WO2004056488A1 - Cabezal atomizador de alta eficiencia para líquidos viscosos y su uso - Google Patents

Cabezal atomizador de alta eficiencia para líquidos viscosos y su uso Download PDF

Info

Publication number
WO2004056488A1
WO2004056488A1 PCT/ES2003/000643 ES0300643W WO2004056488A1 WO 2004056488 A1 WO2004056488 A1 WO 2004056488A1 ES 0300643 W ES0300643 W ES 0300643W WO 2004056488 A1 WO2004056488 A1 WO 2004056488A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
nozzle
head according
vary
section
Prior art date
Application number
PCT/ES2003/000643
Other languages
English (en)
French (fr)
Inventor
Eduardo Lincheta Mesa
José SUÁREZ GARCÍA
Jorge BARROSO ESTÉBANEZ
Antonio Lozano Fantoba
Félix BARRERAS FANTOBA
Original Assignee
Consejo Superior De Investigaciones Científicas
Centro De Combusitón Y Energía (Cecyen)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Centro De Combusitón Y Energía (Cecyen) filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003294978A priority Critical patent/AU2003294978A1/en
Publication of WO2004056488A1 publication Critical patent/WO2004056488A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0433Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of gas surrounded by an external conduit of liquid upstream the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0491Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid the liquid and the gas being mixed at least twice along the flow path of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/102Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/102Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber
    • F23D11/103Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber with means creating a swirl inside the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge

Definitions

  • Atomizing head that uses an auxiliary fluid to atomize high viscosity liquids, such as low quality heavy oils, liquid solids suspensions, emulsions, herbicides, paints, tars, asphalt products, etc.
  • Liquid atomization is of great importance because it is present in multiple industrial processes and practical applications.
  • the combustion of liquid fuels both in boilers and ovens and in internal combustion engines
  • painting drying, extinguishing fires, cutting and coating materials, dispersion of chemical agents, etc.
  • other branches of marked social interest such as agriculture (irrigation, application of herbicides and insecticides), construction (aspersion of tars for asphalting pavements) and medicine (aerosols for the prevention and treatment of respiratory diseases), use of atomized liquids.
  • nozzles formed by a single body or by different detachable parts, identified as atomizing heads in the present invention is very common.
  • the nozzles used in thermoelectric plants have been designed to atomize a lighter liquid fuel than those currently used. That is why, in the case of auxiliary fluid atomizers, their ducts are typically of cylindrical section and without rotation chambers.
  • atomizers with tangential paths and a rotation chamber are used, the operating principle of which is to use the energy itself in the form of pressure of the fluid to be atomized to generate the drops, without the need for another auxiliary fluid.
  • the invention registered with the number GB2298808 (1996) allows to reduce the amount of auxiliary fluid for the atomization of chemical products in agriculture, while US6088934 (2000) shows a device designed to improve the control and distribution of drops of the liquid in the fluidized bed used in the polymerization of olefins.
  • the first design of a fuel oil atomizer using steam as an auxiliary fluid is reported in patent number US1428896 (1922). In 1965 the first design of a "Y" nozzle appeared, such as those currently marketed, described in patent US3185202 (1965). However, increasing the efficiency of "Y" type atomizers that use an auxiliary fluid continues to be a very topical problem.
  • the atomizing head object of this invention provides a high atomization efficiency of heavy oils and other highly viscous liquids, reducing in turn the construction, operation and maintenance costs.
  • it is made up of an atomizing nozzle, a viscous liquid dispenser and an assembly assembly bushing.
  • the spray nozzle is made up of two elements, an outer cover and an inner conical piece that fit together to form an intermediate rotating chamber.
  • the inner conical piece has several rectangular (or cylindrical) channels or grooves with variable cross-section with double angle of inclination, which causes an increase in the linear and angular velocity of the liquid to be atomized.
  • cylindrical ducts can pass through which a part of the auxiliary fluid moves, allowing a turbulent premix to occur between both fluids in the final part of the channels through which the liquid to be atomized moves.
  • the liquid to be atomized and the auxiliary fluid already pre-mixed in the rectangular channels reach the rotation chamber where they join with the rest of the auxiliary fluid that circulates through the central hole of the inner conical piece, causing the final mixture between both fluids.
  • a flow circulation is created in the form of a circumferential eddy, also increasing its rotational kinetic energy.
  • the turbulent mixture of both fluids is discharged through at least one outlet orifice, generating the cloud of drops from the aerosol.
  • the present invention is based on the fact that the inventors have observed that the efficiency of the fluid atomization process can be increased, even for those highly viscous liquids, by means of an atomizing head specially designed and presented in this patent.
  • viscous fluid refers, among others, to heavy liquid fuels (crude, low-quality oils, mixtures, etc.), paints, tars, asphalt, emulsions, solid-liquid suspensions Y various types of herbicides and insecticides.
  • high efficiency refers, on the one hand, to the fact that the atomizing head object of the patent generates a cloud of drops (aerosol) with the adequate diameter and spatial distribution according to the Application concerned for normal operating pressures. On the other hand, it also refers to the low maintenance and construction costs that it requires.
  • An object of the present invention is the high-efficiency atomizing head for the atomization of fluids, preferably viscous liquids, characterized in that it consists of an atomizing nozzle, a dosing device for the viscous liquid to be atomized and the assembly cap or body, in forward cap, of the whole set.
  • the atomization nozzle is made up of the solidary adjustment of two elements consisting of an external conical part (see Figure 1) and an internal conical part (see Figure 2) that improve the atomization of said viscous fluid, because: - both elements are adjusted by the conical housing for adjusting the outer part (2) and the also conical outer surface of the inner part (4) forming the rotation chamber (3),
  • the outer cover has at least one cylindrical outlet through hole (1) for atomizing the final mixture of the liquid to be atomized and the auxiliary fluid coming from the external rotation chamber,
  • this inner part has a central hole (5) of variable section, with an inlet diameter greater than that of the outlet, through which the rest (or all) of the atomizing fluid flows to interact with a liquid-auxiliary fluid mixture that reaches the rotation chamber (3) through the rectangular grooves, and
  • the inner part also has a series of rectangular (or cylindrical) grooves or channels with a trapezoidal or straight cross section (6) made on the outer conical surface (4), through which the fluid to be sprayed is conducted and which have two angles of different inclination in space and in each of which a cylindrical duct (7) can flow, through which a fraction of the atomizing fluid moves, these angular channels and cylindrical ducts converging in a "Y" configuration.
  • the novel geometric configuration of the nozzle assembly achieves a very efficient transformation of the pressure energy of the fluid to be atomized and of the auxiliary fluid into a higher rotational kinetic energy of the liquid to be atomized.
  • the atomizing head of the present invention is coupled to a dispenser (see Figure 3) used to distribute the viscous liquid to be atomized.
  • This dispenser consists of a cylindrical piece with several grooves (10) with fixed or variable cross section. Said channels may be axially aligned with the axis of the dispenser, form an angle with it or be helical conduits. The number and diameter of these channels or conduits depends on the volumetric cost of the specific application in which the head is used, and each one of them ends in separate conduits (11) with a diameter equal to that of the largest dimension of the channels.
  • the dispenser outlet holes will have an inclination with respect to the horizontal axis, determined by the angle of the channel in the outlet area.
  • the same piece has a central channel (9) through which the auxiliary fluid is conducted, which, depending also on the application in which the invention is used, may be any gas or steam, or more specifically compressed air, saturated steam or superheated, oxygen, any of the noble gases, natural gas, etc. (see Lefevbre, 1989).
  • the coaxial configuration of both ducts allows that, in case of using steam as an auxiliary fluid, part of its heat is transferred by conduction to the liquid to be atomized, increasing its temperature and decreasing its viscosity. In the event that the grooves are helical, increasing the heat transfer area will also help decrease the viscosity of the fluid.
  • the auxiliary fluid can be replaced by compressed air, oxygen, any noble gas or natural gas as mentioned above.
  • the doser is connected at its rear part (8) to the auxiliary fluid conduction pipe.
  • the liquid, preferably viscous, to be atomized is led through the slots of the doser to the atomizing head, it reaches the conditioning chamber (12) and is forced to circulate through the angular channels (6) of the inner part that makes up the atomizing nozzle.
  • the auxiliary fluid moves through the central hole of the dispenser to the central hole of the inner part (5).
  • a part of the auxiliary fluid is diverted through the cylindrical ducts (7) mixing with the viscous liquid to be sprayed at the end of the channels (5) in a configuration in "Y".
  • the premix of both fluids occurs at a certain distance before the channels exit to the rotation chamber (3).
  • This premix fulfills the double function of increasing the temperature of the liquid, decreasing its viscosity; as well as increasing its kinetic energy by shear effect.
  • the special constructive arrangement of the channels (6) in the set that is, their double spatial angle and their variable section, allows the incorporation of a new angle of rotation that causes an increase in the linear and angular velocities of the fluid to be atomized, in addition to the premix of both fluids in the outlet area of these channels. With this design, it is possible to increase the rotation, mixing and turbulence of both fluids in the rotation chamber.
  • the solidary assembly of the two parts that make up the atomizing nozzle of the present invention creates a rotation chamber (3) where the premix that comes out of the angle channels (6) interact with the rest of the auxiliary fluid that comes out of the central hole of variable section (5), causing the final mixture between both fluids.
  • the strong angular component of the speed of the premixed liquid together with the intense shear to which it is subjected by the rest of the auxiliary fluid causes the final mixture of both flows to leave through the cylindrical through holes (1) forming a conical sheet in its interior.
  • the sum of all the effects described causes an increase in the efficiency of the atomization process, generating aerosols with a very small droplet size, as well as a better spatial distribution of the same.
  • the cap (see Figure 4), has the function of encapsulating the assembly of the nozzle and the dispenser. In its front part it ends in a wall with a bevelled hole (14), with a suitable diameter, which serves as accommodation for the nozzle. In addition, at the back is the thread (13) or any other form of connection of the atomizing head to the conductive pipe of the viscous liquid to be atomized.
  • a particular object of this patent is an atomizing head of the present invention in which the two different angles of inclination in the space of the angular channels (6) can vary between 10 ° and 80 °, with respect to the horizontal axes. and vertical. Furthermore, the cross section of said angle channels (6) can vary between 1 and 25 mm 2 , and the angle between the angle channels (6) and the cylindrical ducts (7) can vary between 5 ° and 85 °.
  • a particular object of this patent is constituted by an atomizing head of the present invention in which the cross section of the cylindrical ducts (7) can be increased or decreased according to the needs, being able to vary between 1 and 10 mm 2 , and , in an extreme case, the atomizing head of the present invention may be characterized by the absence of the cylindrical ducts (7) whereby all the auxiliary fluid reaches the rotating chamber through the central hole (5) of variable section .
  • a particular object of this patent is an atomizing head of the present invention in which the outer cover has more than one outlet through hole (1) distributed concentrically.
  • the diameter of these outlet holes can vary between 1 and 10 mm and are distributed with an angle of inclination with respect to the horizontal axis of the atomizing head that can vary between 0 ° and 80 °, all of which allows the atomization of the liquid in so many aerosols Tapered as outlet holes exist.
  • Another particular object of this patent is an atomizing head of the present invention in which the rotation chamber (3) presents a double angle of its inner front face, with respect to the vertical, which may be in the range between 5 ° and 50 °.
  • Another particular object of this patent is an atomizing head of the present invention in which the central duct of the inner conical part (5) has a variable section diameter, included in the case of the inlet section in the range between 5 and 30 mm and in the case of the outlet section between 1 and 10 mm.
  • Another particular object of this patent is an atomizing head of the present invention to which a doser is attached, which has a central duct through which the auxiliary fluid circulates and several channels on the outside for the movement of the liquid to be atomized.
  • the diameter of the central duct can vary between 5 and 2 mm, while the cross-sectional area of the channels can vary between 4 and 100 mm 2 .
  • the conductive channels of the viscous liquid are formed in helical grooves, their angle will vary between 5 ° and 85 ° with respect to the horizontal axis of the part.
  • Another particular object of this patent is constituted by an atomizing head of the present invention that comprises a bushing formed by a hollow cylindrical part to assemble the nozzle-dosing assembly.
  • the diameter of the beveled hole for the front nozzle adjustment varies between 15 and 50 mm.
  • the thickness of the wall, for the rear adjustment to the conductive pipe of the liquid to be atomized varies between 2 and 10 mm and is done by means of a thread or any other form of union.
  • Another particular object of the invention is any atomizing head, of those described above, that can operate under conditions of gauge pressure where the pressure of the fluid to be atomized at the inlet thereof is comprised between 0.5 and 20 MPa, and that of the fluid. Auxiliary between 0.1 and 30 MPa.
  • auxiliary fluid can be, among others, compressed air, saturated or superheated steam, oxygen, natural gas or some other noble gas.
  • the atomizing head of the present invention preferably, in the burners of industrial steam generators that burn low quality heavy oils, in boilers and furnaces as well as in internal combustion engines, and in any other industrial process where it is desired to atomize fluids such as the application of paint, drying, extinguishing fires, cutting and coating of materials, dispersion of chemical agents, etc.
  • Other applications are found in agriculture (irrigation, application of herbicides and insecticides), asphalting of roads, construction and medicine (aerosols for the prevention and treatment of respiratory diseases).
  • Another particular object of this patent is an atomizing head of the present invention for the combustion of heavy oil with technical characteristics as described in Example 1 of the present invention.
  • the constructional characteristics of the atomizing head of the present invention allow its manufacture in simple machining workshops, which affects the reduction of its construction costs.
  • the parts can be made of stainless steel, brass, cast iron, any type of plastic, etc., which, depending on the use, resists the abrasion, corrosion and temperature of the fluids that are used as a liquid to be sprayed and auxiliary fluid and support the working pressure range.
  • the external grooves of the internal conical part facilitate its cleaning, which reduces interruptions in maintenance work time and increases its useful life.
  • Figure 2 Lateral section of the inner conical piece showing the outer conical surface (4), the central hole (5) through which the auxiliary fluid moves, the rectangular grooves of variable section (6) through which the liquid circulates to atomizing and the cylindrical ducts (7) through which a part of the auxiliary fluid is transported, which make up a relative "Y" -shaped arrangement with the rectangular grooves.
  • Figure 3 Side section of the viscous liquid dispenser to be sprayed, showing the rear threaded part that serves as a connection with the auxiliary fluid conduction pipe (8), the central hole of variable section (9) through which the auxiliary fluid is led , the rectangular (or helical) grooves through which the liquid to be atomized (10) circulates and the discharge holes (11) to the flow conditioning chamber (12).
  • Figure 4 Lateral section of the assembly bushing or body of the atomizing head that shows the rear threaded connection to join the conductive pipe of the viscous liquid to be atomized (13) and the bevelled hole in the front wall (14) that serves to house the the mouthpiece.
  • Figure 5. Assembly order of all the pieces that, from left to right, show the dispenser, the conical inner and outer pieces that make up the atomization nozzle itself and the assembly bushing or head body.
  • Example 1 Atomizing head for burning heavy fuel
  • the starting requirements for the design of the atomizer were to achieve adequate combustion efficiency, using the least amount of saturated steam with pressures between 0.65 and 0.7 MPa, when the fuel liquid pressures range between 0.46 and 0 , 5 MPa. Due to the physico-chemical characteristics of the fuel used, preheat temperature values above 120 ° C should not be reached.
  • the constructed nozzle is made up of two independent stainless steel conical pieces, one inside and one outside. As already explained in the description of the invention, when assembled in a solidary manner, they fit together to form a camera of rotation.
  • the outer shell has an outer diameter at its widest part of 40 mm and 8 outlet holes with diameters of 3.5 mm each.
  • the inner conical piece with a maximum outer diameter of 26 mm, has 6 rectangular grooves of variable cross section with a square section at the entrance of 4x4 mm, through which the oil circulates.
  • the dimension in the vertical coordinate was progressively decreased to have 3 mm at the outlet of the channel.
  • a cylindrical conduit 3 mm in diameter reaches each of the grooves through which a part of the auxiliary fluid flow (steam in this example) is conducted.
  • the mixing point between the two fluids was located 7.5 mm from the exit area of the channels to the turning chamber.
  • the two angles of the channels of the liquid to be atomized were 30 ° in relation to the axis of the atomizer in a top view of the assembly and 25 ° in relation to the same axis but in this case from the front view.
  • the central hole through which the steam is transported has a diameter greater than 14 mm in the inlet section and a diameter less than 4 mm at the outlet.
  • the dispenser for its part is machined in stainless steel, has 10 grooves for the distribution of the oil to be atomized and a central hole through which the atomizing fluid (in this case steam) circulates.
  • the grooves have a square section of 4.5x4.5 mm, leading to separate holes of 4.5 mm in diameter.
  • the central hole is of variable section, with an inlet diameter of 19 mm and an outlet of 10 mm.
  • On the back of said part there is an internal thread where the conductive pipe of the auxiliary fluid is coupled.
  • the adequacy chamber of the flow between the dispenser and the nozzle is 5 mm in this case.
  • the assembly bushing is also a piece of stainless steel, with an outer diameter of 49 mm and an inner diameter of 40 mm. In its front part it ends in a wall 4 mm thick with a bevelled hole with a diameter less than 27.2 mm, where the nozzle is housed. On the back it has a metric thread where the tube from the oil heater is attached.
  • this head was subjected to an exhaustive study on a burner test bench. It was found that the values of the angle and the quality of the spray obtained were similar or better than those obtained with the nozzle. commercial. It is noteworthy that these results were achieved with approximately half of the steam flow used as an auxiliary fluid in the different tests carried out, varying the oil and steam pressures in the range of the operating values of this boiler. Efficiency tests were carried out on the steam boiler with commercial nozzles and also once the atomizing heads object of this invention were installed. On average, an increase in efficiency of 3 units was obtained. This improvement was due to the fact that the new atomizing head, in addition to reducing the flow of atomizing steam and improving the combustion process, allowed reducing the value of the excess air necessary for the latter process.
  • the measurements of fuel consumption made it possible to verify a reduction of 1% per month, when comparing the average consumption of previous months for the same generation of electricity.
  • the mismatch of the increase in efficiency and the reduction in fuel consumption is due to other problems that arose in the thermal power plant in the month of tests that caused a reduction in its efficiency.
  • Another very important aspect to highlight is the reduction of the cleaning time of the new nozzles to approximately half of that required with commercial nozzles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Abstract

Cabezal atomizador de elevada eficiencia por fluido auxiliar, especialmente diseñado para líquidos muy viscosos. Consta de una boquilla de atomización, un dosificador del líquido a atomizar y un casquillo de ensamblaje. El aspecto más novedoso está en el diseño de la boquilla formada por dos elementos, una cubierta exterior y una pieza cónica interior con una serie de ranuras o canales, que se ajustan entre sí formando una cámara de rotación intermedia donde se produce la mezcla final del fluido a atomizar y el auxiliar. Esta disposición, consigue transformar de manera efectiva la energía de presión en una mayor energía cinética de rotación optimizando la atomización del fluido, además de reducir los costes de fabricación y mantenimiento. Tiene múltiples aplicaciones desde la atomización de petróleos pesados de baja calidad, empleados como combustible en las calderas de las centrales térmicas hasta la generación de aerosoles para el tratamiento de enfermedades respiratorias.

Description

TITULO
CABEZAL ATOMIZADOR DE ALTA EFICIENCIA PARA LÍQUIDOS
VISCOSOS Y SU USO
SECTOR DE LA TÉCNICA
Sectores eléctrico, energético, agricultura, construcción y farmacéutico entre otros. Cabezal atomizador que utiliza un fluido auxiliar para atomizar líquidos de alta viscosidad, como por ejemplo los petróleos pesados de baja calidad, suspensiones de sólidos en líquidos, emulsiones, herbicidas, pinturas, alquitranes, productos asfálticos, etc..
ESTADO DE LA TÉCNICA
La atomización de líquidos tiene una gran importancia por estar presente en múltiples procesos industriales y aplicaciones prácticas. Entre las más conocidas están la combustión de combustibles líquidos (tanto en calderas y hornos como en motores de combustión interna), pintura, secado, extinción de fuegos, corte y recubrimiento de materiales, dispersión de agentes químicos, etc. En otras ramas de marcado interés social como la agricultura (riego, aplicación de herbicidas e insecticidas), la construcción (aspersión de alquitranes para el asfaltado de pavimentos) y la medicina (aerosoles para la prevención y tratamiento de enfermedades respiratorias) también es frecuente el uso de líquidos atomizados.
El incremento del uso de los petróleos líquidos como combustible ha provocado un sensible y continuado deterioro de su calidad, de acuerdo con sus propiedades físico- químicas. Hoy en día, es cada vez más común el uso de petróleos pesados (muy viscosos) y con alto contenido de azufre, vanadio y asfáltenos en las calderas de las centrales térmicas para producir el vapor utilizado en la generación de electricidad. La combustión limpia y eficiente de los petróleos pesados presenta dificultades adicionales respecto a los combustibles más ligeros. En primer lugar, lograr una calidad de atomización adecuada, definida por el diámetro medio de las gotas y la distribución de tamaños de éstas, resulta difícil debido a su alta viscosidad; mientras que la elevada concentración de compuestos pesados en su composición química hace que el tiempo característico del proceso de evaporación de los mismos sea muy grande. Ambas características contribuyen a una emisión apreciable de fracciones de combustible no quemado y partículas que se convierten en hollines ácidos. Es por ello que hoy en día resulta una tarea vital el aumentar la eficiencia del proceso de atomización, reduciendo el tamaño de las gotas producidas. De esta forma se garantiza un mejor encendido y control de las calderas, así como una disminución de la formación y emisión de NOx, hollín y otros agentes contaminantes.
Para lograr mejoras en el proceso de atomización de líquidos, es muy común el diseño de boquillas formadas por un solo cuerpo o por diferentes partes desarmables, identificadas como cabezales atomizadores en la presente invención. En muchos casos, las boquillas utilizadas en las centrales termoeléctricas se han diseñado para atomizar un combustible líquido más ligero que los que actualmente se emplean. Es por ello que, en el caso de los atomizadores por fluido auxiliar, sus conductos son típicamente de sección cilindrica y sin cámaras de rotación. De igual forma, en otras aplicaciones se emplean atomizadores con vías tangenciales y cámara de rotación cuyo principio de funcionamiento es utilizar la propia energía en forma de presión del fluido a atomizar para generar las gotas, sin necesidad de otro fluido auxiliar. En cualquiera de los casos anteriores cuando estos dispositivos se utilizan para atomizar líquidos muy viscosos como petróleos pesados o mezclas de petróleos de baja calidad, emulsiones, suspensiones, pinturas, alquitranes, etc., resulta imposible lograr el tamaño medio de gota requerido, ni la distribución espacial más adecuada de las mismas en el aerosol. Por otra parte, la menor calidad (alta viscosidad, elevados contenidos de alfaltenos y carbón conrradson) de los combustibles, la presencia de sólidos en suspensión, etc., provoca un aumento de la abrasividad y corrosividad del líquido a atomizar. Esto tiende a disminur bruscamente la vida útil de las boquillas debido a la obstrucción de los conductos y las dificultades para realizar su limpieza que, a su vez, se requiere con más frecuencia.
El estudio de la generación de aerosoles a partir de un volumen de líquido es un tema al que se han dedicado innumerables esfuerzos de científicos e ingenieros desde hace más de un siglo (Rayleigh, 1878). Desde la década de los años 30 del siglo anterior, existen en la literatura científica reportes de estudios tanto teóricos de estabilidad lineal (Weber, 1932; Squire, 1953) como experimentales (Haenlein, 1932; Dombrowski y col., 1960), sobre la atomización de líquidos. Un resumen de los diferentes tipos de boquillas de atomización y sus aplicaciones puede consultarse en el libro Atomization and Spray de A. Lefevbre (1989), así como en las referencias citadas en éste.
Existen varias patentes de invención de atomizadores que emplean un fluido auxiliar registradas que tratan sobre el incremento de la eficiencia de la atomización de líquidos. Dependiendo de la aplicación específica de que se trate, las mismas describen el uso de atomizadores asistidos por aire, por ejemplo en los acondicionadores de aire y torres de enfriamiento como en la EP1160015A (2001) o de atomizadores con aspiración del líquido tipo sifón como la US3770209 (1973). De igual forma, se han registrado también patentes de atomizadores con fluido auxiliar para otros muy diferentes usos. Por ejemplo, la invención registrada con el número GB2298808 (1996) permite reducir la cantidad de fluido auxiliar para la atomización de productos químicos en la agricultura, mientras que la US6088934 (2000) muestra un dispositivo diseñado para mejorar el control y la distribución de las gotas del líquido en el lecho fluidificado empleado en la polimerización de olefinas. El primer diseño de un atomizador de fuel oil utilizando vapor como fluido auxiliar se reporta en la patente número US1428896 (1922). En el año 1965 aparece el primer diseño de una boquilla tipo "Y" como las que se comercializan en la actualidad, descrita en la patente US3185202 (1965). Sin embargo, el aumento de la eficiencia de los atomizadores tipo "Y" que utilizan un fluido auxiliar continúa siendo un problema de mucha actualidad. La afirmación anterior cobra más relevancia cuando se pretende atomizar fluidos muy viscosos como los mencionados anteriormente y que se puede constatar por ejemplo, en el registro de patentes mucho más recientes como las US4249885 (1981) y la US2001030247 (2001). En ambos inventos se continúa manteniendo la forma de la boquilla original y se trabaja sobre todo en la reducción de la viscosidad por el calentamiento del líquido, pero no mejoran la interacción entre los dos fluidos.
A pesar de todo el esfuerzo dedicado a este problema y las múltiples mejoras introducidas en el campo de la atomización de líquidos muy viscosos, aún quedan muchos problemas por resolver. Desde el punto de vista económico, se buscan continuamente nuevos diseños para aumentar la eficiencia operacional de las boquillas atomizadoras que emplean un fluido auxiliar. Como quedará demostrado en la prueba de aplicación de la presente invención descrita en el Ejemplo 1, tanto el objetivo de aumentar la efectividad de la atomización de fuel oil pesados y otros fluidos muy viscosos, así como la reducción del período de limpieza y facilidad del mantenimiento y explotación de estos atomizadores se cumplen cabalmente.
Merece la pena destacar que ninguna de las patentes consultadas basan el diseño de la boquilla en el encaje de dos piezas que conforman unos canales de entrada y una cámara de giro. Estas características se reclaman específicamente en la presente patente de invención.
BIBLIOGRAFÍA
Combellac , J.H. (1996), T in-fluid Nozzle for atomizing a liquid. Patent number
GB2298808 Dombrowski, N., Hasson, D., & Ward, D.E. (1960), Some Aspects of Liquid Flow Through Fan Spray Nozzzles, Chem. Eng. Sel, vol.12, pp. 35-50
Haenlein, A. (1932), Disintegration of Liquids Jets, NACA TN 659 Haruch, J. (2001), Air assisted spray nozzle assembly. Patent number EP 1160015 A Hayne, P. and J. McDonald. (1922), Steam-atomizing fuel-oil burner. Patent number US 1428896 Lefevbre, A. (1989), Atomization and Spray, Ed. Hemisphere Publishing Corp., USA Mitchel, G.T. & Cunningham, Jr. R. (1965), Burner for a boiler. Patent number
US3185202. Newton, D. (2000), Twin fluid nozzle and method. Patent number US6088934 Rayleigh, L. (1878), On the Instabilities on Jets, Proceedings of the London Math. Society, vol. 10, pp. 4-13
Reich, R.B. (1981), Heavy Fuel Oil nozzle. Patent number US4249885
Strupp, Ch. & Chung I-P. (2001), High Efficiency Fuel Oil Atomizer. Patent number
US2001030247 Squire. H.B, (1953), Investigation of the fristability of Moving Liquid Film, Brit. J. Appl. Phys., vol. 4, pp. 167-169
Weber, C. (1931), Disintegration of Liquids Jets, Z. Angew. Math. Mech., vol. 11, No.
2, pp. 136-159 Wilcox, R. (1973), Aspirating spray head. Patent number US3770209
DESCRIPCIÓN DE LA INVENCIÓN Breve descripción de la invención
El cabezal atomizador objeto de esta invención proporciona una elevada eficiencia de atomización de petróleos pesados y otros líquidos muy viscosos, reduciendo a su vez los costes de construcción, operación y mantenimiento. De acuerdo a los criterios de diseño y construcción, el mismo está formado por una boquilla de atomización, un dosificador del líquido viscoso y un casquillo de ensamblaje del conjunto. La boquilla de atomización está formada por dos elementos, una cubierta exterior y una pieza cónica interior que se ajustan entre sí formando una cámara de rotación intermedia. La pieza cónica interior presenta varios canales o ranuras rectangulares (o cilindricas) de sección transversal variable con doble ángulo de inclinación, lo cuál provoca un aumento de la velocidad lineal y angular del líquido a atomizar. En la base de estas ranuras pueden incidir conductos cilindricos por los que se desplace una parte del fluido auxiliar, permitiendo que se produzca una premezcla turbulenta entre ambos fluidos en la parte final de los canales por donde se mueve el líquido a atomizar. El líquido a atomizar y el fluido auxiliar ya premezclados en los canales rectangulares llegan a la cámara de rotación donde se unen con el resto del fluido auxiliar que circula por el agujero central de la pieza cónica interior, provocando la mezcla final entre ambos fluidos. Producto del novedoso diseño y construcción de la cámara y del doble ángulo de los canales que descargan la premezcla de fluidos en la misma, se crea una circulación del flujo en forma de remolino circunferencial, aumentando también su energía cinética de rotación. Finalmente la mezcla turbulenta de ambos fluidos se descarga por, al menos, un orificio de salida, generando la nube de gotas del aerosol.
Descripción detallada de la invención
La presente invención se basa en que los inventores han observado que se puede incrementar la eficiencia del proceso de atomización de fluidos, incluso para aquellos líquidos muy viscosos, mediante un cabezal atomizador especialmente diseñado y presentado en esta patente.
Tal como se utiliza en la presente invención el término "fluido viscoso" se refiere, entre otros, a combustibles líquidos pesados (crudos, petróleos de baja calidad, mezclas, etc.), pinturas, alquitranes, asfalto, emulsiones, suspensiones sólido-líquido y diversos tipos de herbicidas e insecticidas. Además, el término "elevada eficiencia" tal como se utiliza en la presente invención se refiere, por un lado, a que el cabezal atomizador objeto de la patente genera una nube de gotas (aerosol) con el diámetro y la distribución espacial adecuados según la aplicación de que se trate para las presiones normales de explotación. Por otro lado, también se refiere a los bajos costes de mantenimiento y construcción que el mismo precisa.
Un objeto de la presente invención lo constituye el cabezal atomizador de alta eficiencia para la atomización de fluidos, preferentemente líquidos viscosos, caracterizado porque está constituido por una boquilla de atomización, un dosificador del líquido viscoso a atomizar y el casquillo de ensamblaje o cuerpo, en adelante casquillo, de todo el conjunto.
La boquilla de atomización está constituida por el ajuste solidario de dos elementos consistentes en una pieza cónica exterior (ver Figura 1) y una pieza cónica interior (ver Figura 2) que mejoran la atomización de dicho fluido viscoso, porque: - ambos elementos se encuentran ajustados mediante el alojamiento cónico de ajuste de la pieza exterior (2) y la superficie también cónica exterior de la pieza interior (4) conformando la cámara de rotación (3),
- la cubierta exterior presenta, al menos, un orificio pasante cilindrico de salida (1) para la atomización de la mezcla final del líquido a atomizar y el fluido auxiliar proveniente de la cámara de rotación al exterior,
- esta pieza interior posee un orificio central (5) de sección variable, con un diámetro de entrada mayor que el de salida, por el que fluye el resto (o la totalidad) del fluido atomizador para interaccionar con una mezcla líquido- fluido auxiliar que llega a la cámara de rotación (3) a través de las ranuras rectangulares, y
- la pieza interior presenta además una serie de ranuras o canales rectangulares (o cilindricos) de sección transversal trapezoidal o recta (6) realizados en la superficie cónica exterior (4), por donde se conduce el fluido a atomizar y que poseen dos ángulos de inclinación diferentes en el espacio y en cada una de las cuales puede desembocar un conducto cilindrico (7), por el que se desplaza una fracción del fluido atomizador, confluyendo estos canales angulares y conductos cilindricos en una configuración en "Y". La novedosa configuración geométrica del conjunto de la boquilla consigue transformar de manera muy eficiente la energía de presión del fluido a atomizar y del fluido auxiliar en una mayor energía cinética de rotación del líquido a atomizar.
Durante el diseño y montaje, el cabezal atomizador de la presente invención se acopla a un dosificador (ver Figura 3) empleado para distribuir el líquido viscoso a atomizar. Este dosificador consiste en una pieza cilindrica con varias acanaladuras (10) con sección transversal fija o variable. Dichos canales pueden estar alineados axialmente con el eje del dosificador, formar un ángulo con él o ser conductos helicoidales. El número y diámetro de estos canales o conductos depende del gasto volumétrico de la aplicación específica en que se emplee el cabezal y cada una de ella termina en sendos conductos (11) de diámetro igual al de la mayor dimensión de los canales. Cuando los canales son helicoidales los orificios de salida del dosificador tendrán una inclinación respecto del eje horizontal, determinada por el ángulo del canal en la zona de salida. Además, la misma pieza presenta un canal central (9) por donde es conducido el fluido auxiliar, el cuál, dependiendo también de la aplicación en que se utilice la invención, podrá ser cualquier gas o vapor, o más concretamente aire comprimido, vapor saturado o sobrecalentado, oxígeno, cualquiera de los gases nobles, gas natural, etc. (ver Lefevbre, 1989). La configuración coaxial de ambos conductos permite que, en caso de emplear vapor como fluido auxiliar, parte del calor de éste sea transferido por conducción al líquido a atomizar aumentando su temperatura y disminuyendo su viscosidad. En el caso de que las ranuras sean helicoidales, el aumento del área de transferencia de calor también ayudará a disminuir la viscosidad del fluido. Cuando el fluido a atomizar no sea excesivamente viscoso, el fluido auxiliar podrá sustituirse por aire comprimido, oxígeno, cualquier gas noble o gas natural como se mencionó anteriormente. El dosificador está conectado en su parte posterior (8) a la tubería conductora del fluido auxiliar.
Así, una vez que el líquido, preferentemente viscoso, a atomizar es conducido a través de las ranuras del dosificador al cabezal atomizador, llega a la cámara de acondicionamiento (12) y se ve obligado a circular por los canales angulares (6) de la pieza interior que conforma la boquilla de atomización. El fluido auxiliar se mueve a través del orificio central del dosificador hasta el orificio central de la pieza interior (5). Una parte del fluido auxiliar se deriva por los conductos cilindricos (7) mezclándose con el líquido viscoso a atomizar en la parte final de los canales (5) en una configuración en "Y". La premezcla de ambos fluidos ocurre a una distancia determinada antes de la salida de los canales a la cámara de rotación (3). Esta premezcla cumple la doble función de aumentar la temperatura del líquido, disminuyendo su viscosidad; así como la de incrementar también su energía cinética por efecto de cizalladura. La disposición constructiva especial de los canales (6) en el conjunto, es decir, su doble ángulo espacial y su sección variable, permite incorporar un nuevo ángulo de giro que provoca un aumento de las velocidades lineal y angular del fluido a atomizar, además de la premezcla de ambos fluidos en la zona de salida de estos canales. Con este diseño, es posible incrementar la rotación, mezclado y turbulencia de ambos fluidos en la cámara de rotación. El montaje solidario de las dos piezas que conforman la boquilla atomizadora de la presente invención crea una cámara de rotación (3) donde interaccionan la premezcla que sale de los canales angulares (6) con el resto del fluido auxiliar que sale por el orificio central de sección variable (5), provocando la mezcla final entre ambos fluidos. La fuerte componente angular de la velocidad del líquido premezclado unido a la intensa cizalladura a que se ve sometido por parte del resto del fluido auxiliar, provoca que la mezcla final de ambos flujos salga por los orificios pasantes cilindricos (1) formando una lámina cónica en su interior. La suma de todos los efectos descritos provoca un aumento de la eficiencia del proceso de atomización, generando aerosoles con un tamaño de gotas muy pequeño, así como una mejor distribución espacial de las mismas.
El casquillo (ver Figura 4), tiene la función de encapsular el conjunto de la boquilla y el dosificador. En su parte delantera termina en una pared con un agujero biselado (14), con un diámetro adecuado, que sirve de alojamiento a la boquilla. Además, en la parte posterior está la rosca (13) o cualquier otra forma de unión del cabezal atomizador a la tubería conductora del líquido viscoso a atomizar.
Como es bien conocido por los ingenieros e investigadores que trabajan en el campo de la atomización, dependiendo de la aplicación particular las características del atomizador pueden variar. Así, un objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención en el cual los dos ángulos de inclinación diferentes en el espacio de los canales angulares (6) pueden variar entre 10° y 80°, respecto de los ejes horizontal y vertical. Además, la sección transversal de dichos canales angulares (6) puede variar entre 1 y 25 mm2, y el ángulo que conforman los canales angulares (6) y los conductos cilindricos (7) puede variar entre 5° y 85°. De igual forma, un objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención en el cual la sección transversal de los conductos cilindricos (7) podrá aumentarse o disminuirse según las necesidades, pudiendo variar entre 1 y 10 mm2, y, en un caso extremo, el cabezal atomizador de la presente invención puede estar caracterizado por la ausencia de los conductos cilindricos (7) por lo que todo el fluido auxiliar llega a la cámara de rotación a través del orificio central (5) de sección variable.
Por otro lado, un objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención en el cual la cubierta exterior posee más de un orificio pasante de salida (1) distribuidos de forma concéntrica. El diámetro de estos orificios de salida puede variar entre 1 y 10 mm y se distribuyen con un ángulo de inclinación respecto del eje horizontal del cabezal atomizador que puede variar entre 0° y 80°, todo lo cual permite la atomización del líquido en tantos aerosoles cónicos como agujeros de salida existan. Otro objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención en el cual la cámara de rotación (3) presenta un doble ángulo de su cara frontal interior, respecto de la vertical, que puede estar en el rango entre 5° y 50°.
Otro objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención en el cual el conducto central de la pieza cónica interior (5) presenta un diámetro de sección variable, comprendido para el caso de la sección de entrada en el rango entre 5 y 30 mm y para el caso de la sección de salida entre 1 y 10 mm.
Otro objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención al que se acopla un dosificador, el cuál presenta un conducto central por donde circula el fluido auxiliar y varios canales en la parte exterior para el movimiento del líquido a atomizar. El diámetro del conducto central puede variar entre 5 y 2 mm, mientras que el área de la sección transversal de los canales puede variar entre 4 y 100 mm2. En el caso de que los canales conductores del líquido viscoso estén conformados en ranuras helicoidales, el ángulo de las mismas variará entre 5° y 85° respecto del eje horizontal de la pieza. Otro objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención que comprende un casquillo formado por una pieza cilindrica hueca para ensamblar el conjunto boquilla-dosificador. El diámetro del agujero biselado para el ajuste de la boquilla por delante varía entre 15 y 50 mm. El espesor de la pared, para el ajuste trasero a la tubería conductora del líquido a atomizar, varía entre 2 y 10 mm y se realiza mediante rosca o cualquier otra forma de unión.
Otro objeto particular de la invención lo constituye cualquier cabezal atomizador, de los descritos anteriormente, que pueda funcionar en unas condiciones de presión manométrica donde la presión del fluido a atomizar a la entrada del mismo esté comprendida entre 0.5 y 20 MPa, y la del fluido auxiliar entre 0.1 y 30 MPa.
Otro objeto particular de la patente es que el fluido auxiliar puede ser, entre otros, aire comprimido, vapor saturado o sobrecalentado, oxígeno, gas natural o algún otro gas noble. Otro objeto particular de esta patente lo constituye la utilización del cabezal atomizador de la presente invención, preferentemente, en los quemadores de los generadores de vapor industriales que queman petróleos pesados de baja calidad, en calderas y hornos así como en motores de combustión interna, y en cualquier otro proceso industrial donde se desee atomizar fluidos como en la aplicación de pintura, secado, extinción de fuegos, corte y recubrimiento de materiales, dispersión de agentes químicos, etc. Otras aplicaciones se encuentran en la agricultura (riego, aplicación de herbicidas e insecticidas), asfaltado de vías, construcción y la medicina (aerosoles para la prevención y tratamiento de enfermedades respiratorias).
Otro objeto particular de esta patente lo constituye un cabezal atomizador de la presente invención para la combustión de petróleo pesado de características técnicas tal como se describe en el Ejemplo 1 de la presente invención.
Finalmente, hay que destacar que las características constructivas del cabezal atomizador de la presente invención permiten su fabricación en talleres de mecanizado sencillos, lo que incide en la reducción de sus costes de construcción. Según las aplicaciones específicas, las piezas pueden construirse de acero inoxidable, latón, hierro fundido, cualquier tipo de plástico, etc., que, dependiendo del uso, resista la abrasión, corrosión y temperatura de los fluidos que se empleen como líquido a atomizar y fluido auxiliar y soporte el rango de presiones de trabajo. Por otro lado, las ranuras exteriores de la pieza cónica interior, facilitan su limpieza, lo que reduce las interrupciones del tiempo de trabajo por mantenimiento y aumenta su vida útil. BREVE DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURAS Figura 1.- Corte lateral de la cubierta exterior del cabezal atomizador, donde aparecen los orificios de salida (1), el agujero cónico de alineación (2) y la cámara de rotación (3) que se forma al unir las dos piezas.
Figura 2.- Corte lateral de la pieza cónica interior que muestra la superficie cónica exterior (4), el orificio central (5) por donde se mueve el fluido auxiliar, las ranuras rectangulares de sección variable (6) por donde circula el líquido a atomizar y los conductos cilindricos (7) por donde se transporta una parte del fluido auxiliar, que conforman una disposición relativa en forma de "Y" con las ranuras rectangulares.
Figura 3.- Corte lateral del dosificador del líquido viscoso a atomizar que muestra la parte roscada posterior que sirve de unión con la tubería conductora del fluido auxiliar (8), el orificio central de sección variable (9) por donde es conducido el fluido auxiliar, las ranuras rectangulares (o helicoidales) por donde circula el líquido a atomizar (10) y los orificios de descarga (11) a la cámara de acondicionamiento (12) del flujo.
Figura 4.- Corte lateral del casquillo de ensamblaje o cuerpo del cabezal atomizador que muestra la unión roscada posterior para empalmar la tubería conductora del líquido viscoso a atomizar (13) y el orificio biselado de la pared anterior (14) que sirve de alojamiento a la boquilla.
Figura 5.- Orden de montaje de todas las piezas que, de izquierda a derecha, muestra el dosificador, las piezas cónicas interior y exterior que conforman la boquilla de atomización en sí y el casquillo de ensamblaje o cuerpo del cabezal.
Figura 6.- Montaje solidario (isométrico) del conjunto donde se pueden ver, en un corte lateral, todas las piezas ensambladas. EJEMPLO DE REALIZACIÓN DEL OBJETO DE INVENCIÓN
Ejemplo 1.- Cabezal atomizador para la quema de combustible pesado
El ejemplo que a continuación se describe, no debe entenderse sólo como una limitante del alcance del cabezal atomizador motivo de la presente invención. Por el contrario, la presente invención trata de cubrir todas las alternativas, variantes, modificaciones y equivalencias que puedan incluirse dentro del espíritu y el alcance del objeto de invención.
Ante los problemas presentados en una central térmica en Cuba al quemar un petróleo pesado de muy baja calidad, se decide instalar un cabezal atomizador con las características que se protegen en esta invención, en sustitución de las comerciales tipo "Y" que se encontraban en funcionamiento.
Las exigencias de partida para el diseño del atomizador eran lograr una adecuada eficiencia en la combustión, utilizando la menor cantidad de vapor saturado con presiones entre 0,65 y 0,7 MPa, cuando las presiones del líquido combustible oscilan entre 0,46 y 0,5 MPa. Debido a las características físico-químicas del combustible que se utilizó, no se deben alcanzar valores de temperatura de precalentamiento por encima de 120°C.
Las características del petróleo utilizado fueron las siguientes: Carbono 81,67 % en peso
Hidrógeno 9,25 % en peso
Azufre 7,38 % en peso
Oxígeno 0,30 % en peso
Agua 1 ,40 % en peso Cenizas 0,064 % en peso
Contenido de asfáltenos 18,85 % en peso
Valor calórico inferior 40083 kJ/kg
Gravedad específica a 15,6°C 10,5 API
Densidad relativa 0,9959 Viscosidad a 50°C 1546 cSt (1,546 Kr3 m2/s)
Viscosidad a 80°C 255 cSt (0,255 10"3 m2/s) La boquilla construida está conformada por dos piezas cónicas independientes de acero inoxidable, una interior y otra exterior. Como ya se ha explicado en la descripción de la invención, al montarse de forma solidaria, las mismas ajustan entre sí formando una cámara de rotación. La cubierta exterior posee un diámetro exterior en su parte más ancha de 40 mm y 8 orificios de salida con diámetros de 3,5 mm cada uno.
La pieza cónica interior, con un diámetro exterior máximo de 26 mm tiene 6 ranuras rectangulares de sección transversal variable con una sección cuadrada en la entrada de 4x4 mm, por donde circula el petróleo. En el diseño probado, la dimensión en la coordenada vertical se disminuyó progresivamente para tener a la salida del canal 3 mm. A cada una de las ranuras llega un conducto cilindrico de 3 mm de diámetro por donde se conduce una parte del flujo del fluido auxiliar (vapor en este ejemplo). El punto de mezcla entre los dos fluidos se localizó a 7,5 mm de la zona de salida de los canales a la cámara de giro. En este caso particular, los dos ángulos de los canales del líquido a atomizar fueron de 30° en relación con el eje del atomizador en una vista superior del conjunto y de 25° con respecto al mismo eje pero en este caso desde la vista frontal. El agujero central por donde se transporta el vapor, posee un diámetro mayor de 14 mm en la sección de entrada y un diámetro menor a la salida de 4 mm.
El dosificador por su parte está mecanizado en acero inoxidable, presenta 10 ranuras de distribución del petróleo a atomizar y un agujero central por donde circula el fluido atomizador (en este caso vapor). Las ranuras presentan una sección cuadrada de 4,5x4,5 mm, desembocando en sendos orificios de 4,5 mm de diámetro. El agujero central es de sección variable, con un diámetro de entrada de 19 mm y a la salida de 10 mm. En la parte posterior de dicha pieza hay una rosca interior donde se acopla la tubería conductora del fluido auxiliar. La cámara de adecuación del flujo entre el dosificador y la boquilla es de 5 mm en este caso.
El casquillo de ensamble es una pieza también de acero inoxidable, con un diámetro exterior de 49 mm y uno interior de 40 mm. En su parte delantera termina en una pared de 4 mm de espesor con un agujero biselado con un diámetro menor de 27.2 mm, donde se aloja la boquilla. En su parte posterior cuenta con una rosca métrica donde se acopla el tubo proveniente del calentador de petróleo.
Primeramente, este cabezal fue sometido a un exhaustivo estudio en un banco de prueba de quemadores. Se pudo comprobar que los valores del ángulo y la calidad del spray obtenidos fueron similares o mejores que los que se conseguían con la boquilla comercial. Es de destacar que estos resultados se lograron con aproximadamente la mitad del flujo de vapor empleado como fluido auxiliar en las diferentes pruebas realizadas, variando las presiones del petróleo y del vapor en el rango de los valores de operación de esta caldera. En la caldera de vapor se realizaron pruebas de eficiencia con las boquillas comerciales y también una vez instalados los cabezales atomizadores objeto de esta invención. Como promedio, se obtuvo un incremento de la eficiencia en 3 unidades. Esta mejora vino dada porque el nuevo cabezal atomizador además de permitir la reducción del flujo de vapor de atomización y mejorar el proceso de combustión, permitió reducir el valor del exceso de aire necesario para este último proceso. Las medidas realizadas del consumo de combustible permitieron comprobar una reducción de un 1 % mensual, al comparar el consumo promedio de los meses anteriores para la misma generación de electricidad. La falta de coincidencia del incremento de la eficiencia y la reducción del consumo de combustible se debe a otros problemas surgidos en la central térmica en el mes de pruebas que provocaron una reducción de su eficiencia. Otro aspecto muy importante a destacar es la disminución del tiempo de limpieza de las nuevas boquillas a aproximadamente la mitad de la que se requería con las boquillas comerciales.

Claims

REIVINDICACIONES
1.- Cabezal atomizador de elevada eficiencia en la atomización de fluidos caracterizado porque está constituido por una boquilla de atomización, un dosificador del líquido a atomizar y un casquillo de ensamblaje. La boquilla en sí está formada por el ajuste solidario de dos elementos consistentes en dos piezas cónicas, una interior y otra exterior, que conforman unos canales de entrada y una cámara de rotación intermedia que imprime en su conjunto mayor velocidad lineal y angular al fluido, y porque: ambos elementos se encuentran ajustados mediante la superficie cónica de la cubierta exterior y la pieza cónica interior conformando la cámara de rotación, la pieza interior presenta una superficie cónica exterior con una serie de ranuras ó canales angulares rectangulares de sección transversal variable, para conducir el fluido a atomizar y que poseen dos ángulos de inclinación diferentes en el espacio, en cada una de las cuales puede desembocar un conducto cilindrico, por el que se desplaza una fracción del fluido atomizador, confluyendo estos canales angulares y conductos cilindricos en una configuración de "Y", esta pieza interior posee además un orificio central de sección variable, con un diámetro de entrada mayor que el de salida, por el que fluye el resto (o la totalidad) del fluido atomizador para interaccionar con una mezcla líquido- fluido auxiliar que llega a la cámara de rotación a través de las ranuras rectangulares, y la cubierta exterior presenta axialmente un agujero cónico de alineación y, al menos, un orificio pasante cilindrico de salida para la atomización de la mezcla final del líquido a atomizar y el fluido auxiliar de la cámara de rotación al exterior.
El dosificador por su parte, presenta un número determinado de ranuras de distribución del líquido a atomizar y un agujero central por donde circula el fluido atomizador. El número y dimensiones de las ranuras depende de la aplicación en que se utilice. La sección de las mismas puede ser trapezoidal, cuadrada o cilindrica, y desembocan en sendos orificios que comunican con la boquilla. El agujero central puede ser de sección constante o variable. Esta pieza sirve para acoplar la tubería conductora del fluido auxiliar. El casquillo de ensamble es una pieza cilindrica hueca donde se alojan la boquilla y el dosificador. Para un mejor ajuste de la boquilla al sistema, su parte delantera termina en una pared de un espesor determinado con un agujero biselado. En su parte posterior se une la al tubo conductor del líquido viscoso a atomizar. Todas las dimensiones variarán en función de la aplicación donde se emplee la invención.
2.- Cabezal atomizador según la reivindicación 1 caracterizado porque los dos ángulos de inclinación diferentes en el espacio de los canales angulares de la pieza interior de la boquilla de atomización por donde circula el líquido viscoso a atomizar pueden variar entre 10° y 80°, respecto de los ejes horizontal y vertical, porque la sección transversal de dichos canales angulares puede variar entre 1 y 25 mm , y porque el ángulo que conforman los canales angulares y los conductos cilindricos por donde circula el fluido auxiliar varia entre 5° y 85°.
3.- Cabezal atomizador según la reivindicación 1 caracterizado porque la sección transversal de los conductos cilindricos por donde circula el fluido auxiliar y que confluyen con los canales conductores del líquido viscoso en configuración en "Y" puede aumentarse o disminuirse según las necesidades y la aplicación específica, pudiendo variar entre 1 y 10 mm2, y, en un caso extremo, el cabezal atomizador puede estar caracterizado por la ausencia de los conductos cilindricos por lo que todo el fluido auxiliar llega a la cámara de rotación a través del orificio central de sección variable.
4.- Cabezal atomizador según la reivindicación 1 caracterizado porque la pieza exterior de la boquilla de atomización posee uno o más orificios pasantes de salida distribuidos de forma concéntrica, con un diámetro de los orificios de salida que puede variar entre 1 y 10 mm y que se distribuyen con un ángulo de inclinación respecto del eje horizontal de la misma que puede variar entre 0° y 80°.
5.- Cabezal atomizador según la reivindicación 1 caracterizado porque la cámara de rotación presenta un doble ángulo de su cara frontal interior, respecto de la vertical, que puede estar en el rango entre 5° y 50°. •
6.- Cabezal atomizador según la reivindicación 1 caracterizado porque el orificio central de la pieza cónica interior de la boquilla de atomización presenta un diámetro de sección variable, comprendido para el caso de la sección de entrada en el rango entre 5 y 30 mm y para el caso de la sección de salida entre 1 y 10 mm.
7.- Cabezal atomizador según la reivindicación 1 caracterizado por tener un dosificador del líquido viscoso con más de una ranura de distribución cuya sección transversal puede variar entre 4 y 100 mm2 y un agujero central por donde circula el fluido atomizador cuyo diámetro puede variar entre 5 y 20 mm. Las ranuras del dosiñcador pueden ser helicoidales con un ángulo de entrada/salida que puede variar entre 5° a 85° respecto del eje horizontal de la pieza.
8.- Cabezal atomizador según la reivindicación 1 caracterizado por tener un casquillo de ensamble o cuerpo formado por una pieza cilindrica hueca que en su parte delantera tennina en una pared de un espesor que puede variar entre 2 y 10 mm con un agujero biselado cuyo diámetro menor varía entre 15 y 50 mm para alojar la boquilla.
9.- Cabezal atomizador según la reivindicación 1-8 caracterizado porque los componentes del cabezal pueden estar construidas de acero inoxidable, latón, hierro fundido y cualquier tipo de plástico, dependiendo de las aplicaciones.
10.- Utilización de un cabezal atomizador según una cualquiera de las reivindicaciones 1 a la 9 para la atomización de fluidos en aplicaciones, entre otras, pertenecientes al siguiente grupo: a) quemadores de los generadores de vapor industriales de calderas y hornos así como en motores de combustión interna, b) aplicación de pintura, secado c) extinción de fuegos, d) corte y recubrimiento de materiales, e) dispersión de agentes químicos, f) riego, g) aplicación de herbicidas e insecticidas, h) aerosoles para la prevención y tratamiento de enfermedades respiratorias, y i) dispersión de alquitranes y productos asfálticos.
11.- Utilización de un cabezal atomizador según la reivindicación 10 caracterizado porque el fluido a atomizar es, preferentemente, viscoso y pertenece entre otros al siguiente grupo: fuel oil pesado, mezclas de petróleo de baja calidad, petróleo pesado, pinturas, alquitranes, emulsiones, suspensiones de sólidos en líquidos, herbicidas, insecticidas, medicamentos, etc.
12.- Utilización de un cabezal atomizador según las reivindicaciones 10 y 11 caracterizado porque el fluido a atomizar presenta a la entrada de dicho cabezal una presión manométrica en el rango entre 0,5 y 20 MPa y porque la del fluido auxiliar se encuentra entre 0,1 y 30 MPa.
13.- Utilización de un cabezal atomizador según una cualquiera de las reivindicaciones 10 a la 12 caracterizada porque el fluido auxiliar es, entre otros, aire comprimido, vapor saturado o sobrecalentado, oxígeno, gas natural, o algún otro gas noble.
PCT/ES2003/000643 2002-12-20 2003-12-17 Cabezal atomizador de alta eficiencia para líquidos viscosos y su uso WO2004056488A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003294978A AU2003294978A1 (en) 2002-12-20 2003-12-17 Highly-efficient spray head for viscous fluids and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200202944A ES2249074B1 (es) 2002-12-20 2002-12-20 Cabezal atomizador de alta eficiencia para liquidos viscosos y su uso.
ESP200202944 2002-12-20

Publications (1)

Publication Number Publication Date
WO2004056488A1 true WO2004056488A1 (es) 2004-07-08

Family

ID=32669105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000643 WO2004056488A1 (es) 2002-12-20 2003-12-17 Cabezal atomizador de alta eficiencia para líquidos viscosos y su uso

Country Status (3)

Country Link
AU (1) AU2003294978A1 (es)
ES (1) ES2249074B1 (es)
WO (1) WO2004056488A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085145A1 (en) * 2008-02-01 2009-08-05 Delavan Inc Air assisted simplex fuel nozzle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844166A (zh) * 2018-06-20 2018-11-20 佛山市宝粤美科技有限公司 爆气充氧旋转喷雾水墙装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1317768A (es) * 1963-05-08
ES339149A1 (es) * 1967-04-11 1968-07-01 Babcock & Wilcox Ltd Un dispositivo de cabeza pulverizadora para un quemador de combustible liquido.
FR2481782A1 (fr) * 1980-05-05 1981-11-06 Wanson Constr Mat Therm Ajutage de pulverisation de liquides, notamment pour pulveriser des effluents liquides destines a etre brules
US4479773A (en) * 1980-06-23 1984-10-30 Shigetake Tamai Combustion method and device
US4546923A (en) * 1980-11-29 1985-10-15 Tadashi Ii Nozzle for atomizing fluids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1317768A (es) * 1963-05-08
ES339149A1 (es) * 1967-04-11 1968-07-01 Babcock & Wilcox Ltd Un dispositivo de cabeza pulverizadora para un quemador de combustible liquido.
FR2481782A1 (fr) * 1980-05-05 1981-11-06 Wanson Constr Mat Therm Ajutage de pulverisation de liquides, notamment pour pulveriser des effluents liquides destines a etre brules
US4479773A (en) * 1980-06-23 1984-10-30 Shigetake Tamai Combustion method and device
US4546923A (en) * 1980-11-29 1985-10-15 Tadashi Ii Nozzle for atomizing fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085145A1 (en) * 2008-02-01 2009-08-05 Delavan Inc Air assisted simplex fuel nozzle
JP2009186172A (ja) * 2008-02-01 2009-08-20 Delavan Inc エア・アシスト式単体燃料ノズル
US8057220B2 (en) 2008-02-01 2011-11-15 Delavan Inc Air assisted simplex fuel nozzle

Also Published As

Publication number Publication date
ES2249074B1 (es) 2007-06-01
AU2003294978A8 (en) 2004-07-14
AU2003294978A1 (en) 2004-07-14
ES2249074A1 (es) 2006-03-16

Similar Documents

Publication Publication Date Title
ES2624312T3 (es) Dispositivo de boquilla de atomización, proceso de atomización y uso
PT687858E (pt) Atomizadores para a combustao de combustivel liquido com angulo de aspersao estreito
Simmons et al. Spray characteristics of a flow-blurring atomizer
CN204534569U (zh) 一种以乙醇为燃料的单管燃烧室燃气发生器
CN104764005B (zh) 固体燃料喷燃器
CN105864760B (zh) 喷雾喷嘴以及使用了喷雾喷嘴的燃烧装置
JPS6036811A (ja) 液体燃料バーナーの噴霧器
US4028044A (en) Fuel burners
US20070276205A1 (en) Image management system for use in dermatological examinations
ES2249074B1 (es) Cabezal atomizador de alta eficiencia para liquidos viscosos y su uso.
RU2578785C1 (ru) Форсунка двухтопливная "газ плюс жидкое топливо"
CN202149495U (zh) 一种燃烧器
KR101019516B1 (ko) 액체연료용 저녹스 고효율 버너노즐 및 이를 이용한 연소장치
JPS5827987B2 (ja) フンムカホウホウ オヨビ ソノソウチ
WO2020225829A1 (en) System with swirler nozzle having replaceable constituent injection stem
CN201382416Y (zh) 双层定向空气雾化油枪
US8070480B2 (en) Method and device for combusting liquid fuels using hydrogen
CN104302976B (zh) 粉状固体燃料小型燃烧的系统及方法
RU2040731C1 (ru) Горелочное устройство для газификации топлива
CN204678345U (zh) 混烧用燃烧装置以及锅炉
CN2365524Y (zh) 一种燃用高粘度液体燃料的油枪
CN209857038U (zh) 火焰稳定器以及锅炉用燃烧器
CN112963832A (zh) 一种具有防爆功能的全预混低NOx燃烧器
RU192541U1 (ru) Инжекционный смеситель горелки
CN205351305U (zh) 生物质粉末螺旋火焰高温燃烧器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP