WO2004056703A1 - Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this - Google Patents

Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this Download PDF

Info

Publication number
WO2004056703A1
WO2004056703A1 PCT/JP2003/016241 JP0316241W WO2004056703A1 WO 2004056703 A1 WO2004056703 A1 WO 2004056703A1 JP 0316241 W JP0316241 W JP 0316241W WO 2004056703 A1 WO2004056703 A1 WO 2004056703A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
resin
graphite particles
composite graphite
composite
Prior art date
Application number
PCT/JP2003/016241
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihiko Eguchi
Makiko Ijiri
Kazuteru Tabayashi
Hidetoshi Morotomi
Kazuyuki Murakami
Original Assignee
Jfe Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Chemical Corporation filed Critical Jfe Chemical Corporation
Publication of WO2004056703A1 publication Critical patent/WO2004056703A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery having a large discharge capacity, a high initial charge / discharge efficiency, and excellent fast discharge characteristics and cycle characteristics, and a constituent material thereof. Specifically, composite graphite particles composed of at least two kinds of materials having different physical properties and a method for producing the same, and a negative electrode material lithium ion secondary battery using the composite graphite fine particles.
  • composite graphite particles composed of at least two kinds of materials having different physical properties and a method for producing the same, and a negative electrode material lithium ion secondary battery using the composite graphite fine particles.
  • a lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components. Lithium ions generated from the non-aqueous electrolyte move between the negative electrode and the positive electrode during the discharging and charging processes, forming a secondary battery.
  • a carbon material is used as the negative electrode material of the above-mentioned lithium ion secondary battery.
  • a carbon material black
  • the three-dimensional crystal regularity also referred to as crystallinity in this application
  • condensed polycyclic hexagonal network planes also referred to as carbon network planes in this application
  • graphite will stabilize the intercalation compound with lithium. Easy to form.
  • Irreversible capacity Initial charge capacity-Initial discharge capacity
  • a two-layer structure in which the core is high crystalline graphite, which is advantageous for increasing the discharge capacity, and its surface is covered with low crystalline graphite or carbon, which is advantageous for improving the initial charge and discharge efficiency.
  • the core is high crystalline graphite, which is advantageous for increasing the discharge capacity
  • its surface is covered with low crystalline graphite or carbon, which is advantageous for improving the initial charge and discharge efficiency.
  • low-crystalline carbon has a low discharge capacity, but low decomposition reactivity with electrolyte.
  • the method (1) has a problem in productivity because the production steps are complicated and costly from the viewpoint of industrial production.
  • the low-crystalline carbon on the surface is coated in an extremely thin film, the specific surface area is high and the initial charge / discharge efficiency is low.
  • the low-crystalline carbon of the surface layer is fused together when fired at about 1000 ⁇ , and when the low-crystalline carbon of the surface layer is crushed, the low-crystalline carbon of the surface layer is reduced to graphite or nucleus.
  • powder characteristics such as specific surface area and bulk density, and battery characteristics such as initial charge / discharge efficiency are reduced.
  • the charge / discharge during rapid charge / discharge is repeated because the nucleus graphite and the low-crystalline carbon of the surface layer have different expansion and contraction behavior upon charge / discharge. As a result, the low-crystalline carbon on the surface layer may peel off, causing the same problem as described above.
  • the discharge capacity of a battery largely depends on the discharge capacity per volume of graphite constituting the negative electrode. Therefore, in order to increase the discharge capacity of the battery, it is more advantageous to fill graphite with a large discharge capacity per unit weight (mAhZg) at a high density.
  • a negative electrode is formed by filling graphite at a high density, the adhesion between graphite and the low-crystalline carbon of the surface layer tends to be insufficient in the above methods (1) and (2). Then, the low-crystalline carbon film is peeled off from the graphite, the surface of the graphite having high reactivity with the electrolyte is exposed, and the initial charge / discharge efficiency may decrease.
  • JP-A-2000-37008 it is shown in Examples that a graphite is coated with a pitch and then heat-treated at 2800 ° C., but the formed film has low crystallinity (Raman spectroscopy). The R value is 0.32, and the method of measuring the R value will be described later.) However, the same problem as described above occurs. In addition, although flaked graphite flakes are used as the core material, the graphite has a large aspect ratio and the graphite is oriented when a negative electrode is manufactured. Invited.
  • an object of the present invention is to obtain a lithium-ion secondary battery having both high discharge capacity and high initial charge / discharge efficiency, as well as excellent rapid discharge characteristics and cycle characteristics.
  • an object of the present invention is to provide a novel composite graphite particle capable of satisfying the performance, a method for producing the same, and a negative electrode material and a lithium ion secondary battery using the composite graphite particle. Disclosure of the invention
  • the present invention relates to composite graphite particles having a carbon material having lower crystallinity than graphite at least on a surface portion of graphite having an X-ray diffraction plane spacing of less than 0.337 M *.
  • the composite 0.5 to 20 mass% of the graphite particles are carbon materials, 1360 cm for 1580Cm- 1 peak intensity (1 1580) in Ramansu Bae spectrum of the composite graphite particles
  • the invention is directed to a composite graphite particle having a ratio (1 158 ./1 136. ) Of the peak intensity ( -136 ⁇ ) of ⁇ 1 from 0.1 or more to less than 0.3.
  • the composite graphite particles have an X-ray diffraction plane spacing of the carbon material of less than 0.343 ⁇ * and a ratio of the graphite to the plane spacing d 002 of from 1.001 or more to less than 1.02. Is preferred.
  • any of the composite graphite particles is obtained by granulating flaky graphite.
  • spheroidal graphite is granulated and spheroidized by mechanical external force, and the spherical graphite particles become 0.5 to 20% by mass in terms of carbon amount.
  • the resin alone or the mixture of the resin and the pitch is heated and carbonized.
  • the invention also provides a composite graphite particle coated with a carbide layer comprising: Furthermore, the present application relates to a group comprising a mixture of a thermosetting resin, a precursor of a thermosetting resin, and a raw material of a thermosetting resin to granulated graphite obtained by shaping flaky graphite into a spherical shape by mechanical external force.
  • the carbonizable material is a mixture of the resin material and tars, and the resin material is strongly used at a mass ratio of Z tars of 5/95 to 100/0.
  • the resin material is at least one selected from the group consisting of a phenolic resin, a precursor of a phenolic resin, and a mixture of monomers of a phenolic resin.
  • the present invention also provides an invention of a negative electrode material of a lithium ion secondary battery including any of the composite graphite particles disclosed above.
  • the invention also provides a lithium ion secondary battery using any of these negative electrode materials.
  • the present application is directed to a granulation step in which flaky graphite is made spherical by mechanical external force, and 80 to 99.5% of composite graphite particles obtained in a subsequent carbonization step are added to the obtained granulated graphite.
  • a carbonizable material containing at least one resin material selected from the group consisting of a thermosetting resin, a precursor of a thermosetting resin, and a raw material of a thermosetting resin is mixed so as to become granulated graphite.
  • the present invention also provides a method for producing composite graphite particles, comprising the steps of: carbonizing the obtained mixture at 2000 ° 0 to 3200.
  • the resin material is preferably at least one selected from the group consisting of a phenolic resin, a precursor of a phenolic resin, and a mixture of monomers of a phenolic resin.
  • any of the above production methods it is more preferable to further perform a step of thermally curing the resin material at 200 to 300 ° C. before the carbonizing step.
  • FIG. 1 is a schematic cross-sectional view showing the structure of a button-type evaluation battery used for a charge / discharge test.
  • the d-spacing of X-ray diffraction is used.
  • 02 is less than 0.337 nm at least on the surface of graphite
  • the composite graphite particles include a carbon material having a lower crystallinity than the graphite, wherein the composite graphite particles have an aspect ratio of 3 or less and 0.5 to 20% by mass of the composite graphite particles.
  • a carbon-material, or the composite graphite ratio of 1360Cm- 1 peak intensity 1580Cm- 1 of relative peak intensity (1 1580) in Ramansu Bae vector particles (1 1360) ( ⁇ 158 ⁇ ⁇ 1360) is 0.1 or more Are less than 0.3.
  • the graphite constituting the core material of the composite graphite particles of the present invention is a measured value of X-ray diffraction d. It is a highly crystalline graphite having a Q2 of less than 0.337 nm. As such graphite, for example, commercially available flaky natural graphite is typical. The higher the crystallinity of graphite, the more the crystallinity grows in a regular manner, and it generally has a scaly shape.
  • the shape of the composite particles finally obtained reflects the shape of the graphite, and that the shape of the graphite is preferably close to spherical, and the aspect ratio (the length of the long axis to the short axis of the particles) It is preferable to use graphite having a ratio of 3 or less.
  • Such graphite can be produced, for example, using flaky graphite as a raw material by the following method.
  • the flaky graphite commercially available products or various shapes of graphite such as coarse-grained natural graphite and artificial graphite can be used.
  • non-scale graphite such as coarse-grained natural graphite or artificial graphite
  • a scale such as coarse-grained natural graphite or artificial graphite
  • a counter jet mill manufactured by Hosokawa Micron Co., Ltd.
  • a current jet Neshin Engineering Co., Ltd.
  • the method of applying a mechanical external force to form a spherical shape is not particularly limited.
  • a method of mixing a plurality of flaky graphite in the presence of a granulating aid such as an adhesive or a resin a method of mixing a plurality of flaky graphite A method of applying mechanical external force to graphite without using an adhesive, a combination of both, etc. No.
  • GRANUREX Frund Industrial
  • Granulators such as New Grass Machines (manufactured by Seishin Enterprise), Agromaster (manufactured by Hosoka Micron Corp.), and a high predication system.
  • Devices with shear compression and zero force such as (Nara Machinery Co., Ltd.), Mechano Micros Co., Ltd. (Nara Machinery Co., Ltd.), Mechano Fusion System (Hosokawa Micron Co., Ltd.) can be used.
  • Granulation can also be performed by operating the operating conditions using the above-described milling device.
  • the granulated graphite shaped into a sphere may be any one obtained by rolling one flake graphite, or one obtained by aggregating and granulating a plurality of flake graphite.
  • a plurality of flaky graphites exhibit a concentrically granulated shape.
  • the average particle diameter is 5 to 60 m
  • the aspect ratio is 3 or less
  • the specific surface area is 0.5 to 10 m. 2 / g
  • the size (Lc) of the crystallite in the C axis direction in X-ray diffraction is 40 nm or more
  • d. Q2 was measured by Raman spectroscopy using the Oyopi argon laser than 0.
  • the carbon material may be any material as long as it gives the properties of the composite graphite particles described below.
  • the carbon material is preferably obtained by applying a carbonizable material to the above-mentioned granulated graphite, impregnating and Z or mixing, and then performing a carbonization treatment by heating.
  • the carbonizable material referred to in the present application refers to a material that can be carbonized and / or graphitized by heating. Such heating is generally above 700 ° C., preferably between 800 and 320 °. Therefore, the carbonization treatment referred to in the present application includes the graphitization treatment.
  • the temperature is particularly preferably from 2000 to 3200 ° C.
  • at least the surface portion of graphite referred to in the present application is black Refers to the entire surface or a part of the outer surface of lead.
  • the carbonizable material may penetrate into the interior of the secondary particles and be carbonized.
  • the carbon material may be formed inside graphite alone.
  • the composite graphite particles of the present invention are optimally such that the entire outer surface of the graphite is coated with the carbon material. A preferred coverage is 50 to 100%.
  • the proportion of the resin material is 5% or more, the graphitization (crystallization) of the formed carbide layer sufficiently proceeds, and at the same time, the effect of improving the initial charge / discharge efficiency increases.
  • the use of a mixture of the resin material and the tars is preferable because the degree of graphitization (crystallinity) of the carbon material can be adjusted so that the effect of the present invention is maximized.
  • tars refers to carbon material precursors such as tar produced during wood carbonization, coal tar obtained from coal, and heavy oil produced from petroleum, and includes those obtained by polycondensing these as raw materials. .
  • pitches such as coal pitch, partamesophase pitch, and petroleum pitch are also included in the tars of the present invention. Each of these forms a graphite structure when heat treated alone at about 3000. Optically, it may be isotropic or anisotropic
  • the resin material referred to in the present application is at least one kind selected from the group consisting of a resin itself, a resin precursor, and a mixture of a resin synthesis raw material.
  • the resin precursor also includes a reaction intermediate, an oligomer, a polymerization intermediate, and the like.
  • An example of a mixture of resin raw materials is a mixture containing a monomer, a polymerization initiator, and the like, and a resin obtained by heating, stirring, and leaving the mixture.
  • thermosetting resin a thermosetting resin, a mixture of raw materials of the thermosetting resin, and a precursor of the thermosetting resin is used. Is preferred.
  • thermosetting resin When a thermosetting resin is carbonized at a high temperature, the resulting carbide has on average a high degree of crystallinity equivalent to graphite and may contain a graphite portion. In this effort, it is referred to as carbon material and is distinguished from core material graphite because it includes parts that have carbon.
  • thermosetting resin a resin having a large amount of carbon remaining after the heat treatment is desirable, and examples thereof include a urea resin, a maleic acid resin, a coumarone resin, a xylene resin, and a phenol resin.
  • the resin material at least one selected from the group consisting of a phenol resin, a mixture of phenol resin raw materials, and a precursor of the phenol resin. More specifically, the phenolic resin itself
  • the crystallinity of the carbon material constituting the composite graphite particles of the present invention is lower than the crystallinity of the core graphite, but the plane spacing d in X-ray diffraction. .
  • 2 satisfies 0.343 ⁇ *. Is less than d 002 is 0. 343 nm carbon material, the discharge capacity is improved, and the upper direction adhesiveness of carbon material and graphite.
  • the difference in crystallinity between graphite and carbon material is d for carbon material versus c for graphite. . More preferably, the ratio of 2 is in the range from 1.001 or more to less than 1.02. If the ratio is 1.001 or more, the initial charge / discharge efficiency is further improved, and the adhesion of the carbon material, which is less than 1.02, is further improved.
  • the composite graphite particles of the present invention are composite graphite particles having a carbon material having lower crystallinity than the graphite on at least a surface portion of graphite having an X-ray diffraction plane spacing d oo 2 of less than 0.337 nm *.
  • the aspect ratio of the composite graphite particles is 3 or less
  • the 0.5 to 20 mass 0/0 of the composite graphite particles are carbon materials
  • the composite graphite particles are also characterized by an almost spherical shape with an aspect ratio of 3 or less.
  • the above-described graphite is used as a core material, and a carbon material having lower crystallinity than the graphite is present at least on a surface portion thereof.
  • the crystallinity of the surface of the composite graphite particles can be specified by the R value of Raman spectroscopy, and the 1360 cm- i band intensity (I) and the 1580 cm- 1 band intensity (I) measured by Raman spectroscopy using an argon laser. 1 1580 ) ratio I / 1 158 . Value) must be greater than or equal to 0.10 and less than 0.30. When the R value is less than 0.1 or 0.3 or more, the initial charge / discharge efficiency may decrease in any case. Particularly preferred R values are from 0.1 to 0.2.
  • the ratio of the carbon material in the present application is expressed in terms of the amount of carbon, and the ratio of the carbon material in the composite graphite particles is defined in the range of 0.5 to 20% by mass. This ratio corresponds to 80-99.5% of the composite graphite particles being occupied by the granulated graphite.
  • the residual carbon ratio depends on the type of carbonizable material selected. Since they are different, they cannot be specified unconditionally. Usually, about 1 to 70 mass% of carbonizable material is mixed with graphite graphite.
  • the carbonizable material is a phenol resin or the like
  • about 2 to 50% by mass, preferably about 20 to 35% by mass is mixed.
  • an appropriate mixing ratio can be found if necessary. If the proportion of the carbon material in the composite graphite particles is less than 0.5% by mass, it is difficult to completely cover the active graphite surface, and the initial charge / discharge efficiency may be reduced. On the other hand, when the content exceeds 20% by mass, the proportion of the carbon material having a relatively low discharge capacity is too large, and the discharge capacity of the composite graphite particles decreases.
  • the ratio of raw materials (thermosetting resins and tar pitches) for forming carbon materials is large, and particles are fused and shrunk in the coating process and the subsequent heat treatment process.
  • the carbon particles of the graphite particles may be partially separated and peeled off, leading to a decrease in the initial charge / discharge efficiency.
  • the ratio of the carbon material is particularly 3 to 15 mass. / 0 , more preferably 8 to 12% by mass.
  • preferable physical properties of the composite graphite particles of the present invention include an average particle diameter of 5 to 60 ⁇ m, a specific surface area of 0.5 to 10 ra 2 / g, and a crystallite in the C-axis direction in X-ray diffraction.
  • the size (Lc) is 40 ⁇ or more, d. e2 is preferably 0.337 nm or less. If the average particle diameter dust ratio is within the specified range, the discharge capacity and the initial charge / discharge efficiency are high, and other battery characteristics such as rapid charge / discharge characteristics and cycle characteristics are further improved. . When the specific surface area is less than 10 mVg, it is easy to adjust the viscosity of the negative electrode mixture paste (a mixture of the negative electrode material and the binder dispersion) when forming the negative electrode, and the adhesive force by the binder is also improved. X-ray diffraction Lc and d. . If 2 is within the specified value, a sufficient discharge capacity can be obtained.
  • the carbon material covers the outer surface of the graphite, and the carbon material portion of the composite graphite particles is also referred to as a carbide layer.
  • the granulated step of making flake graphite spherical by mechanical external force the obtained granulated graphite, 80 to 99.5% of the composite graphite particles obtained in the subsequent carbonization step, the granulated graphite Mixing a carbonizable material containing at least one resin material selected from the group consisting of a thermosetting resin, a precursor of the thermosetting resin, and a mixture of raw materials of the thermosetting resin, And a method for producing composite graphite particles, comprising a step of carbonizing the obtained mixture at 2000 to 3200 °.
  • thermosetting resin be a low molecular weight substance (precursor of the resin) or a monomer mixture, and the high molecular weight be obtained by heating simultaneously with coating the granulated graphite.
  • tars when included in the coating material, It is effective to advance the polycondensation of tars.
  • thermosetting resin essential as a coating material phenol resin J! Is preferred, and when the granulated graphite is coated with a phenol resin, a phenol resin precursor or a monomer of the phenol resin is used. It is preferable to use an inclusion.
  • the phenolic resin precursor or monomer-containing phenolic resin can be easily melted or turned into solution by heating, and can be uniformly coated on granulated graphite. Further, the phenolic resin layer formed by heating at the same time as the coating is characterized in that it adheres strongly to the granulated graphite.
  • the coating material can be coated with a plurality of compositions in a homogeneous or dispersed state.
  • the coating material can be coated multiple times by changing its composition.
  • the granulated graphite is coated as a first layer with a phenolic resin composed of phenol and formaldehyde, and then as a second layer is coated with a xylenolene resin composed of dimethylphenol (xylenol) and formaldehyde.
  • a phenol resin can be coated as a second layer.
  • the coating amount of the coating material should be set so that the ratio of the carbide layer to the composite graphite particles is finally 0.5 to 20% by mass.
  • thermosetting resin is cured in the range of 200 to 300 after coating the granulated graphite with the coating material or simultaneously with the coating treatment.
  • this curing step light volatile components contained in the thermosetting resins and tars are volatilized. Therefore, it is preferable that the temperature is raised over a sufficient time, usually 4 hours or more. Maintaining such a temperature rise time results in a more complete coating and smooth curing, which increases the adhesion between the coating material and the granulated graphite.
  • the particle size is preferably adjusted by crushing, sieving, or the like, followed by firing.
  • the firing is preferably performed at 2000 or more.
  • the temperature is more preferably 2500-3200, and further preferably 2800-3200 ° C.
  • a general graphitization furnace represented by an Acheson furnace can be used. Performing in a non-oxidizing atmosphere 200 is preferred.
  • a negative electrode material containing any of the composite graphite particles described above is also provided.
  • the composite graphite particles of the present invention can be diverted to applications other than the negative electrode, such as conductive materials for fuel cell separators and graphite for refractories, taking advantage of their characteristics. It is suitable as a negative electrode material.
  • the negative electrode material of the present invention is required to contain at least the composite graphite particles described above. Therefore, the composite graphite particles of the present invention themselves are also the negative electrode material of the present invention.
  • a negative electrode mixture obtained by mixing the composite graphite particles of the present invention with a binder, a negative electrode mixture paste obtained by adding a solvent, and a negative electrode mixture paste applied to a current collector, etc. are also within the range of the negative electrode material of the present invention.
  • a negative electrode material of a lithium ion secondary battery using the composite graphite particles of the present invention, and further, a lithium ion secondary battery will be described.
  • the present application also provides an invention of a negative electrode material for a lithium ion secondary battery having any of the above-described composite graphite particles of the present invention.
  • the negative electrode of the present invention is obtained by solidifying or shaping the above-described negative electrode material of the present invention.
  • the formation of the negative electrode can be carried out according to a usual molding method, but the performance of the composite graphite particles is sufficiently brought out, the shapeability with respect to the powder is high, and it is chemically and electrochemically stable. There is no particular limitation as long as the method can obtain a negative electrode.
  • a negative electrode mixture obtained by adding a binder to composite graphite particles can be used.
  • the binder it is desirable to use a binder having chemical stability and electrochemical stability to the electrolyte and the electrolyte solution solvent.
  • fluoroplastics such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, styrene butadiene wrapper, carboxymethyl ce? Reloise etc. are used You. These can be used in combination.
  • the binder in an amount of about 1 to 20% by mass based on the whole amount of the negative electrode mixture.
  • the negative electrode mixture layer is prepared by mixing a composite graphite particle adjusted to an appropriate particle size by classification or the like with a binder to prepare a negative electrode mixture. It can be formed by applying to one or both surfaces of a current collector. At this time, a normal solvent can be used. The negative electrode mixture is dispersed in the solvent to form a paste, and then applied to the current collector and dried, so that the negative electrode mixture layer is uniformly and firmly formed. Thus, a negative electrode bonded to the substrate can be obtained.
  • the paste can be prepared by stirring with various mixers.
  • the composite graphite particles of the present invention and a fluorine-based resin powder such as polytetrafluoroethylene are mixed and kneaded in a solvent such as isopropyl alcohol, and then coated to form a negative electrode mixture layer.
  • a fluorine-based resin powder such as polyvinylidene fluoride or a water-soluble binder such as carboxymethyl cellulose are mixed with a solvent such as N-methylpyrrolidone, dimethylformamide or water or alcohol. After forming a slurry, the mixture may be applied to form a negative electrode mixture layer.
  • the thickness of the negative electrode mixture comprising the mixture of the composite graphite particles and the binder according to the present invention when applied to the current collector is preferably from 10 to 300 ⁇ .
  • pressure bonding such as press pressure can further increase the adhesive strength between the negative electrode mixture layer and the current collector.
  • the shape of the current collector used for the negative electrode is not particularly limited, but a foil shape, a mesh shape, a mesh shape such as expanded methanol, or the like is used.
  • the current collector include copper, stainless steel, and Eckel.
  • the thickness of the current collector is preferably about 5 to 20 ⁇ m in the case of a foil.
  • the present invention further provides a lithium ion secondary battery using the above-described negative electrode material.
  • a lithium-ion secondary battery usually includes a negative electrode material, a positive electrode material, and a nonaqueous electrolyte as main battery components.
  • Each of the positive electrode material and the negative electrode material becomes a lithium ion carrier.
  • This is a battery mechanism in which lithium ions are doped into the negative electrode during charging, and are removed from the negative electrode during discharging.
  • the lithium ion secondary battery of the present invention is not particularly limited except that a negative electrode material containing the composite graphite particles of the present invention is used. Other components are the same as those of general lithium ion secondary batteries.
  • a lithium compound is used, and it is preferable to select a material capable of doping and dedoping a sufficient amount of lithium.
  • lithium-containing compounds such as lithium-containing transition metal oxides, transition metal lucogenides, vanadium oxides and their Li compounds, and the general formula M s Mo 6 S 8 — y (where X is 0 ⁇ X 4, Y is a numerical value in the range of 0 ⁇ Y ⁇ 1, and ⁇ represents a metal such as a transition metal), activated carbon, activated carbon m, and the like.
  • Vanadium oxide is such as represented by V 2 0 5, V 6 0 13, V 2 0 4, V 3 0 8.
  • the lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals.
  • the composite oxide may be used alone or in combination of two or more.
  • the lithium-containing transition metal oxide is, specifically, L iM (1) X _ X M (2) x O 2 (where X is a numerical value in the range of 0 ⁇ X ⁇ 4, M (1) , M (2) consists of at least one transition metal element.) Or L iM (1)! _ Y M (2) y 0 4 (where X is a number in the range of, M (1), M (2) consists of at least one transition metal element. You. ).
  • transition metal elements represented by M (1) and M (2) are represented by Co, Ni, Mn, Cr, Ti, V, Fe, Zn, A1, In, S n, etc., and preferred are Co, Fe, Mn, Ti, Cr, V, A1 and the like.
  • the lithium-containing transition metal oxide is, for example, an oxide or a salt of Li or a transition metal as a starting material, and the starting materials are mixed according to a desired composition of the metal oxide. 00 ° C ⁇ : It can be obtained by firing in the temperature range of L0000.
  • the starting materials are not limited to oxides and salts, and may be hydroxides and the like.
  • the above-mentioned lithium compound may be used alone or in combination of two or more as the positive electrode active material. Further, an alkali carbonate such as lithium carbonate can be added to the positive electrode material.
  • a positive electrode mixture composed of, for example, the above-described lithium compound and a binder and a conductive agent for imparting conductivity to the electrode is applied to one or both surfaces of the current collector to form a positive electrode mixture layer. It is obtained by doing.
  • the binder any of those exemplified for the negative electrode can be used.
  • the conductive agent a carbon material such as graphite or carbon black is used.
  • the positive electrode material is formed into a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture is applied to a current collector and dried to form a positive electrode mixture layer. After forming the positive electrode mixture layer, pressure bonding such as pressurization may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly adhered to the current collector.
  • the shape of the current collector is not particularly limited, and a box shape, a mesh shape, a mesh shape such as expanded metal, or the like is used.
  • the current collector may be an aluminum foil, a stainless steel foil, a nickel foil, or the like.
  • the thickness is preferably from 10 to 40 ⁇ m.
  • the non-aqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte salt used in ordinary non-aqueous electrolytes, and includes Li PF 6 , Li BF 4 , Li As F 6 , and Li C 10 4, L i B (C 6 H 5), L i C l, L i Br, L i CF 3 SO.
  • L i CH 3 S0 3 L i N (CF 3 SO 2 ) 2 , L i C (CF 3 SO 2 ) 3 , L i N (CF 3CH 2 OSO 2 ) 2 , L i N (CF 3 CF 3 OS0 2 ) 2 , L i N (HCF 2 CF 2 CH 2 OS 0 2 ) 2 , L i N ((CF 3 ) 2 CHO SO 2 ) 2 , L i B [(C 6 H 3 ((CF 3 ) 2) 4, L i Al C 1 4, L i S i lithium salt of F 6 and the like.
  • L i PF 6, L i BF 4 are preferable from the viewpoint of oxidation stability.
  • the concentration of the electrolyte salt in the electrolytic solution is preferably from 0.1 to 5 mol Z liter, and more preferably from 0.5 to 3.0 mol Z liter.
  • the non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a solid electrolyte or a polymer electrolyte such as a gel electrolyte.
  • the non-aqueous electrolyte battery is configured as a so-called lithium ion battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer solid electrolyte, a polymer gel electrolyte battery, etc. .
  • solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, dimethyl carbonate, and the like, 1, 1, 1 or 1, 2-dimethoxyethane, 1, 2 —Diethoxyxan, tetrahydrofuran, 2-methyl / letetrahydrofuran, ⁇ -petit mouth lactone, 1,3-dioxofuran, 4-methylinole 1,3-dioxolan, anisol, ether such as getyl ether, sulfolane, methylsulfolane Nitriles such as acetone, acetonitrile, chloronitrile, propionitrile, etc., trimethyl borate, tetramethyi ⁇ , nitromethane, dimethylformamide, dimethylformamide, ⁇ -methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene.
  • solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, dimethyl carbonate,
  • Non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, a polymer gelled with a plasticizer (non-aqueous electrolyte) is used as a matrix.
  • polymer constituting the matrix examples include ether polymers such as polyethylene oxide and cross-linked products thereof, polymetharylate polymer compounds, atalylate polymer compounds such as polyatalylate, and polyvinylidene fluoride (polyvinylidene fluoride). PVDF) Fluorinated polymer compounds such as vinylidenefluoridehexafluoropropylene copolymer are particularly preferred.
  • a plasticizer is compounded in the polymer solid electrolyte or the polymer gel electrolyte.
  • the plastic material the above-mentioned electrolyte salt or non-aqueous solvent can be used.
  • the concentration of the electrolyte salt in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol // liter, more preferably 0.5 to 2.0 mol / liter.
  • the method for producing the solid electrolyte is not particularly limited.
  • a method of mixing a polymer compound that forms a matrix, a lithium salt and a non-aqueous solvent (plasticizer), and heating to melt the polymer compound, an organic solvent A method in which a polymer compound, a lithium salt and a non-aqueous solvent (plasticizer) are dissolved in an organic solvent, and then the organic solvent is evaporated. And then irradiating the mixture with an ultraviolet ray, an electron beam or a molecular beam to form a polymer.
  • the addition rate of the nonaqueous solvent (plasticizer) in the solid electrolyte is preferably from 10 to 90% by mass, and more preferably from 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and the film will not be easily formed.
  • the material of the separator is not particularly limited, and examples thereof include a woven fabric, a nonwoven fabric, and a synthetic resin microporous membrane.
  • a synthetic resin microporous membrane is preferable, and among them, a polyolefin-based microporous membrane is preferable in terms of thickness, film strength, film resistance, and the like.
  • it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane obtained by combining these.
  • a gel electrolyte can be used without using a separator.
  • a negative electrode material containing the composite graphite particles, a positive electrode material, and a gel electrolyte are laminated in the order of, for example, a negative electrode material, a gel electrolyte, and a positive electrode material. It is configured to be accommodated in. Further, a gel electrolyte may be provided outside the negative electrode material and the positive electrode material.
  • the structure of the lithium-ion secondary battery of the present invention is not particularly limited, and its shape and form are not particularly limited.
  • a cylindrical type can be used. It may be of any shape or form of square, square, coin, or button.
  • a structure enclosed in a laminate film may be used.
  • the composite graphite particles 9 8 mass 0/0, 1% by weight of a styrene-butadiene La Par as a binder to prepare a negative electrode mixture paste was slurried in addition to water carboxymethylcellulose port over scan at a rate of 1 wt% .
  • the above-mentioned negative electrode mixture paste was applied on a copper foil (current collector) in a uniform thickness, and further heated at 90 ° C in a vacuum to evaporate the solvent and dried.
  • the negative electrode mixture applied on the copper foil is pressed by a roller press, and is punched together with the copper foil into a circular shape having a diameter of 15.5 thighs.
  • a negative electrode 2 composed of a negative electrode mixture layer adhered to b was manufactured.
  • a lithium metal foil is pressed against a nickel net and punched out into a cylindrical shape having a diameter of 15.5 mm to form a current collector 7a made of a nickel net and a positive electrode 4 made of a lithium metal foil adhered to the current collector.
  • LiPF 6 was dissolved in a mixed solvent of 33 vol% of ethylene carbonate and 67 vol% of ethyl methyl carbonate at a concentration of 1 mol / dm 3 to prepare a non-aqueous electrolyte.
  • the obtained non-aqueous electrolyte was impregnated into a porous polypropylene body to produce a separator 5 impregnated with the electrolyte.
  • a button-type secondary battery having the structure shown in FIG. 1 was produced as an evaluation battery.
  • a separator 5 impregnated with an electrolyte solution is interposed between a negative electrode (working electrode) 2 in close contact with the current collector 7b and a positive electrode (counter electrode) 4 in close contact with the current collector 7a.
  • the outer cup 1 and the outer can 3 are combined so that the negative electrode current collector 7b is accommodated in the outer can 1 and the positive electrode current collector 7a is accommodated in the outer can 3.
  • an insulating gasket 6 was interposed between the outer edges of the outer cup 1 and the outer can 3, and both the outer edges were caulked to close tightly.
  • the following charging / discharging ⁇ test was performed on the evaluation battery fabricated as described above at a temperature of 25.
  • the following batteries were subjected to the following charge / discharge test at a temperature of 25 for the evaluation batteries manufactured as described above.
  • Constant current charging is performed with a current value of 0.9 mA until the circuit voltage reaches OraV. Next, when the circuit voltage reaches OmV, switch to constant voltage charging, and continue charging until the current value reaches 20 ⁇ . After that, it was paused for 120 minutes.
  • Table 2 shows the measured battery characteristics such as the measured discharge capacity (raAh / g) and initial charge / discharge efficiency (%) per 1 g of the composite graphite particles.
  • the lithium ion secondary battery using the composite graphite particles of the present invention for the negative electrode shows a large discharge capacity and high initial charge / discharge efficiency.
  • Granulated graphite having the physical properties shown in Table 1 was used in the following Examples and Comparative Examples as the graphite constituting the core material of the composite graphite particles of the present invention.
  • the granulated graphite was granulated by circulating flaky natural graphite having an average particle diameter of 30 m in a machine using an air jet mill 200AFG manufactured by Hosokawa Micron Corporation at an air pressure of 300 kPa for 1 hour. Things. Of the obtained granulated graphite, fine powder having a particle diameter of 5 ⁇ m or less and insufficient granulation was removed. Coarse powder was removed so that it was under a 75 ⁇ m sieve.
  • Example 2 In order to estimate the crystallinity of the carbide ⁇ of Example 1, the coating material of Example 1 was not added with granulated graphite, and the same heat history as in Example 1 was applied to prepare the carbide of the coating material. . Measured by X-ray diffraction d. . 2 0.3366Nm, a Lc38nm, it is somewhat less crystallinity than the granulation graphite used as the core material d M2, Lc (Table 1) was confirmed.
  • Example 2
  • This cured product was pulverized so as to be below a 75 m sieve.
  • the pre-carbonization treatment was performed at 1000 ° C. in a nitrogen atmosphere, and the carbonization was further performed at 3000 ° C. to obtain the composite graphite particles of the present invention having a coating amount of 10%.
  • Example 3
  • This cured product was pulverized so as to be below a 75-m sieve. Next, a pre-carbonization treatment was performed at 1000 ° C. in a nitrogen atmosphere, and further a carbonization was performed at 3000 ° C. to obtain composite graphite particles of the present invention having a coating amount of 10%.
  • Example 4
  • the resin-coated graphite particles are exposed to up to 270 in air.
  • the temperature was raised over time, and the temperature was further maintained at 270 ° C. for 2 hours to cure the coating material. This cured product was crushed so as to be below a 75 ⁇ m sieve.
  • a pre-carbonization treatment was performed at 1000 ° C. in a nitrogen atmosphere, and further a carbonization was performed at 3000 ° C. to obtain composite graphite particles of the present invention having a coating amount of 10%.
  • Phenol tree 3 g (40% residual carbon) 60 g of a mixture of 500 g tar gas oil and 6 g hexamethylenetetramine was mixed with granulated graphite (average particle size 20 ⁇ m, aspect ratio 2) 76 g was added and stirred in a dispersed state. The solvent was distilled off at 150 ° C under reduced pressure to obtain resin-coated graphite particles. The coated graphite particles were heated in air to 270 over 5 hours, and were further kept at 270 for 2 hours to cure the coating. This cured product was pulverized so as to be under a 75 / zm sieve. By pre-carbonizing at 1000 at a nitrogen atmosphere and carbonizing at 3000 further, composite graphite particles of a comparative example having a coverage of 24% were obtained. Comparative Example 3
  • Granulated graphite (30 g of phenolic resin (residual carbon 40%), coal-based pitch (softening point 105 ° C, residual carbon 60%), 20 g of Tanole gas oil, and 6 g of hexamethylenetetramine The average particle size was 20 m, and the aspect ratio was 2) 76 g, and the mixture was stirred in a dispersed state.
  • the tar gas oil as a solvent was distilled off under reduced pressure at 150 to obtain resin-coated graphite particles.
  • the resin-coated graphite particles were heated in air to 270 ° C over 5 hours, and kept at 270 for 2 hours to cure the coating material. This hardened product was crushed so as to be below a 75 / Xm sieve.
  • pre-carbonization treatment was performed at 1000 ° C in a nitrogen atmosphere, and carbonization was further performed at 3000 ° C to obtain composite graphite particles of a comparative example having a coating amount of 24%.
  • Example 1 granulated graphite of a comparative example was obtained in the same manner as in Example 1 except that no coating treatment was performed. Comparative Example 6
  • Coal pitch (softening point 105, residual carbon 60%) 16.7 2 is dissolved in tar gas oil 50 ( ⁇ ), and 90 g of granulated graphite (average particle size 20 / zm, aspect ratio 2) is added and dispersed. It was stirred in the state. Next, the tar gas oil as a solvent was distilled off at 150 ° C. under reduced pressure to obtain pitch-coated graphite.
  • the coated graphite particles were pre-carbonized at 1000 ° C. in a nitrogen atmosphere and pulverized so as to be under a 75 / m sieve. By further carbonizing at 3000 ° C, composite graphite particles corresponding to the prior art having a coating amount of 10% were obtained. Comparative Example 7
  • Example 1 carbonization at 3000 ° C. was not performed. Except for this, composite graphite particles corresponding to the prior art were obtained in the same manner as in Example 1. Comparative Example 8
  • Example 1 the graphite particles were obtained by applying a mechanical external force to scaly natural graphite, but did not result in spheroidization, and were subjected to a squaring treatment with the scaly shape (average particle diameter 15 ii m, Except for using the aspect ratio 3.5), a composite graphite particle corresponding to the prior art was obtained in the same manner as in Example 1.
  • Table 2-1 and Table 2-2 show the powder characteristics and battery characteristics of the composite graphite particles of Examples and Comparative Examples.
  • the granulated graphite is coated with a carbon material having an appropriate R value.
  • the discharge capacity is slightly reduced as compared with Comparative Example 5 having no carbonized material, it can be seen that the high discharge capacity is maintained and the initial charge / discharge efficiency, rapid discharge efficiency, and cycle characteristics are excellent.
  • Examples 2 and 4 in which a monomer-containing phenolic resin was used as a raw material as thermosetting resins rapid discharge efficiency and cycle characteristics were excellent.
  • Comparative Example 5 having no carbonized material
  • Comparative Examples 1 and 3 in which the coating of the granulated graphite with the carbonized material was insufficient, the initial charge / discharge efficiency, rapid discharge efficiency, and cycle characteristics were remarkably low.
  • Comparative Examples 2 and 4 where the amount of carbonized material was larger than the preferred range, the carbonized material was peeled off due to the crushing of the composite graphite particles fused during coating, and the effect of improving the initial charge / discharge efficiency, etc. Poor.
  • the discharge capacity is significantly reduced. Peeling of the carbonized material can also be confirmed from the increase in specific surface area.
  • Comparative Example 6 which corresponds to the prior art in which no thermosetting resin is used as the carbonized material, the crystallinity of the carbonized material becomes too high, the R value decreases, and the initial charge / discharge efficiency decreases. . Furthermore, in the case of Comparative Example 7 in which the carbonization temperature was lowered from 3000 ° C to 1000, the discharge capacity was significantly reduced, and the rapid discharge efficiency and cycle characteristics were low. In the case of Comparative Example 8 in which the aspect ratio of the granular graphite was out of the range of the present invention, which corresponds to the prior art, the rapid discharge efficiency and the cycle characteristics were low due to the scale shape of the composite graphite particles. It will be.
  • Example 1 363 95 91 92
  • Example 2 365 95 93
  • Example 3 360 94. 94 95 Example 4 362 95 95 Comparative Example "! 371 on 74 84 Comparative Example 2 344 gi 81 88 Comparative Example 3 371 90 75 85 Comparative Example 4 342 91 85 89 Comparative Example 5 370 87 71 82 Comparative Example 6 366 88 90 91 Comparative Example 7 347 92 87 88 Comparative Example 8 363 91 69 78
  • composite graphite particles suitable as a negative electrode material of a lithium ion secondary battery are provided with good productivity and low cost.
  • Lithium-ion secondary batteries using these composite graphite particles as the anode material can not only achieve both high initial charge / discharge efficiency and large discharge capacity, which have been difficult to achieve in the past, but also have excellent performance. It also has both rapid discharge characteristics and cycle characteristics. Accordingly, the composite graphite particles of the present invention can satisfy the recent demand for higher density of battery energy. Further, the device equipped with the negative electrode material and the lithium secondary battery of the present invention can be reduced in size and improved in performance, and can contribute to a wide range of industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A lithium ion secondary battery capable of very successfully achieving both performances that have been conventionally incompatible and difficult to accomplish concurrently - a high initial charging/discharging efficiency and a large discharge capacity, and also being provided with both of excellent quick discharge characteristics and cyclic characteristics; and constituting materials thereof. Specifically, composite graphite particles comprising a carbon material, lower in crystallinity than graphite having an X-ray diffraction interplanar spacing d002 of less than 0.337 nm, on the at least surface portion of the graphite, wherein the aspect ratio of the composite graphite particles is up to 3, 0.5-20 mass% of the composite graphite particles consists of the carbon material, and a ratio (I1580/I1360) between a peak intensity (I1580 ) at 1580 cm-1 at the Raman spectrum of the composite graphite particles and a peak intensity (I1360)at 1360 cm-1 is at least 0.1 and less than 0.3, and a production method therefore; and a cathode material and a lithium secondary battery using the composite graphite particles.

Description

複合黒鉛粒子およびその製造方法、 ならびにこれを用いたリチウムイオン二次 電池の負極材およびリチウムイオン二次電池 技術分野  Composite graphite particles, method for producing the same, negative electrode material of lithium ion secondary battery using the same, and lithium ion secondary battery
本発明は、 放電容量が大きくカゝっ初期充放電効率も高く、 さらに急速放電特性 およびサイクル特性にも優れるリチウムイオン二次電池おょぴその構成材料に関 する。 具体的には、 物性の異なる少明なくとも 2種の材料からなる複合黒鉛粒子お よぴその製造方法、 ならぴに該複合黒鉛細粒子を用 、た負極材ぉょぴリチウムィォ ン二次電池に関する。 背景技術  The present invention relates to a lithium ion secondary battery having a large discharge capacity, a high initial charge / discharge efficiency, and excellent fast discharge characteristics and cycle characteristics, and a constituent material thereof. Specifically, composite graphite particles composed of at least two kinds of materials having different physical properties and a method for producing the same, and a negative electrode material lithium ion secondary battery using the composite graphite fine particles. About. Background art
近年、 電子機器の小型化あるいは高性能化に伴い、 電池の高エネルギー密度化 に対する要望はますます高まっている。 リチウムイオン二次電池は、 他の二次電 池に比べて高電圧化が可能なのでエネルギー密度を高められるため注目されてい る。 リチウムイオン二次電池は、 負極、 正極および非水電解質を主たる構成要素 とする。 非水電解質から生じるリチウムイオンは、 放電および充電過程で負極お よび正極間を移動し、 二次電池となる。  In recent years, as electronic devices have become smaller and more sophisticated, there has been an increasing demand for higher energy density batteries. Lithium-ion rechargeable batteries are attracting attention because they can operate at higher voltage than other rechargeable batteries and can increase the energy density. A lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components. Lithium ions generated from the non-aqueous electrolyte move between the negative electrode and the positive electrode during the discharging and charging processes, forming a secondary battery.
通常、 上記のリチウムイオン二次電池の負極材料には、 炭素材料が使用され る。 このような炭素材料として、 特に充放電特性に優れ、 大きい放電容量と電位 平坦性とを示す黒 |&が有望視されている (特公昭 6 2— 2 3 4 3 3号公報等) 。 黒鉛は、 縮合多環六角網平面 (本願では、 炭素網面とも呼ぶ) からなる三次元 結晶規則性 (本願では、 結晶性とも呼ぶ) が発達するほど、 リチウムとの層間化 合物を安定して形成しやすい。 よって、 黒鉛の結晶性が高いほど、 多量のリチウ ムが炭素網面の層間に挿入されるので、 放電容量を大きくできることが報告され ている (電気化学および工業物理化学、 61 (2),1383 (1993)など) 。 該炭素網面層 へのリチウムの揷入量により種々の層構造が形成され、 それらが共存する領域で は平坦でかつリチウム金属に近い高い電位を示すことも報告されている(J. Elect rochem. Soc. , Vol. 140, 9, 2490 (1993)など)。 したがって、 黒鉛を負極材に用いて リチウムィオン二次電池を組み立てた場合には、 高出力を得ることが可能とな る。 一般的に、 負極材料として黒鉛を使用した場合の理論容量は、 最終的に黒鉛 とリチウムが理想的な黒鉛層間化合物である LiC6を形成した場合の放電容量と 規定されており、 この限界放電容量は 3 7 2 mAh/gとされている。 Usually, a carbon material is used as the negative electrode material of the above-mentioned lithium ion secondary battery. As such a carbon material, black | &, which has particularly excellent charge / discharge characteristics and exhibits large discharge capacity and potential flatness, is considered to be promising (Japanese Patent Publication No. Sho 62-234433). As the three-dimensional crystal regularity (also referred to as crystallinity in this application) consisting of condensed polycyclic hexagonal network planes (also referred to as carbon network planes in this application) develops, graphite will stabilize the intercalation compound with lithium. Easy to form. Therefore, it is reported that the higher the crystallinity of graphite, the greater the amount of lithium inserted between the layers of the carbon mesh surface, and the greater the discharge capacity. (Electrochemistry and Industrial Physical Chemistry, 61 (2), 1383 (1993), etc.). It has also been reported that various layer structures are formed depending on the amount of lithium introduced into the carbon netting layer, and in the region where they coexist, they exhibit a flat and high potential close to that of lithium metal (J. Electrochem. Soc., Vol. 140, 9, 2490 (1993)). Therefore, when a lithium ion secondary battery is assembled using graphite as a negative electrode material, high output can be obtained. In general, the theoretical capacity when graphite is used as the negative electrode material is defined as the discharge capacity when graphite and lithium ultimately form LiC 6 , an ideal graphite intercalation compound. The capacity is 372 mAh / g.
し力 し、 黒鉛を負極材料としたリチウムイオン二次電池では、 黒鉛の結晶性が 高くなるほど、 初回の充電時に電解液の分解などの副反応が黒鉛表面で起こりや すくなる。 この副反応は、 分解生成物が黒鉛表面に堆積して成長し、 黒鉛の電子 が溶媒などに直接移動できない程度の厚みになるまで継続する。 初回充電時の副 反応は、 電池反応には関与しないので、 初回の放電過程で電気量として取り出す ことができない所謂不可逆容量を著しく増加させる。 すなわち、 初回の充電容量 に対する初回の放電容量の比率 (本願では、 初期充放電効率とも呼ぶ) が低下す るという問題がある (J. Electrochem. Soc. , Vol. 117 222 (1970)など)。 不可逆容 量は、 下式により表される。  However, in a lithium-ion secondary battery using graphite as the negative electrode material, the higher the crystallinity of graphite, the more easily side reactions such as decomposition of the electrolytic solution occur on the graphite surface during the first charge. This side reaction continues until the decomposition products accumulate and grow on the graphite surface, and the thickness of the graphite is such that the electrons of the graphite cannot directly move to a solvent or the like. Since the side reaction at the time of the first charge does not participate in the battery reaction, the so-called irreversible capacity which cannot be taken out as electricity in the first discharge process is significantly increased. In other words, there is a problem that the ratio of the initial discharge capacity to the initial charge capacity (also referred to as initial charge / discharge efficiency in the present application) decreases (J. Electrochem. Soc., Vol. 117 222 (1970), etc.). The irreversible capacity is represented by the following equation.
不可逆容量 =初回の充電容量一初回の放電容量  Irreversible capacity = Initial charge capacity-Initial discharge capacity
また、 溶媒分子とリチウムイオンとがコインタ—力レート (co-intercalate) して黒鉛表面層が剥げ落ち、 新たに露出した黒鉛表面が電解液と反応することに より初期充放電効率が低下することも報告されている (J. Electrochem. Soc., Vo 1. 137, 2009 (1990) )o  In addition, the solvent molecules and lithium ions co-intercalate, causing the graphite surface layer to flake off and the newly exposed graphite surface to react with the electrolyte, resulting in lower initial charge / discharge efficiency. (J. Electrochem. Soc., Vo 1.137, 2009 (1990)) o
このような初期充放電効率の低下を補償する手段として、 二次電池の正極材を 追加する方法が知られている。 し力 し、 余分な正極材の添加は、 エネルギー密度 を減少させるという新たな問題を発生させてしまう。 上記のように、 黒鉛を負極材料として用いたリチウムイオン二次電池では、 大 きい放電容量と高い初期充放電効率を両立させることは、 黒鉛の結晶化度に依存 する二律背反する要求となる。 As a means for compensating for such a decrease in the initial charge / discharge efficiency, a method of adding a cathode material for a secondary battery is known. However, the addition of extra cathode material creates a new problem of reducing energy density. As described above, lithium ion secondary batteries using graphite as the negative electrode material Achieving both a high discharge capacity and high initial charge / discharge efficiency is a conflicting requirement that depends on the crystallinity of graphite.
これを解決する方法として、 放電容量の増大に有利な高結晶性の黒鉛を核とし て、 その表面を初期充放電効率の向上に有利な低結晶性の黒鉛あるいは炭素で被 覆し、 二層構造とする方法が提案されている。 なぜなら、 低結晶性の炭素は、 放 電容量は小さいものの電解液に対する分解反応性が低いからである。  As a method to solve this, a two-layer structure is used, in which the core is high crystalline graphite, which is advantageous for increasing the discharge capacity, and its surface is covered with low crystalline graphite or carbon, which is advantageous for improving the initial charge and discharge efficiency. Has been proposed. This is because low-crystalline carbon has a low discharge capacity, but low decomposition reactivity with electrolyte.
このような結晶性の異なる二層構造の炭素材を用いた従来技術を大別すれば、 次のようになる。  The prior art using such a two-layer carbon material having different crystallinity can be roughly classified as follows.
(1) 核となる高結晶性黒鉛の表面を、 プロパン、 ベンゼンなどの有機化合物の 熱^?ガスから導かれる低結晶性の炭素で被覆するもの (例えば、 特開平 4一 3 68778号公報、 特開平 5— 275076号公報) 。  (1) Coating the surface of highly crystalline graphite as a nucleus with low-crystalline carbon derived from hot gas of organic compounds such as propane and benzene (for example, Japanese Patent Application Laid-Open No. Hei 4-368778, JP-A-5-275076).
(2) 核となる高結晶性黒鉛に、 ピッチ.や硬化性樹脂などを液相で被 覆あるいは含浸した後、 1 000°C程度の温度で焼成して表層に低結 晶性の炭素を形成するもの (例えば、 特開平 4一 368 778、 特開 平 5— 94838号公報、 特開平 5— 2 1 7604号公報、 特開平 6 - 845 1 6号公報、 特開平 07— 302595、 特開平 1 1— 54 1 23号公報、 特開 2000— 229924号公報、 特開 2000- 3708号 公報) 。  (2) After coating or impregnating pitch or curable resin with high crystalline graphite as a nucleus in a liquid phase, calcination is performed at a temperature of about 1 000 ° C to produce low crystalline carbon on the surface layer. What is formed (for example, JP-A-4-1368778, JP-A-5-94838, JP-A-5-217604, JP-A-6-84516, JP-A-07-302595, 11-54123, JP-A-2000-229924, JP-A-2000-3708).
しかしながら、 いずれの方法も、 放電容量の增大に関する近年の要求レベルに 対しては未だに充分とは言えない。  However, none of these methods is still sufficient for the recently required level of large discharge capacity.
上記 (1) の方法は、 工業的生産の観点からは製造工程が煩雑でコストが高 く、 生産性に問題がある。 また表面の低結晶性炭素が極薄膜状に被覆されるた め、 比表面積が高く初期充放電効率が低いという 題がある。  The method (1) has a problem in productivity because the production steps are complicated and costly from the viewpoint of industrial production. In addition, since the low-crystalline carbon on the surface is coated in an extremely thin film, the specific surface area is high and the initial charge / discharge efficiency is low.
また、 上記 (2) の方法は、 1000^程度で焼成した際に、 表層の低結晶性 炭素同士が融着し、 これを解砕した場合に表層の低結晶性炭素が核である黒鉛か ら剥がれ落ち、 比表面積や嵩密度などの粉体特性、 初期充放電効率などの電池特 性が低下するという問題がある。 また、 上記 ( 1 ) と (2 ) の方法においては、 核である黒鉛と表層の低結晶性 炭素とは、 充放電に伴う膨張、 収縮挙動が異なるため、 急速充放電時ゃ充放電を 繰り返すにつれて、 表層の低結晶性炭素が剥がれ落ち、 上記と同様の問題を引き 起こすこともある。 In the above method (2), the low-crystalline carbon of the surface layer is fused together when fired at about 1000 ^, and when the low-crystalline carbon of the surface layer is crushed, the low-crystalline carbon of the surface layer is reduced to graphite or nucleus. There is a problem that powder characteristics such as specific surface area and bulk density, and battery characteristics such as initial charge / discharge efficiency are reduced. In the above methods (1) and (2), the charge / discharge during rapid charge / discharge is repeated because the nucleus graphite and the low-crystalline carbon of the surface layer have different expansion and contraction behavior upon charge / discharge. As a result, the low-crystalline carbon on the surface layer may peel off, causing the same problem as described above.
電池の放電容量は、 負極を構成する黒鉛の容積当りの放電容量に大きく依存す る。 したがって、 電池の放電容量を大きくするためには、 単位重量当りの放電容 量 (mA hZ g ) が大きい黒鉛を高密度に充填する方が有利である。 ところが、 黒鉛を高密度に充填して負極を形成した場合には、 上記の (1 ) と (2 ) の方法 では、 黒鉛と表層の低結晶性炭素の密着力が不足しがちである。 すると、 低結晶 性炭素の被膜が黒鉛から剥がれ、 電解液との反応性が高い黒鉛表面が露出し、 初 期充放電効率が低下することがある。  The discharge capacity of a battery largely depends on the discharge capacity per volume of graphite constituting the negative electrode. Therefore, in order to increase the discharge capacity of the battery, it is more advantageous to fill graphite with a large discharge capacity per unit weight (mAhZg) at a high density. However, when a negative electrode is formed by filling graphite at a high density, the adhesion between graphite and the low-crystalline carbon of the surface layer tends to be insufficient in the above methods (1) and (2). Then, the low-crystalline carbon film is peeled off from the graphite, the surface of the graphite having high reactivity with the electrolyte is exposed, and the initial charge / discharge efficiency may decrease.
なお、 特開 2000- 3708号公報においては、 黒鉛にピッチを被覆後、 28 00°Cで熱処理することも実施例に示されているが、 形成された被膜は 結晶性が低く (ラマン分光の R値が 0. 32, R値の測定法は後述する) 、 上記と同様の問題を生じる。 また、 角取りされた鱗片状黒鉛を芯材に 用いているが、 黒鉛のァスぺク ト比が大きく、 負極を製造した場合に 黒鉛が配向することも急速放電特性やサイクル特性の低下を招いてい る。  In addition, in JP-A-2000-3708, it is shown in Examples that a graphite is coated with a pitch and then heat-treated at 2800 ° C., but the formed film has low crystallinity (Raman spectroscopy). The R value is 0.32, and the method of measuring the R value will be described later.) However, the same problem as described above occurs. In addition, although flaked graphite flakes are used as the core material, the graphite has a large aspect ratio and the graphite is oriented when a negative electrode is manufactured. Invited.
上記、 従来技術とは別に、 複合黒鉛の粒子形状を球状に近づけた特 開 2001-89118号公報の場合は、 急速充放電特性やサイクル特性に一定 の効果が認められる。 しかしながら、 該公報では、 最外層と内部との 結晶性の違いは言及されていない。 複数の偏平状のコータスとピッチ を混合、 焼成し、 ァスぺク ト比が 5以下になるように粉砕したのち、 黒鉛化するという該製法からすれば、 単に高結晶性の複合黒鉛粒子が 得られるのみであり、 初期充放電効率は低いままである。 本発明は、 黒鉛をリチウムイオン二次電池の負極材料に用いた時に、 二律背反 する性能、 すなわち大きい放電容量と高い初期充放電効率を兼備するとともに急 速放電特性とサイクル特性にも優れるリチウムィオン二次電池を得ることを目的 とする。 具体的には、 該性能を満足させることができる新規な複合黒鉛粒子およ ぴその製造方法、 ならびに該複合黒鉛粒子を用いた負極材およびリチウムイオン 二次電池を提供することを目的とする。 発明の開示 In the case of Japanese Patent Publication No. 2001-89118, in which the particle shape of the composite graphite is made closer to a sphere, apart from the above-described prior art, a certain effect is recognized in the rapid charge / discharge characteristics and cycle characteristics. However, the publication does not mention the difference in crystallinity between the outermost layer and the inner layer. According to this manufacturing method, a plurality of flat coats and pitches are mixed, fired, pulverized to an aspect ratio of 5 or less, and then graphitized. Only the initial charge / discharge efficiency remains low. The present invention is a trade-off when graphite is used for the negative electrode material of a lithium ion secondary battery. It is an object of the present invention to obtain a lithium-ion secondary battery having both high discharge capacity and high initial charge / discharge efficiency, as well as excellent rapid discharge characteristics and cycle characteristics. Specifically, an object of the present invention is to provide a novel composite graphite particle capable of satisfying the performance, a method for producing the same, and a negative electrode material and a lithium ion secondary battery using the composite graphite particle. Disclosure of the invention
すなわち本発明は、 X線回折の面間隔 が 0. 337M*満である黒鉛の少なくと も表面部分に、 該黒鉛よりも結晶性が低い炭素材を有する複合黒鉛粒子であつ て、 該複合黒鉛粒子のアスペクト比が 3以下で、 該複合黒鉛粒子の 0. 5〜20質 量%が該炭素材であり、 該複合黒鉛粒子のラマンスぺクトルにおける 1580cm— 1の ピーク強度 (11580) に対する 1360cm - 1のピーク強度 (Ι136β) の比 (1158。/1136。) が 0. 1以上から 0. 3未満である複合黒鉛粒子の発明である。 なお、 この複合黒鉛粒 子は、 該炭素材の X線回折の面間隔 が 0. 343ηπ*満で、 かつ該黒鉛の面間隔 d 002に対する比が 1. 001以上から 1. 02未満であるものが好ましい。 That is, the present invention relates to composite graphite particles having a carbon material having lower crystallinity than graphite at least on a surface portion of graphite having an X-ray diffraction plane spacing of less than 0.337 M *. in an aspect ratio of particles of 3 or less, the composite 0.5 to 20 mass% of the graphite particles are carbon materials, 1360 cm for 1580Cm- 1 peak intensity (1 1580) in Ramansu Bae spectrum of the composite graphite particles The invention is directed to a composite graphite particle having a ratio (1 158 ./1 136. ) Of the peak intensity ( -136 β ) of −1 from 0.1 or more to less than 0.3. In addition, the composite graphite particles have an X-ray diffraction plane spacing of the carbon material of less than 0.343ηπ * and a ratio of the graphite to the plane spacing d 002 of from 1.001 or more to less than 1.02. Is preferred.
さらに、 いずれの複合黒鉛粒子も、 該黒鉛が鱗片状黒鉛を造粒したものである のが好ましい。  Further, it is preferable that any of the composite graphite particles is obtained by granulating flaky graphite.
また、 本願では、 鱗片状黒鉛を機械的外力で造粒球状化した球状黒鉛粒子が、 炭素量換算で 0. 5〜20質量%となる、 樹脂単独または樹脂とピッチとの混合物を 加熱炭化してなる炭化物層によつて被覆された複合黒鉛粒子の発明も提供する。 さらに、 本願は、 鱗片状黒鉛を機械的外力で球状に賦形した造粒化黒鉛に、 熱 硬化性樹脂、 熱硬化性樹脂の前駆体おょぴ熱硬化性樹脂の原料の混合物からなる 群より選ばれる少なくとも 1種の樹脂材料を含有する炭化可能材料を混合して炭 . 化した、 0. 5〜20質量%の炭化材によって被覆された複合黒鉛粒子の発明も提供 する。 なお、 この複合黒鉛粒子は、 該炭化可能材料が、 該樹脂材料とタール類の 混合物であり、 力っ該樹脂材料 Zタール類- 5 / 9 5〜: 1 0 0 / 0の質量比で用 いたものが好ましい。 W また、 前記のいずれの複合黒鉛粒子も、 該樹脂材料が、 フエノール樹脂、 フエ ノール樹脂の前駆体おょぴフエノ一ル樹脂のモノマーの混合物からなる群より選 ばれる少なぐとも 1種であるものが好ましい。 Also, in the present application, spheroidal graphite is granulated and spheroidized by mechanical external force, and the spherical graphite particles become 0.5 to 20% by mass in terms of carbon amount. The resin alone or the mixture of the resin and the pitch is heated and carbonized. The invention also provides a composite graphite particle coated with a carbide layer comprising: Furthermore, the present application relates to a group comprising a mixture of a thermosetting resin, a precursor of a thermosetting resin, and a raw material of a thermosetting resin to granulated graphite obtained by shaping flaky graphite into a spherical shape by mechanical external force. Also provided is an invention of composite graphite particles coated with 0.5 to 20% by mass of a carbonizing material obtained by mixing and carbonizing a carbonizable material containing at least one resin material selected from the group consisting of: In the composite graphite particles, the carbonizable material is a mixture of the resin material and tars, and the resin material is strongly used at a mass ratio of Z tars of 5/95 to 100/0. Are preferred. W Also, in any of the above composite graphite particles, the resin material is at least one selected from the group consisting of a phenolic resin, a precursor of a phenolic resin, and a mixture of monomers of a phenolic resin. Are preferred.
さらに、 本願では、 上記で開示したいずれかの複合黒鉛粒子を含むリチウムィ オン二次電池の負極材の発明も提供する。 また、 これらのいずれかの負極材を用 いたリチウムイオン二次電池の発明も提供する。  Further, the present invention also provides an invention of a negative electrode material of a lithium ion secondary battery including any of the composite graphite particles disclosed above. The invention also provides a lithium ion secondary battery using any of these negative electrode materials.
さらに、 本願は、 鱗片状黒鉛を機械的外力で球状にする造粒工程、.得られた造 粒化黒鉛に、 後の炭化工程で得られる複合黒鉛粒子の 80〜99. 5%が該造粒化黒鉛 になるように、 熱硬化性樹脂、 熱硬化性樹脂の前駆体および熱硬化性樹脂の原料 の混合物からなる群より選ばれる少なくとも 1種の樹脂材料を含有する炭化可能 材料を混合する工程、 および得られた混合物を 2000°0〜3200 で炭化する工程を 含む複合黒鉛粒子の製造方法も提供する。 なお、 この製造方法においては、 該炭 化可能材料が、 該樹脂材料とタール類の混合物であり、 力っ該樹脂材料 Zタール 類 = 5 Z 9 5〜1 0 0ノ0 (質量比) であることが好ましい。  Further, the present application is directed to a granulation step in which flaky graphite is made spherical by mechanical external force, and 80 to 99.5% of composite graphite particles obtained in a subsequent carbonization step are added to the obtained granulated graphite. A carbonizable material containing at least one resin material selected from the group consisting of a thermosetting resin, a precursor of a thermosetting resin, and a raw material of a thermosetting resin is mixed so as to become granulated graphite. The present invention also provides a method for producing composite graphite particles, comprising the steps of: carbonizing the obtained mixture at 2000 ° 0 to 3200. In this manufacturing method, the carbonizable material is a mixture of the resin material and tars, and the resin material is Z tars = 5Z95 to 100% (mass ratio). Preferably, there is.
また、 いずれの製造法においても、 該樹脂材料が、 フエノール樹脂、 フエノー ル榭脂の前駆体おょぴフエノール樹脂のモノマーの混合物からなる群より選ばれ る少なくとも 1種であることが好ましい。  In any of the production methods, the resin material is preferably at least one selected from the group consisting of a phenolic resin, a precursor of a phenolic resin, and a mixture of monomers of a phenolic resin.
さらに、 上記のいずれの製造方法においても、 該炭化工程の前に、 該樹脂材料 を 200〜300°Cで熱硬化する工程をさらに行うのがより好ましい。  Further, in any of the above production methods, it is more preferable to further perform a step of thermally curing the resin material at 200 to 300 ° C. before the carbonizing step.
図面の簡単な説明 図 1は、 充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図 である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing the structure of a button-type evaluation battery used for a charge / discharge test.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。 .  Hereinafter, the present invention will be described in detail. .
本発明は、 X線回折の面間隔 d。02が 0. 337nm未満である黒鉛の少なくとも表面部 分に、 該黒鉛よりも結晶性が低い炭素材を有する複合黒鉛粒子であって、 該複合 黒鉛粒子のァスぺクト比が 3以下で、 該複合黒鉛粒子の 0. 5〜20質量%が該炭素 材であり、 該複合黒鉛粒子のラマンスぺクトルにおける 1580cm—1のピーク強度 (11580) に対する 1360cm- 1のピーク強度 (11360) の比 (Ι158βΖΐ1360) が 0. 1以上か ら 0. 3未満である複合黒鉛粒子である。 In the present invention, the d-spacing of X-ray diffraction is used. 02 is less than 0.337 nm at least on the surface of graphite In another aspect, the composite graphite particles include a carbon material having a lower crystallinity than the graphite, wherein the composite graphite particles have an aspect ratio of 3 or less and 0.5 to 20% by mass of the composite graphite particles. a carbon-material, or the composite graphite ratio of 1360Cm- 1 peak intensity 1580Cm- 1 of relative peak intensity (1 1580) in Ramansu Bae vector particles (1 1360) (Ι 158β Ζΐ 1360) is 0.1 or more Are less than 0.3.
黒鉛  Graphite
本発明の複合黒鉛粒子の芯材を構成する黒鉛は、 X線回折の測定値である d。Q2 が 0. 337nm未満を示す高結晶性の黒鉛である。 このような黒鉛としては、 例え ば、 市販の鱗片状天然黒鉛が代表的である。 結晶性の高い黒鉛ほど、 結晶性が規 則的に成長しており、 一般に鱗片状を呈している。 また、 最終的に得られる複合 黒 子の形状がこの黒鉛の形状を反映すること力ゝら、 黒鉛の形状は球状に近い ものが好ましく、 アスペクト比 (粒子の短軸長さに対する長軸長さの比) が 3以 下の黒鉛を用いるのが好い。 このような黒鉛は、 例えば、 鱗片状黒鉛を原料とし て以下の方法で作ることが出来る。 鱗片状黒鉛としては、 市販品、 あるいは粗粒 の天然黒鉛や人造黒鉛など様々な形状の黒鉛が利用できる。 粗粒の天然黒鉛や人 造黒鉛など、 鱗片状ではない黒鉛の場合には、 まず、 公知の粉碎装置を用いて粉 枠し、 鱗片状にするのが好ましい。 この際、 粉碎物の平均粒径を 5〜60/z mに調 整するのがより好ましい。 粉碎装置としては、 カウンタジェットミル (ホソカワ ミクロン (株) 製) 、 カレントジェット (日清エンジニアリング (株) ) などが 使用できる。 粉碎などによって得た鱗片状黒 |&は、 その表面に鋭角な部分を有し ているが、 本発明では、 これに機械的外力を加えて球状に賦形し、 表面が平滑な 造粒化黒鉛にするのが好い。 この造粒工程では、 通常、 複数の粉砕された鱗片状 黒鉛を用いて、 アスペクト比が 3以下の造粒化黒 こなるように調製される。 し かし、 本発明では、 粉砕された鱗片状黒鉛を単独で用いることを排除するもので はない。 機械的外力を加えて球状に賦形する方法は、 特に制限されず、 例えば、 接着剤や樹脂などの造粒助剤の共存下で複数の鱗片状黒鉛を混合する方法、 複数 の鱗片状の黒鉛に接着剤を用いずに機械的外力を加える方法、 両者の併用などが 挙げられる。 し力 し、 このような造粒助剤を用いずに機械的外力を加えて球状に 造粒する方がより好ましい。 造粒装置としては、 GRANUREX (フロイント産業The graphite constituting the core material of the composite graphite particles of the present invention is a measured value of X-ray diffraction d. It is a highly crystalline graphite having a Q2 of less than 0.337 nm. As such graphite, for example, commercially available flaky natural graphite is typical. The higher the crystallinity of graphite, the more the crystallinity grows in a regular manner, and it generally has a scaly shape. In addition, it is important to note that the shape of the composite particles finally obtained reflects the shape of the graphite, and that the shape of the graphite is preferably close to spherical, and the aspect ratio (the length of the long axis to the short axis of the particles) It is preferable to use graphite having a ratio of 3 or less. Such graphite can be produced, for example, using flaky graphite as a raw material by the following method. As the flaky graphite, commercially available products or various shapes of graphite such as coarse-grained natural graphite and artificial graphite can be used. In the case of non-scale graphite, such as coarse-grained natural graphite or artificial graphite, it is preferable to first form a scale using a known pulverizer to form a scale. At this time, it is more preferable to adjust the average particle size of the ground product to 5 to 60 / zm. As a grinding device, a counter jet mill (manufactured by Hosokawa Micron Co., Ltd.), a current jet (Nisshin Engineering Co., Ltd.) or the like can be used. The scaly black | & obtained by pulverization etc. has an acute portion on its surface, but in the present invention, it is shaped into a sphere by applying a mechanical external force to it, and the surface becomes smooth and granulated. Preference is given to graphite. In this granulation step, usually, a plurality of ground flake graphite is used to prepare granulated black having an aspect ratio of 3 or less. However, the present invention does not exclude the use of ground flake graphite alone. The method of applying a mechanical external force to form a spherical shape is not particularly limited.For example, a method of mixing a plurality of flaky graphite in the presence of a granulating aid such as an adhesive or a resin, a method of mixing a plurality of flaky graphite A method of applying mechanical external force to graphite without using an adhesive, a combination of both, etc. No. However, it is more preferable to apply mechanical external force without using such a granulating aid to granulate into a spherical shape. GRANUREX (Freund Industrial
(株) 製) 、 ニューグラマシン ( (株) セイシン企業製) 、 ァグロマスター (ホ ソカヮミクロン (株) 製) などの造粒機、 ハイプリダイゼーシヨンシステムGranulators, such as New Grass Machines (manufactured by Seishin Enterprise), Agromaster (manufactured by Hosoka Micron Corp.), and a high predication system.
( (株) 奈良機械製作所製) 、 メカノマイクロス (株) 奈良機械製作所製) 、 メカノフュージョンシステム (ホソカワミクロン (株) ) などの剪断圧縮 &0ェ能 力を有する装置が使用可能である。 また、 前記の粉碎装置を用いて運転条件を操 作することによつても造粒することができる。 Devices with shear compression and zero force, such as (Nara Machinery Co., Ltd.), Mechano Micros Co., Ltd. (Nara Machinery Co., Ltd.), Mechano Fusion System (Hosokawa Micron Co., Ltd.) can be used. Granulation can also be performed by operating the operating conditions using the above-described milling device.
球状に賦形された造粒化黒鉛は、 一個の鱗片状黒鉛が丸められたもの、 複数の 鱗片状黒鉛が集合し造粒されてなるもののいずれであってもよい。 特に複数の鱗 片状黒鉛が同心円状に造粒された形状を呈することが好ましい。  The granulated graphite shaped into a sphere may be any one obtained by rolling one flake graphite, or one obtained by aggregating and granulating a plurality of flake graphite. In particular, it is preferable that a plurality of flaky graphites exhibit a concentrically granulated shape.
本発明の複合黒鉛粒子の芯材をなす黒鉛として、 より好適な仕様を具体的に挙 げると、 平均粒子径が 5〜60 m、 アスペクト比が 3以下、 比表面積が 0. 5〜10m 2/g、 X線回折における結晶子の C軸方向の大きさ (Lc) が 40nm以上、 d。Q2が 0. 33 7nm未満おょぴアルゴンレーザーを用いたラマン分光法により測定した 1360cm—1 パンド強度 (1136。) と 1580cm—1パンド強度 (11580) の比 11360/11580 (R値) が 0. 06〜 0. 25、 および 1580cm-1パンドの半値幅が 10〜60である。 More specific specifications of graphite as the core material of the composite graphite particles of the present invention are specifically described below.The average particle diameter is 5 to 60 m, the aspect ratio is 3 or less, and the specific surface area is 0.5 to 10 m. 2 / g , the size (Lc) of the crystallite in the C axis direction in X-ray diffraction is 40 nm or more, d. Q2 was measured by Raman spectroscopy using the Oyopi argon laser than 0. 33 7nm 1360cm- 1 Pando intensity (1 136.) And 1580Cm- 1 Pando ratio 1 1360/1 1580 of the intensity (1 1580) (R Value) is 0.06 to 0.25, and the half width of 1580cm- 1 band is 10 to 60.
炭素材  Carbon material
本発明の複合黒鉛粒子は、 黒鉛の少なくとも表面部分が炭素材によって被覆さ れている。 炭素材は、 後述する複合黒鉛粒子の性状を与えるものであればいかな るものであってもよい。 通常、 該炭素材は、 上述の造粒化黒鉛に炭化可能材料を 塗布、 含浸および Zまたは混合などした後、 加熱による炭化処理を行うことによ つて得られるのが好ましい。 本願で言う炭化可能材料とは、 加熱することによつ て炭化および/または黒鉛化され得る材料を指す。 このような加熱は、 一般には 7 0 0 Ό以上であり、 好ましくは 8 0 0〜3 2 0 0でである。 したがって、 本願 で言う炭化処理とは、 黒鉛化処理をも包含するものである。 特に好ましくは 2 0 0 0〜3 2 0 0 °Cである。 また、 本願で言う黒鉛の少なくとも表面部分とは、 黒 鉛の外表面の全面あるいはその一部を指す。 本願の典型例でもあるが、 造粒処理 によって、 造粒化黒鉛が複数の (鱗片状) 黒鉛からなる二次粒子である場合に は、 この二次粒子の外表面あるいはその一部を指す。 このような二次粒子の場 合、 炭化可能材料が二次粒子の内部まで侵入して炭化されている場合がある。 勿 論、 黒鉛単体の内部〖こ該炭素材が形成される場合もある。 しかし、 本発明の複合 黒鉛粒子は、 該黒鉛の全外表面が該炭素材で被覆されているのが最適である。 好 適な被覆率は、 5 0〜 1 0 0 %である。 In the composite graphite particles of the present invention, at least the surface portion of the graphite is coated with a carbon material. The carbon material may be any material as long as it gives the properties of the composite graphite particles described below. Usually, the carbon material is preferably obtained by applying a carbonizable material to the above-mentioned granulated graphite, impregnating and Z or mixing, and then performing a carbonization treatment by heating. The carbonizable material referred to in the present application refers to a material that can be carbonized and / or graphitized by heating. Such heating is generally above 700 ° C., preferably between 800 and 320 °. Therefore, the carbonization treatment referred to in the present application includes the graphitization treatment. The temperature is particularly preferably from 2000 to 3200 ° C. In addition, at least the surface portion of graphite referred to in the present application is black Refers to the entire surface or a part of the outer surface of lead. Although it is a typical example of the present application, when granulated graphite is a secondary particle composed of a plurality of (scale-like) graphite by a granulation treatment, it refers to the outer surface of the secondary particle or a part thereof. In the case of such secondary particles, the carbonizable material may penetrate into the interior of the secondary particles and be carbonized. Of course, the carbon material may be formed inside graphite alone. However, the composite graphite particles of the present invention are optimally such that the entire outer surface of the graphite is coated with the carbon material. A preferred coverage is 50 to 100%.
また、 本願では、 上述の炭化可能材料は、 樹脂材料とタール類の混合物であ り、 該タール類に対する該樹脂材料の質量比が、 該樹脂材料 Z該タール類 = 5 / 9 5〜1 0 0ノ0であるのが好ましい。 さらに好ましくは 30ノ70〜70/30であ る。 該樹脂材料の割合が 5 %以上であれば、 形成される炭化物層の黒鉛化 (結晶 化) が十分に進行すると同時に、 初期充放電効率の向上効果が大きくなる。 該樹 脂材料と該タール類を混合して用いることは、 炭素材の黒鉛化度 (結晶性) を本 発明の効果が最大となるように調整することができ、 望ましい。  In the present application, the carbonizable material described above is a mixture of a resin material and tars, and the mass ratio of the resin material to the tars is such that the resin material Z the tars = 5/95 to 10 It is preferably 0-0. More preferably, it is 30 to 70/30. When the proportion of the resin material is 5% or more, the graphitization (crystallization) of the formed carbide layer sufficiently proceeds, and at the same time, the effect of improving the initial charge / discharge efficiency increases. The use of a mixture of the resin material and the tars is preferable because the degree of graphitization (crystallinity) of the carbon material can be adjusted so that the effect of the present invention is maximized.
本願で言うタール類とは、 木材乾留時に生成するタール、 石炭から得られるコ ールタール、 石油から生産される重質油などの炭素材料前駆体を指し、 これらを 原料として重縮合させたものを含む。 具体的には、 石炭系ピッチ、 パルタメソフ エーズピッチ、 石油系ピッチなどのピッチ類も本発明のタール類に含まれる。 こ れらはそれぞれ単独を 3000 程度で熱処理した場合に黒鉛構造を生成するもので ある。 光学的には、 等方性でも異方性でもよい  The term "tars" as used in the present application refers to carbon material precursors such as tar produced during wood carbonization, coal tar obtained from coal, and heavy oil produced from petroleum, and includes those obtained by polycondensing these as raw materials. . Specifically, pitches such as coal pitch, partamesophase pitch, and petroleum pitch are also included in the tars of the present invention. Each of these forms a graphite structure when heat treated alone at about 3000. Optically, it may be isotropic or anisotropic
本願で言う樹脂材料とは、 樹脂そのもの、 樹脂の前駆体および樹脂の合成原料 の混合物からなる群より選ばれる少なくとも 1種のことである。 この樹脂前駆体 は、 反応中間体やオリゴマーあるいは重合中間体なども含む。 樹脂の合成原料の 混合物を例示すれば、 モノマー類や重合開始剤などを含み、 この混合物を加熱、 攪拌および放置などすることによって樹脂が得られる混合物である。  The resin material referred to in the present application is at least one kind selected from the group consisting of a resin itself, a resin precursor, and a mixture of a resin synthesis raw material. The resin precursor also includes a reaction intermediate, an oligomer, a polymerization intermediate, and the like. An example of a mixture of resin raw materials is a mixture containing a monomer, a polymerization initiator, and the like, and a resin obtained by heating, stirring, and leaving the mixture.
本発明では、 該樹脂材料として、 熱硬化性樹脂、 熱硬化性樹脂の原料の混合物 および熱硬化性樹脂の前駆体からなる群より選ばれる少なくとも 1種を用いるこ とが好ましい。 In the present invention, as the resin material, at least one selected from the group consisting of a thermosetting resin, a mixture of raw materials of the thermosetting resin, and a precursor of the thermosetting resin is used. Is preferred.
熱硬化性樹脂類を高温で炭ィヒした場合、 得られる炭化物は、 平均的には黒鉛相 当の高い結晶性を有しており黒鉛部分も含まれることもあるが、 炭素乱層構造を 有する部分も含まれるので、 本努明では炭素材と称し、 芯材黒鉛と区別して呼 ぶ。  When a thermosetting resin is carbonized at a high temperature, the resulting carbide has on average a high degree of crystallinity equivalent to graphite and may contain a graphite portion. In this effort, it is referred to as carbon material and is distinguished from core material graphite because it includes parts that have carbon.
熱硬化性樹脂としては、 熱処理によって残存する炭素量の多いものが望まし く、 ユリア樹脂、 マレイン酸樹脂、 クマロン樹脂、 キシレン樹脂やフエノール樹 脂などが挙げられる。  As the thermosetting resin, a resin having a large amount of carbon remaining after the heat treatment is desirable, and examples thereof include a urea resin, a maleic acid resin, a coumarone resin, a xylene resin, and a phenol resin.
本発明では、 該樹脂材料として、 フエノーノレ樹脂、 フエノール樹脂の原料の混 合物おょぴフエノール樹脂の前駆体からなる群より選ばれる少なくとも 1種を用 いることがより好ましい。 より具体的に例示すれば、 フエノール樹脂それ自体 In the present invention, it is more preferable to use, as the resin material, at least one selected from the group consisting of a phenol resin, a mixture of phenol resin raw materials, and a precursor of the phenol resin. More specifically, the phenolic resin itself
(置換基を有してもよいフエノール類と、 ホルムアルデヒドに代表されるアルデ ヒド類との高度縮合物) 、 フエノール類とアルデヒド類との初期縮合物 (フエノ ール樹脂の前駆体) 、 およびフエノール類とアルデヒド類との混合物 (モノマー 混合物) がいずれも使用できる。 (Highly condensed products of optionally substituted phenols and aldehydes represented by formaldehyde), initial condensates of phenols and aldehydes (precursors of phenolic resin), and phenols Any mixture of aldehydes and aldehydes (monomer mixture) can be used.
本発明の複合黒鉛粒子を構成する炭素材の結晶性は、 芯材黒鉛の結晶性よりも 低いが、 X線回折の面間隔 d。。2が 0. 343ηπ*満であることが好ましい。 炭素材の d 002が 0. 343nm未満であれば、 放電容量がより向上し、 炭素材と黒鉛の密着性も向 上する。 黒鉛と炭素材の結晶性の差は、 黒鉛の c に対する炭素材の d。。2の比が 1. 001以上から 1. 02未満の範囲にあることがより好ましい。 1. 001以上であれば、 初 期充放電効率がさらに向上し、 1. 02未満である方力 炭素材の密着性もさらに向 上する。 The crystallinity of the carbon material constituting the composite graphite particles of the present invention is lower than the crystallinity of the core graphite, but the plane spacing d in X-ray diffraction. . Preferably, 2 satisfies 0.343ηπ *. Is less than d 002 is 0. 343 nm carbon material, the discharge capacity is improved, and the upper direction adhesiveness of carbon material and graphite. The difference in crystallinity between graphite and carbon material is d for carbon material versus c for graphite. . More preferably, the ratio of 2 is in the range from 1.001 or more to less than 1.02. If the ratio is 1.001 or more, the initial charge / discharge efficiency is further improved, and the adhesion of the carbon material, which is less than 1.02, is further improved.
複合黒鉛粒子  Composite graphite particles
本発明の複合黒鉛粒子は、 X線回折の面間隔 d oo2が 0. 337nm*満である黒鉛の少 なくとも表面部分に、 該黒鉛よりも結晶性が低い炭素材を有する複合黒鉛粒子で あって、 該複合黒鉛粒子のアスペクト比が 3以下で、 該複合黒鉛粒子の 0. 5〜20 質量0 /0が該炭素材であり、 該複合黒鉛粒子のラマンスぺクトルにおける 1580cm-1 のピーク強度 (1158。) に対する 1360cm - 1のピーク強度 (1136。) の比 (1158。/ 1360) が 0. 1以上から 0. 3未満であることを再度示し、 より詳細に説明する。 The composite graphite particles of the present invention are composite graphite particles having a carbon material having lower crystallinity than the graphite on at least a surface portion of graphite having an X-ray diffraction plane spacing d oo 2 of less than 0.337 nm *. there, the aspect ratio of the composite graphite particles is 3 or less, the 0.5 to 20 mass 0/0 of the composite graphite particles are carbon materials, 1580Cm- 1 in Ramansu Bae spectrum of the composite graphite particles Of peak intensity to 1360 cm (1 158.) - (. 1 136) 1 peak intensity ratio of (1 158 ./ 1360) again indicates that the 0.1 less than 3 from 0.1 1 or more, more detailed description I do.
該複合黒鉛粒子も、 アスペクト比が 3以下の球状に近い形状を特徴とする。 前 述の黒鉛を芯材とし、 その少なくとも表面部分に該黒鉛よりも結晶性が低い炭素 材が存在している。 該複合黒鉛粒子の表面の結晶性をラマン分光法の R値で規定 することができ、 アルゴンレーザーを用いたラマン分光法により測定した 1360c m-iパンド強度 (I ) と 1580cm-1パンド強度 (11580) の比 I /1158。 値) が 0. 10 以上 0. 30未満であることが必要である。 R値が 0. 1未満あるいは 0. 3以上の場合に は、 いずれも初期充放電効率が低下することがある。 特に好ましい R値は 0. 1〜 0. 2である。 The composite graphite particles are also characterized by an almost spherical shape with an aspect ratio of 3 or less. The above-described graphite is used as a core material, and a carbon material having lower crystallinity than the graphite is present at least on a surface portion thereof. The crystallinity of the surface of the composite graphite particles can be specified by the R value of Raman spectroscopy, and the 1360 cm- i band intensity (I) and the 1580 cm- 1 band intensity (I) measured by Raman spectroscopy using an argon laser. 1 1580 ) ratio I / 1 158 . Value) must be greater than or equal to 0.10 and less than 0.30. When the R value is less than 0.1 or 0.3 or more, the initial charge / discharge efficiency may decrease in any case. Particularly preferred R values are from 0.1 to 0.2.
また、 本願の該炭素材の割合は、 炭素量換算で表され、 複合黒鉛粒子に占める 炭素材の割合が 0. 5〜20質量%の範囲に規定される。 この比率は、 複合黒鉛粒子 の 80〜99. 5%が該造粒化黒鉛で占められることに対応する。 炭化工程の後、 複合 黒口、粒子の 80〜99. 5%が該造粒化黒鉛で占められるように該炭化可能材料を混合 するには、 選ばれる炭化可能材料の種類によって残炭率が異なるので一概には規 定できない。 し力し、 通常、 ^化黒鉛に対して、 炭化可能材料をおおよそ 1〜 70質量%程度を混合する。 より具体的な例を示せば、 炭化可能材料がフエノール 樹脂の場合などは、 2~50質量%择度、 望ましくは 20〜35質量%程度を混合す る。 これを参考に、 適宜試行すれば、 適切な混合比率を見出せる。 複合黒鉛粒子 に占める炭素材の割合が 0. 5質量%未満の場合は、 活性な黒鉛エツヂ面を完全に 被覆することが難しくなり、 初期充放電効率が低下することがある。 一方、 20質 量%を越える場合には、 相対的に放電容量の低い炭素材の割合が多すぎて、 複合 黒鉛粒子の放電容量が低下する。 また、 炭素材を形成するための原料 (熱硬化性 樹脂類やタールピッチ類) の割合が多く、 被覆工程やその後の熱処理工程におい て、 粒子が融着しゃすく、 .最終的に得られる複合黒鉛粒子の炭素材層の一部に割 れゃ剥離を生じ、 初期充放電効率の低下を生じることがある。 該炭素材の割合 は、 特に 3〜15質量。 /0、 さらには 8〜12質量%であることが好ましい。 ざらに、 本発明の複合黒鉛粒子の好ましい物性値を挙げると、 平均粒子径が 5 〜60〃m、 比表面積が 0. 5〜10ra2/g、 X線回折における結晶子の C軸方向の大きさ (Lc) が 40ηιη以上、 d。e2が 0. 337nm以下であることが好ましい。 平均粒子径ゃァ スぺタト比が規定値範囲内であれば、 放電容量や初期充放電効率が高く、 かつ急 速充放電特性やサイクル特性などの他の電池特性もより向上するからである。 比 表面積が lOmVg未満であれば、 負極を形成する場合の負極合剤ペースト (負極材 料とバインダー分散液との混合物) の粘度調整が容易であり、 パインダ一による 接着力も向上する。 X線回折の Lcおよび d。。2が規定値内であれば、 十分な放電容 量が得られる。 Further, the ratio of the carbon material in the present application is expressed in terms of the amount of carbon, and the ratio of the carbon material in the composite graphite particles is defined in the range of 0.5 to 20% by mass. This ratio corresponds to 80-99.5% of the composite graphite particles being occupied by the granulated graphite. After the carbonization step, to mix the carbonizable material so that 80-99.5% of the composite black mouth and particles are occupied by the granulated graphite, the residual carbon ratio depends on the type of carbonizable material selected. Since they are different, they cannot be specified unconditionally. Usually, about 1 to 70 mass% of carbonizable material is mixed with graphite graphite. As a more specific example, when the carbonizable material is a phenol resin or the like, about 2 to 50% by mass, preferably about 20 to 35% by mass is mixed. Using this as a reference, an appropriate mixing ratio can be found if necessary. If the proportion of the carbon material in the composite graphite particles is less than 0.5% by mass, it is difficult to completely cover the active graphite surface, and the initial charge / discharge efficiency may be reduced. On the other hand, when the content exceeds 20% by mass, the proportion of the carbon material having a relatively low discharge capacity is too large, and the discharge capacity of the composite graphite particles decreases. Also, the ratio of raw materials (thermosetting resins and tar pitches) for forming carbon materials is large, and particles are fused and shrunk in the coating process and the subsequent heat treatment process. The carbon particles of the graphite particles may be partially separated and peeled off, leading to a decrease in the initial charge / discharge efficiency. The ratio of the carbon material is particularly 3 to 15 mass. / 0 , more preferably 8 to 12% by mass. Roughly speaking, preferable physical properties of the composite graphite particles of the present invention include an average particle diameter of 5 to 60 μm, a specific surface area of 0.5 to 10 ra 2 / g, and a crystallite in the C-axis direction in X-ray diffraction. The size (Lc) is 40ηιη or more, d. e2 is preferably 0.337 nm or less. If the average particle diameter dust ratio is within the specified range, the discharge capacity and the initial charge / discharge efficiency are high, and other battery characteristics such as rapid charge / discharge characteristics and cycle characteristics are further improved. . When the specific surface area is less than 10 mVg, it is easy to adjust the viscosity of the negative electrode mixture paste (a mixture of the negative electrode material and the binder dispersion) when forming the negative electrode, and the adhesive force by the binder is also improved. X-ray diffraction Lc and d. . If 2 is within the specified value, a sufficient discharge capacity can be obtained.
なお、 本願では該炭素材が該黒鉛の外表面を被覆していることが望ましいこと 力ゝら、 該複合黒鉛粒子の該炭素材の部分を炭化物層とも表現している。  In the present application, it is desirable that the carbon material covers the outer surface of the graphite, and the carbon material portion of the composite graphite particles is also referred to as a carbide layer.
複合黒鈴粒子の製造方法  Method for producing composite black bell particles
本願は、 鱗片状黒鉛を機械的外力で球状にする造粒工程、 得られた造粒化黒鉛 に、 後の炭化工程で得られる複合黒鉛粒子の 80〜99. 5%が該造粒化黒鉛になるよ うに、 熱硬化性樹脂、 熱硬化性樹脂の前駆体および熱硬化性樹脂の原料の混合物 からなる群より選ばれる少なくとも 1種の樹脂材料を含有する炭化可能材料を混 合する工程、 および得られた混合物を 2000Ό〜3200°Οで炭化する工程を含む複合 黒鉛粒子の製造方法も提供する。  In the present application, the granulated step of making flake graphite spherical by mechanical external force, the obtained granulated graphite, 80 to 99.5% of the composite graphite particles obtained in the subsequent carbonization step, the granulated graphite Mixing a carbonizable material containing at least one resin material selected from the group consisting of a thermosetting resin, a precursor of the thermosetting resin, and a mixture of raw materials of the thermosetting resin, And a method for producing composite graphite particles, comprising a step of carbonizing the obtained mixture at 2000 to 3200 °.
」 本発明の複合黒鉛粒子の製造方法を例示する。 鱗片状黒鉛は、 前記のとおり、 造粒操作などであら力じめ球状に賦形されたものを用いることが望ましい。 この 造粒化黒鉛に熱硬化性樹脂類単独または熱硬化性樹脂類とタール類との混合物を 被覆する場合には、 例えば、 被覆材と造粒化黒鉛を混合機に投入し、 被覆材の軟 化点以上の温度領域で強い剪断力を付与して混練する。 あるいは、 被覆材の溶液 または分散液を造粒化黒鈴と混合したのち溶媒または分散媒を乾燥除去する方法 などが用いられる。 特に熱硬化性樹脂類を低分子量体 (樹脂の前駆体) あるいは モノマー混合体とし、 造粒化黒鉛への被覆と同時に加熱によって高分子量化する ことが望ましい。 同様に、 被覆材にタール類を含む場合においても、 被覆と同時 にタール類の重縮合を進行させることが有効である。 An example of the method for producing the composite graphite particles of the present invention will be described. As described above, it is desirable to use scaly graphite that has been preformed into a spherical shape by a granulation operation or the like. When the granulated graphite is coated with a thermosetting resin alone or a mixture of a thermosetting resin and a tar, for example, the coating material and the granulated graphite are put into a mixer, and the coating material is coated. Kneading is performed by applying a strong shearing force in the temperature range above the softening point. Alternatively, a method of mixing a solution or dispersion of the coating material with granulated black bell and then drying and removing the solvent or the dispersion medium is used. In particular, it is desirable that the thermosetting resin be a low molecular weight substance (precursor of the resin) or a monomer mixture, and the high molecular weight be obtained by heating simultaneously with coating the granulated graphite. Similarly, when tars are included in the coating material, It is effective to advance the polycondensation of tars.
本発明では被覆材として必須な熱硬化性樹脂として、 フエノーノレ樹 J!旨が好まし く、 該造粒化黒鉛にフエノール樹脂を被覆する場合に、 フエノール榭脂前駆体ま たはフエノール樹脂のモノマー含有体を用いることが好ましい。 フエノール樹脂 前駆体またはフエノール樹脂のモノマー含有体は、 加熱による溶融または溶液化 が容易であるほか、 造粒化黒鉛に均一に被覆することができる。 また、 被覆と同 時に加熱することにより形成されるフエノール樹脂層が造粒化黒鉛と強固に密着 するという特徴を有する。  In the present invention, as a thermosetting resin essential as a coating material, phenol resin J! Is preferred, and when the granulated graphite is coated with a phenol resin, a phenol resin precursor or a monomer of the phenol resin is used. It is preferable to use an inclusion. The phenolic resin precursor or monomer-containing phenolic resin can be easily melted or turned into solution by heating, and can be uniformly coated on granulated graphite. Further, the phenolic resin layer formed by heating at the same time as the coating is characterized in that it adheres strongly to the granulated graphite.
被覆材は、 複数種の組成のものを均質もしくは分散した状態で被覆することが できる。 被覆材は、 その組成を変えて、 複数回被覆することもできる。 例えば、 該造粒化黒鉛に第 1層として、 フエノールとホルムアルデヒドとからなるフエノ ール樹脂を被覆したのち、 第 2層としてジメチルフエノール (キシレノール) と ホルムアルデヒドとからなるキシレノーノレ樹脂を被覆したり、 該造粒化黒鉛に第 1層としてピッチを被覆したりしたのち、 第 2層としてフエノール樹脂を被覆す ることができる。  The coating material can be coated with a plurality of compositions in a homogeneous or dispersed state. The coating material can be coated multiple times by changing its composition. For example, the granulated graphite is coated as a first layer with a phenolic resin composed of phenol and formaldehyde, and then as a second layer is coated with a xylenolene resin composed of dimethylphenol (xylenol) and formaldehyde. After the granulated graphite is coated with a pitch as a first layer, a phenol resin can be coated as a second layer.
被覆材の被覆量は、 最終的に複合黒鉛粒子に占める炭化物層の割合が 0. 5〜20 質量%となるように設定すればよ V、。  The coating amount of the coating material should be set so that the ratio of the carbide layer to the composite graphite particles is finally 0.5 to 20% by mass.
該造粒化黒鉛に被覆材を被覆したのち、 あるいは被覆処理と同時に熱硬化性樹 脂類を 200〜300での範囲で硬化させるのが好ましい。 この硬化工程では熱硬化性 樹脂類ゃタール類に含まれる軽揮発分の揮発が起こるので通常 4時間以上の充分 な時間をかけて昇温するのが好ましい。 このような昇温時間を維持する方が、 被 覆が完全になり、 スムーズな硬化が進行するので、 被覆材と造粒化黒鉛の密着性 が増す。  It is preferable that the thermosetting resin is cured in the range of 200 to 300 after coating the granulated graphite with the coating material or simultaneously with the coating treatment. In this curing step, light volatile components contained in the thermosetting resins and tars are volatilized. Therefore, it is preferable that the temperature is raised over a sufficient time, usually 4 hours or more. Maintaining such a temperature rise time results in a more complete coating and smooth curing, which increases the adhesion between the coating material and the granulated graphite.
硬化工程ののち、 必要に応じて、 解砕や篩処理などによって粒度調整を行い、 焼成するのが好ましい。 焼成は 2000で以上で行うことが好ましい。 より好ましく は 2500〜3200で、 さらには 2800〜3200°Cが好ましい。 焼成処理はアチソン炉に代 表される一般的な黒鉛化炉を用いることができる。 非酸化性雰囲気下で行うこと 200 が望ましい。 本願では、 上述の複合黒鉛粒子いずれかを含有する負極材も提供する。 After the curing step, if necessary, the particle size is preferably adjusted by crushing, sieving, or the like, followed by firing. The firing is preferably performed at 2000 or more. The temperature is more preferably 2500-3200, and further preferably 2800-3200 ° C. For the firing treatment, a general graphitization furnace represented by an Acheson furnace can be used. Performing in a non-oxidizing atmosphere 200 is preferred. In the present application, a negative electrode material containing any of the composite graphite particles described above is also provided.
本発明の複合黒鉛粒子は、 その特徴を活かして負極以外の用途、 例えば、 燃料 電池セパレーター用の導電材料や耐火物用黒鉛などにも転用することができる が、 特に上記したリチウムイオン二次電池の負極材として好適である。  The composite graphite particles of the present invention can be diverted to applications other than the negative electrode, such as conductive materials for fuel cell separators and graphite for refractories, taking advantage of their characteristics. It is suitable as a negative electrode material.
すなわち、 本発明の負極材は、 少なく とも上述の複合黒鉛粒子が含有 されることを要件とする。 したがって、 本発明の複合黒鉛粒子そのもの も本発明の負極材である。 また、 リチウムイオン二次電池用途では、 本発明の複合黒鉛粒子と結合剤を混合した負極合剤、 さらに溶媒を加え て得られる負極合剤ペース ト、 さらにはこれを集電材に塗布したもの 等も本発明の負極材の範囲である。 以下、 本発明の複合黒鉛粒子を用いたリチウムイオン二次電池の負極材、 さら にはリチウムイオン二次電池について説明する。  That is, the negative electrode material of the present invention is required to contain at least the composite graphite particles described above. Therefore, the composite graphite particles of the present invention themselves are also the negative electrode material of the present invention. For lithium ion secondary batteries, a negative electrode mixture obtained by mixing the composite graphite particles of the present invention with a binder, a negative electrode mixture paste obtained by adding a solvent, and a negative electrode mixture paste applied to a current collector, etc. Are also within the range of the negative electrode material of the present invention. Hereinafter, a negative electrode material of a lithium ion secondary battery using the composite graphite particles of the present invention, and further, a lithium ion secondary battery will be described.
リチウムィオン二次電池用の負極材  Anode material for lithium ion secondary battery
本願では、 上述したいずれかの本発明の複合黒鉛粒子を有するリチウムイオン 二次電池用の負極材の発明も提供する。  The present application also provides an invention of a negative electrode material for a lithium ion secondary battery having any of the above-described composite graphite particles of the present invention.
本発明の負極は、 上述の本発明の負極材を固化おょぴ zまたは賦形して得られ る。 該負極の形成は、 通常の成形方法に準じて行うことができるが、 複合黒鉛粒 子の性能を充分に引き出し、 カゝっ粉末に対する賦形性が高く、 化学的、 電気化学 的に安定な負極を得ることができる方法であれば何ら制限されない。  The negative electrode of the present invention is obtained by solidifying or shaping the above-described negative electrode material of the present invention. The formation of the negative electrode can be carried out according to a usual molding method, but the performance of the composite graphite particles is sufficiently brought out, the shapeability with respect to the powder is high, and it is chemically and electrochemically stable. There is no particular limitation as long as the method can obtain a negative electrode.
負極製造時には、 複合黒鉛粒子に結合剤を加えた負極合剤を用いることができ る。 結合剤としては、 電解質や電解液溶媒に対して化学的安定性、 電気化学的安 定性を有するものを用いるのが望ましい。 例えば、 ポリフッ化ビニリデン、 ポリ テトラフルォロエチレン等のフッ素系樹脂、 ポリエチレン、 ポリビニルアルコー ル、 スチレンブタジエンラパー、 カルボキシメチルセ ^?レロースなどが用いられ る。 これらを併用することもできる。 When manufacturing the negative electrode, a negative electrode mixture obtained by adding a binder to composite graphite particles can be used. As the binder, it is desirable to use a binder having chemical stability and electrochemical stability to the electrolyte and the electrolyte solution solvent. For example, fluoroplastics such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, styrene butadiene wrapper, carboxymethyl ce? Reloise etc. are used You. These can be used in combination.
結合剤は、 通常、 負極合剤の全量中 1〜2 0質量%程度の量で用いるのが好ま しい。  Usually, it is preferable to use the binder in an amount of about 1 to 20% by mass based on the whole amount of the negative electrode mixture.
負極合剤層は、 具体的には、 分級等によって適当な粒径に調整した複合黒鉛粒 子を、 結合剤と混合することによって負極合剤を調製し、 この負極合剤を、 通 常、 集電体の片面もしくは両面に塗布することで形成することができる。 この 際、 通常の溶媒を用いることができ、 負極合剤を溶媒中に分散させてペースト状 とした後、 集電体に塗布、 乾燥すれば、 負極合剤層が均一かつ強固に集電体に接 着された負極を得ることができる。 ペーストは、 各種ミキサーで攪拌することに より調製することができる。  Specifically, the negative electrode mixture layer is prepared by mixing a composite graphite particle adjusted to an appropriate particle size by classification or the like with a binder to prepare a negative electrode mixture. It can be formed by applying to one or both surfaces of a current collector. At this time, a normal solvent can be used. The negative electrode mixture is dispersed in the solvent to form a paste, and then applied to the current collector and dried, so that the negative electrode mixture layer is uniformly and firmly formed. Thus, a negative electrode bonded to the substrate can be obtained. The paste can be prepared by stirring with various mixers.
例えば、 本発明の複合黒鉛粒子と、 ポリテトラフルォロエチレン等のフッ素系 樹脂粉末を、 イソプロピルアルコール等の溶媒中で混合、 混練した後、 塗布して 負極合剤層を形成することもできる。 また、 本発明の複合黒鉛粒子と、 ポリフッ 化ビニリデン等のフッ素系樹脂粉末あるいはカルボキシメチルセルロース等の水 溶性粘結剤を、 N—メチルピロリドン、 ジメチルホルムァミドあるいは水、 アル コール等の溶媒と混合してスラリーとした後、 塗布して負極合剤層を形成するこ ともできる。  For example, the composite graphite particles of the present invention and a fluorine-based resin powder such as polytetrafluoroethylene are mixed and kneaded in a solvent such as isopropyl alcohol, and then coated to form a negative electrode mixture layer. . Further, the composite graphite particles of the present invention, a fluorine-based resin powder such as polyvinylidene fluoride or a water-soluble binder such as carboxymethyl cellulose are mixed with a solvent such as N-methylpyrrolidone, dimethylformamide or water or alcohol. After forming a slurry, the mixture may be applied to form a negative electrode mixture layer.
本発明の複合黒鉛粒子と結合剤の混合物からなる負極合剤を集電体に塗布する 際の塗布厚は 1 0〜3 0 0 μ πιとするのが適当である。  The thickness of the negative electrode mixture comprising the mixture of the composite graphite particles and the binder according to the present invention when applied to the current collector is preferably from 10 to 300 μπι.
負極合剤層を形成した後、 プレス加圧等の圧着を行うと、 負極合剤層と集電体 との接着強度をさらに高めることができる。  After the formation of the negative electrode mixture layer, pressure bonding such as press pressure can further increase the adhesive strength between the negative electrode mixture layer and the current collector.
本発明のリチウムイオン二次電池において、 負極に用いる集電体の形状として は、 特に限定されないが、 箔状、 あるいはメッシュ、 エキスパンドメタノレ等の網 状のもの等が用いられる。 集電材としては、 例えば、 銅、 ステンレス、 エッケル 等を挙げることができる。 集電体の厚みは、 箔状の場合、 5〜 2 0 μ m程度が好 適である。 本発明では、 さらに上述の負極材を用いたリチウムイオン二次電池が提供され る。 In the lithium ion secondary battery of the present invention, the shape of the current collector used for the negative electrode is not particularly limited, but a foil shape, a mesh shape, a mesh shape such as expanded methanol, or the like is used. Examples of the current collector include copper, stainless steel, and Eckel. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil. The present invention further provides a lithium ion secondary battery using the above-described negative electrode material.
リチウムイオン二次電池  Lithium ion secondary battery
リチウムイオン二次電池は、 通常、 負極材、 正極材およぴ非水系の 電解質を主たる電池構成要素とする。 正極材および負極材はそれぞれ リチウムイオンの担持体となる。 充電時にはリチウムイオンが負極中 にドープされ、 放電時には負極から脱ド一プする電池機構である。 . 本発明のリチウムイオン二次電池は、 本発明の複合黒鉛粒子を含有 する負極材を.用いること以外は特に限定されない。 他の構成要素につ いては一般的なリチウムイオン二次電池の要素に準じる。  A lithium-ion secondary battery usually includes a negative electrode material, a positive electrode material, and a nonaqueous electrolyte as main battery components. Each of the positive electrode material and the negative electrode material becomes a lithium ion carrier. This is a battery mechanism in which lithium ions are doped into the negative electrode during charging, and are removed from the negative electrode during discharging. The lithium ion secondary battery of the present invention is not particularly limited except that a negative electrode material containing the composite graphite particles of the present invention is used. Other components are the same as those of general lithium ion secondary batteries.
ί正極材 ί  ίPositive electrode material ί
本発明のリチウムイオン二次電池に使用される正極材 (正極活物質) としては、 リチウム化合物が用いられるが、 充分量のリチウムをドープ Ζ脱ドープできるも のを選択するのが好ましい。 例えば、 リチウム含有遷移金属酸化物、 遷移金属力 ルコゲン化物、 バナジウム酸化物おょぴその L i化合物などのリチウム含有化合 物、 一般式 MsMo6S8y (式中 Xは 0≤X 4, Yは 0≤Y≤1の範囲の数値 であり、 Μは遷移金属などの金属を表す) で表されるシェプレル相化合物、 活性 炭、 活性炭素 mなどである。 バナジウム酸化物は V205、 V6013、 V204、 V308で 示されるものなどである。 As the positive electrode material (positive electrode active material) used in the lithium ion secondary battery of the present invention, a lithium compound is used, and it is preferable to select a material capable of doping and dedoping a sufficient amount of lithium. For example, lithium-containing compounds such as lithium-containing transition metal oxides, transition metal lucogenides, vanadium oxides and their Li compounds, and the general formula M s Mo 6 S 8y (where X is 0≤X 4, Y is a numerical value in the range of 0≤Y≤1, and Μ represents a metal such as a transition metal), activated carbon, activated carbon m, and the like. Vanadium oxide is such as represented by V 2 0 5, V 6 0 13, V 2 0 4, V 3 0 8.
リチウム含有遷移金属酸化物は、 リチウムと遷移金属との複合酸化物であり、 リチウムと 2種類以上の遷移金属を固溶したものであってもよい。 複合酸化物は 単独で使用しても、 2種類以上を組み合わせて使用してもよい。 リチウム含有遷 移金属酸化物は、 具体的には、 L iM (1) X_XM (2) xO2 (式中 Xは 0≤X ≤ 4の範囲の数値であり、 M (1) 、 M (2) は少なくとも一種の遷移金属元素 からなる。 ) あるいは L iM (1) !_yM (2) y04 (式中 Xは の範 囲の数値であり、 M (1) 、 M (2) は少なくとも一種の遷移金属元素からな る。 ) で示される。 The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. The lithium-containing transition metal oxide is, specifically, L iM (1) X _ X M (2) x O 2 (where X is a numerical value in the range of 0 ≤ X ≤ 4, M (1) , M (2) consists of at least one transition metal element.) Or L iM (1)! _ Y M (2) y 0 4 (where X is a number in the range of, M (1), M (2) consists of at least one transition metal element. You. ).
式中、 M ( 1 ) 、 M ( 2 ) で示される遷移金属元素は、 C o、 N i、 M n、 C r、 T i、 V、 F e、 Z n、 A 1、 I n、 S nなどであり、 好ましいのは C o、 F e、 Mn、 T i、 C r、 V、 A 1などである。  In the formula, transition metal elements represented by M (1) and M (2) are represented by Co, Ni, Mn, Cr, Ti, V, Fe, Zn, A1, In, S n, etc., and preferred are Co, Fe, Mn, Ti, Cr, V, A1 and the like.
また、 リチウム含有遷移金属酸化物は、 例えば、 L i、 遷移金属の酸化物また は塩類を出発原料とし、 これら出発原料を所望の金属酸化物の組成に応じて混合 し、 酸素存在雰囲気下 6 0 0 °C〜: L 0 0 0での温度範囲で焼成することにより得 ることができる。 なお出発原料は酸化物および塩類に限定されず、 水酸化物等で あってもよい。  The lithium-containing transition metal oxide is, for example, an oxide or a salt of Li or a transition metal as a starting material, and the starting materials are mixed according to a desired composition of the metal oxide. 00 ° C ~: It can be obtained by firing in the temperature range of L0000. The starting materials are not limited to oxides and salts, and may be hydroxides and the like.
本発明のリチウムイオン二次電池においては、 正極活物質は上記リチウム化合 物を単独で使用しても 2種類以上併用してもよい。 また、 正極材の中に、 炭酸リ チウム等の炭酸アルカリ塩を添加することもできる。  In the lithium ion secondary battery of the present invention, the above-mentioned lithium compound may be used alone or in combination of two or more as the positive electrode active material. Further, an alkali carbonate such as lithium carbonate can be added to the positive electrode material.
正極材は、 例えば上記リチウム化合物と結合剤おょぴ電極に導電性を付与する ための導電剤よりなる正極合剤を集電体の片面もしくは両面に塗布することで正 極合剤層を形成することにより得られる。 結合剤としては、 負極で例示したもの がいずれも使用可能である。 導電剤としては、 黒鉛やカーボンブラックなどの炭 素材料が用いられる。  For the positive electrode material, a positive electrode mixture composed of, for example, the above-described lithium compound and a binder and a conductive agent for imparting conductivity to the electrode is applied to one or both surfaces of the current collector to form a positive electrode mixture layer. It is obtained by doing. As the binder, any of those exemplified for the negative electrode can be used. As the conductive agent, a carbon material such as graphite or carbon black is used.
正極材も、 負極材と同様に、 正極合剤を溶剤中に分散させることでペースト状 にし、 このペースト状の正極合剤を集電体に塗布、 乾燥することによって正極合 剤層を形成してもよく、 正極合剤層を形成した後、 さらにプレス加圧等の圧着を 行ってもよい。 これにより正極合剤層が均一かつ強固に集電体に接着される。 集電体の形状は特に限定されず、 箱状、 あるいはメッシュ、 エキスパンドメタ ル等の網状等のものが用いられる。 たとえば集電体としては、 アルミニウム箔、 ステンレス箔、 ニッケル箔等を挙げることができる。 その厚さとしては、 1 0〜 4 0 μ mのものが好適である。 (非水電解質) Similarly to the negative electrode material, the positive electrode material is formed into a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture is applied to a current collector and dried to form a positive electrode mixture layer. After forming the positive electrode mixture layer, pressure bonding such as pressurization may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly adhered to the current collector. The shape of the current collector is not particularly limited, and a box shape, a mesh shape, a mesh shape such as expanded metal, or the like is used. For example, the current collector may be an aluminum foil, a stainless steel foil, a nickel foil, or the like. The thickness is preferably from 10 to 40 μm. (Non-aqueous electrolyte)
本発明のリチウムイオン二次電池に用いられる非水電解質としては、 通常の非 水電解液に使用される電解質塩であり、 L i PF6、 L i BF4、 L iAs F6、 L i C 104、 L i B (C6H5) 、 L i C l、 L i Br、 L i CF3SO。、 L i CH3S03、 L i N (CF3SO2) 2、 L i C (CF3SO2) 3、 L i N (CF 3CH2OSO2) 2、 L i N (CF3CF3OS02) 2、 L i N (HCF2CF2C H2O S 02) 2、 L i N ( (CF3) 2CHO S O2) 2、 L i B [ (C6H3 ( (CF3) 2) 4、 L i Al C 14、 L i S i F6等のリチウム塩が挙げられる。 特に、 L i PF6、 L i BF4が酸化安定性の点から好ましい。 The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention is an electrolyte salt used in ordinary non-aqueous electrolytes, and includes Li PF 6 , Li BF 4 , Li As F 6 , and Li C 10 4, L i B (C 6 H 5), L i C l, L i Br, L i CF 3 SO. , L i CH 3 S0 3 , L i N (CF 3 SO 2 ) 2 , L i C (CF 3 SO 2 ) 3 , L i N (CF 3CH 2 OSO 2 ) 2 , L i N (CF 3 CF 3 OS0 2 ) 2 , L i N (HCF 2 CF 2 CH 2 OS 0 2 ) 2 , L i N ((CF 3 ) 2 CHO SO 2 ) 2 , L i B [(C 6 H 3 ((CF 3 ) 2) 4, L i Al C 1 4, L i S i lithium salt of F 6 and the like. in particular, L i PF 6, L i BF 4 are preferable from the viewpoint of oxidation stability.
電解液中の電解質塩濃度は、 0. 1〜 5モル Zリットルであるのが好ましく、 0. 5〜3. 0モル Zリットルであるのがより好ましい。  The concentration of the electrolyte salt in the electrolytic solution is preferably from 0.1 to 5 mol Z liter, and more preferably from 0.5 to 3.0 mol Z liter.
非水電解質は、 液状の非水電解質としてもよいし、 固体電解質あるいはゲル電 解質等の高分子電解質としてもよい。 前者の場合、 非水電解質電池は、 いわゆる リチウムイオン電池として構成され、 後者の場合、 非水電解質電池は、 高分子固 体電解質、 高分子ゲル電解質電池等の高分子電角質電池として構成される。  The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a solid electrolyte or a polymer electrolyte such as a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer solid electrolyte, a polymer gel electrolyte battery, etc. .
液状の非水電解質液とする場合には、 溶媒として、 エチレンカーボネート、 プ ロピレンカーボネート、 ジメチルカーボネート、 ジェチルカーポネートなどの力 ーボネート、 1, 1一または 1, 2—ジメトキシェタン、 1, 2—ジエトキシェ タン、 テトラヒドロフラン、 2—メチ/レテトラヒドロフラン、 γ—プチ口ラクト ン、 1, 3—ジォキソフラン、 4—メチノレー 1, 3—ジォキソラン、 ァニソ一ル、 ジェチルエーテルなどのエーテル、 スルホラン、 メチルスルホランなどのチォェ 一テル、 ァセトニトリル、 クロロニトリル、 プロピオ二トリルなどの二トリル、 ホウ酸トリメチル、 ケィ酸テトラメチ^^、 ニトロメタン、 ジメチルホルムアミド、 Ν—メチルピロリ ドン、 酢酸ェチル、 トリメチルオルトホルメート、 二トロベン ゼン、 塩化べンゾィル、 臭化べンゾィノレ、 テトラヒドロチォフェン、 ジメチルス ルホキシド、 3—メチルー 2—ォキサゾリ ドン、 エチレングリコール、 サルファ ィト、 ジメチルサルフアイト等の非プロトン性有機溶媒を用いることができる。 非水電解質を高分子固体電解質、 高分子ゲル電解質等の高分子電解質とする場 合には、 マトリクスとして可塑剤 (非水電解液) でゲル化された高分子を用いる。 該マトリクスを構成する高分子としては、 ポリエチレンォキサイドやその架橋体 等のエーテル系高分子、 ポリメタタリレート系高分子化合物、 ポリアタリレート などのアタリレート系高分子化合物、 ポリビニリデンフルオライド (PVDF) ゃビ 二リデンフルオラィドーへキサフルォロプロピレン共重合体等のフッ素系高分子 化合物が特に好ましい。 In the case of a liquid non-aqueous electrolyte solution, solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, dimethyl carbonate, and the like, 1, 1, 1 or 1, 2-dimethoxyethane, 1, 2 —Diethoxyxan, tetrahydrofuran, 2-methyl / letetrahydrofuran, γ-petit mouth lactone, 1,3-dioxofuran, 4-methylinole 1,3-dioxolan, anisol, ether such as getyl ether, sulfolane, methylsulfolane Nitriles such as acetone, acetonitrile, chloronitrile, propionitrile, etc., trimethyl borate, tetramethyi ^^, nitromethane, dimethylformamide, dimethylformamide, Ν-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene. Downy chloride Nzoiru, bromide base Nzoinore, tetrahydrocannabinol Chio Fen, Jimechirusu An aprotic organic solvent such as rufoxide, 3-methyl-2-oxazolidone, ethylene glycol, sulfite, dimethyl sulfite and the like can be used. When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or a polymer gel electrolyte, a polymer gelled with a plasticizer (non-aqueous electrolyte) is used as a matrix. Examples of the polymer constituting the matrix include ether polymers such as polyethylene oxide and cross-linked products thereof, polymetharylate polymer compounds, atalylate polymer compounds such as polyatalylate, and polyvinylidene fluoride (polyvinylidene fluoride). PVDF) Fluorinated polymer compounds such as vinylidenefluoridehexafluoropropylene copolymer are particularly preferred.
前記高分子固体電解質または高分子ゲル電解質には可塑材が配合されるが、 可 塑材としては、 前記の電解質塩や非水溶媒が使用可能である。 高分子ゲル電解質 の場合、 可塑剤である非水電解液中の電解質塩濃度は、 0. 1〜5モル//リット ノレが好ましく、 0. 5〜 2. 0モル /リットルがより好ましい。  A plasticizer is compounded in the polymer solid electrolyte or the polymer gel electrolyte. As the plastic material, the above-mentioned electrolyte salt or non-aqueous solvent can be used. In the case of the polymer gel electrolyte, the concentration of the electrolyte salt in the non-aqueous electrolyte as a plasticizer is preferably 0.1 to 5 mol // liter, more preferably 0.5 to 2.0 mol / liter.
固体電解質の作製方法は特に制限されないが、 例えば、 マトリックスを形成す る高分子化合物、 リチウム塩および非水溶媒 (可塑剤) を混合し、 加熱して高分 子化合物を溶融する方法、 有機溶剤に高分子化合物、 リチウム塩および非水溶媒 (可塑剤) を溶解させた後、 有機溶剤を蒸発させる方法、 および 高分子電解質 の原料となる重合成モノマー、 リチウム塩および非水溶媒 (可塑剤) を混合し、 混合物に紫外線、 電子線または分子線などを照射してポリマーを形成さえる方法 等を挙げることができる。  The method for producing the solid electrolyte is not particularly limited. For example, a method of mixing a polymer compound that forms a matrix, a lithium salt and a non-aqueous solvent (plasticizer), and heating to melt the polymer compound, an organic solvent A method in which a polymer compound, a lithium salt and a non-aqueous solvent (plasticizer) are dissolved in an organic solvent, and then the organic solvent is evaporated. And then irradiating the mixture with an ultraviolet ray, an electron beam or a molecular beam to form a polymer.
また、 前記固体電解質中の非水溶媒 (可塑剤) の添加率は、 1 0〜 9 0質量% が好ましく、 3 0〜 8 0質量%がより好ましい。 1 0質量%未満であると、 導電 率が低くなり、 9 0質量%を超えると機械的強度が弱くなり成膜しにくくなる。  Further, the addition rate of the nonaqueous solvent (plasticizer) in the solid electrolyte is preferably from 10 to 90% by mass, and more preferably from 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and the film will not be easily formed.
(セパレータ一 )  (Separator 1)
本発明のリチウムイオン二次電池においては、 セパレータ一を使用することが できる。 セパレーターの材質は特に限定されないが、 例えば、 織布、 不織布、 合 成樹脂製微多孔質膜等などが例示される。 特に、 合成樹脂製微多孔膜が好適であ るが、 その中でもポリオレフイン系微多孔質膜が、 厚さ、 膜強度、 膜抵抗などの 点から好適である。 具体的には、 ポリエチレンおよびポリプロピレン製微多孔質 膜、 またはこれらを複合した微多孔質膜等である。 In the lithium ion secondary battery of the present invention, it is possible to use one separator. it can. The material of the separator is not particularly limited, and examples thereof include a woven fabric, a nonwoven fabric, and a synthetic resin microporous membrane. In particular, a synthetic resin microporous membrane is preferable, and among them, a polyolefin-based microporous membrane is preferable in terms of thickness, film strength, film resistance, and the like. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane obtained by combining these.
また、 セパレーターを使用せずにゲル電解質を用いることもできる。  Also, a gel electrolyte can be used without using a separator.
ゲル電解質を用いた二次電池は、 前記複合黒鉛粒子を含有する負極材と、 正極 材およびゲル電解質を、 例えば、 負極材、 ゲル電解質、 正極材の順で積層し、 電 池の外装材内に収容することで構成される。 さらに負極材と正極材の外側にゲル 電解質を配するようにしてもよい。  In a secondary battery using a gel electrolyte, a negative electrode material containing the composite graphite particles, a positive electrode material, and a gel electrolyte are laminated in the order of, for example, a negative electrode material, a gel electrolyte, and a positive electrode material. It is configured to be accommodated in. Further, a gel electrolyte may be provided outside the negative electrode material and the positive electrode material.
さらに、 本発明のリチウムイオン二次電池の構造は特に制限され ず、 その形状、 形態について特に限定されるものではなく、 用途、 搭 载機器、 要求される充放電容量等に応じて、 円筒型、 角型、 コイ ン 型、 ボタン型のいずれの形状または形態のものでもよい。 より安全性 の高い密閉型非水電解液電池を得るためには、 過充電等の異常時に電 池内圧上昇を感知して電流を遮断させる手段を備えたものであること が望ましい。 高分子固体電解質電池や高分子ゲル電解質電池の場合に は、 ラミネートフイルムに封入した構造とすることもできる。 実施例  Furthermore, the structure of the lithium-ion secondary battery of the present invention is not particularly limited, and its shape and form are not particularly limited. Depending on the application, on-board equipment, required charge / discharge capacity, and the like, a cylindrical type can be used. It may be of any shape or form of square, square, coin, or button. In order to obtain a safer non-aqueous electrolyte battery with higher safety, it is desirable to have a means for detecting a rise in battery internal pressure and interrupting the current when an abnormality such as overcharging occurs. In the case of a polymer solid electrolyte battery or a polymer gel electrolyte battery, a structure enclosed in a laminate film may be used. Example
次に本発明を実施例により具体的に説明するが、 本発明はこれら実施例に限定 されるものではない。  Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
また以下の実施例および比較例では、 複合黒鉛粒子を、 図 1に示すような構成 の評価用のボタン型二次電池を作製して評価した。 しカゝし、 実電池は、 本発明の 概念に基づき、 公知の方法に準じて作製することができる。 該評価用電池におい ては、 作用極を負極、 対極を正極と表現した。 <負極合剤ペーストの調製〉 In the following Examples and Comparative Examples, composite graphite particles were evaluated by producing a button-type secondary battery for evaluation having a configuration as shown in FIG. However, an actual battery can be manufactured according to a known method based on the concept of the present invention. In the battery for evaluation, the working electrode was expressed as a negative electrode, and the counter electrode was expressed as a positive electrode. <Preparation of negative electrode mixture paste>
複合黒鉛粒子 9 8質量0 /0に対して、 結合剤としてスチレンブタジエンラパーを 1質量%、 カルボキシメチルセル口ースを 1質量%の割合で水に加えてスラリー とし負極合剤ペーストを調製した。 The composite graphite particles 9 8 mass 0/0, 1% by weight of a styrene-butadiene La Par as a binder to prepare a negative electrode mixture paste was slurried in addition to water carboxymethylcellulose port over scan at a rate of 1 wt% .
く負極材の製造〉 Production of negative electrode material>
上記の負極合剤ペーストを銅箔 (集電材) 上に均一な厚ざで塗布し、 さらに真 空中で 9 0 °Cに加熱して溶剤を揮発させて乾燥した。 次に、 この銅箔上に塗布さ れた負極合剤をローラープレスによって加圧し、 さらに銅箔と一緒に直径 1 5 . 5腿の円形状に打ち抜くことで、 銅箔からなる集電体 7 bに密着した負極合剤層 からなる負極 2を製造した。  The above-mentioned negative electrode mixture paste was applied on a copper foil (current collector) in a uniform thickness, and further heated at 90 ° C in a vacuum to evaporate the solvent and dried. Next, the negative electrode mixture applied on the copper foil is pressed by a roller press, and is punched together with the copper foil into a circular shape having a diameter of 15.5 thighs. A negative electrode 2 composed of a negative electrode mixture layer adhered to b was manufactured.
ぐ正極材の製造 > Manufacturing of positive electrode materials>
リチウム金属箔を、 ニッケルネットに押付け、 直径 1 5. 5mmの円柱状に打ち 抜いて、 ニッケルネットからなる集電体 7 aと、 該集電体に密着したリチウム金 属箔からなる正極 4を製造した。  A lithium metal foil is pressed against a nickel net and punched out into a cylindrical shape having a diameter of 15.5 mm to form a current collector 7a made of a nickel net and a positive electrode 4 made of a lithium metal foil adhered to the current collector. Manufactured.
<電解質 > <Electrolyte>
エチレンカーボネート 3 3 vol%およぴェチルメチルカーボネート 6 7 vol% の割合の混合溶媒に、 LiPF6を l mol/dm3 となる濃度で溶解させ、 非水電解液を 調製した。 得られた非水電解液をポリプロピレン多孔質体に含浸させ、 電解液が 含浸されたセパレーター 5を製造した。 LiPF 6 was dissolved in a mixed solvent of 33 vol% of ethylene carbonate and 67 vol% of ethyl methyl carbonate at a concentration of 1 mol / dm 3 to prepare a non-aqueous electrolyte. The obtained non-aqueous electrolyte was impregnated into a porous polypropylene body to produce a separator 5 impregnated with the electrolyte.
ぐ評価用電池の製造 > Manufacturing of evaluation batteries>
評価電池として図 1の構造を有するボタン型二次電池を作製した。 まず、 集電体 7 bに密着した負極 (作用電極) 2と集電体 7 aに密着した正極 (対極) 4との間に、 電解質溶液を含浸させたセパレーター 5を挟んで積層する。 その後、 負極集電体 7b側が外装カップ 1内に、 正極集電体 7 a側が外装缶 3内に 収容されるように、 外装カップ 1と外装缶 3とを合わせる。 その際、 外装カップ 1と外装缶 3との周縁部に絶縁ガスケット 6を介在させ、 両周縁部をかしめて密 閉した。 以上のようにして作製された評価電池について、 2 5 の温度下で下記のよう な充放 β¾験を行った。 以上のようにして製造された評価用電池について、 2 5での温度で下記の充放 験を行った。 A button-type secondary battery having the structure shown in FIG. 1 was produced as an evaluation battery. First, a separator 5 impregnated with an electrolyte solution is interposed between a negative electrode (working electrode) 2 in close contact with the current collector 7b and a positive electrode (counter electrode) 4 in close contact with the current collector 7a. Thereafter, the outer cup 1 and the outer can 3 are combined so that the negative electrode current collector 7b is accommodated in the outer can 1 and the positive electrode current collector 7a is accommodated in the outer can 3. At that time, an insulating gasket 6 was interposed between the outer edges of the outer cup 1 and the outer can 3, and both the outer edges were caulked to close tightly. The following charging / discharging β test was performed on the evaluation battery fabricated as described above at a temperature of 25. The following batteries were subjected to the following charge / discharge test at a temperature of 25 for the evaluation batteries manufactured as described above.
ぐ充放 験 > GU Charge and Release Test>
0. 9mAの電流値で回路電圧が O raVに達するまで定電流充電を行う。 つぎに、 回路電圧が OmVに達した時点で定電圧充電に切り替え、 さらに電流値が 2 0 μ λ になるまで充電を続ける。 その後、 1 2 0分間休止した。  Constant current charging is performed with a current value of 0.9 mA until the circuit voltage reaches OraV. Next, when the circuit voltage reaches OmV, switch to constant voltage charging, and continue charging until the current value reaches 20 μλ. After that, it was paused for 120 minutes.
次に 0 . 9mAの電流値で、 回路電圧が 2 . 5 V に達するまで定電流放電を行つ た。 この第 1サイクルにおける通電量から充電容量と放電容量を求め、 次式から 初期充放電効率を計算した。  Next, a constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 2.5 V. The charge capacity and discharge capacity were obtained from the amount of current in the first cycle, and the initial charge / discharge efficiency was calculated from the following equation.
(第 1サイクルの放電容量) (Discharge capacity of the first cycle)
初期充放電効率 (%) = X 1 0 0  Initial charge / discharge efficiency (%) = X100
(第 1サイクルの充電容量) なおこの試験では、 リチウムイオンを複合黒鉛粒子中にドープする過程を充 電、 複合黒鉛粒子から脱ドープする過程を放電とした。  (Charge capacity in the first cycle) In this test, the process of doping lithium ions into the composite graphite particles was defined as charging, and the process of undoping lithium ions from the composite graphite particles was defined as discharging.
測定された複合黒鉛粒子 1 g当 fこりの放電容量 (raAh/g)と初期充放電効率 (%) の値などの電池特性を表 2に示す。  Table 2 shows the measured battery characteristics such as the measured discharge capacity (raAh / g) and initial charge / discharge efficiency (%) per 1 g of the composite graphite particles.
表 2に示されるように、 負極に本発明の複合黒鉛粒子を用いたリチウムイオン 二次電池は大きい放電容量を示し、 かつ高い初期充放電効率を有する。  As shown in Table 2, the lithium ion secondary battery using the composite graphite particles of the present invention for the negative electrode shows a large discharge capacity and high initial charge / discharge efficiency.
次いで、 第 2サイクルとして、 第 1サイクルと同様にして充電した後、. 20mA の電流値で、 回路電圧が 2 5 Vに達するまで定電流放電を行った。 このとき第 1サイクルにおける放電容量と第 2サイクルにおける放電容量から、 次式に従つ て急速放電効率を評価した。 (第 2サイクルの放電容量) Next, as a second cycle, after charging in the same manner as the first cycle, constant current discharging was performed at a current value of 0.20 mA until the circuit voltage reached 25 V. At this time, the rapid discharge efficiency was evaluated from the discharge capacity in the first cycle and the discharge capacity in the second cycle according to the following equation. (2nd cycle discharge capacity)
急速放電効率 (%) = : X 1 0 0 Rapid discharge efficiency (%) = : X 100
(第 1サイクルの放電容量) また、 これらの評価試験とは別に 6raAの電流値で回路電圧が 0 mVに達するまで定 電流充電を行う。 つぎに、 回路電圧が O mVに達した時点で定電圧充電に切り替 え、 さらに電流値が 2 0 μ λ になるまで充電を続ける。 その後、 1 2 0分間休止 した。  (Discharge capacity in the first cycle) In addition to these evaluation tests, constant-current charging is performed at a current value of 6 raA until the circuit voltage reaches 0 mV. Next, when the circuit voltage reaches O mV, the mode switches to constant voltage charging, and charging is continued until the current value reaches 20 μλ. Then, it was paused for 120 minutes.
次に 6raAの電流値で、 回路電圧が 2 . 5 V に達するまで定電流放電を行った。 この充放電を 20サイクル繰り返し、 1サイクル目と 20サイクル目における放電容量を求 め、 次式からサイクル特性を計算した。  Next, constant current discharge was performed at a current value of 6raA until the circuit voltage reached 2.5V. This charge / discharge cycle was repeated 20 cycles, the discharge capacity at the 1st cycle and the 20th cycle was determined, and the cycle characteristics were calculated from the following equation.
(第 20サイクルの放電容量) (Discharge capacity of the 20th cycle)
サイクル特性 (%) = X 1 0 0  Cycle characteristics (%) = X 1 0 0
(第 1サイクルの放電容量) ぐ黒鉛 >  (1st cycle discharge capacity)
本発明の複合黒鉛粒子の芯材を構成する黒鉛として、 表 1に示す物性を有する 造粒化黒鉛を以下の実施例および比較例で用いた。  Granulated graphite having the physical properties shown in Table 1 was used in the following Examples and Comparative Examples as the graphite constituting the core material of the composite graphite particles of the present invention.
該造粒化黒鉛は、 平均粒径 30 mの鱗片状天然黒鉛を、 ホソカワミクロン (株) 製力ゥンタジェットミル 200AFGを用い、 空気圧力 300kPaで 1時間、 機内で循環さ せることによって造粒したものである。 得られた造粒化黒鉛のうち、 粒子径が 5 β m以下で造粒が不十分な微粉を除去した。 また 75 μ m篩い下になるように粗粉 を除去した。 造粒化黒鉛 The granulated graphite was granulated by circulating flaky natural graphite having an average particle diameter of 30 m in a machine using an air jet mill 200AFG manufactured by Hosokawa Micron Corporation at an air pressure of 300 kPa for 1 hour. Things. Of the obtained granulated graphite, fine powder having a particle diameter of 5 βm or less and insufficient granulation was removed. Coarse powder was removed so that it was under a 75 μm sieve. Granulated graphite
比表面積 平均粒径 アス クト比 Lc La d()02 半値幅  Specific surface area Average particle size Aspect ratio Lc La d () 02 Half width
(m2/g) (nm) (nm) (nm) (m 2 / g) (nm) (nm) (nm)
3.8 20 2.0 55 56 0.3356 0.08 25  3.8 20 2.0 55 56 0.3356 0.08 25
実施例 1 Example 1
フエノーノレ樹脂 (残炭素 40%) 25 gを、 エチレングリコール 500 gとへ キサメチレンテトラミン 2. 5 gとの混合物に添加して溶解した溶液に、 造粒化 黒鉛 (平均粒径 20^πι、 ァスぺクト比 2) 90 gを加え、 分散状態で攪拌し た。 次に減圧下において 150°Cで溶剤を留去し、 樹脂で被覆した造粒化黒鉛を 得た。 この樹脂被覆黒鉛粒子を空気中で 270°Cまで 5時間かけて昇温し、 さら に 27 O で 2時間保持し、 樹脂被覆材を硬化した。 この硬ィ匕品を.75 /zm篩い 下になるように解砕した。 次に窒素雰囲気中で 1000¾で前炭化処理を行い、 さらに 3000°Cで炭化を行うことによって、 10%の被覆量をもつ本発明の複 合黒鉛粒子を得た。  A solution of 25 g of phenol resin (40% residual carbon) added to a mixture of 500 g of ethylene glycol and 2.5 g of hexamethylenetetramine was dissolved in a solution prepared by granulation. 2) 90 g was added and the mixture was stirred in a dispersed state. Next, the solvent was distilled off at 150 ° C. under reduced pressure to obtain resin-coated granulated graphite. The resin-coated graphite particles were heated to 270 ° C. in air over 5 hours, and further kept at 27 O for 2 hours to cure the resin-coated material. This hard dangling product was crushed so as to be below a .75 / zm sieve. Next, a pre-carbonization treatment was performed at 1000 ° C. in a nitrogen atmosphere, and further a carbonization was performed at 3000 ° C. to obtain a composite graphite particle of the present invention having a coating amount of 10%.
なお、 実施例 1の炭化物餍の結晶性を見積もるために、 実施例 1の被覆材に造 粒化黒鉛を加えず、 実施例 1と同じ熱履歴を付与して被覆材の炭化物を調製し た。 X線回折で測定した d。。2は 0.3366nm、 Lc38nmであり、 芯材として用いた造粒 化黒鉛の dM2、 Lc (表 1) よりも若干結晶性が低いことが確認された。 実施例 2 Note that, in order to estimate the crystallinity of the carbide 餍 of Example 1, the coating material of Example 1 was not added with granulated graphite, and the same heat history as in Example 1 was applied to prepare the carbide of the coating material. . Measured by X-ray diffraction d. . 2 0.3366Nm, a Lc38nm, it is somewhat less crystallinity than the granulation graphite used as the core material d M2, Lc (Table 1) was confirmed. Example 2
フエノール 39 gと 37%ホルマリン 66 gとへキサメチレンテトラミン 4 g とからなる溶液に、 造粒化黒鉛 (平均粒径 20 μπκ ァスぺクト比 2) 1 10 g を加え、 分散状態で攪拌した。 90°Cに加熱してモノマーを重合させて造粒化黒 鉛をフエノール樹脂で被覆し、 ろ過して樹脂被覆黒鉛粒子を取り出した。 この被 覆黒鉛粒子は樹脂分として 20 % (残炭素換算で 10 %) の被覆層を有してい た。 この被覆黒鉛粒子を空気中で 270 ^まで 5時間かけて昇温し、 さらに 27 0°Cで 2時間保持し、 被覆層を硬化した。 この硬化品を 75 m篩い下になるよ うに解砕した。 窒素雰囲気中で 1000°Cで前炭化処理を行い、 さらに 300 0°Cで炭化 行うことによって、 10%の被覆量をもつ本発明の複合黒鉛粒子を 得た。 実施例 3 To a solution consisting of 39 g of phenol, 66 g of 37% formalin and 4 g of hexamethylenetetramine was added 110 g of granulated graphite (average particle size 20 μπκ aspect ratio 2) and stirred in a dispersed state. . Heat to 90 ° C to polymerize monomer and granulate black The lead was coated with a phenol resin and filtered to obtain resin-coated graphite particles. These coated graphite particles had a coating layer of 20% (10% in terms of residual carbon) as a resin component. The temperature of the coated graphite particles was raised to 270 ^ in air over 5 hours, and the temperature was further maintained at 270 ° C for 2 hours to cure the coating layer. This cured product was pulverized so as to be below a 75 m sieve. The pre-carbonization treatment was performed at 1000 ° C. in a nitrogen atmosphere, and the carbonization was further performed at 3000 ° C. to obtain the composite graphite particles of the present invention having a coating amount of 10%. Example 3
石炭系ピッチ (軟化点 105で、 残炭素 60%) 6. 7 gとフエノール樹脂 (残炭素 40%) 15 gとを、 ターノレ軽油 500 gとへキサメチレンテトラミン 1. 5 gとの混合物に添加した溶液に、 造粒化黒鉛 (平均粒径 20jum、 ァスぺ タト比 2) 9 O gを加えて分散状態で攪拌した。 次に減圧下において 150でで 溶剤のタール軽油を留去し、 ピッチノ樹脂混合被覆黒鉛を得た。 この被覆黒鉛粒 子を空気中で 270°Cまで 5時間かけて昇温し、 さらに 270°Cで 2時間保持 し、 被覆材を硬化した。 この硬化品を 75 m篩い下になるように解砕した。 次 に窒素雰囲気中で 1000°Cで前炭化処理を行い、 さらに 3000°Cで炭化を行 うことによって、 10 %の被覆量をもつ本発明の複合黒鉛粒子を得た。 実施例 4  6.7 g of coal pitch (softening point 105, carbon residue 60%) and 15 g of phenol resin (carbon residue 40%) were added to a mixture of 500 g of Tanole gas oil and 1.5 g of hexamethylenetetramine. To the solution thus obtained, 9 Og of granulated graphite (average particle size: 20 jum, agitation ratio: 2) was added and stirred in a dispersed state. Next, the tar gas oil as a solvent was distilled off under reduced pressure at 150 to obtain a graphite coated with pitchino resin. The temperature of the coated graphite particles was raised to 270 ° C in air over 5 hours, and the temperature was further maintained at 270 ° C for 2 hours to cure the coating material. This cured product was pulverized so as to be below a 75-m sieve. Next, a pre-carbonization treatment was performed at 1000 ° C. in a nitrogen atmosphere, and further a carbonization was performed at 3000 ° C. to obtain composite graphite particles of the present invention having a coating amount of 10%. Example 4
フエノー Λ^20 gと 37%ホノレマリン 33 gとへキサメチレンテトラミン 2 g と石炭系メソフェーズピッチ微紛 (平均粒径 4j m、 軟化点 350°C、 残炭素 8 0%) 7. 5 gとを混合してなる溶液に造粒化黒鉛 (平均粒径 20/xm、 ァスぺ クト比 2) 110 gを加え、 分散状態で攪拌した。 90でで上記成分を重合させ て造粒化黒鉛を被覆した。 次いで、 ろ過して被覆黒鉛粒子を取り出した。 この造 粒化黒鉛はピッチ複合樹脂により被覆されていた (ピッチ複合樹脂分として 1 8%、 残炭素換算で 10%) 。 この樹脂被覆黒鉛粒子を空気中で 270 まで 5 時間かけて昇温し、 さらに 270 °Cで 2時間保持し、 被覆材を硬化した。 この硬 化品を 75 μ m篩い下になるように解碎した。 次に窒素雰囲気中で 1000°Cで 前炭化処理を行い、 さらに 3000°Cで炭化を行うことによって、 10%の被覆 量をもつ本発明の複合黒鉛粒子を得た。 比較例 1 ノ ー 20 g of phenol, 33 g of 37% honoremarin, 2 g of hexamethylenetetramine, and fine powder of coal-based mesophase pitch (average particle size 4 jm, softening point 350 ° C, residual carbon 80%) 7.5 g 110 g of granulated graphite (average particle diameter 20 / xm, aspect ratio 2) was added to the mixed solution and stirred in a dispersed state. At 90, the above components were polymerized and coated with granulated graphite. Next, the coated graphite particles were taken out by filtration. This granulated graphite was covered with a pitch composite resin (18% as a pitch composite resin, and 10% in terms of residual carbon). The resin-coated graphite particles are exposed to up to 270 in air. The temperature was raised over time, and the temperature was further maintained at 270 ° C. for 2 hours to cure the coating material. This cured product was crushed so as to be below a 75 μm sieve. Next, a pre-carbonization treatment was performed at 1000 ° C. in a nitrogen atmosphere, and further a carbonization was performed at 3000 ° C. to obtain composite graphite particles of the present invention having a coating amount of 10%. Comparative Example 1
フエノーノレ樹脂 (残炭素 40%) 1 gをエチレングリコーノレ 500 gとへキサ メチレンテトラミン 0. l gとの混合物に添加し、 該溶液に造粒化黒鉛 (平均粒 径 20 /ini、 ァスぺクト比 2) 100 gを加え、 分散状態で攪拌した。 減圧下で 150°Cで溶剤を留去し、 樹脂被覆黒鉛粒子を得た。 この被覆黒鉛粒子を空気中 で 270 まで.5時間かけて昇温し、 さらに 270°Cで 2時間保持し、 樹脂被覆 層を硬化した。 この硬化品を 75 /zm篩い下になるように解枠した。 窒素雰囲気 中で 1000でで前炭化処理を行い、 さらに 3000でで炭化を行うことによつ て、 0. 4%の被覆量をもつ比較例の複合黒鉛粒子を得た。 比較例 2  1 g of phenol resin (residual carbon 40%) is added to a mixture of 500 g of ethylene glycolone and 0.1 g of hexamethylene methylenetetramine, and granulated graphite (average particle size 20 / ini, asbestos) is added to the solution. Ratio 2) 100 g was added and stirred in a dispersed state. The solvent was distilled off at 150 ° C. under reduced pressure to obtain resin-coated graphite particles. The temperature of the coated graphite particles was increased to 270 in air over a period of 0.5 hours, and the temperature was further maintained at 270 ° C. for 2 hours to cure the resin coating layer. The cured product was unframed under a 75 / zm sieve. Precarbonization was performed at 1000 at a nitrogen atmosphere and carbonization was further performed at 3000 to obtain a composite graphite particle of a comparative example having a coating amount of 0.4%. Comparative Example 2
フエノーノレ樹 3旨 (残炭素 40%) 60 gを、 タール軽油 500 gとへキサメチ レンテトラミン 6 gとの混合物からなる溶液に、 造粒化黒鉛 (平均粒径 20 μ m、 ァスぺクト比 2) 76 gを加え、 分散状態で携拌した。.減圧下で 150°Cで 溶剤を留去し、 樹脂被覆黒鉛粒子を得た。 この被覆黒鉛粒子を空気中で 270で まで 5時間かけて昇温し、 さらに 270でで 2時間保持し、 被 ¾ϋを硬化した。 この硬化品を 75 /zm篩い下になるように解砕した。 窒素雰囲気中で 1000 で前炭化処理を行い、 さらに 3000でで炭化を行うことによって、 24%の被 覆量をもつ比較例の複合黒鉛粒子を得た。 比較例 3  Phenol tree 3 g (40% residual carbon) 60 g of a mixture of 500 g tar gas oil and 6 g hexamethylenetetramine was mixed with granulated graphite (average particle size 20 μm, aspect ratio 2) 76 g was added and stirred in a dispersed state. The solvent was distilled off at 150 ° C under reduced pressure to obtain resin-coated graphite particles. The coated graphite particles were heated in air to 270 over 5 hours, and were further kept at 270 for 2 hours to cure the coating. This cured product was pulverized so as to be under a 75 / zm sieve. By pre-carbonizing at 1000 at a nitrogen atmosphere and carbonizing at 3000 further, composite graphite particles of a comparative example having a coverage of 24% were obtained. Comparative Example 3
フエノール樹脂 (残炭素 40%) 0. 6 gと石炭系ピッチ (軟化点 105^、 残炭素 60%) 0. 4 gとタール軽油 500 gとへキサメチレンテトラミン 0. 1 gとを混合してなる溶液に、 造粒化黒鉛 (平均粒径 20 / m、 ァスぺクト比 2) 100 gを加え、 分散状態で攪拌した。 次に減圧下において 150°Cで溶剤 のタール軽油を留去し、 被覆黒鉛粒子を得た。 この樹脂被覆黒鉛粒子を空気中で 270 °Cまで 5時間かけて昇温し、 さらに 270でで 2時間保持し、 被覆材を硬 化した。 この硬化品を 75 μ m篩い下になるように解砕した。 次に窒素雰囲気中 で 1000 °Cで前炭化処理を行い、 さらに 3000 °Cで炭化を行うことによつ て、 0. 48%の被覆量をもつ比較例の複合黒鉛粒子を得た。 比較例 4 0.6 g of phenolic resin (residual carbon 40%) and coal-based pitch (softening point 105 ^, Granulated graphite (average particle size 20 / m, aspect ratio 2) was added to a solution obtained by mixing 0.4 g, 500 g of tar gas oil, and 0.1 g of hexamethylenetetramine. ) 100 g was added and stirred in a dispersed state. Next, the tar gas oil as a solvent was distilled off at 150 ° C. under reduced pressure to obtain coated graphite particles. The temperature of the resin-coated graphite particles was raised to 270 ° C. in air over 5 hours, and the temperature was further maintained at 270 for 2 hours to harden the coating material. This cured product was pulverized so as to be below a 75 μm sieve. Next, a pre-carbonization treatment was performed at 1000 ° C in a nitrogen atmosphere, and carbonization was further performed at 3000 ° C to obtain composite graphite particles of a comparative example having a coating amount of 0.48%. Comparative Example 4
フエノール樹脂 (残炭素 40%) 30 gと石炭系ピッチ (軟化点 105°C、 残 炭素 60%) 20 gとターノレ軽油 500 gとへキサメチレンテトラミン 6 gとか らなる溶液に造粒化黒鉛 (平均粒径 20 m、 ァスぺクト比 2) 76 gをカロえ、 分散状態で攪拌した。 次に減圧下において 150 で溶剤のタール軽油を留去 し、 樹脂被覆黒鉛粒子を得た。 この樹脂被覆黒鉛粒子を空気中で 270°Cまで 5 時間かけて昇温し、 さらに 270でで 2時間保持し、 被覆材を硬化した。 この硬 化品を 75 /X m篩い下になるように解碎した。 次に窒素雰囲気中で 1000°Cで 前炭化処理を行い、 さらに 3000°Cで炭化を行うことによって、 24%の被覆 量をもつ比較例の複合黒鉛粒子を得た。 比較例 5  Granulated graphite (30 g of phenolic resin (residual carbon 40%), coal-based pitch (softening point 105 ° C, residual carbon 60%), 20 g of Tanole gas oil, and 6 g of hexamethylenetetramine The average particle size was 20 m, and the aspect ratio was 2) 76 g, and the mixture was stirred in a dispersed state. Next, the tar gas oil as a solvent was distilled off under reduced pressure at 150 to obtain resin-coated graphite particles. The resin-coated graphite particles were heated in air to 270 ° C over 5 hours, and kept at 270 for 2 hours to cure the coating material. This hardened product was crushed so as to be below a 75 / Xm sieve. Next, pre-carbonization treatment was performed at 1000 ° C in a nitrogen atmosphere, and carbonization was further performed at 3000 ° C to obtain composite graphite particles of a comparative example having a coating amount of 24%. Comparative Example 5
実施例 1において、 何ら被覆処理を行うことなく、 その他は実施例 1と同様に して比較例の造粒化黒鉛を得た。 比較例 6  In Example 1, granulated graphite of a comparative example was obtained in the same manner as in Example 1 except that no coating treatment was performed. Comparative Example 6
石炭系ピッチ (軟化点 105で、 残炭素 60%) 16.72をタール軽油50(^に溶解 し、 該溶液に造粒化黒鉛 (平均粒径 20/zm、 アスペクト比 2) 90gを加えて分散 状態で攪拌した。 次に減圧下において 150°Cで溶剤のタール軽油を留去し、 ピッ チ被覆黒鉛を得た。 この被覆黒鉛粒子を窒素雰囲気中で 1000°Cで前炭化処理を行 い、 75 / m篩い下になるように解砕した。 さらに 3000°Cで炭化を行うことによつ て、 10%の被覆量をもつ従来技術に相当する複合黒鉛粒子を得た。 比較例 7 Coal pitch (softening point 105, residual carbon 60%) 16.7 2 is dissolved in tar gas oil 50 (^), and 90 g of granulated graphite (average particle size 20 / zm, aspect ratio 2) is added and dispersed. It was stirred in the state. Next, the tar gas oil as a solvent was distilled off at 150 ° C. under reduced pressure to obtain pitch-coated graphite. The coated graphite particles were pre-carbonized at 1000 ° C. in a nitrogen atmosphere and pulverized so as to be under a 75 / m sieve. By further carbonizing at 3000 ° C, composite graphite particles corresponding to the prior art having a coating amount of 10% were obtained. Comparative Example 7
実施例 1において 3000°Cの炭化を行わない.ほかは実施例 1と同様にして、 従来 技術に相当する複合黒鉛粒子を得た。 比較例 8  In Example 1, carbonization at 3000 ° C. was not performed. Except for this, composite graphite particles corresponding to the prior art were obtained in the same manner as in Example 1. Comparative Example 8
実施例 1において、 黒鉛粒子として、 鱗片状の天然黒鉛に機械的外力を付与し たものの、 球状化に至らず、 鱗片状のまま角取り処理が施されたもの (平均粒子 径 15 ii m、 アスペクト比 3. 5) を用いた以外は実施例 1と同様にして、 従来技術 に相当する複合黒鉛粒子を得た。 表 2— 1と表 2— 2に実施例おょぴ比較例の複合黒鉛粒子の粉体特性おょぴ電 池特性を示す。  In Example 1, the graphite particles were obtained by applying a mechanical external force to scaly natural graphite, but did not result in spheroidization, and were subjected to a squaring treatment with the scaly shape (average particle diameter 15 ii m, Except for using the aspect ratio 3.5), a composite graphite particle corresponding to the prior art was obtained in the same manner as in Example 1. Table 2-1 and Table 2-2 show the powder characteristics and battery characteristics of the composite graphite particles of Examples and Comparative Examples.
本発明の実施例 1〜4においては、 造粒化黒鉛に適度な R値に設定された炭化材が 被覆されている。 炭化材を有しない比較例 5に比べてわずかに放電容量が低下す るものの、 高い放電容量を維持し、 初期充放電効率、 急速放電効率、 サイクル特 性にも優れていることがわかる。 特に、 熱硬化性樹脂類として、 フエノール樹脂 のモノマー含有体を原料に用いた実施例 2、 4では急速放電効率とサイクル特性 が優れている。 In Examples 1 to 4 of the present invention, the granulated graphite is coated with a carbon material having an appropriate R value. Although the discharge capacity is slightly reduced as compared with Comparative Example 5 having no carbonized material, it can be seen that the high discharge capacity is maintained and the initial charge / discharge efficiency, rapid discharge efficiency, and cycle characteristics are excellent. In particular, in Examples 2 and 4 in which a monomer-containing phenolic resin was used as a raw material as thermosetting resins, rapid discharge efficiency and cycle characteristics were excellent.
—方、 炭化材を有しない比較例 5や、 炭化材による造粒化黒鉛の被覆が不十分 な比較例 1、 3では初期充放電効率、 急速放電効率おょぴサイクル特性が著しく 低い。 逆に炭化材が好適範囲よりも多い比較例 2、 4では、 被覆時に融着した複 合黒鉛粒子の解砕に由来して、 炭化材が剥がれ、 初期充放電効率などの改善効果 に乏しい。 また、 放電容量の低下が顕著である。 炭化材の剥離は比表面積の増加 からも確認できる。 On the other hand, in Comparative Example 5 having no carbonized material, and in Comparative Examples 1 and 3 in which the coating of the granulated graphite with the carbonized material was insufficient, the initial charge / discharge efficiency, rapid discharge efficiency, and cycle characteristics were remarkably low. Conversely, in Comparative Examples 2 and 4, where the amount of carbonized material was larger than the preferred range, the carbonized material was peeled off due to the crushing of the composite graphite particles fused during coating, and the effect of improving the initial charge / discharge efficiency, etc. Poor. In addition, the discharge capacity is significantly reduced. Peeling of the carbonized material can also be confirmed from the increase in specific surface area.
炭化材に熱硬化性樹脂類を用いない従来技術に相当する比較例 6の場合には、 炭化材の結晶性が高くなりすぎて R値が低下し、 初期充放電効率が低いものとな る。 さらに、 炭化温度を 3000°Cから 1000でに低温化した比較例 7の場合には、 放 電容量の低下が著しいほカゝ、 急速放電効率やサイクル特性が低いものとなる。 ま た、 粒状黒鉛のァスぺクト比が本発明の規定から外れる従来技術に相当する比較 例 8の場合には、 複合黒鉛粒子の鱗片形状に由来して、 急速放電効率やサイクル 特性が低いものとなる。 In the case of Comparative Example 6, which corresponds to the prior art in which no thermosetting resin is used as the carbonized material, the crystallinity of the carbonized material becomes too high, the R value decreases, and the initial charge / discharge efficiency decreases. . Furthermore, in the case of Comparative Example 7 in which the carbonization temperature was lowered from 3000 ° C to 1000, the discharge capacity was significantly reduced, and the rapid discharge efficiency and cycle characteristics were low. In the case of Comparative Example 8 in which the aspect ratio of the granular graphite was out of the range of the present invention, which corresponds to the prior art, the rapid discharge efficiency and the cycle characteristics were low due to the scale shape of the composite graphite particles. It will be.
表 2— 試料 炭素材の原料 炭素材の割合 最終炭化温度 比表面積 ラマン分光 κ /ο) V0 rし* J v,m /g) K储ill. 実施 W フ 1/一 H»i¾JJ TO 1.1 u.ia 実] !S15!12 フエ/—ル マ一 10 UUU 0.9 U.l o 実施例 3 ス: ι/-ル樹 Β (Α〉+ 5灰糸ヒ 'ノ于 (Β) 10(A:B=6:4) 3000 1.1 0.11 Table 2—Sample Carbon material raw material Carbon material ratio Final carbonization temperature Specific surface area Raman spectroscopy κ / ο) V 0 r * J v, m / g) K 储 ill. u.ia Real]! S15! 12 Hue / Luma 1 10 UUU 0.9 Ul o Example 3 Example: ι /-ル 樹 Β (Α> +5 ash thread = 6: 4) 3000 1.1 0.11
ノエ/一ル ΐ/マー (A)  Noe / Ile ΐ / Ma (A)
実 十ィ ノフエ— t. Τ(Β) 1 UCA: oUUU KO U.loReal junohue—t. Τ (Β) 1 UCA: oUUU KO U.lo
■K半父 !11 フ1/—ル iSB U.4U UUU A ■ K half father! 11F 1 / -le iSB U.4U UUU A
フ 1/—ル fl dUUU U フ !tノール ¾TSίlfl BS frt A、 "*« 5" TT^卜 チ f R、 Q000 2 0 iO 比較例 4 フ: π/-ル樹脂 (A)+石炭系ビ'ノチ (B) 24(A:B=6:4) 3000 3.1 0.28 比較例 5 0 3000 3.8 0.08 比較例 6 石炭系!:'クチ 10 3000 1.4 0,07 比較例 7 石炭系ビプチ 10 1300 1.9 0.48 比較例 8 フ Iノ-ル樹脂 10 3000 2.8 0.25 1 1 /-U fl dUUU U! ノ ー ル ノ ー ル TSίlfl BS frt A, “*« 5 ”TT ^ ^ f R, Q000 20 iO Comparative Example 4 :: π / -Resin (A) + Coal 'Nochi (B) 24 (A: B = 6: 4) 3000 3.1 0.28 Comparative Example 5 0 3000 3.8 0.08 Comparative Example 6 Coal-based! : 'Kuchi 10 3000 1.4 0,07 Comparative Example 7 Coal-based Bipti 10 1300 1.9 0.48 Comparative Example 8 F-Inole resin 10 3000 2.8 0.25
表 2— 2 試料 放電容量 初期充放電効率 急速放電効率 廿ィクル特性 Table 2-2 Sample discharge capacity Initial charge / discharge efficiency Rapid discharge efficiency
( 、mAh/rf (%) (%) (%) 実施例 1 363 95 91 92 実施例 2 365 95 93  (, MAh / rf (%) (%) (%) Example 1 363 95 91 92 Example 2 365 95 93
実施例 3 360 94. 94 95 実施例 4 362 95 95 比較例"! 371 on 74 84 比較例 2 344 gi 81 88 比較例 3 371 90 75 85 比較例 4 342 91 85 89 比較例 5 370 87 71 82 比較例 6 366 88 90 91 比較例 7 347 92 87 88 比較例 8 363 91 69 78 Example 3 360 94. 94 95 Example 4 362 95 95 Comparative Example "! 371 on 74 84 Comparative Example 2 344 gi 81 88 Comparative Example 3 371 90 75 85 Comparative Example 4 342 91 85 89 Comparative Example 5 370 87 71 82 Comparative Example 6 366 88 90 91 Comparative Example 7 347 92 87 88 Comparative Example 8 363 91 69 78
産業上の利用可能性 Industrial applicability
本発明により、 リチウムイオン二次電池の負極材として好適な複合黒鉛粒子 力 生産性よく力 低コストで提供される。 この複合黒鉛粒子を負極材に用いた リチウムイオン二次電池は、 従来、 二律背反して達成が困難であった高い初期充 放電効率と大きい放電容量の両性能を高度に達成できるのみならず、 優れた急速 放電特性とサイクル特性をも兼備する。 よって、 本発明の複合黒鉛粒子により、 電池エネルギーの高密度化に対する近年の要望も満足できる。 さらに、 本発明の 負極材およびリチウム二次電池を搭载する機器は、 小型化および高性能化が可能 となり、 広く産業に貢献できる。  Advantageous Effects of Invention According to the present invention, composite graphite particles suitable as a negative electrode material of a lithium ion secondary battery are provided with good productivity and low cost. Lithium-ion secondary batteries using these composite graphite particles as the anode material can not only achieve both high initial charge / discharge efficiency and large discharge capacity, which have been difficult to achieve in the past, but also have excellent performance. It also has both rapid discharge characteristics and cycle characteristics. Accordingly, the composite graphite particles of the present invention can satisfy the recent demand for higher density of battery energy. Further, the device equipped with the negative electrode material and the lithium secondary battery of the present invention can be reduced in size and improved in performance, and can contribute to a wide range of industries.

Claims

請 求 の 範 囲 請求項 1 Scope of claim Claim 1
X線回折の面間隔 dM2が 0. 337nm未満である黒鉛の少なくとも表面部分に、 該黒 鉛よりも結晶性が低い炭素材を有する複合黒鉛粒子であって、 該複合黒鉛粒子の ァスぺクト比が 3以下で、 該複合黒鉛粒子の 0. 5〜20質量%が該炭素材であり、 該複合黒鉛粒子のラマンスぺクトルにおける 1580cm— 1のピーク強度 (Ι158β) に対 する 1360cm- 1のピーク強度 (11360) の比 /! ) が 0. 1以上から 0. 3未満で ある複合黒鉛粒子。 請求項 2 A composite graphite particle having a carbon material having lower crystallinity than graphite at least on a surface portion of graphite having an X-ray diffraction plane distance d M2 of less than 0.337 nm, wherein the composite graphite particle Of the composite graphite particles is 0.5 to 20% by mass of the carbon material, and the composite graphite particles have a peak intensity of 1580 cm- 1 ( 1158β ) of 1580 cm- 1 in the Raman spectrum. Ratio of 1 peak intensity (1 1360 ) /! ) Is a composite graphite particle having a value of 0.1 or more and less than 0.3. Claim 2
該炭素材の X線回折の面間隔 d。。2が 0. 343nm未満で、 かつ該黒鉛の面間隔 d M2に 対する比が 1. 001以上から 1. 02未満である請求項 1に記載の複合黒鉛粒子。 請求項 3 X-ray diffraction plane spacing d of the carbon material. . 2. The composite graphite particles according to claim 1, wherein 2 is less than 0.343 nm and the ratio of the graphite to the interplanar spacing d M2 is from 1.001 to less than 1.02. Claim 3
該黒鉛が鱗片状黒鉛を造粒したものである請求項 1に記載の複合黒ロ、粒子。 請求項 4  2. The composite graphite and particles according to claim 1, wherein said graphite is obtained by granulating flaky graphite. Claim 4
鱗片状黒鉛を機械的外力で造粒球状化した球状黒鉛粒子が、 炭素量換算で 0. 5 〜20質量%となる、 樹脂単独または樹脂とピッチとの混合物を加熱炭化してなる 炭化物層によつて被覆された複合黒鉛粒子。 請求項 5  Spheroidal graphite particles obtained by granulating flaky graphite by mechanical external force become 0.5 to 20% by mass in terms of carbon content. A carbonized layer formed by heating and carbonizing resin alone or a mixture of resin and pitch. Coated composite graphite particles. Claim 5
鱗片状黒鉛を機械的外力で球状にした造粒化黒鉛に、 熱硬化性樹脂、 熱硬化性 樹脂の前駆体およぴ熱硬化性樹脂の原料の混合物からなる群より選ばれる少なく とも 1種の樹脂材料を含有する炭化可能材料を混合して炭化した、 0. 5〜20質量% の炭化材によつて被覆された複合黒鉛粒子。 m求 -項 6 Granulated graphite obtained by making flaky graphite into a sphere by mechanical external force, at least one selected from the group consisting of a thermosetting resin, a precursor of a thermosetting resin, and a mixture of raw materials of a thermosetting resin. Composite graphite particles coated with 0.5 to 20% by mass of a carbonized material, obtained by mixing and carbonizing a carbonizable material containing the above resin material. m required -term 6
該炭化可能材料が、 該樹脂材料とタール類の混合物であり、 かつ該樹脂材料/ タール類 = 5ノ9 5〜 1 0 0 0 (質量比) である請求項 5に記載の複合黒鉛粒 子。 請求項 7  The composite graphite particle according to claim 5, wherein the carbonizable material is a mixture of the resin material and tars, and the ratio of the resin material / tars is 5 to 95 to 100 (mass ratio). . Claim 7
該榭脂材料が、 フエノール樹脂、 フエノール樹脂の前駆体おょぴフエノール樹 脂のモノマーの混合物からなる群より選ばれる少なくとも 1種である請求項 5に 記載の複合黒鉛粒子。 請求項 8  The composite graphite particles according to claim 5, wherein the resin material is at least one selected from the group consisting of a phenolic resin, a precursor of a phenolic resin, and a mixture of monomers of a phenolic resin. Claim 8
請求項 1〜 7のいずれかに記載の複合黒鉛粒子を含むリチウムイオン二次電池 の負極材。 請求項 9  A negative electrode material for a lithium ion secondary battery comprising the composite graphite particles according to claim 1. Claim 9
請求項 8の負極材を用いたリチウムイオン二次電池。 請求項 10  A lithium ion secondary battery using the negative electrode material according to claim 8. Claim 10
•鱗片状黒鉛を機械的外力で球状にする造粒工程、  A granulation process of making flake graphite spherical by mechanical external force;
•得られた造粒化黒鉛に、 後の炭化工程で得られる複合黒鉛粒子の 80〜99. 5% が該造粒化黒鉛になるように、 熱硬化性橋脂、 熱硬化性樹脂の前駆体および 熱硬化性樹脂の原料の混合物からなる群より選ばれる少なくとも 1種の樹脂 材料を含有する炭化可能材料を混合する工程、 および  • The precursor of thermosetting crosslinking resin and thermosetting resin is added to the obtained granulated graphite so that 80 to 99.5% of the composite graphite particles obtained in the subsequent carbonization step become the granulated graphite. Mixing a carbonizable material containing at least one resin material selected from the group consisting of a body and a mixture of raw materials of a thermosetting resin, and
•得られた混合物を 2000°(〜3200 で炭化する工程  • Carbonization of the resulting mixture at 2000 ° (~ 3200)
を含む複合黒鉛粒子の製造方法。 請求項 11 A method for producing composite graphite particles comprising: Claim 11
該炭化可能材料が、 該樹脂材料とタール類の混合物であり、 力 該樹脂材料 z タール類 = 5ノ9 5〜1 0 0ノ0 (質量比) である請求項 10に記載の複合黒鉛粒 子の製造方法。 請求項 12  The composite graphite particles according to claim 10, wherein the carbonizable material is a mixture of the resin material and tars, and the resin material z tars = 5 to 95 to 100 (mass ratio). Child manufacturing method. Claim 12
該榭脂材料が、 フエノール樹脂、 フエノール樹脂の前駆体およびフエノーノレ樹 脂のモノマーの混合物からなる群より選ばれる少なくとも 1種である請求項 10に 記載の複合黒鈴粒子の製造方法。 請求項 13  The method for producing composite black bell particles according to claim 10, wherein the resin material is at least one selected from the group consisting of a phenolic resin, a precursor of a phenolic resin, and a monomer mixture of a phenolic resin. Claim 13
該炭化工程の前に、 該樹脂材料を 200〜300でで熱硬化する工程をさらに行う請 求項 10〜: 12のいずれかに記載の複合黒鉛粒子の製造方法。  The method for producing composite graphite particles according to any one of claims 10 to 12, further comprising, before the carbonizing step, a step of thermally curing the resin material at 200 to 300.
PCT/JP2003/016241 2002-12-19 2003-12-18 Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this WO2004056703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002368514 2002-12-19
JP2002-368514 2002-12-19

Publications (1)

Publication Number Publication Date
WO2004056703A1 true WO2004056703A1 (en) 2004-07-08

Family

ID=32677121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016241 WO2004056703A1 (en) 2002-12-19 2003-12-18 Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this

Country Status (4)

Country Link
KR (1) KR100704096B1 (en)
CN (2) CN101350407B (en)
TW (1) TWI243498B (en)
WO (1) WO2004056703A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967493A4 (en) * 2005-12-21 2012-02-22 Showa Denko Kk Composite graphite particles and lithium rechargeable battery using the same
CN103626170A (en) * 2012-12-14 2014-03-12 深圳市斯诺实业发展有限公司永丰县分公司 Method for preparing modified graphite cathode material
CN104709896A (en) * 2013-12-11 2015-06-17 中国科学院宁波材料技术与工程研究所 Graphite complex and preparation method thereof
EP2403802A4 (en) * 2009-03-02 2015-07-01 Showa Denko Kk Composite graphite particles and lithium secondary battery using the same
EP2554515A4 (en) * 2010-03-31 2016-01-20 Nippon Steel & Sumitomo Metal Corp Modified natural graphite particle and method for producing same
US10508038B2 (en) 2015-02-24 2019-12-17 Showa Denko K.K. Carbon material, method for manufacturing same, and use thereof
CN113574016A (en) * 2019-01-14 2021-10-29 株式会社Lg新能源 Method for preparing negative active material
CN113597684A (en) * 2020-11-10 2021-11-02 宁德新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device using same
EP3954653A1 (en) * 2020-06-26 2022-02-16 JFE Chemical Corporation Carbonaceous substance-coated graphite particles

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100805104B1 (en) * 2005-08-31 2008-02-21 삼성에스디아이 주식회사 Carbonaceous material having high surface area and conductivity and method of preparing same
KR100814817B1 (en) * 2007-01-18 2008-03-20 삼성에스디아이 주식회사 Lithium battary, fuel cell, and material of hydrogen storage comprising carbide driven carbon structure
CN102656741B (en) * 2009-12-18 2014-12-03 丰田自动车株式会社 Air electrode for use in air battery, and air battery comprising air electrode
CN102255076B (en) * 2010-05-19 2016-02-10 深圳市比克电池有限公司 The graphite material of coated with carbon bed, preparation method and application
WO2012000201A1 (en) * 2010-07-02 2012-01-05 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery negative electrode material and preparing method therefor
KR101562724B1 (en) * 2011-04-08 2015-10-22 쥬오 덴끼 고교 가부시키가이샤 Modified natural graphite particles
KR102281034B1 (en) * 2012-10-26 2021-07-22 쇼와덴코머티리얼즈가부시끼가이샤 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015019994A1 (en) 2013-08-05 2015-02-12 昭和電工株式会社 Negative electrode material for lithium ion batteries and use thereof
JP6301484B2 (en) * 2014-01-24 2018-03-28 エキョンペトロケミカル シーオー., エルティーディー.Aekyungpetrochemical Co., Ltd. Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP6240586B2 (en) * 2014-10-28 2017-11-29 Jfeケミカル株式会社 Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP6412520B2 (en) * 2015-06-01 2018-10-24 Jfeケミカル株式会社 Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery
WO2021107094A1 (en) * 2019-11-29 2021-06-03 日本黒鉛工業株式会社 Electrode conductive agent for lithium ion battery, electrode composition, and electrode
CN113493193A (en) * 2020-03-20 2021-10-12 国家能源投资集团有限责任公司 Amorphous carbon material and preparation method thereof, sodium ion battery cathode and sodium ion battery
CN116914135A (en) * 2020-04-24 2023-10-20 宁德新能源科技有限公司 Negative electrode active material, electrochemical device using same, and electronic device
KR20210132927A (en) * 2020-04-28 2021-11-05 재단법인 포항산업과학연구원 Negative electrode material for rechargeable lithium battery, method for manufacturing the same and rechargeable lithium battery including the same
CN112614984B (en) * 2020-12-25 2022-11-11 湖州凯金新能源科技有限公司 Graphite negative electrode material of low-magnetism substance for lithium battery and preparation method thereof
KR102480217B1 (en) * 2021-07-29 2022-12-22 주식회사 엘피엔 The new spherical carbonaceous material, battery including the same as an anode active material, and method of preparing the spherical carbonaceous material
CN114824226B (en) * 2022-05-13 2023-07-14 欣旺达电动汽车电池有限公司 Negative electrode plate, preparation method thereof, lithium ion battery and electric equipment
WO2024108575A1 (en) * 2022-11-25 2024-05-30 宁德时代新能源科技股份有限公司 Carbon material and preparation method therefor, rechargeable battery containing carbon material, and electric apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JPH08180903A (en) * 1994-12-22 1996-07-12 Sanyo Electric Co Ltd Lithium secondary battery
EP0917228A1 (en) * 1997-05-30 1999-05-19 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
EP0918040A1 (en) * 1996-08-08 1999-05-26 Hitachi Chemical Co., Ltd. Graphite particles and lithium secondary cell using them as cathode material
EP1005097A1 (en) * 1998-11-27 2000-05-31 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
US20020076614A1 (en) * 1998-04-02 2002-06-20 Sang-Young Yoon Active material for negative electrode used in lithium-ion battery and method of manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3193342B2 (en) * 1997-05-30 2001-07-30 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
US6391495B1 (en) * 1998-11-25 2002-05-21 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery, method of preparing the same and lithium secondary battery comprising the same
JP3534391B2 (en) * 1998-11-27 2004-06-07 三菱化学株式会社 Carbon material for electrode and non-aqueous secondary battery using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JPH08180903A (en) * 1994-12-22 1996-07-12 Sanyo Electric Co Ltd Lithium secondary battery
EP0918040A1 (en) * 1996-08-08 1999-05-26 Hitachi Chemical Co., Ltd. Graphite particles and lithium secondary cell using them as cathode material
EP0917228A1 (en) * 1997-05-30 1999-05-19 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US20020076614A1 (en) * 1998-04-02 2002-06-20 Sang-Young Yoon Active material for negative electrode used in lithium-ion battery and method of manufacturing same
EP1005097A1 (en) * 1998-11-27 2000-05-31 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967493A4 (en) * 2005-12-21 2012-02-22 Showa Denko Kk Composite graphite particles and lithium rechargeable battery using the same
US8999580B2 (en) 2005-12-21 2015-04-07 Show A Denko K.K. Composite graphite particles and lithium rechargeable battery using the same
EP2403802A4 (en) * 2009-03-02 2015-07-01 Showa Denko Kk Composite graphite particles and lithium secondary battery using the same
EP2554515A4 (en) * 2010-03-31 2016-01-20 Nippon Steel & Sumitomo Metal Corp Modified natural graphite particle and method for producing same
CN103626170A (en) * 2012-12-14 2014-03-12 深圳市斯诺实业发展有限公司永丰县分公司 Method for preparing modified graphite cathode material
CN104709896A (en) * 2013-12-11 2015-06-17 中国科学院宁波材料技术与工程研究所 Graphite complex and preparation method thereof
US10508038B2 (en) 2015-02-24 2019-12-17 Showa Denko K.K. Carbon material, method for manufacturing same, and use thereof
CN113574016A (en) * 2019-01-14 2021-10-29 株式会社Lg新能源 Method for preparing negative active material
EP3889106A4 (en) * 2019-01-14 2022-02-09 Lg Energy Solution, Ltd. Method for preparing negative electrode active material
EP3954653A1 (en) * 2020-06-26 2022-02-16 JFE Chemical Corporation Carbonaceous substance-coated graphite particles
EP3951942A4 (en) * 2020-06-26 2022-03-16 JFE Chemical Corporation Method for producing graphite particles coated with carbonaceous film
US11942641B2 (en) 2020-06-26 2024-03-26 Jfe Chemical Corporation Method for producing carbonaceous substance-coated graphite particles
CN113597684A (en) * 2020-11-10 2021-11-02 宁德新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device using same
CN113597684B (en) * 2020-11-10 2023-03-10 宁德新能源科技有限公司 Negative electrode active material, and electrochemical device and electronic device using same

Also Published As

Publication number Publication date
CN101350407B (en) 2014-07-30
TW200414579A (en) 2004-08-01
CN1726168A (en) 2006-01-25
CN100422077C (en) 2008-10-01
TWI243498B (en) 2005-11-11
KR100704096B1 (en) 2007-04-06
CN101350407A (en) 2009-01-21
KR20050084413A (en) 2005-08-26

Similar Documents

Publication Publication Date Title
WO2004056703A1 (en) Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this
JP4215633B2 (en) Method for producing composite graphite particles
KR101661050B1 (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN107078288B (en) Graphite particle for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6507395B2 (en) Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
CN113273004B (en) Method for producing carbonaceous-coated graphite particles
KR20140093986A (en) Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2014026966A (en) Production method of negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JPH11219700A (en) Lithium secondary battery, its negative electrode and its manufacture
JP2015153496A (en) Method for manufacturing carbonaceous substance-coated graphite particles for lithium ion secondary battery negative electrodes, lithium ion secondary battery negative electrode, and lithium ion secondary battery
CN113809324A (en) Carbonaceous coated graphite particles, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017183233A (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode, and secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 20038A65709

Country of ref document: CN

Ref document number: 1020057011367

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057011367

Country of ref document: KR