から図 9で詳述 した従来のロータリ圧縮機と類似した構成を有し、 その縦断面図は図 7 と同様である。 The rotary compressor according to the fourth embodiment of the present invention is described in detail in FIGS. 7 to 9 except that a thin portion is provided and the length of the vane groove is different. It has a configuration similar to that of the conventional rotary compressor described above, and its vertical sectional view is the same as that of FIG.
図 5は、 本実施の形態 4におけるロータリ圧縮機の圧縮機構部の横断 面図であり、 図 7の Z— 断面に関する横断面図に相当する。  FIG. 5 is a cross-sectional view of the compression mechanism of the rotary compressor according to the fourth embodiment, and corresponds to a cross-sectional view related to the Z-section in FIG.
薄肉部 4 0 5 mは、 ベーン溝 4 0 5 b ' の壁の、 シリンダ 4 0 5と口 ーラ 6とべーン 9とに囲まれて形成されるより高圧になりやすい作動室 の側の所定の部分に形成されている。  The thin-walled section 405 m is located on the wall of the vane groove 405 b ′ on the side of the working chamber where the higher pressure is more likely to be formed by the cylinder 405, the opening 6 and the vane 9. It is formed in a predetermined portion.
より具体的には、 本実施の形態 4では、 ベーン 9が往復運動する際、 ベーン 9の後端部 9 aがべーン溝 4 0 5 1^ と接触する内壁部分に、 薄 肉部 4 0 5 mを形成した。 つまり、 薄肉部 4 0 5 mに接触しながらベー ン 9の後端部 9 aが摺動する、 ベーン溝 4 0 5 b ' の内壁の部分に弾性 を持たせている。 薄肉部 4 0 5 mの厚さおょぴ長さは、 薄肉部 4 0 5 m が十分な弾性を備え、 かつ、 ベーン 9の後端部 9 aとべーン溝 4 0 5 b ' の接触する内壁部分に作用する荷重のもとでも、 薄肉部 4 0 5 mに発 生する応力が弾性限度以下となるように決定した。 薄肉部 4 0 5 mは、 ベーン 9の後端のパネ 1 0を設置する空間 4 0 5 kを、 ベーン溝 4 0 5 ' の側方にまで拡大することにより形成できる。  More specifically, in the fourth embodiment, when the vane 9 reciprocates, the rear end 9a of the vane 9 contacts the vane groove 4 0 5 1 ^ with the thin wall 4 0 5 m was formed. In other words, the rear end portion 9a of the vane 9 slides while contacting the thin portion 405m, and the inner wall portion of the vane groove 405b 'has elasticity. The thickness of the thin part 405 m is such that the thin part 405 m has sufficient elasticity, and the contact between the rear end 9 a of the vane 9 and the vane groove 405 b ′ Even under the load acting on the inner wall part, the stress generated in the thin-walled part 405 m was determined to be below the elastic limit. The thin portion 405 m can be formed by expanding the space 405 k for installing the panel 10 at the rear end of the vane 9 to the side of the vane groove 405 ′.
ベーン溝 4 0 5 の長さは、 ベーン 9の長さよりも長く、 薄肉部 4 0 5 mは、 ベーン溝 4 0 5 b の壁の、 より高圧になりやすい作動室の 側の、 ベーン 9の後端部 9 aが摺動する部分に形成されている。  The length of the vane groove 405 is longer than the length of the vane 9, and the thin section 405 m is the length of the vane 9 on the side of the wall of the vane groove 405 b, on the side of the working chamber where higher pressure is more likely The rear end 9a is formed in a sliding portion.
より具体的には、 本実施の形態 4のロータリ圧縮機は、 実施の形態 3 のロータリ圧縮機とはべーン溝の長さが異なる。 図 5は、 ローラ 6の偏 心回転運動によって、 ベーン 9がべーン溝 4 0 5 に最も押し込まれ た状態を示した図である。 この時、 ベーン 9の先端は、 ローラ 6側のベ ーン溝 4 0 5 b ' の端とほぼ同一面に位置している。 ベーン溝 4 0 5 b ' は、 ベーン 9と嵌合する幅を持つ連続した部分であり、 図 5では太線 を利用して示されている。 実施の形態 3とは異なり、 本実施の形態 4の ロータリ圧縮機では、 ベーン溝 4 0 5 の長さ c ' がべーン 9の長さ dよりも長い構造になっている。 従って、 実施の形態 3にあるようなベ ーン溝逃げ部 3 0 5 jは存在しない。 More specifically, the rotary compressor according to the fourth embodiment is different from the rotary compressor according to the third embodiment in the length of the vane groove. FIG. 5 is a view showing a state in which the vane 9 is most pushed into the vane groove 405 by the eccentric rotational movement of the roller 6. At this time, the tip of the vane 9 is located on substantially the same plane as the end of the vane groove 405 b ′ on the roller 6 side. The vane groove 4 0 5 b ′ is a continuous part having a width that fits with the vane 9, Is shown using Unlike the third embodiment, the rotary compressor according to the fourth embodiment has a structure in which the length c ′ of the vane groove 405 is longer than the length d of the vane 9. Therefore, there is no vane groove escape portion 305 j as in the third embodiment.
なお、 4 0 5 aはシリンダ 2 0 5の内壁である円筒面であり、 4 0 5 cはシリンダ 4 0 5に設けた作動流体の吸入のための切欠きであり、 4 0 5 dはシリンダ 4 0 5のべーン溝 4 0 5 b ' の吸入室側のエツジ部で あり、 4 0 5 f はシリンダ 4 0 5のべ一ン溝 4 0 5 b ' の吸入室側のェ ッジ部 4 0 5 dに形成された薄肉部である。  In addition, 405a is a cylindrical surface which is an inner wall of the cylinder 205, 405c is a notch provided in the cylinder 405 for sucking working fluid, and 405d is a cylinder 405 is the edge of the suction groove on the suction chamber side of the vane groove 405 b ′, and 405 f is the edge of the cylinder groove 405 on the suction chamber side of the vane groove 405 b ′ This is a thin portion formed in the portion 405 d.
次に、 本実施の形態 4におけるロータリ圧縮機の動作について説明す る。  Next, the operation of the rotary compressor according to Embodiment 4 will be described.
往復運動するべーン 9と接する、 ベーン溝 4 0 5 b ' の内壁部分に薄 肉部 4 0 5 mを形成したことにより、 ベーン 9が往復運動する際、 薄肉 部 4 0 5 mは自由端に集中荷重を受ける片持梁のようになり、 たわみを 生じる。 そして、 従来、 線接触に近かったベーン 9の後端部 9 aとべ一 ン溝 4 0 5 の接触状態が、 薄肉部 4 0 5 mのたわみにより、 面接触 状となる。 これにより、 摩耗、 焼き付き等の損傷を低減することが可能 となり、 信頼性を向上させることができる。  The thin-walled portion 405 m is formed on the inner wall of the vane groove 405 b ′ in contact with the reciprocating vane 9, so that the thin-walled portion 405 m is free when the vane 9 reciprocates. The end becomes like a cantilever under concentrated load, causing deflection. Then, the contact state between the rear end portion 9a of the vane 9 and the vane groove 405, which has been close to the line contact in the past, becomes the surface contact state due to the bending of the thin portion 405m. This makes it possible to reduce damage such as abrasion and seizure, thereby improving reliability.
なお、 本実施の形態 4では、 薄肉部 4 0 5 mを、 ベーン 9の後端のバ ネ 1 0を設置する空間 4 0 5 kをべーン溝 4 0 5 b ; の側方にまで拡大 することにより形成したが、 ベーン 9が往復運動する際に嵌合するベー ン溝 4 0 5 b ' の内壁部分から空間を拡大して薄肉部を形成してもよい c この場合、 以下に説明するように、 ベーン 9が往復運動する際に接触す る薄肉部が、 ベーン溝 4 0 5 b ' の内壁から空間を拡大した部分に新た に形成される。 In the fourth embodiment, the thin portion 405 m is extended to the space 405 k where the rear end blade 10 of the vane 9 is installed to the side of the vane groove 405 b ; Although it was formed by enlarging, the space may be enlarged from the inner wall portion of the vane groove 405 b ′ fitted when the vane 9 reciprocates to form a thin portion c. As will be described, a thin-walled portion that comes into contact when the vane 9 reciprocates is newly formed in a portion where the space is enlarged from the inner wall of the vane groove 405b ′.
ベーン溝は、 ベーン 9と嵌合する幅を持つ連続した部分である。 従つ て、 例えば、 本発明の実施の形態におけるロータリ圧縮機の庄縮機構部 の横断面図である図 6に示されているように、 ベーン 9と嵌合する幅の ままパネ 1 0とシリンダ 5 0 5の接合部まで寸胴の形状の場合は、 シリ ンダ内部の円筒面 5 0 5 aからパネ 1 0とシリンダ 5 0 5の接合部まで の寸胴の形状の端から端までがべーン溝 5 0 5 " ということ.になる。 つまり、 図 6では、 太線を利用して示されている部分がこの場合におけ るべーン溝 5 0 5 b " である。 The vane groove is a continuous portion having a width that fits with the vane 9. Follow For example, as shown in FIG. 6 which is a cross-sectional view of the constriction mechanism of the rotary compressor according to the embodiment of the present invention, the panel 10 and the cylinder In the case of a cylindrical shape up to the joint of 05, the vane groove extends from the cylindrical surface inside the cylinder 505a to the joint of the panel 10 and the cylinder 505 from end to end. In other words, in FIG. 6, the portion indicated by the bold line is the vane groove 5 05 b ”in this case.
なお、 5 0 5 cはシリンダ 5 0 5 ·に設けた作動流体の吸入のための切 欠きであり、 5 0 5 dはシリンダ 5 0 5のべーン溝 5 0 5 b " の吸入室 側のェッジ部であり、 5 0 5 f はシリンダ 5 0 5のべーン溝 5 0 5 b " の吸入室側のエッジ部 5 0 5 dに形成された薄肉部であり、 5 0 5 mは ベーン 9の後端部 9 aがべーン溝 5 0 5 b〃 と接触する内壁部分に形成 された薄肉部である。  505c is a notch provided in cylinder 505 for suction of working fluid, and 505d is a suction chamber side of vane groove 505b "of cylinder 505. 505 f is a thin-walled portion formed at the suction chamber side edge 505 d of the vane groove 505 b "of the cylinder 505, and 505 m is The rear end portion 9a of the vane 9 is a thin portion formed on the inner wall portion that comes into contact with the vane groove 505b〃.
なお、 実施の形態 3及び 4において、 実施の形態 1、 2と同様の効果 も得られることは言うまでも無い。  Needless to say, Embodiments 3 and 4 also provide the same effects as Embodiments 1 and 2.
以上においては、 実施の形態 1〜4について詳細に説明を行った。 各実施の形態において、 摺動面圧が減少し、 摺動損失が減少すること から、 圧縮機の効率が向上することは言うまでも無い。  In the above, Embodiments 1 to 4 have been described in detail. In each of the embodiments, since the sliding surface pressure is reduced and the sliding loss is reduced, it goes without saying that the efficiency of the compressor is improved.
また、 吸入圧力と吐出圧力の差が著しく大きい二酸化炭素を作動流体 とした遷臨界サイクルに用いた場合には、 集中荷重 F 1、 F 2 (図 9参 照) がさらに増加するが、 集中荷重 F l、 F 2が作用する箇所に薄肉部 を設けているため、 ベーンとベーン溝の接触する部分における接触面圧 を大幅に緩和することが可能となり、 信頼性向上の効果が著しくなるこ とは言うまでもない。  Also, when a transcritical cycle using carbon dioxide as the working fluid with a remarkably large difference between the suction pressure and the discharge pressure is used, the concentrated loads F1 and F2 (see Fig. 9) further increase. Since a thin part is provided at the point where Fl and F2 act, the contact surface pressure at the part where the vane and the vane groove contact can be greatly reduced, and the effect of improving reliability becomes remarkable. Needless to say.
もちろん、 本発明の、 ベーン溝の内壁の往復運動するべーンと接する 部分の一部が弾性を有するものの一例として、 上述した実施の形態では 、 ベーン溝の壁に構造的な薄肉部を形成したが、 これに限らず、 シリン ダを形成している材質よりも弾性の大きい材質でベーン溝を形成したり 、 ベーン溝の壁に弾性の大きい材質で作られた部品を接合してもよい。 Of course, in the above-described embodiment, as an example of a part of the present invention in which a part of the inner wall of the vane groove in contact with the reciprocating vane has elasticity, However, a structural thin portion was formed on the wall of the vane groove. However, the present invention is not limited to this. For example, the vane groove may be formed of a material having a greater elasticity than the material forming the cylinder, or the elasticity may be formed on the wall of the vane groove. Components made of large materials may be joined.
(A) なお、 本発明のロータリ圧縮機は、 たとえば、 上述した実施の 形態 1においては、 ベーン溝 1 0 5 bがシリンダ 1 0 5に形成されてお り、 ベーン 9がローラ 6にその先端を接しながら往復運動するローリン グピストン型のロータリ圧縮機であった。  (A) In the rotary compressor of the present invention, for example, in Embodiment 1 described above, the vane groove 105 b is formed in the cylinder 105, and the vane 9 It was a rolling piston type rotary compressor that reciprocated while touching.
しかし、 本発明のロータリ圧縮機は、 これに限らず、 たとえば、 本発 明の実施の形態におけるロータリ圧縮機の圧縮機構部の横断面図である 図 1 1に示さ; |τているように、 ベーン溝 1 1 0 5 b、 1 20 5 b, 1 3 0 5 b、 1 4 0 5 bがローラ 1 1 0 6に形成されており、 ベーン 1 1 0 However, the rotary compressor of the present invention is not limited to this. For example, FIG. 11 is a cross-sectional view of a compression mechanism of the rotary compressor in the embodiment of the present invention; , Vane grooves 1 105 b, 1205 b, 1305 b, 1405 b are formed in the roller 1106, and the vane 1 110
9、 1 20 9、 1 3 0 9、 1 40 9がシリンダ 1 1 0 5にその先端を接 しながら往復運動するスライディングベーン型のロータリ圧縮機であつ てもよい。 A sliding vane type rotary compressor in which 9, 1209, 1309, and 1409 reciprocate while contacting the tip of the cylinder 1105 may be used.
本実施の形態におけるロータリ圧縮機においては、 薄肉部 1 1 0 5 ί 、 1 205 f 、 1 3 05 f 、 1 40 5 f 力 ベーン溝 1 1 05 b、 1 2 0 5 b、 1 30 5 b、 1 40 5 bの壁の、 シリンダ 1 1 0 5とローラ 1 In the rotary compressor according to the present embodiment, the thin-walled portion 1105ί, 1205f, 1305f, 1405f force vane groove 1 105b, 1205b, 1305b A 1405 b wall, cylinder 1 105 and roller 1
1 0 6とべーン 1 1 0 9、 1 20 9、 1 3 0 9、 1 40 9とに囲まれて 形成されるより低圧になりやすい作動室の側の、 ベーン溝 1 1 0 5 b、 1 20 5 b、 1 3 0 5 b、 1 40 5 bと作動室とで形成されたェッジ部 に形成されている。 The vane groove 1 1 05 b, on the side of the working chamber where the lower pressure tends to be formed, surrounded by 106 and the vane 1 109, 1209, 1309, 1409 It is formed in an edge portion formed by 1205b, 1305b, 1405b and the working chamber.
さらに、 本実施の形態におけるロータリ圧縮機においては、 ベーン溝 1 1 0 5 b、 1 20 5 b、 1 3 0 5 b、 1 40 5 bの長さは、 ベーン 1 1 0 9、 1 20 9、 1 30 9、 1 40 9の長さよりも長く、 薄肉部 1 1 0 5 h、 1 20 5 h 1 30 5 hN 140 5 h力 S、 ベーン溝 1 1 0 5 b 、 1 205 b、 1 30 5 b、 1 40 5 bの壁の、 シリンダ 1 1 0 5と口 ーラ 1 106とべーン 1 109、 1 209、 1 309、 1409とに囲 まれて形成されるより高圧になりやすい作動室の側の、 ベーン 1 109 、 1 209、 1 309、 1409の後端部が摺動する部分に形成されて いる。 Further, in the rotary compressor according to the present embodiment, the lengths of the vane grooves 1105b, 1205b, 1305b, and 1405b are as follows. , 1309, 1409 longer than the length, thin section 1 105 h, 1 205 h 130 5 h N 140 5 h Force S, vane groove 1 105 b, 1 205 b, 1 30 5b, 140 5b wall, cylinder 1 105 and port Rear end of vanes 1109, 1209, 1309, 1409 on the side of the working chamber, which is more likely to be pressurized and formed by the surroundings of roller 1106 and vanes 1109, 1209, 1309, 1409 It is formed on the part where the part slides.
作動室の容積は、 矢印 Aの方向へのローラ 1 106の回転にしたがつ て変化するが、 作動流体は、 これにともなって、 吸入口 1 1 1 1 aから 吸入され、 圧縮され、 吐出孔 1 1 1 6から外部に吐出される。 したがつ て、 吐出孔 1 1 1 6の手前付近において、 作動室の圧力が極めて高くな り、 より低圧になりやすい作動室の側への、 ベーン 1 109、 1 209 、 1 309、 1409の傾斜が顕著に発生する。 このため、 薄肉部 1 1 05 f 、 1 205 f 、 1 305 f 、 1405 f が設けられる箇所は、 こ のようなべーン 1 109、 1 209、 1 309、 1409の傾斜によつ て発生するべーン 1 109、 1 209、 1 309、 1 09やべーン溝 1 105 b、 1 205 b、 1 305 b、 1405 bの摩耗、 焼き付き等 がより低減されるように決定される。  The volume of the working chamber changes according to the rotation of the roller 1106 in the direction of arrow A, but the working fluid is accordingly sucked from the suction port 1 1 1a, compressed, and discharged. It is discharged to the outside from the holes 1 1 16. Therefore, near the discharge port 1 1 16, the working chamber pressure becomes extremely high, and the vanes 1109, 1209, 1309, and 1409 are moved to the working chamber side where the pressure tends to be lower. Remarkable inclination occurs. For this reason, the portions where the thin portions 1 105 f, 1 205 f, 1 305 f, and 1405 f are provided are caused by the inclination of such vanes 1109, 1209, 1309, and 1409. The abrasion, seizure, etc. of the vanes 1109, 1209, 1309, 109 and the vane grooves 1105b, 1205b, 1305b, 1405b are determined so as to be further reduced.
なお、 このようなロータリ圧縮機においても、 上述した実施の形態 3 におけるロータリ圧縮機と同様に、 ベーン溝の長さは、 ベーンの長さよ りも短く、 薄肉部が、 ベーン溝の壁の、 より高圧になりやすい作動室の 側の、 ベーン溝とベーン溝逃げ部とで形成されたエツジ部に形成されて いてもよい。  In addition, in such a rotary compressor, similarly to the rotary compressor in Embodiment 3 described above, the length of the vane groove is shorter than the length of the vane, and the thin portion is formed by the wall of the vane groove. It may be formed in an edge portion formed by the vane groove and the vane groove escape portion on the side of the working chamber where the pressure is more likely to be increased.
(B) また、 本発明の薄肉部は、 上述した本実施の形態においては、 ベーン溝の壁の、 シリンダとローラとべーンとに囲まれて形成されるよ り低圧になりやすい作動室の側の、 ベーン溝と作動室とで形成されたェ ッジ部に必ず形成されていた。  (B) Further, in the above-described embodiment, the thin portion of the present invention is provided in the wall of the vane groove, in the working chamber which is more likely to be lower in pressure than formed by being surrounded by the cylinder, the roller and the vane. It was always formed in the edge part formed by the vane groove and the working chamber on the side.
しかし、 これに限らず、 本発明の薄肉部は、 そのようなエッジ部には 形成されておらず、 ベーン溝の壁の、 シリンダとローラとベーンとに囲 まれて形成されるより高圧になりやすい作動室の側の所定の部分にのみ 形成されていてもよい,。 ' However, the present invention is not limited to this, and the thin portion of the present invention is not formed at such an edge portion, and is surrounded by a cylinder, a roller, and a vane on the wall of the vane groove. It may be formed only in a predetermined part on the side of the working chamber where the pressure is higher than that formed rarely. '
たとえば、 本発明の実施の形態におけるロータリ圧縮機の圧縮機構部 の横断面図である図 1 2に示されているように、 薄肉部 6 0 5 hが、 ベ ーン冓 6 0 5 bの壁の、 シリンダ 6 0 5とローラ 6とべーン 9とに囲ま れて形成されるより高圧になりやすい作動室の側の、 エッジ部 6 0 5 d の対角位置のエッジ部 6 0 5 .eにのみ形成されていてもよい。 なお、 6 0 5 aはシリンダ 6 0 5の内壁である円筒面であり、 6 0 5 cはシリン ダ 6 0 5に設けた作動流体の吸入のための切欠きであり、 6 0 5 iはべ ーン溝 6 0 5 bを越えたパネを設置する空間である。 また、 6 0 8は、 圧縮室である。  For example, as shown in FIG. 12 which is a cross-sectional view of the compression mechanism of the rotary compressor according to the embodiment of the present invention, the thin portion 605 h is formed of the vane 605 b. An edge 605 opposite the edge 605 d of the wall, on the side of the working chamber which is formed by the cylinder 605, the roller 6 and the vane 9, and which is likely to be higher in pressure. It may be formed only on e. Here, 605a is a cylindrical surface which is the inner wall of the cylinder 605, 605c is a notch provided in the cylinder 605 for sucking working fluid, and 605i is This space is for installing panels that extend beyond the vane groove. Reference numeral 608 denotes a compression chamber.
ただし、 摩耗、 焼き付き等の損傷が顕著に発生しやすい箇所は、 より 高圧になりやすい作動室の側の所定の部分ではなく、 より低圧になりや すい作動室の側の、 ベーン溝と作動室とで形成されたェッジ部である。  However, the places where damage such as abrasion and seizure are likely to occur are not the specified parts on the side of the working chamber where higher pressure is likely to occur, but the vane grooves and working chamber on the side of the working chamber where lower pressure is more likely to occur. And an edge portion formed by
なお、 薄肉部を形成するための加工は、 より低圧になりやすい作動室 の側の、 ベーン溝と作動室とで形成されたエツジ部に対して行う方が、 より高圧になりやすい作動室の側の所定の部分に対して行うよりも容易 であることが多い。 なぜならば、 そのようなより高圧になりやすい作動 室の側の所定の部分は、 作動室から見て奥側に存することになるからで め 。 産業上の利用可能性  It should be noted that the processing for forming the thin-walled portion should be performed on the edge formed by the vane groove and the working chamber on the side of the working chamber where the pressure tends to be lower. It is often easier than doing it for a given part on the side. This is because a predetermined portion of the working chamber, which is likely to be at a higher pressure, is located farther from the working chamber. Industrial applicability
本発明は、 たとえば、 ベーンやべ一ン溝の摩耗、 焼き付き等の損傷の 発生を抑制し、 より高い信頼性を有するロータリ圧縮機を提供すること ができ、 有用である。  INDUSTRIAL APPLICABILITY The present invention is useful because it can suppress the occurrence of damage such as wear and seizure of vanes and vane grooves and can provide a rotary compressor having higher reliability.

Claims

請 求 の 範 囲 The scope of the claims
1 . 密閉容器の内部に配置されたシリンダと、 1. A cylinder arranged inside the closed container,
前記シリンダに接しながら回転運動するローラと、  A roller that rotates while contacting the cylinder,
前記シリンダまたは前記ローラに形成されたベーン溝と、  A vane groove formed in the cylinder or the roller,
前記べーン溝に設置された、 前記べ一ン溝を往復運動するべ一ンとを 備え、  A van installed in the vane groove and reciprocating in the vane groove.
前記べーンが往復運動する際に前記べ一ンと接する、 前記べ一ン溝の 壁の少なくとも一部は、 所定の弾性を有するロータリ圧縮機。  A rotary compressor having a predetermined elasticity, wherein at least a part of a wall of the vane groove is in contact with the vane when the vane reciprocates.
2 . 前記べーン溝は、 前記シリンダに形成されており、  2. The vane groove is formed in the cylinder,
前記べーンは、 前記ローラにその先端を接しながら往復運動する請求 の範囲第 1項記載のロータリ圧縮機。  The rotary compressor according to claim 1, wherein the vane reciprocates while contacting a tip of the vane with the roller.
3 . 前記弾性は、 あらかじめ形成された所定の薄肉部によって生じ る請求の範囲第 2項記載のロータリ圧縮機。 '  3. The rotary compressor according to claim 2, wherein the elasticity is generated by a predetermined thin portion formed in advance. '
4 . 前記所定の薄肉部は、 前記べーン溝の壁の、 前記シリンダと前 記ローラと前記べ一ンとに囲まれて形成されるより低圧になりやすい作 動室の側の、 前記べ一ン溝と前記作動室とで形成されたェッジ部に形成 されている請求の範囲第 3項記載のロータリ圧縮機。  4. The predetermined thin portion is provided on the side of the wall of the vane groove, on the side of the working chamber, which is more likely to be lower in pressure than the cylinder, the roller, and the vane formed by being surrounded by the cylinder. 4. The rotary compressor according to claim 3, wherein the rotary compressor is formed in an edge formed by the vane groove and the working chamber.
5 · 前記所定の薄肉部は、 前記べーン溝と前記シリンダに形成され た所定の切欠きとにより形成され、  5The predetermined thin portion is formed by the vane groove and a predetermined notch formed in the cylinder,
前記所定の切欠きは、 作動流体を吸入するための開口部で兼ねられて いる請求の範囲第 4項記載のロータリ圧縮機。  5. The rotary compressor according to claim 4, wherein the predetermined notch is also used as an opening for sucking a working fluid.
6 . 前記所定の薄肉部は、 前記べーン溝の壁の、 前記シリンダと前 記ローラと前記べーンとに囲まれて形成されるより高圧になりやすい作 動室の側の所定の部分に形成されている請求の範囲第 3項または第 4項 記載のロータリ圧縮機。 6. The predetermined thin portion is provided on a side of the wall of the vane groove, on a side of an operation chamber which is more likely to have a higher pressure than the operation chamber formed by being surrounded by the cylinder, the roller, and the vane. The rotary compressor according to claim 3 or 4, wherein the rotary compressor is formed in a portion.
7 . 前記べーン溝の長さは、 前記べーンの長さよりも短く、 前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べ一ン溝と所定のベーン溝逃げ部とで形成された ェッジ部に形成されている請求の範囲第 6項記載のロータリ圧縮機。 7. The length of the vane groove is shorter than the length of the vane, and the predetermined thin portion is located on the side of the wall of the vane groove on the side of the working chamber where the higher pressure is likely to be applied. 7. The rotary compressor according to claim 6, wherein said rotary compressor is formed in an edge portion formed by said vane groove and a predetermined vane groove escape portion.
8 . 前記ぺーン溝の長さは、 前記べーンの長さよりも長く、 前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べーンの後端部が摺動する部分に形成されている 請求の範囲第 6項記載のロータリ圧縮機。  8. The length of the vane groove is longer than the length of the vane, and the predetermined thin portion is provided on the wall of the vane groove on the side of the working chamber where the high pressure is more likely to be applied. 7. The rotary compressor according to claim 6, wherein a rear end of the vane is formed at a sliding portion.
9 . 前記べーン溝の長さ Lと、 前記べーン溝の幅 Tと、 前記薄肉部 の長さ sと、 前記薄肉部の幅 wとは、 L / T≤ s Z wを満足する請求の 範囲第 3項記載のロータリ圧縮機。  9. The length L of the vane groove, the width T of the vane groove, the length s of the thin portion, and the width w of the thin portion satisfy L / T≤sZw. 4. The rotary compressor according to claim 3, wherein:
1 0 . 前記べーン溝は、 前記ローラに形成されており、  10. The vane groove is formed in the roller,
前記べーンは、 前記シリンダにその先端を接しながら往復運動する請 求の範囲第 1項記載のロータリ圧縮機。  2. The rotary compressor according to claim 1, wherein the vane reciprocates while contacting a tip of the vane with the cylinder.
1 1 . 前記弾性は、 あらかじめ形成された所定の薄肉部によって生じ る請求の範囲第 1 0項記載のロータリ圧縮機。  11. The rotary compressor according to claim 10, wherein said elasticity is generated by a predetermined thin portion formed in advance.
1 2 . 前記所定の薄肉部は、 前 ベーン溝の壁の、 前記シリンダと前 記ローラと前記べーンとに囲まれて形成されるより低圧になりやすい作 動室の側の、 前記べーン溝と前記作動室とで形成されたェッジ部に形成 されている請求の範囲第 1 1項記載のロータリ圧縮機。  12. The predetermined thin portion is provided on the wall of the front vane groove, on the side of the working chamber, which is more likely to be lower in pressure than the cylinder, the roller, and the vane formed by being surrounded by the cylinder. 21. The rotary compressor according to claim 11, wherein the rotary compressor is formed in an edge formed by the groove and the working chamber.
1 3 . 前記所定の薄肉部は、 前記べーン溝の壁の、 前記シリンダと前 記ローラと前記べ一ンとに囲まれて形成されるより高圧になりやすい作 動室の側の所定の部分に形成されている請求の範囲第 1 1項または第 1 13. The predetermined thin portion is provided on a wall of the vane groove on a side of an operation chamber, which is more likely to have a higher pressure than the operation chamber formed by being surrounded by the cylinder, the roller, and the vane. Claims 1 or 1 formed in the part of
2項記載のロータリ圧縮機。 3. The rotary compressor according to item 2.
1 4 . 前記べーン溝の長さは、 前記べーンの長さよりも短く、  1 4. The length of the vane groove is shorter than the length of the vane,
前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べーン溝と所定のベーン溝逃げ部とで形成された エッジ部に形成されている請求の範囲第 1 3項記載のロータリ圧縮機。The predetermined thin portion is likely to be higher in pressure than the wall of the vane groove. 14. The rotary compressor according to claim 13, wherein the rotary compressor is formed on an edge portion formed by the vane groove and a predetermined vane groove escape portion on a side of the working chamber.
1 5 . 前記べーン溝の長さは、 前記べーンの長さよりも長く、 前記所定の薄肉部は、 前記べーン溝の壁の、 前記より高圧になりやす い作動室の側の、 前記べーンの後端部が摺動する部分に形成されている 請求の範囲第 1 3項記載のロータリ圧縮機。 15. The length of the vane groove is longer than the length of the vane, and the predetermined thin portion is provided on the side of the wall of the vane groove on the side of the working chamber where the high pressure is more likely to occur. The rotary compressor according to claim 13, wherein a rear end of the vane is formed at a portion where the vane slides.
1 6 . 前記べーン溝の長さしと、 前記べーン溝の幅 Tと、 前記薄肉部 の長さ s と、 前記薄肉部の幅 wとは、 L ZT≤ s Zwを満足する請求の 範囲第 1 1項記載のロータリ圧縮機。  16. The length of the vane groove, the width T of the vane groove, the length s of the thin portion, and the width w of the thin portion satisfy L ZT ≤ s Zw The rotary compressor according to claim 11, wherein:
1 7 . 作動流体は、 二酸化炭素である請求の範囲第 1項記載のロータ リ圧縮機。  17. The rotary compressor according to claim 1, wherein the working fluid is carbon dioxide.
PCT/JP2004/000364 2003-01-20 2004-01-19 Rotary compressor WO2004065794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005508068A JP4008471B2 (en) 2003-01-20 2004-01-19 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003011543 2003-01-20
JP2003-011543 2003-01-20

Publications (1)

Publication Number Publication Date
WO2004065794A1 true WO2004065794A1 (en) 2004-08-05

Family

ID=32767285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000364 WO2004065794A1 (en) 2003-01-20 2004-01-19 Rotary compressor

Country Status (2)

Country Link
JP (1) JP4008471B2 (en)
WO (1) WO2004065794A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112396A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Rolling piston type compressor
JP2011033040A (en) * 2010-10-12 2011-02-17 Mitsubishi Electric Corp Rolling piston type compressor
CN104675702A (en) * 2013-11-28 2015-06-03 三菱电机株式会社 Rotary compressor
WO2020170361A1 (en) * 2019-02-20 2020-08-27 三菱電機株式会社 Rolling piston type compressor and refrigeration cycle device
EP4108926A1 (en) * 2021-06-23 2022-12-28 LG Electronics Inc. Rotary compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762648B (en) * 2017-01-24 2020-11-24 广东美芝制冷设备有限公司 Compressor, refrigerating system and car

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151190A (en) * 1979-05-11 1980-11-25 Nissan Motor Co Ltd Movable vane type rotary compressor
JPS6063087U (en) * 1983-10-06 1985-05-02 三菱重工業株式会社 compressor
JPS6084789U (en) * 1983-11-17 1985-06-11 三菱重工業株式会社 vane compressor
JPS648384A (en) * 1987-06-30 1989-01-12 Toshiba Corp Rotary compressor
JPH02149892U (en) * 1989-05-23 1990-12-21
JP2002089472A (en) * 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd Rotary multistage compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151190A (en) * 1979-05-11 1980-11-25 Nissan Motor Co Ltd Movable vane type rotary compressor
JPS6063087U (en) * 1983-10-06 1985-05-02 三菱重工業株式会社 compressor
JPS6084789U (en) * 1983-11-17 1985-06-11 三菱重工業株式会社 vane compressor
JPS648384A (en) * 1987-06-30 1989-01-12 Toshiba Corp Rotary compressor
JPH02149892U (en) * 1989-05-23 1990-12-21
JP2002089472A (en) * 2000-09-14 2002-03-27 Matsushita Electric Ind Co Ltd Rotary multistage compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112396A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Rolling piston type compressor
JP4659427B2 (en) * 2004-10-18 2011-03-30 三菱電機株式会社 Rolling piston compressor
JP2011033040A (en) * 2010-10-12 2011-02-17 Mitsubishi Electric Corp Rolling piston type compressor
CN104675702A (en) * 2013-11-28 2015-06-03 三菱电机株式会社 Rotary compressor
WO2020170361A1 (en) * 2019-02-20 2020-08-27 三菱電機株式会社 Rolling piston type compressor and refrigeration cycle device
JPWO2020170361A1 (en) * 2019-02-20 2021-10-07 三菱電機株式会社 Rolling piston type compressor and refrigeration cycle equipment
JP7191194B2 (en) 2019-02-20 2022-12-16 三菱電機株式会社 Rolling piston type compressor and refrigeration cycle equipment
EP4108926A1 (en) * 2021-06-23 2022-12-28 LG Electronics Inc. Rotary compressor
US11655817B2 (en) 2021-06-23 2023-05-23 Lg Electronics Inc. Rotary compressor

Also Published As

Publication number Publication date
JP4008471B2 (en) 2007-11-14
JPWO2004065794A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
AU2005261267B2 (en) Rotary fluid machine
US20080240958A1 (en) Rotary Fluid Machine
CN107131128B (en) Double-cylinder type hermetic compressor
JP5040934B2 (en) Hermetic compressor
WO2004065794A1 (en) Rotary compressor
WO2010073426A1 (en) Rotary compressor
EP2412977B1 (en) Reciprocating compressor
JP2006177227A (en) Rotary two-stage compressor
JP4305550B2 (en) Rotary fluid machine
JP2006177228A (en) Rotary two-stage compressor and air conditioner using the same
JP2009197702A (en) Rotary type fluid machine
WO2018138840A1 (en) Rotary compressor
WO2014017000A1 (en) Hermetically sealed compressor and refrigeration cycle device
CN104832434B (en) Rotary compressor and refrigerating system device with same
JP6556372B1 (en) Hermetic compressor and refrigeration cycle apparatus
JP6064726B2 (en) Rotary compressor
JP2000170677A (en) Rotary compressor
CN109281836B (en) Pump body structure and be equipped with its compressor
JP3168101B2 (en) Rotary compressor
JPWO2010013375A1 (en) Rotary compressor
KR20010076889A (en) Low pressure type rotary compressor
JP2007077946A (en) Multistage rotary expander
WO2013179677A1 (en) Rotary compressor
JP5528387B2 (en) Rolling piston compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005600132

Country of ref document: JP

122 Ep: pct application non-entry in european phase