WO2004057325A1 - Ultraschall-prüfgerät und verfahren zur auswertung von ultraschallsignalen - Google Patents

Ultraschall-prüfgerät und verfahren zur auswertung von ultraschallsignalen Download PDF

Info

Publication number
WO2004057325A1
WO2004057325A1 PCT/DE2003/003279 DE0303279W WO2004057325A1 WO 2004057325 A1 WO2004057325 A1 WO 2004057325A1 DE 0303279 W DE0303279 W DE 0303279W WO 2004057325 A1 WO2004057325 A1 WO 2004057325A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
test
measurement curve
test head
display
Prior art date
Application number
PCT/DE2003/003279
Other languages
English (en)
French (fr)
Inventor
Wolfgang Kleinert
Original Assignee
Agfa Ndt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10337657A external-priority patent/DE10337657A1/de
Application filed by Agfa Ndt Gmbh filed Critical Agfa Ndt Gmbh
Priority to DE50311817T priority Critical patent/DE50311817D1/de
Priority to AT03773483T priority patent/ATE439584T1/de
Priority to US10/539,853 priority patent/US7472598B2/en
Priority to EP03773483A priority patent/EP1576363B1/de
Publication of WO2004057325A1 publication Critical patent/WO2004057325A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2632Surfaces flat

Definitions

  • the invention relates to ultrasonic testing equipment for the non-destructive testing of a test specimen with
  • test head in particular an angle test head
  • a transmitter which is connected to the test head and which generates and emits transmission pulses to the test head
  • a receiver which is connected to the test head and receives echo signals
  • a monitor with a display which is connected to the receiver to show the received echo signals
  • test head emits ultrasonic pulses and penetrates the test specimen at a certain angle, which penetrate into the test specimen, where they are reflected at least once on a rear wall of the test specimen and thereby at least a first leg, which extends from the entry surface to the rear wall, and one Form the second leg, which then extends from the rear wall to the entry surface.
  • the invention also relates to a method for displaying echo signals which are obtained with the aid of an ultrasound test device described above for the non-destructive testing of a test specimen.
  • Suitable test devices are known for the non-destructive testing of a workpiece by ultrasound.
  • the angle probe emits high-frequency sound impulses (approx. 1 - 10 MHz), which are echoed into the workpiece to be tested and which are then reflected on the entrance surface on the one hand and run back to the angle probe and which penetrate into the workpiece where they touch the rear wall of the Workpiece are reflected at least once.
  • Internal inhomogeneities such as a material defect, cause sound reflections that are received by the angle probe and processed in the ultrasound device.
  • the method according to the invention is suitable for a large number of customary measurement methods; the invention is explained below using the pulse echo method as an example.
  • the angle probe preferably emits ultrasound pulses periodically and then receives echo signals from these emitted ultrasound pulses.
  • the echo signal of the entrance surface is a particularly strong signal that exceeds the other echo signals.
  • the other echo signals originate from the workpiece and in particular from the rear wall of the workpiece.
  • the test method is suitable for workpieces whose entry surface runs essentially parallel to the rear wall, so that several back and forth movements of the ultrasonic pulse occur in the workpiece.
  • the angle probe is placed next to the area to be tested and the sound signal is sounded, so to speak, laterally into the relevant area. This is the case, for example, with the ultrasonic inspection of welds.
  • the ultrasonic wave runs into the material until partial or complete reflection takes place at an interface. If the reflecting surface is perpendicular to the direction of propagation, the sound wave is reflected in its original direction and, after a certain period of time, reaches a piezoelectric oscillator arranged in the angle test head, which converts it back into an electrical pulse.
  • the too returning ultrasound is partially reflected again at the interface between the vibrator and the workpiece surface, this small amount of sound passes through the workpiece a second time. In this way, a so-called echo sequence is created in the pulse-echo method through multiple reflection at interfaces (test part rear wall or error).
  • the sound is reflected between the entrance surface and the rear wall of the test specimen and runs at a certain angle into the direction away from the angle test head.
  • the angle probe When checking weld seams, the angle probe is moved along the weld seam until a maximum false echo arises.
  • the received echo signals are displayed directly on the monitor.
  • the representation is generally made as a so-called A-picture, in which the voltage values of the received echo signals are displayed over the time axis. If there are multiple back and forth movements between the entrance surface and the rear wall, a sequence of equally spaced echo signals is obtained, the amplitude of which generally decreases with increasing time.
  • the individual back and forth passages i.e. the distance of the sound from the entrance surface to the rear wall and vice versa, are each referred to as legs. Starting from the angle test head, a first leg is thus first created, which runs obliquely from the entry surface to the rear wall. There the sound is reflected and a second leg is formed, which runs from the rear wall to the entrance surface, etc.
  • test specimen For a successful manual examination of the test specimen, it is necessary dig that the tester moves the test specimen with the angle test head and with constant accuracy. This is the only way to achieve a sufficiently precise result. This is also particularly important for later documentation of the examination. Especially when examining large test specimens, especially when examining long weld seams, it can happen that the inspector does not keep to the distance to be traveled due to lack of concentration.
  • the tester must therefore always keep an eye on the test specimen and, for example, does not receive any feedback from the monitor about the position of the angle test head in relation to the weld seam to be examined. This means that the examiner must always look at the monitor and the test specimen alternately. If, for example, he detects an error on the monitor during the measurement, i.e. in the A-scan, and responds too late, the hand with the angle probe has already moved away from the crucial point. Since the inspector had only looked at the engine, it was relatively difficult for him to find the relevant position.
  • the aim of the invention is to develop a method for evaluating ultrasound signals generated with the aid of an angle test head, in which the tester already receives additional information during the test in such a way that it is easier for him to test the test body.
  • the invention is intended to result in the tester receiving auxiliary information during the examination, which makes it easier for him to precisely guide the angle test head.
  • this is achieved both by an ultrasound test device and by a method in that the received electrical Echo signals are shown on the display in such a way that you can tell which leg they come from.
  • the invention is not only suitable for the manual checking of test specimens, it also supports the automated traversing of a test specimen with an angle test head. This is because a tester, who does not control the path of the angle probe with his hand, immediately recognizes from the display with a brief glance at the monitor whether the point to be tested, e.g. the weld seam, is in the correct leg of the sound path and thus the angle probe is at the correct distance from the weld.
  • error is not only to be understood literally, that is, not only in the sense of inconsistency, but rather should be understood in the sense of a significant signal.
  • the invention thus includes the finding of any relevant points in a test specimen.
  • the prerequisite for such a system is that the insonification angle and the Wall thickness of the test specimen are known. From this information, the sound path for one leg and thus the transition from one leg to the next or the point at which the sound is reflected on the entrance surface or on the rear wall can be easily calculated.
  • the different representation of the legs on the monitor or those areas that each correspond to one leg can be done by any suitable display method.
  • the area of the measurement curve that is assigned to a particular leg can be highlighted by a special hatching or a special shade of gray in the background. This means that the measurement curve itself remains unchanged.
  • the information as to which leg the respective area of the measurement curve is based on is generated by the background.
  • an additional symbol is also conceivable at those points on the measurement curve at which the sound is reflected on the entrance surface or on the rear wall. These points correspond to the transitions from one leg to the next.
  • Such symbols are, for example, alphanumeric characters or dashed lines that intersect the measurement curve.
  • the monitor has a color display.
  • the measurement curve can then be displayed in different colors depending on which leg the measurement curve is based on.
  • the use of strong colors, for example of primary colors, is appropriate.
  • the background of the measurement curve can also be displayed in accordance with different colors.
  • other color monitors, such as plasma displays have also proven their worth.
  • the angle test head has a button for recording the zero point position at the beginning of the test process. This means that the test begins at a defined point on the test specimen, this point being saved in the system. It is thus possible to trace the relevant positions of the angle test head afterwards on the basis of the stored data.
  • the angle test head has means that serve to indicate the respective position on the surface of the body to be tested in relation to a location that was present at the time of the measurement start.
  • This can be done, for example, with the aid of a digital camera that is firmly connected to the housing of the angle test head. It is oriented in such a way that it covers the surface of the body to be tested. It should provide an image of this surface as close as possible to the point at which a central beam of the active shell element passes through the surface.
  • an electronic image of the section of the surface that is located under the lens of the digital camera that is to say, lies in the object plane, at intervals.
  • the section can have, for example, the dimensions of a few millimeters, for example 2 2 or 4 x 4 mm.
  • An image of the respective section of the surface is preferably taken from the digital camera at predetermined fixed time intervals. For this purpose, reference is made to application DE 100 58 174 A1 of the same applicant.
  • the area of the test specimen to be examined is shown on the monitor or the display that is of interest during the examination.
  • This can be the weld seam to be examined, for example. If the weld seam geometry is known and stored in the ultrasound test device or in the computer, both spatial limit values and limit values with regard to the amplitude to be taken into account can be entered. If the zero point position was determined at the beginning of the measuring process, the distance of the angle probe from the weld seam can be determined based on the leg length or the wall di and the angle of incidence can be calculated at any time. It is therefore possible to display the area of the weld seam on the monitor at any time and regardless of the position of the angle probe. Then the different representation of the legs is particularly advantageous. This is because if the distance to the weld seam is correctly maintained, a possible error or a relevant signal must always occur in the same leg and the monitor and / or the measurement curve must accordingly always have the same display.
  • the relevant signal must occur in a distance range of two or three legs, for example, so that the representation changes accordingly.
  • the individual legs are not shown in a special shape, but rather an outward and an outward walk, that is to say two legs connected to one another, are represented in the same way. Areas of several legs can also be represented in the same way. It is also possible that when testing a test specimen with an ultrasound test device that is just penetrating the test specimen, the different back and forth movements between the entrance surface and the rear wall are shown differently. Finally, it can also make sense if the display of the measurement curve does not depend on the origin of the measurement data, but is only determined by previously defined time windows. For example, the measurement curve can be displayed in yellow after a certain period of time and then change to a different color after a certain time.
  • FIG. 1 a basic illustration of the sound curve of an ultrasound signal starting from an angle test head through a test specimen
  • Figure 2 an exemplary representation of an A-picture according to the invention.
  • FIG. 1 shows the basic structure of an ultrasonic measurement with an angle probe 10 as an ultrasonic test device in cross section.
  • the angle test head 10 which contains a transmitter and a receiver, is connected to a monitor 12, which in turn has a display 14, via a line 16.
  • monitor 12 which in turn has a display 14, via a line 16.
  • line 16 another type of connection, for example by radio, is also conceivable.
  • the angle test head 10 is arranged on a test body 18.
  • the test specimen 18 is here a section of a steel plate which is connected to a second steel plate via a weld seam 20.
  • the test specimen 18 has an entry surface 22 and a rear wall 24.
  • a sound path is indicated as a line between the entrance surface 22 and the rear wall 24.
  • transmission pulses are generated, i.e. the sound is first sounded obliquely into the test body 18 at a predetermined angle ⁇ , forms a first leg 28, is then reflected on the rear wall 24, forms a second leg 30, and returns to the entry surface 22, is reflected again and forms a third leg 32, etc.
  • the sound path 26 crosses the weld seam 20 in the region of its second leg 30. From a wall thickness 34 and the angle ⁇ , it is easily possible to determine the length of a leg 28 , 30, 32 or the point of the to calculate transitions from one leg 28, 30, 32 to the next.
  • the sound encounters an error 36, for example a blow hole, it is reflected and, depending on the orientation of the error, returns as an echo signal to the receiver. If the tester knows which leg 28, 30, 32 has hit the error 36, he can immediately deduce the approximate distance of the error 36 from the angle test head 10, at least he knows that the error occurs on the path of the corresponding leg 28, 30 , 32 is located.
  • an error 36 for example a blow hole
  • the angle test head 10 has a button for recording the zero point position at the beginning of the test process. This means that the test begins at a defined point on the test specimen, this point being saved in the system.
  • the angle test head 10 has a means 38 which is fixedly connected to the angle test head 10 and serves to indicate the respective position on the surface of the body to be tested in relation to a location that was present at the time of the measurement start. This can be done, for example, with the aid of a digital camera that is firmly connected to the housing of the angle test head. It is oriented so that it covers the surface of the test specimen.
  • A-picture 40 which is shown on the display 14 of the monitor 12. Plotted over a time axis 41 in seconds (as the x axis) is the voltage value U in volts of the received signals (voltage value axis 43) on the y axis.
  • the transmitter periodically emits transmission pulses which cause the angle test head 10 to emit short-term ultrasound pulses.
  • the individual ultrasonic pulses first run through a coupling device. A portion of each pulse is generally reflected on the entry surface 22 and arrives as an entry echo 42 in time before further signals in the receiver. A part each of the ultrasonic pulse generally penetrates the workpiece and, as already explained, is first reflected on the rear wall 24 and accordingly propagates between the entry surface 22 and the rear wall 24 in the test specimen. The measurement curve 44 shown arises.
  • part of the ultrasound pulse that has penetrated into the workpiece is also reflected at imperfections such as the defect 36, if there are any.
  • the ultrasound measuring device or a computer interacting with it calculates the positions at which one leg 28, 30, 32 merges into the next, that is to say the sound is reflected at the entry surface 22 or the rear wall 24.
  • this data is used to visually show the individual legs 28, 30, 32 on the display 14. As shown in FIG. 2, this can be done by lines 46 which intersect the measurement curve 44 at the corresponding points.
  • the area of the test specimen 18 to be examined is shown on the monitor 12 or the display 14 which is of interest during the examination.
  • This can be the weld seam 20 to be examined, for example.
  • Both spatial limit values and limit values with regard to the amplitudes to be taken into account tude can be entered and taken into account. This means that only signals are displayed whose origin is either the area of the weld seam 20 to be examined and / or whose signal strength exceeds the minimum limit value or or falls below the maximum limit value. This also makes the examiner's job easier.
  • the device according to the invention and in particular also the method carried out with it for testing workpieces are suitable for series measurement.
  • An example of a series measurement is the testing of welded joints on motor vehicle bodies. The test device is first adjusted on a workpiece or a few workpieces, then the series test is carried out.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Die Erfindung bezieht sich auf Ultraschall-Prüfgerät. Dieses weist auf: Einen Prüfkopf, insbesondere einen Winkelprüfkopf, einen Ultraschallsender, einen Empfänger für Echosignale und einen Monitor mit einem Display zur Darstellung der empfangenen Echosignale, wobei der Prüfkopf Ultraschallimpulse abgibt und unter einem bestimmten Winkel in den Prüfkörper einschallt, die in den Prüfkörper eindringen, wo sie an einer Rückwand des Prüfkörpers mindestens einmal reflektiert werden und dadurch mindestens ein erstes Bein, das von der Eintrittsfläche bis zur Rückwand reicht, und ein zweites Bein, das dann von der Rückwand bis zur Eintrittsfläche reicht, ausbilden. Erfindungsgemäß werden die empfangenen Echosignale derart dargestellt, dass erkennbar ist, aus welchem Bein sie stammen. Außerdem bezieht sich die Erfindung auf ein Verfahren zur Darstellung der Echosignale, die mit Hilfe eines oben beschriebenen Ultraschall-Prüfgeräts für die zerstörungsfreie Prüfung eines Prüfkörpers gewonnen werden.

Description

Bezeichnung: Ultraschall-Prüfgerät und Verfahren zur Auswertung von Ultraschallsignalen
Die Erfindung bezieht sich auf Ultraschall- Prüfgerät für die zerstörungsfreie Prüfung eines Prüfkörpers, mit
- einem Prüfkopf, insbesondere einem Winkelprüfkopf,
- einem Sender, der mit dem Prüfkopf verbunden ist und der Sendeimpulse erzeugt und an den Prüfkopf abgibt,
- einem Empfänger, der mit dem Prüfkopf verbunden ist und Echosignale empfängt und
- einem Monitor mit einem Display, der mit dem Empfänger verbunden ist zur Darstellung der empfangenen Echosignale,
wobei der Prüfkopf Ultraschallimpulse abgibt und unter einem bestimmten Winkel in den Prüfkörper einschallt, die in den Prüfkörper eindringen, wo sie an einer Rückwand des Prüfkörpers mindestens einmal reflektiert werden und dadurch mindestens ein erstes Bein, das von der Eintrittsfläche bis zur Rückwand reicht, und ein zweites Bein, das dann von der Rückwand bis zur Eintrittsfläche reicht, ausbilden.
Außerdem bezieht sich die Erfindung auf ein Verfahren zur Darstellung von Echosignalen, die mit Hilfe eines oben beschriebenen Ultraschall-Prüfgeräts für die zerstörungsfreie Prüfung eines Prüfkörpers gewonnen werden.
Für die zerstörungsfreie Prüfung eines Werkstücks durch Ultraschall sind geeignete Prüfgeräte bekannt. Ganz allgemein verwiesen wird auf das DE- Buch von J. und. H. Krautkrämer, Werkstoffprüfung mit Ultraschall, sechste Auflage. Der Winkelprüfkopf gibt hochfrequente Schallimpulse (ca. 1 - 10 MHz) ab, die in das zu prüfende Werkstück eingeschallt werden und die dann einerseits an der Eintrittsfläche reflektiert werden und zum Winkelprüfkopf zurücklaufen und die andererseits in das Werkstück eindringen, wo sie an einer Rückwand des Werkstücks mindestens einmal reflektiert werden. An inneren Inhomogenitäten, wie zum Beispiel an einem Materialfehler, treten Schallreflexionen auf, die vom Winkelprüfkopf wieder empfangen und im Ultraschallgerät verarbeitet werden.
Das erfindungsgemäße Verfahren ist für eine Vielzahl üblicher Messverfahren geeignet, beispielhaft wird die Erfindung im Folgenden anhand des Impuls-Echoverfahren erläutert. Der Winkelprüfkopf gibt vorzugsweise periodisch Ultraschallimpulse ab und empfängt danach Echosignale dieser abgegebenen Ultraschallimpulse. Im Allgemeinen ist das Echosignal der Eintrittsfläche ein besonders starkes Signal, das die weiteren Echosignale übersteigt. Die weiteren Echosignale stammen aus dem Werkstück und insbesondere von der Rückwand des Werkstücks. Insoweit ist das Prüfungsverfahren für Werkstücke geeignet, deren Eintrittsfläche im Wesentlichen parallel zur Rückwand verläuft, so dass es zur Ausbildung mehrerer Hin- und Hergänge des Ultraschallimpulses im Werkstück kommt.
Der Winkelprüfkopf wird neben den zu prüfenden Bereich angeordnet und das Schallsignal wird sozusagen seitlich in den relevanten Bereich eingeschallt. Dies ist beispielsweise bei der Ultraschallprüfung von Schweißnähten der Fall. Die Ultraschallwelle läuft in das Material hinein, bis an einer Grenzfläche eine teilweise oder völlige Reflexion stattfindet. Liegt die reflektierende Fläche senkrecht zur Ausbreitungsrichtung, so wird die Schallwelle in ihre ursprüngliche Richtung reflektiert und erreicht nach einer gewissen Laufzeit wieder einen im Winkelprüfkopf angeordneten piezoelektrischen Schwinger, der sie in einen elektrischen Impuls zurückverwandelt. Der zu- rückkehrende Ultraschall wird zum Teil an der Grenzfläche Schwinger- Werkstücksoberfläche erneut reflektiert, dieser kleine Schallanteil durchläuft das Werkstück ein zweites Mal. Auf diese Weise entsteht beim Impuls- Echoverfahren durch mehrfache Reflexion an Grenzflächen (Prüfteil- Rückwand oder Fehler) eine sogenannte Echofolge.
Bei einem ungestörten Prüfkörper wird der Schall also jeweils zwischen Eintrittsfläche und Rückwand des Prüfkörpers reflektiert und läuft unter einem bestimmten Winkel immer weiter in die vom Winkelprüfkopf wegweisende Richtung in den Prüfkörper hinein.
Bei der Überprüfung von Schweißnähten wird der Winkelprüfkopf entlang der Schweißnaht bewegt, bis ein maximales Fehlerecho entsteht. Die empfangenen Echosignale werden dabei unmittelbar auf dem Monitor dargestellt. Die Darstellung erfolgt allgemein als sogenanntes A-Bild, bei dem über der Zeitachse die Spannungswerte der empfangenen Echosignale dargestellt werden. Bei mehrfachen Hin- und Hergängen zwischen Eintrittsfläche und Rückwand erhält man eine Folge gleichabständiger Echosignale, deren Amplitude mit wachsender Zeit im Allgemeinen abnimmt. Dabei werden die einzelnen Hin- und Hergänge, also die Strecke des Schall von der Eintrittsfläche zur Rückwand und umgekehrt, jeweils als Bein bezeichnet. Ausgehend vom Winkelprüfkopf wird also zunächst ein erstes Bein erzeugt, das von der Eintrittsfläche schräg bis hin zur Rückwand verläuft. Dort wird der Schall reflektiert und es bildet sich ein zweites Bein, welches von der Rückwand bis zur Eintrittsfläche verläuft, usw.
Wegen der schräg verlaufenden Schallwege ist die Ortung eines Reflektors (Fehlers) im Prüfstück nur mit geometrischen Überlegungen möglich und wird auf Basis der bekannten und gemessenen Daten errechnet.
Für eine erfolgreiche manuelle Untersuchung des Prüfkörpers ist es notwen- dig, dass der Prüfer Prüfkörper mit dem Winkelprüfkopf und mit gleichbleibender Genauigkeit abfährt. Nur so kann ein ausreichend genaues Ergebnis erzielt werden. Auch ist dies insbesondere für eine spätere Dokumentation der Untersuchung notwendig. Gerade bei der Untersuchung großer Prüfkörper, insbesondere bei der Untersuchung von langen Schweißnähten kann es passieren, dass der Prüfer auf Grund von Konzentrationsmangel die abzufahrende Wegstrecke nur ungenau einhält.
Bei den Messverfahren nach dem Stand der Technik muss der Prüfer deshalb stets den Prüfkörper im Auge behalten und bekommt beispielsweise vom Monitor keinerlei Rückmeldung über die Position des Winkelprüfkopfes im Verhältnis zu der zu untersuchenden Schweißnaht. Dies führt dazu, dass der Prüfer stets abwechselnd auf den Monitor und auf den Prüfkörper blicken muss. Erkennt er beispielsweise während der Messung auf dem Monitor, also im A-Bild einen Fehler und reagiert er zu spät, hat sich die Hand mit dem Winkelprüfkopf schon von der entscheidenden Stelle entfernt. Da der Prüfer nur auf den Motor geblickt hatte, fällt es ihm dann relativ schwer relevante Position wieder zu finden.
Hier setzt nun die vorliegende Erfindung an. Sie hat es sich zur Aufgabe gemacht, die Arbeit des Prüfers zu erleichtern. Ziel der Erfindung ist es, ein Verfahren zur Auswertung von mit Hilfe eines Winkelprüfkopfes erzeugten Ultraschallsignalen zu entwickeln, bei dem der Prüfer schon während der Überprüfung zusätzliche Informationen derart erhält, dass ihm die Überprüfung des Prüfkörpers erleichtert wird. Insbesondere soll die Erfindung dazu führen, dass der Prüfer während der Untersuchung Hilfsinformationen bekommt, die ihm die notwendige exakte Führung des Winkelprüfkopfes erleichtern.
Erfindungsgemäß wird dies sowohl durch ein Ultraschall-Prüfgerät, als auch durch ein Verfahren dadurch erreicht, dass die empfangenen elektrischen Echosignale auf dem Display derart dargestellt werden, dass erkennbar ist, aus welchem Bein sie stammen.
Dies bedeutet, dass der Prüfer auf dem Monitor auf den ersten Blick erkennen kann, ob sich ein ermitteltes relevantes Signal, beispielsweise eine Fehlstelle, im Bereich des ersten, des zweiten oder eines anderen Beins befindet. Daraus ergibt sich unmittelbar, wie weit das relevante Signal vom Winkelprüfkopf entfernt ist. Dies erleichtert dem Prüfer die Untersuchung des Prüfkörpers deutlich, da er durch Blick auf den Monitor auch eine schnell zu erfassende Informationen bezüglich der Position des Winkelprüfkopfes erhält. Sollte er während des Untersuchungsvorgangs ein relevantes Signal auf dem Monitor erblicken, erkennt er sofort, wie weit die Ursache des Signals beispielsweise die Fehlstelle von dem Winkelprüfkopf entfernt ist. Dies erleichtert dem Prüfer die Arbeit ungemein.
Die Erfindung ist nicht nur für das manuelle Überprüfen von Prüfkörpern geeignet, sie unterstützt auch das automatisierte Abfahren eines Prüfkörpers mit einem Winkelprüfkopf. Dies deshalb, weil ein Prüfer, der den Weg des Winkelprüfkopfes ja nicht mit seiner Hand kontrolliert, mit einem kurzen Blick auf den Monitor anhand der Darstellung sofort erkennt, ob sich die zu prüfende Stelle, beispielsweise die Schweißnaht, im richtigen Bein des Schallwegs befindet und somit der Winkelprüfkopf den korrekten Abstand zur Schweißnaht aufweist.
Im Sinne der vorliegenden Erfindung ist der Begriff Fehler nicht nur wörtlich, also nicht nur im Sinne von Ungänze zu verstehen, sondern soll vielmehr im Sinne von signifikantem Signal verstanden werden. Die Erfindung beinhaltet also das Auffinden jeglicher relevanter Stellen in einem Prüfkörper.
Voraussetzung für ein solches System ist, dass der Einschallwinkel sowie die Wanddicke des Prüfkörpers bekannt sind. Aus diesen Informationen lässt sich der Schallweg für ein Bein und damit der Übergang von einem Bein zum nächsten bzw. der Punkt, an dem die Reflektion des Schall an der Eintrittsfläche oder an der Rückwand erfolgt leicht berechnen.
Die unterschiedliche Darstellung der Beine auf dem Monitor bzw. derjenigen Bereiche, die jeweils einem Bein entsprechen, kann durch jede geeignete Darstellungsmethode erfolgen.
Beispielsweise kann der Bereich der Messkurve, der jeweils einem bestimmten Bein zugeordnet ist, durch eine besondere Schraffur oder einen besonderen Grauton des Hintergrundes hervorgehoben sein. Dies bedeutet, dass die Messkurve selbst unverändert bleibt. Die Informationen, welches Bein dem jeweiligen Bereich der Messkurve zu Grunde liegt, wird durch den Hintergrund generiert.
Alternativ ist auch ein zusätzliches Symbol an denjenigen Punkten der Messkurve denkbar, an denen die Reflektion des Schalls an der Eintrittsfläche oder der Rückwand erfolgt. Diese Punkte entsprechen den Übergängen von einem Bein zum nächsten. Als solche Symbole sind beispielsweise alphanumerische Zeichen oder auch Strichlinien, die die Messkurve schneiden, denkbar.
In einer besonders vorteilhaften Ausführungsvariante weist der Monitor ein Farbdisplay auf. Die Messkurve kann dann, abhängig davon, welches Bein der Messkurve zu Grunde liegt in jeweils verschiedenen Farben dargestellt werden. Hier bietet sich die Verwendung kräftiger Farben, beispielsweise von Grundfarben an. Auch kann der Hintergrund der Messkurve entsprechend unterschiedlichen Farben dargestellt werden. Neben LCD-Displays haben sich auch andere Farbmonitore, beispielsweise Plasma-Displays bewährt. In einer weiteren vorteilhaften Ausführungsvariante weist der Winkelprüfkopf einen Taster zur Aufnahme der Nullpunktposition zu Anfang des Prüfvorgangs auf. Dies bedeutet, dass die Prüfung an einer definierten Stelle auf den Prüfkörper beginnt, wobei diese Stelle im System gespeichert wird. Somit ist es möglich, relevante Positionen des Winkelprüfkopfes im Nachhinein auf Basis der gespeicherten Daten nachzuvollziehen. Der Winkelprüfkopf weist hierzu Mittel auf, die dazu dienen, die jeweilige Position auf der Oberfläche des zu prüfenden Körpers in Bezug auf einen Ort anzugeben der zum Zeitpunkt des Messstartes vorlag. Dies kann beispielsweise mit Hilfe einer Digitalkamera erfolgen, die mit dem Gehäuse des Winkelprüfkopfs fest verbunden ist. Sie ist so ausgerichtet, dass sie die Oberfläche des zu prüfenden Körpers erfasst. Dabei soll sie möglichst nahe an der Stelle ein Bild dieser Oberfläche liefern, an der einen Zentralstrahl des aktiven Schallelements die Oberfläche durchtritt. Mittels dieser Digitalkamera wird in Zeitabständen ein elektronisches Bild von dem Teilstück Oberfläche, das sich jeweils unter der Linse der Digitalkamera befindet, dass also in der Gegenstandsebene liegt. Das Teilstück kann beispielsweise die Abmessungen von wenigen Millimetern, beispielsweise von 2 2 oder 4 x 4 mm haben. Vorzugsweise wird in vorgegebenen festen Zeitabständen von der Digitalkamera ein Bild des jeweiligen Teilstücks Oberfläche. Hierzu wird auf die Anmeldung DE 100 58 174 A 1 des gleichen Anmelders verwiesenen.
Auch kann es in vorteilhaft sein, wenn auf dem Monitor bzw. dem Display lediglich der Bereich des zu untersuchenden Prüfkörpers dargestellt wird, der bei der Untersuchung von Interesse ist. Dies kann beispielsweise die zu untersuchende Schweißnaht sein. Ist die Schweißnahtgeometrie bekannt und im Ultraschall-Prüfgerät bzw. im Rechner gespeichert, können sowohl räumliche Grenzwerte als auch Grenzwerte bezüglich der zu berücksichtigenden Amplitude eingegeben werden. Wenn die Nullpunktposition zu Anfang des Messvorgangs ermittelt wurde, kann die Entfernung des Winkelprüfkopfes von der Schweißnaht auf Basis der Beinlänge bzw. der Wanddi- cke und des Einschallwinkels jederzeit berechnet werden. Somit ist es möglich, jederzeit und unabhängig von der Position des Winkelprüfkopfes lediglich den Bereich der Schweißnaht auf dem Monitor darzustellen. Gerade dann ist die unterschiedliche Darstellung der Beine besonders vorteilhaft. Dies deshalb, weil bei korrekt eingehaltenen Abstand zur Schweißnaht ein möglicher Fehler bzw. ein relevantes Signal stets im gleichen Bein auftreten muss und der Monitor und/ oder die Messkurve entsprechend stets die gleiche Darstellung aufweisen muss.
Je nach notwendiger Bewegung des Winkelprüfkopfs kann es natürlich auch möglich sein, dass das relevante Signal in einem Streckenbereich von beispielsweise zwei oder drei Beinen auftreten muss, sich die Darstellung also entsprechend ändert.
Der Prüfer bemerkt mit Blick auf den Monitor und ohne zusätzlichen Blick auf den Prüfkörper durch eine Änderung der Darstellung sofort, ob er sich mit dem Winkelprüfkopf zu weit von der Schweißnaht entfernt hat.
Beispielsweise kann es auch vorteilhaft sein, wenn nicht die einzelnen Beine in einer besonderen Form dargestellt sind, sondern vielmehr ein Hin- und ein Hergang, also zwei miteinander verbundene Beine gleichartig dargestellt werden. Auch können Bereiche von mehreren Beinen entsprechend gleich dargestellt werden. Möglich ist auch, dass bei einer Prüfung eines Prüfkörpers mit einem Ultraschall-Prüfgerät, welches gerade in den Prüfkörper einschallt, die verschiedenen Hin- und Hergänge zwischen der Eintrittsfläche und der Rückwand unterschiedlich dargestellt werden. Schließlich kann es auch sinnvoll sein, wenn die Darstellung der Messkurve nicht von der Herkunft der Messdaten abhängig ist, sondern lediglich durch vorher festgelegte Zeitfenster bestimmt wird. Beispielsweise kann nach einem bestimmten Zeitraum die Darstellung der Messkurve in Gelb erfolgen, um dann wiederum nach einer bestimmten Zeit in einen anderen Farbton überzugehen. Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Ansprüchen sowie der nun folgenden Beschreibung von nicht einschränkend zu verstehenden Ausführungsbeispielen der Erfindung, die unter Bezugnahme auf die Zeichnung im Folgenden näher erläutert werden. In dieser Zeichnung zeigen:
Figur 1 : eine Prinzipdarstellung des Schallverlaufs eines Ultraschallsignals ausgehend von einem Winkelprüfkopf durch einen Prüfkörper,
Figur 2: eine beispielhafte erfindungsgemäße Darstellung eines A-Bildes.
Figur 1 zeigt den prinzipiellen Aufbau einer Ultraschallmessung mit einem Winkelprüfkopf 10 als Ultraschall-Prüfgerät im Querschnitt. Der Winkel- prüfkopf 10, der einen Sender und einen Empfänger beinhaltet, ist mit einem Monitor 12, der wiederum ein Display 14 aufweist, über eine Leitung 16 verbunden. An Stelle der Leitung 16 ist auch eine andere Verbindungsart, beispielsweise per Funk, denkbar.
Der Winkelprüfkopf 10 ist auf einem Prüfkörper 18 angeordnet. Der Prüfkörper 18 ist hier ein Teilstück einer Stahlplatte, die mit einer zweiten Stahlplatte über eine Schweißnaht 20 verbunden ist. Der Prüfkörper 18 weist eine Eintrittsfläche 22 und eine Rückwand 24 auf. Zwischen der Eintrittsfläche 22 und der Rückwand 24 ist ein Schallweg als Linie angedeutet. Ausgehend vom Winkelprüfkopf 20 werden Sendeimpulse, also wird der Schall zunächst unter einem vorbestimmten Winkel α schräg in den Prüfkörper 18 eingeschallt, bildet ein erstes Bein 28 aus, wird dann an der Rückwand 24 reflektiert, bildet ein zweites Bein 30 aus, gelangt wieder zur Eintrittsfläche 22, wird erneut reflektiert und bildet ein drittes Bein 32 aus usw. In der beispielhaften Darstellung kreuzt der Schallweg 26 im Bereich seines zweiten Beins 30 die Schweißnaht 20. Aus einer Wanddicke 34 und dem Winkel α ist es leicht möglich, die Länge eines Beines 28, 30, 32 bzw. den Punkt des Ü- bergangs von einem Bein 28, 30, 32 zum nächsten zu berechnen.
Trifft der Schall auf einen Fehler 36, beispielsweise einen Lunker, wird er reflektiert und gelangt je nach Ausrichtung des Fehlers als Echosignal zurück zum Empfänger. Weiß nun der Prüfer, welches Bein 28, 30, 32 den Fehler 36 getroffen hat, kann er unmittelbar auf den ungefähren Abstand des Fehlers 36 vom Winkelprüfkopf 10 schließen, zumindest weiß er, dass sich der Fehler auf der Wegstrecke des entsprechenden Beins 28, 30, 32 befindet.
In einer weiteren vorteilhaften Ausführungsvariante weist der Winkelprüfkopf 10 einen Taster zur Aufnahme der Nullpunktposition zu Anfang des Prüfvorgangs auf. Dies bedeutet, dass die Prüfung an einer definierten Stelle auf den Prüfkörper beginnt, wobei diese Stelle im System gespeichert wird. Der Winkelprüfkopf 10 weist hierzu ein Mittel 38 auf, das fest mit dem Win- kelprüfkopf 10 verbunden ist und dazu dient, die jeweilige Position auf der Oberfläche des zu prüfenden Körpers in Bezug auf einen Ort anzugeben der zum Zeitpunkt des Messstartes vorlag. Dies kann beispielsweise mit Hilfe einer Digitalkamera erfolgen, die mit dem Gehäuse des Winkelprüfkopfs fest verbunden ist. Sie ist so ausgerichtet, dass sie die Oberfläche des Prüfkörpers erfasst.
Fig. 2 zeigt in einer Prinzipdarstellung ein sogenanntes A-Bild 40, welches auf dem Display 14 des Monitors 12 dargestellt wird. Aufgetragen über einer Zeitachse 41 in Sekunden (als x- Achse) ist auf der y- Achse der Spannungswert U in Volt der empfangenen Signale (Spannungswertachse 43).
Der Sender gibt periodisch Sendeimpulse ab, die den Winkelprüfkopf 10 veranlassen, kurzzeitige Ultraschallimpulse abgeben. Die einzelnen Ultraschallimpulse laufen zunächst durch ein Ankopplungsmittel. Ein Teil jedes Impulses wird im Allgemeinen an der Eintrittsfläche 22 reflektiert und kommt als Eintrittsecho 42 zeitlich vor weiteren Signalen im Empfänger an. Ein Teil je- des Ultraschallimpulses dringt im Allgemeinen in das Werkstück ein und wird, wie bereits erläutert, zunächst an der Rückwand 24 reflektiert und pflanzt sich entsprechend zwischen der Eintrittsfläche 22 und der Rückwand 24 im Prüfkörper fort. Es entsteht die gezeigte Messkurve 44. Darüber hinaus wird ein Teil des in das Werkstück eingedrungenen Ultraschallimpulses auch an Fehlstellen wie dem Fehler 36 reflektiert, sofern solche vorliegen.
Das Ultraschallmessgerät bzw. ein mit diesem zusammenwirkender Rechner berechnet die Positionen, an denen das ein Bein 28, 30, 32 in das nächste übergeht, also der Schall an der Eintrittsfläche 22 oder der Rückwand 24 reflektiert wird. Erfindungsgemäß werden diese Daten genutzt, um die einzelnen Beine 28, 30, 32 auf dem Display 14 visuell darzustellen. Wie in Figur 2 dargestellt, kann dies durch Linien 46 erfolgen, die die Messkurve 44 an den entsprechenden Stellen schneiden. Alternativ ist auch möglich den Hintergrund der Messkurve 44 den Beinen 28, 30, 32 entsprechend zu gestalten, beispielsweise zu schraffieren oder in verschiedene Grautöne einzufärben.
Als besonders vorteilhaft hat sich der Verwendung eines Farbdisplays erwiesen, da somit die Kennzeichnung der den einzelnen Beinen 28, 30, 32 entsprechenden Abschnitte der Messkurve 44 sowohl vereinfacht als auch optisch deutlicher wird. Entweder können auch dann die Hintergründe der Messkurve 44 unterschiedlich gefärbt sein, es kann aber auch die Messkurve 44 selbst in Abhängigkeit der Herkunft der Daten aus den jeweiligen Beinen 28, 30, 32 unterschiedliche Farben aufweisen.
Auch kann es in vorteilhaft sein, wenn auf dem Monitor 12 bzw. dem Display 14 lediglich der Bereich des zu untersuchenden Prüfkörpers 18 dargestellt wird, der bei der Untersuchung von Interesse ist. Dies kann beispielsweise die zu untersuchende Schweißnaht 20 sein. Es können sowohl räumliche Grenzwerte als auch Grenzwerte bezüglich der zu berücksichtigenden Ampli- tude eingegeben und berücksichtigt werden. Dies bedeutet, dass nur Signale angezeigt werden, deren Ursprung entweder der Bereich der zu untersuchenden Schweißnaht 20 ist und/ oder deren Signalstärke den minimalen Grenzwert übersteigt und oder den maximalen Grenzwert unterschreitet. Auch dies erleichtert dem Prüfer die Arbeit.
Aus dem Vorangegangenen ist ersichtlich, dass sich das erfindungsgemäße Gerät und insbesondere auch das damit durchgeführte Verfahren zur Prüfung von Werkstücken für eine Serienmessung eignet. Beispiel für eine Serienmessung ist die Prüfung von Schweißverbindungen von Kraftfahrzeugkarosserien. Das Prüfgerät wird zunächst an einem Werkstück oder wenigen Werkstücken einjustiert, anschließend wird die Serienprüfung durchgeführt.
Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, sondern umfasst auch alle weiteren gleichwirkenden Ausführungsformen. Auch ist Anspruch 1 nur als erster Formulierungsversuch zu verstehen.

Claims

Bezeichnung: Ultraschall-Prüfgerät für die Prüfung eines WerkstücksPatentansprüche
1. Ultraschall-Prüfgerät für die zerstörungsfreie Prüfung eines Prüfkörpers (18), mit
- einem Prüfkopf, insbesondere einem Winkelprüfkopf (10),
- einem Sender, der mit dem Prüfkopf verbunden ist und der Sendeimpulse erzeugt und an den Prüfkopf abgibt,
- einem Empfänger, der mit dem Prüfkopf verbunden ist und Echosignale empfängt und
- einem Monitor (12) mit einem Display (14), der mit dem Empfänger verbunden ist zur Darstellung der empfangenen Echosignale, wobei der Prüfkopf Ultraschallimpulse abgibt und unter einem bestimmten Winkel (α) in den Prüfkörper (18) einschallt, die in den Prüfkörper (18) eindringen, wo sie an einer Rückwand (24) des Prüfkörpers (18) mindestens einmal reflektiert werden und dadurch mindestens ein erstes Bein (28), das von der Eintrittsfläche (22) bis zur Rückwand (24) reicht, und ein zweites Bein (30), das dann von der Rückwand (24) bis zur Eintrittsfläche (22) reicht, ausbilden, dadurch gekennzeichnet, dass die empfangenen Echosignale auf dem Display (14) derart dargestellt werden, dass erkennbar ist, aus welchem Bein (28, 30) sie stammen.
2. Ultraschall-Prüfgerät nach Anspruch 1, dadurch gekennzeichnet, dass die Echosignale auf dem Display (14) in Form einer Messkurve (44) in einem Diagramm dargestellt werden, bei dem eine Zeitachse (41) über einer Spannungswertachse (43) aufgetragen ist.
3. Ultraschall-Prüfgerät nach Anspruch 2, dadurch gekennzeichnet, dass denjenigen Punkten der Messkurve (44), die jeweils dem Übergang von einem Bein (28, 30) zum nächsten Bein (28, 30) entsprechen, jeweils ein alphanumerisches Zeichen zugeordnet ist.
4. Ultraschall- Prüfgerät nach Anspruch 2, dadurch gekennzeichnet, dass an denjenigen Punkten der Messkurve (44), die jeweils dem Übergang von einem Bein (28, 30) zum nächsten Bein (28, 30) entsprechen, jeweils eine Linie (46) die Messkurve (44) schneidet.
5. Ultraschall- Prüfgerät nach Anspruch 2, dadurch gekennzeichnet, dass diejenigen Bereiche der Messkurve (44), die jeweils von einem bestimmten Bein (28, 30) stammen, mit einem für das jeweilige Bein (28, 30) charakteristischen Hintergrund hinterlegt sind.
6. Ultraschall-Prüfgerät nach Anspruch 2, dadurch gekennzeichnet, dass die Messkurve (44) in denjenigen Bereiche, die jeweils von einem bestimmten Bein (28, 30) stammen, in einer für das jeweilige Bein (28, 30) charakteristischen Linienart dargestellt sind.
7. Ultraschall-Prüfgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Display (14) als Farbdisplay ausgeführt ist.
8. Ultraschall- Prüfgerät nach Anspruch 7, dadurch gekennzeichnet, dass diejenigen Bereiche der Messkurve (44), die jeweils von einem bestimmten Bein (28, 30) stammen, mit einem für das jeweilige Bein (28, 30) charakteristischen farbigen Hintergrund hinterlegt sind.
9. Ultraschall-Prüfgerät nach Anspruch 7, dadurch gekennzeichnet, dass die Messkurve (44) in denjenigen Bereiche, die jeweils von einem be- stimmten Bein (28, 30) stammen, in einer für das jeweilige Bein (28, 30) charakteristischen Farbe dargestellt sind.
10. Ultraschall-Prüfgerät nach einem der Ansprüche 1 bis 9, gekennzeichnet durch ein Mittel (38), das fest mit dem Prüfkopf verbunden ist und dazu dient, die jeweilige Position des Prüfkopfs auf der Oberfläche des Prüfkörpers (18) zu ermitteln.
11. Ultraschall-Prüfgerät nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass durch Berücksichtigung von Grenzwerten bezüglich der Amplitude und/ oder räumlicher Grenzwerte auf das Display (14) lediglich der Bereich des zu untersuchenden Prüfkörpers (18) dargestellt ist, der bei der Untersuchung von Interesse ist.
12. Verfahren zur Darstellung von Echosignalen, die mit Hilfe eines Ultraschall-Prüfgeräts für die zerstörungsfreie Prüfung eines Prüfkörpers (18) gewonnen werden, wobei das Ultraschall-Prüfgerät aufweist:
- einen Prüfkopf, insbesondere einen Winkelprüfkopf (10),
- einen Sender, der mit dem Prüfkopf verbunden ist und der Sendeimpulse erzeugt und an den Prüfkopf abgibt,
- einen Empfänger, der mit dem Prüfkopf verbunden ist und Echosignale empfängt, und
- einen Monitor (12) mit einem Display (14), der mit dem Empfänger verbunden ist zur Darstellung der empfangenen Echosignale, it den Verfahrensschritten:
- Abgabe von Ultraschallimpulsen durch den Prüfkopf,
- Einschallen der Ultraschallimpulse unter einem bestimmten Winkel (α) in den Prüfkörper (18) derart, dass die Ultraschallimpulse in den Prüfkörper (18) eindringen, wo sie an einer Rückwand (24) des Prüfkörpers (18) mindestens einmal reflektiert werden und dadurch mindestens ein erstes Bein (28), das von der Eintrittsfläche (22) bis zur Rückwand (24) reicht, und ein zweites Bein (30), das dann von der Rückwand (24) bis zur Eintrittsfläche (22) reicht, ausbilden, - Darstellen der empfangenen Echosignale auf dem Display (14), dadurch gekennzeichnet, dass die empfangenen Echosignale auf dem Display (14) derart dargestellt werden, dass erkennbar ist, aus welchem Bein (28, 30) sie stammen.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Echosignale auf dem Display (14) in Form einer Messkurve (44) in einem Diagramm dargestellt werden, bei dem eine Zeitachse (41) über einer Spannungswertachse (43) aufgetragen ist.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass denjenigen Punkten der Messkurve (44), die jeweils dem Übergang von einem Bein (28, 30) zum nächsten Bein (28, 30) entsprechen, jeweils ein alphanumerisches Zeichen zugeordnet wird.
15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass an denjenigen Punkten der Messkurve (44), die jeweils dem Übergang von einem Bein (28, 30) zum nächsten Bein (28, 30) entsprechen, jeweils eine Linie dargestellt wird, die (46) die Messkurve (44) schneidet.
16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass diejenigen Bereiche der Messkurve (44), die jeweils von einem bestimmten Bein (28, 30) stammen, mit einem für das jeweilige Bein (28, 30) charakteristischen Hintergrund hinterlegt werden.
17. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Messkurve (44) in denjenigen Bereiche, die jeweils von einem bestimmten Bein (28, 30) stammen, in einer für das jeweilige Bein (28, 30) charakteristischen Linienart dargestellt werden.
18. Verfahren nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass das Display (14) als Farbdisplay ausgeführt ist.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass diejenigen Bereiche der Messkurve (44), die jeweils von einem bestimmten Bein (28, 30) stammen, mit einem für das jeweilige Bein (28, 30) charakteristischen farbigen Hintergrund hinterlegt werden.
20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die Messkurve (44) in denjenigen Bereiche, die jeweils von einem bestimmten Bein (28, 30) stammen, in einer für das jeweilige Bein (28, 30) charakteristischen Farbe dargestellt werden.
21. Verfahren nach einem der Ansprüche 12 bis 20, gekennzeichnet durch ein Mittel (38), das fest mit dem Prüfkopf verbunden ist und dazu dient, die jeweilige Position des Prüfkopfs auf der Oberfläche des Prüfkörpers (18) zu ermitteln.
22. Verfahren nach einem der Ansprüche 12 bis 21, dadurch gekennzeichnet, dass durch Berücksichtigung von Grenzwerten bezüglich der Amplitude und/ oder räumlicher Grenzwerte auf das Display (14) lediglich der Bereich des zu untersuchenden Prüfkörpers (18) dargestellt ist, der bei der Untersuchung von Interesse ist.
PCT/DE2003/003279 2002-12-19 2003-10-04 Ultraschall-prüfgerät und verfahren zur auswertung von ultraschallsignalen WO2004057325A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50311817T DE50311817D1 (de) 2002-12-19 2003-10-04 Ultraschallprüfgerät und verfahren zur auswertung von ultraschallsignalen
AT03773483T ATE439584T1 (de) 2002-12-19 2003-10-04 Ultraschallprüfgerät und verfahren zur auswertung von ultraschallsignalen
US10/539,853 US7472598B2 (en) 2002-12-19 2003-10-04 Ultrasonic inspection apparatus and method for evaluating ultrasonic signals
EP03773483A EP1576363B1 (de) 2002-12-19 2003-10-04 Ultraschallprüfgerät und verfahren zur auswertung von ultraschallsignalen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10260063 2002-12-19
DE10260063.5 2002-12-19
DE10337657.7 2003-08-16
DE10337657A DE10337657A1 (de) 2002-12-19 2003-08-16 Ultraschall-Pfüfgerät und Verfahren zur Auswertung von Ultraschallsignalen

Publications (1)

Publication Number Publication Date
WO2004057325A1 true WO2004057325A1 (de) 2004-07-08

Family

ID=32683465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003279 WO2004057325A1 (de) 2002-12-19 2003-10-04 Ultraschall-prüfgerät und verfahren zur auswertung von ultraschallsignalen

Country Status (3)

Country Link
US (1) US7472598B2 (de)
EP (1) EP1576363B1 (de)
WO (1) WO2004057325A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144271A1 (de) * 2006-06-14 2007-12-21 Ge Inspection Technologies Gmbh Ultraschall-prüfgerät mit array-prüfköpfen
EP2031877A3 (de) * 2007-07-02 2009-03-18 Honeywell International Inc. Vorrichtung und Verfahren zum Erfassen von Bildinformationen bei Vermögensuntersuchungen in einer verarbeitenden oder anderen Umgebung
US8396280B2 (en) 2006-11-29 2013-03-12 Honeywell International Inc. Apparatus and method for inspecting assets in a processing or other environment
US8941740B2 (en) 2008-09-05 2015-01-27 Honeywell International Inc. Personnel field device for process control and other systems and related method
US9383225B2 (en) 2008-06-27 2016-07-05 Honeywell International Inc. Apparatus and method for reading gauges and other visual indicators in a process control system or other data collection system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10259658A1 (de) * 2002-12-18 2004-07-08 Agfa Ndt Gmbh Verfahren zur Auswertung von Ultraschallsignalen
DE102014109793A1 (de) * 2014-03-10 2015-09-10 Ge Sensing & Inspection Technologies Gmbh Ultraschall-Impuls-Echo-Fehlerprüfung mit hoher Prüfgeschwindigkeit insbesondere bei dünnwandigen Rohren
US10302751B2 (en) 2017-03-09 2019-05-28 Russell H. Dewey A-mode ultrasonic classifier
JP6674976B2 (ja) * 2018-06-26 2020-04-01 三菱重工業株式会社 検査対象物の検査装置及び検査方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176658A (en) * 1972-06-08 1979-12-04 The Commonwealth Of Australia Ultrasonic echogram display
US6327921B1 (en) * 2000-03-03 2001-12-11 Iowa State University Non-destructive inspections and the display of inspection results

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610457C2 (de) * 1976-03-10 1978-08-10 Karl Deutsch Pruef- Und Messgeraetebau, 5600 Wuppertal Verfahren zur automatischen Nachführung von Anzeigenerwartungsbereichen bei der Ultraschallprüfung
US4364274A (en) * 1980-10-20 1982-12-21 Automation Industries, Inc. Ultrasonic inspection with back echo monitoring
US4947351A (en) * 1988-05-06 1990-08-07 The United States Of America As Represented By The Secretary Of The Air Force Ultrasonic scan system for nondestructive inspection
US4866986A (en) * 1988-09-15 1989-09-19 Sonoscan, Inc. Method and system for dual phase scanning acoustic microscopy
US5103427A (en) * 1990-05-22 1992-04-07 The University Of Akron Method and apparatus generating high resolution data and echo identification
US5511425A (en) * 1993-12-09 1996-04-30 Krautkramer-Branson, Inc. Flaw detector incorporating DGS
US6301512B1 (en) * 1993-12-30 2001-10-09 The Boeing Company Ultrasonic data analysis and display system
DE19741586C1 (de) * 1997-09-20 1999-07-29 Theysohn Friedrich Fa Ultraschallmeßgerät mit Sender und Empfänger für die Ortung der geometrischen Lage der Grenze zwischen einem ersten und einem zweiten Stoff von einem Bezugsort
JPH11108902A (ja) * 1997-09-30 1999-04-23 Mitsubishi Heavy Ind Ltd 二探触子による管の探傷方法
DE10058174A1 (de) 2000-11-22 2002-05-23 Krautkraemer Gmbh Ultraschallprüfkopf, insbesondere für die Prüfung per Hand
DE10247257A1 (de) * 2002-10-10 2004-04-22 Agfa Ndt Gmbh Ultraschall-Prüfgerät für die Prüfung eines Werkstücks
DE10259218A1 (de) * 2002-12-17 2004-07-01 Agfa Ndt Gmbh Verfahren und Vorrichtung zur Größenbestimmung eines Risses in einem Werkstück mittels der Ultraschall-Impuls-Methode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176658A (en) * 1972-06-08 1979-12-04 The Commonwealth Of Australia Ultrasonic echogram display
US6327921B1 (en) * 2000-03-03 2001-12-11 Iowa State University Non-destructive inspections and the display of inspection results

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GE INSPECTION TECHNOLGIES: "USM 35 Ultrasonic Flaw Detector", XP002280037, Retrieved from the Internet <URL:http://www.geinspectiontechnologies.com/products/Ultrasonics/FlawDetectors/usm35.html> [retrieved on 20040510] *
V. DEUTSCH, M. PLATTE, M.VOGT: "3.4 Fehlernachweis und Gerätejustierung", ULTRASCHALLPRÜFUNG, 1997, BERLIN, HEIDELBERG, NEW YORK, pages 80 - 133, XP002280036 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144271A1 (de) * 2006-06-14 2007-12-21 Ge Inspection Technologies Gmbh Ultraschall-prüfgerät mit array-prüfköpfen
US8396280B2 (en) 2006-11-29 2013-03-12 Honeywell International Inc. Apparatus and method for inspecting assets in a processing or other environment
EP2031877A3 (de) * 2007-07-02 2009-03-18 Honeywell International Inc. Vorrichtung und Verfahren zum Erfassen von Bildinformationen bei Vermögensuntersuchungen in einer verarbeitenden oder anderen Umgebung
US8059882B2 (en) 2007-07-02 2011-11-15 Honeywell International Inc. Apparatus and method for capturing information during asset inspections in a processing or other environment
US9383225B2 (en) 2008-06-27 2016-07-05 Honeywell International Inc. Apparatus and method for reading gauges and other visual indicators in a process control system or other data collection system
US8941740B2 (en) 2008-09-05 2015-01-27 Honeywell International Inc. Personnel field device for process control and other systems and related method

Also Published As

Publication number Publication date
US7472598B2 (en) 2009-01-06
US20060016263A1 (en) 2006-01-26
EP1576363B1 (de) 2009-08-12
EP1576363A1 (de) 2005-09-21

Similar Documents

Publication Publication Date Title
DE102008002450B4 (de) Verfahren für die zerstörungsfreie Prüfung eines Prüflings mittels Ultraschall sowie Vorrichtung hierzu
DE3781296T2 (de) Messung von oxidkesselstein an den innenflaechen von kesselroehren.
DE102008002445B4 (de) Verfahren für die zerstörungsfreie Prüfung eines Prüflings mittels Ultraschall sowie Vorrichtung hierzu
EP2229585B1 (de) Verfahren für die zerstörungsfreie Prüfung eines Prüflings mittels Ultraschall sowie Vorrichtung hierzu
EP2032978B1 (de) Ultraschall-prüfgerät mit array-prüfköpfen
DE69519167T2 (de) Automatisiertes verfahren zur kontrolle beim stumpfnachweissen und zur fehlerdiagnose
AT391210B (de) Verfahren zur bestimmung der art von punktfoermigen und laengserstreckten einzelfehlern in werkstuecken mittels ultraschall
WO2004055508A1 (de) Verfahren und vorrichtung zur grössenbestimmung eines risses in einem werkstück mittels der ultraschall-impuls-methode___________
DE3416709C2 (de)
EP1576363B1 (de) Ultraschallprüfgerät und verfahren zur auswertung von ultraschallsignalen
DE69214539T2 (de) Verfahren und Vorrichtung zur Überprüfung des Oberflächenzustands eines Bohrlochs
EP1576364B1 (de) Verfahren zur auswertung von ultraschallsignalen eines fehlers in einem werkstück
EP1554540B1 (de) Ultraschall-prüfgerät für die prüfung eines werkstücks
DE102008027384A1 (de) Verbesserte zerstörungsfreie Ultraschalluntersuchung mit Kopplungskontrolle
EP0191346A2 (de) Einrichtung zum Bestimmen von Oberflächenrissen
DE19849102C1 (de) Verfahren und Vorrichtung zur zerstörungsfreien Prüfung von Gegenständen auf oberflächenoffene und/oder oberflächennahe Fehlstellen
DE10337657A1 (de) Ultraschall-Pfüfgerät und Verfahren zur Auswertung von Ultraschallsignalen
DE102019116142A1 (de) Vorrichtung zur tomografischen Ultraschallprüfung einer Innenstruktur einer Metallbramme und Verfahren zur in-situ Qualitätsprüfung von Metallbrammen
EP3584572B1 (de) Prüfkopfzange zur ultraschall-riss-detektion, kit zur ultraschall-riss-detektion und verwendung der prüfkopfzange zur ultraschall-riss-detektion
DE102009040748A1 (de) Verfahren und Vorrichtung zur zerstörungsfreien Prüfung von Schweißnähten in Werkstücken mittels Ultraschall
DE2710403A1 (de) Verfahren und vorrichtung zur ultraschallpruefung der wandstaerke von rohren u.dgl.
DE4118757A1 (de) Verfahren und winkelpruefkopf zum zerstoerungsfreien pruefen von plattierten werkstuecken mittels ultraschallwellen im impuls-echo-verfahren
DE10036136A1 (de) Prüfanordnung zur Kontrolle eines Prüfgerätes oder eines Prüfkopfes, Referenz-Einheit der Prüfanordnung und Verfahren zur Kontrolle eines Prüfgerätes oder eines Prüfkopfes
DE102007015745A1 (de) Verfahren zur zerstörungsfreien Prüfung eines Prüflings mittels Ultraschall sowie Vorrichtung hierzu
DE4410579A1 (de) Verfahren und Vorrichtung zur Ultraschallprüfung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003773483

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006016263

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10539853

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003773483

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10539853

Country of ref document: US