WO2004058668A1 - PROCESS FOR PRODUCING α-METHYLSTYRENE - Google Patents

PROCESS FOR PRODUCING α-METHYLSTYRENE Download PDF

Info

Publication number
WO2004058668A1
WO2004058668A1 PCT/JP2003/016075 JP0316075W WO2004058668A1 WO 2004058668 A1 WO2004058668 A1 WO 2004058668A1 JP 0316075 W JP0316075 W JP 0316075W WO 2004058668 A1 WO2004058668 A1 WO 2004058668A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
methylstyrene
cumene
producing
dehydration
Prior art date
Application number
PCT/JP2003/016075
Other languages
French (fr)
Japanese (ja)
Inventor
Junpei Tsuji
Masaru Ishino
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to AU2003289104A priority Critical patent/AU2003289104A1/en
Publication of WO2004058668A1 publication Critical patent/WO2004058668A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/02Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides
    • C07C409/04Peroxy compounds the —O—O— group being bound between a carbon atom, not further substituted by oxygen atoms, and hydrogen, i.e. hydroperoxides the carbon atom being acyclic
    • C07C409/08Compounds containing six-membered aromatic rings
    • C07C409/10Cumene hydroperoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing Q! -Methylstyrene.
  • a method for producing himethylstyrene by dehydrating cumyl alcohol in the presence of activated alumina is known (for example, US Pat. No. 3,430,193).
  • high temperatures are required to obtain high conversions in the conventional technology, it is not always satisfactory from the viewpoint of efficiently obtaining low methyl methylstyrene conversion at low cost. Disclosure of the invention
  • An object of the present invention is to provide a method for producing -methylstyrene which can efficiently obtain a high ⁇ -methylstyrene conversion rate at low cost.
  • the present invention relates to a method for producing ⁇ -methylstyrene for dehydrating cumyl alcohol in the presence of activated alumina, wherein the reaction is carried out in a liquid phase and the reaction is carried out while supplying an inert gas to the reaction system.
  • the present invention relates to a method for producing -methylstyrene. DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • a preferred embodiment of the dehydration reaction of cumyl alcohol with activated alumina is as follows.
  • the dehydration reaction is usually performed by bringing cumyl alcohol into contact with a dehydration catalyst.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the cumyl alcohol solution used.
  • cumyl alcohol In the case of a mixture comprising cumene, which is a product, the solvent can be used as a substitute for the solvent without adding a solvent.
  • Other useful solvents include alkanes (eg, octane, decane, dodecane) and aromatic monocyclic compounds (eg, benzene, ethylbenzene, toluene).
  • the dehydration reaction temperature is generally from 50 to 450 ° C, but a temperature of from 150 to 300 ° C is preferred. In general, it is advantageous for the pressure to be between 10 and 1000 kPa. When considering the equilibrium reaction, the lowest possible pressure is more advantageous.
  • the dehydration reaction can be advantageously carried out using a catalyst in the form of a slurry or a fixed bed.
  • a feature of the present invention is that the dehydration reaction is performed while supplying an inert gas to the reaction system (that is, since the dehydration reaction is an equilibrium reaction, the conversion is determined by the reaction temperature and pressure. In order to obtain water, it is necessary to raise the temperature to shift the equilibrium or to remove the generated water from the reaction solution. Either method is not preferable from the viewpoint of cost.
  • By supplying an inert gas to the reaction solution vaporization of water generated by dehydration is promoted, and the dehydration reaction rate is increased. As the rate increases, the equilibrium dehydration conversion in the liquid phase increases, and a higher conversion can be obtained than in the absence of an inert gas. Without Any gas can be used as long as it is inert to activated alumina, but nitrogen, helium, hydrogen, carbon dioxide, carbon monoxide, and methane, which are industrially easily available, are preferred.
  • the method of the present invention is preferably applied to the following dehydration step in the propylene oxide production step.
  • Oxidation step a step of oxidizing cumene to obtain cumene hydroperoxide
  • Epoxidation step a step of reacting a cumene solution containing cumene hydroperoxide with an excess amount of propylene in a liquid phase in the presence of an epoxidation catalyst to obtain propylene oxide and cumyl alcohol;
  • Dehydration step a step of dehydrating cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst to obtain methyl styrene
  • Hydrogenation step hydrogenation of ⁇ -methylstyrene in the presence of a hydrogenation catalyst 1
  • the oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene.
  • Oxidation of cumene is usually performed by autoxidation using oxygenated gas such as air or oxygen enriched air.
  • This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used.
  • Typical reaction temperatures are 50-200 ° C. and reaction pressures are between atmospheric pressure and 5 MPa.
  • alkali metal carbonates, ammonia and (NH 4 ) 2 C ⁇ 3 , alkali metal ammonium carbonate and the like are used.
  • propylene oxide and cumyl alcohol are obtained by reacting cumene hydroperoxide obtained in the oxidation step with an excess amount of propylene in the presence of an epoxidation catalyst in a liquid phase. It is a process.
  • a solid catalyst is preferred from the viewpoint of separation from the reactants, and a catalyst comprising a titanium-containing silicon oxide is preferred from the viewpoint of obtaining the desired product with high yield and high selectivity.
  • These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide.
  • a compound in which a Ti compound is supported on a silicon carrier a compound in which a Ti compound is combined with a silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing Ti can be used.
  • the cumene hydroperoxide used as a raw material in the epoxidation step may be a dilute or concentrated purified or unpurified product.
  • the epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with a catalyst.
  • the reaction is carried out in a liquid phase using a solvent.
  • the solvent must be liquid at the temperature and pressure of the reaction and must be substantially inert to the reactants and products.
  • the solvent may consist of the substances present in the hydroperoxide solution used. For example, when cumene hydroperoxide is a mixture of its raw material, cumene, it can be used in place of a solvent without adding a solvent.
  • aromatic monocyclic compounds eg, benzene, toluene, cyclobenzene, orthodichlorobenzene
  • alkanes eg, octane, decane, dodecane
  • the epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferred.
  • the pressure may be sufficient to keep the reaction mixture in a liquid state. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
  • the solid catalyst can be advantageously implemented in slurry or fixed bed form. In the case of large-scale industrial operation, it is preferable to use a fixed bed. It can be carried out by a batch method, a semi-continuous method, a continuous method, or the like.
  • the molar ratio of propylene nocumene hydroperoxide to be supplied to the epoxidation step is preferably 21 to 501. If the ratio is less than 2: 1, the reaction rate will decrease and the efficiency will deteriorate.On the other hand, if the ratio is greater than 50: 1, the amount of propylene to be recycled will be excessive, and the Requires a lot of energy.
  • the dehydration step is a step of dehydrating cumyl alcohol obtained in the epoxidation step to obtain —methylstyrene, as described above.
  • hydrogen used in the next hydrogenation step can be used as an inert gas.
  • the hydrogenation step is a step in which cumene is obtained by hydrogenating the ⁇ -methylstyrene obtained in the dehydration step, and the cumene is recycled to the oxidation step as a raw material in the oxidation step.
  • the hydrogenation catalyst examples include a solid catalyst containing a metal of Group 10 or Group 11 of the Periodic Table of the Elements. Specific examples include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoint of suppressing the nuclear hydrogenation reaction and increasing the yield. Copper-based catalysts include copper, Raney copper, copper 'chromium, copper-zinc, copper, chromium-zinc, copper-silica, copper-alumina, and the like. Examples of the palladium catalyst include palladium-alumina, palladium-silica, palladium-carbon, and the like.
  • the hydrogenation reaction is usually performed by bringing ⁇ -methylstyrene and hydrogen into contact with a catalyst.
  • the reaction can be carried out in a liquid or gas phase using a solvent.
  • Solvent is reactant and neat It should be substantially inert to the composition.
  • the solvent may consist of the substances present in the a-methylstyrene solution used.
  • ⁇ -methylstyrene is a mixture of the product cumene, it can be used as a substitute for the solvent without adding a solvent.
  • Other useful solvents include alkanes (eg, octane, decane, dodecane) and aromatic monocyclic compounds (eg, benzene, ethylbenzene, toluene).
  • the hydrogenation reaction temperature is generally 0 to 500. C, but preferably at a temperature of 30 to 400 ° C. In general, it is advantageous for the pressure to be between 100 and 10,000 kPa.
  • a cumene solution containing 25% by weight of cumyl alcohol was passed through the fixed bed flow reactor filled with activated alumina at 1.6 gZmin, and hydrogen was passed at 105 Ncc / min.
  • the LHS V was 9 h-1
  • the pressure was 1.0 MPaG
  • the temperature was 215 ° C.
  • the dehydration conversion of cumyl alcohol in the obtained reaction solution was 99.6%.
  • the selectivity for ⁇ -methylstyrene was almost 100%.

Abstract

A process for producing α-methylstyrene which comprises dehydrating cumyl alcohol in the presence of activated alumina, characterized in that the reaction is conducted in a liquid phase while supplying an inert gas to the reaction system.

Description

—メチルスチレンの製造方法 桉術分野  —Methylstyrene production method
本発明は Q!—メチルスチレンの製造方法に関するものである。 背景技術  The present invention relates to a method for producing Q! -Methylstyrene. Background art
活性アルミナの存在下、 クミルアルコールを脱水してひーメチルスチレンを 製造する方法は公知である (たとえば、 米国特許第 3 4 0 3 1 9 3号) 。 しか しながら、 従来の技術において高い転化率を得るには相当の高温を要するため、 低コストで効率的に高いひーメチルスチレン転化率を得るという観点において 必ずしも満足できるものではなかった。 発明の開示  A method for producing himethylstyrene by dehydrating cumyl alcohol in the presence of activated alumina is known (for example, US Pat. No. 3,430,193). However, since high temperatures are required to obtain high conversions in the conventional technology, it is not always satisfactory from the viewpoint of efficiently obtaining low methyl methylstyrene conversion at low cost. Disclosure of the invention
本発明は低コストで効率的に高い α—メチルスチレン転化率を得ることがで きる ーメチルスチレンの製造方法を提供することにある。  An object of the present invention is to provide a method for producing -methylstyrene which can efficiently obtain a high α-methylstyrene conversion rate at low cost.
すなわち、 本発明は活性アルミナの存在下、 クミルアルコールを脱水する α ーメチルスチレンの製造方法であって、 液相において反応を実施し、 反応系に 不活性気体を供給しつつ行うことを特徴とする ーメチルスチレンの製造方法 に係るものである。 発明を卖施するための形態  That is, the present invention relates to a method for producing α-methylstyrene for dehydrating cumyl alcohol in the presence of activated alumina, wherein the reaction is carried out in a liquid phase and the reaction is carried out while supplying an inert gas to the reaction system. The present invention relates to a method for producing -methylstyrene. DESCRIPTION OF EMBODIMENTS OF THE INVENTION
活性アルミナによるクミルアルコールの脱水反応の好ましい実施態様は次の とおりである。  A preferred embodiment of the dehydration reaction of cumyl alcohol with activated alumina is as follows.
脱水反応は、 通常クミルアルコ—ルを脱水触媒に接触させることで行われる。 反応は溶媒を用いて液相中で実施できる。 溶媒は反応体及び生成物に対して実 質的に不活性なものであるべきである。 溶媒は使用されるクミルアルコール溶 液中に存在する物質からなるものであってよい。 たとえばクミルアルコールが、 生成物であるクメンとからなる混合物である場合には特に溶媒を添加すること なく、 これを溶媒の代用とすることも可能である。 その他、 有用な溶 はアル カン (たとえばオクタン、 デカン、 ドデカン) や芳香族の単環式化合物 (たと えばベンゼン、 ェチルベンゼン、 トルエン) などがあげられる。 脱水反応温度 は一般に 5 0〜4 5 0 °Cであるが、 1 5 0〜3 0 0 °Cの温度が好ましい。 一般 に圧力は 1 0〜1 0 0 0 0 k P aであることが有利である。 平衡反応を考えた 場合はできるだけ低圧の方が有利である。 脱水反応はスラリ—又は固定床の形 の触媒を使用して有利に実施できる。 The dehydration reaction is usually performed by bringing cumyl alcohol into contact with a dehydration catalyst. The reaction can be carried out in a liquid phase using a solvent. The solvent should be substantially inert to the reactants and products. The solvent may consist of the substances present in the cumyl alcohol solution used. For example, cumyl alcohol In the case of a mixture comprising cumene, which is a product, the solvent can be used as a substitute for the solvent without adding a solvent. Other useful solvents include alkanes (eg, octane, decane, dodecane) and aromatic monocyclic compounds (eg, benzene, ethylbenzene, toluene). The dehydration reaction temperature is generally from 50 to 450 ° C, but a temperature of from 150 to 300 ° C is preferred. In general, it is advantageous for the pressure to be between 10 and 1000 kPa. When considering the equilibrium reaction, the lowest possible pressure is more advantageous. The dehydration reaction can be advantageously carried out using a catalyst in the form of a slurry or a fixed bed.
本発明の特徴は反応系に不活性気体を供給しつつ脱水反応を行なう点にある ( すなわち、 脱水反応は平衡反応であるため、 反応温度と圧力により転化率が決 まってしまう。 高い転化率を得ようとすると、 温度を上げて平衡をずらすか、 生成した水を反応液から除去する必要がある。 反応液から水を除去する操作と しては蒸留が一般的であるが、 蒸留設備等が必要であり、 いずれの方法もコス トの観点から好ましいとはいえない。 反応液に不活性気体を供給することによ り、 脱水により発生した水分の気化が促進され、 脱水反応速度が増大するとと もに液相中における平衡脱水転化率が上がり、 不活性気体が存在しない場合よ りも高い転化率を得ることが出来る。 不活性気体はクミルアルコールの脱水反 応において反応性が無く、 かつ活性アルミナに対しても不活性であればいずれ の気体も使用できるが、 工業的に入手が容易な窒素、 ヘリウム、 水素、 二酸化 炭素、 一酸化炭素及びメタンが好ましい。 A feature of the present invention is that the dehydration reaction is performed while supplying an inert gas to the reaction system ( that is, since the dehydration reaction is an equilibrium reaction, the conversion is determined by the reaction temperature and pressure. In order to obtain water, it is necessary to raise the temperature to shift the equilibrium or to remove the generated water from the reaction solution. Either method is not preferable from the viewpoint of cost. By supplying an inert gas to the reaction solution, vaporization of water generated by dehydration is promoted, and the dehydration reaction rate is increased. As the rate increases, the equilibrium dehydration conversion in the liquid phase increases, and a higher conversion can be obtained than in the absence of an inert gas. Without Any gas can be used as long as it is inert to activated alumina, but nitrogen, helium, hydrogen, carbon dioxide, carbon monoxide, and methane, which are industrially easily available, are preferred.
本発明の方法は下記のプロピレンォキサイド製造工程の脱水工程に好ましく 適用される。  The method of the present invention is preferably applied to the following dehydration step in the propylene oxide production step.
酸化工程:クメンを酸化することによりクメンハイドロパーォキサイドを得 る工程、  Oxidation step: a step of oxidizing cumene to obtain cumene hydroperoxide;
エポキシ化工程:クメンハイドロパーォキサイドを含むクメン溶液と過剰量 のプロピレンとを、液相中、エポキシ化触媒の存在下に反応させることにより、 プロピレンォキサイド及びクミルアルコールを得る工程、  Epoxidation step: a step of reacting a cumene solution containing cumene hydroperoxide with an excess amount of propylene in a liquid phase in the presence of an epoxidation catalyst to obtain propylene oxide and cumyl alcohol;
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコールを脱 水することにより —メチルスチレンを得る工程、 及び 水添工程:水添触媒の存在下、 α—メチルスチレンを水添 1 Dehydration step: a step of dehydrating cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst to obtain methyl styrene, and Hydrogenation step: hydrogenation of α-methylstyrene in the presence of a hydrogenation catalyst 1
得られたクメンを酸化工程の原料として酸化工程へリサイクルする工程 A process for recycling the obtained cumene as a raw material for the oxidation process to the oxidation process
酸化工程はクメンを酸化することによりクメンハイドロパーォキサイドを得 る工程である。 クメンの酸化は、 通常空気や酸素濃縮空気などの含酸素ガスに よる自動酸化で行われる。 この酸化反応は添加剤を用いずに実施してもよいし、 アルカリのような添加剤を用いてもよい。 通常の反応温度は 5 0〜2 0 0 °Cで あり、 反応圧力は大気圧から 5 M P aの間である。 添加剤を用いた酸化法の場 合、 アルカリ性試薬としては、 N a OH、 K〇Hのようなアルカリ金属化合物 や、 アルカリ土類金属化合物又は N a 2C〇3、 N a H C 03のようなアルカリ金 属炭酸塩又はアンモニア及び(NH4) 2C〇3、 アルカリ金属炭酸アンモニゥム塩 等が用いられる。 The oxidation step is a step of obtaining cumene hydroperoxide by oxidizing cumene. Oxidation of cumene is usually performed by autoxidation using oxygenated gas such as air or oxygen enriched air. This oxidation reaction may be carried out without using an additive, or an additive such as an alkali may be used. Typical reaction temperatures are 50-200 ° C. and reaction pressures are between atmospheric pressure and 5 MPa. Oxidation cases with additives, as the alkaline reagent, N a OH, or an alkali metal compound such as K_〇_H, alkaline earth metal compounds or N a 2 C_〇 3, the N a HC 0 3 Such alkali metal carbonates, ammonia and (NH 4 ) 2 C〇 3 , alkali metal ammonium carbonate and the like are used.
エポキシ化工程は、 酸化工程で得たクメンハイドロパーォキサイドと過剰量 のプロピレンとを、液相中、エポキシ化触媒の存在下に反応させることにより、 プロピレンォキサイド及びクミルアルコールを得る工程である。  In the epoxidation step, propylene oxide and cumyl alcohol are obtained by reacting cumene hydroperoxide obtained in the oxidation step with an excess amount of propylene in the presence of an epoxidation catalyst in a liquid phase. It is a process.
エポキシ化触媒としては、 反応物との分離の観点から固体触媒が好ましく、 目的物を高収率及び高選択率下に得る観点から、 チタン含有珪素酸化物からな る触媒が好ましい。 これらの触媒は、 珪素酸化物と化学的に結合した T iを含 有する、 いわゆる T i—シリカ触媒が好ましい。 たとえば、 T i化合物をシリ 力担体に担持したもの、 共沈法やゾルゲル法で珪素酸化物と複合したもの、 あ るいは T iを含むゼォライト化合物などをあげることができる。  As the epoxidation catalyst, a solid catalyst is preferred from the viewpoint of separation from the reactants, and a catalyst comprising a titanium-containing silicon oxide is preferred from the viewpoint of obtaining the desired product with high yield and high selectivity. These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide. For example, a compound in which a Ti compound is supported on a silicon carrier, a compound in which a Ti compound is combined with a silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing Ti can be used.
エポキシ化工程の原料物質として使用されるクメンハイドロパーォキサイド は、 希薄又は濃厚な精製物又は非精製物であつてよい。  The cumene hydroperoxide used as a raw material in the epoxidation step may be a dilute or concentrated purified or unpurified product.
エポキシ化反応はプロピレンとクメンハイドロパーォキサイドを触媒に接触 させることで行われる。 反応は溶媒を用いて液相中で実施される。 溶媒は反応 時の温度及び圧力のもとで液体であり、 かつ反応体及び生成物に対して実質的 に不活性なものでなければならない。 溶媒は使用されるハイドロパ—ォキサイ ド溶液中に存在する物質からなるものであってよい。 たとえばクメンハイドロ パーォキサイドがその原料であるクメンとからなる混合物である場合には、 特 に溶媒を添加することなく、 これを溶媒の代用とすることも可能である。 その 他、有用な溶媒としては芳香族の単環式化合物(たとえばベンゼン、 トルエン、 クロ口ベンゼン、オルトジクロロベンゼン)及びアルカン (たとえばオクタン、 デカン、 ドデカン) などがあげられる。 The epoxidation reaction is performed by bringing propylene and cumene hydroperoxide into contact with a catalyst. The reaction is carried out in a liquid phase using a solvent. The solvent must be liquid at the temperature and pressure of the reaction and must be substantially inert to the reactants and products. The solvent may consist of the substances present in the hydroperoxide solution used. For example, when cumene hydroperoxide is a mixture of its raw material, cumene, it can be used in place of a solvent without adding a solvent. That Other useful solvents include aromatic monocyclic compounds (eg, benzene, toluene, cyclobenzene, orthodichlorobenzene) and alkanes (eg, octane, decane, dodecane).
エポキシ化反応温度は一般に 0〜 2 0 0 °Cであるが、 2 5〜 2 0 0 °Cの温度 が好ましい。 圧力は、 反応混合物を液体の状態に保つのに充分な圧力でよい。 一般に圧力は 1 0 0〜 1 0 0 0 0 k P aであることが有利である。  The epoxidation reaction temperature is generally 0 to 200 ° C, but a temperature of 25 to 200 ° C is preferred. The pressure may be sufficient to keep the reaction mixture in a liquid state. In general, it is advantageous for the pressure to be between 100 and 1000 kPa.
固体触媒はスラリ—状又は固定床の形で有利に実施できる。 大規模な工業的 操作の場合には固定床を用いるのが好ましい。 また、 回分法、 半連続法、 連続 法等によって実施できる。  The solid catalyst can be advantageously implemented in slurry or fixed bed form. In the case of large-scale industrial operation, it is preferable to use a fixed bed. It can be carried out by a batch method, a semi-continuous method, a continuous method, or the like.
エポキシ化工程へ供給されるプロピレンノクメンハイドロパ—ォキサイドの モル比は 2 1〜5 0 1であることが好ましい。 該比が 2ノ1より過小であ ると反応速度が低下して効率が悪くなり、 一方、 該比が 5 0ノ 1より過大であ るとリサイクルされるプロピレンの量が過大となり、 回収工程において多大な エネルギーを必要とする。  The molar ratio of propylene nocumene hydroperoxide to be supplied to the epoxidation step is preferably 21 to 501. If the ratio is less than 2: 1, the reaction rate will decrease and the efficiency will deteriorate.On the other hand, if the ratio is greater than 50: 1, the amount of propylene to be recycled will be excessive, and the Requires a lot of energy.
脱水工程は、 エポキシ化工程で得たクミルアルコールを脱水して —メチル スチレンを得る工程であり、 前記のとおりである。 本脱水工程では、 次の水添 工程にて使用される水素を不活性気体として使用することが可能である。  The dehydration step is a step of dehydrating cumyl alcohol obtained in the epoxidation step to obtain —methylstyrene, as described above. In this dehydration step, hydrogen used in the next hydrogenation step can be used as an inert gas.
水添工程は、 脱水工程で得られた α—メチルスチレンを水添することにより クメンを得、 該クメンを酸化工程の原料として酸化工程へリサイクルする工程 である。  The hydrogenation step is a step in which cumene is obtained by hydrogenating the α-methylstyrene obtained in the dehydration step, and the cumene is recycled to the oxidation step as a raw material in the oxidation step.
水添触媒としては元素の周期律表 1 0族又は 1 1族の金属を含む固体触媒を あげることができ、 具体的にはニッケル、 パラジウム、 白金、 銅をあげること ができるが、 芳香環の核水添反応の抑制、 高収率の観点からパラジウムまたは 銅が好ましい。 銅系触媒としては銅、 ラネー銅、 銅 'クロム、 銅 ·亜鉛、 銅, クロム ·亜鉛、 銅 ·シリカ、 銅 ·アルミナ等があげられる。 パラジウム触媒と しては、 パラジウム ·アルミナ、 パラジウム 'シリカ、 パラジウム ·カーボン 等があげられる。  Examples of the hydrogenation catalyst include a solid catalyst containing a metal of Group 10 or Group 11 of the Periodic Table of the Elements. Specific examples include nickel, palladium, platinum, and copper. Palladium or copper is preferred from the viewpoint of suppressing the nuclear hydrogenation reaction and increasing the yield. Copper-based catalysts include copper, Raney copper, copper 'chromium, copper-zinc, copper, chromium-zinc, copper-silica, copper-alumina, and the like. Examples of the palladium catalyst include palladium-alumina, palladium-silica, palladium-carbon, and the like.
水添反応は、 通常 α—メチルスチレンと水素を触媒に接触させることで行わ れる。 反応は溶媒を用いて液相又は気相中で実施できる。 溶媒は反応体及び生 成物に対して実質的に不活性なものであるべきである。 溶媒は使用される a— メチルスチレン溶液中に存在する物質からなるものであってよい。 たとえば α —メチルスチレンが、 生成物であるクメンとからなる混合物である場合には、 特に溶媒を添加することなく、 これを溶媒の代用とすることも可能である。 そ の他、 有用な溶媒はアルカン (たとえばオクタン、 デカン、 ドデカン) や、 芳 香族の単環式化合物 (たとえばベンゼン、 ェチルベンゼン、 トルエン) などが あげられる。 水添反応温度は一般に 0〜 500。Cであるが、 30〜 400 °Cの 温度が好ましい。 一般に圧力は 100〜10000 kP aであることが有利で ある。 実施例 The hydrogenation reaction is usually performed by bringing α-methylstyrene and hydrogen into contact with a catalyst. The reaction can be carried out in a liquid or gas phase using a solvent. Solvent is reactant and neat It should be substantially inert to the composition. The solvent may consist of the substances present in the a-methylstyrene solution used. For example, when α-methylstyrene is a mixture of the product cumene, it can be used as a substitute for the solvent without adding a solvent. Other useful solvents include alkanes (eg, octane, decane, dodecane) and aromatic monocyclic compounds (eg, benzene, ethylbenzene, toluene). The hydrogenation reaction temperature is generally 0 to 500. C, but preferably at a temperature of 30 to 400 ° C. In general, it is advantageous for the pressure to be between 100 and 10,000 kPa. Example
次に、 実施例により本発明を説明する。  Next, the present invention will be described with reference to examples.
実施例 1 Example 1
活性アルミナを充填した固定床流通反応器に、 25重量%のクミルアルコ— ルを含むクメン溶液を 1. 6 gZm i nで、 水素を 105 N c c /m i nで流 通させた。 このときの LHS Vは 9 h— 1、 圧力は 1. 0MP aG、 温度 21 5°Cであった。 得られた反応液におけるクミルアルコールの脱水転化率は 99. 6%であった。 また、 α—メチルスチレンの選択率はほぼ 100%であった。 実施例 2  A cumene solution containing 25% by weight of cumyl alcohol was passed through the fixed bed flow reactor filled with activated alumina at 1.6 gZmin, and hydrogen was passed at 105 Ncc / min. At this time, the LHS V was 9 h-1, the pressure was 1.0 MPaG, and the temperature was 215 ° C. The dehydration conversion of cumyl alcohol in the obtained reaction solution was 99.6%. The selectivity for α-methylstyrene was almost 100%. Example 2
水素の流量が 50Nc cZmi nであること以外は実施例 1と同様の方法で 実施した。得られた反応液におけるクミルアルコールの脱水転化率は 98. 4% であった。 また、 α—メチルスチレンの選択率はほぼ 100%であった。 比較例 1  The procedure was performed in the same manner as in Example 1 except that the flow rate of hydrogen was 50Nc cZmin. The dehydration conversion of cumyl alcohol in the obtained reaction solution was 98.4%. The selectivity for α-methylstyrene was almost 100%. Comparative Example 1
水素を流通させなかった以外は実施例 1と同様の方法で実施した。 得られた 反応液におけるクミルアルコールの脱水転化率は 51. 8%であった。 また、 α—メチルスチレンの選択率はほぼ 100%であった。 産業上の利用可能性 The procedure was performed in the same manner as in Example 1 except that hydrogen was not passed. The dehydration conversion of cumyl alcohol in the obtained reaction solution was 51.8%. The selectivity for α-methylstyrene was almost 100%. Industrial applicability
以上説明したとおり、 本発明によれば、 低コストで効率的に高い ひ一メチル スチレン転化率を得ることができるという特徴を有する α—メチルスチレンの 製造方法を提供することができる。  As described above, according to the present invention, it is possible to provide a method for producing α-methylstyrene, which is characterized in that a high conversion rate of monomethylstyrene can be efficiently obtained at low cost.

Claims

請 求 の 範 囲 The scope of the claims
1 . 活性アルミナの存在下、 クミルアルコールを脱水する α—メチルスチレン の製造方法であって、 液相において反応を実施し、 反応系に不活性気体を供給 しつつ行なうことを特徴とする Q!—メチルスチレンの製造方法。 1. A method for producing α-methylstyrene in which cumyl alcohol is dehydrated in the presence of activated alumina, wherein the reaction is carried out in a liquid phase and the reaction is carried out while supplying an inert gas to the reaction system. ! —Method of producing methylstyrene.
2 . 不活性気体が窒素、 ヘリウム、 水素、 二酸化炭素、 一酸化炭素、 メタンか ら選ばれる少なくとも一種である請求の範囲第 1項に記載の製造方法。  2. The method according to claim 1, wherein the inert gas is at least one selected from nitrogen, helium, hydrogen, carbon dioxide, carbon monoxide, and methane.
3 . 製造方法が下記の工程を含むプロピレンォキサイドの製造方法の一部であ る請求の範囲第 1項又は 2項に記載の製造方法。  3. The production method according to claim 1 or 2, wherein the production method is a part of a method for producing propylene oxide including the following steps.
酸化工程:クメンを酸化することによりクメンハイドロパーォキサイドを得 る工程  Oxidation step: Step of oxidizing cumene to obtain cumene hydroperoxide
エポキシ化工程:クメンハイドロパーォキサイドを含むクメン溶液と過剰量 のプロピレンとを、液相中、エポキシ化触媒の存在下に反応させることにより、 プロピレンォキサイド及びクミルアルコールを得る工程  Epoxidation step: a step of reacting a cumene solution containing cumene hydroperoxide with an excess amount of propylene in a liquid phase in the presence of an epoxidation catalyst to obtain propylene oxide and cumyl alcohol.
脱水工程:脱水触媒の存在下、 エポキシ化工程で得たクミルアルコールを脱 水することにより ひーメチルスチレンを得る工程  Dehydration step: A step of obtaining permethylstyrene by dewatering cumyl alcohol obtained in the epoxidation step in the presence of a dehydration catalyst.
水添工程:水添触媒の存在下、 —メチルスチレンを水添してクメンとし、 酸化工程の原料として酸化工程へリサイクルする工程  Hydrogenation process: In the presence of a hydrogenation catalyst, hydrogenation of methylstyrene to cumene, which is recycled to the oxidation process as a raw material for the oxidation process
PCT/JP2003/016075 2002-12-24 2003-12-16 PROCESS FOR PRODUCING α-METHYLSTYRENE WO2004058668A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003289104A AU2003289104A1 (en) 2002-12-24 2003-12-16 PROCESS FOR PRODUCING Alpha-METHYLSTYRENE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002371733A JP2004203754A (en) 2002-12-24 2002-12-24 METHOD FOR PRODUCING alpha-METHYLSTYRENE
JP2002-371733 2002-12-24

Publications (1)

Publication Number Publication Date
WO2004058668A1 true WO2004058668A1 (en) 2004-07-15

Family

ID=32677205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016075 WO2004058668A1 (en) 2002-12-24 2003-12-16 PROCESS FOR PRODUCING α-METHYLSTYRENE

Country Status (4)

Country Link
JP (1) JP2004203754A (en)
AU (1) AU2003289104A1 (en)
TW (1) TW200422282A (en)
WO (1) WO2004058668A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1269420A (en) * 1968-08-05 1972-04-06 Halcon International Inc Production of aralkenes
GB1555270A (en) * 1976-12-28 1979-11-07 Engelhard Min & Chem Selective hydrogenation process
US4257877A (en) * 1976-12-28 1981-03-24 Engelhard Minerals & Chemicals Corporation Selective hydrogenation process
JPS56140933A (en) * 1980-04-07 1981-11-04 Sumitomo Chem Co Ltd Preparation of cymene
JP2001270878A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1269420A (en) * 1968-08-05 1972-04-06 Halcon International Inc Production of aralkenes
GB1555270A (en) * 1976-12-28 1979-11-07 Engelhard Min & Chem Selective hydrogenation process
US4257877A (en) * 1976-12-28 1981-03-24 Engelhard Minerals & Chemicals Corporation Selective hydrogenation process
JPS56140933A (en) * 1980-04-07 1981-11-04 Sumitomo Chem Co Ltd Preparation of cymene
JP2001270878A (en) * 2000-03-24 2001-10-02 Sumitomo Chem Co Ltd Method for producing propylene oxide

Also Published As

Publication number Publication date
JP2004203754A (en) 2004-07-22
TW200422282A (en) 2004-11-01
AU2003289104A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
WO2001070710A1 (en) Process for producing propylene oxide
WO2001070711A1 (en) Process for producing propylene oxide
WO2001070714A1 (en) Process for producing propylene oxide
US7319177B2 (en) Process for producing cumene
JP4228742B2 (en) Method for producing α-methylstyrene
JP2003081886A (en) Method for producing cumene
WO2005030744A1 (en) Process for producing propylene oxide
US7557226B2 (en) Process for producing cumene
US7485736B2 (en) Process for producing α-methylstyrene
JP4325335B2 (en) Cumene production method
WO2004058668A1 (en) PROCESS FOR PRODUCING α-METHYLSTYRENE
JP2001270875A (en) Method for producing propylene oxide
WO2005030682A1 (en) Process for producing cumene
JP2003081953A (en) Method for producing propylene oxide
JP4385700B2 (en) Propylene oxide production method
JP2003081955A (en) Method for producing propylene oxide
WO2005030742A1 (en) Method for producing propyleneoxide
WO2003057682A1 (en) Process for production of propylene oxide
JP4419489B2 (en) Cumene production method
JP2004292336A (en) Method for producing cumene
JP2005097178A (en) Method for producing propylene oxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase