WO2004061306A1 - Swash plate-type variable displacement compressor for supercritical refrigeration cycle - Google Patents

Swash plate-type variable displacement compressor for supercritical refrigeration cycle Download PDF

Info

Publication number
WO2004061306A1
WO2004061306A1 PCT/JP2003/016638 JP0316638W WO2004061306A1 WO 2004061306 A1 WO2004061306 A1 WO 2004061306A1 JP 0316638 W JP0316638 W JP 0316638W WO 2004061306 A1 WO2004061306 A1 WO 2004061306A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
swash plate
refrigeration cycle
refrigerant
type variable
Prior art date
Application number
PCT/JP2003/016638
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kanai
Shunichi Furuya
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Priority to US10/540,471 priority Critical patent/US20060083628A1/en
Priority to JP2004564511A priority patent/JPWO2004061306A1/en
Priority to EP03789631A priority patent/EP1586774A4/en
Publication of WO2004061306A1 publication Critical patent/WO2004061306A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members

Definitions

  • the present invention relates to a swash plate type variable displacement compressor used for a supercritical refrigeration cycle.
  • Various configurations are conventionally known for the intake valve and the discharge valve of a swash plate type variable displacement compressor that compresses the refrigerant of a refrigeration cycle.
  • a discharge valve in which a valve body is pressed against a valve seat of a discharge port in an elastically deformed state.
  • the structure of this type of discharge valve is also disclosed in, for example, Japanese Patent Application Laid-Open No. 61-44074 and Japanese Patent Application Laid-Open No. 2001-150300.
  • lubricating oil is mixed in the refrigerant of the refrigeration cycle, and in order to ensure good opening and closing operation of the suction valve and the discharge valve, the surface tension of the lubricating oil that goes around the gap between the valve body and the valve seat is considered. There is a need. Although the surface tension of the lubricating oil is important for ensuring the tightness of the valve, it becomes a resistance when the valve opens, so if it is larger than necessary, the operation of the valve will be delayed and the compressor will not operate. It also causes the vibration and noise of the vehicle to increase. JP-A-7-167058 and JP-A-7-168062 disclose the valve element and the valve even when the valve element is closed in order to deal with such a problem.
  • a valve structure configured to leave a slight gap between the seat and the seat is disclosed.
  • the suction valve and the discharge valve have been given importance in such a configuration as to prevent vibration and noise.
  • Cool C 0 2 The internal pressure of a refrigeration cycle that uses a medium is extremely high when compared to a refrigeration cycle that uses a chlorofluorocarbon-based refrigerant.
  • the pressure on the high-pressure side may exceed the critical point of the refrigerant depending on operating conditions such as air temperature. is there.
  • the critical point is the limit on the high-pressure side where the gas and liquid layers coexist (that is, the limit on the high-temperature side), and is the end point of one of the vapor pressure curves.
  • the pressure, temperature and density at the critical point are the critical pressure, critical temperature and critical density, respectively.
  • the refrigerant does not condense.
  • This type of supercritical refrigeration cycle is installed in, for example, an automobile and used for air conditioning in a vehicle.
  • a compressor used in a supercritical refrigeration cycle is also described, for example, in Japanese Patent Application Publication No. 2002-25707.
  • the compressor described in this publication is configured such that the stroke of the piston can be changed according to the inclination of a swash plate provided rotatably.
  • the piston is held by the cylinder so as to be able to reciprocate, and the cylinder is provided with a suction valve for sucking the refrigerant and a discharge valve for discharging the refrigerant.
  • the refrigerant circulating in the refrigeration cycle is drawn into the cylinder from the suction valve, compressed, and discharged from the discharge valve to the outside of the cylinder.
  • the compressor is connected to a power engine of a vehicle and is operated by the power of the power engine.
  • the supercritical refrigeration cycle is significantly different from the conventional chlorofluorocarbon-based refrigeration cycle in terms of pressure resistance, and the compressor for the supercritical refrigeration cycle also has a superior structure based on the pressure resistance and other factors. A creative ingenuity is required.
  • a clutchless compressor connected to a driving engine of the vehicle without using a clutch.
  • its swash plate rotates constantly even when the refrigerant is not compressed, and the minimum stroke of the piston is usually about 5% or less of the maximum stroke. I have. In recent years, it has become a very important issue for such a clutchless compressor to reduce the number of revolutions at startup.
  • the pressure of the refrigerant when the compressor is started is about 7.2 MPa in a 30 ° C atmosphere.
  • the pressure of the refrigerant when the compressor is started is about 0.67 MPa under a 30 ° C atmosphere.
  • the bore diameter of the silicon Sunda is 1 5. 0 ⁇ 2 1.
  • the volume of Siri Sunda is 2 0 ⁇ 3 3 cm 3, inhalation the opening area of the port in the valve and discharge valve are 7. 0 ⁇ 2 9. 0 mm 2.
  • Bo ⁇ the diameter of the silicon Sunda is 3 2 to 4 0 mm, the volume of Siri Sunda is 9 0 cm 3 ⁇ 1 7 0 cm 3, intake valves and the opening area of the port at the discharge valve 3 8.5 - a 1 1 3. 0 mm 2.
  • the present invention has been made in view of such circumstances, and an object thereof is to achieve an improvement in performance of a swash plate type variable displacement compressor for a supercritical refrigeration cycle. Disclosure of the invention
  • the invention described in claim 1 of the present application is a compressor used in a supercritical refrigeration cycle, wherein the swash plate is rotatably provided, a piston connected to the swash plate, and the piston is moved.
  • a swash plate type variable capacity compressor comprising: a suction valve for sucking the refrigerant of the supercritical refrigeration cycle; and a discharge valve for discharging the refrigerant.
  • the suction valve is provided with a flexible valve body at a suction port for sucking the refrigerant, and the swash plate type variable capacity compressor rotates the swash plate when the refrigerant starts to be compressed.
  • a swash plate type variable displacement compressor having a configuration in which the valve body is pressed against the valve seat of the suction port in an elastically deformed state. According to such a configuration, the performance of the swash plate type variable displacement compressor for the supercritical refrigeration cycle is surely improved.
  • the inventor of the present application conducted various trial manufactures and experiments on various valve structures in order to obtain a suitable valve structure in a swash plate type variable displacement compressor for a supercritical refrigeration cycle.
  • the suction valve is more important than the discharge valve from the viewpoint of reducing the number of revolutions at startup.
  • the suction valve which was the most effective in securing startability, durability, and good opening and closing operations of the valve element, has flexibility in the suction port for sucking refrigerant.
  • the valve body was mounted, and the valve body was pressed against the valve seat of the suction port with a slight elastic deformation.
  • the valve element of the suction valve is designed in consideration of appropriate internal stress after being mounted on the suction port.
  • the present invention focuses on a very important structure in the details of the swash plate type variable displacement compressor used in the supercritical refrigeration cycle, and as a result, with a very simple structural device, This is a swash plate type variable displacement compressor that has achieved a remarkable effect of dramatically improving the performance of such a compressor.
  • the valve body is The swash plate type having a configuration in which the deflection of the valve body when the suction port is attached is lmm or less and the external force received by the valve body from the valve seat of the suction port is 1.8 N or less at this time. It is a variable capacity compressor. That is, if the deflection of the valve body is set to 1 mm or less and the external force that the valve body receives from the valve seat of the suction port is set to 1.8 N or less, the valve body can be smoothly opened and closed while maintaining the opening and closing operation. It is possible to ensure good seating properties between the valve and the valve seat.
  • the invention described in claim 3 of the present application is the invention according to claim 1 or 2, wherein the supercritical refrigeration cycle is a refrigeration cycle for air conditioning in a vehicle mounted on an automobile, and the swash plate type variable displacement compressor includes a clutch.
  • a swash plate type variable displacement compressor configured to be a clutchless compressor that is connected to the drive engine of the vehicle without intervention. That is, the swash plate type variable displacement compressor of the present invention reliably reduces the number of revolutions of the swash plate when the refrigerant starts to be compressed, and as a clutchless compressor used in a refrigeration cycle for air conditioning in a vehicle, It can be used very suitably.
  • FIG. 1 is a schematic diagram showing a supercritical refrigeration cycle according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a supercritical refrigeration cycle according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a swash plate type variable displacement compressor for a supercritical refrigeration cycle according to an embodiment of the present invention.
  • FIG. 2 is a front view showing a valve plate and a cylinder-side valve element plate according to the embodiment of the present invention.
  • FIG. 2 is a front view showing a valve plate and a valve plate on a rear housing side according to the embodiment of the present invention.
  • Fig. 5 is a front view showing a valve plate and a valve plate on a rear housing side according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • Fig. 6 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • FIG. 2 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • Fig. 7 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • Fig. 8 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • Fig. 9 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • Fig. 1 1
  • FIG. 2 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • Fig. 1 2 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • Fig. 13 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • FIG. 2 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention.
  • the supercritical refrigeration cycle 1 of the present embodiment is a refrigeration cycle for in-vehicle air conditioning mounted on an automobile, and includes a swash plate type variable capacity compressor 10 for compressing a solvent, and the compressor 10 A radiator 20 for cooling the refrigerant compressed by the radiator 20, an expansion valve 30 for decompressing and expanding the refrigerant cooled by the radiator 20, and an evaporator 4 for evaporating the refrigerant decompressed by the expansion valve 30.
  • an accumulator 50 that separates the refrigerant flowing out of the evaporator 40 into a gas phase and a liquid phase and sends the gas phase refrigerant to the compressor 10, and a high-pressure refrigerant and a low-pressure refrigerant.
  • Internal heat exchanger that improves cycle efficiency by exchanging heat
  • refrigerant is used a C 0 2, the pressure of the high pressure side of the supercritical refrigeration cycle 1, Ri by the use conditions such as air temperature, exceed the critical point of the refrigerant.
  • the refrigerant contains lubricating oil for facilitating the driving of the compressor 10.
  • the swash plate type variable displacement compressor 10 of this example includes a front nozzle 110, a cylinder block 120, a rear nozzle 130, and a valve plate. 140, rotatable drive shaft 200, lug plate 300 provided in drive shaft 200, drive shaft 200, and lug plate 300
  • the swash plate type variable capacity compressor 100 is configured such that the swash plate 400 rotates together with the drive shaft 200 and the lag plate 300 and the piston 500 reciprocates, whereby a series The refrigerant is sucked into the compressor 600, compressed and discharged, and the control valve 700 controls the pressure acting on the piston 500, whereby the swash plate 400 is controlled.
  • the stroke of the piston 500 changes with the inclination of 0 to control the refrigerant discharge amount.
  • the minimum stroke of BISTON 500 is set at about 5% or less of the maximum stroke.
  • a plurality of screws 500 and a plurality of cylinders 600 are arranged at equal intervals around the rotation axis of the drive shaft 200.
  • the drive shaft 200 is mounted on the front housing 110 and the cylinder block 120 via a bearing.
  • the drive shaft 200 is connected to the engine, which is the drive engine of the vehicle, without going through a clutch. That is, the swash plate type variable capacity compressor 10 is a so-called clutchless compressor.
  • Front Tohau The inside of the jing 110 is a crank chamber 111 provided with a lug plate 300 and a swash plate 400.
  • the cylinder block 120 is a member constituting a plurality of cylinders 600.
  • the lag plate 300 is a member fixed to the drive shaft 200, and an arm portion 310 for connecting the swash plate 400 is provided at a key portion thereof.
  • the swash plate 400 is provided with a guide section 420 to which a shroud 410 is mounted, and is mounted to the drive shaft 200 so that the slide can be moved and the inclination angle can be changed. I have.
  • a spring 430 that urges the swash plate 400 and the biston 500 to a certain extent on the cylinder 600 side. Have been.
  • Each of the bistons 500 is anchored to the cylinder 410 and is in contact with the bores 6100 of the cylinder 600. Reciprocate each time.
  • the control valve 700 controls the internal pressure of the crankcase 111.
  • the inclination of the swash plate 400 and the stroke of the biston 500 change according to the internal pressure of the crankcase 111.
  • the valve plate 140 is a member that forms a suction valve 150 that sucks refrigerant into the cylinder 600 and a discharge valve 160 that discharges refrigerant from the cylinder 600. It is arranged between 20 and the rear housing 130. Further, on both sides of the valve plate 140, a cylinder-side valve body plate 151 and a rear housing-side valve body plate 161 which will be described in detail later are mounted by screws. By disposing such a valve plate 140 in each cylinder 120, a suction valve 150 and a discharge valve 160 are provided, respectively. The coolant is compressed between the piston 500 and the valve plate 140.
  • the rear housing 130 is provided with a control valve 700 and a suction chamber 1311 and a discharge chamber 1332 between the control housing and the valve plate 140.
  • flow passages through which the refrigerant flows are provided at key points of the compressor 1, and the low-pressure gas that has circulated through the refrigeration cycle 1 before being compressed is introduced into the suction chamber 13 1.
  • the low-pressure gas in the suction chamber 13 1 is sucked into the cylinder 600 from the suction valve 150 when biston 500 moves back, and becomes high-pressure gas when biston 500 moves further forward. From the discharge port 160 to the discharge chamber 132.
  • the high-pressure gas in the discharge chamber 132 circulates through the refrigeration cycle again.
  • the control valve 700 is communicated with the crank chamber 11 1, the suction chamber 13 1, and the discharge chamber 13 2 through predetermined flow paths, and when the pressure of the low-pressure gas decreases, When the bellows provided therein expands, the valve moves and the high-pressure gas is led to the crank chamber 11. When the pressure of the low-pressure gas rises, the pulp closes due to the contraction of the bellows, and the high-pressure gas guided to the crankcase 11 is cut.
  • the swash plate 400 reciprocates in a state where the average of the internal pressure of each cylinder 600 and the internal pressure of the crankcase 111 are balanced. That is, the inclination of the swash plate 400 and the stroke of the biston 500 are controlled by the valve opening of the control valve 700, and the discharge amount of the high-pressure gas is controlled by the piston. It increases as the stroke of 500 increases and decreases as the stroke decreases.
  • the pressure of the refrigerant at the time of starting the swash plate type variable capacity compressor 10 is about 7.2 MPa in a 30 ° C atmosphere. Further, the diameter of the bore 6 1 0 Siri Sunda 6 0 0 1 5. 0 to 2 1. 0 mm, the volume of silicon Sunda 6 0 0 2 0 ⁇ 3 3 cm 3, the intake valve 1 5 0 and a discharge valve The opening area of each of the ports 14 1 and 142 in 16 0 is 7.0-29.0 mm 2 .
  • the valve plate 140 has a plurality of suction ports 141 communicating each cylinder 600 and the suction chamber 131, and each cylinder 600 and the discharge chamber 132. And a plurality of discharge ports 1 and 2 communicating with each other.
  • the cylinder valve plate 15 1 has a valve body 15 2 of the suction valve 150 corresponding to each suction port 14 1, and a hole 15 3 corresponding to each discharge port 14 2.
  • the valve plate 16 1 has a valve 16 2 of the discharge valve 16 corresponding to each discharge port 14 2, and a hole 16 corresponding to the suction port 14 1. 3 and a plurality of such members (see FIGS. 3 and 4).
  • the suction valve 150 of the present example has a flexible valve element 152 mounted on a suction port 141 for sucking a refrigerant into a cylinder 600.
  • the valve element 152 of the suction valve 150 is pressed against one surface of the valve plate 140 serving as a valve seat of the suction port 141 in a slightly elastically deformed state.
  • the discharge valve 160 of the present example has a flexible valve element 162 attached to a discharge port 142 that discharges refrigerant from the inside of the cylinder 600. .
  • the valve element 162 of the discharge valve 160 is pressed against the other surface of the valve plate 140 serving as the valve seat of the discharge port 142 in a slightly elastically deformed state.
  • Reference numeral 164 in the figure denotes a retainer that regulates the opening of the valve element 162 of the discharge valve 160.
  • the retainer 164 is screwed to the valve plate 140 (see FIG. 5).
  • valve element 152 of the suction valve 150 provided on the cylinder side valve element plate 151 is plastically deformed in a curved shape with the tip protruding toward the valve plate 140.
  • the cylinder side plate plate 151 is attached to the valve plate 140, and it is forcibly elastically deformed.
  • the valve element 152 is plastically deformed by press working, and the deflection 3 when attached to the suction port 141 is 1 mm or less (more specifically, 50 to 200 2111). Has become.
  • the plate thickness of the material of the valve element 152 of the suction valve 150 is desirably 0.2 to 0.3 mm, and is 0.25 mm in this example. Its modulus of longitudinal elasticity of the material, 2.
  • the external force P received from the valve seat of port 14 1 is 1.8 N or less in order to ensure the smooth opening and closing operation of valve body 152.
  • the more desirable range of the external force P is 1.2 N or less, and the most desirable range is 0.2 to 0.7 N.
  • the spring constant k of the valve element 152 is about 4.0 N / mm and the deflection is 150 / m, the external force P is about 0.6 N.
  • the spring constant k depends on the longitudinal elastic modulus of the material and the shape of the valve element 152.
  • valve element 162 of the discharge valve 160 provided on the rear housing-side valve element plate 161 is the same as the above-described valve element 152 of the suction valve 150. That is, the valve body 1 6 2 flexure (5 2 of the discharge valve 1 6 0 is equal to or less than lmm, the external force P that the valve body 1 6 2 of the discharge valve 1 6 0 receives from port 1 4 2 of the valve seat Is 1.8 N or less.
  • valve element 15 2 of the suction valve 15 0 and the valve element 16 2 of the discharge valve 16 0 are opened and closed by the differential pressure of the crank chamber 1 1 1, the suction chamber 1 3 1, and the discharge chamber 1 3 2 respectively. It works (see Figs. 7 and 8).
  • the inventor of the present application repeated a comparison experiment of the number of revolutions at the time of startup between the swash plate type variable displacement compressor 10 of the present example and the cylinder side valve plate 151, which was replaced, under different conditions. went.
  • the replaced cylinder-side valve body plate is flat, and the valve body 150 of the suction valve 150 is elastic on the surface of the valve plate 140, which is the valve seat of the suction port 141. It is not pressed in a deformed state.
  • the rotation speed at startup of the swash plate type variable displacement compressor 10 of this example is 30 to 70% lower than the rotation speed at startup of the cylinder-side valve plate 151, which has been replaced. It was within the range of the center.
  • FIG. 9 is a comparison graph of the number of revolutions at startup before and after replacement of the valve element of the intake valve, that is, before and after the improvement. According to such an experiment, it has been proved that the swash plate type variable capacity compressor 10 of the present example has a surely reduced rotation speed of the swash plate when the refrigerant starts to be compressed.
  • valve element 152 of the suction valve 150 and the shape of the valve element 162 of the discharge valve 160 can be changed as appropriate, and are not limited to those illustrated in the drawings.
  • the valve body 15 2 of the suction valve 150 or the valve body 16 2 of the discharge valve 160 has a tip formed into a hemispherical shape, and has a circular shape. It is also possible that the spherical surface is in contact with the edge of the suction port 141 or the discharge port 142.
  • the tip is preferably formed by pressing.
  • the male threaded part B passing therethrough is screwed into the female thread N provided on the valve plate 140.
  • the distal end portion is elastically deformed in a state of being pressed against the edge of the suction port 141 or the discharge port 142.
  • the flat valve elements 15 2 and 16 2 are elastically deformed and pressed against the surface of the curved valve plate 140. It is also possible. In this case, plastic deformation of the valve bodies 15 2 and 16 2 can be omitted.
  • the swash plate type variable displacement compressor of the present invention can be suitably used as a compressor for a supercritical refrigeration cycle in which the pressure on the high pressure side exceeds the critical point of the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

A swash plate-type variable displacement compressor (10) used for a supercritical refrigeration cycle (1) has a rotatably installed swash plate (400), pistons (500) connected to the swash plate, and cylinders (600) movably retaining the pistons. The cylinders are provided with a suction valve (150) through which a refrigerant for the supercritical refrigeration cycle is sucked and a discharge valve (160) through which the refrigerant is discharged. The suction valve is constructed from a suction port (141) from which the refrigerant is sucked and a flexible valve body (152) mounted on the suction port. In order that the number of rotation of the swash plate is reduced at the time when the refrigerant starts to be compressed, the valve body is press-fitted in a valve seat of the suction port with the valve body elastically deformed.

Description

曰月糸田 β  Satsuki Itoda β
超臨界冷凍サイクル用の斜板式可変容量コンプレッサ 技術分野  Swash plate type variable displacement compressor for supercritical refrigeration cycle
本発明は、 超臨界冷凍サイクルに用いられる斜板式可変容量コ ンプ レッサに関する。 背景技術  The present invention relates to a swash plate type variable displacement compressor used for a supercritical refrigeration cycle. Background art
冷凍サイクルの冷媒を圧縮する斜板式可変容量コ ンプレッサの吸 入弁及び吐出弁については、 従来様々な構成が知られている。 例えば 吐出弁としては、 弁体を吐出ポートの弁座に弾性変形した状態で圧接 してなるものが知られている。 この種の吐出弁の構造は、 例えば実閧 昭 6 1 — 4 4 0 7 4号公報、 特開 2 0 0 1 — 1 5 3 0 0 0号公報にも 開示されている。  Various configurations are conventionally known for the intake valve and the discharge valve of a swash plate type variable displacement compressor that compresses the refrigerant of a refrigeration cycle. For example, there is known a discharge valve in which a valve body is pressed against a valve seat of a discharge port in an elastically deformed state. The structure of this type of discharge valve is also disclosed in, for example, Japanese Patent Application Laid-Open No. 61-44074 and Japanese Patent Application Laid-Open No. 2001-150300.
更に、 冷凍サイクルの冷媒には潤滑オイルが混合されており、 吸入 弁及び吐出弁の良好な開閉動作を確保するには、 弁体と弁座との隙間 に回り込む潤滑オイルの表面張力を考慮する必要がある。 潤滑オイル の表面張力は、 弁の密閉性を確保するうえで重要ではあるものの、 弁 体が開く際の抵抗となるので、 これが必要以上に大きい場合は、 弁体 の動作が遅れるうえに、 コンプレッサの振動や騒音を増大する原因と もなる。 特開平 7 - 1 6 7 0 5 8号公報、 特開平 7— 1 8 0 6 6 2号 公報には、 このような問題に対処するべく、 弁体が閉じた状態におい ても弁体と弁座との間に僅かな隙間が残るように構成された弁構造 が開示されている。 冷凍サイクルに用いる斜板式可変容量コンプレツ サの場合、 吸入弁や吐出弁は、 このように振動や騒音等を防止する構 成も重視されてきた訳である。  Furthermore, lubricating oil is mixed in the refrigerant of the refrigeration cycle, and in order to ensure good opening and closing operation of the suction valve and the discharge valve, the surface tension of the lubricating oil that goes around the gap between the valve body and the valve seat is considered. There is a need. Although the surface tension of the lubricating oil is important for ensuring the tightness of the valve, it becomes a resistance when the valve opens, so if it is larger than necessary, the operation of the valve will be delayed and the compressor will not operate. It also causes the vibration and noise of the vehicle to increase. JP-A-7-167058 and JP-A-7-168062 disclose the valve element and the valve even when the valve element is closed in order to deal with such a problem. A valve structure configured to leave a slight gap between the seat and the seat is disclosed. In the case of a swash plate type variable displacement compressor used in a refrigeration cycle, the suction valve and the discharge valve have been given importance in such a configuration as to prevent vibration and noise.
さて、 冷凍サイクルの冷媒としては、 これまで代替フ ロ ンを含めフ 口ン系の冷媒が広く採用されてきたところ、 近年では地球環境に配慮 して、 これを C 0 2に変更するための開発がなされている。 C 0 2を冷 媒とする冷凍サイクルは、 フロン系の冷媒を用いた冷凍サイクルと比 較すると、 内部の圧力が極めて高く、 とりわけ高圧側の圧力は、 気温 等の使用条件によって、 冷媒の臨界点を超えることがある。 臨界点と は、気層と液層が共存する状態の高圧側の限界(つま り高温側の限界) であり、 蒸気圧曲線の一方での終点である。 臨界点での圧力、 温度、 密度は、 それそれ臨界圧力、 臨界温度、 臨界密度となる。 特に、 冷凍 サイクルの放熱器においては、 圧力が冷媒の臨界点を上まわると、 冷 媒が凝縮することはない。 この種の超臨界冷凍サイクルは、 例えば自 動車に搭載され、 車内空調に利用される。 Now, as the refrigerant of the refrigeration cycle, so far the refrigerant off port emissions system including alternate off Russia emissions have been widely adopted in recent years in consideration of the global environment, for changing this to C 0 2 Development is being done. Cool C 0 2 The internal pressure of a refrigeration cycle that uses a medium is extremely high when compared to a refrigeration cycle that uses a chlorofluorocarbon-based refrigerant.In particular, the pressure on the high-pressure side may exceed the critical point of the refrigerant depending on operating conditions such as air temperature. is there. The critical point is the limit on the high-pressure side where the gas and liquid layers coexist (that is, the limit on the high-temperature side), and is the end point of one of the vapor pressure curves. The pressure, temperature and density at the critical point are the critical pressure, critical temperature and critical density, respectively. In particular, in the radiator of the refrigeration cycle, when the pressure exceeds the critical point of the refrigerant, the refrigerant does not condense. This type of supercritical refrigeration cycle is installed in, for example, an automobile and used for air conditioning in a vehicle.
また、 超臨界冷凍サイクルに用いられるコンプレッサは、 例えば特 開 2 0 0 2 — 2 5 7 0 3 7号公報にも記載されている。 同公報に記載 されたコンプレッサは、 回転可能に設けられた斜板の傾斜に応じてピ ス トンのス トロークが可変可能に構成されたものである。 ピス トンは シリ ンダに往復移動可能に保持されており、 シリ ンダには冷媒を吸入 する吸入弁と、 冷媒を吐出する吐出弁とが設けられている。 冷凍サイ クルを循環する冷媒は、 吸入弁からシリ ンダの内部に吸入されて圧縮 され、 吐出弁からシリ ンダの外部に吐出される。 また、 車内空調用の 冷凍サイクルの場合、 コンプレッサは、 自動車の動力機関に連結され、 かかる動力機関の力で作動する構成となっている。  Further, a compressor used in a supercritical refrigeration cycle is also described, for example, in Japanese Patent Application Publication No. 2002-25707. The compressor described in this publication is configured such that the stroke of the piston can be changed according to the inclination of a swash plate provided rotatably. The piston is held by the cylinder so as to be able to reciprocate, and the cylinder is provided with a suction valve for sucking the refrigerant and a discharge valve for discharging the refrigerant. The refrigerant circulating in the refrigeration cycle is drawn into the cylinder from the suction valve, compressed, and discharged from the discharge valve to the outside of the cylinder. In the case of a refrigeration cycle for in-vehicle air conditioning, the compressor is connected to a power engine of a vehicle and is operated by the power of the power engine.
ところで、 超臨界冷凍サイクルは、 これまでのフロン系の冷凍サイ クルとは耐圧性能が格段に異なるものであり、 超臨界冷凍サイクル用 のコンプレッサについても、 その耐圧性能等を踏まえ、 より優れた構 造的工夫が求められている。  By the way, the supercritical refrigeration cycle is significantly different from the conventional chlorofluorocarbon-based refrigeration cycle in terms of pressure resistance, and the compressor for the supercritical refrigeration cycle also has a superior structure based on the pressure resistance and other factors. A creative ingenuity is required.
例えば前述した特閧 2 0 0 2 — 2 5 7 0 3 7号公報特の記載によ れば、 超臨界冷凍サイクル用のコンプレッサの場合は、 作動圧が高い ことから、 僅かな隙間からの冷媒洩れも性能低下の原因になるとある。 そして、 同公報に記載されたコンプレッサは、 吸入弁の弁体を弁座に 押し付ける弾性部材を設け、 弁体と弁座との間に生じる隙間を解消し たものである。 しかしながら、 弁体を弁座に押し付ける弾性部材を設けた場合は、 部品点数が多くなる故に、 構造の複雑化、 精密化、 及びコス トの増大 等を招く という不都合がある。 また本願発明者の耐久試験によると、 このような弾性部材は、 耐久性の劣化等が回避し難い問題であること も判明した。 For example, according to the above-mentioned Japanese Patent Publication No. 200-02-2577003, in the case of a compressor for a supercritical refrigeration cycle, since the operating pressure is high, the refrigerant through a small gap is required. Leakage can also cause performance degradation. The compressor described in the publication has an elastic member that presses the valve element of the suction valve against the valve seat to eliminate a gap generated between the valve element and the valve seat. However, when an elastic member for pressing the valve body against the valve seat is provided, the number of parts is increased, so that there is a disadvantage that the structure is complicated, refined, and the cost is increased. In addition, according to the durability test of the inventor of the present invention, it has been found that such an elastic member is a problem in which deterioration of durability and the like are difficult to avoid.
更に、 超臨界冷凍サイクルの場合、 自動車の動力機関の力で作動す るコンプレッサは、 駆動機関の始動時における起動性の確保が重要と なる。 つま り、 このようなコンプレヅサは、 フロン系の冷媒を用いた 冷凍サイクルのコンプレッサと比較すると、 耐圧性の問題からシリ ン ダの容積が比較的小さなものとなる故に、 吸入弁や吐出弁における泠 媒洩れの影響が顕著であるところ、 弁体と弁座とのシート面も狭くな るので、 それらの間に回り込む潤滑オイルも不足気味となり、 弁体の 良好な開閉動作の確保が困難になるという問題もある。 そして、 この ようなオイルの不足によるシー ト不良は、 特に圧力が均衡した状態 (冷媒の微小流量時) からの冷媒の吸入 · 吐出作用の発生を遅らせる 原因となる故に、 既存のコンプレッサについては、 起動時の回転数、 つま り冷媒が圧縮され始める際の斜板の回転数が必要以上に大き く なっていると考えられる。  Furthermore, in the case of a supercritical refrigeration cycle, it is important for a compressor that operates with the power of the vehicle's power engine to ensure startability when starting the drive engine. In other words, such a compressor has a relatively small cylinder volume due to a pressure resistance problem as compared with a refrigeration cycle compressor using a chlorofluorocarbon-based refrigerant. Where the effect of medium leakage is significant, the seat surfaces of the valve body and the valve seat also become narrower, and lubricating oil flowing between them tends to be insufficient, making it difficult to ensure good opening and closing operation of the valve body. There is also a problem. Insufficient oil due to such a shortage of oil causes delay in the suction and discharge of the refrigerant, especially when the pressure is balanced (when the flow rate of the refrigerant is very small). It is considered that the number of revolutions at startup, that is, the number of revolutions of the swash plate when the refrigerant started to be compressed, was higher than necessary.
また、 自動車に搭載するコンプレッサとしては、 クラッチを介さず に自動車の駆動機関と連結されたクラ ヅチレスコンプレッサが知ら れている。 クラッチレスコンプレッサの場合、 その斜板は、 冷媒の非 圧縮時にも定常的に回転しており、 ピス トンの最小ス トロークは、 通 常は最大ス トロークの約 5パ一セン ト以下となっている。 近年では、 このようなスクラ ヅチレスコンプレッサについても、 起動時の回転数 の低下が極めて重要な課題とされている。  Also, as a compressor mounted on a vehicle, a clutchless compressor connected to a driving engine of the vehicle without using a clutch is known. In the case of a clutchless compressor, its swash plate rotates constantly even when the refrigerant is not compressed, and the minimum stroke of the piston is usually about 5% or less of the maximum stroke. I have. In recent years, it has become a very important issue for such a clutchless compressor to reduce the number of revolutions at startup.
特に超臨界冷凍サイクルの場合は、 コンプレッサの起動時における 冷媒の圧力は、 3 0 °C雰囲気下で 7 . 2 M P a前後となる。 これに対 し、 フロン系冷媒を用いた冷凍サイクルの場合は、 コンプレッサの起 動時における冷媒の圧力は、 3 0 °C雰囲気下で 0 . 6 7 M P a前後と なる。 従って、 超臨界冷凍サイクルのコンプレッサにおいては、 シリ ンダの容積やポートの開口面積を小さ く設定することにより、 高い耐 圧性能を確保する。 一般的なものであれば、 超臨界冷凍サイクルのコ ンプレッサの場合は、 シリ ンダのボア径は 1 5. 0〜 2 1. 0 mm、 シリ ンダの容積は 2 0〜 3 3 c m3、 吸入弁及び吐出弁におけるポー トの開口面積は 7. 0〜 2 9. 0 mm2である。 これに対し、 フロン 系冷媒を用いた冷凍サイクルのコンプレッサの場合は、 シリ ンダのボ ァ径は 3 2〜4 0mm、シリ ンダの容積は 9 0 c m3〜 1 7 0 c m3、 吸入弁及び吐出弁におけるポー トの開口面積は. 3 8. 5 - 1 1 3. 0 m m 2である。 In particular, in the case of a supercritical refrigeration cycle, the pressure of the refrigerant when the compressor is started is about 7.2 MPa in a 30 ° C atmosphere. On the other hand, in the case of a refrigeration cycle using a chlorofluorocarbon-based refrigerant, the pressure of the refrigerant when the compressor is started is about 0.67 MPa under a 30 ° C atmosphere. Become. Therefore, in the compressor of the supercritical refrigeration cycle, high pressure resistance is secured by setting the volume of the cylinder and the opening area of the port small. If common ones, in the case of co-compressors of a supercritical refrigeration cycle, the bore diameter of the silicon Sunda is 1 5. 0~ 2 1. 0 mm, the volume of Siri Sunda is 2 0~ 3 3 cm 3, inhalation the opening area of the port in the valve and discharge valve are 7. 0~ 2 9. 0 mm 2. In contrast, in the case of a compressor of a refrigeration cycle using chlorofluorocarbon-based refrigerant, Bo § the diameter of the silicon Sunda is 3 2 to 4 0 mm, the volume of Siri Sunda is 9 0 cm 3 ~ 1 7 0 cm 3, intake valves and the opening area of the port at the discharge valve 3 8.5 - a 1 1 3. 0 mm 2..
また、 このような超臨界冷凍サイクルのコンプレヅサやフロン系の 冷媒を用いた冷凍サイクルのコンプレッサについて、 シリ ンダやビス トンの加工精度が同じであれば、 超臨界冷凍サイクルの場合は、 ビス トンが上支点にある ときのシリ ンダの容積に対するシリ ンダとビス トンとの隙間の割合が比較的大きくなる。 これも、 超臨界冷凍サイク ルの起動時の回転数を増加する原因の 1つである。  Also, in such a supercritical refrigeration cycle compressor or a refrigeration cycle compressor using a chlorofluorocarbon-based refrigerant, if the processing accuracy of the cylinder and biston is the same, then in the case of the supercritical refrigeration cycle, the biston will be The ratio of the gap between the cylinder and the biston to the volume of the cylinder at the upper fulcrum becomes relatively large. This is also one of the causes of the increase in the number of revolutions of the supercritical refrigeration cycle at startup.
本発明は、 かかる事情に鑑みてなされたものであり、 その目的は、 超臨界冷凍サイ クル用の斜板式可変容量コンプレッサの性能向上を 達成することである。 発明の開示  The present invention has been made in view of such circumstances, and an object thereof is to achieve an improvement in performance of a swash plate type variable displacement compressor for a supercritical refrigeration cycle. Disclosure of the invention
本願第 1請求項に記載した発明は、 超臨界冷凍サイクルに用いられ るコンプレッサであり、 回転可能に設けられた斜板と、 前記斜板に連 結されたピス トンと、 前記ピス トンを移動可能に保持するシリ ンダと を備え、 前記シリンダには、 前記超臨界冷凍サイクルの冷媒を吸入す る吸入弁と、 前記冷媒を吐出する吐出弁とを設けてなる斜板式可変容 量コンプレッサにおいて、 前記吸入弁は、 前記冷媒を吸入する吸入ポ ―トに可撓性を有する弁体を装着してなり、 当該斜板式可変容量コン プレッサは、 前記冷媒が圧縮され始める際の前記斜板の回転数を低減 するように、 前記吸入ポートの弁座に前記弁体を弾性変形した状態で 圧接してなる構成の斜板式可変容量コンプレッサである。 このような 構成によると、 超臨界冷凍サイクル用の斜板式可変容量コンプレッサ の性能は確実に向上される。 The invention described in claim 1 of the present application is a compressor used in a supercritical refrigeration cycle, wherein the swash plate is rotatably provided, a piston connected to the swash plate, and the piston is moved. A swash plate type variable capacity compressor comprising: a suction valve for sucking the refrigerant of the supercritical refrigeration cycle; and a discharge valve for discharging the refrigerant. The suction valve is provided with a flexible valve body at a suction port for sucking the refrigerant, and the swash plate type variable capacity compressor rotates the swash plate when the refrigerant starts to be compressed. Reduce number A swash plate type variable displacement compressor having a configuration in which the valve body is pressed against the valve seat of the suction port in an elastically deformed state. According to such a configuration, the performance of the swash plate type variable displacement compressor for the supercritical refrigeration cycle is surely improved.
本願発明者は、 超臨界冷凍サイクル用の斜板式可変容量コ ンプレ ツ ザにおける好適な弁構造を得るべく、 各種の弁構造についてそれそれ 試作及び実験を行った。 同実験によれば、 前述したような弁体と弁座 との隙間の解消は、 起動時の回転数を低減するという観点からは、 吐 出弁より もむしろ吸入弁の方が重要であることが判明した。 また、 起 動性、 耐久性、 及び弁体の良好な開閉動作等を確保するとい'う点で最 も有効であった吸入弁は、 冷媒を吸入する吸入ポートに可撓性を有す る弁体を装着してなるとともに、 吸入ポートの弁座に弁体を僅かに弾 性変形した状態で圧接したものであった。 吸入弁の弁体は、 吸入ポ一 トに装着した後における適切な内部応力を考慮して設計される。  The inventor of the present application conducted various trial manufactures and experiments on various valve structures in order to obtain a suitable valve structure in a swash plate type variable displacement compressor for a supercritical refrigeration cycle. According to the same experiment, in order to eliminate the gap between the valve element and the valve seat as described above, the suction valve is more important than the discharge valve from the viewpoint of reducing the number of revolutions at startup. There was found. In addition, the suction valve, which was the most effective in securing startability, durability, and good opening and closing operations of the valve element, has flexibility in the suction port for sucking refrigerant. The valve body was mounted, and the valve body was pressed against the valve seat of the suction port with a slight elastic deformation. The valve element of the suction valve is designed in consideration of appropriate internal stress after being mounted on the suction port.
このような構成によれば、 弁体と弁座とのシート面がやや狭く とも、 それらのシート不良を効率よく回避することが可能である。 その結果、 冷媒が圧縮され始める際の斜板の回転数は確実に低減される。  According to such a configuration, even if the seat surfaces of the valve element and the valve seat are slightly narrow, it is possible to efficiently avoid the defective seats. As a result, the rotational speed of the swash plate when the refrigerant starts to be compressed is reliably reduced.
吸入弁の弁体を弁座に対して弾性変形した状態で圧接した場合と しなかった場合とを実験により比較したところ、 圧接した場合の起動 時の回転数は、 圧接しなかった場合の起動時の回転数に対し、 3 0〜 7 0パ一セン トであった。 つま り本発明において、 冷媒が圧縮され始 める際の斜板の回転数を低減するとは、 吸入弁の弁体が弁座に弾性変 形した状態で圧接されていない場合との比較によるものである。  An experimental comparison between the case where the suction valve was elastically deformed against the valve seat and the case where the suction valve was not pressed, and the number of rotations at the time of startup when pressure was applied, the start when no pressure was applied. The rotation speed at that time was 30 to 70%. That is, in the present invention, reducing the rotation speed of the swash plate when the refrigerant starts to be compressed is based on a comparison with a case where the valve body of the suction valve is elastically deformed to the valve seat and is not pressed against the valve seat. It is.
以上のように、 本発明は、 超臨界冷凍サイクルに用いられる斜板式 可変容量コンプレッサの細部における極めて重要な構造に着眼して なるものであり、 その結果、 非常に簡素な構造的工夫によって、 かか るコ ンプレッサの性能を飛躍的に向上するという顕著な効果を達成 した斜板式可変容量コンプレッサである。  As described above, the present invention focuses on a very important structure in the details of the swash plate type variable displacement compressor used in the supercritical refrigeration cycle, and as a result, with a very simple structural device, This is a swash plate type variable displacement compressor that has achieved a remarkable effect of dramatically improving the performance of such a compressor.
本願第 2請求項に記載した発明は、 請求項 1 において、 前記弁体を 前記吸入ポ一 ト装着したときの当該弁体のたわみが l m m以下であ るとともに、 このとき前記弁体が前記吸入ポートの弁座から受ける外 力が 1 . 8 N以下である構成の斜板式可変容量コンプレッサである。 すなわち、 弁体のたわみを 1 m m以下とし、 更に弁体が吸入ポートの 弁座から受ける外力を 1 . 8 N以下とすることによれば、 弁体の円滑 な開閉動作を維持しつつ弁体と弁座とのシー ト性を良好に確保する ことが可能である。 In the invention described in claim 2 of the present application, in claim 1, the valve body is The swash plate type having a configuration in which the deflection of the valve body when the suction port is attached is lmm or less and the external force received by the valve body from the valve seat of the suction port is 1.8 N or less at this time. It is a variable capacity compressor. That is, if the deflection of the valve body is set to 1 mm or less and the external force that the valve body receives from the valve seat of the suction port is set to 1.8 N or less, the valve body can be smoothly opened and closed while maintaining the opening and closing operation. It is possible to ensure good seating properties between the valve and the valve seat.
本願第 3請求項に記載した発明は、 請求項 1又は 2において、 前記 超臨界冷凍サイクルは、 自動車に搭載される車内空調用の冷凍サイク ルであり、 当該斜板式可変容量コンプレッサは、 クラッチを介さずに 前記自動車の駆動機関と連結されたクラ ッチレスコンプレッサであ る構成の斜板式可変容量コンプレッサである。 すなわち、 本発明の斜 板式可変容量コンプレッサは、 冷媒が圧縮され始める際の斜板の回転 数を確実に低減したものであり、 車内空調用の冷凍サイクルに用いら れるクラッチレスコンプレヅサとして、 極めて好適に利用することが 可能である。 図面の簡単な説明  The invention described in claim 3 of the present application is the invention according to claim 1 or 2, wherein the supercritical refrigeration cycle is a refrigeration cycle for air conditioning in a vehicle mounted on an automobile, and the swash plate type variable displacement compressor includes a clutch. A swash plate type variable displacement compressor configured to be a clutchless compressor that is connected to the drive engine of the vehicle without intervention. That is, the swash plate type variable displacement compressor of the present invention reliably reduces the number of revolutions of the swash plate when the refrigerant starts to be compressed, and as a clutchless compressor used in a refrigeration cycle for air conditioning in a vehicle, It can be used very suitably. BRIEF DESCRIPTION OF THE FIGURES
図 1  Figure 1
本発明の実施例に係り、 超臨界冷凍サイクルを示す概要図である。 図 2  FIG. 1 is a schematic diagram showing a supercritical refrigeration cycle according to an embodiment of the present invention. Figure 2
本発明の実施例に係り、 超臨界冷凍サイクル用の斜板式可変容量コ ンプレッサを示す断面図である。  FIG. 2 is a cross-sectional view showing a swash plate type variable displacement compressor for a supercritical refrigeration cycle according to an embodiment of the present invention.
図 3  Fig 3
本発明の実施例に係り、 バルブプレート及びシリンダ側弁体プレー トを示す正面図である。  FIG. 2 is a front view showing a valve plate and a cylinder-side valve element plate according to the embodiment of the present invention.
図 4  Fig. 4
本発明の実施例に係り、 バルブプレ一ト及びリャハウジング側弁体 プレートを示す正面図である。 図 5 FIG. 2 is a front view showing a valve plate and a valve plate on a rear housing side according to the embodiment of the present invention. Fig. 5
本発明の実施例に係り、 吸入弁及び吐出弁を示す断面図である。 図 6  FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. Fig. 6
本発明の実施例に係り、 吸入弁及び吐出弁を示す分解断面図である。 図 7  FIG. 2 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. Fig. 7
本発明の実施例に係り、 吸入弁及び吐出弁を示す断面図である。 図 8  FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. Fig. 8
本発明の実施例に係り、 吸入弁及び吐出弁を示す断面図である。 図 9  FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. Fig. 9
本発明の実施例に係り、 改善前後における起動時の回転数の比較グ ラフである。  4 is a comparison graph of the number of revolutions at the time of startup before and after the improvement according to the embodiment of the present invention.
図 1 0  Fig. 10
本発明の実施例に係り、 吸入弁及び吐出弁を示す断面図である。 図 1 1  FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. Fig. 1 1
本発明の実施例に係り、 吸入弁及び吐出弁を示す分解断面図である。 図 1 2  FIG. 2 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. Fig. 1 2
本発明の実施例に係り、 吸入弁及び吐出弁を示す断面図である。 図 1 3  FIG. 3 is a cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. Fig. 13
本発明の実施例に係り、 吸入弁及び吐出弁を示す分解断面図である。 発明を実施するための最良の形態  FIG. 2 is an exploded cross-sectional view illustrating a suction valve and a discharge valve according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施例を説明する。 図 1 に示すように、 本例の超 臨界冷凍サイクル 1は、 自動車に搭載される車内空調用の冷凍サイク ルであり、 泠媒を圧縮する斜板式可変容量コンプレッサ 1 0 と、 この コンプレッサ 1 0で圧縮された冷媒を冷却する放熱器 2 0 と、 放熱器 2 0で冷却された冷媒を減圧して膨張する膨張弁 3 0 と、 膨張弁 3 0 で減圧された冷媒を蒸発するエバポレー夕 4 0 と、 エバポレー夕 4 0 から流出する冷媒を気層と液層に分離して気層の冷媒をコンプレツ サ 1 0へ送るアキュムレータ 5 0 と、 高圧側の冷媒と低圧側の泠媒と を熱交換するこ とによってサイ クルの効率を向上する内部熱交換器Hereinafter, examples of the present invention will be described. As shown in FIG. 1, the supercritical refrigeration cycle 1 of the present embodiment is a refrigeration cycle for in-vehicle air conditioning mounted on an automobile, and includes a swash plate type variable capacity compressor 10 for compressing a solvent, and the compressor 10 A radiator 20 for cooling the refrigerant compressed by the radiator 20, an expansion valve 30 for decompressing and expanding the refrigerant cooled by the radiator 20, and an evaporator 4 for evaporating the refrigerant decompressed by the expansion valve 30. 0, an accumulator 50 that separates the refrigerant flowing out of the evaporator 40 into a gas phase and a liquid phase and sends the gas phase refrigerant to the compressor 10, and a high-pressure refrigerant and a low-pressure refrigerant. Internal heat exchanger that improves cycle efficiency by exchanging heat
6 0 とを備えたものである。 冷媒と しては C 0 2を用いており、 当該 超臨界冷凍サイ クル 1 の高圧側の圧力は、 気温等の使用条件によ り、 冷媒の臨界点を上まわる。 また冷媒には、 コンプレッサ 1 0の駆動を 円滑化する潤滑オイルが含まれている。 6 0. Is a refrigerant is used a C 0 2, the pressure of the high pressure side of the supercritical refrigeration cycle 1, Ri by the use conditions such as air temperature, exceed the critical point of the refrigerant. The refrigerant contains lubricating oil for facilitating the driving of the compressor 10.
図 2 に示すように、 本例の斜板式可変容量コンプレッサ 1 0は、 フ ロン トノヽウジング 1 1 0 と、 シリ ンダブロ ック 1 2 0 と、 リヤノヽウジ ング 1 3 0 と、 バルブプレー ト 1 4 0 と、 回転可能に設けられた駆動 シャフ ト 2 0 0 と、 駆動シャフ ト 2 0 0 に設けられたラグプレート 3 0 0 と、 駆動シャフ ト 2 0 0及びラグプレー ト 3 0 0 に装着された斜 板 4 0 0 と、 シュ一 4 1 0 を介して斜板 4 0 0 に連結されたピス ト ン 5 0 0 と、 ピス ト ン 5 0 0 を往復移動可能に保持するシリ ンダ 6 0 0 と、 ビス トン 5 0 0に作用する圧力を制御するコン ト ロールバルブ 7 0 0 とを備えている。  As shown in FIG. 2, the swash plate type variable displacement compressor 10 of this example includes a front nozzle 110, a cylinder block 120, a rear nozzle 130, and a valve plate. 140, rotatable drive shaft 200, lug plate 300 provided in drive shaft 200, drive shaft 200, and lug plate 300 The swash plate 400, the piston 500 connected to the swash plate 400 via the bus 410, and the cylinder 6 for holding the piston 500 reciprocally. 0 0 and a control valve 700 for controlling the pressure acting on the biston 500.
この斜板式可変容量コンプレッサ 1 0は、 斜板 4 0 0が駆動シャフ ト 2 0 0及びラグプレー ト 3 0 0 と とも に回転して ピス ト ン 5 0 0 が往復移動することによ り、 シリ ンダ 6 0 0内に冷媒を吸入し且つこ れを圧縮して吐出し、 更にコン トロールバルブ 7 0 0がビス ト ン 5 0 0 に作用する圧力を制御することによ り、 斜板 4 0 0の傾きとともに ビス ト ン 5 0 0のス ト ロ一クを変化して冷媒の吐出量を制御するも のである。 ビス ト ン 5 0 0の最小ス トロ一クは、 最大ス トロ一クの約 5パ一セン ト以下に設定されている。 ビス ト ン 5 0 0及びシリ ンダ 6 0 0は、 駆動シャフ ト 2 0 0の回転軸を中心に等間隔で複数配置され ている。  The swash plate type variable capacity compressor 100 is configured such that the swash plate 400 rotates together with the drive shaft 200 and the lag plate 300 and the piston 500 reciprocates, whereby a series The refrigerant is sucked into the compressor 600, compressed and discharged, and the control valve 700 controls the pressure acting on the piston 500, whereby the swash plate 400 is controlled. The stroke of the piston 500 changes with the inclination of 0 to control the refrigerant discharge amount. The minimum stroke of BISTON 500 is set at about 5% or less of the maximum stroke. A plurality of screws 500 and a plurality of cylinders 600 are arranged at equal intervals around the rotation axis of the drive shaft 200.
駆動シャフ ト 2 0 0は、 ベアリ ングを介してフロン トハウジング 1 1 0及びシリ ンダブロ ック 1 2 0 に対して架設されている。 また、 こ の駆動シャフ ト 2 0 0は、 クラ ッチを介さずに自動車の駆動機関たる エンジンと連結されている。 すなわち当該斜板式可変容量コンプレツ サ 1 0は、 いわゆるクラ ッチレスコンプレッサである。 フロン トハウ ジング 1 1 0の内部は、 ラグプレート 3 0 0及び斜板 4 0 0が設けら れたクランク室 1 1 1 となっている。 シリ ンダブロック 1 2 0は、 複 数のシリ ンダ 6 0 0を構成する部材である。 The drive shaft 200 is mounted on the front housing 110 and the cylinder block 120 via a bearing. The drive shaft 200 is connected to the engine, which is the drive engine of the vehicle, without going through a clutch. That is, the swash plate type variable capacity compressor 10 is a so-called clutchless compressor. Front Tohau The inside of the jing 110 is a crank chamber 111 provided with a lug plate 300 and a swash plate 400. The cylinder block 120 is a member constituting a plurality of cylinders 600.
ラグプレー ト 3 0 0は、 駆動シャフ ト 2 0 0に固定された部材であ り、 その要所には斜板 4 0 0を連結するアーム部 3 1 0が設けられて いる。 斜板 4 0 0は、 シュ一 4 1 0を装着したガイ ド部 4 2 0を備え、 駆動シャフ ト 2 0 0 に対しては、 スライ ド移動可能且つ傾斜角度が可 変可能に装着されている。 尚、 ラグプレート 3 0 0及び斜板 4 0 0の 間には、 斜板 4 0 0及びビス トン 5 0 0をシリ ンダ 6 0 0側にある程 度付勢するスプリ ング 4 3 0が設けられている。  The lag plate 300 is a member fixed to the drive shaft 200, and an arm portion 310 for connecting the swash plate 400 is provided at a key portion thereof. The swash plate 400 is provided with a guide section 420 to which a shroud 410 is mounted, and is mounted to the drive shaft 200 so that the slide can be moved and the inclination angle can be changed. I have. In addition, between the lug plate 300 and the swash plate 400, there is provided a spring 430 that urges the swash plate 400 and the biston 500 to a certain extent on the cylinder 600 side. Have been.
各ビス トン 5 0 0は、 シュ一 4 1 0に繋留されるとともにシリ ンダ 6 0 0のボア 6 1 0 と接触しており、 斜板 4 0 0が回転するとともに シリ ンダ 6 0 0に対してそれそれ往復移動する。  Each of the bistons 500 is anchored to the cylinder 410 and is in contact with the bores 6100 of the cylinder 600. Reciprocate each time.
コン トロールバルブ 7 0 0は、 クランク室 1 1 1の内部圧力を制御 するものである。 斜板 4 0 0の傾き及びビス トン 5 0 0のス トローク は、 クランク室 1 1 1の内部圧力に応じて変化する。  The control valve 700 controls the internal pressure of the crankcase 111. The inclination of the swash plate 400 and the stroke of the biston 500 change according to the internal pressure of the crankcase 111.
バルブプレ一ト 1 4 0は、 冷媒をシリ ンダ 6 0 0に吸入する吸入弁 1 5 0 と、 冷媒をシリンダ 6 0 0から吐出する吐出弁 1 6 0 とを構成 する部材であり、 シリンダブロック 1 2 0 と リャハウジング 1 3 0 と の間に配置されている。 また、 バルブプレート 1 4 0の両面には、 後 に詳述するシリ ンダ側弁体プレート 1 5 1、 及びリャハウジング側弁 体プレート 1 6 1がそれそれねじ止めにより装着されている。 各シリ ンダ 1 2 0には、 このようなバルブプレート 1 4 0を配置することに より、 それそれ吸入弁 1 5 0及び吐出弁 1 6 0が設けられている。 冷 媒は、 ピス トン 5 0 0 とバルブプレート 1 4 0 との間において圧縮さ れ 。  The valve plate 140 is a member that forms a suction valve 150 that sucks refrigerant into the cylinder 600 and a discharge valve 160 that discharges refrigerant from the cylinder 600. It is arranged between 20 and the rear housing 130. Further, on both sides of the valve plate 140, a cylinder-side valve body plate 151 and a rear housing-side valve body plate 161 which will be described in detail later are mounted by screws. By disposing such a valve plate 140 in each cylinder 120, a suction valve 150 and a discharge valve 160 are provided, respectively. The coolant is compressed between the piston 500 and the valve plate 140.
リャハウジング 1 3 0は、 コン トロールバルブ 7 0 0を装着すると ともに、 バルブプレート 1 4 0 との間に吸入室 1 3 1及び吐出室 1 3 2を構成するものである。 そして、 当該コンプレッサ 1の要所には、 冷媒を流通する流路がそ れそれ設けられており、 冷凍サイクル 1を循環した圧縮前の低圧ガス は、 吸入室 1 3 1にもたらされる。 吸入室 1 3 1め低圧ガスは、 ビス トン 5 0 0が復動すると吸入弁 1 5 0からシリ ンダ 6 0 0の内部に 吸入され、 更にビス トン 5 0 0が往動すると高圧ガスとなって吐出孔 1 6 0から吐出室 1 32にもたらされる。 吐出室 1 3 2の高圧ガスは、 再び冷凍サイクルを循環する。 The rear housing 130 is provided with a control valve 700 and a suction chamber 1311 and a discharge chamber 1332 between the control housing and the valve plate 140. In addition, flow passages through which the refrigerant flows are provided at key points of the compressor 1, and the low-pressure gas that has circulated through the refrigeration cycle 1 before being compressed is introduced into the suction chamber 13 1. The low-pressure gas in the suction chamber 13 1 is sucked into the cylinder 600 from the suction valve 150 when biston 500 moves back, and becomes high-pressure gas when biston 500 moves further forward. From the discharge port 160 to the discharge chamber 132. The high-pressure gas in the discharge chamber 132 circulates through the refrigeration cycle again.
コン ト口一ルバルブ 7 0 0は、 クランク室 1 1 1、 吸入室 1 3 1、 及び吐出室 1 3 2とそれそれ所定の流路を通じて連通されており、 低 圧ガスの圧力が下降すると、 その内部に具備されたべローズが膨らむ ことによってバルブが閧動し、 クランク室 1 1 1に高圧ガスを導く構 成となっている。 また、 低圧ガスの圧力が上昇すると、 ベロ一ズが縮 むことによってパルプが閉動し、 クランク室 1 1 1に導かれる高圧ガ スはカツ トされる。  The control valve 700 is communicated with the crank chamber 11 1, the suction chamber 13 1, and the discharge chamber 13 2 through predetermined flow paths, and when the pressure of the low-pressure gas decreases, When the bellows provided therein expands, the valve moves and the high-pressure gas is led to the crank chamber 11. When the pressure of the low-pressure gas rises, the pulp closes due to the contraction of the bellows, and the high-pressure gas guided to the crankcase 11 is cut.
斜板 4 0 0は、 各シリ ンダ 6 0 0の内部圧力の平均とクランク室 1 1 1の内部圧力とが釣り合う状態で往復移動する。 つま り、 斜板 4 0 0の傾き及びビス トン 5 0 0のス トロ一クは、 コン トロールバルブ 7 0 0におけるバルブの開度によ り制御され、 高圧ガスの吐出量は、 ピ ス トン 5 0 0のス トロークが大きくなると増加し、 小さくなると減少 する。  The swash plate 400 reciprocates in a state where the average of the internal pressure of each cylinder 600 and the internal pressure of the crankcase 111 are balanced. That is, the inclination of the swash plate 400 and the stroke of the biston 500 are controlled by the valve opening of the control valve 700, and the discharge amount of the high-pressure gas is controlled by the piston. It increases as the stroke of 500 increases and decreases as the stroke decreases.
当該斜板式可変容量コンプレッサ 1 0の起動時における冷媒の圧 力は、 3 0 °C雰囲気下で 7. 2 M P a前後となる。 また、 シリ ンダ 6 0 0のボア 6 1 0の径は 1 5. 0〜 2 1. 0 mm、 シリ ンダ 6 0 0の 容積は 2 0〜 3 3 c m3、 吸入弁 1 5 0及び吐出弁 1 6 0における各 ポート 1 4 1 , 1 42の開口面積は 7. 0 - 2 9. 0 mm2となって いる。 The pressure of the refrigerant at the time of starting the swash plate type variable capacity compressor 10 is about 7.2 MPa in a 30 ° C atmosphere. Further, the diameter of the bore 6 1 0 Siri Sunda 6 0 0 1 5. 0 to 2 1. 0 mm, the volume of silicon Sunda 6 0 0 2 0~ 3 3 cm 3, the intake valve 1 5 0 and a discharge valve The opening area of each of the ports 14 1 and 142 in 16 0 is 7.0-29.0 mm 2 .
次に、 本例における弁構造を図 3乃至図 8を参照しながら説明する。 バルブプレ一ト 1 4 0は、 各シリ ンダ 6 0 0と吸入室 1 3 1 とを連通 する複数の吸入ポート 1 4 1 と、 各シリ ンダ 6 0 0と吐出室 1 3 2と 1 を連通する複数の吐出ポ一ト 1 4 2 とを備えた部材である。 また、 シ リ ンダ側弁体プレート 1 5 1は、 各吸入ポート 1 4 1 に対応する吸入 弁 1 5 0の弁体 1 5 2 と、 各吐出ポート 1 4 2に対応する孔部 1 5 3 とをそれそれ複数備えた部材である。 更に、 リャハウジング側,弁体プ レー ト 1 6 1は、 各吐出ポート 1 4 2に対応する吐出弁 1 6 0の弁体 1 6 2 と、 吸入ポート 1 4 1 に対応する孔部 1 6 3 とをそれそれ複数 備えた部材である (図 3及び図 4参照) 。 Next, the valve structure in the present example will be described with reference to FIGS. The valve plate 140 has a plurality of suction ports 141 communicating each cylinder 600 and the suction chamber 131, and each cylinder 600 and the discharge chamber 132. And a plurality of discharge ports 1 and 2 communicating with each other. In addition, the cylinder valve plate 15 1 has a valve body 15 2 of the suction valve 150 corresponding to each suction port 14 1, and a hole 15 3 corresponding to each discharge port 14 2. And a plurality of members. Further, on the rear housing side, the valve plate 16 1 has a valve 16 2 of the discharge valve 16 corresponding to each discharge port 14 2, and a hole 16 corresponding to the suction port 14 1. 3 and a plurality of such members (see FIGS. 3 and 4).
本例の吸入弁 1 5 0は、 シリンダ 6 0 0の内部に冷媒を吸入する吸 入ポート 1 4 1 に、 可撓性を有する弁体 1 5 2を装着してなるもので ある。 吸入弁 1 5 0の弁体 1 5 2は、 吸入ポート 1 4 1の弁座たるバ ルブプレート 1 4 0の一方の表面に対し、 僅かに弾性変形した状態で 圧接している。 また、 本例の吐出弁 1 6 0も同様に、 シリンダ 6 0 0 の内部から冷媒を吐出する吐出ポート 1 4 2に、 可撓性を有する弁体 1 6 2を装着してなるものである。 吐出弁 1 6 0の弁体 1 6 2は、 吐 出ポート 1 4 2の弁座たるバルブプレー ト 1 4 0の他方の表面に対 し、 僅かに弾性変形した状態で圧接している。 尚、 図中の 1 6 4は、 吐出弁 1 6 0の弁体 1 6 2の開度を規制する リテーナである。 リテ一 ナ 1 6 4は、 バルブプレー ト 1 4 0 にねじ止めして設けられている (図 5参照) 。  The suction valve 150 of the present example has a flexible valve element 152 mounted on a suction port 141 for sucking a refrigerant into a cylinder 600. The valve element 152 of the suction valve 150 is pressed against one surface of the valve plate 140 serving as a valve seat of the suction port 141 in a slightly elastically deformed state. Similarly, the discharge valve 160 of the present example has a flexible valve element 162 attached to a discharge port 142 that discharges refrigerant from the inside of the cylinder 600. . The valve element 162 of the discharge valve 160 is pressed against the other surface of the valve plate 140 serving as the valve seat of the discharge port 142 in a slightly elastically deformed state. Reference numeral 164 in the figure denotes a retainer that regulates the opening of the valve element 162 of the discharge valve 160. The retainer 164 is screwed to the valve plate 140 (see FIG. 5).
すなわち、 シリ ンダ側弁体プレート 1 5 1 に設けられた吸入弁 1 5 0の弁体 1 5 2は、 バルブプレート 1 4 0に向って先端を突き出す体 勢で湾曲状に塑性変形されており (図 6参照) 、 シリ ンダ側弁体プレ —ト 1 5 1をバルブプレ一ト 1 4 0に装着するとともに、 強制的に弾 性変形される。 この弁体 1 5 2は、 プレス加工により塑性変形されて おり、 吸入ポート 1 4 1 に装着したときのたわみ 3 は、 1 mm以下 (よ り詳細には 5 0〜 2 0 0〃111) となっている。 吸入弁 1 5 0の弁 体 1 5 2の素材の板厚は、 望ましくは 0. 2〜 0. 3 mmであり、 本 例では 0. 2 5 mmとなっている。 その素材の縦弾性係数は、 2. 0 6 X I 0 5 N/mm2前後である。 そして、 吸入弁 1 5 0の弁体 1 5 2 がポート 1 4 1の弁座から受ける外力 Pは、 弁体 1 5 2の円滑な開閉 動作を確保するべく、 1. 8 N以下となっている。 かかる外力 Pのよ り望ましい範囲は 1. 2 N以下であり、 最も望ましい範囲は 0. 2 ~ 0. 7 Nである。 例えば、 弁体 1 5 2のばね定数 kが約 5. 0 N/m m、 たわみ 5丄が 24 0 mであれば、 その外力 Pは、 k = P / d 、 より、 約 1. 2 Nとなる。 或いは、 弁体 1 5 2のばね定数 kが約 4. 0 N/mm、 たわみ が 1 5 0 /mであれば、 その外力 Pは、 約 0. 6 Nとなる。 尚、 ばね定数 kは、 素材の縦弾性係数及び弁体 1 5 2の 形状に依存する。 In other words, the valve element 152 of the suction valve 150 provided on the cylinder side valve element plate 151 is plastically deformed in a curved shape with the tip protruding toward the valve plate 140. (Refer to Fig. 6.) The cylinder side plate plate 151 is attached to the valve plate 140, and it is forcibly elastically deformed. The valve element 152 is plastically deformed by press working, and the deflection 3 when attached to the suction port 141 is 1 mm or less (more specifically, 50 to 200 2111). Has become. The plate thickness of the material of the valve element 152 of the suction valve 150 is desirably 0.2 to 0.3 mm, and is 0.25 mm in this example. Its modulus of longitudinal elasticity of the material, 2. a 0 6 XI 0 5 N / mm 2 before and after. And the valve element 1 5 2 of the suction valve 150 The external force P received from the valve seat of port 14 1 is 1.8 N or less in order to ensure the smooth opening and closing operation of valve body 152. The more desirable range of the external force P is 1.2 N or less, and the most desirable range is 0.2 to 0.7 N. For example, if the spring constant k of the valve element 152 is about 5.0 N / mm and the deflection 5 丄 is 240 m, the external force P is k = P / d, and Become. Alternatively, if the spring constant k of the valve element 152 is about 4.0 N / mm and the deflection is 150 / m, the external force P is about 0.6 N. The spring constant k depends on the longitudinal elastic modulus of the material and the shape of the valve element 152.
リャハウジング側弁体プレー ト 1 6 1に設けられた吐出弁 1 6 0 の弁体 1 6 2の基本構造は、 前述した吸入弁 1 5 0の弁体 1 5 2と同 様である。 つまり、 吐出弁 1 6 0の弁体 1 6 2のたわみ(52は、 l m m以下となっており、 吐出弁 1 6 0の弁体 1 6 2がポート 1 4 2の弁 座から受ける外力 Pは、 1. 8 N以下となっている。 The basic structure of the valve element 162 of the discharge valve 160 provided on the rear housing-side valve element plate 161 is the same as the above-described valve element 152 of the suction valve 150. That is, the valve body 1 6 2 flexure (5 2 of the discharge valve 1 6 0 is equal to or less than lmm, the external force P that the valve body 1 6 2 of the discharge valve 1 6 0 receives from port 1 4 2 of the valve seat Is 1.8 N or less.
また、 各弁体 1 5 2, 1 6 2の表面には、 弁座とのシート性を向上 するべく、 P T F E等のコーティ ングが施されている。 吸入弁 1 5 0 の弁体 1 5 2及び吐出弁 1 6 0の弁体 1 6 2は、 クランク室 1 1 1、 吸入室 1 3 1、 及び吐出室 1 3 2の差圧によってそれそれ開閉動作す る (図 7及び図 8参照) 。  In addition, a coating such as PTFE is applied to the surface of each of the valve elements 15 2 and 16 2 in order to improve seating with the valve seat. The valve element 15 2 of the suction valve 15 0 and the valve element 16 2 of the discharge valve 16 0 are opened and closed by the differential pressure of the crank chamber 1 1 1, the suction chamber 1 3 1, and the discharge chamber 1 3 2 respectively. It works (see Figs. 7 and 8).
本願発明者は、 本例の斜板式可変容量コンプレッサ 1 0と、 そのシ リ ンダ側弁体プレート 1 5 1を交換したものとについて、 起動時の回 転数の比較実験を異なる条件下で繰り返し行った。 交換したシリ ンダ 側弁体プレー トは、 フラッ ト状のものであり、 吸入弁 1 5 0の弁体 1 5 2が吸入ポー ト 1 4 1の弁座たるバルブプレート 1 4 0の表面に 弾性変形した状態で圧接しないものである。 その結果、 本例の斜板式 可変容量コンプレッサ 1 0の起動時の回転数は、 シリ ンダ側弁体プレ ート 1 5 1を交換したものの起動時の回転数に対し、 3 0〜 7 0パー セン トの範囲であった。 例えば、 吸入弁の弁体が弁座に弾性変形した 状態で圧接されていないものであって、 起動時の回転数が 7 0 0 r p m程度の斜板式可変容量コンプレッサについて、 弁体を交換し、 これ を僅かに弾性変形した状態で弁座に圧接するように構成すると、 起動 時の回転数は 3 0 0 r p m程度まで低減した。 図 9は、 吸入弁の弁体 を交換する前後、 つま り改善前後における起動時の回転数の比較グラ フである。 このような実験によれば、 本例の斜板式可変容量コンプレ ヅサ 1 0は、 冷媒が圧縮され始める際の斜板の回転数が確実に低減さ れたものであることが証明された。 The inventor of the present application repeated a comparison experiment of the number of revolutions at the time of startup between the swash plate type variable displacement compressor 10 of the present example and the cylinder side valve plate 151, which was replaced, under different conditions. went. The replaced cylinder-side valve body plate is flat, and the valve body 150 of the suction valve 150 is elastic on the surface of the valve plate 140, which is the valve seat of the suction port 141. It is not pressed in a deformed state. As a result, the rotation speed at startup of the swash plate type variable displacement compressor 10 of this example is 30 to 70% lower than the rotation speed at startup of the cylinder-side valve plate 151, which has been replaced. It was within the range of the center. For example, when the valve element of the suction valve is not pressed against the valve seat while being elastically deformed, the rotation speed at startup is 700 rp By replacing the valve body of a swash plate type variable displacement compressor of about m and pressing it against the valve seat while slightly deforming it, the rotational speed at startup was reduced to about 300 rpm. Figure 9 is a comparison graph of the number of revolutions at startup before and after replacement of the valve element of the intake valve, that is, before and after the improvement. According to such an experiment, it has been proved that the swash plate type variable capacity compressor 10 of the present example has a surely reduced rotation speed of the swash plate when the refrigerant starts to be compressed.
尚、 吸入弁 1 5 0の弁体 1 5 2の形状や、 吐出弁 1 6 0の弁体 1 6 2の形状は、 適宜に設計変更が可能であり、 図例したものに限定され ないことは勿論である。 例えば図 1 0及び図 1 1 に示すように、 吸入 弁 1 5 0の弁体 1 5 2又は吐出弁 1 6 0の弁体 1 6 2は、 その先端部 を半球状に成形し、 円形の吸入ポ—ト 1 4 1又は吐出ポート 1 4 2の 縁部にその球状面が当接するように構成することも可能である。 先端 部の成形は、 プレス加工にて行う とよい。 吸入弁 1 5 0の弁体 1 5 2 又は吐出弁 1 6 0の弁体 1 6 2は、 これに揷通した雄ねじ部品 Bをバ ルブプレート 1 4 0に設けた雌ねじ部 Nに螺合することにより、 その 先端部を吸入ポート 1 4 1又は吐出ポー ト 1 4 2の縁部に押し付け た状態に弾性変形する。  The shape of the valve element 152 of the suction valve 150 and the shape of the valve element 162 of the discharge valve 160 can be changed as appropriate, and are not limited to those illustrated in the drawings. Of course. For example, as shown in FIG. 10 and FIG. 11, the valve body 15 2 of the suction valve 150 or the valve body 16 2 of the discharge valve 160 has a tip formed into a hemispherical shape, and has a circular shape. It is also possible that the spherical surface is in contact with the edge of the suction port 141 or the discharge port 142. The tip is preferably formed by pressing. For the valve element 15 2 of the suction valve 150 or the valve element 16 2 of the discharge valve 160, the male threaded part B passing therethrough is screwed into the female thread N provided on the valve plate 140. As a result, the distal end portion is elastically deformed in a state of being pressed against the edge of the suction port 141 or the discharge port 142.
或いは図 1 2及び図 1 3に示すように、 フラ ヅ ト状の弁体 1 5 2 , 1 6 2が弾性変形をして曲面状のバルブプレ一 ト 1 4 0の表面に圧 接するように構成することも可能である。 この場合は、 弁体 1 5 2, 1 6 2の塑性変形は省略することができる。 産業上の利用可能性  Alternatively, as shown in FIGS. 12 and 13, the flat valve elements 15 2 and 16 2 are elastically deformed and pressed against the surface of the curved valve plate 140. It is also possible. In this case, plastic deformation of the valve bodies 15 2 and 16 2 can be omitted. Industrial applicability
本発明の斜板式可変容量コ ンプレッサは、 高圧側の圧力が冷媒の臨 界点を超える超臨界冷凍サイ クルのコ ンプレッサとして好適に利用 することができる。  INDUSTRIAL APPLICABILITY The swash plate type variable displacement compressor of the present invention can be suitably used as a compressor for a supercritical refrigeration cycle in which the pressure on the high pressure side exceeds the critical point of the refrigerant.

Claims

言青求の範囲 Scope of Word
1 . 超臨界冷凍サイ クルに用いられるコンプレッサであり、 回転可能 に設けられた斜板と、 前記斜板に連結されたビス トンと、 前記ビス ト ンを移動可能に保持するシリンダとを備え、 前記シリ ンダには、 前記 超臨界冷凍サイクルの泠媒を吸入する吸入弁と、 前記冷媒を吐出する 吐出弁とを設けてなる斜板式可変容量コンプレッサにおいて、 1. A compressor used for a supercritical refrigeration cycle, comprising: a swash plate rotatably provided; a biston connected to the swash plate; and a cylinder movably holding the biston. In the swash plate type variable displacement compressor, the cylinder includes a suction valve that sucks a medium of the supercritical refrigeration cycle, and a discharge valve that discharges the refrigerant.
前記吸入弁は、 前記冷媒を吸入する吸入ポ一トに可撓性を有する弁 体を装着してなり、  The suction valve has a flexible valve body mounted on a suction port for sucking the refrigerant,
当該斜板式可変容量コンプレッサは、 前記冷媒が圧縮され始める際 の前記斜板の回転数を低減するよう に、 前記吸入ポートの弁座に前記 弁体を弾性変形した状態で圧接してなることを特徴とする斜板式可 変容量コンプレッサ。  The swash plate type variable displacement compressor may be configured so that the valve body is elastically deformed and pressed against a valve seat of the suction port so as to reduce the rotation speed of the swash plate when the refrigerant starts to be compressed. Features a swash plate type variable displacement compressor.
2 . 前記弁体を前記吸入ポート装着したときの当該弁体のたわみが 1 m m以下であるとともに、 このとき前記弁体が前記吸入ポートの弁座 から受ける外力が 1 . 8 N以下であることを特徴とする請求項 1記載 の斜板式可変容量コンプレッサ。 2. The deflection of the valve body when the valve body is attached to the suction port is 1 mm or less, and the external force received by the valve body from the valve seat of the suction port at this time is 1.8 N or less. The swash plate type variable displacement compressor according to claim 1, wherein:
3 . 前記超臨界冷凍サイクルは、 自動車に搭載される車内空調用の冷 凍サイクルであり、 当該斜板式可変容量コンプレッサは、 クラッチを 介さずに前記自動車の駆動機関と連結されたクラッチレスコンプレ ツサであることを特徴とする請求項 1又は 2記載の斜板式可変容量 コンプレッサ。 3. The supercritical refrigeration cycle is a refrigeration cycle for in-vehicle air conditioning mounted on a vehicle, and the swash plate type variable displacement compressor is a clutchless compressor connected to a driving engine of the vehicle without using a clutch. The swash plate type variable displacement compressor according to claim 1 or 2, wherein:
PCT/JP2003/016638 2002-12-27 2003-12-24 Swash plate-type variable displacement compressor for supercritical refrigeration cycle WO2004061306A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/540,471 US20060083628A1 (en) 2002-12-27 2003-12-24 Swach plate type variable displayment compressor for supercritical refrigeration cycle
JP2004564511A JPWO2004061306A1 (en) 2002-12-27 2003-12-24 Swash plate variable displacement compressor for supercritical refrigeration cycle
EP03789631A EP1586774A4 (en) 2002-12-27 2003-12-24 Swash plate-type variable displacement compressor for supercritical refrigeration cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-380867 2002-12-27
JP2002380867 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004061306A1 true WO2004061306A1 (en) 2004-07-22

Family

ID=32708457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016638 WO2004061306A1 (en) 2002-12-27 2003-12-24 Swash plate-type variable displacement compressor for supercritical refrigeration cycle

Country Status (4)

Country Link
US (1) US20060083628A1 (en)
EP (1) EP1586774A4 (en)
JP (1) JPWO2004061306A1 (en)
WO (1) WO2004061306A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069883A1 (en) * 2004-12-23 2006-07-06 BSH Bosch und Siemens Hausgeräte GmbH Compressor for a refrigeration device
JP2007278180A (en) * 2006-04-06 2007-10-25 Sanden Corp Reciprocating compressor
WO2009017157A1 (en) * 2007-08-01 2009-02-05 Sanden Corporation Scroll type fluid machine
JP2021055631A (en) * 2019-09-30 2021-04-08 株式会社豊田自動織機 Compressor and method for manufacturing the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4408389B2 (en) * 2004-05-10 2010-02-03 サンデン株式会社 Swash plate compressor
US20060053051A1 (en) * 2004-09-07 2006-03-09 Philip Goodman Genergraphic websites
DE102004061940A1 (en) * 2004-12-22 2006-07-06 Aerolas Gmbh, Aerostatische Lager- Lasertechnik Piston-cylinder-unit for use in compressor, has fluid storage provided between piston and cylinder and formed by fluid discharged from discharging nozzles into storage opening under pressure
DE102004062305A1 (en) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH compressor housing
DE102004062302A1 (en) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linear compressor and drive unit for it
US20080000348A1 (en) * 2004-12-23 2008-01-03 Bsh Bosch Und Siemens Hausgerate Gmbh Linear Compressor
DE102004062301A1 (en) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linear compressor and drive unit for it
DE102004062307A1 (en) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH linear compressor
DE102004062298A1 (en) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH linear compressor
DE102004062300A1 (en) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH linear compressor
WO2009027001A1 (en) * 2007-08-25 2009-03-05 Ixetic Mac Gmbh Reciprocating piston machine
EP2284456B1 (en) * 2008-04-30 2017-05-10 Mitsubishi Electric Corporation Air conditioner
JP5240311B2 (en) * 2011-03-15 2013-07-17 株式会社豊田自動織機 Cylinder block of piston type compressor and cylinder block processing method of piston type compressor
DK178434B1 (en) * 2015-01-02 2016-02-22 Producteers As Automatic Filter Cleaning System
CN109611224B (en) * 2018-11-30 2021-06-08 恒天九五重工有限公司 Method for preventing fault during starting of engineering machinery
US20220364554A1 (en) * 2021-05-13 2022-11-17 Walmsley Developments Pty Ltd Portable pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144074U (en) * 1984-08-24 1986-03-24 ダイキン工業株式会社 Discharge valve structure used in compressors
JPH0861242A (en) * 1994-08-10 1996-03-08 Iwata Air Compressor Mfg Co Ltd Reciprocating compressor and suction valve
JPH09256958A (en) * 1996-03-21 1997-09-30 Sanden Corp Starting load reducing device for compressor
JP2002257037A (en) * 2001-02-23 2002-09-11 Sanden Corp Swash plate compressor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594203Y2 (en) * 1975-07-16 1984-02-06 エヌオーケー株式会社 reed valve
JPS5951262U (en) * 1982-09-28 1984-04-04 カルソニックカンセイ株式会社 Structure of compressor valve
JPS6154566U (en) * 1984-09-14 1986-04-12
JPH0756258B2 (en) * 1985-10-04 1995-06-14 株式会社豊田自動織機製作所 Variable capacity compressor
JPH0243573U (en) * 1988-09-19 1990-03-26
BR8901306A (en) * 1989-03-16 1990-10-16 Brasil Compressores Sa REED VALVE FOR HERMETIC COMPRESSOR
BR9002967A (en) * 1990-06-19 1991-12-24 Brasil Compressores Sa VALVE FOR HERMETIC COOLING COMPRESSOR
JP3226141B2 (en) * 1993-12-16 2001-11-05 株式会社豊田自動織機 Valve device of positive displacement compressor
JP3232839B2 (en) * 1993-12-24 2001-11-26 株式会社豊田自動織機 Compressor valve device
US5584670A (en) * 1994-04-15 1996-12-17 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
JP2000329066A (en) * 1999-05-19 2000-11-28 Toyota Autom Loom Works Ltd Suction valve construction of piston type compressor
BR0003292A (en) * 2000-07-17 2002-02-26 Brasil Compressores S A Arrangement of suction and discharge valves for small hermetic compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144074U (en) * 1984-08-24 1986-03-24 ダイキン工業株式会社 Discharge valve structure used in compressors
JPH0861242A (en) * 1994-08-10 1996-03-08 Iwata Air Compressor Mfg Co Ltd Reciprocating compressor and suction valve
JPH09256958A (en) * 1996-03-21 1997-09-30 Sanden Corp Starting load reducing device for compressor
JP2002257037A (en) * 2001-02-23 2002-09-11 Sanden Corp Swash plate compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1586774A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069883A1 (en) * 2004-12-23 2006-07-06 BSH Bosch und Siemens Hausgeräte GmbH Compressor for a refrigeration device
JP2007278180A (en) * 2006-04-06 2007-10-25 Sanden Corp Reciprocating compressor
WO2009017157A1 (en) * 2007-08-01 2009-02-05 Sanden Corporation Scroll type fluid machine
JP2021055631A (en) * 2019-09-30 2021-04-08 株式会社豊田自動織機 Compressor and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2004061306A1 (en) 2006-05-11
EP1586774A4 (en) 2011-03-09
EP1586774A1 (en) 2005-10-19
US20060083628A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
WO2004061306A1 (en) Swash plate-type variable displacement compressor for supercritical refrigeration cycle
US6565329B2 (en) Electric type swash plate compressor
KR100986943B1 (en) Discharge valve for reciprocating compressor
JPH07119631A (en) Swash plate type variable displacement compressor
WO2007123002A1 (en) Compressor
US5213488A (en) Valved discharge mechanism of a refrigerant compressor
JPH0138192B2 (en)
CN111656012B (en) Variable capacity swash plate type compressor
KR102547594B1 (en) Variable displacement swash plate type compressor
US20090097999A1 (en) Suction structure in double-headed piston type compressor
JP2000018154A (en) Reciprocating compressor
JP2002031058A (en) Reciprocating refrigerant compressor
JP2005105975A (en) Valve structure of compressor
JPH0343687A (en) Coolant compressor and capacity control method thereof
US20060222513A1 (en) Swash plate type variable displacement compressor
US6912948B2 (en) Swash plate compressor
JP2008144701A (en) Variable displacement reciprocating compressor
KR20110098215A (en) Check valve of variable displacement compressor
JP2000297745A (en) Compressor
KR101166286B1 (en) Swash plate type compressor
JP3818175B2 (en) Radial fluid machine
KR101177294B1 (en) Variable capacity type swash plate type compressor
EP1041284A2 (en) Suction valve for compressor
KR101463259B1 (en) Compressor
KR101607707B1 (en) Variable displacement swash plate type compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004564511

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006083628

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540471

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003789631

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003789631

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540471

Country of ref document: US