WO2004056715A1 - Verfahren und vorrichtung zum nachbehandeln einer optischen linse - Google Patents

Verfahren und vorrichtung zum nachbehandeln einer optischen linse Download PDF

Info

Publication number
WO2004056715A1
WO2004056715A1 PCT/EP2003/014629 EP0314629W WO2004056715A1 WO 2004056715 A1 WO2004056715 A1 WO 2004056715A1 EP 0314629 W EP0314629 W EP 0314629W WO 2004056715 A1 WO2004056715 A1 WO 2004056715A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
glass
optical lens
circumferential line
convex
Prior art date
Application number
PCT/EP2003/014629
Other languages
English (en)
French (fr)
Inventor
Hans-Joachim Quenzer
Peter Merz
Uwe Bott
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority to EP03785897A priority Critical patent/EP1572594B1/de
Priority to JP2004561381A priority patent/JP2006510563A/ja
Priority to US10/540,211 priority patent/US8015843B2/en
Priority to DE50305385T priority patent/DE50305385D1/de
Publication of WO2004056715A1 publication Critical patent/WO2004056715A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/44Flat, parallel-faced disc or plate products

Definitions

  • the invention relates to a method and a device for post-treatment of the surface contour of at least one optical lens made of glass or glass-like material, in particular microlens, with a convex lens surface which is delimited by a circumferential line which is adjoined by a flat surface section surrounding the circumferential line ,
  • WO 01/38240 A1 discloses a method for producing micromechanical but in particular micro-optical components in the form of microlenses made of glass-like material, each of which has an individual element size that extends into the sub-micrometer range.
  • a negative mold preferably pre-structured from semiconductor material, with a plurality of depressions is used, through which a layer of glass material is applied and preferably connected to the negative mold by anodic bonding.
  • the composite of the negative mold and the layer of glass material is heated above the softening temperature of the glass material, the glass material begins to flow locally into the depressions.
  • the focal length of the individual can be determined by the sinking depth over which the glass material penetrates locally into the individual depressions by means of a so-called flow process forming microlenses can be determined, which can be set precisely by temperature, pressure and annealing time during the tempering step.
  • Line 1 corresponds to the lens cross-section that is obtained by the glass flow process described above
  • the line cross-section 1 with a sphere drawn as a line 3 it is clear that the edge region of the line 1 deviates from the sphere 3, particularly in the edge region of the microlens, to smaller radii of curvature, namely, as one says ellipti cal division.
  • This elliptical overlap of the microlens in the edge area is the result of a process-inherent property that is characteristic of glass flow processes and therefore occurs unavoidably. Similar elliptical divisions can also be observed with microlenses which have been produced from thermoplastic lens materials by means of the so-called contactless hot stamping process. Particularly in cases in which microlenses produced in this way are used for optical images, in which the entire lens surface is used for imaging, the elliptical overlaps lead to disadvantageous imaging errors which must be avoided.
  • the object is to treat optical lenses, in particular microlenses, whose lens cross-sectional shape has elliptical overlaps, in particular in the edge region, due to the manufacturing process, in such a way that those with the elliptical ones Overdeliveries associated with sustainable optical imaging properties can be completely avoided.
  • the measures to be taken to avoid the elliptical overlap should not require any technically complex and expensive process steps and, moreover, can also be applied retrospectively to microlenses which have already been produced.
  • claim 11 is a device according to the invention with which the above elliptical overlaps in the edge region of microlens arrangements are to be eliminated.
  • Features which advantageously further develop the inventive concept are furthermore the subject matter of the subclaims and the description with reference to the exemplary embodiments.
  • the lenses having an elliptically divided lens cross-sectional shape are subjected to an aftertreatment step designed according to the invention , in which at least the elliptical overlap in the edge region of each individual microlens is eliminated in a controlled manner.
  • the method according to the invention for the aftertreatment of the surface contour of at least one optical lens made of glass or glass-like material, in particular microlens, with a convex lens surface which is delimited by a circumferential line which is adjoined by a flat surface section surrounding the circumferential line, has at least the following two process steps on:
  • a means which is at least laterally delimiting the convex lens surface is placed on the flat surface section surrounding the lens and is true to the circumference of the line.
  • the template-like means which is preferably made of a material whose thermal Expansion properties are identical or very similar to the thermal expansion properties of the lens material to be treated, is formed in a simplest embodiment as a mere perforated template, the hole-shaped recess of which is exactly adapted to the shape and size of the circumferential line. In this way, the convex lens surface is laterally or laterally delimited by the means, but does not otherwise come into contact with the means.
  • the optical lens is subsequently heated to a temperature of at least the transformation temperature of the glass or glass-like material, as a result of which the lens material softens and is displaced locally as a result of the surface tension prevailing along the lens surface, so that there is a flow of material within the lens body. It is important to create a pressure balance between the top and bottom of the lens.
  • the surface tensions acting along the convex lens surface tend to reduce the lens surface, lens material being displaced from the area of the convex-side lens elevation into the remaining area of the lens body or flowing back.
  • This annealing process which is also referred to as the reflow process, reduces or completely avoids the elliptical overlaps described above.
  • certain process parameters that determine the annealing process such as pressure, temperature and annealing time, in particular the edge regions of the microlens to be treated can adopt spherical, parabolic or even hyperbolic edge contour geometries, as can be seen in detail from the further explanations.
  • the tempering process is terminated and, after the optical lens has cooled appropriately below the transformation temperature, it is appropriately separated from the template-like means.
  • FIG. 1a - d schematic process steps for performing the thermal reflow process
  • Fig. 2 diagram schematic process steps for performing the thermal reflow process
  • FIG. 1a shows a stylized cross-sectional view through a microlens array which provides 7 microlenses 1 arranged next to one another in a row and which has preferably been produced by means of a glass flow process.
  • the individual microlenses 1 rise above the plane of the individual microlenses 1 connected to each other glass lens substrate 2, which is preferably made drilling silicate glass, for example. Pyrex ® glass is.
  • Each of the individual microlenses 1 is delimited by a circumferential line U, each of which is adjoined by a planar piece 3, which spatially separates two immediately adjacent microlenses 1.
  • the edge regions of the individual microlenses 1 are elliptically divided due to their manufacturing process, ie the surface contour of each individual microlens deviates in its edge region from an ideal sphere to smaller lens radii.
  • Such a contour quality, in particular in the edge region of each individual lens can be seen in detail with reference to the diagram in FIG. 2, which according to contour line 1 has an elliptical overlap in the lens edge region compared to a spherical lens contour (see line 3 in this regard).
  • the reason for such an elliptical overlap is due to the inflow behavior of the flowable lens material into the template-like depressions of a structured mask, which occurs during lens production as part of a glass flow process.
  • a means designed as a counter tool 4 is placed on the microlens array according to the illustration in FIG. 1b, which is complementary in shape to the microlens array and the individual optical microlenses 1 along them Encloses circumferential lines U.
  • the counter tool 4 is designed in the form of a perforated screen designed as a template, with hole recesses, the hole contour of which is adapted to the shape and size of the circumferential lines of the individual microlenses.
  • the counter tool 4 shown in FIG. 1b has cutouts 5 machined in a complementary manner to the convex lens shape of the microlenses 1, in whose spatial regions 6 the convex lens surfaces of the microlenses 1 each extend.
  • the otherwise web-shaped intermediate sections 6 of the counter-tool 4 are contour-adapted to the surface sections 3 located between the microlenses 1 and cover them in a contour-conforming manner when they are brought into contact with the glass substrate 2.
  • the counter tool 4 In order to produce the closest possible contact between the counter tool 4 and the lens substrate 2, the counter tool 4 is pressed onto the surface regions 3 of the lens substrate 2 or is firmly attached to it by means of anodic bonding.
  • openings 7 are provided within the counter tool 4 in order to create a pressure compensation between the inside and the outside of the counter tool 4. It is also possible, as is to be explained further below, that pressure conditions which can be specifically set via the openings 7 can act directly on the convex lens surfaces of the individual microlenses.
  • the composite of lens substrate 2 and counter tool 4 is subjected to a temperature treatment far above the transition temperature or transformation temperature of the glass, as a result of which the prevailing surface tension causes a change in the profile shape of each individual microlens in such a way that the elliptical division in the edge region of each individual microlens literally leveled or converted into a counter-curved profile shape.
  • the counter tool 4 prevents lateral leakage of the individual microlenses, so that the lateral geometry dimensions of each individual microlens are retained during the temperature treatment.
  • the horizontal arrangement of the microlens array during the heat treatment and the surface-reducing effect of the surface tension determining the lens surface form a material displacement from each individual lens body in the direction of the surface substrate located underneath.
  • This material flow also referred to as the reflow process, fundamentally leads to an overall change in the surface contour of each individual microlens, but in particular contributes to flattening the profile in the edge region of each individual microlens.
  • the reflow process can produce desired flattened edges, which can be seen in detail from the diagram shown in FIG. 2.
  • spherical edge contours according to line 3 parabolic or even hyperbolic edge contours according to lines 2 and 4 can be generated in a targeted manner.
  • the reflow process described above takes place under normal pressure conditions, so that the material flow inducing force is due exclusively to the surface tension acting in each individual microlens.
  • An increase in pressure, which acts uniformly on each individual lens surface causes a force component that supports the reflow process, which leads to an increased flattening of the lens profile.
  • the pressure acting on the lens surface is reduced, a force component which counteracts the reflow process is generated, by means of which, for example, the convex lens surface is stabilized during the tempering process.
  • temperature, annealing time and the pressure acting on the lens surfaces are decisive process parameters that can be set individually depending on the desired tempering success.
  • the counter tool 4 comes into contact with the microlens array exclusively along the circumferential lines and via the surface regions 3 arranged between the microlenses.
  • the edge areas of the counter tool which come into contact with the circumferential lines of each individual microlens, must not come into contact with the edge of each individual microlens, since in this case additional edge angle effects could occur which could have a lasting effect on the lens surface contour in the edge area.
  • the reason for the occurrence of such an intermediate layer is due to a local change in the composition of the glass, which is brought into contact with the silicon surface by means of anodic bonding.
  • sodium ions migrate locally from the glass, which seem to determine the viscosity of the glass.
  • the counter tool 4 is removed from the surface of the microlens array.
  • the counter tool which is preferably made of silicon, can be removed from the microlens array, for example, using known etching techniques. Any unevenness that may occur on the back of the lens substrate, which has arisen as a result of the reflow process during the temperature treatment, can be compensated for using suitable mechanical grinding or polishing techniques.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Glass (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Eyeglasses (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Beschrieben wird ein Verfahren sowie eine Vorrichtung zum Nachbehandeln der Oberflächenkontur wenigstens einer aus Glas oder glasartigem Material bestehenden optischen Linse, insbesondere Mikrolinse (1), mit einer konvex ausgebildeten Linsenoberfläche, die von einer Umfangslinie (u) begrenzt wird, an die sich ein ebener die Umfangslinie umgebender Flächenabschnitt (3) anschliesst. Die Erfindung zeichnet sich dadurch aus, dass längs der Umfangslinie (u) der optischen Linse auf den Flächenabschnitt (3) ein an die Umfangslinie linientreu angepasstes, die konvex ausgebildete Linsenoberfläche zumindest seitlich begrenzendes Mittel (4), (6) aufgesetzt wird, dass die optische Linse auf eine Temperatur von wenigstens der Transformationstemperatur des Glases oder glasartigen Materials erhitzt wird, wobei ein Druckausgleich zwischen der konvex ausgebildeten Linsenoberfläche und der Linsenunterseite vorherrscht, und dass nach einer bestimmten Zeitdauer, während der die optische Linse der Temperaturbehandlung ausgesetzt wird, und nachfolgender Abkühlung unter die Transformationstemperatur das Mittel von der optischen Linse entfernt wird.

Description

VERFAHREN UND VORRICHTUNG ZUM NACHBEHANDELN EINER OPTISCHEN LINSE
Technisches Gebiet
Die Erfindung bezieht sich ein Verfahren sowie eine Vorrichtung zum Nachbehandeln der Oberflächenkontur wenigstens einer aus Glas oder glasartigem Material bestehenden optischen Linse, insbesondere Mikrolinse, mit einer konvex ausgebildeten Linsenoberfläche, die von einer Umfangslinie begrenzt wird, an die sich ein ebener die Umfangslinie umgebender Flächenabschnitt anschließt.
Stand der Technik
Aus der WO 01/38240 A1 geht ein Verfahren zur Herstellung von mikromechanischen aber insbesondere mikrooptischen Bauelementen in Form von Mikrolinsen aus glasartigen Material hervor, die jeweils eine Einzelelementgröße aufweisen, die bis in den Sub-Mikrometer-Bereich hineinreicht. Zur Herstellung einer derartigen arrayförmig angeordneten Mikrolinsenanordnung dient eine vorzugsweise aus Halbleitermaterial vorstrukturierte Negativform mit einer Vielzahl von Vertiefungen, über die eine Schicht aus Glasmaterial aufgebracht und bevorzugt im Wege anodischen Bondens mit der Negativform verbunden wird. Im Rahmen eines nachfolgenden Temperverfahrens, bei dem der Verbund aus der Negativform und der Schicht aus Glasmaterial über die Erweichungstemperatur des Glasmaterials erwärmt wird, beginnt das Glasmaterial lokal in die Vertiefungen zu fließen. Über die Einsinktiefe, über die das Glasmaterial lokal in die einzelnen Vertiefungen im Wege eines sogenannten Flow-Prozesses eindringt, kann die Brennweite der einzelnen sich ausbildenden Mikrolinsen bestimmt werden, die durch Temperatur, Druck und Temperzeit während des Temperschrittes exakt eingestellt werden kann.
Eigentümlicherweise zeigen die mittels eines derartigen „Glasflowprozesses" hergestellten Mikrolinsen eine am Randbereich jeder einzelnen Linse eine elliptische Übersteilung, wie sie unter Bezugnahme auf Figur 2 im einzelnen hervorgeht. In Figur 2 ist in einem zweidimensionalen Koordinatensystem eine Schar von Linienzüge 1 - 4 dargestellt, die jeweils den hälftigen Querschnitt einer Mikrolinse repräsentieren. Alle vier Linienzüge weisen bei X = 0 den gleichen Mittenkrümmungsradius auf, weichen jedoch im Randbereich der jeweiligen Linsenkontur voneinander ab. Der Linienzug 1 entspricht dabei jenem Linsenquerschnitt, der durch den vorstehend geschilderten Glasflowprozess gewonnen wird. Vergleicht man bspw. den Linienquerschnitt 1 mit einer als Linienzug 3 eingezeichneten Sphäre, so wird deutlich, dass der Randbereich des Linienzuges 1 von der Sphäre 3 insbesondere im Randbereich der Mikrolinse deutlich zu kleineren Krümmungsradien abweicht, nämlich eine, wie man sagt elliptische Übersteilung, aufweist.
Diese im Randbereich elliptische Übersteilung der Mikrolinse ist das Resultat einer verfahrensimmanenten Eigenschaft, die charakteristisch für Glasflowprozesse ist und aus diesem Grunde unvermeidbar auftritt. Ähnliche elliptische Übersteilungen sind überdies auch bei Mikrolinsen zu beobachten, die im Wege des sogenannten kontaktlosen Heißprägeverfahrens aus thermoplastischen Linsenmaterialien hergestellt worden sind. Insbesondere in Fällen, in denen derartig hergestellte Mikrolinsen für optische Abbildungen eingesetzt werden, bei denen die gesamte Linsenoberfläche zur Abbildung genutzt wird, führen die elliptischen Übersteilungen zu nachteilhaften Abbildungsfehlern, die es zu vermeiden gilt.
Darstellung der Erfindung
Es besteht die Aufgabe optische Linsen, insbesondere Mikrolinsen, deren Linsenquerschnittsform insbesondere im Randbereich herstellungsbedingt elliptische Übersteilungen aufweisen, derart zu behandein, dass die mit den elliptischen Übersteilungen verbundenen nachhaltigen optischen Abbildungseigenschaften vollständig vermieden werden können. Die zur Vermeidung der elliptischen Übersteilungen zu treffenden Massnahmen sollen keine technisch aufwendigen und teuren Verfahrensschritte erfordern und überdies auch an bereits hergestellten Mikrolinsen nachträglich anwendbar sein.
Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Gegenstand des Anspruches 11 ist eine erfindungsgemäße Vorrichtung mit der die vorstehenden elliptischen Übersteilungen im Randbereich von Mikrolinsenanordnungen zu beseitigen sind. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind überdies Gegenstand der Unteransprüche sowie der Beschreibung unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen.
Ausgehend von den gemäß dem Stand der Technik hergestellten optischen Linsen, vorzugsweise Mikrolinsenarrays, die im Wege eines Glasflowprozesses gewonnen werden, bspw. mit dem in der WO 01/38240 A1 beschriebenen Verfahren, werden die eine elliptisch übersteilte Linsenquerschnittsform aufweisende Linsen einem erfindungsgemäß ausgebildeten Nachbehandlungsschritt unterworfen, bei dem zumindest die elliptische Übersteilung im Randbereich jeder einzelnen Mikrolinse kontrolliert beseitigt wird.
Das erfindungsgemäße Verfahren zur Nachbehandlung der Oberflächenkontur wenigstens einer aus Glas oder glasartigem Material bestehenden optischen Linse, insbesondere Mikrolinse, mit einer konvex ausgebildeten Linsenoberfläche, die von einer Umfangslinie begrenzt wird, an die sich ein ebener die Umfangslinie umgebender Flächenabschnitt anschließt, weist zumindest folgende zwei Verfahrensschritte auf:
Zunächst wird längs der Umfangslinie der zu behandelnden optischen Linse auf den die Linse umgebenden ebenen Flächenabschnitt ein an die Umfangslinie linientreu angepasstes, die konvex ausgebildete Linsenoberfläche zumindest seitlich begrenzendes Mittel aufgesetzt. Das schablonenartig ausgebildete Mittel, das vorzugsweise aus einem Material gefertigt ist, dessen thermische Ausdehnungseigenschaften identisch oder sehr ähnlich den thermischen Ausdehnungseigenschaften des zu behandelnden Linsenmaterials ist, ist in einer einfachsten Ausführungsvariante als bloße Lochschablone ausgebildet, deren lochförmige Ausnehmung exakt an die Form und Größe der Umfangslinie angepasst ist. Auf diese Weise wird die konvex ausgebildete Linsenoberfläche seitlich bzw. lateral von dem Mittel begrenzt, tritt jedoch ansonsten mit dem Mittel nicht in Berührung. Nachfolgend wird die optische Linse auf eine Temperatur von wenigstens der Transformationstemperatur des Glases oder glasartigen Materials erhitzt, wodurch das Linsenmaterial erweicht und in Folge der längs der Linsenoberfläche herrschenden Oberflächenspannung lokal verdrängt wird, sodass es zu einem Materialfluss innerhalb des Linsenkörpers kommt. Hierbei gilt es einen Druckausgleich zwischen der Linsenober- und Linsenunterseite zu schaffen.
So vermögen die im Zustand der Linsenmaterialerweichung längs der konvex ausgebildeten Linsenoberfläche wirkenden Oberflächenspannungen die Linsenoberfläche tendentiell zu verkleinern, wobei Linsenmaterial aus dem Bereich der konvexseitigen Linsenüberhöhung in den übrigen Bereich des Linsenkörpers verdrängt wird bzw. zurückfließt. Durch diesen auch als Reflow-Prozess genannten Tempervorgang werden die vorstehend beschriebenen randseitigen elliptischen Übersteilungen vermindert bzw. vollständig vermieden. Durch entsprechende Vorgabe bestimmter den Temperprozess bestimmenden Prozessparameter wie Druck, Temperatur und Temperzeit, können insbesondere die Randbereiche der zu behandelnden Mikrolinse sphärische, parabolische oder gar hyperbolische Randkonturgeometrien annehmen, wie es im einzelnen aus den weiteren Ausführungen zu entnehmen ist.
Nach Erreichen der gewünschten Randgeometrie wird der Temperprozess beendet und nach entsprechender Abkühlung der optischen Linse unter die Transformationstemperatur von dem schablonenartig aufgesetzten Mittel entsprechend getrennt. Kurze Beschreibung der Erfindung
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:
Fig. 1a - d schematisierte Prozessschritte zur Durchführung des thermischen Reflowprozesses sowie Fig. 2 Diagramm zur Darstellung unterschiedlicher
Linsenquerschnittsformen.
Wege zur Ausführung der Erfindung, gewerbliche Verwendbarkeit
In Figur 1a ist eine stilisierte Querschnittsdarstellung durch ein Mikrolinsenarray gezeigt, das 7 nebeneinander in Reihe angeordnete Mikrolinsen 1 vorsieht und vorzugsweise im Wege eines Glas-Flow-Prozesses hergestellt worden ist. Die einzelnen Mikrolinsen 1 erheben sich über die Ebene des die einzelnen Mikrolinsen 1 miteinander verbindenden Glaslinsensubstrats 2, das vorzugsweise aus Bohr-Silicat- Glas, bspw. Pyrex®-Glas besteht. Jede der einzelnen Mikrolinsen 1 ist von einer Umfangslinie U begrenzt, an die sich jeweils ein eben ausgebildetes Flächenstück 3 anschließt, das zwei unmittelbar benachbarte Mikrolinsen 1 räumlich voneinander beabstandet. Wie bereits vorstehend erwähnt, sind die Randbereiche der einzelnen Mikrolinsen 1 aufgrund ihres Herstellungsprozesses elliptisch übersteilt, d.h. die Oberflächenkontur jeder einzelnen Mikrolinse weicht jeweils in ihrem Randbereich von einer idealen Sphäre hin zu kleineren Linsenradien ab. Eine derartige Konturbeschaffenheit insbesondere im Randbereich jeder einzelnen Linse kann im Einzelnen unter Bezugnahme auf die Diagrammdarstellung in Figur 2 entnommen werden, die gemäß Konturlinie 1 eine gegenüber einer sphärischen Linsenkontur (siehe hierzu Linienzug 3) im Linsenrandbereich eine elliptische Übersteilung aufweist. Die Ursache für eine derartige elliptische Übersteilung ist im Einströmverhalten des fließfähigen Linsenmaterials in die schablonenhaft vorgegebenen Vertiefungen einer strukturierten Maske begründet, das sich bei der Linsenherstellung im Rahmen eines Glas-Flow-Prozesses einstellt. Um nun die im Randbereich auftretende elliptische Übersteilung zu vermindern bzw. vollständig zu beseitigen, wird gemäß Bilddarstellung in Figur 1b ein als Gegenwerkzeug 4 ausgebildetes Mittel auf das Mikrolinsenarray aufgesetzt, das in der Form komplementär zum Mikrolinsenarray ausgebildete ist und die einzelnen optischen Mikrolinsen 1 längs ihrer Umfangslinien U umschließt. Das Gegenwerkzeug 4 ist im einfachsten Fall in Form einer schablonenhaft ausgebildeten Lochblende ausgeführt, mit Lochausnehmungen, deren Lochkontur an die Form und Größe der Umfangslinien der einzelnen Mikrolinsen angepasst sind.
Das in Figur 1b dargestellte Gegenwerkzeug 4 weist stilisiert komplementär zu der konvexen Linsenform der Mikrolinsen 1 eingearbeitete Ausnehmungen 5 auf, in deren Raumbereiche 6 sich jeweils die konvex ausgebildeten Linsenoberflächen der Mikrolinsen 1 erstrecken. Die ansonsten stegförmig ausgebildeten Zwischenabschnitte 6 des Gegenwerkzeuges 4 sind konturgetreu an die zwischen den Mikrolinsen 1 befindlichen Flächenabschnitte 3 angepasst und decken diese bei Inkontaktbringen mit dem Glassubstrat 2 konturgetreu ab.
Um einen möglichst innigen Kontakt zwischen dem Gegenwerkzeug 4 und dem Linsensubstrat 2 herzustellen, wird das Gegenwerkzeug 4 auf die Flächenbereiche 3 des Linsensubstrates 2 verpresst oder im Wege eines anodischen Bondens mit diesem fest verfügt. Zur Vermeidung eines sich zwischen dem Glassubstrat 4 und dem Linsensubstrat 2 innerhalb der Raumbereiche 5 während des gegenseitigen Inkontaktbringens ausbildenden Überdrucks, sind Öffnungen 7 innerhalb des Gegenwerkzeuges 4 vorgesehen, um einen Druckausgleich zwischen der Innenseite und der Außenseite des Gegenwerkzeuges 4 zu schaffen. Ebenso ist es möglich, wie im weiteren noch auszuführen ist, dass über die Öffnungen 7 gezielt einstellbare Druckbedingungen unmittelbar auf die konvex ausgebildeten Linsenoberflächen der einzelnen Mikrolinsen einwirken können.
Für den Fall, dass die im weiteren beschriebene Temperaturbehandlung unter Vakuumbedingungen durchgeführt wird, ist der Einsatz eines Gegenwerkzeuges denkbar, dessen einzelne Vertiefungen keine Öffnungen aufweisen, zumal unter Vakkuumbedingungen die vorstehend aufgezeigte Druckproblematik nicht auftritt.
In einem weiteren Verfahrensschritt wird der Verbund aus Linsensubstrat 2 und Gegenwerkzeug 4 einer Temperaturbehandlung weit oberhalb der Übergangstemperatur bzw. Transformationstemperatur des Glases ausgesetzt, wodurch die herrschende Oberflächenspannung eine Veränderung der Profilform jeder einzelnen Mikrolinse dahingehend bewirkt, dass die elliptische Übersteilung im Randbereich einer jeden einzelnen Mikrolinse regelrecht eingeebnet bzw. in eine gegenförmig gekrümmte Profilform überführt wird. Gemäß Bilddarstellung in Figur 1c verhindert dabei das Gegenwerkzeug 4 ein seitliches Auslaufen der einzelnen Mikrolinsen, so dass die lateralen Geometrieabmessungen jeder einzelnen Mikrolinse während der Temperaturbehandlung erhalten bleiben. Durch die horizontale Anordnung des Mikrolinsenarrays während der Temperaturbehandlung sowie der oberflächenreduzierende Effekt der die Linsenoberfläche bestimmenden Oberflächenspannung bildet sich eine Materialverdrängung aus jedem einzelnen Linsenkörper in Richtung des darunter befindlichen Flächensubstrates aus. Dieser auch als Reflow-Prozess bezeichnete Materialfluss führt grundsätzlich zu einer gesamtheitlichen Veränderung der Oberflächenkontur jeder einzelnen Mikrolinse, trägt aber insbesondere zur Abflachung des Profils im Randbereich jeder einzelnen Mikrolinse bei. Je nach Temperaturniveau und Temperzeit lassen sich durch den Reflow-Prozess gewünschte Randabflachungen, die aus der Diagrammdarstellung gemäß Figur 2 im einzelnen entnehmbar sind, erzeugen. Ausgehend von der elliptisch übersteilten Randform gemäß dem Linienzug 1 können sphärische Randkonturen gemäß Linienzug 3, parabolische oder gar hyperbolische Randkonturen gemäß den Linienzügen 2 und 4 gezielt erzeugt werden. Je länger der Temperprozess andauert, um so mehr wird der Randbereich jeder einzelnen Mikrolinse abgeflacht und kann letztlich eine gemäß Linienzug 4 angedeutete Oberflächenkontur annehmen.
Unter normalen Prozessbedingungen findet der vorstehend bezeichnete Reflow- Prozess unter Normaldruckbedingungen statt, so dass die den Materialfluss induzierende Kraft ausschließlich auf die wirkende Oberflächenspannung in jeder einzelnen Mikrolinse zurückzuführen ist. Darüber hinaus ist es überdies möglich, die Druckbedingungen während des Temperprozesses zu verändern. So bewirkt eine Druckzunahme, die gleichmäßig auf jede einzelne Linsenoberfläche einwirkt, eine den Reflow-Prozess unterstützende Kraftkomponente, die zu einer verstärkten Abflachung des Linsenprofils führt. Reduziert man hingegen den auf die Linsenoberfläche einwirkenden Druck so wird eine dem Reflow-Prozess entgegenwirkende Kraftkomponente erzeugt, durch die bspw. die konvex ausgebildete Linsenoberfläche während des Tempervorganges stabilisiert wird. Somit stellen Temperatur, Temperzeit und der auf die Linsenoberflächen einwirkende Druck entscheidende Prozessparameter dar, die in Abhängigkeit eines gewünschten Tempererfolges individuell einzustellen sind.
Wie bereits erwähnt, tritt das Gegenwerkzeug 4 ausschließlich längs der Umfangslinien sowie über die zwischen den Mikrolinsen angeordneten Flächenbereichen 3 mit dem Mikrolinsenarray in Berührung. Die Randbereiche des Gegenwerkzeuges, die jeweils mit den Umfangslinien jeder einzelnen Mikrolinse in Berührung treten dürfen jedoch mit dem Rand jeder einzelnen Mikrolinse nicht benetzend in Berührung treten, da in diesem Falle zusätzliche Randwinkeleffekte auftreten könnten, die die Linsenoberflächenkontur im Randbereich nachhaltig beeinträchtigen zu können. Um dafür Sorge zu tragen, dass das Gegenwerkzeug vom Linsenmaterial im Randbereich nicht benetzt wird, hat es sich als günstig erwiesen, das Gegenwerkzeug bspw. aus Graphit zu fertigen. Graphit überdauert zum einen die während der Temperaturbehandlung auftretenden Temperaturen ca. zwischen ca. 600 und 800° C schadlos und besitzt zum anderen die Eigenschaft, von erweichtem Glas nicht benetzt zu werden. Überdies haben Untersuchungen ergeben, dass ein aus Silizium gefertigtes Gegenwerkzeug gleichsam keine Benetzungseffekte mit dem erweichten Linsenmaterial zeigt, da im Falle von Glas als Linsenmaterial das Glas nicht direkt in Kontakt mit dem Siliziumwerkzeug tritt, zumal sich zwischen dem fließenden Glas und dem Siliziumwerkzeug eine Zwischenschicht ausbildet, die zwar ebenso aus Glas besteht, jedoch über eine deutlich höhere Viskosität verfügt, als das eigentliche Glassubstrat selbst und damit nicht oder kaum y
fließt. Der Grund für das Auftreten einer derartigen Zwischenschicht liegt nach derzeitiger Kenntnis an einer lokalen Veränderung der Zusammensetzung des Glases, das im Wege des anodischen Bondens in Kontakt mit der Siliziumoberfläche gebracht wird. Hierbei wandern lokal Natriumionen aus dem Glas, die für die Viskosität des Glases bestimmend zu sein scheinen.
Nach erfolgter Temperaturbehandlung und entsprechendem Erkalten des Linsenmaterials, wird das Gegenwerkzeug 4 von der Oberfläche des Mikrolinsenarrays entfernt. Das vorzugsweise aus Silizium gefertigte Gegenwerkzeug lässt sich bspw. unter Verwendung ansich bekannter Ätztechniken vom Mikrolinsenarray entfernen. Möglicherweise an der Rückseite des Linsensubstrates auftretende Unebenheiten, die durch den Reflow-Prozess während der Temperaturbehandlung entstanden sind, können mit geeigneten mechanischen Schleif- oder Poliertechniken ausgeglichen werden.
Bezugszeichenliste
Mikrolinse
Linsensubstrat
Flächenanteile
Gegenwerkzeug
Raumbereiche Stegartige Abschnitte Durchgangsöffnungen

Claims

Patentansprüche
1. Verfahren zum Nachbehandeln der Oberflächenkontur wenigstens einer aus Glas oder glasartigem Material bestehenden optischen Linse, insbesondere Mikrolinse, mit einer konvex ausgebildeten Linsenoberfläche, die von einer Umfangslinie begrenzt wird, an die sich ein ebener die Umfangslinie umgebender Flächenabschnitt anschließt, sowie einer der konvex ausgebildeten Linsenoberfläche gegenüberliegen Linsenunterseite, dadurch gekennzeichnet, dass längs der Umfangslinie der optischen Linse auf den
Flächenabschnitt ein an die Umfangslinie linientreu angepaßtes, die konvex ausgebildete Linsenoberfläche zumindest seitlich begrenzendes Mittel aufgesetzt wird, dass die optische Linse auf eine Temperatur von wenigstens der
Transformationstemperatur des Glases oder glasartigen Materials erhitzt wird, dass ein Druckausgleich zwischen der konvex ausgebildeten Linsenoberfläche und der Linsenunterseite vorherrscht, und dass nach einer bestimmten Zeitdauer, während der die optische Linse der
Temperaturbehandlung ausgesetzt wird, und nachfolgender Abkühlung unter die
Transformationstemperatur das Mittel von der optischen Linse entfernt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Temperatur und Zeitdauer für die Temperaturbehandlung vom Grad der Veränderung der Oberflächenkontur gewählt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass während der Temperaturbehandlung ein auf die konvex ausgebildete Linsenoberfläche einwirkender Druck variiert wird. A r_
12
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Druckänderung durch gezielte Gas- bzw.
Luftdruckänderung herbeigeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Mittel fest gegen die Umfangslinie kraftbeaufschlagt gepresst wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die optische Linse im Wege eines Glasfließprozesses oder mittels kontaktlosem Heissprägen eines thermoplastischen Materials hergestellt wird und verfahrensbedingt eine im Bereich ihrer Umfangslinie elliptische Übersteilung aufweist, und dass die Temperaturbehandlung in Verbindung mit dem die Umfangslinie begrenzenden Mittel derart durchgeführt wird, dass die elliptische Übersteilung vermindert oder gänzlich beseitigt wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Temperaturbehandlung in Verbindung mit dem die Umfangslinie begrenzenden Mittel derart durchgeführt wird, dass die lateralen Geometrieabmessungen der optischen Linse erhalten bleiben.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die optische Linse während der Temperaturbehandlung horizontal gelagert wird, d.h. die konvex ausgebildete Linsenoberfläche ist gegenüber einer horizontalen Ebene erhaben.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Mittel mit der optischen Linse nicht oberflächenbenetzend in Berührung gebracht wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine einstückig zusammenhängende arrayförmige
Mikrolinsenanordnung vorgesehen wird, mit einer Vielzahl einzelner optischer
Mikrolinsen, die über eben ausgebildete Flächenabschnitte, vorzugsweise äquidistant voneinander beabstandet sind, dass ein an die Anordnung und Umfangsgröße der einzelnen Mikrolinsen angepasstes Mittel in Art einer Schablone vorgesehen wird, das auf die
Flächenabschnitte zumindest teilweise aufgesetzt wird und die Umfangslinien der einzelnen Mikrolinsen umfasst, und dass während der Temperaturbehandlung alle Mikrolinsen einheitlich homogen erhitzt werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Temperaturbehandlung derart erfolgt, dass eine Verkleinerung der konvexen Linsenoberfläche ausschließlich auf längs der konvex ausgebildeten Linsenoberfläche wirkenden Oberflächenspannungen beruht, wobei Linsenmaterial aus Bereichen der konvexseitigen Linsenüberhöhung in übrige Bereiche des Linsenkörpers verdrängt wird.
12. Vorrichtung zum Nachbehandeln der Oberflächenkontur wenigstens einer aus Glas oder glasartigem Material bestehenden optischen Linse, insbesondere Mikrolinse, mit einer konvex ausgebildeten Linsenoberfläche, die von einer Umfangslinie begrenzt ist, an die sich ein ebener die Umfangslinie umgebender Flächenabschnitt anschließt, dadurch gekennzeichnet, dass ein Mittel vorgesehen ist, das in Art einer Schablone ausgebildet ist und eine Ausnehmung vorsieht, die von einem Rand begrenzt ist, der bündig an die Umfangslinie der optischen Linse angepasst ist, und dass die Ausnehmung ansonsten derart ausgebildet ist, dass die Schablone berührungsfrei zur konvex ausgebildeten Linsenoberfläche auf den die Umfangslinie umgebenden Flächenabschnitt aufbringar ist, und dass das Mittel wenigstens eine der Ausnehmung gegenüberliegende Öffnung vorsieht, so dass zwischen der optischen Linse und dem Mittel nach Aufbringen des Mittels auf den die Umfangslinie umgebenden Flächenabschnitt kein abgeschlossenes Volumen entsteht.
12. Vorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass das Mittel aus einem Material besteht, dessen thermische Ausdehnungseigenschaften denen des Glases oder des glasartigen Materials entsprechen.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Mittel in Art einer Vielfachlochschablone ausgebildet ist, deren einzelne Ausnehmungen in Form, Größe und Anordnung nach einer arrayförmig ausgebildeten Vielfach-Mikrolinsenanordnung gewählt sind, so dass die Vielfachlochschablone durch Aufsetzen auf die die einzelnen Mikrolinsen umgebenden Flächenabschnitte der Vielfach-Mikrolinsenanordnung jeweils bündig mit den Umfangslinien der Mikrolinsen in Berührung tritt.
14. Verwendung der Vorrichtung zur Oberflächenkorrektur von wenigstens einer aus Glas oder glasartigem Material bestehenden optischen Linse zur Beseitigung einer am Randbereich der Linse vorhandenen elliptischen Übersteilung.
15. Verwendung nach Anspruch 14, dadurch gekennzeichnet, dass im Wege einer Temperaturbehandlung der optischen Linse, auf der das schablonenartige Mittel aufsitzt, der Randbereich der optischen Linse im Wege eines Reflow-Prozesses abgeflacht wird, so dass eine sphärische oder parabolische Linsenquerschnittsform erhalten wird.
16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass bei andauerndem Reflow-Prozess eine hyperpolische Linsenquerschnittsform erhalten wird.
PCT/EP2003/014629 2002-12-20 2003-12-19 Verfahren und vorrichtung zum nachbehandeln einer optischen linse WO2004056715A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03785897A EP1572594B1 (de) 2002-12-20 2003-12-19 Verfahren zum nachbehandeln einer optischen linse
JP2004561381A JP2006510563A (ja) 2002-12-20 2003-12-19 ガラスまたはガラス系材料製の光学レンズの表面の輪郭を選択的に変更する方法および装置
US10/540,211 US8015843B2 (en) 2002-12-20 2003-12-19 Method and device for selectively changing the contour of the surface of an optical lens made of glass or a glass-type material
DE50305385T DE50305385D1 (de) 2002-12-20 2003-12-19 Verfahren zum nachbehandeln einer optischen linse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10259890A DE10259890A1 (de) 2002-12-20 2002-12-20 Verfahren und Vorrichtung zur gezielten Veränderung der Oberflächenkontur einer aus Glas oder glasartigem Material bestehenden optischen Linse
DE10259890.8 2002-12-20

Publications (1)

Publication Number Publication Date
WO2004056715A1 true WO2004056715A1 (de) 2004-07-08

Family

ID=32477856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/014629 WO2004056715A1 (de) 2002-12-20 2003-12-19 Verfahren und vorrichtung zum nachbehandeln einer optischen linse

Country Status (6)

Country Link
US (1) US8015843B2 (de)
EP (1) EP1572594B1 (de)
JP (1) JP2006510563A (de)
AT (1) ATE342238T1 (de)
DE (2) DE10259890A1 (de)
WO (1) WO2004056715A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106963A1 (ja) 2005-03-31 2006-10-12 Daiichi Sankyo Company, Limited トリアミン誘導体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8141384B2 (en) * 2006-05-03 2012-03-27 3M Innovative Properties Company Methods of making LED extractor arrays
DE102006020991B4 (de) 2006-05-04 2009-09-10 Carl Zeiss Ag Verfahren zum Herstellen eines Formkörpers aus Glas oder Glaskeramik
US9038421B2 (en) * 2011-07-01 2015-05-26 Sunpower Corporation Glass-bending apparatus and method
DE102011110166A1 (de) 2011-08-12 2013-02-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Strukturieren eines aus glasartigem Material bestehenden Flächensubstrats sowie optisches Bauelement
DE102014202220B3 (de) 2013-12-03 2015-05-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Deckelsubstrats und gehäustes strahlungsemittierendes Bauelement
DE102020101982B4 (de) * 2020-01-28 2021-11-04 Schott Ag Verfahren zur Herstellung eines strukturierten Glaswafers für die Verpackung von elektronischen Bauteilen, Verfahren zur Herstellung von verkapselten elektronischen Komponenten und verkapselte elektronische Komponente
CN117735824B (zh) * 2024-02-19 2024-05-07 南方科技大学 一种微透镜的制作方法、微透镜及其制作系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185445A (ja) * 1982-04-20 1983-10-29 Fujitsu Ltd マイクロレンズアレイの製造方法
JPS61266322A (ja) * 1985-05-17 1986-11-26 Canon Inc 光学素子の製造方法
GB2264890A (en) * 1991-12-11 1993-09-15 British Telecomm Moulding of lenses and lenticular sheets
JPH05313003A (ja) * 1992-05-06 1993-11-26 Matsushita Electric Ind Co Ltd レンズアレイの成形金型およびそれを用いたレンズアレイの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481023A (en) * 1981-10-30 1984-11-06 Corning Glass Works Process to mold precision glass articles
DE19956654B4 (de) * 1999-11-25 2005-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Strukturierung von Oberflächen von mikromechanischen und/oder mikrooptischen Bauelementen und/oder Funktionselementen aus glasartigen Materialien
US6974264B2 (en) * 2001-03-13 2005-12-13 Nippon Sheet Glass Co., Ltd. Optical module and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185445A (ja) * 1982-04-20 1983-10-29 Fujitsu Ltd マイクロレンズアレイの製造方法
JPS61266322A (ja) * 1985-05-17 1986-11-26 Canon Inc 光学素子の製造方法
GB2264890A (en) * 1991-12-11 1993-09-15 British Telecomm Moulding of lenses and lenticular sheets
JPH05313003A (ja) * 1992-05-06 1993-11-26 Matsushita Electric Ind Co Ltd レンズアレイの成形金型およびそれを用いたレンズアレイの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0080, no. 19 (C - 207) 26 January 1984 (1984-01-26) *
PATENT ABSTRACTS OF JAPAN vol. 0111, no. 32 (C - 417) 24 April 1987 (1987-04-24) *
PATENT ABSTRACTS OF JAPAN vol. 0181, no. 26 (P - 1702) 2 March 1994 (1994-03-02) *
SCHULZE J ET AL: "Compact self-aligning assemblies with refractive microlens arrays made by contactless embossing", PROC. SPIE - INT. SOC. OPT. ENG. (USA), PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1998, SPIE-INT. SOC. OPT. ENG, USA, vol. 3289, April 1998 (1998-04-01), pages 22 - 32, XP008003397, ISSN: 0277-786X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106963A1 (ja) 2005-03-31 2006-10-12 Daiichi Sankyo Company, Limited トリアミン誘導体

Also Published As

Publication number Publication date
EP1572594B1 (de) 2006-10-11
JP2006510563A (ja) 2006-03-30
US20060096321A1 (en) 2006-05-11
DE10259890A1 (de) 2004-07-08
ATE342238T1 (de) 2006-11-15
EP1572594A1 (de) 2005-09-14
DE50305385D1 (de) 2006-11-23
US8015843B2 (en) 2011-09-13

Similar Documents

Publication Publication Date Title
EP0916450B1 (de) Verfahren und Vorrichtung zum Polieren von Halbleiterscheiben
DE2515558C3 (de) Verfahren zum Herstellen von optischen Linsen
DE102005060907B4 (de) Verfahren zur Herstellung einer Glasscheibe mit definierten Ausbuchtungen und Werkzeugform zur Verwendung in einem solchen Verfahren
DE112011103491B4 (de) Suszeptor und Verfahren zum Herstellen eines Epitaxialwafers
EP2483212B1 (de) Rohling aus titan-dotiertem, hochkieselsäurehaltigem glas für ein spiegelsubstrat für den einsatz in der euv-lithographie und verfahren für seine herstellung
DE102004021215C5 (de) Verfahren zum Ausbilden eines optischen Elements
EP1572594B1 (de) Verfahren zum nachbehandeln einer optischen linse
DE10314266B3 (de) Verfahren und Vorrichtung zum Biegen von Glasscheiben
DE10210579B4 (de) Verfahren zur Herstellung von gewellten Rippen
EP2612181B1 (de) Stempelwerkzeug, vorrichtung und verfahren zum herstellen eines linsenwafers
DE10313889B3 (de) Verfahren zur Herstellung einzelner Mikrolinsen oder eines Mikrolinsenarrays
DE10118260A1 (de) Verfahren und Vorrichtung zum Umformen von Gläsern und/oder Glaskeramiken
DE202016008528U1 (de) Optische Komponente
EP2742009A1 (de) Verfahren zum strukturieren eines aus glasartigem material bestehenden flächensubstrats sowie optisches bauelement
DE202021004009U1 (de) Vorrichtung zum Pressbiegen von Glasscheiben
EP4245731B1 (de) Glasformsystem und verfahren zur herstellung von zwei oder mehr glasprodukten aus einem glasrohling
DE112015006676T5 (de) Wafer mit einer Stufe und Verfahren zur Herstellung eines Wafers mit einer Stufe
DE10335453B4 (de) Verfahren zum Biegen von Flachglas und zugehörige Biegevorrichtung
EP0786326A1 (de) Verfahren und Vorrichtung zur Herstellung von optischen Linsen und optischen Linsenarrays
WO2012016661A1 (de) Verfahren zum formgebenden umschmelzen von werkstücken mit einem energetischen strahl
EP3958297B1 (de) Verfahren zum herstellen eines vakuumgreifers für halbleiterwerkstücke und vakuumgreifer
DE102018115145A1 (de) Chemisch-mechanische planarisierungs-membran
WO2009106110A1 (de) Vorrichtung zur herstellung von gegenständen aus glas durch heissformen und herstellungsverfahren
DE202021004140U1 (de) Vorrichtung zum Biegen von flachen Glasscheiben
DE102018117208A1 (de) Verfahren, Werkzeugmodul und System zur Umformung flacher Werkstücke

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003785897

Country of ref document: EP

Ref document number: 2004561381

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006096321

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540211

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003785897

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540211

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003785897

Country of ref document: EP