WO2004061639A1 - Optoelektronische messanordnung mit fremdlichtkompensation sowie verfahren zur phasenkorrekten kompensation eines signals der messanordnung - Google Patents

Optoelektronische messanordnung mit fremdlichtkompensation sowie verfahren zur phasenkorrekten kompensation eines signals der messanordnung Download PDF

Info

Publication number
WO2004061639A1
WO2004061639A1 PCT/EP2003/014697 EP0314697W WO2004061639A1 WO 2004061639 A1 WO2004061639 A1 WO 2004061639A1 EP 0314697 W EP0314697 W EP 0314697W WO 2004061639 A1 WO2004061639 A1 WO 2004061639A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
phase
sources
signal
Prior art date
Application number
PCT/EP2003/014697
Other languages
English (en)
French (fr)
Inventor
Gerd Reime
Original Assignee
Gerd Reime
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerd Reime filed Critical Gerd Reime
Priority to EP03789377.3A priority Critical patent/EP1579307B1/de
Priority to AU2003293964A priority patent/AU2003293964A1/en
Publication of WO2004061639A1 publication Critical patent/WO2004061639A1/de

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers

Definitions

  • the invention relates to an optoelectronic measuring arrangement with a device for extraneous light compensation according to the preamble of claim 1 and a method for phase-correct compensation of a differential optical signal of this measuring arrangement according to the preamble of claim 7.
  • An optical measuring system is known from EP 0706648 B1, in which at least two light-emitting diodes emit light alternately as light sources such that a constant light signal is present at a receiver without clock-synchronous alternating light components.
  • the received signal is examined for these isochronous alternating light components. If such alternating light components occur, the light output of the light-emitting diodes is readjusted as a function of the detected phase position until the clock-synchronous alternating light component becomes zero again. So it is readjusted until the same amount of light arrives at the receiver from cycle to cycle from the different light paths.
  • both or all of the light paths involved in the light output are regulated against one another in terms of their output.
  • the performance of at least two light paths is regulated against one another.
  • there are already four light paths for area-based position detection ie for detecting a position in the X and Y directions, and for determining the position of an object in the direction of the Z axis, at least one further light path, so that a total of five regulated light paths are used.
  • Each of these regulated light paths requires an analog or digital power control for an LED current of 0 - 100 mA, for example.
  • the power control can then be carried out, for example, by five digital-to-analog converters or by five pulse width controls.
  • a solution is also conceivable in which at least one control stage controls a signal which is then sequentially applied to at least one of the LEDs involved in each case.
  • An optical measuring device with compensation devices is known from DE 2849 186 C2 in order to compensate for the effects of errors which can arise from different attenuations in the reception light guides. With the help of converter elements and an electronic circuit, an electronic compensation signal is generated there.
  • a second reflected light receiver for a second received signal is evaluated in terms of amplitude in relation to the alternate light transmitter control, and the evaluation signal obtained in this way, which corresponds to the mutual optical couplings, is added to the output signal of the reflected light measurement in a weighted manner. From here, the output signal is corrected by means of an electronic signal, but not by means of another light source.
  • the present invention is based on the object of creating an optoelectronic measuring arrangement and a method which achieves zero compensation of the received signal with simple means without the need for a large number of digital-to-analog converters, pulse width modulators or power switches become.
  • the invention is based on the principle that when a light source, in an embodiment according to claim 2, emits light, a photodiode which receives this light, for example after reflection from an object, generates a clock-synchronous electrical signal. If, for example, the light emitting diode emits light with a clock frequency of 40 KHz, the photodiode becomes a corresponding signal with the same frequency and almost the same Create phase. If you now consider the relevant alternating light component with regard to the transmission phase of 0 ° with two clocked light-emitting diodes, this alternating light component can be positive and negative, i.e.
  • 0 ° is identified with a positive sign and 180 ° with a negative sign.
  • a further light source is now switched on, which operates independently of the light sources emitting the light, this light can radiate in phase and amplitude preferably in accordance with claims 5, 6 and 11, 12, respectively.
  • the additional light source can essentially or even take over the compensation by additional light irradiation.
  • the amplitude of the clock-synchronous received signal is influenced by the light output of the further light source, even in the case of complex measuring arrangements with position, direction and distance detection, in such a way that the received signal becomes zero.
  • the further light source can be arranged in such a way that it illuminates the same reflective object at a certain distance from the first light source, or it radiates directly to the receiver without light being reflected here by the reflective object.
  • the light-emitting diode can also be used for distance detection; in the second case, the distance detection takes place exclusively via the proportion of the reflected radiation.
  • the further light source sends out a signal that is offset from the signal of the other light sources and that is regulated in amplitude.
  • the reception signal preferably a photodiode
  • the sign in the receiver preferably a photodiode. This is e.g. the case when two light sources are arranged in such a way that a reflecting object reflects the light received by both light sources approximately centrally to the light sources to the photodiode.
  • the amplitude and the sign of the isochronous alternating light component in the received signal change.
  • the power control of the light sources is now preferably completely dispensed with.
  • This signal is now compensated to zero with the further light source in order to become insensitive to extraneous light again.
  • This light source has the special property that the output and the sign can be changed.
  • This light source preferably radiates its light as directly as possible into the photodiode.
  • FIG. 3 shows a circuit for an optoelectronic measuring arrangement for position
  • Figure 1 shows an optoelectronic measuring arrangement such as z. B. is essentially known from EP 0 706 648.
  • the receiver 13 is preferably a photodiode.
  • a photocurrent compensation 2 is also assigned to the receiver 13.
  • any medium that is also non-representable can be considered as a transparent medium.
  • a translucent pane 15 is arranged in this area, which can be z. B. can be touched to trigger a specific function.
  • the light sources are controlled by the clock generator 11, the light source 4 being controlled for position determination with a clock inverted with respect to the light source 3.
  • the light sources 3, 4 thus emit light in phases, clocked sequentially.
  • the optical measuring system which will be explained in more detail below, emits the light alternately in such a way that a constant light signal without clock-synchronous alternating light components is present at a receiver 13.
  • the received signal is examined for clock-synchronous alternating light components. If clock-synchronous alternating light components occur, the light output of the light sources 3, 4 is readjusted depending on the phase position detected so that the clock-synchronous alternating light component becomes zero again. 1, so that the signal originating from the receiver 13 is first fed to a high-pass filter 5 in order to eliminate as much as possible light components.
  • the remaining signal is amplified in a preamplifier 6 and then in a synchronous demodulator 7 again on the two signals corresponding to the light paths in the form of the transmitted light beam 23 and the reflected light beam 24 on the one hand and in the form of the transmitted light beam 25 and the reflected light beam 26 on the other hand disassembled.
  • the synchronous demodulator 7 also receives the clock from the clock generator 11.
  • the signals corresponding to the respective light paths are fed to low-pass filters 8 and then fed to the comparator 9.
  • the output signal 12 is then also present there.
  • the signals obtained in this way are transmitted directly and once inverted to the control units 17, 19 assigned to the first light sources 3, 4, which in the case of position determination, in which the first light sources 3, 4 alternately emit light, the light intensity of the light sources 3, 4 determine and thus influence the incoming signal received at the receiver.
  • the signal after the comparator 9 on the left path is also fed to a further control unit 22.
  • the signal from the control unit 22 is fed to a driver 21, which is activated by the sequential control 16 by means of an enable control, in order to use the Light source designed further light source 14, also a light-emitting diode, to make the proportion of the alternating light in the photodiode zero and thereby largely exclude extraneous light influences.
  • a plurality of multiplexers 10, 18, 20, which can be controlled by the sequence control 16, are provided, which are required in particular when the device according to FIG. 1 is to be used not only for position determination but also for distance determination. While the LEDs emit alternately during the position determination, the light sources 3, 4 are acted upon simultaneously for the distance determination. This is known in particular from the earlier patent application 101 33823, to which reference is hereby expressly made.
  • the clock generator supplies the light source 4 with a signal which is inverted with respect to the signal for the light source 3 and which on the one hand is fed to the further light source 14 but on the other hand also via the multiplexer 10 to the control unit 19 and multiplexer 20.
  • the same signal, which is given to the light source 3 via the multiplexer 18, is also given to the light source 4 in accordance with the upper path entering the multiplexer 10. It can be clearly seen that three control units 17, 19, 22 and a plurality of multiplexers 18, 20 are already required to solve this task in this simplified exemplary embodiment.
  • FIGS. 2 and 3 the pure position detection is shown in FIG. 2 and the position and distance detection are shown in FIG. A mere comparison of the circuit diagrams makes it clear that several control units and at least some of the multiplexers can be dispensed with, although these solutions solve the same problem as the circuit according to FIG. 1.
  • another light source 14 is used, which is a light source independent of the first light sources 3.
  • This further light source 14 is assigned to the receiver 13 and its light intensity can be regulated in amplitude and sign.
  • the further light source 14 is preferably arranged such that it radiates directly to the receiver 13 without its light being reflected by the reflecting object.
  • the position of the reflecting object in relation to the arrangement of the photodiode after the light sources can be determined
  • the distance to the object can be determined solely via the proportion of the reflected radiation.
  • all types of elements emitting light radiation but in particular light-emitting diodes or laser diodes, come into consideration as light sources.
  • the transmit signals from the light paths that is, the signals originating from the first light sources 3, 4, additively overlap, reflected on the hand 1 with the transmit signal from the further light source 14. Since this system essentially depends on the alternating light component, this alternating light component is considered in more detail with regard to the transmission phase.
  • the one light source 3 is assigned the transmission phase of 0 ° and the other light source 4 the transmission phase of 180 °. If you now look at this alternating light component with regard to the transmission phase of 0 °, this alternating light component can be positive and negative, that is to say have a phase of 0 ° or 180 °. With a phase shift of 180 °, two light sources are used. The signals can occur with several light sources with a corresponding phase shift.
  • the further light source 14 that is to say the compensator, which here only radiates onto the receiver 13, is now regulated in amplitude and sign, synonymous with phase, in such a way that the alternating light component becomes zero. While the first light sources 3, 4 z. B. emit light with a constant or fixed predetermined light intensity, the further light source 14 is operated in the initial state, in which there are usually no clock-synchronous alternating light components, in a medium range so that it emits light with a medium intensity.
  • this additional light source can now be controlled isochronously so that on the one hand the amplitude can be adjusted downwards or upwards from this central region, but on the other hand it can also be influenced in phase by the actuation with a phase shift.
  • more than two light paths can also be operated accordingly.
  • the light sources can be operated offset at any angle. In the case of four measuring sections, for example, the angular circle can be divided into any angle, but in this case an angle offset of 90 ° is preferred. The same applies to a different number of measurement sections.
  • the embodiment for determining the position, the first light sources 3, 4 are present, as in the prior art, which are alternately controlled by the clock generator 11 with an inverted signal.
  • the signal originating from the light paths arrives at the receiver 13 and, as in the prior art, is conducted via high-pass filter 5, preamplifier 6, synchronous demodulator 7, low-pass filter 8, and comparator 9 in order to obtain the output signal 28 therefrom.
  • This output signal is also fed to the control unit 27, which on the one hand receives both clocks and correspondingly controls the further light source 14 for compensation.
  • the light emitting diode 3 with a constant amplitude and phase 0 °, ie with a positive sign, while the light source 4 also sends with a constant amplitude but with a phase 180 ° and thus a negative sign.
  • the further light source 14 is now regulated in terms of sign and amplitude such that the sum of all alternating light signals at the receiver 13 becomes zero.
  • the control unit 27 is supplied with both cycles 0 ° and 180 °.
  • the potentiometer depicted in this respect by the control unit 27 clarifies the control element, which has the amplitude zero in the central position. In the two end stops, the amplitude is maximal with the respective phase or the sign of the connection.
  • the further light source 14 thus radiates in phase with the weaker light source or sources, depending on which of the first light sources 3, 4 are the weaker or the weaker ones.
  • the circuit according to FIG. 3 is now also intended to determine the distance and differs essentially in the arrangement of the multiplexer 10. While the signal detection and the determination of the output signal 29 are identical to FIG. 2, this circuit must now also be suitable for that the first light sources 3, 4 can emit light at the same time.
  • the clock signal is fed to a sequence control 16 which controls the multiplexer 10.
  • an inverted signal is transmitted to the light source 4 via the multiplexer 10, so that the light sources alternately light as in FIG. send out mung.
  • the light sources emit light at the same time.
  • a - non-inverted - signal is transmitted to the light source 4 for the distance determination, which signal is also transmitted to the light source 3 at the same time.
  • the first light sources 3 and 4 both transmit with constant amplitude and phase 0 °, that is, with a positive sign.
  • the amplitude of the further light source 14 is regulated in this distance measurement such that the sum of all the alternating light signals at the receiver 13 becomes zero.
  • the operating mode for the position determination is identical to that described in FIG. 2.
  • the additional light source 14 as a compensator must have a positive sign and a negative sign send.
  • negative light is only modeled light, which is preferably 180 ° out of phase.
  • FIGS. 4 and 5 show how the signals are mixed in the rule 27.
  • the circuit receives the input signal 34 from the clock generator 11. Furthermore, the control value 36, which is derived from the output signals 28 or 29 in FIGS. 2 and 3, is fed to the circuit. This control value is usually balanced in half of the existing control range U, in this case e.g. are at U / 2.
  • the input signal 34 "clock” is fed directly to multipliers 31, once inverted once and once by inverter 30.
  • the multipliers likewise receive the control value from driver 32, once inverted and once not inverted.
  • the signals supplied to the multipliers are multiplied there accordingly and then combined via an addition stage 33, so that the output value 35 is a correspondingly larger or smaller value which is used to control the further light source 14.
  • the multipliers 31 each supply a signal component of the input signal 34 " Clock "from eg 50% of the amplitude with the phase 0 ° and the phase 180 ° to the addition stage 33. Because of the same amplitude when the phase is rotated through 180 °, both signals cancel and only one DC voltage signal is present at the output of the addition stage without isochronous components.
  • the output signal 35 will generate a positive clock phase of 0 ° with a signal with a larger amplitude in clock B and a signal with a smaller amplitude in clock A. With a correspondingly negative control voltage according to FIG. 5, center, the phase reverses accordingly.
  • the output signal 35 thus tries to compensate for the clock-synchronous portion of the received signal in the photodiode to zero, the output value to the further light source is controlled depending on the clock phase A, B in such a way that a corresponding control voltage results.
  • the output value 35 delivered to the further light source is thus determined in such a way that it receives so much light in the opposite phase that a positive control value results.
  • the output value 35 is activated in reverse, so that here the clock phase A now receives the larger "compensation value" so that the control value moves in the negative.
  • the control voltage is thus shifted from the positive phase to the If the control value remains the same as that shown on the far right in FIG. 5, the further light source 14 receives a constant output value and thus radiates with a constant light output.
  • a circuit is thus created which is capable of positioning and distance measurement with ambient light compensation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Human Computer Interaction (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Bei einer optoelektronischen Messanordnung senden wenigstens zwei erste Lichtquellen (3,4) Licht zeitsequentiell getaktet aus. Wenigstens ein Empfänger (13) ist s zum Empfang zumindest des von den ersten Lichtquellen (3,4) stammenden taktsynchronen Wechsellichtanteils vorgesehen. Ferner ist eine Vorrichtung zur Fremdlichtkompensation durch Regelung der an der Messanordnung durch wenigstens eine Lichtquelle eingestrahlte Lichtintensität vorgesehen, so dass der taktsynchrone Wechsellichtanteil zu Null wird. Dadurch, dass die für die Regelung eingesetzte wenigstens eine weitere Lichtquelle (14) eine von den ersten Lichtquellen (3,4) unabhängige Lichtquelle ist, die dem Empfänger (13) zugeordnet ist und die in ihrer Lichtintensität in Amplitude und Vorzeichen regelbar ist, wird mit einfachen Mitteln eine Kompensation des Empfangssignals zu Null auch bei komplexen Messanordnungen mit Positions-, Richtungs- und Entfernungsdetektion erreicht.

Description

OPTOELEKTRONISCHE MESSANORDNUNG MIT FREMDLICHTKOMPENSATION SOWIE VERFAHREN ZUR PHASENKORREKTEN KOMPENSATION EINES SIGNALS DER MESSANORDNUNG
Beschreibung
Bezug zu verwandten Anmeldungen
Die vorliegende Anmeldung beansprucht die Priorität der deutschen Patentanmeldung 103 00223.5, hinterlegt am 3.01.2003, deren Offenbarungsgehalt hiermit ausdrücklich auch zum Gegenstand der vorliegenden Anmeldung gemacht wird.
Gebiet der Erfindung
Die Erfindung betrifft eine optoelektronische Messanordnung mit einer Vorrichtung zur Fremdlichtkompensation nach dem Oberbegriff des Anspruches 1 sowie ein Verfahren zur phasenkorrekten Kompensation eines differenziellen optischen Signals dieser Messanordnung nach dem Oberbegriff des Anspruchs 7.
Stand der Technik
Aus der EP 0706648 B1 ist ein optisches Messsystem bekannt, bei dem wenigstens zwei Leuchtdioden als Lichtquellen Licht wechselseitig so aussenden, dass an einem Empfänger ein Gleichlichtsignal ohne taktsynchrone Wechsellichtanteile anliegt. Das Empfangssignal wird auf diese taktsynchronen Wechsellichtanteile untersucht. Bei Auftreten derartiger Wechsellichtanteile wird abhängig von der detektierten Phasenlage die Lichtleistung der Leuchtdioden so nachgeregelt, bis der taktsynchrone Wechsellichtanteil wieder zu Null wird. Es wird also so lange nachgeregelt, bis aus den verschiedenen Lichtstrecken von Takt zu Takt die gleiche Lichtmenge am Empfänger ankommt. Üblicherweise werden vorzugsweise beide bzw. alle an der Lichtleistung beteiligten Lichtstrecken hierzu gegeneinander in ihrer Leistung geregelt.
Bei einer Anordnung nach der EP 706648 B1 werden wenigstens zwei Lichtstrecken in ihrer Leistung gegeneinander geregelt. Bei einer Anordnung nach der älteren deutschen Patentanmeldung 101 33823 sind es zur flächenmäßigen Positionserkennung, also zur Erkennung einer Position in X- und Y-Richtung schon vier Lichtstrecken und zur Bestimmung der Lage eines Objekts in Richtung der Z-Achse noch wenigstens eine weitere Lichtstrecke, so dass insgesamt fünf geregelte Lichtstrecken eingesetzt werden. Dabei benötigt jede dieser geregelten Lichtstrecken eine analoge oder digitale Leistungsregelung für einen LED-Strom von z.B. 0 - 100 mA. In einem digitalen System kann die Leistungsregelung z.B. dann durch fünf Digital-Analogwandler oder durch fünf Pulsweitenregelungen erfolgen. Dabei ist auch eine Lösung denkbar, bei der mindestens eine Regelstufe ein Signal regelt, das dann zeitse- quenziell auf mindestens je eine der beteiligten Leuchtdioden gegeben wird.
Aus der DE 2849 186 C2 ist ein optisches Messgerät mit Kompensationseinrichtungen bekannt, um Fehlereinflüsse zu kompensieren, die durch unterschiedliche Dämpfungen in Empfangslichtleitern entstehen können. Mit Hilfe von Wandlerelementen und einer elektronischen Schaltung wird dort ein elektronisches Kompensationssignal erzeugt.
In der DE 101 06 998 A1 wird bei einer Reflexlichtmessung ein zweiter Reflexlichtempfänger für ein zweites Empfangssignal phasenbezogen zu der wechselweisen Lichtsenderansteue- rung amplitudenmäßig ausgewertet und das so gewonnen Auswertesignal, das den wechselseitigen optischen Kopplungen entspricht, wird gewichtet dem Ausgangssignal der Reflexlichtmessung hinzugefügt. Aush hier erfolgt eine Korrektur des Ausgangssignals mittels eines elektronischen Signals, aber nicht mittels einer weiteren Lichtquelle.
Offenbarung der Erfindung
Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine optoelektronische Messanordnung und ein Verfahren zu schaffen, dass mit einfachen Mitteln eine Kompensation des Empfangsignals zu Null erreicht, ohne dass aufwändig eine Vielzahl von Digital-Analogwandlern, Pulsweitenmodulatoren bzw. Leistungsumschalter benötigt werden.
Diese Aufgabe wird durch eine optoelektronische Messanordnung mit den Merkmalen des Anspruchs 1 und ein Verfahren mit den Merkmalen des Anspruches 7 gelöst.
Der Erfindung liegt das Prinzip zugrunde, dass dann, wenn eine Lichtquelle, bei einer Ausgestaltung nach Anspruch 2 eine LED, Licht aussendet, eine Photodiode, die dieses Licht z.B. nach Reflexion von einem Gegenstand erhält, ein taktsynchrones elektrisches Signal erzeugt. Sendet also z.B. die Leuchtdiode Licht mit einer Taktfrequenz von 40 KHz aus, wird die Photodiode ein entsprechendes Signal mit der gleichen Frequenz und nahezu gleicher Phase erzeugen. Betrachtet man nun bei zwei getaktet betriebenen Leuchtdioden den hier relevanten Wechsellichtanteil bezüglich der Sendephase von 0°, so kann dieser Wechsellichtanteil positiv und negativ sein, d.h. eine Phase von 0° oder 180° aufweisen, da eine Leuchtdiode bei einer Phase von 0° und die andere bei einer Phase von 180° abstrahlt. Dabei wird 0° mit positivem Vorzeichen identifiziert und 180° mit negativem Vorzeichen. Wird nun eine weitere Lichtquelle zugeschaltet, die unabhängig von den das Licht aussendenden Lichtquellen arbeitet, kann diese Licht in Amplitude und Vorzeichen vorzugsweise gemäß den Ansprüchen 5, 6 bzw. 11, 12 phasenversetzt einstrahlen. Mit anderen Worten kann also die weitere Lichtquelle durch zusätzliche Lichteinstrahlung die Kompensation im Wesentlichen oder sogar alleine übernehmen. Dadurch wird über die Lichtleistung der weiteren Lichtquelle das taktsynchrone Empfangssignal in seiner Amplitude auch bei komplexen Messanordnungen mit Positions-, Richtungs- und Entfernungsdetektion so beeinflusst, dass das Empfangssignal zu Null wird.
Die weitere Lichtquelle kann so angeordnet sein, dass sie in einem bestimmten Abstand von der ersten Lichtquelle den gleichen reflektierenden Gegenstand beleuchtet, oder sie strahlt direkt zum Empfänger, ohne dass hier Licht vom reflektierenden Gegenstand reflektiert wird. Im ersten Fall kann damit die Leuchtdiode auch zur Abstandsdetektion eingesetzt werden, im zweiten Fall erfolgt die Abstandsdetektion ausschließlich über den Anteil der reflektierten Strahlung. In beiden Fällen sendet jedoch die weitere Lichtquelle ein zum Signal der anderen Lichtquellen versetztes Signal aus, dass in der Amplitude geregelt wird.
Während bei den sendenden Lichtquellen je nur ein Vorzeichen für die Phase vorhanden ist, kann im Empfänger, vorzugsweise einer Photodiode, das Empfangssignal das Vorzeichen wechseln. Dies ist z.B. der Fall, wenn zwei Lichtquellen so angeordnet sind, dass ein reflektierender Gegenstand ungefähr mittig zu den Lichtquellen das von beiden Lichtquellen empfangene Licht zur Photodiode reflektiert. Je nach Position ändern sich die Amplitude und das Vorzeichen des taktsynchronem Wechsellichtanteils im Empfangssignal.
Während im Stand der Technik zur Erzielung einer vollkommenen Unempfindlichkeit gegenüber Fremdlicht vorgeschlagen wurde, die Leistung der Lichtquellen so zu regeln, dass das Empfangsignal zu Null wird, wird nun auf die Leistungsregelung der Lichtquellen vorzugsweise vollständig verzichtet. Das bedeutet, dass vorzugsweise alle zur Positions- oder Abstandsdetektion benötigten Lichtquellen mit gleicher oder wenigstens fest vorbestimmter Leistung gemäß Anspruch 2 Licht abstrahlen. Damit bildet sich an der Photodiode, dem Empfänger, ein taktsynchrones Signal aus, mit je nach Reflexion entsprechender Amplitude und beliebigem Vorzeichen. Dieses Signal wird nun mit der weiteren Lichtquelle zu Null kompensiert, um wieder unempfindlich gegenüber Fremdlicht zu werden. Dabei hat diese Lichtquelle die besondere Eigenschaft, dass sie in der Leistung und im Vorzeichen veränderbar ist. Vorzugsweise strahlt diese Lichtquelle ihr Licht möglichst direkt in die Photodiode ein. Da sie auch die Lichtquelle zur Bestimmung des Abstands ersetzen kann, wird daher kein Mehraufwand benötigt. Im Gegensatz zu fünf Regelstufen für eine dreidimensionale Positionsbestimmung, von denen mindestens vier Regelstufen eine Leistung von z. B. 0 - 100 mA zu regeln haben, wird nun nur noch eine einzige Regelstufe mit einem wesentlich geringerem Leistungsbedarf benötigt. Gleichwohl können mit dem Licht dieser weiteren Lichtquelle alle möglichen Zustände der Reflexion in der Photodiode zu Null kompensiert werden.
Weitere Vorteile ergeben sich aus den Unteransprüchen.
Kurzbeschreibung der Figuren
Im folgenden wird die Erfindung anhand der beigefügten Figuren näher erläutert. Es zeigen:
Fig. 1 Eine Schaltung für eine optoelektronische Messanordnung nach dem Stand der Technik,
Fig.2 eine Schaltung für eine optoelektronische Messanordnung zur Positionsbestimmung,
Fig.3 eine Schaltung für eine optoelektronische Messanordnung zur Positions- und
Abstandsbestimmung,
Fig.4 eine Schaltung für die Beeinflussung des Ausgangswertes,
Fig. 5 den Signalverlauf von Ausgangswert und Regelwert
Beschreibung des Standes der Technik
Figur 1 zeigt eine optoelektronische Messanordnung wie sie z. B. aus der EP 0 706 648 im wesentlichen bekannt ist. Wenigstens zwei erste Lichtquellen 3, 4, die im Ausführungsbeispiel Leuchtdioden sind, strahlen Licht durch ein für die jeweilige Wellenlänge des Lichts durchlässiges Medium hindurch, wobei die gesendeten Lichtstrahlen 23, 25 an einem Objekt, wie hier einer Hand, reflektiert werden und der reflektierte Lichtanteil durch die reflektierten Lichtstrahlen 24, 26 von einem Empfänger 13 empfangen werden. Der Empfänger 13 ist vorzugsweise eine Photodiode. Dem Empfänger 13 ist ferner eine Photostromkompensation 2 zugeordnet.
Grundsätzlich kommt als transparentes Medium jedes beliebige auch nichtgegenständliche Medium in Betracht, im Ausführungsbeispiel wird in diesem Bereich eine lichtdurchlässige Scheibe 15 angeordnet, die von der Hand z. B. zur Auslösung einer bestimmten Funktion berührt werden kann. Die Lichtquellen werden vom Taktgenerator 11 angesteuert, wobei die Lichtquelle 4 zur Positionsbestimmung mit einem gegenüber der Lichtquelle 3 invertierten Takt angesteuert wird. Damit senden die Lichtquellen 3, 4 zeitsequentiell getaktet, phasenweise Licht aus.
Das optische Messsystem, das im folgenden näher erläutert wird, sendet das Licht wechselseitig so aus, dass an einem Empfänger 13 möglichst ein Gleichlichtsignal ohne taktsynchrone Wechsellichtanteile anliegt. Zu diesem Zweck wird das Empfangssignal auf taktsynchrone Wechsellichtanteile untersucht. Bei Auftreten von taktsynchronen Wechsellichtantei- len wird die Lichtleistung der Lichtquellen 3, 4 so in Abhängigkeit von der detektierten Phasenlage nachgeregelt, dass der taktsynchrone Wechsellichtanteil wieder zu Null wird. Dies erfolgt gemäß Fig. 1 so dass zunächst das vom Empfänger 13 stammende Signal einem Hochpassfilter 5 zugeleitet wird, um möglichst Gleichlichtanteile zu eliminieren. Das verbleibende Signal wird in einem Vorverstärker 6 verstärkt und dann in einem Synchrondemodula- tor 7 wieder auf die beiden den Lichtstrecken in Form des gesendeten Lichtstrahls 23 und des reflektierten Lichtstrahls 24 einerseits und in Form des gesendeten Lichtstrahls 25 und des reflektierten Lichtstrahls 26 andererseits entsprechenden Signale zerlegt. Hierzu erhält der Synchrondemodulator 7 vom Taktgenerator 11 ebenfalls den Takt übermittelt. Die den jeweiligen Lichtstrecken entsprechenden Signale werden Tiefpassfiltern 8 zugeleitet und anschließend dem Vergleicher 9 zugeführt. Dort steht dann auch das Ausgangssignal 12 an.
Die so gewonnenen Signale werden einmal unmittelbar und einmal invertiert an die den ersten Lichtquellen 3, 4 zugeordneten Regeleinheiten 17, 19 übermittelt, die im Fall der Positionsbestimmung, bei der die ersten Lichtquellen 3, 4 wechselweise Licht aussenden, die Lichtintensität der Lichtquellen 3, 4 bestimmen und damit Einfluss auf das am Empfänger eingehende Empfangssignal nehmen. Im Ausführungsbeispiel wird das Signal nach dem Vergleicher 9 auf dem linken Pfad ebenfalls einer weiteren Regeleinheit 22 zugeleitet. Das Signal der Regeleinheit 22 wird einem Treiber 21 zugeleitet, der mittels Enable-Steuerung von der Ablaufsteuerung 16 bedarfsweise angesteuert wird, um über die als Kompensations- lichtquelle ausgebildete weitere Lichtquelle 14, ebenfalls eine Leuchtdiode, den Anteil des Wechsellichts an der Photodiode zu Null zu machen und dadurch Fremdlichteinflüsse wei- testgehend auszuschließen.
Im Schaltplan sind mehrere von der Ablaufsteuerung 16 ansteuerbare Multiplexer 10, 18, 20 vorgesehen, die insbesondere dann erforderlich sind, wenn die Vorrichtung gemäß Figur 1 nicht nur zur Positionsbestimmung sondern auch zur Abstandsbestimmung eingesetzt werden soll. Während bei der Positionsbestimmung die Leuchtdioden wechselweise strahlen, werden für die Abstandsbestimmung die Lichtquellen 3, 4 gleichzeitig beaufschlagt. Dies ist insbesondere aus der älteren Patentanmeldung 101 33823 bekannt, auf die insofern hiermit ausdrücklich bezug genommen wird.
Für die Positionsbestimmung liefert der Taktgenerator an die Lichtquelle 4 ein gegenüber dem Signal für die Lichtquelle 3 invertiertes Signal, das einerseits der weiteren Lichtquelle 14 aber andererseits auch über den Multiplexer 10 der Regeleinheit 19 und Multiplexer 20 zugeleitet wird. Im Fall der Abstandsmessung hingegen wird dasselbe Signal, das an die Lichtquelle 3 über den Multiplexer 18 gegeben wird, gemäß dem oberen in den Multiplexer 10 eintretenden Pfad auch an die Lichtquelle 4 gegeben. Deutlich ist zu erkennen, dass bereits in diesem vereinfachten Ausführungsbeispiel drei Regeleinheiten 17, 19, 22 und mehrere Multiplexer 18, 20 zur Lösung dieser Aufgabenstellung erforderlich sind.
Ausführliche Beschreibung bevorzugter Ausführungsbeispiele
Die Erfindung wird jetzt beispielhaft unter Bezug auf die beigefügten Zeichnungen näher erläutert. Allerdings handelt es sich bei den Ausführungsbeispielen nur um Beispiele, die nicht das erfinderische Konzept auf eine bestimmte Anordnung beschränken sollen.
Gemäß den Figuren 2 und 3 wird nun die erfindungsgemäße Lösung erläutert, bei der in Figur 2 die reine Positionserfassung und in Figur 3 die Positions- und Abstandserfassung dargestellt sind. Bereits ein bloßer Vergleich der Schaltpläne macht deutlich, dass auf mehrere Regeleinheiten und zumindest einen Teil der Multiplexer verzichtet werden kann, obwohl diese Lösungen die gleiche Aufgabe lösen wie die Schaltung gemäß Fig. 1.
Bevor auf die einzelnen Ausführungsformen eingegangen wird, wird zunächst das grundsätzliche Prinzip erläutert. Für die Fremdlichtkompensation unter Regelung des taktsynchronen Wechsellichtanteils, der zwischen unterschiedlichen Phasen auftritt, zu Null, wird in den Ausführungsbeispielen gemäß Fig.2 und 3 eine weitere Lichtquelle 14 eingesetzt, die eine von den ersten Lichtquellen 3, unabhängige Lichtquelle ist. Diese weitere Lichtquelle 14 ist dem Empfänger 13 zugeordnet und in ihrer Lichtintensität in Amplitude und Vorzeichen regelbar. Vorzugsweise wird die weitere Lichtquelle 14 so angeordnet, dass sie direkt zum Empfänger 13 strahlt, ohne dass ihr Licht vom reflektierenden Gegenstand reflektiert wird. Im ersten Fall kann die Position des reflektierenden Gegenstandes im Verhältnis zur Anordnung der Photodiode nach den Lichtquellen bestimmt werden, im zweiten Fall kann ausschließlich über den Anteil der reflektierten Strahlung der Abstand zum Gegenstand bestimmt werden. Als Lichtquellen kommen grundsätzlich alle Arten von Lichtstrahlung aussendenden Elementen, aber insbesondere Leuchtdioden oder Laserdioden in Betracht.
Vorzugsweise die gesamte Regelung wird dieser weiteren Lichtquelle 14 zugeschrieben, wobei diese Lichtquelle „negatives Licht" aussendet. Was ist damit gemeint:
Am Empfänger 3 überlagern sich additiv die Sendesignale einerseits aus den Lichtstrecken, also die Signale stammend von den ersten Lichtquellen 3, 4, reflektiert an der Hand 1 mit dem Sendesignal der weiteren Lichtquelle 14. Da es bei diesem System im wesentlichen auf den Wechsellichtanteil ankommt, wird dieser Wechsellichtanteil bezüglich der Sendephase näher betrachtet. Dabei wird der einen Lichtquelle 3 die Sendephase von 0° und der anderen Lichtquelle 4 die Sendephase von 180° zugewiesen. Schaut man sich diesen Wechsellichtanteil nun bezüglich der Sendephase von 0° an, so kann dieser Wechsellichtanteil positiv und negativ sein, das heißt eine Phase von 0° oder 180° aufweisen. Bei einem Phasenversatz von 180° werden zwei Lichtquellen eingesetzt. Entsprechend phasenversetzt können die Signale bei mehreren Lichtquellen auftreten.
0° wird nun mit „positiv" identifiziert und 180° mit „negativ". Die weitere Lichtquelle 14, also der Kompensator, der hier nur auf den Empfänger 13 strahlt, wird nun so geregelt in Amplitude und Vorzeichen, gleichbedeutend mit Phase, dass der Wechsellichtanteil zu Null wird. Während die ersten Lichtquellen 3, 4 z. B. mit gleichbleibender oder fest vorgegebener Lichtintensität Licht aussenden, wird die weitere Lichtquelle 14 im Ausgangszustand, bei dem üblicherweise keine taktsynchronen Wechsellichtanteile vorliegen, in einem mittleren Bereich betrieben, so dass sie Licht mit einer mittleren Intensität ausstrahlt. Zur Fremdlichtkompensation bzw. zur Regelung des Wechsellichtanteils kann diese weitere Lichtquelle nun so taktsynchron geregelt werden, dass sie einerseits in der Amplitude aus diesem Mittelbereich nach unten oder oben heraus regelbar ist, andererseits aber auch durch die Ansteuerung phasenversetzt im Vorzeichen beeinflussbar ist. Grundsätzlich können auch mehr als zwei Lichtstrecken entsprechend betrieben werden. Dabei können die Lichtquellen in einem beliebigen Winkel versetzt betrieben werden. So kann z.B. bei vier Messstrecken der Winkelkreis in beliebige Winkel aufgeteilt werden, vorzugsweise wird man in diesem Fall jedoch eine Winkelversatz von 90° wählen. Entsprechendes gilt für eine andere Anzahl von Messstrecken.
Betrachtet man Fig. 2, die Ausführungsform zur Positionsbestimmung, so sind zunächst die ersten Lichtquellen 3, 4 wie im Stand der Technik vorhanden, die vom Taktgenerator 11 wechselweise mit invertiertem Signal angesteuert werden. Das aus den Lichtstrecken stammende Signal geht am Empfänger 13 ein und wird wie im Stand der Technik über Hochpassfilter 5, Vorverstärker 6, Synchrondemodulator 7, Tiefpassfilter 8, und Vergleicher 9 geführt, um daraus nun das Ausgangssignal 28 zu erhalten. Dieses Ausgangssignal wird zugleich der Regeleinheit 27 zugeführt, die einerseits beide Takte erhält und entsprechend die weitere Lichtquelle 14 zur Kompensation ansteuert.
Bei dieser Positionsbestimmung gemäß Fig. 2 sendet z. B. die Leuchtdiode 3 mit konstanter Amplitude und Phase 0° also mit positivem Vorzeichen, während die Lichtquelle 4 ebenfalls mit konstanter Amplitude jedoch mit Phase 180° und damit negativem Vorzeichen sendet. Die weitere Lichtquelle 14 wird nun so in Vorzeichen und Amplitude geregelt, dass die Summe aller Wechsellichtsignale am Empfänger 13 zu Null wird. Hierzu werden der Regeleinheit 27 beide Takte 0° und 180° zugeführt. Das insofern durch die Regeleinheit 27 abgebildete Potentiometer verdeutlicht das Steuerelement, das in Mittelstellung die Amplitude Null hat. In den beiden Endanschlägen ist die Amplitude maximal mit der jeweiligen Phase bzw. dem Vorzeichen des Anschlusses. Grundsätzlich strahlt die weitere Lichtquelle 14 somit in Phase mit der oder den schwächeren Lichtquellen, je nachdem welche der ersten Lichtquellen 3,4 die schwächere oder die schwächeren sind.
Die Schaltung gemäß Fig. 3 ist ergänzend nun auch zur Abstandsbestimmung bestimmt und unterscheidet sich insofern im wesentlichen durch die Anordnung des Multiplexers 10. Während die Signalerfassung und die Bestimmung des Ausgangssignals 29 mit Figur 2 identisch ist, muss diese Schaltung nun auch dafür geeignet sein, dass die ersten Lichtquellen 3, 4 gleichzeitig Licht aussenden können. Hierzu wird, wie zur Figur 1 bereits erläutert, das Taktsignal einer Ablaufsteuerung 16 zugeleitet, die den Multiplexer 10 ansteuert. Für die Positionsbestimmung wird über den Multiplexer 10 ein invertiertes Signal an die Lichtquelle 4 ü- bermittelt, so dass die Lichtquellen wie in Fig. 2 wechselweise Licht zur Positionsbestim- mung aussenden. Bei der Abstandsbestimmung hingegen senden die Lichtquellen gleichzeitig Licht aus. Daher wird für die Abstandsbestimmung ein - nicht invertiertes - Signal an die Lichtquelle 4 übermittelt wird, das gleichzeitig auch an die Lichtquelle 3 übermittelt wird. Für die Abstandsmessung senden also die ersten Lichtquellen 3 und 4 beide mit konstanter Amplitude und Phase 0°, also mit positivem Vorzeichen. Die weitere Lichtquelle 14 wird bei dieser Abstandsmessung in der Amplitude so geregelt, dass die Summe aller Wechsellicht- signale am Empfänger 13 zu Null wird. Der Betriebsmodus für die Positionsbestimmung erfolgt abgesehen von der Zwischenschaltung des Multiplexers 10 identisch wie zu Figur 2 beschrieben.
Betrachtet man also nur die Summe der Wechsellichtsignale am Empfänger 13 und ordnet einer Phasenlage von 0° das Vorzeichen Plus zu und der Phasenlage von 180° das Vorzeichen Minus zu, so muss die weitere Lichtquelle 14 als Kompensator einmal mit positivem Vorzeichen und einmal mit negativem Vorzeichen senden. „Negatives Licht" ist also in diesem Falle nur modelliertes Licht, das vorzugsweise um 180° phasenverschoben ist.
Figur 4 und 5 zeigen wie die Signale in der Regelelnheit 27 gemischt werden. Die Schaltung erhält einerseits das Eingangssignal 34 vom Taktgenerator 11. Ferner wird der Schaltung der Regelwert 36 zugeführt, der von den Ausgangssignalen 28 oder 29 in Fig, 2 bzw. 3 abgeleitet ist. Dieser Regelwert wird üblicherweise im ausgeglichenen Zustand in der Hälfte des vorhandenen Regelbereichs U, in diesem Falle z.B. bei U/2 liegen.
In der Regeleinheit wird nun einerseits das Eingangssignal 34 „Takt" einmal unmittelbar und einmal durch Inverter 30 invertiert Multiplizierern 31 zugeleitet. Die Multiplizierer erhalten ebenso den Regelwert vom Treiber 32 einmal invertiert und einmal nicht invertiert. Die so den Multiplizierern zugeführten Signale werden dort entsprechend multipliziert und dann über eine Additionsstufe 33 zusammengeführt, so dass sich als Ausgangswert 35 ein entsprechender größerer oder kleinerer Wert ergibt, der zur Ansteuerung der weiteren Lichtquelle 14 verwendet wird. Bei gleicher Ansteuerung aus dem Treiber 32 liefern die Multiplizierer 31 jeweils einen Signalanteil des Eingangssignals 34 „Takt" von z.B. 50% der Amplitude mit der Phase 0° und der Phase 180° an die Additionsstufe 33. Aufgrund gleicher Amplitude bei um 180° gedrehter Phase heben sich beide Signale auf und am Ausgang der Additionsstufe liegt nur ein Gleichspannungssignal ohne taktsynchrone Anteile an.
Weist man der Lichtquelle 3 den Takt A und der Lichtquelle 4 den Takt B zu, kann sich gemäß Fig. 5 folgendes Bild ergeben. Liegt z. B. gemäß Fig. 5 links aufgrund einer entspre- - lo ¬
chenden Reflexion ein positiver Regelwert vor, so wird das Ausgangssignal 35 eine positive Taktphase von 0° mit einem in der Amplitude größeren Signal im Takt B und einem in der Amplitude kleineren Signal im Takt A erzeugen. Bei entsprechend negativer Regelspannung gemäß Fig. 5, Mitte dreht sich die Phase entsprechend um. Das Ausgangsignal 35 versucht somit den taktsynchronen Anteil des Empfangssignals an der Photodiode zu Null zu kompensieren, der Ausgangswert an die weitere Lichtquelle je nach Taktphase A, B so angesteuert, dass sich eine entsprechende Regelspannung ergibt. Der an die weitere Lichtquelle gelieferte Ausgangswert 35 wird also so bestimmt, dass er in der Gegenphase so viel Licht erhält, dass sich ein positiver Regelwert ergibt.
Im umgekehrten Fall einer negativen Taktphase mit negativem Regelwert wird der Ausgangswert 35 entsprechend umgekehrt angesteuert, so dass hier nun die Taktphase A den größeren „Kompensationswert" erhält, so dass sich der Regelwert im Negativen bewegt. Die Regelspannung wird damit von der positiven Phase in die negative Phase verändert. Bei einem gleichbleibenden Regelwert wie in Figur 5 ganz rechts dargestellt erhält die weitere Lichtquelle 14 einen gleichbleibenden Ausgangswert und strahlt damit mit gleichbleibender Lichtleistung ein. Zusammengefasst wird also eine Schaltung geschaffen, die mit erheblich weniger Bauteilen in der Lage ist, Positions- und Abstandsmessung unter Fremdlichtkompensation durchzuführen.
Es versteht sich von selbst, dass diese Beschreibung verschiedensten Modifikationen, Änderungen und Anpassungen unterworfen werden kann, die sich im Bereich von Äquivalenten zu den anhängenden Ansprüchen bewegen.
Bezugszeichenliste
1 Hand
2 Photostromkompensation
3, 4 erste Lichtquelle
5 Hochpassfilter
6 Vorverstärker
7 Synchrondemodulator
8 Tiefpassfilter
9 Vergleicher
10 Multiplexer
11 Taktgenerator
12 Ausgangssignal
13 Empfänger
14 Weitere Lichtquelle
15 Lichtdurchlässige Scheibe
16 Ablaufsteuerung
17, 19 Regeleinheit
18, 20 Multiplexer
21 Treiber mit Enable-Steuerung
22 Regeleinheit
23, 25 Gesendeter Lichtstrahl
24, 26 Reflektierter Lichtstrahl
27 Regeleinheit
28, 29 Ausgangssignal
30 Inverter
31 Multiplizierer
32 Treiber mit invertierendem und nichtinvertierendem Ausgang
33 Additionsstufe
34 Einganssignal von 11
35 Ausgangswert
36 Regelwert

Claims

Patentansprüche
1. Optoelektronische Messanordnung mit wenigstens zwei ersten Lichtquellen (3,4) die Licht zeitsequentiell getaktet, phasenweise aussenden, und mit wenigstens einem Empfänger (13) zum Empfang zumindest des von den ersten Lichtquellen (3,4) stammenden taktsynchronen Wechsellichtanteils, sowie mit einer Vorrichtung zur Fremdlichtkompensation durch Regelung der in die Messanordnung durch wenigstens eine Lichtquelle eingestrahlten Lichtintensität, so dass der taktsynchrone Wechsellichtanteil, der zwischen unterschiedlichen Phasen auftritt, zu Null wird, dadurch gekennzeichnet, dass die für die Regelung eingesetzte, wenigstens eine weitere Lichtquelle (14) eine von den ersten Lichtquellen (3,4) unabhängige Lichtquelle ist, die dem Empfänger (13) zugeordnet ist und die in ihrer Lichtintensität in Amplitude und Vorzeichen regelbar ist.
2. Optoelektronische Messanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die ersten Lichtquellen (3,4) LEDs sind, die mit gleichbleibender, aber getakteter Lichtintensität Licht aussenden.
3. Optoelektronische Messanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die weitere Lichtquelle (14) eine LED ist.
4. Optoelektronische Messanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die weitere Lichtquelle (14) im Ausgangszustand ohne taktsynchronen Wechsellichtanteil Licht mit einer mittleren Intensität abstrahlt, so dass sie aus dem Ausgangszustand in Phase und Amplitude regelbar ist.
5. Optoelektronische Messanordnung nach Anspruch 4, dadurch gekennzeichnet, dass die weitere Lichtquelle (14) in Phase mit der oder den schwächeren Lichtquellen der ersten Lichtquellen (3,4) ein Signal aussendet.
6. Optoelektronische Messanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Regelung einer das Licht in einer Phase aussendenden Lichtquelle (3,4) die weitere Lichtquelle (14) in Amplitude und Phase bzw. Gegenphase so geregelt wird, dass der Wechsellichtanteil zu Null wird.
. Verfahren zur phasenkorrekten Kompensation eines differentiellen optischen Signals mit einer optoelektronischen Messanordnung mit wenigstens zwei ersten Lichtquellen (3,4), die Licht zeitsequentiell getaktet, phasenweise aussenden, und mit wenigstens einem Empfänger (13) zum Empfang zumindest des von den ersten Lichtquellen (3,4) stammenden taktsynchronen Wechsellichtanteils, wobei zur Fremdlichtkompensation die in die Messanordnung durch wenigstens eine Lichtquelle eingestrahlte Lichtintensität so geregelt wird, dass der taktsynchrone Wechsellichtanteil, der zwischen den verschiedenen Phasen auftritt, am Empfänger zu Null wird, dadurch gekennzeichnet, dass wenigstens eine weitere Lichtquelle (14), die dem Empfänger (13) zugeordnet ist, unabhängig von den ersten Lichtquellen (3,4) in ihrer Lichtintensität in Amplitude und Vorzeichen geregelt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Lichtquellen (3,4) als LEDs Licht mit konstanter Lichtintensität aussenden.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die weitere Lichtquelle (14) im Ausgangszustand ohne taktsynchronen Wechsellichtanteil Licht in einer mittleren Intensität abstrahlt, so dass sie aus dem Ausgangszustand in Phase und Amplitude regelbar ist.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die weitere Lichtquelle (14) in Phase mit der oder den schwächeren Lichtquellen der ersten Lichtquellen (3,4) zugeschaltet wird.
PCT/EP2003/014697 2003-01-03 2003-12-20 Optoelektronische messanordnung mit fremdlichtkompensation sowie verfahren zur phasenkorrekten kompensation eines signals der messanordnung WO2004061639A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03789377.3A EP1579307B1 (de) 2003-01-03 2003-12-20 Optoelektronische messanordnung mit fremdlichtkompensation sowie verfahren zur phasenkorrekten kompensation eines signals der messanordnung
AU2003293964A AU2003293964A1 (en) 2003-01-03 2003-12-20 Optoelectronic measuring system with extraneous light compensation, and method for carrying out the phase-correct compensation of a signal of the measuring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10300223A DE10300223B3 (de) 2003-01-03 2003-01-03 Optoelektronische Messanordnung mit Fremdlichtkompensation sowie Verfahren zur phasenkorrekten Kompensation eines Signals der Messanordnung
DE10300223.5 2003-01-03

Publications (1)

Publication Number Publication Date
WO2004061639A1 true WO2004061639A1 (de) 2004-07-22

Family

ID=32336632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/014697 WO2004061639A1 (de) 2003-01-03 2003-12-20 Optoelektronische messanordnung mit fremdlichtkompensation sowie verfahren zur phasenkorrekten kompensation eines signals der messanordnung

Country Status (4)

Country Link
EP (1) EP1579307B1 (de)
AU (1) AU2003293964A1 (de)
DE (1) DE10300223B3 (de)
WO (1) WO2004061639A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007085382A1 (de) * 2006-01-24 2007-08-02 Mechaless Systems Gmbh Verfahren zur lichtlaufzeitmessung
US9012827B2 (en) 2010-07-06 2015-04-21 Mechaless Systems Gmbh Optoelectronic measuring system with a compensation light source

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10322552A1 (de) 2003-05-20 2004-12-30 Gerd Reime Verfahren und Vorrichtung zum Messen eines modulierten Lichtsignals
DE10346741B3 (de) * 2003-10-08 2005-03-24 Mechaless Systems Gmbh Verfahren zur Bestimmung und/oder Auswertung eines differentiellen optischen Signals
DE102005005411B4 (de) * 2005-02-05 2022-12-22 Volkswagen Ag Kraftfahrzeug mit einem Bedienelement
DE102005045993B4 (de) * 2005-07-29 2008-11-13 Gerd Reime Verfahren zur Lichtlaufzeitmessung
DE102007005187B4 (de) * 2007-01-29 2008-11-20 Gerd Reime Verfahren und Vorrichtung zur Bestimmung einer Entfernung zu einem rückstrahlenden Objekt
EP2037239B1 (de) 2007-09-12 2010-11-17 Behr-Hella Thermocontrol GmbH Sensoreinheit für den Einbau in Fahrzeugen
EP2159600A1 (de) 2008-08-28 2010-03-03 ELMOS Semiconductor AG Elektro-optischer Detektor zur Erkennung des Vorhandenseins und/oder der Annäherung eines Objekts
EP2288053A1 (de) 2009-08-19 2011-02-23 Mechaless Systems GmbH Optischer Empfänger zum Empfangen von Licht
DE102011014374B3 (de) 2011-03-17 2012-04-12 Gerd Reime Optoelektronischer Drehgeber
CN104185799B (zh) 2012-02-03 2017-06-30 梅卡雷斯系统有限责任公司 补偿线路板上的光学传感器
DE102012024778A1 (de) * 2012-05-23 2013-11-28 Elmos Semiconductor Ag Kontinuierlich arbeitende, berührungslose, optische Gestenerkennungsvorrichtung
DE102012024597B4 (de) * 2012-12-13 2014-07-24 Elmos Semiconductor Ag Zeitauflösendes Verzögerungsmesssystem
WO2014096385A1 (de) 2012-12-21 2014-06-26 Elmos Semiconductor Ag Vorrichtung zur bestimmung einer eigenschaft eines uebertragungskanals zwischen einem sender und einem empfaenger
DE102013013664B3 (de) * 2013-08-17 2014-08-14 Elmos Semiconductor Ag Zeitauflösendes Verzögerungsmesssystem
EP3124993B1 (de) 2013-08-22 2021-10-06 Elmos Semiconductor SE Störkompensierte vorrichtung zur vermessung einer optischen signalübertragungsstrecke
WO2015025014A1 (de) * 2013-08-22 2015-02-26 Elmos Semiconductor Ag Störkompensierte vorrichtung zur vermessung einer optischen signalübertragungsstrecke
DE102014012158A1 (de) 2013-09-12 2015-03-12 Mechaless Systems Gmbh Gestenerkennungsverfahren und Gestenerkennungsvorrichtung
DE102018111786A1 (de) * 2018-05-16 2019-11-21 Behr-Hella Thermocontrol Gmbh Vorrichtung zur Erkennung der Annäherung eines Objekts
DE102020119245B4 (de) 2019-07-23 2024-06-13 Elmos Semiconductor Se Halios-Vorrichtung mit metalllagenfreiem Empfänger und Kompensation mittels Phononenstrahlung eines Heizelements oder eines elektroakustischen Wandlers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849186C2 (de) 1977-11-23 1990-10-18 Asea Ab, Vaesteraas, Se
EP0706648A1 (de) * 1993-07-02 1996-04-17 Gerd Reime Anordnung zum messen oder erkennen einer veränderung an einem rückstrahlenden element
EP1013382A1 (de) 1998-12-22 2000-06-28 HILTI Aktiengesellschaft Kartuschenmagazin
DE10001955A1 (de) 2000-01-18 2001-07-19 Gerd Reime Opto-elektronischer Schalter
DE10106998A1 (de) 2000-11-04 2002-05-29 Stefan Reich Verfahren und Vorrichtung zur optischen Objekterfassung
WO2003009476A1 (de) 2001-07-16 2003-01-30 Gerd Reime Optoelektronische vorrichtung zur positions- und bewegungserfassung sowie zugehöriges verfahren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19641035C2 (de) * 1996-10-04 1999-09-16 Heidenhain Gmbh Dr Johannes Vorrichtung und Verfahren zur Positionsmessung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2849186C2 (de) 1977-11-23 1990-10-18 Asea Ab, Vaesteraas, Se
EP0706648A1 (de) * 1993-07-02 1996-04-17 Gerd Reime Anordnung zum messen oder erkennen einer veränderung an einem rückstrahlenden element
EP0706648B1 (de) 1993-07-02 1997-09-03 Gerd Reime Anordnung zum messen oder erkennen einer veränderung an einem rückstrahlenden element
EP1013382A1 (de) 1998-12-22 2000-06-28 HILTI Aktiengesellschaft Kartuschenmagazin
DE10001955A1 (de) 2000-01-18 2001-07-19 Gerd Reime Opto-elektronischer Schalter
DE10106998A1 (de) 2000-11-04 2002-05-29 Stefan Reich Verfahren und Vorrichtung zur optischen Objekterfassung
WO2003009476A1 (de) 2001-07-16 2003-01-30 Gerd Reime Optoelektronische vorrichtung zur positions- und bewegungserfassung sowie zugehöriges verfahren

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007085382A1 (de) * 2006-01-24 2007-08-02 Mechaless Systems Gmbh Verfahren zur lichtlaufzeitmessung
KR101266687B1 (ko) 2006-01-24 2013-05-28 메카레스 시스템스 게엠베하 광의 전달 시간 측정 방법
US8643827B2 (en) 2006-01-24 2014-02-04 Mechaless Systems Gmbh Method for measuring the propagation time of light
US9012827B2 (en) 2010-07-06 2015-04-21 Mechaless Systems Gmbh Optoelectronic measuring system with a compensation light source

Also Published As

Publication number Publication date
EP1579307A1 (de) 2005-09-28
DE10300223B3 (de) 2004-06-24
AU2003293964A1 (en) 2004-07-29
EP1579307B1 (de) 2018-10-31

Similar Documents

Publication Publication Date Title
DE10300223B3 (de) Optoelektronische Messanordnung mit Fremdlichtkompensation sowie Verfahren zur phasenkorrekten Kompensation eines Signals der Messanordnung
EP1913420B1 (de) Verfahren zur lichtlaufzeitmessung
WO2012004048A1 (de) Optoelektronische messanordnung mit einer kompensationslichtquelle
AT395914B (de) Photoelektrische positionsmesseinrichtung
EP1003012B1 (de) Optische Positionsmesseinrichtung
DE112014002787B4 (de) Verfahren zur Bestimmung des Abstandes eines Objektes mittels eines polarisationsmodulierten Sendelichtstrahls
DE69717892T2 (de) Laserstrahlvorrichtung und ihr Ziel
WO2012013757A1 (de) Opto-elektronische messanordnung mit elektro-optischer grundkopplung
EP1813965B1 (de) PMD-System und Verfahren zur Abstandsmessung von einem Objekt
WO2008092611A1 (de) Verfahren und vorrichtung zur bestimmung einer entfernung zu einem rückstrahlenden objekt
EP1529194A1 (de) Verfahren und vorrichtung zur optischen distanzmessung
EP2159600A1 (de) Elektro-optischer Detektor zur Erkennung des Vorhandenseins und/oder der Annäherung eines Objekts
WO2019243292A1 (de) Lichtlaufzeitkamerasystem mit einer einstellbaren optischen ausgangsleistung
DE102005020028A1 (de) Verfahren zur Objektdetektion mittels mehrerer Sensoren
DE102016219518B4 (de) Lichtlaufzeitkamerasystem
EP1585234A1 (de) Photomischdetektor (PMD)-System und Verfahren zum Betreiben desselben
DE102011081568B3 (de) Optischer Empfänger für einen Lichtlaufzeitsensor
DE102011081560A1 (de) Lichtlaufzeitkamerasystem mit Signalpfadüberwachung
WO2010089254A1 (de) Elektrooptisches steuer- oder regelgerät und verfahren zum austausch von steuer- oder regelsignalen
EP0143165B1 (de) Abstandssensor zur Ermittlung des Abstandes zu einem nahegelegenen Objekt
DE102016101269A1 (de) Optoelektronischer Multifunktionssensor und Verfahren zu seinem Betrieb
WO2020207740A1 (de) Lidar-sensor zur optischen erfassung eines sichtfeldes und verfahren zur ansteuerung eines lidar-sensors
EP2227671A1 (de) Anordnung und verfahren zu einer bestimmung einer position und/oder orientierung zweier objekte relativ zueinander
DE19936181A1 (de) Optische Positionsmeßeinrichtung
AT396840B (de) Vorrichtung zur erzeugung von referenzsignalen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003789377

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003789377

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP