WO2004058975A1 - Method of enhancing tolerance to environmental stresses of plant - Google Patents

Method of enhancing tolerance to environmental stresses of plant Download PDF

Info

Publication number
WO2004058975A1
WO2004058975A1 PCT/JP2003/016558 JP0316558W WO2004058975A1 WO 2004058975 A1 WO2004058975 A1 WO 2004058975A1 JP 0316558 W JP0316558 W JP 0316558W WO 2004058975 A1 WO2004058975 A1 WO 2004058975A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
gene
environmental stress
stress
sig5
Prior art date
Application number
PCT/JP2003/016558
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Takahashi
Kan Tanaka
Harumi Kamachi
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to AU2003292749A priority Critical patent/AU2003292749A1/en
Priority to JP2004562908A priority patent/JPWO2004058975A1/en
Publication of WO2004058975A1 publication Critical patent/WO2004058975A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • the present invention increases the resistance of plants to environmental stress (high light, high salt concentration, high osmotic pressure, low temperature, etc.), and cultivates useful plants for food, ornamental use, etc. under various conditions.
  • low-temperature-tolerant plants Arabidopsis, spinach, lettuce, endo, oats, sugar beet, etc.
  • low-temperature-sensitive plants corn, rice, kabochia, kiyuri, banana, tomato, etc.
  • It has a low content of glycerol, so that even when exposed to low temperatures, phase transition of lipids in biological membranes is unlikely to occur, and low-temperature damage is unlikely to occur.
  • genes used to create environmental stress-tolerant plants include synthase genes for osmotic pressure regulators (such as mannitol, proline, and glycine betaine) and gene enzymes for modifying cell membrane lipids.
  • osmotic pressure regulators such as mannitol, proline, and glycine betaine
  • the mannitol synthase gene is Escherichia coli-derived mannitol 1-phosphate dehydrogenase gene (Science, vol. 259, 1993, pp. 508-510)
  • the proline synthase gene is bean-derived ⁇ 1-proline 1 5
  • One carboxylate synthetase gene PlantPhysiology, 108, 1995, pp.
  • glycine betaine synthase gene is bacterial choline dehydrogenase genes (The Plant Journal, 12, 1997, 1334-1342.
  • cell membrane lipid-modifying genes include the Arabidopsis thaliana ⁇ -3 fatty acid desaturase gene (Plant Physiology, Vol. 105, pp. 601-605, 1994) and the cyanobacterial ⁇ 9 desaturase gene (Nature Biotechnology, Vol. 14). , 1996, pp. 1003-1006).
  • none of the plants into which these genes have been introduced have been put into practical use due to problems such as unstable stress resistance and low resistance level.
  • a stress-responsive element is placed downstream of a stress-responsive promoter that is expressed in response to a specific stress stimulus.
  • Resistance to environmental stresses such as drought stress, low temperature stress, and salt stress
  • DNA-linked genes that bind to proteins and encode proteins that regulate the transcription of genes downstream of the element.
  • JP-A-2000-116259 It has also been reported to produce transgenic plants that do not cause dwarfing.
  • JP-A-2000-116259 a new gene that enhances environmental stress tolerance when introduced into a plant has been discovered (US Patent Application Publication No. 2002/0102695).
  • D2 protein which is the weakest protein in the photosynthetic system, and is the Ps II active center.
  • the gene sig 5 (formerly called sig E) is presumed to be responsible for controlling the production of PS II active center, and sig 5 is known to be expressed by blue light ( FEBS Letters, vol. 516, 2002, pp. 225-228), expression under environmental stress (high light, high salt concentration, low temperature, etc.) according to the present invention, and the fact that the PS II activity center D2 protein is exposed to environmental stress. It is not known that it is produced in response, and it is not anticipated that damage to the photosynthetic system due to environmental stress can be solved by promoting the repair function until these two points are discovered That was it. Disclosure of the invention
  • the present invention is based on a new mechanism that actively restores the plant's resistance to environmental stresses such as strong light, high salt concentration, high osmotic pressure (dryness), and low temperature, and actively recovers the damage to the photosynthetic function of these stresses.
  • One of the tasks is to provide a method for increasing the environmental stress, and another object is to provide a method for obtaining a plant generally having high environmental stress tolerance by the method.
  • the present inventors have found that expression of sig5 is induced by environmental stress such as strong light, high salt concentration, high osmotic pressure (dryness), and low temperature.
  • the P2 protein active center D2 protein the weakest protein in the photosynthetic system, was promoted by environmental stress such as strong light, high salt concentration, high osmotic pressure (dryness), and low temperature.
  • environmental stress such as strong light, high salt concentration, high osmotic pressure (dryness), and low temperature.
  • sig5 is a key factor in photosynthetic response to environmental stress, and to further enhance this function, that is, to recover the photosynthetic system damage caused by environmental stress early, to improve the photosynthetic environment.
  • stress resistance can be obtained.
  • the ability of sig5 to be highly expressed even when environmental stress is not applied, and whether or not sig5 is more highly expressed in response to a stimulus can enhance the environmental stress tolerance of plants, and can enhance the environmental stress tolerance.
  • the present inventors have found that a plant having a high yield can be obtained, and completed the present invention.
  • the present invention includes the following items.
  • a method for enhancing the resistance of plants to environmental stress which promotes the production of photosynthesis-related proteins in higher plants.
  • the sig5 gene is linked downstream of the transcriptional regulatory region that strongly expresses the sig5 component gene by the gene conversion method, and is incorporated into plants to express the sig5 component gene during growth as described in 1 or 2 above. A method for increasing the resistance of the described plant to environmental stress.
  • the sig5 gene is ligated downstream of the promoter, which is strongly induced by environmental stress, and transformed with Agrobacterium via T-DNA.
  • Sig 5 genetic by the method 3. The method for increasing the resistance of a plant to environmental stress according to the above item 1 or 2, wherein the offspring are introduced into a plant body.
  • a plant having high resistance to environmental stress obtained by using the method for increasing resistance to environmental stress of a plant according to any one of 1 to 9 above.
  • a method for producing a plant having high resistance to environmental stress which comprises using the method for increasing resistance of a plant to environmental stress according to any one of 1 to 9 above.
  • the sigma factor is a factor that binds to the enzyme part (core enzyme) responsible for R ⁇ ⁇ synthesis of DNA-dependent RNA polymerase to recognize the promoter on the genome and initiate transcription. Only when the sigma factor is present, the first stage of protein production is transferred to DNA ⁇ R ⁇ D. And factors are a group of proteins that control the expression of various genes at the transcriptional stage.
  • Chloroplasts are known as organelles that perform photosynthesis, and have their own genome and gene expression system.
  • the chloroplast genome encodes an intrinsic bacterial RNA polymerase (PEP) and is mainly involved in the expression of photosynthesis-related genes. Confer promoter recognition specificity to the core enzyme subunit of this PEP
  • the sigma factor gene is located on the nuclear chromosome.
  • sig5 is one of the six sigma factors found in plants (Arabidopsis thaliana), but we have identified that this gene can be used in plants such as strong light, high salt concentration (high osmotic pressure), and low temperature. Was found to be highly expressed by environmental stimuli that would be stressful for the children. Similarly, they found that gene expression of a protein (PS II active center) that is susceptible to environmental stress is also promoted by environmental stress.
  • PS II active center protein that is susceptible to environmental stress is also promoted by environmental stress.
  • the principle of producing a stress-tolerant plant according to the present invention can be applied to higher plants in general.
  • the environmental stress means a stress that causes some damage to a plant body, and includes those present in a normal plant growth environment such as light and oxygen.
  • intense light refers to light that exists in the natural environment and impairs a plant, and varies depending on the type of the plant. For example, the amount of light that is twice or more the normal growth environment of a certain plant, That is, for a plant that normally grows sufficiently with a light quantity of 25 ⁇ E / m 2 ⁇ s, the value is 50 ⁇ E Zm 2 ⁇ s or more (microinsteinine square meters.sec).
  • the high salt concentration means a salt concentration that damages a plant, and varies depending on the type of a plant.
  • the low temperature means a low temperature that damages a plant, and is, for example, a temperature lower than the environment where a certain plant normally grows by 1 ° C. or more.
  • the sig5 gene used in the present invention is registered in the gene number as accession number AB0211120.
  • the sig5 gene can be obtained by chemical synthesis, by PCR using the cDNA or genomic DNA of the present gene as type III, or by hybridization using a DNA fragment having the base sequence as a probe. it can.
  • the sig5 which is similar to the sig5 gene under conditions of stringent hybridization with the sig5 gene, can also be used as long as the protein encoded by the DNA has a function of activating RNA polymerase by binding to PEP. Can be used.
  • the stringent condition is, for example, a condition at a formamide concentration of 30 to 50%, preferably 50%, and a temperature of 37 to 50 ° C, preferably 42 ° C. Say.
  • a transgenic plant having the same can be produced.
  • Methods for introducing a gene into a plant host include indirect methods such as the agrobacterium infection method, the particle gun method, the polyethylene glycol method, and the liposome method. Examples include direct introduction methods such as a sosome method and a microinjection method.
  • a transgenic plant can be prepared as follows.
  • the plant introducing recombinant vector is obtained by cutting the DNA containing sig5 with an appropriate restriction enzyme, if necessary. It can be obtained by ligating an appropriate linker and inserting it into a cloning vector for plant cells.
  • a cloning vector a binary vector plasmid such as pBI2113Not, pBI2113, pBI101, pBI121, pGA482, pGAH, pBIG, or an intermediate vector plasmid such as pLGV23Neo, pNCAT, or pMON200 can be used.
  • a target gene is inserted between the boundary sequences (LB, RB) of the binary vector, and the recombinant vector is amplified in Escherichia coli.
  • the amplified recombinant vector is introduced into Agrobacterium tumefaciens C58, LBA4404, EHA101, C58ClRifR, EHA105, or the like by a freeze-thaw method, an electoral poration method, or the like, and the agrobacterium is transduced into a plant. Used for
  • agrobacterium for plant infection containing the sig5 gene can be prepared by a three-way conjugation method (Nucleic Acids Research, 12: 8711 (1984)). That is, Escherichia coli having a plasmid containing a target gene, Escherichia coli having a helper plasmid (for example, pRK2013), and agrobacterium are mixed cultured, and cultured on a medium containing rifampicin and kanamycin. It is possible to obtain a conjugate aglopacterium for plant infection.
  • the sig5 gene activates the chloroplast PEP and increases the production rate of the PSII active center D2 protein, the weakest protein in the photosynthetic system.
  • sig 5 is the expression of specific genes such as PS II active center D 2 protein in chloroplast Because it is a controlling factor, an unspecified number of genes are activated, and the resulting increase in energy consumption and metabolic activation do not suppress the growth of the plant itself. However, it is thought that it is expressed only when it receives a stimulus that causes environmental stress, and connects the sig5 gene downstream of the stress-responsive promoter.
  • promoters examples include the rd29A gene promoter (The Plant Cell, 6, 251-264 (1994)) and the rd29B gene promoter (The Plant Cell, 6, 251-264 (1994)). ), Rd17 gene promoter (Plant Physiol., 115, 1287 (1997)), rd22 gene promoter (Mol. Gen. Genet., 247, 391-398 (1995)), DREB1A gene promoter (Biochem Biophys. Res. Com., 250, 161-170 (1998)), cor6.6 gene promoter (Plant Mol. Biol "28, 619-634 (1995)), cor15a gene promoter (Plant Mol.
  • a terminator that directs the termination of transcription can be connected downstream of the DREB gene, if necessary.
  • the terminator include a cauliflower mosaic virus-derived ⁇ nopaline synthase gene terminator.
  • the terminator is not limited to this, and may be any terminator known to function in a plant.
  • an intron sequence between the promoter sequence and the sig5 gene, which enhances gene expression such as the intron of maize alcohol-nordehydrogenase (Adh1) (Genes & Developmentl, 1183-1200) (1987)) can be introduced.
  • Adh1 maize alcohol-nordehydrogenase
  • the Kerr gene is used in combination with the sig5 gene.
  • the selectable markers used in this case include the kanamycin resistance gene ( ⁇ ⁇ ⁇ ), the hygromycin phosphotransferase (htp) gene that confers resistance to the antibiotic hygromycin to plants, and the resistance to bialaphos.
  • htp hygromycin phosphotransferase
  • bar, phosphinothricin acetyltransferase
  • the sig5 gene and the selectable marker gene may be integrated together into a single vector, or two types of recombinant DNAs each integrated into separate vectors may be used.
  • a plant host refers to a plant cultured cell, the whole plant of a cultivated plant, a plant organ (eg, leaf, petal, stem, root, rhizome, seed, etc.), or a plant tissue (eg, epidermis, phloem) , Parenchyma, xylem, vascular bundle, etc.).
  • Plants that can be used as plant hosts include Arabidopsis, tobacco, rice, corn and the like.
  • a vector containing the sig5 gene in a collected plant section can be introduced into the above-mentioned plant host by an agrobacterium infection method, a particle gun method, a polyethylene dalicol method, or the like.
  • a vector containing the sig5 gene can be introduced into protoplasts by the electroporation method.
  • a gene When a gene is introduced by the Agrobacterium infection method, it is necessary to infect a plant host with the Agrobacterium containing a plasmid containing the target gene.
  • This step can be performed by a vacuum infiltration method (CR Acad. Sci. Paris, Life Science, 316, 1194 (1993)). That is, a plant host is directly immersed in a culture medium of agrobacterium containing a plasmid containing the sig5 gene, put in a desiccator, and aspirated with a vacuum pump until the pressure reaches 65 to 70 mmHg. Leave at room temperature for minutes. Transfer the pot to a tray and cover with plastic wrap to keep humidity. Take the wrap the next day and let the plants grow Harvest the seeds.
  • Transgenic plants into which the gene used in the present invention has been introduced can be obtained by transferring the plants grown in this medium to pots and growing them.
  • a gene introduced into a plant is integrated into the genome of a host plant.
  • a phenomenon called a position effect in which the expression of the introduced gene differs due to a difference in the position on the genome to be introduced is observed.
  • Transformants in which the transgene is more strongly expressed can be selected by detecting the level of mRNA expressed in the host plant by the Northern method using the DNA fragment of the transgene as a probe. .
  • DNA can be extracted from these cells and tissues in accordance with a conventional method, and a known PCR method can be used. It can be performed by detecting the introduced gene using the method or Southern analysis.
  • Analysis of the expression level and expression site of the sig5 gene in a transgenic plant into which the sig5 gene has been introduced is performed by extracting RNA from these cells and tissues according to a conventional method, and using a known RT-PCR method or Northern blot method. The analysis can be performed by detecting the mRNA of the sig5 gene.
  • a gene whose expression level is considered to have changed due to the action of sig5 can be identified by Northern analysis.
  • Northern analysis transgenic plants with the sig5 gene introduced and plants without the sig5 gene were used, The assay can be performed by comparing the mRNA levels of genes considered as target genes according to a conventional method.
  • a plant grown on a GM agar medium or the like is subjected to environmental stress for a predetermined period (for example, 1 to 2 weeks).
  • the strong light stress can be given by irradiating light having an intensity of 50 ⁇ EZm 2 ⁇ s (microin stubine / square meter's), preferably 500 E / m 2 ⁇ s.
  • High salt stress can be imparted to normal MS media by adding 25 OmM sodium chloride.
  • Hyperosmotic stress can be imparted to normal MS media by adding 25 OmM mannitol.
  • the load of low-temperature stress can be provided by maintaining the temperature at 15 ° C to 14 ° C, preferably at 4 ° C for 10 minutes to 24 hours.
  • transgenic plants are planted in flower pots containing soil containing bamikiuraito, perlite, etc., resulting in high light, high salt concentration, and high osmotic pressure. It can be evaluated by examining the survival and leaf color when various stresses such as low temperature are applied. When stress causes abnormalities in the photosynthetic system, the green color of the leaves changes clearly and slightly.
  • the resistance to high light stress can be determined by examining its survival under high light for 2-4 weeks, and the resistance to low temperature stress can be determined by placing it at 4 ° C for 5-10 days, then 5-10 days. It can be evaluated by growing at 20 to 25 ° C.
  • Figure 1 shows the sig in plants stressed with salt stress according to the method of Example 2.
  • the results of analysis of the expression of 5 and ps bD are shown together with the results of the control not subjected to salt stress (“one NaClj” in the figure).
  • FIG. 2 shows the results of analyzing the expression of sig5 and psbD in low-temperature stressed plants according to the method of Example 2.
  • FIG. 3 shows the results of analyzing the expression of sig5 in plants subjected to hyperosmotic stress according to the method of Example 2.
  • FIG. 4 shows the results of angular analysis of the expression of sig5 and psbD in plants subjected to high light stress according to the method of Example 2.
  • FIG. 5 shows a sig expression analysis plasmid (pE-GUS) obtained by introducing a 1.8 kb Hindlll-BamHI fragment derived from pEp into the Hindlll-BamHI site of ⁇ according to the method of Example 4.
  • FIG. 6 shows the results of expression of the sig5 promoter by GUS staining of the Arabidopsis thaliana in Example 4 which had been subjected to the salt stress treatment, together with the results of the control not loaded with salt stress (“one Na C 1” in the figure).
  • FIG. 7 shows a sig expression analysis plasmid (pE-OX) according to Example 5.
  • Example 1 Culture of Arabidopsis thaliana (L.) Heynth ecotype Columbia (Col)
  • Example 1 the plants were grown on day 10 grown under continuous white light (50 mo 1 photons / m 2 ⁇ s). Except for the described conditions, the conditions were the same before and after the stress treatment.
  • Plants grown under 50 mo 1 hotons / m 2 ⁇ s white light were transferred under 500 ⁇ mo 1 photons / m 2 -s white light and sampled over time.
  • Plants grown on a solid medium at 23 ° C were transferred to 4 ° C and then sampled over time.
  • RNA from plants were frozen and crushed in liquid nitrogen, and then all RNA was extracted using TRIzol reagent (Invitrogen). The method followed the protocol of the kit. Spectrophotometer DU640 (BECKMAN) was used for quantification of the extracted total RNA.
  • Probes for detecting each gene are as follows: sig5 is the corresponding cDNA type D, psbD is the Arabidopsis total DNA type ⁇ , and amplified by PCR using the primer sets shown in SEQ ID NOs: 1-4. It was prepared by DIG labeling. PCR was performed using ExTaq (Takara) for 25 cycles of 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 1 minute. The size of the fragment to be amplified is 500 bp for sig5 and 549 bp for psbD.
  • SEQ ID NO: 4 Primer p s bD—R for p s bD
  • Example 2 Expression of sig5 and psbD in plants subjected to environmental stress was analyzed. The results are shown in Figs. 1 to 4 (Fig. 1: salt stress, Fig. 2: low temperature stress, Fig. 3: hyperosmotic stress, Fig. 4: high light stress). The results clearly show that sig5 and psbD are specifically highly expressed in response to various environmental stresses.
  • Example 4 Expression of sig5 in plants in response to environmental stress
  • sig 5 promoter region: construction of uid A fusion gene, transformation Preparation and evaluation by SUG staining.
  • PCR was performed on Arabidopsis chromosome 5 P1 clone MLE8 (provided by Kazusa DNA Research Institute) using the primers of SEQ ID NOS: 5 to 6 to obtain an amplified fragment of 2.5 kb.
  • the 1.8 kb fragment obtained by digesting it with PmaCI and BamHI was introduced into the SmaI-BamHI site of pBluescriptll KS + to obtain pE.
  • the 1.8 kb Hindlll-BamHI fragment derived from pEp was introduced into Hindlll-BamHI ⁇ position 15 of ⁇ to obtain pE—GUS (FIG. 5).
  • SEQ ID NO: 6 sig5 promoter (promoter) primer D5—BamHI2
  • Example 5 Production of sig5 overexpressing plant and stress tolerance test
  • the sig5 cDNA clone was designated as type III, and PCR amplification was performed with the primers shown in SEQ ID NOS: 7 to 8 under the same conditions as in Example 3 to obtain a fragment containing the entire sig5 ORF.
  • SEQ ID NO: 7 Promoter for sig5 ORF sig5 ORF—F
  • SEQ ID NO: 8 Promoter for sig5 ORF sig5 ORF—R
  • BamHI—E It was excised as a coRV fragment. This was cloned into the BamHI-SmaI site of pBI121 to obtain pE-OX (FIG. 7).
  • This plasmid was introduced into Agrobacterium tumefaciens strain C58 and transformed into Arabidopsis plants by invasion.
  • a kanamycin-resistant strain was selected from the obtained seeds, and a line overexpressing sig5 was selected and used for analysis.
  • As a control a plant transformed with pBI121, a vector introduced into a plant, was used.
  • the cells were seeded on an MS plate to which 250 mM NaCl was added, and the state of germination under normal growth conditions was observed. As a result, most of the cotyledons were observed to be whitened in the control strain, whereas more than half of the sig5-expressing strains formed green cotyledons.
  • the damage caused by the environmental stress to the photosynthetic system which is the root of plant survival can be positively improved, It is possible to avoid the death of houseplants due to the decrease in photosynthetic function caused by the loess and the decrease in crops and yield.
  • plants that are resistant to environmental stress can be produced by this method.

Abstract

A method of enhancing the tolerance to environmental stresses (for example, strong light stress, high salt concentration stress, high osmotic pressure stress, low temperature and so on) of a higher plant characterized by promoting the production of a photosynthesis-related protein (PSII active center D2 protein) in the plant; a plant having a high tolerance to environmental stresses which is obtained by this method; and a method of constructing a plant having a high tolerance to environmental stresses by using this method. Thus, damaged photosynthesis function of a plant can be repaired and the plant can made tolerant to environmental stresses caused by strong light, high salt concentration, high osmotic pressure (dryness), low temperature and so on.

Description

植物の環境ストレス耐性を高める方法 How to increase environmental stress tolerance in plants
技術分野 Technical field
本発明は、 環境ス トレス (強光、 高塩濃度、 高浸透圧、 低温など) に対す る植物の耐性を高め、 種々の条件下で、 食用、 観賞用等の有用植物を育成す 明  The present invention increases the resistance of plants to environmental stress (high light, high salt concentration, high osmotic pressure, low temperature, etc.), and cultivates useful plants for food, ornamental use, etc. under various conditions.
ることを可能とする技術に関する。 書 Technology that enables book
背景技術 Background art
乾燥、 高温、 低温または塩などの様々な環境ストレスは、 植物の生育を悪 化させ、 作物植物の収穫量を低下させたり枯死を引き起こす主たる原因であ る。 植物は進化の過程で様々なス トレス耐性機構を獲得してきた。 例えば、 低温耐性植物 (シロイヌナズナ、 ホウレンソゥ、 レタス、 エンドゥ、 ォォム ギ、 テンサイなど) は、 低温感受性植物 (トウモロコシ、 イネ、 カボチヤ、 キユウリ、 バナナ、 トマトなど) よりも、 生体膜脂質中の不飽和脂肪酸の含 有割合が低く、 そのため低温に曝されても生体膜脂質の相転移が起こりにく く、 低温障害が生じにくい。 これらは植物の長い進化における環境適応であ るが、 植物の生育に不利な環境 (低温地域、 乾燥地域など) で作物植物を栽 培したり、 緑化による砂漠化の防止を行う必要の高まりから、 自然な環境適 応力を超える環境耐性植物を作出することが強く望まれていた。  A variety of environmental stresses, such as drought, high temperature, low temperature, or salt, are the main causes of poor plant growth and reduced crop yields and death. Plants have acquired various stress-tolerant mechanisms during evolution. For example, low-temperature-tolerant plants (Arabidopsis, spinach, lettuce, endo, oats, sugar beet, etc.) are more resistant to unsaturated fatty acids in biological membrane lipids than low-temperature-sensitive plants (corn, rice, kabochia, kiyuri, banana, tomato, etc.). It has a low content of glycerol, so that even when exposed to low temperatures, phase transition of lipids in biological membranes is unlikely to occur, and low-temperature damage is unlikely to occur. Although these are environmental adaptations in the long-term evolution of plants, the growing need to grow crop plants in environments that are unfavorable for plant growth (low-temperature regions, arid regions, etc.) and to prevent desertification by greening are increasing. However, it has been strongly desired to produce an environmentally resistant plant that exceeds the natural environmental stress.
植物改良においては、 古典的には系統の選抜や交配などの手法が用いられ てきたが、 選抜法には多くの時間が必要であり、 一方、 交配法は限られた種 間にしか用いることができないため、 高い環境ス トレス耐性を有する植物の 作出は困難であった。 し力 し、 近年の遺伝子工学の進歩に伴い、 植物に特定 の遺伝子を導入し、 発現させる技術などの手法を用いて、 乾燥、 低温、 塩な どに耐性の植物の作出が試みられている。 In plant improvement, methods such as line selection and crossing have been used in the class, but the selection method requires a lot of time.On the other hand, the crossing method should be used only among limited species. As a result, it was difficult to produce plants with high environmental stress tolerance. With the recent advances in genetic engineering, techniques for introducing and expressing specific genes into plants, such as drying, low-temperature, Attempts have been made to produce resistant plants.
これまでに、 環境ストレス耐性植物の作出に用いられた遺伝子としては、 浸透圧調節物質 (マンニトール、 プロリン、 グリシンべタインなど) の合成 酵素遺伝子や細胞膜脂質の修飾酵素遺伝子などが挙げられる。 具体的には、 マンニトール合成酵素遺伝子としては大腸菌由来マンニトール 1—リン酸デ ヒドロゲナーゼ遺伝子 (Science, 259卷, 1993年, 508-510頁) 、 プロリン合成 酵素遺伝子としては豆由来 Δ 1—プロリン一 5一カルボキシレートシンテタ ーゼ遺伝子 (PlantPhysiology, 108巻, 1995, 1387-1394頁) 、 グリシンべタイン 合成酵素遺伝子としては細菌由来コリンデヒドロゲナーゼ遺伝子 (The Plant Journal, 12巻, 1997年, 1334-1342頁) 、 細胞膜脂質修飾遺伝子としてはシロイ ヌナズナ由来 ω— 3脂肪酸不飽和化酵素遺伝子 (PlantPhysiology, 105卷, 1994 年 601-605頁) やラン藻の Δ 9不飽和化酵素遺伝子 (Nature Biotechnology, 14 卷, 1996年, 1003-1006頁) が用いられている。 し力 し、 これらの遺伝子の導入 植物は、 ス トレス耐性度が不安定であったり、 耐性レベルが低い等の問題か ら実用化に至ったものは存在しない。  So far, genes used to create environmental stress-tolerant plants include synthase genes for osmotic pressure regulators (such as mannitol, proline, and glycine betaine) and gene enzymes for modifying cell membrane lipids. Specifically, the mannitol synthase gene is Escherichia coli-derived mannitol 1-phosphate dehydrogenase gene (Science, vol. 259, 1993, pp. 508-510), and the proline synthase gene is bean-derived Δ 1-proline 1 5 One carboxylate synthetase gene (PlantPhysiology, 108, 1995, pp. 1387-1394), and a glycine betaine synthase gene are bacterial choline dehydrogenase genes (The Plant Journal, 12, 1997, 1334-1342. Examples of cell membrane lipid-modifying genes include the Arabidopsis thaliana ω-3 fatty acid desaturase gene (Plant Physiology, Vol. 105, pp. 601-605, 1994) and the cyanobacterial Δ9 desaturase gene (Nature Biotechnology, Vol. 14). , 1996, pp. 1003-1006). However, none of the plants into which these genes have been introduced have been put into practical use due to problems such as unstable stress resistance and low resistance level.
さらに、 近年では、 乾燥、 低温、 または塩ストレス耐性の獲得には、 複数 の遺伝子が働き、 その結果、 植物はス トレス耐性になることが報告されてい る (PlantPhysiology, 115巻, 1997年, 327-334頁) 。 そこで、 ス トレス耐性の獲 得に関与する複数の遺伝子の発現を同時に活性化することができる転写因子 をコードする遺伝子が植物に導入され、 ス トレス耐性度の高い植物が作出さ れている (The Plant Cell, 10卷, 1998年, 1-17頁) 。 し力 し、 このように複数の 遺伝子の発現を誘導する遺伝子を導入した場合、 複数の遺伝子が同時期に活 性化されるため、 宿主植物のエネルギーは、 該遺伝子産物の生成や、 該遺伝 子産物に起因する細胞内代謝に向けられ、 宿主植物は、 成長が遅れたり矮化 してしまうことが多い。 この課題を解決すべく、 特定のス トレス刺激に応答 して発現するストレス応答性プロモーターの下流に、 ストレス応答性エレメ ントに結合し該ェレメント下流の遺伝子の転写を制御するタンパク質をコ一 ドする D NAが連結された遺伝子を含む、 環境ストレス (乾燥ストレス、 低 温ストレス、 塩ストレスなど) に対する耐性が向上し、 かつ矮化の起こらな いトランスジヱニック植物を作出することも報告されている (特開 2000-116259号公報) 。 また、 植物に導入すると環境ストレス耐性が向上する 新たな遺伝子も発見されている(米国特許出願公開第 2002/0102695号明細書)。 しかしながら、 植物生存の根源である光合成系への環境ストレスによるダ メージを積極的に改善する方法はこれまで知られていない。 In recent years, it has been reported that several genes act to acquire tolerance to drought, low temperature, or salt stress, resulting in stress resistance in plants (Plant Physiology, 115, 1997, 327). -334). Therefore, a gene encoding a transcription factor capable of simultaneously activating the expression of a plurality of genes involved in obtaining stress resistance has been introduced into plants, and plants having high stress resistance have been produced ( The Plant Cell, Vol. 10, 1998, pp. 1-17). However, when a gene that induces the expression of a plurality of genes is introduced as described above, the plurality of genes are activated at the same time, so that the energy of the host plant is limited to the production of the gene product and the inheritance of the gene. Host plants are often slowed to grow or dwarfed, being directed to intracellular metabolism due to offspring products. In order to solve this problem, a stress-responsive element is placed downstream of a stress-responsive promoter that is expressed in response to a specific stress stimulus. Resistance to environmental stresses (such as drought stress, low temperature stress, and salt stress), including DNA-linked genes that bind to proteins and encode proteins that regulate the transcription of genes downstream of the element. It has also been reported to produce transgenic plants that do not cause dwarfing (JP-A-2000-116259). In addition, a new gene that enhances environmental stress tolerance when introduced into a plant has been discovered (US Patent Application Publication No. 2002/0102695). However, there is no known method for positively improving the damage caused by environmental stress on the photosynthetic system, which is the root of plant survival.
環境ストレスが光合成系に与えるダメージのうち、 最も環境ストレスによ つてダメージを受けるのは、光合成系で最も弱いたんぱく質である P S II活性 中心 D 2たんぱく質であることが知られている。  It is known that, among the damages caused by environmental stress to the photosynthetic system, the most damaged by environmental stress is the D2 protein, which is the weakest protein in the photosynthetic system, and is the Ps II active center.
一方、 s i g 5 (古くは s i g Eと呼ばれていた。 ) という遺伝子は P S II 活性中心の生産制御を担うことが推定され、 s i g 5は青色光で発現するこ とが知られているが (FEBS Letters, 516巻, 2002年, 225-228頁) 、 本発明でい う環境ストレス (強光、 高塩濃度、 低温等) で発現すること、 及び P S II活性 中心 D 2タンパク質が環境ストレスに応答して生産されることは知られてお らず、 光合成系への環境ス トレスによるダメージを修復機能促進という方法 で解決し得ることは、 この 2点が発見されるまでは予想し得ないことであつ た。 発明の開示  On the other hand, the gene sig 5 (formerly called sig E) is presumed to be responsible for controlling the production of PS II active center, and sig 5 is known to be expressed by blue light ( FEBS Letters, vol. 516, 2002, pp. 225-228), expression under environmental stress (high light, high salt concentration, low temperature, etc.) according to the present invention, and the fact that the PS II activity center D2 protein is exposed to environmental stress. It is not known that it is produced in response, and it is not anticipated that damage to the photosynthetic system due to environmental stress can be solved by promoting the repair function until these two points are discovered That was it. Disclosure of the invention
本発明は、 植物の強光、 高塩濃度、 高浸透圧 (乾燥) 、 低温等の環境スト レスに対する耐性を、 これらのストレスの光合成機能へのダメージを積極的 に回復するという新たな機構により高める方法を提供することを一つの課題 とし、 またその方法により、 一般的に環境ストレス耐性の高い植物を得る方 法を提供することを他の課題とする。 本発明者らは、 s i g 5が、 強光、 高塩濃度、 高浸透圧 (乾燥) 、 低温等 の環境ストレスにより発現誘導されることを発見した。 さらに、 光合成系で 最も弱いたんぱく質である P SII活性中心 D 2タンパク質が強光、 高塩濃度、 高浸透圧 (乾燥) 、 低温等の環境ストレスにより生産促進されることを発見 した。 このことから、 s i g 5が光合成系の環境ストレス応答のキー因子で あることを突き止め、 この機能をより増強すること、 すなわち環境ストレス による光合成系へのダメージの早期回復を図ることで光合成系の環境ストレ ス耐性を獲得し得ることを発見した。 これらの知見に基づき s i g 5を環境 ストレスがかからなくとも高発現させるようにする力、 刺激に対してより高 発現させるようにするかにより植物の環境ストレス耐性を高めることができ、 環境ストレス耐性の高い植物を得ることができることを見出し、 本発明を完 成した。 The present invention is based on a new mechanism that actively restores the plant's resistance to environmental stresses such as strong light, high salt concentration, high osmotic pressure (dryness), and low temperature, and actively recovers the damage to the photosynthetic function of these stresses. One of the tasks is to provide a method for increasing the environmental stress, and another object is to provide a method for obtaining a plant generally having high environmental stress tolerance by the method. The present inventors have found that expression of sig5 is induced by environmental stress such as strong light, high salt concentration, high osmotic pressure (dryness), and low temperature. Furthermore, they found that the P2 protein active center D2 protein, the weakest protein in the photosynthetic system, was promoted by environmental stress such as strong light, high salt concentration, high osmotic pressure (dryness), and low temperature. From this, we found that sig5 is a key factor in photosynthetic response to environmental stress, and to further enhance this function, that is, to recover the photosynthetic system damage caused by environmental stress early, to improve the photosynthetic environment. It has been discovered that stress resistance can be obtained. Based on these findings, the ability of sig5 to be highly expressed even when environmental stress is not applied, and whether or not sig5 is more highly expressed in response to a stimulus, can enhance the environmental stress tolerance of plants, and can enhance the environmental stress tolerance. The present inventors have found that a plant having a high yield can be obtained, and completed the present invention.
すなわち、 本発明は下記の事項からなる。  That is, the present invention includes the following items.
1 . 高等植物の光合成関連タンパク質の生産を促進することを特徴とする植 物の環境ストレスに対する耐性を高める方法。  1. A method for enhancing the resistance of plants to environmental stress, which promotes the production of photosynthesis-related proteins in higher plants.
2 .高等植物の光合成関連タンパク質が P S II活性中心 D 2タンパク質である 前項 1に記載の植物の環境ストレスに対する耐性を高める方法。  2. The method for enhancing tolerance to environmental stress of a plant according to the above item 1, wherein the photosynthesis-related protein of a higher plant is a PS II active center D2 protein.
3 . s i g 5構成遺伝子を生育中に発現させる前項 1または 2に記載の植物 の環境ストレスに対する耐性を高める方法。  3. The method for increasing the resistance of a plant to environmental stress as described in 1 or 2 above, wherein the sig5 component gene is expressed during growth.
4 . 遺伝子変換法により、 s i g 5構成遺伝子を強く発現する転写調節領域 の下流に s i g 5遺伝子を連結して、 植物体に組み込むことにより s i g 5 構成遺伝子を生育中に発現させる前項 1または 2に記載の植物の環境ストレ スに対する耐性を高める方法。 4. The sig5 gene is linked downstream of the transcriptional regulatory region that strongly expresses the sig5 component gene by the gene conversion method, and is incorporated into plants to express the sig5 component gene during growth as described in 1 or 2 above. A method for increasing the resistance of the described plant to environmental stress.
5 . 遺伝子変換法により、 s i g 5遺伝子が環境ストレスで強力な誘導を受 けるプロモーターの下流に s i g 5遺伝子を連結して、 T— D NAを介した ァグロバタテリゥム (Agrobacterium) による形質転換法により s i g 5遺伝 子を植物体に導入する前項 1または 2に記載の植物の環境ストレスに対する 耐性を高める方法。 5. By the gene conversion method, the sig5 gene is ligated downstream of the promoter, which is strongly induced by environmental stress, and transformed with Agrobacterium via T-DNA. Sig 5 genetic by the method 3. The method for increasing the resistance of a plant to environmental stress according to the above item 1 or 2, wherein the offspring are introduced into a plant body.
6 . 環境ストレスが強光ストレスである前項 1乃至 5のいずれかに記載の植 物の環境ストレスに対する耐性を高める方法。  6. The method for increasing the resistance of a plant to environmental stress according to any one of the above items 1 to 5, wherein the environmental stress is high light stress.
7 . 環境ストレスが高塩濃度ストレスである前項 1乃至 5のいずれかに記載 の植物の環境ストレスに対する耐性を高める方法。 7. The method for increasing the resistance of a plant to environmental stress according to any one of the above items 1 to 5, wherein the environmental stress is high salt concentration stress.
8 . 環境ストレスが高浸透圧ストレスである前項 1乃至 5のいずれかに記載 の植物の環境ストレスに対する耐性を高める方法。  8. The method for increasing the tolerance of a plant to environmental stress according to any one of the above items 1 to 5, wherein the environmental stress is hyperosmotic stress.
9 . 環境ストレスが低温ストレスである前項 1乃至 5のいずれかに記載の植 物の環境ストレスに対する耐性を高める方法。  9. The method according to any one of the preceding items 1 to 5, wherein the environmental stress is low-temperature stress, and the plant has an increased resistance to environmental stress.
1 0 . 前項 1乃至 9のいずれかに記載の植物の環境ストレスに対する耐性を 高める方法を用いることにより得られる環境ストレスに対する耐性の高い植 物。  10. A plant having high resistance to environmental stress obtained by using the method for increasing resistance to environmental stress of a plant according to any one of 1 to 9 above.
1 1 . 前項 1乃至 9のいずれかに記載の植物の環境ストレスに対する耐性を 高める方法を用いることを特徴とする環境ストレスに対する耐性の高い植物 の製造方法。  11. A method for producing a plant having high resistance to environmental stress, which comprises using the method for increasing resistance of a plant to environmental stress according to any one of 1 to 9 above.
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
σ因子は、 D NA依存型の R NAポリメラーゼの R Ν Α合成を受け持つ酵 素部分 (コア酵素) に結合して、 ゲノム上のプロモーターの認識.転写開始 を行う因子である。 σ因子があって始めてたんぱく質生産の最初の段階であ る D N A→R Ν Αへの転写が行われる。 び因子は各種の遺伝子の発現を転写 の段階で制御しているたんぱく質群である。  The sigma factor is a factor that binds to the enzyme part (core enzyme) responsible for R Ν Α synthesis of DNA-dependent RNA polymerase to recognize the promoter on the genome and initiate transcription. Only when the sigma factor is present, the first stage of protein production is transferred to DNA → R Ν D. And factors are a group of proteins that control the expression of various genes at the transcriptional stage.
葉緑体は光合成を行う細胞内小器官として知られ、 独自のゲノムと遺伝子 発現系を持っている。葉緑体ゲノム上には真性細菌型 R NAポリメラーゼ(P E P ) がコードされており、 主として光合成関連遺伝子の発現に関わってい る。 この P E Pのコア酵素サブュニットにプロモーター認識特異性を与える σ因子の遺伝子は核染色体に存在する。 Chloroplasts are known as organelles that perform photosynthesis, and have their own genome and gene expression system. The chloroplast genome encodes an intrinsic bacterial RNA polymerase (PEP) and is mainly involved in the expression of photosynthesis-related genes. Confer promoter recognition specificity to the core enzyme subunit of this PEP The sigma factor gene is located on the nuclear chromosome.
この葉緑体 P E Pに結合する σ因子は 6種 (s i g 1〜 s i g 6、 古くは s i g A〜s i g Fと呼ばれていた。)存在することが明らかになつている。 σ因子は生物間で保存性が高く、 植物 (シロイヌナズナ) で発見された 6種 は、 他の高等植物でもほぼ同じであり、 その機能も同じであろうと推定され る。  It has been clarified that there are six types of sigma factors (sig1 to sig6, formerly called sigA to sigF) that bind to the chloroplast PEP. The sigma factor is highly conserved among organisms, and it is presumed that the six species found in plants (Arabidopsis) are almost the same in other higher plants, and their functions will be the same.
σ因子の機能は一部明らかにされつつあるが、 本出願対象である s i g 5 の機能はほとんど知られていなかつた。  Although the function of the sigma factor is being elucidated in part, the function of sig 5, which is the subject of the present application, was hardly known.
s i g 5は、 植物 (シロイヌナズナ) で発見された 6種 σ因子のうちの一 つであるが、 本発明者らは、 この遺伝子が強光、 高塩濃度 (高浸透圧) 、 低 温など植物にとってストレスとなる環境刺激で、 高発現することを発見した。 同じく、 環境ス トレスによってダメージを受けやすいたんぱく質 (P S II 活性中心) の遺伝子発現も、 環境ストレスによって促進されることを発見し た。  sig5 is one of the six sigma factors found in plants (Arabidopsis thaliana), but we have identified that this gene can be used in plants such as strong light, high salt concentration (high osmotic pressure), and low temperature. Was found to be highly expressed by environmental stimuli that would be stressful for the children. Similarly, they found that gene expression of a protein (PS II active center) that is susceptible to environmental stress is also promoted by environmental stress.
s i g 5の高発現の結果、光合成関連遺伝子のうち P S II活 I1生中心の遺伝子 発現が促進されることが証明された。 この作用によりストレスによりダメー ジを受けた光合成経路を修復することで環境耐性を獲得する働きをしている ことを発見した。 As a result of high expression of sig5, it was proved that among the photosynthesis-related genes, gene expression in the center of PS II active I 1 was promoted. By this action, they discovered that they function to acquire environmental resistance by restoring the photosynthetic pathway damaged by stress.
すなわち、 s i g 5を環境刺激の有無に関わらず常に高発現するような改 変を施すことにより、 環境ストレスに対して本質的に耐性の高い植物を作出 することができる。  In other words, by performing a modification such that sig5 is always highly expressed irrespective of the presence or absence of environmental stimulus, it is possible to produce a plant which is essentially resistant to environmental stress.
σ因子の機能が高等植物に共通していることから、 本発明による耐ストレ ス植物の作出原理は高等植物一般に適用できる。  Since the function of the σ factor is common to higher plants, the principle of producing a stress-tolerant plant according to the present invention can be applied to higher plants in general.
一般的な s i g 5の発現方法及ぴ遺伝子変換方法等について説明する。 本発明において環境ス トレスとは植物体に何らかの障害をもたらすストレ スを意味し、 光や酸素といった通常の植物生育環境に存在するものをも含む。 本発明において、 強光とは自然環境に存在するもので、 植物に障害を与え る光を意味し、 植物の種類により異なるが、 例えば、 ある植物の通常生育環 境の 2倍以上の光量、 すなわち、 通常 2 5 μ E/m2 · sの光量で十分生育す る植物にとっては 5 0 μ E Zm 2 · s以上 (マイクロアインシユタイン 平 米 .秒) である。 A general sig5 expression method, gene conversion method, and the like will be described. In the present invention, the environmental stress means a stress that causes some damage to a plant body, and includes those present in a normal plant growth environment such as light and oxygen. In the present invention, intense light refers to light that exists in the natural environment and impairs a plant, and varies depending on the type of the plant. For example, the amount of light that is twice or more the normal growth environment of a certain plant, That is, for a plant that normally grows sufficiently with a light quantity of 25 μE / m 2 · s, the value is 50 μE Zm 2 · s or more (microinsteinine square meters.sec).
本発明において、 高塩濃度とは、 植物に障害を与える塩濃度を意味し、 植 物の種類により異なるが、 ある植物の通常生育環境より高い濃度であれば制 限は無い。  In the present invention, the high salt concentration means a salt concentration that damages a plant, and varies depending on the type of a plant.
本発明において、低温とは植物に障害を与える低い温度を意味し、例えば、 ある植物が通常生育する環境より 1 o°c以上低い温度である。  In the present invention, the low temperature means a low temperature that damages a plant, and is, for example, a temperature lower than the environment where a certain plant normally grows by 1 ° C. or more.
本発明において用いられる s i g 5遺伝子は、 登録番号 A B 0 2 1 1 2 0 として、 遺伝子番号に登録されている。 化学合成によって、 または本遺伝子 の c D NAないしゲノム D NAを铸型とした P C Rによって、 あるいは該塩 基配列を有する D NA断片をプローブとしてハイブリダィズさせることによ り、 s i g 5遺伝子を得ることができる。  The sig5 gene used in the present invention is registered in the gene number as accession number AB0211120. The sig5 gene can be obtained by chemical synthesis, by PCR using the cDNA or genomic DNA of the present gene as type III, or by hybridization using a DNA fragment having the base sequence as a probe. it can.
s i g 5遺伝子とストリンジェントな条件下でハイブリダイズすることが できる程度に類似した s i g 5も、 当該 D NAがコードするタンパク質が P E Pに結合して R N Aポリメラーゼを活性化する機能を有する限り、 本発明 に用いることができる。 ストリンジェントな条件とは、 例えば、 ホルムアミ ド濃度が 3 0〜 5 0 %、 好ましくは 5 0 %であり、 温度が 3 7〜 5 0 °C、 好 ましくは 4 2 °Cでの条件をいう。  The sig5, which is similar to the sig5 gene under conditions of stringent hybridization with the sig5 gene, can also be used as long as the protein encoded by the DNA has a function of activating RNA polymerase by binding to PEP. Can be used. The stringent condition is, for example, a condition at a formamide concentration of 30 to 50%, preferably 50%, and a temperature of 37 to 50 ° C, preferably 42 ° C. Say.
s i g 5遺伝子を遺伝子工学的手法を用いて植物宿主に導入することによ り、 環境ス トレス、 特に強光、 光塩濃度、 高浸透圧 (乾燥) 、 低温ス トレス などに対して抵抗性を有するトランスジェニック植物を作製することができ る。 遺伝子の植物宿主への導入方法としては、 ァグロバタテリゥム感染法な どの間接導入法や、 パーティクルガン法、 ポリエチレングリコール法、 リポ ソーム法、 マイクロインジェクション法などの直接導入法などが挙げられる。 ァグロパクテリゥム感染法を用いる場合は、 以下のようにしてトランスジェ 二ック植物を作製することができる。 By introducing the sig5 gene into plant hosts using genetic engineering techniques, it is possible to develop resistance to environmental stress, especially strong light, light salt concentration, high osmotic pressure (dryness), and low temperature stress. A transgenic plant having the same can be produced. Methods for introducing a gene into a plant host include indirect methods such as the agrobacterium infection method, the particle gun method, the polyethylene glycol method, and the liposome method. Examples include direct introduction methods such as a sosome method and a microinjection method. When the agrobacterium infection method is used, a transgenic plant can be prepared as follows.
( 1 ) 植物導入用組換えベクターの作製及ぴァグロバタテリゥムの形質転換 植物導入用組換えベクターは、 前記 s i g 5を含む D NAを適当な制限酵 素で切断後、 必要に応じて適切なリンカ一を連結し、 植物細胞用のクロー二 ングベクターに挿入することにより得ることができる。 クローニング用べク ターとしては、 pBI2113Not、 pBI2113、 pBI101、 pBI121、 pGA482、 pGAH、 pBIG 等のバイナリーベクター系のプラスミドゃ pLGV23Neo、 pNCAT、 pMON200 などの中間ベクター系のプラスミドを用いることができる。  (1) Preparation of Plant Introducing Recombinant Vector and Transformation of Agrobacterium Transplantation The plant introducing recombinant vector is obtained by cutting the DNA containing sig5 with an appropriate restriction enzyme, if necessary. It can be obtained by ligating an appropriate linker and inserting it into a cloning vector for plant cells. As a cloning vector, a binary vector plasmid such as pBI2113Not, pBI2113, pBI101, pBI121, pGA482, pGAH, pBIG, or an intermediate vector plasmid such as pLGV23Neo, pNCAT, or pMON200 can be used.
バイナリーベクター系プラスミドを用いる場合は、 上記のバイナリーべク ターの境界配列 (L B , R B ) 間に、 目的遺伝子を揷入し、 この組換えべク ターを大腸菌中で増幅する。 次いで、 増幅した組換えベクターをァグロパク テリゥム'チュメファシエンス C 5 8、LBA4404、EHA101、C58ClRifR、EHA105 等に、 凍結融解法、 エレクト口ポレーシヨン法等により導入し、 該ァグロバ クテリゥムを植物の形質導入用に用いる。  When a binary vector-based plasmid is used, a target gene is inserted between the boundary sequences (LB, RB) of the binary vector, and the recombinant vector is amplified in Escherichia coli. Next, the amplified recombinant vector is introduced into Agrobacterium tumefaciens C58, LBA4404, EHA101, C58ClRifR, EHA105, or the like by a freeze-thaw method, an electoral poration method, or the like, and the agrobacterium is transduced into a plant. Used for
上記の方法以外にも、本発明においては、三者接合法 (Nucleic Acids Research, 12: 8711(1984)) によって s i g 5遺伝子を含む植物感染用ァグロパクテリウ ムを調製することができる。 すなわち、 目的遺伝子を含むプラスミドを保有 する大腸菌、 ヘルパープラスミド (例えば、 pRK2013 など) を保有する大腸 菌、 及びァグロバタテリゥムを混合培養し、 リファンピシン及びカナマイシ ンを含む培地上で培養することにより植物感染用の接合体ァグロパクテリゥ ムを得ることができる。  In addition to the above method, in the present invention, agrobacterium for plant infection containing the sig5 gene can be prepared by a three-way conjugation method (Nucleic Acids Research, 12: 8711 (1984)). That is, Escherichia coli having a plasmid containing a target gene, Escherichia coli having a helper plasmid (for example, pRK2013), and agrobacterium are mixed cultured, and cultured on a medium containing rifampicin and kanamycin. It is possible to obtain a conjugate aglopacterium for plant infection.
s i g 5遺伝子は、 葉緑体 P E Pを活性化し、 光合成系で最も弱いたんぱ く質である P SII活性中心 D 2タンパク質の生産速度を高める。 s i g 5は葉 緑体中で P S II活性中心 D 2タンパク質をはじめとする特定の遺伝子の発現 制御を行っている因子であるため、 不特定多数の遺伝子が活性化され、 それ に伴うエネルギー消費の増大や代謝の活性化により植物自身の生育が抑制さ れることはない。 しかし、環境ストレスとなる刺激を受けた際にのみ発現し、 s i g 5遺伝子をストレス応答性プロモーターの下流に連結することが考え られる。 そのようなプロモーターとしては、 例えば、 r d 2 9 A遺伝子プロ モーター (The Plant Cell, 6, 251-264 (1994)) 、 r d 2 9 B遺伝子プロモーター (The Plant Cell, 6, 251-264 (1994)) 、 r d 1 7遺伝子プロモーター (Plant Physiol., 115, 1287 (1997))、 r d 2 2遺伝子プロモーター(Mol. Gen. Genet., 247, 391-398 (1995)) 、 D R E B 1 A遺伝子プロモーター (Biochem. Biophys. Res. Com., 250, 161-170 (1998)) 、 c o r 6 . 6遺伝子プロモーター (Plant Mol. Biol" 28, 619-634 (1995)) 、 c o r 1 5 a遺伝子プロモーター (Plant Mol. Biol., 24, 701-713 (1994))、 e r d 1遺伝子プロモーター(Plant J., 12, 851-861 (1997))、 k i n 1遺伝子プロモーター (Plant Mol. Biol., 28, 605-617 (1995)) 等がある。 これらのプロモーターは、 該プロモーターを含む D N Aの塩基配列に基づい て設計したプライマーを用いて、 ゲノム D NAを錶型として、 P C Rによる 増幅反応によつて得ることができる。 The sig5 gene activates the chloroplast PEP and increases the production rate of the PSII active center D2 protein, the weakest protein in the photosynthetic system. sig 5 is the expression of specific genes such as PS II active center D 2 protein in chloroplast Because it is a controlling factor, an unspecified number of genes are activated, and the resulting increase in energy consumption and metabolic activation do not suppress the growth of the plant itself. However, it is thought that it is expressed only when it receives a stimulus that causes environmental stress, and connects the sig5 gene downstream of the stress-responsive promoter. Examples of such promoters include the rd29A gene promoter (The Plant Cell, 6, 251-264 (1994)) and the rd29B gene promoter (The Plant Cell, 6, 251-264 (1994)). ), Rd17 gene promoter (Plant Physiol., 115, 1287 (1997)), rd22 gene promoter (Mol. Gen. Genet., 247, 391-398 (1995)), DREB1A gene promoter (Biochem Biophys. Res. Com., 250, 161-170 (1998)), cor6.6 gene promoter (Plant Mol. Biol "28, 619-634 (1995)), cor15a gene promoter (Plant Mol. Biol., 24, 701-713 (1994)), erd 1 gene promoter (Plant J., 12, 851-861 (1997)), kin 1 gene promoter (Plant Mol. Biol., 28, 605-617 (1995) These promoters are obtained by PCR using a primer designed based on the nucleotide sequence of the DNA containing the promoter and using the genomic DNA as a 錶 type. Can be obtained.
また、 必要に応じて転写終結を指令するターミネータ一を D R E B遺伝子 の下流に連結することもできる。 ターミネータ一としては、 カリフラワーモ ザイクウイルス由来ゃノパリン合成酵素遺伝子ターミネータ一などが挙げら れる。 但し、 これに限定されるものではなく、 植物体内で機能することが知 られているターミネータ一であればよい。  In addition, a terminator that directs the termination of transcription can be connected downstream of the DREB gene, if necessary. Examples of the terminator include a cauliflower mosaic virus-derived ゃ nopaline synthase gene terminator. However, the terminator is not limited to this, and may be any terminator known to function in a plant.
また、 必要に応じてプロモーター配列と s i g 5遺伝子の間に、 遺伝子の 発現を増強させる機能を持つィントロン配列、 例えばトウモロコシのアルコ 一ノレデヒ ドロゲナーゼ (A d h 1 ) のィントロン (Genes & Developmentl, 1183-1200 (1987)) を導入することができる。  If necessary, an intron sequence between the promoter sequence and the sig5 gene, which enhances gene expression, such as the intron of maize alcohol-nordehydrogenase (Adh1) (Genes & Developmentl, 1183-1200) (1987)) can be introduced.
さらに、 効率的に目的の形質転換細胞を選択するために、 有効な選択マー カー遺伝子を s i g 5遺伝子と併用することが好ましい。 その際に使用する 選択マーカーとしては、 カナマイシン耐性遺伝子 (Ν Ρ ΤΠ) 、 抗生物質ハイ グロマイシンに対する抵抗性を植物に付与するハイグロマイシンホスホトラ ンスフェラーゼ (h t p ) 遺伝子及びビアラホス (bialaphos) に対する抵抗性 を付与するホスフィノスリシンァセチルトランスフェラーゼ (b a r, ) 遺伝 子等から選ばれる 1つ以上の遺伝子を使用することができる。 s i g 5遺伝 子及び選択マーカー遺伝子は、 単一のベクターに一緒に組み込んでも良いし、 それぞれ別個のベクターに組み込んだ 2種類の組換え D N Aを用いてもよい。 Furthermore, effective selection markers are used to efficiently select the desired transformed cells. Preferably, the Kerr gene is used in combination with the sig5 gene. The selectable markers used in this case include the kanamycin resistance gene (Ν Ρ ΤΠ), the hygromycin phosphotransferase (htp) gene that confers resistance to the antibiotic hygromycin to plants, and the resistance to bialaphos. One or more genes selected from phosphinothricin acetyltransferase (bar,) genes and the like to be conferred can be used. The sig5 gene and the selectable marker gene may be integrated together into a single vector, or two types of recombinant DNAs each integrated into separate vectors may be used.
( 2 ) 植物宿主への s i g 5遺伝子の導入  (2) Introduction of sig5 gene into plant host
本発明において、 植物宿主とは、 植物培養細胞、 栽培植物の植物体全体、 植物器官 (例えば、 葉、 花弁、 茎、 根、 根茎、 種子等) 、 または植物組織 (例 えば、 表皮、 師部、 柔組織、 木部、 維管束等) のいずれをも意味するもので ある。 植物宿主として用いることができる植物としては、 シロイヌナズナ、 タバコ、 イネ、 トウモロコシなどが挙げられる。 s i g 5遺伝子は、 採取し た植物切片に s i g 5遺伝子を含むベクターをァグロバタテリゥム感染法、 パーティクルガン法、 またはポリエチレンダリコール法などで、 上記植物宿 主に導入することができる。 あるいはプロトプラストにエレクトロポレーシ ヨン法により s i g 5遺伝子を含むベクターを導入することもできる。  In the present invention, a plant host refers to a plant cultured cell, the whole plant of a cultivated plant, a plant organ (eg, leaf, petal, stem, root, rhizome, seed, etc.), or a plant tissue (eg, epidermis, phloem) , Parenchyma, xylem, vascular bundle, etc.). Plants that can be used as plant hosts include Arabidopsis, tobacco, rice, corn and the like. For the sig5 gene, a vector containing the sig5 gene in a collected plant section can be introduced into the above-mentioned plant host by an agrobacterium infection method, a particle gun method, a polyethylene dalicol method, or the like. Alternatively, a vector containing the sig5 gene can be introduced into protoplasts by the electroporation method.
ァグロパクテリゥム感染法により遺伝子を導入する場合は、 目的の遺伝子 を含むプラスミドを保有するァグロバタテリゥムを植物宿主に感染させるェ 程が必要である。この工程は、バキュームインフィルトレーション法(CR Acad. Sci. Paris, Life Science, 316, 1194 (1993)) により行うことができる。 すなわち、 s i g 5遺伝子を含むプラスミドを含むァグロバタテリゥムの培養液に直接 植物宿主を浸し、 これをデシケーターに入れバキュームポンプで 6 5〜7 0 mmH gになるまで吸引後、 5〜 1 0分間、 室温に放置する。 鉢をトレーに 移しラップで覆い湿度を保つ。 翌日ラップを取り、 植物をそのまま生育させ 種子を収穫する。 When a gene is introduced by the Agrobacterium infection method, it is necessary to infect a plant host with the Agrobacterium containing a plasmid containing the target gene. This step can be performed by a vacuum infiltration method (CR Acad. Sci. Paris, Life Science, 316, 1194 (1993)). That is, a plant host is directly immersed in a culture medium of agrobacterium containing a plasmid containing the sig5 gene, put in a desiccator, and aspirated with a vacuum pump until the pressure reaches 65 to 70 mmHg. Leave at room temperature for minutes. Transfer the pot to a tray and cover with plastic wrap to keep humidity. Take the wrap the next day and let the plants grow Harvest the seeds.
次いで、 目的遺伝子保有個体を選択するために、 様々な株由来の種子を適 切な抗生物質を加えた M S寒天培地に播種する。 この培地で生育した植物を 鉢に移し、 生育させることにより、 本発明に用いる遺伝子が導入されたトラ ンスジエニック植物を得ることができる。  Next, seeds from various strains are sown on an MS agar medium supplemented with an appropriate antibiotic in order to select a target gene-bearing individual. Transgenic plants into which the gene used in the present invention has been introduced can be obtained by transferring the plants grown in this medium to pots and growing them.
一般に、植物に導入した遺伝子は、宿主植物のゲノム中に組み込まれるが、 その場合、 導入されるゲノム上での位置が異なることにより導入遺伝子の発 現が異なるポジションイフェクトと呼ばれる現象が見られる。 導入遺伝子が より強く発現している形質転換体は、 導入遺伝子の D N A断片をプローブと して用いるノーザン法により宿主植物中に発現している mR NAレベルを検 定することによって選抜することができる。  Generally, a gene introduced into a plant is integrated into the genome of a host plant. In this case, a phenomenon called a position effect in which the expression of the introduced gene differs due to a difference in the position on the genome to be introduced is observed. Transformants in which the transgene is more strongly expressed can be selected by detecting the level of mRNA expressed in the host plant by the Northern method using the DNA fragment of the transgene as a probe. .
本発明に用いる遺伝子を導入したトランスジエニック植物及びその次世代 に目的の遺伝子が組み込まれていることの確認は、 これらの細胞及ぴ組織か ら常法に従って D NAを抽出し、 公知の P C R法またはサザン分析を用いて 導入した遺伝子を検出することにより行うことができる。  To confirm that the target gene has been incorporated into the transgenic plant into which the gene used in the present invention has been introduced and its next generation, DNA can be extracted from these cells and tissues in accordance with a conventional method, and a known PCR method can be used. It can be performed by detecting the introduced gene using the method or Southern analysis.
( 3 ) s i g 5遺伝子の植物組織での発現レベル及び発現部位の分析  (3) Analysis of expression level and expression site of sig5 gene in plant tissue
s i g 5遺伝子を導入したトランスジエニック植物における該遺伝子の発 現レベル及び発現部位の分析は、 これらの細胞及ぴ組織から常法に従つて R NAを抽出し、 公知の R T— P C R法またはノーザン分析を用いて s i g 5 遺伝子の mR N Aを検出することにより行うことができる。  Analysis of the expression level and expression site of the sig5 gene in a transgenic plant into which the sig5 gene has been introduced is performed by extracting RNA from these cells and tissues according to a conventional method, and using a known RT-PCR method or Northern blot method. The analysis can be performed by detecting the mRNA of the sig5 gene.
( 4 ) s i g 5遺伝子が導入されたトランスジヱニック植物体内における各 種遺伝子の m R N Aレベルの変化  (4) Changes in mRNA levels of various genes in transgenic plants into which sig5 gene has been introduced
s i g 5遺伝子が導入されたトランスジエニック植物体内において、 s i g 5の作用により、 発現レベルが変化したと考えられる遺伝子はノーザン分 折によって同定することができる。 ノーザン分析においては、 s i g 5遺伝 子が導入されたトランスジエニック植物と導入されていない植物とを用いて、 標的遺伝子と考えられる遺伝子の m R N Aレベルを常法に従って、 比較する ことによって検定することができる。 In the transgenic plant into which the sig5 gene has been introduced, a gene whose expression level is considered to have changed due to the action of sig5 can be identified by Northern analysis. In Northern analysis, transgenic plants with the sig5 gene introduced and plants without the sig5 gene were used, The assay can be performed by comparing the mRNA levels of genes considered as target genes according to a conventional method.
例えば、 GM寒天培地などで育てた植物に、 所定期間 (例えば、 1〜2週 間) の環境ストレスを与える。 このとき、 強光ストレスは 50 μ EZm2 · s (マイクロアインシユタイン/平米 '秒) 、 好ましくは 500 E/m2 · s の強度の光を照射することで与えることができる。 高塩濃度ストレスは、 通 常の MS培地に、 25 OmMの塩化ナトリゥムを添加することで与えること ができる。 高浸透圧ストレスは、 通常の MS培地に、 25 OmMのマンニト ールを添加することで与えることができる。 一方、 低温ストレスの負荷は、 15°C〜一 4°C、 好ましくは 4°Cに 10分〜 24時間保持することにより与 えることができる。 ストレスを与えないコントロール植物とストレスを与え た植物から全 RNAを調製して電気泳動を行い、 ノーザン分析または RT— PCRによって発現している遺伝子を検定する。 For example, a plant grown on a GM agar medium or the like is subjected to environmental stress for a predetermined period (for example, 1 to 2 weeks). At this time, the strong light stress can be given by irradiating light having an intensity of 50 μEZm 2 · s (microin stubine / square meter's), preferably 500 E / m 2 · s. High salt stress can be imparted to normal MS media by adding 25 OmM sodium chloride. Hyperosmotic stress can be imparted to normal MS media by adding 25 OmM mannitol. On the other hand, the load of low-temperature stress can be provided by maintaining the temperature at 15 ° C to 14 ° C, preferably at 4 ° C for 10 minutes to 24 hours. Prepare total RNA from unstressed control plants and stressed plants, perform electrophoresis, and test the expressed genes by Northern analysis or RT-PCR.
(5) トランスジエニック植物の環境ストレスに対する耐性の評価  (5) Evaluation of tolerance of transgenic plants to environmental stress
s i g 5遺伝子を導入したトランスジヱニック植物の環境ストレスに対す る耐性は、 バーミキユラィト、 パーライトなどを含む土を入れた植木鉢にト ランスジエニック植物を植え、 強光、 高塩濃度、 高浸透圧、 低温などの各種 ストレスを負荷した場合の生存と葉の色調を調べることによって評価するこ とができる。 ス トレスによって光合成系に異常を来たした場合、 葉色の緑が 明らかに薄く変化する。例えば、強光ストレスに対する耐性は、 2〜4週間、 強光下でその生存を調べることにより、 また低温ストレスに対する耐性は、 4°Cに、 5〜 10日間置いた後、 5〜10日間、 20〜25°Cで生育させる ことにより評価することができる。 図面の簡単な説明  The resistance of transgenic plants transfected with the sig5 gene to environmental stress is as follows: Transgenic plants are planted in flower pots containing soil containing bamikiuraito, perlite, etc., resulting in high light, high salt concentration, and high osmotic pressure. It can be evaluated by examining the survival and leaf color when various stresses such as low temperature are applied. When stress causes abnormalities in the photosynthetic system, the green color of the leaves changes clearly and slightly. For example, the resistance to high light stress can be determined by examining its survival under high light for 2-4 weeks, and the resistance to low temperature stress can be determined by placing it at 4 ° C for 5-10 days, then 5-10 days. It can be evaluated by growing at 20 to 25 ° C. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 2の方法に従い、 塩ス トレスを負荷した植物体中の s i g 5及び p s bDの発現を解析した結果を、 塩ストレスを負荷しない対照の結 果 (図中 「一 Na C lj ) と共に示す。 Figure 1 shows the sig in plants stressed with salt stress according to the method of Example 2. The results of analysis of the expression of 5 and ps bD are shown together with the results of the control not subjected to salt stress (“one NaClj” in the figure).
図 2は、 実施例 2の方法に従い、 低温ストレスを負荷した植物体中の s i g 5及ぴ p s bDの発現を解析した結果を示す。  FIG. 2 shows the results of analyzing the expression of sig5 and psbD in low-temperature stressed plants according to the method of Example 2.
図 3は、 実施例 2の方法に従い、 高浸透圧ストレスを負荷した植物体中の s i g 5の発現を解析した結果を示す。  FIG. 3 shows the results of analyzing the expression of sig5 in plants subjected to hyperosmotic stress according to the method of Example 2.
図 4は、 実施例 2の方法に従い、 強光ストレスを負荷した植物体中の s i g 5及び p s bDの発現を角军析した結果を示す。  FIG. 4 shows the results of angular analysis of the expression of sig5 and psbD in plants subjected to high light stress according to the method of Example 2.
図 5は、 実施例 4の方法に従い p E p由来の 1.8k b Hindlll-BamHI断片を ρΒΙΙΟΙの Hindlll-BamHI部位に導入して得た s i g発現解析用プラスミド( p E-GUS) を示す。  FIG. 5 shows a sig expression analysis plasmid (pE-GUS) obtained by introducing a 1.8 kb Hindlll-BamHI fragment derived from pEp into the Hindlll-BamHI site of ρΒΙΙΟΙ according to the method of Example 4.
図 6は、 塩ストレス処理を行った実施例 4のシロイズナズナの GUS染色 による s i g 5プロモータ発現結果を、 塩ス トレスを負荷しない対照の結果 (図中 「一 Na C 1」 ) と共に示す。  FIG. 6 shows the results of expression of the sig5 promoter by GUS staining of the Arabidopsis thaliana in Example 4 which had been subjected to the salt stress treatment, together with the results of the control not loaded with salt stress (“one Na C 1” in the figure).
図 7は、 実施例 5による s i g発現解析用プラスミド (p E— OX) を示 す。 発明を実施するための最良の形態  FIG. 7 shows a sig expression analysis plasmid (pE-OX) according to Example 5. BEST MODE FOR CARRYING OUT THE INVENTION
以下実施例を挙げて本発明をさらに具体的に説明するが、 本発明はこれら 実施例により何等限定されるものではない。 実¾例 1 : ンロイヌナズナ (Arabidopsis thaliana (L.) Heynth ecotype Columbia (Col)) の培養  Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples. Example 1: Culture of Arabidopsis thaliana (L.) Heynth ecotype Columbia (Col)
目的に合わせて下記 2種のいずれかの方法を選択した。  One of the following two methods was selected according to the purpose.
A:固形培地培養 A: Solid culture
基本的に (Plant Cell Physiol., 41, 1119-1128 (2000)) に従った。 シロイヌナズ ナ種子は必要量を分取し、 70% (v/v) エタノールと 3% (v/v) 次 亜塩素酸ナトリウムで滅菌処理を行った上で 0.4% (w/v) ゲルライ ト (Wako) を含む 1% Sucrose— MSプレート (Physiol. Plant, 15, 473-497 (1962)) または J i f f y- 7 (AS Jiffy Products) 上に播種した。 4°C、 暗条 件で 24時間低温処理した後、 23 °C、恒明条件( 50 μ m o 1 photons/m2 · s) で生育を行った。 Basically according to (Plant Cell Physiol., 41, 1119-1128 (2000)). Arabidopsis The required amount of na seeds was collected, sterilized with 70% (v / v) ethanol and 3% (v / v) sodium hypochlorite, and then 0.4% (w / v) gel light (Wako ) Containing 1% Sucrose-MS plate (Physiol. Plant, 15, 473-497 (1962)) or Jiffy-7 (AS Jiffy Products). After 24 hours of low-temperature treatment at 4 ° C in the dark, the cells were grown at 23 ° C under constant light conditions (50 µmo 1 photons / m 2 · s).
B :液体培養 B: Liquid culture
1 % Sucrose_MS液体培地にて、 23 °C、連続白色光(50 μπιο 1 photons /m2 - s) 照射条件下で振とう培養した。 実施例 2 :環境ストレスの負荷 The cells were shake-cultured in a 1% Sucrose_MS liquid medium at 23 ° C under continuous white light (50 μπιο1 photons / m 2 -s) irradiation conditions. Example 2: Environmental stress load
実施例 1の方法に従い、 連続白色光下 ( 50 m o 1 photons/m2 · s ) で 生育させた 10日目の植物体に対して処理を行った。 記述した条件以外は、 ストレス処理前後で同一とした。 According to the method of Example 1, the plants were grown on day 10 grown under continuous white light (50 mo 1 photons / m 2 · s). Except for the described conditions, the conditions were the same before and after the stress treatment.
A:塩ストレス処理 A: Salt stress treatment
M S液体培地で培養した植物体に、 最終濃度が 250mMとなるよう Na C 1を加えて、 生育を観察し、 経時的にサンプリングした。  To the plants cultured in the MS liquid medium, NaCl was added to a final concentration of 250 mM, the growth was observed, and sampling was performed over time.
B :強光ストレス処理 B: High light stress treatment
50 mo 1 hotons/m2 · sの白色光下で生育させた植物体を、 500〃 mo 1 photons/m2 - sの白色光下に移し、 経時的にサンプリングした。 Plants grown under 50 mo 1 hotons / m 2 · s white light were transferred under 500〃 mo 1 photons / m 2 -s white light and sampled over time.
C:低温ストレス処理 C: Low temperature stress treatment
固体培地上、 23°Cで生育させた植物体を 4°Cに移した後、 経時的にサン プリングした。  Plants grown on a solid medium at 23 ° C were transferred to 4 ° C and then sampled over time.
D:浸透圧ストレス処理 D: Osmotic stress treatment
液体培地で培養した植物について、 最終濃度が 250 mMとなるようマン 二トールを加えた後、 経時的にサンプリングした。 実施例 3 :環境ストレスに応答した遺伝子発現解析 For plants cultured in liquid medium, mannitol was added to a final concentration of 250 mM, and samples were taken over time. Example 3: Gene expression analysis in response to environmental stress
ノザンハイプリダイゼーシヨンにより行つた。  It was performed by Northern Hydride.
植物体からの R N A調製は、植物体を液体窒素中で凍結 ·破碎した後、 TRIzol reagent (Invitrogen) を用いて全 R N Aを抽出した。 方法はキットのプロトコ ールに従った。 抽出した全 RNAの定量にはスぺクトロフォトメーター DU 640 (BECKMAN) を用いた。  For preparation of RNA from plants, the plants were frozen and crushed in liquid nitrogen, and then all RNA was extracted using TRIzol reagent (Invitrogen). The method followed the protocol of the kit. Spectrophotometer DU640 (BECKMAN) was used for quantification of the extracted total RNA.
ノーザンハイプリダイゼーションの操作は、文献に従つた(Plant Cell Physiol., 40, 832-842 (1999)) 。 各遺伝子検出用のプローブは、 s i g 5は対応する c D NAを铸型にして、 p s b Dはシロイヌナズナ全 DNAを铸型にして、 配列 番号 1〜4に示すプライマーセットを用いて PC Rにより増幅し、 D I Gラ ベルして調製した。 PCRは ExTaq (Takara) を用いて、 95度で 30秒、 5 5度で 30秒、 72度で 1分を 25サイクル行った。 増幅される断片の大き さは、 s i g 5が 500 b p、 p s bDが 549 b pである。  The operation of Northern hybridization was according to the literature (Plant Cell Physiol., 40, 832-842 (1999)). Probes for detecting each gene are as follows: sig5 is the corresponding cDNA type D, psbD is the Arabidopsis total DNA type 铸, and amplified by PCR using the primer sets shown in SEQ ID NOs: 1-4. It was prepared by DIG labeling. PCR was performed using ExTaq (Takara) for 25 cycles of 95 ° C. for 30 seconds, 55 ° C. for 30 seconds, and 72 ° C. for 1 minute. The size of the fragment to be amplified is 500 bp for sig5 and 549 bp for psbD.
配列番号 l : s i g 5用 5' プライマー s i g 5— F  Sequence number l: 5 'primer for sig5 sig5—F
配列番号 2 : s i g 5用 5' プライマー s i g 5—R  Sequence number 2: 5 'primer for sig5 sig5—R
配列番号 3 : p s bD用 5, プライマー p s bD-F  SEQ ID NO: 3 for ps bD 5, primer ps bD-F
配列番号 4 : p s bD用 3, プライマー p s bD— R  SEQ ID NO: 4: Primer p s bD—R for p s bD
実施例 2の方法に従い、 環境ストレスを負荷した植物体中の s i g 5及び p s bDの発現を解析した。 結果を図 1〜4に示す (図 1 :塩ストレス、 図 2 :低温ストレス、 図 3 :高浸透圧ストレス、 図 4 :強光ストレス) 。 結果 から明らかに、 s i g 5及ぴ p s bDは各種の環境ストレスに応答して、 特 異的に高発現することが判った。 実施例 4 :環境ストレスに応答した s i g 5の植物体内での発現  According to the method of Example 2, expression of sig5 and psbD in plants subjected to environmental stress was analyzed. The results are shown in Figs. 1 to 4 (Fig. 1: salt stress, Fig. 2: low temperature stress, Fig. 3: hyperosmotic stress, Fig. 4: high light stress). The results clearly show that sig5 and psbD are specifically highly expressed in response to various environmental stresses. Example 4: Expression of sig5 in plants in response to environmental stress
さらに s i g 5—プロモーター領域: u i d A融合遺伝子の構築、 形質転 物の作製、 SUG染色により評価した。 Furthermore, sig 5—promoter region: construction of uid A fusion gene, transformation Preparation and evaluation by SUG staining.
シロイヌナズナ第 5染色体の P 1クローン ML E 8 (かずさ DNA研究所 より分与) に対し、 配列番号 5〜 6のプライマーを用いて PCRを行い、 2.5 k bの増幅断片を得た。 それを Pma C Iと B a mH Iで消化して得られた 1.8 k b断片を pBluescriptll KS+の Sma I— B amH I部位に導入し p E を得た。 p E p由来の 1.8 k b Hindlll-BamHI断片を ρΒΙΙΟΙの Hindlll-BamHI 眘 15位に導入し p E— GUSを得た (図 5) 。 このプラスミドを Agrobacterium tumefaciens C58株に導入したのち、 Arabidopsis植物に浸潤法で形質転換した。 得られた種子についてカナマイシン耐性株を選抜し、 20ラインを得て解析 に用いた。 G U S染色は文献に従つた(Plant Cell Physiol., 40, 832-842 (1999))。 酉己列番号 5 : s i g 5プロモーター (promoter) プライマー D5— B amH PCR was performed on Arabidopsis chromosome 5 P1 clone MLE8 (provided by Kazusa DNA Research Institute) using the primers of SEQ ID NOS: 5 to 6 to obtain an amplified fragment of 2.5 kb. The 1.8 kb fragment obtained by digesting it with PmaCI and BamHI was introduced into the SmaI-BamHI site of pBluescriptll KS + to obtain pE. The 1.8 kb Hindlll-BamHI fragment derived from pEp was introduced into Hindlll-BamHI 眘 position 15 of ρΒΙΙΟΙ to obtain pE—GUS (FIG. 5). After introducing this plasmid into Agrobacterium tumefaciens strain C58, Arabidopsis plants were transformed by invasion. Kanamycin-resistant strains were selected from the obtained seeds, and 20 lines were obtained and used for analysis. GUS staining was according to the literature (Plant Cell Physiol., 40, 832-842 (1999)). Rooster column number 5: sig5 promoter (promoter) primer D5—B amH
I I
配列番号 6 : s i g 5プロモーター (promoter) プライマー D5— B amH I 2  SEQ ID NO: 6: sig5 promoter (promoter) primer D5—BamHI2
上記 20ラインの植物体を、 実施例 2に従って塩ス トレス処理を行い、 処 理後の植物体を GUS染色して発現を観察した。 MSプレート上にろ紙を置 き、 その上に播種して通常条件で 14日培養を行った。 25 OmM Na C 1 を含む MSプレート上にろ紙ごと植物体を移し、 そのまま 12時間の培養を 行った。 染色は文献 (Plant Cell Physiol., 40, 832-842(1999)) に従った。 塩処理 を施した植物では、 s i g 5プロモーターが高い発現を示していることが観 察された (図 6) 。 実施例 5 : s i g 5過剰発現植物の作製とス トレス耐性試験  The plants of the above 20 lines were subjected to salt stress treatment according to Example 2, and the treated plants were GUS-stained to observe expression. Filter paper was placed on an MS plate, seeded on it, and cultured for 14 days under normal conditions. The plant was transferred together with the filter paper onto an MS plate containing 25 OmM NaC1, and the culture was continued for 12 hours. Staining was performed according to the literature (Plant Cell Physiol., 40, 832-842 (1999)). In plants that had been treated with salt, it was observed that the sig5 promoter showed high expression (Fig. 6). Example 5: Production of sig5 overexpressing plant and stress tolerance test
s i g 5 c DNAクローンを錡型とし、 配列番号 7〜 8に示すプライマ 一で実施例 3と同じ条件で PC R増幅を行い、 s i g 5 ORF全長を含む 断片を得た。 配列番号 7 : s i g 5 ORF用プロモーター s i g 5 ORF— F 配列番号 8 : s i g 5 ORF用プロモーター s i g 5 ORF— R これを pCR2.1-TOPO (Invitrogen) プラスミドにクローン化した後、 B am H I— E c oRV断片として切り出した。 これを pBI121の B a mH I一 Sm a I部位にクローン化することで、 pE— OXを得た (図 7) 。 このプラス ミドを Agrobacterium tumefaciens C58株に導人したの 、 Arabidopsis植物に浸 潤法で形質転換した。 得られた種子についてカナマイシン耐性株を選抜し、 s i g 5が高発現しているラインを選んで解析に用いた。 コントロールとし ては、 植物への導入べクターである pBI121により形質転換した植物体を用い た。 The sig5 cDNA clone was designated as type III, and PCR amplification was performed with the primers shown in SEQ ID NOS: 7 to 8 under the same conditions as in Example 3 to obtain a fragment containing the entire sig5 ORF. SEQ ID NO: 7: Promoter for sig5 ORF sig5 ORF—F SEQ ID NO: 8: Promoter for sig5 ORF sig5 ORF—R After cloning this into pCR2.1-TOPO (Invitrogen) plasmid, BamHI—E It was excised as a coRV fragment. This was cloned into the BamHI-SmaI site of pBI121 to obtain pE-OX (FIG. 7). This plasmid was introduced into Agrobacterium tumefaciens strain C58 and transformed into Arabidopsis plants by invasion. A kanamycin-resistant strain was selected from the obtained seeds, and a line overexpressing sig5 was selected and used for analysis. As a control, a plant transformed with pBI121, a vector introduced into a plant, was used.
塩ストレスに対する試験は、 250 mM Na C 1を添加した M Sプレート に播種し、 通常の生育条件で発芽の状態を観察した。 その結果、 コントロー ル株では殆どの子葉が白化するのが観察されるのに対し、 s i g 5高発現株 では半分以上が緑色の子葉を形成していた。  In the test for salt stress, the cells were seeded on an MS plate to which 250 mM NaCl was added, and the state of germination under normal growth conditions was observed. As a result, most of the cotyledons were observed to be whitened in the control strain, whereas more than half of the sig5-expressing strains formed green cotyledons.
強光ストレスに対する試験は、 MSプレートに播種した後に、 200 /im o 1 photons/m2 - sの白色光照射下で培養を行った。 コントロール株が培 養当初から黄緑色となり約 1ヶ月程度で枯死するのに対し、 s i g 5高発現 株では緑色も濃く、 枯死することもなかった。 Test for strong light stress, after seeded on MS plate, 200 / im o 1 photons / m 2 - the culture was performed in white light illumination under s. The control strain became yellow-green from the beginning of the culture and died in about one month, whereas the sig5 high expression strain was darker in green and did not die.
乾燥に対する試験は、 J i f f y— 7上に播種し、 約 3週間通常の生育条 件で栽培した後に、 水を与えるのを止め、 枯死するまでの期間を比較した。 コントロール株が一週間程度で枯死するのに対し、 s u g 5高発現株では数 日の延命効果が見られた。 産業上の利用可能性  The test for drought was performed by sown on Jiffy-7, cultivated under normal growth conditions for about 3 weeks, then stopped supplying water and compared the time until death. While the control strain died in about one week, the sug5 high-expressing strain exhibited a survival advantage of several days. Industrial applicability
本発明の方法によれば、 植物生存の根源である光合成系への環境ス トレス によって引き起こされるダメージを積極的に改善することができ、 環境スト レスによって引き起こされる光合成機能の低下による観葉植物等の枯死や作 物や収量低下などを回避することができる。 さらには、 この方法によって環 境ストレスに対して耐性を持つ植物を作出することができる。 ADVANTAGE OF THE INVENTION According to the method of this invention, the damage caused by the environmental stress to the photosynthetic system which is the root of plant survival can be positively improved, It is possible to avoid the death of houseplants due to the decrease in photosynthetic function caused by the loess and the decrease in crops and yield. In addition, plants that are resistant to environmental stress can be produced by this method.

Claims

請求 の範囲 The scope of the claims
1 . 高等植物の光合成関連タンパク質の生産を促進することを特徴とする 植物の環境ストレスに対する耐性を高める方法。 1. A method for enhancing the resistance of plants to environmental stress, which promotes the production of photosynthesis-related proteins in higher plants.
2 . 高等植物の光合成関連タンパク質が P S II活性中心 D 2タンパク質であ る請求の範囲 1に記載の植物の環境ストレスに対する耐性を高める方法。 2. The method according to claim 1, wherein the photosynthesis-related protein of a higher plant is a PS II active center D2 protein.
3 . s i g 5構成遺伝子を生育中に発現させる請求の範囲 1または 2に記 載の植物の環境ストレスに対する耐性を高める方法。 3. The method for enhancing tolerance to environmental stress of a plant according to claim 1 or 2, wherein the sig5 component gene is expressed during growth.
4 . 遺伝子変換法により、 s i g 5構成遺伝子を強く発現する転写調節領 域の下流に s i g 5遺伝子を連結して、 植物体に組み込むことにより s i g 5構成遺伝子を生育中に発現させる請求の範囲 1または 2に記載の植物の環 境ストレスに対する耐性を高める方法。 4. The sig5 gene is ligated downstream of the transcriptional regulatory region that strongly expresses the sig5 component gene by the gene conversion method, and the sig5 component gene is expressed during growth by integration into a plant. Or the method for increasing the resistance of a plant to environmental stress according to 2 above.
5 . 遺伝子変換法により、 s i g 5遺伝子が環境ストレスで強力な誘導を 受けるプロモーターの下流に s i g 5遺伝子を連結して、 T一 D N Aを介し たァグロパクテリゥム (Agrobacterium) による形質転換法により s i g 5遺 伝子を植物体に導入する請求の範囲 1または 2に記載の植物の環境ストレス に対する耐性を高める方法。 5. By the gene conversion method, the sig5 gene is ligated downstream of the promoter, which is strongly induced by environmental stress, and is transformed by Agrobacterium through T-DNA. 3. The method according to claim 1 or 2, wherein the sig5 gene is introduced into the plant body to increase resistance of the plant to environmental stress.
6 . 環境ストレスが強光ストレスである請求の範囲 1乃至 5のいずれかに 記載の植物の環境ストレスに対する耐性を高める方法。 6. The method for increasing the resistance of a plant to environmental stress according to any one of claims 1 to 5, wherein the environmental stress is high light stress.
7 . 環境ストレスが高塩濃度ストレスである請求の範囲 1乃至 5のいずれ かに記載の植物の環境ストレスに対する耐性を高める方法, 7. Any of claims 1 to 5, wherein the environmental stress is high salt concentration stress A method for increasing the resistance of plants to environmental stress according to
8 . 環境ストレスが高浸透圧ストレスである請求の範囲 1乃至 5のいずれ かに記載の植物の環境ストレスに対する耐性を高める方法。 8. The method according to any one of claims 1 to 5, wherein the environmental stress is high osmotic stress.
9 . 環境ストレスが低温ス トレスである請求の範囲 1乃至 5のいずれかに 記載の植物の環境ストレスに対する耐性を高める方法。 9. The method for increasing tolerance of a plant to environmental stress according to any one of claims 1 to 5, wherein the environmental stress is low-temperature stress.
1 0 . 請求の範囲 1乃至 9のいずれかに記載の植物の環境ストレスに対す る耐性を高める方法を用いることにより得られる環境ストレスに対する耐性 の高い植物。 10. A plant having high resistance to environmental stress obtained by using the method for increasing resistance to environmental stress of a plant according to any one of claims 1 to 9.
1 1 . 請求の範囲 1乃至 9のいずれかに記載の植物の環境ストレスに対す る耐性を高める方法を用いることを特徴とする環境ストレスに対する耐性の 高い植物の製造方法。 11. A method for producing a plant having high resistance to environmental stress, comprising using the method for increasing resistance to environmental stress of a plant according to any one of claims 1 to 9.
PCT/JP2003/016558 2002-12-25 2003-12-24 Method of enhancing tolerance to environmental stresses of plant WO2004058975A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003292749A AU2003292749A1 (en) 2002-12-25 2003-12-24 Method of enhancing tolerance to environmental stresses of plant
JP2004562908A JPWO2004058975A1 (en) 2002-12-25 2003-12-24 Methods to increase environmental stress tolerance of plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-373762 2002-12-25
JP2002373762 2002-12-25

Publications (1)

Publication Number Publication Date
WO2004058975A1 true WO2004058975A1 (en) 2004-07-15

Family

ID=32677270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016558 WO2004058975A1 (en) 2002-12-25 2003-12-24 Method of enhancing tolerance to environmental stresses of plant

Country Status (3)

Country Link
JP (1) JPWO2004058975A1 (en)
AU (1) AU2003292749A1 (en)
WO (1) WO2004058975A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524423A (en) * 2006-01-26 2009-07-02 リオネル・スコット Plant treatment method and means therefor
KR101325960B1 (en) 2012-04-03 2013-11-07 강원대학교산학협력단 OsHCI1 gene from rice for enhancing high temperature stress resistance of plant and uses thereof
US9506073B2 (en) 2011-11-18 2016-11-29 Board Of Regents, The University Of Texas System Blue-light inducible system for gene expression

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER D A ET AL: "Separate photosensory pathways co-regulate blue light/ultraviolet-A-activated psbD-psbC transcription and light-induced D2 and CP43 degradation in barley (Hordeum vulgare) chloroplasts", PLANT PHYSIOL., vol. 104, no. 4, April 1994 (1994-04-01), pages 1119 - 1129, XP002981546 *
TANAKA H ET AL: "Kaku genome ni code sareru sigma idenshigun niyoru yoryoktai idenshi tensha seigyo (W3aL-1)", THE MOLECULAR BIOLOGY SOCIETY OF JAPAN, 11 December 2002 (2002-12-11), pages 395, XP002981547 *
TSUNOYAMA A ET AL: "Blue light specific and differential expression of a plastid s factor, Sig5 in Arabidopsis thaliana", FEBS LETT., vol. 516, April 2002 (2002-04-01), pages 225 - 228, XP004349082 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524423A (en) * 2006-01-26 2009-07-02 リオネル・スコット Plant treatment method and means therefor
US9506073B2 (en) 2011-11-18 2016-11-29 Board Of Regents, The University Of Texas System Blue-light inducible system for gene expression
US10221422B2 (en) 2011-11-18 2019-03-05 Board Of Regents, The University Of Texas System Blue light-inducible system for gene expression
KR101325960B1 (en) 2012-04-03 2013-11-07 강원대학교산학협력단 OsHCI1 gene from rice for enhancing high temperature stress resistance of plant and uses thereof

Also Published As

Publication number Publication date
AU2003292749A1 (en) 2004-07-22
JPWO2004058975A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US9809827B2 (en) Transgenic maize
US20210102218A1 (en) Expression of transcription regulators that provide heat tolerance
CN108707623B (en) Strawberry apical meristem related gene FvMYB17 and application thereof
WO2013111755A1 (en) Plant body showing improved resistance against environmental stress and method for producing same
US9145563B2 (en) Transgenic plant having increased biomass and improved environmental stress resistance, and process for production thereof
CN111606986B (en) Drought-resistant salt-tolerant associated protein, and related biological material and application thereof
AU2013228321B2 (en) Environmental stress-resistant plant with high seed productivity and method for constructing same
WO2004058975A1 (en) Method of enhancing tolerance to environmental stresses of plant
CN110684114B (en) Application of plant stress tolerance associated protein TaBAKL in regulation and control of plant stress tolerance
CN108752442B (en) Stdof2 protein related to salt tolerance of colored potatoes as well as coding gene and application thereof
KR20100107263A (en) Promoters inducible by environmental stresses and uses thereof
CN110194791B (en) Application of SPL3 protein in regulation and control of plant inflorescence or carpopodium development
JP4776216B2 (en) Novel plant cell death inducing factor NbCD1
JP3772974B2 (en) Plant-derived promoter
WO2004092372A1 (en) Gene capable of imparting salt stress resistance
JP2002095370A (en) Transformed plant with improved heat tolerance and method of creating the same
JP4583051B2 (en) Novel plant cell death inducing factor NbCD3
JP4583050B2 (en) Novel plant cell death inducing factor NbCD2
CN111153977A (en) Protein PwUSP1 related to plant stress resistance and coding gene and application thereof
WO2013091049A2 (en) Sugar cane polynucleotide imparting resistance to abiotic stresses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004562908

Country of ref document: JP

122 Ep: pct application non-entry in european phase