WO2004054459A1 - Appareil de guidage de faisceau laser pour poncture - Google Patents

Appareil de guidage de faisceau laser pour poncture Download PDF

Info

Publication number
WO2004054459A1
WO2004054459A1 PCT/CN2003/001074 CN0301074W WO2004054459A1 WO 2004054459 A1 WO2004054459 A1 WO 2004054459A1 CN 0301074 W CN0301074 W CN 0301074W WO 2004054459 A1 WO2004054459 A1 WO 2004054459A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
substrate
plate
base plate
angle
Prior art date
Application number
PCT/CN2003/001074
Other languages
English (en)
French (fr)
Inventor
Weijian Feng
Huiling Zhang
Shu Feng
Original Assignee
Weijian Feng
Huiling Zhang
Shu Feng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weijian Feng, Huiling Zhang, Shu Feng filed Critical Weijian Feng
Priority to AU2003289655A priority Critical patent/AU2003289655A1/en
Publication of WO2004054459A1 publication Critical patent/WO2004054459A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2015Miscellaneous features
    • A61B2018/2025Miscellaneous features with a pilot laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy

Definitions

  • the present invention relates to a medical instrument for guiding puncture when treating and biopsy of a disease, and is a laser beam guidance for puncture used in combination with a CT scanner, a nuclear magnetic resonance device, or other three-dimensional imaging equipment and other disease diagnosis equipment.
  • a medical instrument for guiding puncture when treating and biopsy of a disease
  • Device Background technique
  • a biopsy or treatment of the lesion is sometimes required using a puncture.
  • the position of the lesion and the skin location point and the depth of the puncture needle are usually measured by means of CT.
  • the position of the lesion is first measured from the cross section of the human body, and the optimal needle position and angle are determined in the needle level.
  • the three-dimensional configuration of the needle level, the angle, and the depth of the needle is used to determine The precise location of the lesion and puncture needle.
  • the CT scanner can accurately determine the three-dimensional needle angle and needle depth, the puncture process is performed after the patient is removed from the scanning plane. When the patient leaves the CT scanner, the doctor can only use his own judgment. Determine a general needle direction, perform a puncture and then proceed
  • CT scanner to measure the location of the lesion, and then adjusts each of the slabs according to the positioning ruler to make it close to the head ear line, scalp and other head parts, and then adjusts the lesion position on the horizontal and vertical plate according to the CT scanner. Find the corresponding position mark on the scalp to determine the location and size of the craniotomy.
  • This device is only suitable for the location of skull lesions. In addition, it still artificially determines the position of the craniotomy, the positioning accuracy is not high, and the direction cannot be determined.
  • Chinese utility model patent CN2114422U discloses a high-precision brain stereotactic instrument, which uses three-dimensional coordinates measured by a CT scanner to capture a lesion point on a CT film, and then uses a locator to check the position of the lesion point. The position of the slider is used to select the surgical entry point.
  • the guide arch can move forward and backward along the positioning frame left and right, and the slider on the guide arch can move left and right along the guide arch to achieve positioning. Its structure is complicated and it cannot realize the automatic positioning function.
  • the above positioning devices are all detected by a CT scanner, leaving the CT scanner to determine the focus point and needle insertion position; ; These devices cannot reproduce their three-dimensional needle insertion angle and needle insertion depth, and they still have positioning accuracy Not high and complicated structure. Moreover, in use, the doctor can only rely on the position and direction pointed by the pointer, and during the needle insertion process, rely on visual control of the needle insertion direction. Due to artificial factors, the needle insertion is inaccurate, and sometimes it is necessary to re-enter the needle several times. In severe cases, it will lead to wrong puncture, which will bring great pain and risk to the patient.
  • US5957933 discloses a stereo guidance device combined with a CT scanning device for guiding a probe into a patient.
  • the CT scanning device has a three-dimensional structure arm having a first base end connected to the CT scanner device and a second free end movable relative to the CT scanning device.
  • the three-dimensional structured surgical guidance device includes a first end-actuated member having a guide channel for defining a probe insertion path (track).
  • the surgical guide further includes a second end-actuated member and a laser source at the free end of the three-dimensional structure arm, and the laser source generates a guide beam along a probe insertion path.
  • the first and second parts are adjusted independently and timely to a unified signal to the CT scanner.
  • the end-actuated part is more suitable for fixed installation and the bottom end-actuated part in the adjustment process.
  • it can be retractably extended into a hollow tube.
  • the first and second driven parts can be rotatably fixed to the free end of the three-dimensional structure arm.
  • the purpose of the present invention is to provide a laser guiding device for puncture, which solves the problems of inaccurate positioning accuracy, inconvenient operation, complicated structure and high cost of the existing CT guiding device, thereby providing a simple structure, convenient operation, and no need for destruction.
  • Bacteria sterilization can accurately reproduce the needle level determined by the CT scanner and the position, angle and depth of the needle beyond the CT scan level, and can use the linearity and non-scattering advantages of the laser light source to control, Bow I guides the entire needle insertion process.
  • the present invention is mainly used in combination with a CT scanning device, an MRI device and other stereoscopic imaging devices, and may be installed on a CT scanning device, or the device may be separately installed instead of a scanner to reproduce a CT scanner.
  • the scan level determines the position, angle and depth of the needle.
  • a laser beam guiding device for puncture which includes a laser beam transmitter, characterized in that: the laser beam transmitter is rotatably provided on a substrate, and The laser beam emitter generates a laser beam parallel to the substrate; and a first angle indicating device for indicating a rotation angle of the laser beam emitter is provided on the substrate; the first angle indicating device includes a The angle indexing disc which is concentrically arranged with the rotation axis of the laser beam transmitter is suspended from the center of the angle indexing disc.
  • the device can be arranged on the front and rear panels of the CT scanner, so that the laser beam transmitter can generate a beam parallel to the plane of the substrate.
  • the laser beam transmitter can make a 360-degree rotation in the plane parallel to the plane of the substrate.
  • the plane on which the beam is located is parallel to the scanning plane determined by the CT scanner. It is only necessary to rotate the laser beam transmitter and adjust the angle of the laser beam to match the needle insertion angle determined by the CT scanner. Therefore, the guiding device of the present invention Compared with the three-dimensional guidance device disclosed in US5957933, the structure is simple, the cost is low, and the operation is convenient.
  • the first indication component may be a heavy hammer, or a pointer pointing vertically to the ground, or another indication component that automatically points to the center of the earth.
  • the angle index dial can be set in the following three ways:
  • the rotation angle indexing plate and the laser beam emitter are fixedly connected as a whole and are arranged on the substrate around the rotation axis;
  • the rotation angle indexing plate and the laser beam emitter are independently provided on a substrate rotatably about the rotation axis;
  • the rotation angle indexing plate is fixed on the substrate.
  • a laser beam guiding device for puncture which includes a laser beam transmitter, characterized in that: the laser beam transmitter is rotatably provided on a substrate, and the laser The beam emitter generates a laser beam parallel to the substrate; and a first angle indicating device for indicating a rotation angle of the laser beam emitter is provided on the substrate; the first angle indicating device includes a A rotation angle indexing plate which is concentrically arranged with the rotation axis of the laser beam transmitter and can be freely rotated about the rotation axis, and a first adjusting component which keeps the zero-degree position of the rotation angle indexing disk always vertically downward.
  • the first adjusting component can be a counterweight component set at the zero-degree position of the angular indexing plate, so that the zero-degree position of the angular indexing plate is always vertically downward in a freely rotating state, and points to the center of the earth.
  • a mounting plate is further provided on the back surface of the substrate, and the substrate passes through a mounting plate that is parallel to the substrate.
  • a horizontal rotation axis is hinged with the mounting plate; a second angle indicating device for instructing the substrate to rotate along the horizontal rotation axis is further provided on a side plate of the substrate and disposed perpendicularly to the substrate. It is used to indicate the rotation angle of the substrate.
  • the second angle indicating device includes a corner indexing plate fixedly disposed on a side plate of the base plate and an upper end of a second indicating member that can always be vertically downwardly suspended from the center position of the angle indexing plate;
  • the second indicating member is a heavy hammer, or a pointer that vertically points to the ground, or other indicating members that automatically point to the center of the earth.
  • the direction of the second indicating member is zero degrees.
  • the laser beam emitter and the substrate can be rotated by the driving device, and the rotation angle can be controlled. Therefore, the first and second angle indicating devices can be eliminated. Therefore, the present invention also provides a technical solution: a laser beam guiding device including a laser beam transmitter, the laser beam transmitter is rotatably provided on a substrate, and the laser beam transmitter generates A laser beam parallel to the plane of the substrate; a driving device for driving the laser beam emitter to rotate is further provided on the substrate; the driving device includes a control motor and a control motor output Transmission mechanism of shaft and rotating shaft of laser beam transmitter.
  • a mounting plate is provided on the back surface of the base plate, and the base plate is hinged to the mounting plate through a horizontal rotation axis parallel to the mounting plate on the mounting plate;
  • the second driving device for rotating the substrate; the second driving device includes a control motor and a transmission mechanism connecting the output shaft of the control motor to the substrate.
  • a mounting member mounted on the front surface of the CT scanner is provided on the back of the base plate or the mounting plate.
  • the guiding device according to the present invention can be installed on the front panel or the rear panel of the CT scanner or independent of the CT scanner. Therefore, a backside of the substrate or the mounting plate is provided for mounting the guiding device on the CT.
  • a mounting part on the front surface of the scanner; the mounting part is one of the following-a magnetic element provided on the base plate or the back of the mounting plate; or
  • the mounting component includes a slide rail fixedly mounted on the front and rear panel surfaces of the CT scanner, and the base plate or the mounting plate has a slide groove matched with the slide rail.
  • the guiding device of the present invention may be independently provided in front of or behind the CT scanner.
  • the mounting component includes a hanger with a slide rail or a gantry bracket, and the slide rail is a beam of the hanger or a The upper part of the gantry bracket; the back of the mounting plate is provided with a slide groove matched with the slide rail.
  • the slide rail is further provided with a driving device three for driving the substrate or the mounting plate to move along the slide rail;
  • the driving device three includes a control motor and a transmission connecting the output shaft of the control motor to the substrate or the mounting plate. mechanism.
  • the guide device is fixed on the front surface or the back surface of the CT scanner.
  • the CT scanner scans the lesion position and determines the needle insertion level, according to the scanning level of the scanner and the invention
  • the horizontal distance between the guiding devices is translated to the plane where the laser beam of the guiding apparatus according to the present invention is located, so that the scanning plane of the CT scanner can be reproduced and the plane where the laser beam transmitter is located It is consistent with the needle insertion plane determined by the CT scanner.
  • the laser beam transmitter By turning the laser beam transmitter to the needle insertion angle in this plane and pointing at the needle insertion point, the laser beam indicates the needle insertion position and needle insertion angle.
  • the doctor can The positioning of the beam determines the position of the needle.
  • the laser beam can always be irradiated on the tail of the puncture needle during the needle insertion process to guide the entire needle insertion process to prevent the needle from being inaccurate and avoid errors caused by human factors.
  • the device has the characteristics of simple structure, and only the first angle indicating device is needed to determine the rotation reference of the laser beam transmitter, The position and angle of the needle are determined by means of the needle insertion surface determined by the CT scanner.
  • the present invention also allows the guidance device to leave the CT scanner and then determine the level of the needle.
  • a mounting plate is provided on the back of the base plate of the device, and the base plate can be rotated about a horizontal rotation axis parallel to the base plate, and a second angle indicating device is further added on the vertical side of the base plate, so that the device can not be installed in a CT scanner.
  • the scanner determines the angle between the needle plane and the horizontal or vertical plane (that is, the tilt angle of the rack), you can still adjust the angle between the substrate and the horizontal or vertical plane by turning the substrate, so that the laser beam on the substrate is located.
  • the plane coincides with the needle insertion surface determined by the CT scanner.
  • the device further includes a mounting member connected to the CT scanner or a mounting member connecting the slide rail to the CT scanner panel on the back of the base plate or the mounting plate.
  • the laser beam transmitter of the present invention can be a pen-type laser transmitter in the prior art or other, and the laser transmitter and the substrate can be driven manually or by an electric method.
  • FIG. 1A is a state diagram of a first embodiment of a laser beam guiding device according to the present invention set on a CT scanner;
  • FIG. 1A is a state diagram of a first embodiment of a laser beam guiding device according to the present invention set on a CT scanner;
  • FIG. 1B is a schematic structural diagram of a laser beam guiding device in FIG. 1A;
  • FIG. 1C shows a scanning level A determined by a CT scanner, a needle level B of the guiding device of the present invention, and a state diagram of the use of the guiding device;
  • FIG. 2 is a schematic structural diagram of a laser beam guiding device according to a second embodiment of the present invention.
  • FIG. 2A is a schematic structural diagram of a second embodiment of a laser beam guiding device according to the present invention, without a mounting hanger and a second angle indicating device;
  • FIG. 2B is an arrow A view of FIG. 2A;
  • 2C is a structural diagram of a gantry support of a laser beam guiding device of the present invention.
  • FIG. 2D is a schematic structural diagram of a second angle indicating device of a laser beam guiding device of the present invention
  • FIG. 3 is a schematic structural diagram of a third embodiment of a laser beam guiding device of the present invention.
  • FIG. 4 is a structural diagram of a fourth embodiment of a laser beam guiding device of the present invention.
  • FIG. 5 is a schematic diagram of a fifth embodiment of a laser beam guiding device of the present invention, which is mounted on a front panel of a CT scanner;
  • 5A is a front view of a fifth embodiment of a laser beam guiding device of the present invention.
  • 5B is a sectional view taken along the line B-B of FIG. 5A;
  • Fig. 6 is a schematic diagram of a sixth embodiment of the laser beam guiding device of the present invention, which is mounted on the front panel of a CT scanner. Detailed description
  • a CT scanner 200 and a laser beam guiding device 100 for puncturing on the CT scanner are shown.
  • the horizontal movement direction of the bed of the CT scanner 200 is the X axis, in the horizontal plane where the X axis is located
  • the direction perpendicular to the X axis is the Y axis
  • the direction perpendicular to the X0Y plane is the Z axis
  • the Y0Z plane is the CT scan level.
  • a laser beam guiding device for puncturing which includes a substrate 10, and a laser beam transmitter 30 is provided in front of the substrate 10, and the laser beam transmitter 30 can rotate around a rotation axis 14 Rotate in a plane parallel to the substrate 10, so that the laser beam generated by the laser beam emitter 30 is parallel to the substrate 10.
  • the substrate 10 is provided with a first angle indicator for indicating a rotation angle of the laser beam emitter 30
  • the device 40 includes: a corner indexing plate 41 integrated with the base plate 10 or fixedly located in front of the base plate 10, a center 11 of the corner indexing plate 41 and the rotation axis 14 being coaxial; An upper end of an indicating member 42 is suspended from the center 11 of the angular indexing plate 41.
  • the first indicating member 42 is a pointer, and the angle pointed by the pointer 42 is 0 °, counterclockwise.
  • the angle of rotating the laser beam transmitter 30 is negative, for example -15 °, and the angle of rotating the laser beam transmitter 30 clockwise is positive.
  • a backside of the substrate 10 is provided.
  • Four magnets (magnetic elements) are used as the mounting member 60.
  • the rotation angle indexing plate 41 and the laser beam emitter 30 can be rotatably provided on the base plate 10 through the rotating shaft 14 respectively. In this way, the position of the guide device does not have to be correctly installed during installation. The pointer must point to the 0 ° position of the angle plate. After the guide device is installed on the front surface of the CT scanner, the indexing plate 41 can be rotated to make the 0 ° position coincide with the direction indicated by the first indicating member 42, and then the laser beam is rotated to emit Device 30 to the desired angle.
  • the three-dimensional coordinate direction of the guidance device is set: the center of the rotation axis 14 of the laser beam transmitter 30 is the coordinate origin 0 ′.
  • the direction along the rotation axis 14 is the X 'axis direction, the vertical direction is the Z' axis direction, and the direction perpendicular to ⁇ 0 'V is the Y' axis direction. Since the plane where the laser beam emitter 30 is located is parallel to the substrate, the guide device according to the present invention is installed in front of the CT scanner, and the plane V 0 ′ V where the laser beam emitter 30 is located is at the scanning level Y0Z of the scanner.
  • the guide device 100 is placed on the front surface of the CT scanner 200.
  • the CT scanner first detects the three-dimensional coordinate position of the lesion point 0, determines the tomographic plane Y0Z of the puncture needle, and The body surface marks the skin needle insertion point L, see FIG. 1C.
  • FIG. 1C shows the needle insertion level A determined by the CT scanner, and the lesion point 0 and the needle insertion position in the needle insertion surface A: L point, the needle insertion position L is continuous with the lesion point 0, that is, the needle insertion direction, and the angle between the needle axis and the Z axis is the needle insertion angle ⁇ (LOZ).
  • the needle insertion fault plane is parallel to the plane Y '0' V where the laser beam transmitter 30 is located.
  • the needle insertion plane A where the lesion point 0 is located must be moved to the laser in parallel.
  • the plane Y '0' V (plane B) where the beam emitter 30 is located determine the distance d where the patient moves in parallel in the horizontal direction.
  • the angle ⁇ of the needle is the same. Adjust the position of the laser beam guiding device 100.
  • the first indicating member 42 the pointer points to the zero-degree position of the rotation angle index plate 41, so that the angle between the direction of the laser beam of the laser and the V axis of the weight direction Needle angle ⁇ —at the same time as laser
  • the beam is directed at the skin insertion point L, and the puncture needle is inserted into the skin insertion point, so that the laser beam is always irradiated on the tail of the needle to ensure that the needle is inserted correctly under the guidance of the laser beam.
  • the depth of the needle insertion is L0, and the lesion can be hit. It can be seen that the present invention has a simple structure, high precision, and convenient operation.
  • a laser beam guiding device 100 for puncture which includes: a substrate 10, and a mounting plate 20 is provided on the back surface of the substrate 10.
  • the substrate 10 is hinged to the mounting plate 20 through a horizontal rotation axis 12 on the mounting plate 20 parallel to the mounting plate 20.
  • the horizontal rotation axis 12 is parallel to the V-axis direction. The two ends of the horizontal rotation axis 12 are locked by a lock nut 15.
  • a laser beam emitter 30 is provided in front of the substrate 10, and the laser beam emitter 30 can rotate in a plane parallel to the substrate 10 about a rotation axis 14 so that the laser beams generated by the laser beam emitter 30 are parallel
  • the substrate 10 is provided with a first angle indicating device 40 for indicating a rotation angle of the laser beam transmitter 30, which includes: a rotation angle indexing plate 41.
  • the rotation angle indexing The disk 41 and the laser beam transmitter 30 are fixedly connected as a whole, and the laser beam direction of the laser beam transmitter 30 is directed to the zero-degree position of the rotation angle indexing plate 41.
  • the center 11 of the rotation angle indexing plate 41 and the rotation axis 14 coaxial, the angular indexing plate 41 and the laser beam emitter 30 can rotate around the center 11 of the axis of rotation; a first indicating member 42: the upper end of the weight is suspended on the axis 14 of the angle indexing plate 41, the weight can be Always vertical downward, used to indicate the rotation angle of the laser beam emitter 30.
  • the angle of the laser beam is zero degrees.
  • the rotation angle indexing plate 41 rotates at the same time, and the weight can indicate the rotation angle of the laser beam transmitter 30.
  • a second angle indicating device 50 is further provided on the side panel 13 of the substrate 10, and the side panel 13 is disposed perpendicular to the substrate 10.
  • the second angle indicating device 50 is used to instruct the substrate 10 to rotate about a horizontal axis 12
  • the angle of rotation determines the level of needle insertion.
  • the second angle indicating device 50 includes a rotation angle indexing plate 51 and a second indicating member 52: the upper end of the weight is suspended at the center of the rotation angle indexing plate 51, and the rotation angle indexing plate 51 is fixedly disposed perpendicular to the substrate 10.
  • the weight indicates the 0 position of the angular index plate 51.
  • Turn the substrate 10, and the second indicating part 52 can indicate the rotation angle of the substrate 10, and the substrate 10 needs to be rotated during use so that the tilt angle is consistent with the tilt angle of the CT scanner.
  • a rotation angle indexing plate 51 is rotatably provided on a side panel 13 perpendicular to the substrate 10, and The angular indexing plate 51 is provided with a second adjusting component 53 which always makes the zero-degree position 54 vertically downward.
  • the second adjusting component 53 is a weight and is set at the zero-degree position 54 of the angular indexing plate 51.
  • On the back of the index plate 51 it can be made into a decorative part when it is placed on the front.
  • the guiding device in this embodiment further has a mounting member 60, which sets the guiding device 100 away from the CT scanner 200, and includes a hanger 600.
  • the beam on which the hanger 600 is mounted is a slide rail. 61.
  • the back of the mounting plate 20 has a sliding groove 62, so that the mounting plate 20 can slide along the track.
  • the three-dimensional coordinate position of the lesion point 0 is first detected by the CT scanner, the tomographic plane Y0Z of the puncture needle is determined, and the skin needle insertion point L is marked on the body surface. See FIG. 1C, FIG. 1C shows the CT scanner The determined needle insertion level A, and the lesion point 0 and the needle insertion position in the needle insertion surface A: point L, connecting the needle insertion position L and the lesion point 0 in a straight line, that is, the needle insertion direction, and its clamping with the Z axis The angle is the insertion angle ⁇ (L0Z).
  • the substrate 10 needs to be rotated so that the substrate plane 10 is parallel to the needle insertion level A determined by the CT scanner.
  • the The needle insertion fault plane A is parallel to the plane Y '0' V where the laser beam transmitter 30 is located.
  • the needle insertion plane A where the lesion point 0 is located must be moved to the laser in parallel.
  • the angle of turning the laser beam emitter 30 is the same as the needle insertion angle ⁇ in the scanning plane.
  • the laser beam is directed to the skin needle insertion point L. Insert the needle.
  • the mounting hanger 600 in this embodiment may be replaced by a gantry bracket 600 ', as shown in FIG. 2C, the gantry bracket 600' may be a gate-shaped structure, and a beam thereof is a linear sliding rail, or an arch Shape, forming an arched track, this structure can easily move the laser beam emitter to the desired position.
  • the gantry bracket 600' may be a gate-shaped structure, and a beam thereof is a linear sliding rail, or an arch Shape, forming an arched track, this structure can easily move the laser beam emitter to the desired position.
  • the plane where the laser beam is located can be rotated to the level of the needle insertion determined by the CT scan by rotating the substrate 10.
  • a laser beam guiding device is shown in the figure, which is different from the first embodiment in that the first angle indicating device 40 includes a rotation angle indexing plate 41 and a The zero-degree position 44 of the rotation angle indexing plate 41 is always the first adjusting component 43 that is vertically downward.
  • the rotation angle indexing plate 41 is concentrically disposed with the rotation axis 14 of the laser beam transmitter 30 and can rotate freely about the rotation axis 14.
  • the first adjusting component 43 is a weight component provided at the zero-degree position 44 of the angular indexing plate 41, and may also be: a recess is provided at a position 180 degrees symmetrical with the zero-degree position 44 so that the zero-degree position 44 can always be Keeping it in the down position makes it unnecessary to adjust the angle index dial after installation of the guide device, and it can automatically return to the zero position.
  • the first adjusting component 43 is preferably provided on the back of the corner indexing plate 41, and when it is provided on the front Can be made into decorative parts.
  • the fourth embodiment is different from the second embodiment in that the rotation angle indexing plate 41 and the laser beam transmitter 30 of the first angle indicating device 40 are separately provided, and the rotation angle indexing plate 41 can rotate.
  • the first indicating member 42 is provided on the rotating shaft 14, and the weight is suspended from the zero-degree position of the angle indexing plate 41, and is set so that the angle indexing plate 41 can be rotated no matter whether the guide device is installed at an angle or not.
  • the zero-degree position 44 is made to coincide with the instruction direction of the first instruction member 42.
  • the fifth embodiment referring to FIGS. 5, 5A, and 5B, is different from the previous embodiment in that: the substrate 10 and the laser beam emitter 30 of the laser beam guiding device for puncturing according to the present invention shown in the figure are electric, that is, A driving device 70 is provided on the substrate 10 for driving the laser beam emitter 30 to rotate.
  • the driving device 70 includes a control motor 71 and a transmission mechanism 72 connecting the output shaft of the control motor 71 and the laser beam transmitter 30.
  • the mounting plate 20 is provided with a driving device 80 for driving the rotation shaft 12 and driving the substrate 10 to rotate.
  • the driving device 80 includes a control motor 81 and an output shaft and the rotation shaft 12 connected to the control motor 81 'S transmission mechanism 82.
  • the transmission mechanisms 82 and 72 may be synchronous belt transmission, gear transmission, and the like, and the control motors 71 and 81 may be any of a servo motor, a stepping motor, and an auto-angler.
  • the device is mounted on the CT scanner 200, and a mounting on the front surface of the CT scanner is provided on the back of the mounting plate 20
  • Component 60 the mounting component 6Q includes a slide rail 61
  • the base plate 10 has a slide groove 62 that cooperates with the slide rail 61
  • two ends of the slide rail 61 can be fixed to each other by fasteners, such as screws
  • the front surface of the CT scanner 200 is mounted on the CT scanner 200, and a mounting on the front surface of the CT scanner is provided on the back of the mounting plate 20
  • Component 60 the mounting component 6Q includes a slide rail 61
  • the base plate 10 has a slide groove 62 that cooperates with the slide rail 61
  • two ends of the slide rail 61 can be fixed to each other by fasteners, such as screws
  • the front surface of the CT scanner 200 is mounted on the CT scanner 200, and a mounting on the front surface of the CT scanner is provided on the back of the mounting plate 20
  • Component 60 the mounting component 6Q includes a slide rail
  • a driving device 90 for driving the mounting plate 20 to move along the sliding rail is further provided on the slide rail 61; the driving device 90 includes a control motor, and a servo can be used. Any of a motor, a stepping motor, and a self-aligning machine; and a transmission mechanism that connects and controls the output shaft of the motor and the mounting plate.
  • the transmission mechanism may be a rack and pinion transmission mechanism, or a screw nut transmission mechanism.
  • Embodiment 6 Referring to FIG. 6, the figure shows another guiding device according to the present invention, which is different from the previous embodiment in that the slide rail 61 fixed to the front panel of the CT scanner is an arch Shape, the upper half is in a semicircular shape, and the two ends are linear, so that the laser beam transmitter 30 can move in a semicircle direction around the center hole of the CT scanner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

穿刺用激光束引导装置
技术领域
本发明涉及一种在对疾病进行治疗和活检时, 用于引导穿刺的医疗器械, 是与 CT扫描仪、核磁共振装置或其它三维成像设备等疾病诊断设备结合使用的 一种穿刺用激光束引导装置。 背景技术
当人体内部发生病变时, 有时需要利用穿刺针对病灶进行活检或治疗。 目 前通常是借助于 CT测定出病灶与皮肤定位点的方位和穿刺针的深度后, gp, 当
CT检测时, 首先从人体的横剖面测出病灶的位置, 在该进针层面中决定最佳进 针位置和进针角度, 利用进针层面与进针角度和进针深度的三维构像决定病灶 及穿刺针的精确位置。虽然 CT扫描仪能够准确地确定三维的进针角度和进针深 度, 但穿刺的过程都是将病人由扫描层面移出后进行的, 当病人离开 CT扫描仪 时, 医生只能根据自己的判断, 确定一个大致进针方向, 进行穿刺然后再进行
CT扫描加以确认, 由于人为的因素较多, 因而造成进针不准确, 影响治疗的精 确度。 有时需要重复多次进针, 严重时会导致误穿, 给患者带来极大的痛苦和 风险。 因此, 业内人士开发出一些用于穿刺定位的定位装置, 例如- 中国实用新型专利 CN2211253Y公开了一种颅内病变颅外定位尺,其包括一 条具有纵向滑槽的竖置板尺, 两条横置的具有纵向滑槽的板尺通过螺栓固定于 竖置板尺的滑槽内; 3条一端带有直角弯端的板尺分别固定于竖置半尺的顶端、 上面的横置板尺的两端。其主要是通过 CT扫描仪测出病变位置,再根据定位尺, 调节各个尺板, 使其与框耳线、头皮等头部位贴紧, 再根据 CT扫描仪测出病变 位置调节在横竖板上找到相应位置标记在头皮上确定开颅的部位和大小。 此装 置仅适用于头颅病变定位, 另外, 其仍然是人为地确定开颅位置, 定位精度不 高, 无法确定方向。
中国实用新型专利 CN2114422U公开了一种高精度脑立体定向仪, 利用 CT扫 描仪测出的三维坐标, 将病灶点拍摄在 CT片上, 再通过定位仪查对病灶点的位 置, 通过弓形架上的滑块的位置来选定手术入口点, 导向弓形架可以沿定位框 架左前后俯仰运动, 导向弓形架上的滑块可沿导向弓形架作左右移动, 实现定 位。 其结构复杂, 无法实现自动定位功能。 综上, 上述定位装置均是通过 CT扫描仪检测的结果, 离开 CT扫描仪, 确 定病灶点和进针位置; 釆用这些装置无法再现其三维进针角度和进针深度, 其 仍然有定位精度不高、 且结构复杂的问题。 而且在使用时, 医生仅能够靠指针 所指向的定位和方向, 在进针过程中, 依靠视觉控制进针的方向。 由于人为的 因素造成进针不准确, 有时需要重新多次进针, 严重时会导致误穿, 给患者带 来极大的痛苦和风险。
US5957933公开了一结合 CT扫描装置上的立体引导装置, 用于引导探针进 入病人体内。 该 CT扫描装置具有一立体结构臂, 其具有一连接于 CT扫描仪装 置第一基底端和一可以相对于 CT扫描装置移动的第二自由端。该立体结构的外 科手术引导装置包括一具有用于限定探针插入路线 (轨迹) 的一导向通道的第 一末端受动部件。 该外科手术导向装置, 在该立体结构臂的自由端处进一步包 括一第二末端受动部件和一激光源, 该激光源沿着探针插入路线产生一导向光 柱。 通过该立体结构臂, 该第一、 第二部件分别独立地适时地被调整统一的信 号给 CT扫描仪,该末端受动部件在调节过程中更适合于固定安装并且该底部的 末端受动部件可以选择地可收缩的伸入一中空管中。 可以选择地,第一、 第二 受动部件可以转动地固定于该立体结构臂的自由端。 该引导装置虽然可以精确 地引导探针进入病人的体内, 并控制整个进针过程, 但其结构复杂, 加工困难、 成本高。 发明目的
本发明的目的在于提供一种穿刺用激光引导装置,解决现有的 CT导向装置 定位精度不准确、 操作不方便, 结构复杂、 成本高的问题, 从而提供一种结构 简单、操作方便、 无需灭菌消毒、 能够在 CT扫描层面以外的地方, 精确再现通 过 CT扫描仪确定的进针层面以及进针位置、进针角度和深度, 并可以利用激光 光源的直线性和不散射的优势来控制、 弓 I导整个进针过程。 简要说明
为了实现上述目的, 本发明主要是结合 CT扫描装置、核磁共振装置其他立 体成像装置使用, 可以安装于 CT扫描装置上, 或者该装置也可以不设在扫描仪 上而单独设置, 再现 CT扫描仪的扫描层面, 确定进针位置、 进针角度和深度。
本发明所采用的技术方案为: 一种穿刺用激光束引导装置, 其包括一激光 束发射器, 其特征在于: 所述激光束发射器是可以旋转地设在一基板上, 且所 述激光束发射器产生平行于所述基板的激光束; 且在所述的基板上设有用于指 示所述的激光束发射器旋转角度的第一角度指示装置; 该第一角度指示装置包 括一与所述的激光束发射器旋转轴同心设置的转角分度盘, 始终垂直向下的第 一指示部件的上端悬吊于转角分度盘的中心位置。本装置可以设在 CT扫描仪的 前、 后面板上, 使激光束发射器产生与基板平面平行的光束, 激光束发射器可 在平行于该基板平面的平面内作 360度旋转运动,该激光束所在的平面与 CT扫 描仪所确定的扫描层面平行, 仅仅需要旋转激光束发射器, 调整激光束的角度 使之与 CT 扫描仪确定的进针角度吻合即可, 因此, 本发明的引导装置相对 US5957933公开的立体引导装置结构简单、 成本低, 而且操作方便。
其中, 所述的第一指示部件可以为重锤, 或者为垂直指向地面的指针, 或 者自动指向地心的其他指示部件。
其中所述的转角分度盘可以选择以下三种方式设置:
所述的转角分度盘和所述的激光束发射器固定连为一体且绕所述转轴地设 于基板上;
或者, 所述的转角分度盘和所述的激光束发射器分别独立地可绕所述转轴 转动地设于基板上;
或者, 所述的转角分度盘固定设在所述的基板上。
本发明还提供一种技术方案: 一种穿刺用激光束引导装置, 其包括一激光 束发射器, 其特征在于: 所述激光束发射器是可以旋转地设在一基板上, 且所 述激光束发射器产生平行于所述基板的激光束; 且在所述的基板上设有用于指 示所述的激光束发射器旋转角度的第一角度指示装置; 所述的第一角度指示装 置包括一与所述的激光束发射器旋转轴同心设置、 且可以绕该转轴自由转动的 转角分度盘, 以及一个使所述的转角分度盘的零度位置始终垂直向下的第一调 零部件。
该第一调零部件可以为一配重部件设在转角分度盘的零度位置处, 使转角 分度盘在自由旋转状态下始终使其零度位置垂直向下, 指向地心。
为了使本发明所述的引导装置的激光束所在的平面角度也可以得到调整, 在所述的基板的背面进一步设有一安装板, 所述的基板通过安装板上的平行于 所述基板的一水平转轴而与安装板铰接; 在所述基板的、 并与基板垂直设置的 侧面板上进一步设有一用于指示所述基板沿水平转轴旋转的第二角度指示装 置,用于指示基板的旋转角度,当本发明所述的引导装置安装于 CT扫描仪上时, 可以调整基板的平面与 CT扫描层面平行一致,当本发明所述的引导装置离开 CT 扫描仪设置时, 可以通过旋转使基板平面与经扫描仪确定的进针层面相平行。
其中, 该第二角度指示装置包括一固定设在基板的侧面板上的转角分度盘 和一个可以始终垂直向下的第二指示部件的上端悬吊于转角分度盘的中心位 置; 所述的第二指示部件为重锤, 或者为垂直指向地面的指针, 或者自动指向 地心的其他指示部件, 当基板平面与地面垂直时, 该第二指示部件的指向处为 零度。
本发明进一步还可以通过驱动装置实现激光束发射器和基板的旋转, 并且 控制其旋转角度, 因此其可以取消第一、 第二角度指示装置。 故, 本发明还提 供一种技术方案: 一种激光束引导装置, 其包括一激光束发射器, 所述激光束 发射器是可以旋转地设在一基板上, 且所述激光束发射器产生平行于所述的基 板平面的激光束; 在所述的基板上进一步设有一用于驱动所述激光束发射器转 动的驱动装置一; 所述的驱动装置一包括一控制电机以及连接控制电机输出轴 与激光束发射器的转轴的传动机构。
在所述的基板的背面设有一安装板, 所述的基板通过安装板上的平行于所 述安装板的一水平转轴而与安装板铰接; 在所述的安装板上进一步设有一用于 驱动所述基板转动的驱动装置二; 所述的驱动装置二包括一控制电机以及连接 控制电机输出轴与基板的传动机构。
为了方便安装,所述的基板或安装板的背面设有一安装于 CT扫描仪前表面 的安装部件。
本发明所述的引导装置可以安装于 CT扫描仪的前面板或后面板上或者独立 于 CT扫描仪附近, 因此, 所述的基板或安装板的背面设有一用于将该引导装置 安装于 CT扫描仪前表面上的安装部件; 所述安装部件为下面中的一种- 设在基板或安装板背面的磁性元件; 或者
为可以重复粘贴于 CT表面的粘贴层; 或者
该安装部件包括一固定安装于 CT扫描仪的前、后面板表面上的滑轨, 所述 基板或安装板具有与所述滑轨配合的滑槽。
或者, 本发明的引导装置也可以独立设在 CT扫描仪的前方或后方, 此时, 该安装部件包括一具有滑轨的吊架或者一龙门支架, 该滑轨为吊架的横梁或为 所述龙门支架的上部; 安装板的背面具有与所述滑轨配合的滑槽。
在所述滑轨上进一步设有一用于驱动所述基板或安装板沿滑轨移动的驱动 装置三; 所述的驱动装置三包括一控制电机以及连接控制电机输出轴与基板或 安装板的传动机构。
由于采用上述技术方案,将本引导装置固定于 CT扫描仪的前表面或后表面, 当 CT扫描仪对病灶位置进行扫描, 并确定了进针层面后, 根据扫描仪的扫描层 面与本发明所述的引导装置之间的横向距离, 将 CT扫描层面标记后,平移至本 发明所述的引导装置的激光束所在平面, 即可重现 CT扫描仪扫描层面, 使激光 束发射器所在的平面与 CT扫描仪所确定的进针平面一致,通过转动激光束发射 器至该平面内的进针角度并指向进针点, 经激光束对进针位置和进针角度的指 示, 医生可以根据激光束的定位确定进针位置, 同时在进针的过程中可以始终 使激光束照射在穿刺针的尾部, 引导整个进针过程, 以防止进针不准, 避免人 为因素所造成的误差, 同时本装置具有结构简单的特点, 仅仅需要第一角度指 示装置即可以确定该激光束发射器的转动基准,借助于 CT扫描仪所确定的进针 面, 确定进针位置和角度。
本发明也可以使引导装置离开 CT扫描仪, 然后确定进针层面。在本装置的 基板的背面另设有一安装板, 且基板可以绕平行于基板的一个水平转轴转动, 进一步在基板的垂直侧面增设第二角度指示装置,即可以使该装置不设在 CT扫 描仪上, 当扫描仪确定进针平面与水平或垂直面的夹角 (即机架的倾斜角度) 后, 仍可以通过转动基板调整基板与水平或垂直面的夹角, 使基板上的激光束 所在平面与 CT扫描仪确定的进针面重合。
为了使现有的 CT扫描仪使用方便,本装置进一步在基板或安装板的背面设 有与 CT扫描仪连接的安装部件, 或者将滑轨与 CT扫描仪面板连接的安装的部 件。
本发明的激光束发射器可以采用现有技术中的笔式激光发射器或其他, 并 且激光发射器以及基板可以采用手动或者采用电动方式驱动。 附图说明
图 1A为本发明所述激光束引导装置的第一个实施例设在 CT扫描仪上的使 用状态图;
图 1B为图 1A中的激光束引导装置的结构示意图; 图 1C展示 CT扫描仪确定的扫描层面 A和本发明的引导装置的进针层面 B 以及引导装置的使用状态图;
图 2为本发明实施例二的激光束引导装置的结构示意图;
图 2A为本发明激光束引导装置第二实施例的去掉安装吊架和第二角度指示 装置的结构示意图;
图 2B为图 2A的 A向视图;
图 2C为本发明的激光束引导装置的龙门支架的结构图;
图 2D为本发明的激光束引导装置的第二角度指示装置的结构示意图; 图 3为本发明的激光束引导装置的第三实施例的结构示意图;
图 4为本发明的激光束引导装置的第四实施例的结构图;
图 5为本发明激光束引导装置的第五实施例,安装于 CT扫描仪前面板上的 示意图;
图 5A为本发明的激光束引导装置的第五实施例的主视图;
图 5B为图 5A的 B— B剖示图;
图 6为本发明的激光束引导装置的第六实施例、安装于 CT扫描仪前面板上 的结构示意图。 详细说明
实施例一, 参见图 1A, 图中展示了一 CT扫描仪 200, 以及设置 CT扫描仪 上穿刺用激光束引导装置 100。为了清楚说明本发明的穿刺用激光束引导装置的 结构以及其有益效果,首先设定 CT扫描仪的三维坐标方向: CT扫描仪 200的床 的水平移动方向为 X轴, 在 X轴所在水平面内的垂直于 X轴方向为 Y轴, 扫描 目标点即病灶为 0, 垂直于 X0Y面的方向为 Z轴, Y0Z平面为 CT扫描层面。
参见图 IB, 图中展示了一种穿剌用激光束引导装置, 其包括一基板 10, 在 所述的基板 10的前面设有激光束发射器 30, 激光束发射器 30可绕一转轴 14 在平行于基板 10的平面内转动, 从而使得激光束发射器 30产生的激光束平行 于基板 10, 进一步基板 10上设有一用于指示所述一激光束发射器 30旋转角度 的第一角度指示装置 40, 其包括: 一转角分度盘 41与基板 10为一体或者单固 定设于基板 10前面, 转角分度盘 41的中心 11与所述转轴 14同轴, 一可以始 终垂直向下的第一指示部件 42的上端悬吊于转角分度盘 41的中心 11位置,在 本实施例中, 该第一指示部件 42为一指针, 指针 42指向的角度为 0°, 逆时针 旋转激光束发射器 30的角度为负向, 例如 -15°, 顺时针旋转激光束发射器 30 的角度为正向,为了便于使该装置安装在 CT扫描仪上,在基板 10的背面设有 4 块磁铁 (磁性元件)作为安装部件 60。
应说明的是, 所述的转角分度盘 41可以与激光束发射器 30分别独立地可 转动地通过转轴 14设在基板 10上, 如此设置, 安装时不必一定将该引导装置 位置安装正确,使指针必须指向角度盘的 0°位置,将该引导装置安装在 CT扫描 仪前表面上后,可以旋转分度盘 41使 0°位置与第一指示部件 42指示方向一致, 再旋转激光束发射器 30至所需角度。
为了清楚说明本发明所述的引导装置结合 CT扫描仪的使用过程以及效果, 参见图 1B, 设定该引导装置的的三维坐标方向: 以激光束发射器 30的转轴 14 中心为坐标原点 0', 沿转轴 14的方向为 X' 轴方向, 垂直方向为 Z' 轴方向, 垂直于 Γ 0' V 的方向为 Y' 轴方向。 由于激光束发射器 30所在的平面与基 板平行, 因此, 将本发明所述的引导装置安装在 CT扫描仪的前面, 其激光束发 射器 30所在的平面 V 0' V与扫描仪扫描层面 Y0Z平行,使指针 42指向零位, 指针与 Z' 轴方向一致, 作为激光束发射器 30旋转角度的基准, 并且顺逆时针 旋转激光束发射器 30时, 可以从转角分度盘 41上读出度数, 即为穿刺针的进 针角度。
在使用时,参见图 1,将该引导装置 100安放于 CT扫描仪 200的前表面上, 通过 CT扫描仪首先检测出病灶点 0的三维坐标位置, 确定穿刺进针的断层面 Y0Z, 并在体表标记皮肤进针点 L, 参见图 1C, 图 1C中展示通过 CT扫描仪确定 的进针层面 A, 以及进针面 A内的病灶点 0以及进针位置: L点, 将进针位置 L 与病灶点 0连一直线, 即为进针方向, 其与 Z轴的夹角为进针夹角 Θ (LOZ)o 因引导装置 100与 CT扫描仪 200的扫描平面平行地设置, 因此, 该进针断 层面与激光束发射器 30所在的平面 Y' 0' V平行, 在 CT扫描确定穿刺进针层 面 A (Y0Z)后,须将病灶点 0所在的进针层面 A平行移至激光束发射器 30所在 的平面 Y' 0' V (B面) 内, 确定沿水平方向平行移动病人的移动的距离 d: 激 光束发射器 30所在 Y' 0' V 平面与扫描仪的扫描层面 Y0Z沿水平方向的距离 dc 转动激光束发射器 30的角度与的扫描层面内的进针角度 Θ相同, 调整激光 束引导装置 100的位置,第一指示部件 42:指针指向转角分度盘 41的零度位置, 使激光器的激光束的方向与重锤方向 V轴的夹角与进针角度 Θ—致,同时激光 束正好指向皮肤进针点 L,将穿刺针刺入皮肤进针点,使激光束始终照射在针的 尾部, 以确保进针方向正确在激光束的指引下进针, 按 CT扫描仪确定的进针深 度 L0进针, 即可命中病灶, 由此可见, 本发明结构简单、 精度高, 操作方便。
实施例二, 参见图 2、 2A、 2B, 图中展示了本实施例的穿刺用激光束引导 装置 100, 其包括: 一基板 10, 在所述的基板 10的背面设有一安装板 20, 所述 的基板 10通过安装板 20上的平行于所述安装板 20的一水平转轴 12而与安装 板 20铰接, 水平转轴 12平行于 V 轴方向, 水平转轴 12的两端通过锁母 15 锁紧固定; 在所述的基板 10的前面设有激光束发射器 30, 激光束发射器 30可 绕一转轴 14在平行于基板 10的平面内转动,从而使得激光束发射器 30产生的 激光束平行于基板 10, 基板 10上设有一用于指示所述一激光束发射器 30旋转 角度的第一角度指示装置 40, 其包括: 一转角分度盘 41, 本实施例中, 所述转 角分度盘 41与激光束发射器 30固定连为一体,并使激光束发射器 30的激光束 方向指向转角分度盘 41的零度位置, 转角分度盘 41的中心 11与所述转轴 14 同轴, 转角分度盘 41与激光束发射器 30可绕其转轴中心 11转动; 一第一指示 部件 42: 重锤的上端悬吊于转角分度盘 41的转轴 14上, 重锤可以始终垂直向 下, 用于指示激管束发射器 30的旋转角度, 当调整激光束发射器 30的激光束 方向与重锤指示方向一致时, 激光束的角度为零度, 当顺逆时针旋转激管束发 射器 30时, 转角分度盘 41同时旋转, 重锤即可以指示出激光束发射器 30的旋 转角度。
参见图 2B, 在所述的基板 10的侧面板 13上进一步设有一第二角度指示装 置 50,侧面板 13与基板 10呈垂直设置,该第二角度指示装置 50用于指示基板 10绕水平转轴 12转动的角度, 即确定进针层面。 该第二角度指示装置 50包括 转角分度盘 51和一个第二指示部件 52: 重锤的上端悬吊于转角分度盘 51的中 心位置, 转角分度盘 51固定设在与基板 10呈垂直设置的侧面板 13上。使用前 先调整基板 10为垂直于水平面的 0位, 当 CT扫描仪的机架垂直于地面时即为 零度, 重锤指示在转角分度盘 51的 0位, 转动基板 10, 第二指示部件 52即可 以指示出基板 10旋转的角度, 使用时需要旋转基板 10, 使之倾斜角度与 CT扫 描仪的倾斜角度一致。
本实施例中, 参见图 2D, 图中展示了所述的第二角度指示装置 50的另一 种结构形式: 转角分度盘 51可转动地设在与基板 10垂直的侧面板 13上, 在该 转角分度盘 51上设有一使零度位置 54始终垂直向下第二调零部件 53, 该第二 调零部件 53为一配重, 设在转角分度盘 51的零度位置 54, 最好设在分度盘 51 的背面, 设在前面时可制成装饰性部件。
参见图 2、 图 2B, 本实施例中引导装置进一步具有一安装部件 60, 该安装 部件使引导装置 100离开 CT扫描仪 200设置, 其包括吊架 600, 安装吊架 600 的横粱为滑轨 61, 安装板 20的背面具有滑槽 62, 使安装板 20可沿轨道滑动。
使用时, 通过 CT扫描仪首先检测出病灶点 0的三维坐标位置, 确定穿刺进 针的断层面 Y0Z, 并在体表标记皮肤进针点 L, 参见图 1C, 图 1C中展示通过 CT 扫描仪确定的进针层面 A, 以及进针面 A内的病灶点 0以及进针位置: L点, 将 进针位置 L与病灶点 0连一直线, 即为进针方向, 其与 Z轴的夹角为进针夹角 Θ ( L0Z)。
参见图 2、 图 1C, 因本实施例的引导装置是设在吊架 600上, 因此, 首先 需旋转基板 10, 使基板平面 10与 CT扫描仪确定的进针层面 A平行, 此时, 该 进针断层面 A与激光束发射器 30所在的平面 Y' 0' V平行, 在 CT扫描确定穿 刺进针层面 A (Y0Z) 后, 须将病灶点 0所在的进针层面 A平行移至激光束发射 器 30所在的平面 Y' 0, V (B面) 内, 转动激光束发射器 30的角度与的扫描 层面内的进针角度 Θ相同, 同时激光束正好指向皮肤进针点 L, 引导进针。
应予以说明的是, 本实施例的安装吊架 600可以代替为龙门支架 600', 如 图 2C所示, 龙门支架 600' 可以为门字形结构, 其横梁为一直线状滑轨, 或者 为拱形, 构成一拱形的轨道, 此种结构可以方便地移动激光束发射器至所需位 置。采用这种安装结构时, 本发明的引导装置离开 CT扫描仪设置时, 可以通过 转动基板 10使激光束所在平面旋转至 CT扫描确定的进针层面。
实施例三, 参见图 3, 图中展示了一种激光束引导装置, 与实施例一不同 之处在于: 所述的第一角度指示装置 40包括一转角分度盘 41和一个使所述的 转角分度盘 41的零度位置 44始终垂直向下的第一调零部件 43, 所述转角分度 盘 41与激光束发射器 30旋转轴 14同心设置、 且可以绕该转轴 14自由转动, 该第一调零部件 43为设在转角分度盘 41的零度位置 44的配重部件,其也可以 为: 与零度位置 44呈 180度对称的位置设有一凹陷处, 从而使零度位置 44能 够始终保持向下位置, 使得引导装置安装后不需要调整转角分度盘、 而其自动 即可归零位。 该第一调零部件 43最好设在转角分度盘 41的背面, 设在前面时 可制成装饰性部件。
实施例四,参见图 4,与实施例二不同之处在于:第一角度指示装置 40的转 角分度盘 41与激光束发射器 30为分体设置,且所述转角分度盘 41可以旋转地 设在转轴 14上, 所述的第一指示部件 42: 重锤悬吊于转角分度盘 41的零度位 置, 如此设置, 使得无论引导装置安装得倾斜与否, 可以旋转转角分度盘 41使 零度位置 44与第一指示部件 42的指示方向重合。
实施例五, 参见图 5、 5A、 5B, 与上一实施例不同之处在于: 图中展示的本 发明的穿剌用激光束引导装置的基板 10和激光束发射器 30为电动, 即, 在所 述的基板 10上设有一用于驱动所述激光束发射器 30转动的驱动装置一 70。 所 述的驱动装置一 70包括一控制电机 71以及连接控制电机 71输出轴与激光束发 射器 30的传动机构 72。在所述的安装板 20上设有一用于驱动转轴 12并带动所 述基板 10转动的驱动装置二 80,所述的驱动装置二 80包括一控制电机 81以及 连接控制电机 81输出轴与转轴 12的传动机构 82。 其中, 所述的传动机构 82、 72可以为同步带传动、齿轮传动等, 控制电机 71、 81可以采用伺服电机、步进 电机和自整角机任一种。
参见图 5和 5B,而且, 与上一实施例不同之处还在于: 本装置是安装在 CT 扫描仪 200上, 在所述的安装板 20的背面设有一安装于 CT扫描仪前表面的安 装部件 60, 所述安装部件 6Q包括一滑轨 61, 所述基板 10具有与所述滑轨 61 配合的滑槽 62, 所述的滑轨 61的两端可以通过紧固件, 例如螺钉固定在 CT扫 描仪 200的前表面。
参见图 5, 进一步, 在所述滑轨 61上进一步设有一用于驱动所述安装板 20 沿滑轨移动的驱动装置三 90;所述的驱动装置三 90包括一控制电机,可以釆用 伺服电机、 步进电机和自整角机任一种; 以及连接控制电机输出轴与安装板的 传动机构, 该传动机构可以为齿轮齿条传动机构、 或螺杆螺母传动机构等。
实施例六,参见图 6, 图中展示了本发明所述的另一种引导装置,与上一实 施例不同之处在于: 所述的固定于 CT扫描仪的前面板的滑轨 61为拱形, 上半 部为呈半圆形状、 两端为直线状, 使激光束发射器 30可以绕 CT扫描仪中心孔 呈半圆周向移动。

Claims

权利要求
1. 一种穿刺用激光束引导装置, 其包括一徼光束发射器 (30), 其特征在 于: 所述激光束发射器(30) 是可以旋转地设在一基板(10) 上, 且所述激光 束发射器(30) 产生平行于所述基板(10) 的激光束; 且在所述的基板 (10) 上设有用于指示所述的激光束发射器(30)旋转角度的第一角度指示装置(40); 所述的第一角度指示装置(40)包括一与所述的激光束发射器(30)旋转轴(14) 同心设置的转角分度盘(41), 始终垂直向下的第一指示部件(42) 的上端悬吊 于转角分度盘 (41 ) 的中心(11 )位置。
2. —种穿刺用激光束引导装置, 其包括一激光束发射器(30), 其特征在 于: 所述激光束发射器(30) 是可以旋转地设在一基板 (10)上, 且所述激光 束发射器(30) 产生平行于所述基板(10) 的激光束; 且在所述的基板 ( 10) 上设有用于指示所述的激光束发射器(30)旋转角度的第一角度指示装置(40); 所述的第一角度指示装置(40)包括一与所述的激光束发射器(30)旋转轴(14) 同心设置、 且可以绕该转轴(14) 自由转动的转角分度盘(41 ), 以及一个使所 述的转角分度盘 (41 ) 的零度位置始终垂直向下的第一调零部件 (43)。
3. 根据权利要求 1所述的穿刺用激光束引导装置, 其特征在于: 所述的转 角分度盘(41 )和所述的激光束发射器(30)固定连为一体且绕所述转轴 (14) 地设于基板 (10)上;
或者, 所述的转角分度盘 (41 )和所述的激光束发射器(30)分别独立地 可绕所述转轴 (14) 转动地设于基板 (10)上;
或者, 所述的转角分度盘(41 ) 固定设在所述的基板(10)上。
4. 根据权利要求 1所述的穿刺用激光束引导装置, 其特征在于: 所述第一 指示部件(42) 为一悬吊于转角分度盘(41 )的中心 (11 )位置的重锤或指针。
5. 根据权利要求 1一 4其中之一所述的穿刺用激光束引导装置, 其特征在 于: 在所述的基板(10) 的背面设有一安装板 (20), 所述的基板(10)通过安 装板(20)上的平行于所述基板(10) 的一水平转轴 (12)而与安装板 (20) 铰接; 在所述的基板 (10) 的、 并与基板 (10) 垂直设置的侧面板 (13) 上进 一步设有一用于指示所述基板 (10)沿水平转轴 (12 )旋转的第二角度指示装 置 (50)。
6. 根据权利要求 5所述的穿刺用激光束引导装置, 其特征在于: 该第二角 度指示装置 (50)包括一固定设在基板(10) 的侧面板 (13) 上的转角分度盘
( 51 )和一个可以始终垂直向下的第二指示部件 (52 ) 的上端悬吊于转角分度 盘 (52) 的中心位置;
或者, 所述的第二角度指示装置(50)包括一可自由转动地设在基板(10) 的侧面板 (13 ) 上的转角分度盘 (51 ) 和一个使该转角分度盘 (51 ) 的零度位 置始终垂直向下第二调零部件(53) 设在转角分度盘(51 )上。
7. 根据权利要求 1 _6其中之一所述的穿刺用激光束引导装置, 其特征在 于: 所述的基板(10)的背面设有一用于将该引导装置安装于 CT扫描仪前表面 上或独立于 CT扫描仪设置的安装部件(60)。
8. 根据权利要求 7所述的穿刺用激光束引导装置, 其特征在于: 所述安装 部件(60) 为下面中的一种:
设在基板 (10)或安装板 (20)背面的磁性元件; 或者
为可以重复粘贴于 CT表面的粘贴层; 或者
该安装部件 (60)包括一固定安装于 CT扫描仪的表面滑轨 (61), 所述基 板 (10)或安装板(20)具有与所述滑轨(61 )配合的滑槽(62); 或者
该安装部件( 60 )包括一具有滑轨( 61 )的吊架(600)或者一龙门支架(600,), 该滑轨(61 )为吊架(600)的横梁或为所述龙门支架(600' )的上部;安装板(20) ' 的背面具有与所述滑轨(61 )配合的滑槽(62)。
9. 一种穿刺用激光束引导装置, 其包括一激光束发射器(30), 其特征在 于: 所述激光束发射器 (30) 是可以旋转地设在一基板 (10)上, 且所述激光 束发射器 (30) 产生平行于所述基板 (10) 的激光束; 在所述的基板(10) 上 进一步设有一用于驱动所述激光束发射器(30)转动的驱动装置一 (70)。
10. 根据权利要求 9所述的穿刺用激光束引导装置, 其特征在于: 所述的 驱动装置一 (70 ) 包括一控制电机 (71 ) 以及连接控制电机 (71 )输出轴与激 光束发射器 (30) 的转轴 ( 14) 的传动机构 (72)。
11. 根据权利要求 9或 10所述的穿刺用激光束引导装置, 其特征在于: 在 所述的基板(10)的背面设有一安装板(20),所述的基板(10)通过安装板(20) 上的平行于所述安装板(20) 的一水平转轴 (12)而与安装板(20)铰接; 在 所述的安装板 (20) 上进一步设有一用于驱动所述基板 (10) 转动的驱动装置 二 (80)。
12. 根据权利要求 11所述的穿刺用激光束引导装置, 其特征在于: 所述的 驱动装置二 (80)包括一控制电机 (81 ) 以及连接控制电机(81 )输出轴与基 板 (10) 的传动机构 (82)。
13. 根据权利要求 1或 3所述的穿刺用激光束引导装置, 其特征在于: 所 述的基板(10)或安装板(20)的背面设有一安装于 CT扫描仪前表面的安装部 件(60)。
14. 根据权利要求 13所述的穿刺用激光束引导装置, 其特征在于: 所述安 装部件(60) 为下面中的一种:
设在基板 (10)或安装板 (20) 背面的磁性元件; 或者
为可以重复粘贴于 CT表面的粘贴层; 或者
该安装部件(60)包括一固定安装于 CT扫描仪的表面滑轨(61 ), 所述基 板 (10)或安装板 (20) 具有与所述滑轨 (61 )配合的滑槽 (62); 或者
该安装部件(60)包括一具有滑轨(61 )的吊架 (600)或者一龙门支架 (600' ), 该滑轨(61 )为吊架 (600)的横梁或为所述龙门支架 (600' )的上部;安装板(20) 的背面具有与所述滑轨 (61 )配合的滑槽 (62)。
15. 根据权利要求 14所述的穿刺用激光束引导装置, 其特征在于: 在所述 滑轨(61 )上进一步设有一用于驱动所述基板(10)或安装板 (20)沿滑轨移 动的驱动装置三(90); 所述的驱动装置三(90)包括一控制电机以及连接控制 电机输出轴与基板(10)或安装板(20) 的传动机构。
PCT/CN2003/001074 2002-12-17 2003-12-16 Appareil de guidage de faisceau laser pour poncture WO2004054459A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003289655A AU2003289655A1 (en) 2002-12-17 2003-12-16 Laser beam leading apparatus for puncture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02291405.6 2002-12-17
CN02291405U CN2585626Y (zh) 2002-12-17 2002-12-17 穿刺用激光束引导装置

Publications (1)

Publication Number Publication Date
WO2004054459A1 true WO2004054459A1 (fr) 2004-07-01

Family

ID=29259695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/001074 WO2004054459A1 (fr) 2002-12-17 2003-12-16 Appareil de guidage de faisceau laser pour poncture

Country Status (3)

Country Link
CN (1) CN2585626Y (zh)
AU (1) AU2003289655A1 (zh)
WO (1) WO2004054459A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107928763A (zh) * 2017-11-13 2018-04-20 王强 穿刺进针角度尺
CN111407372A (zh) * 2020-03-31 2020-07-14 嘉兴市第一医院 一种定位穿刺引导装置
CN111920513A (zh) * 2020-08-24 2020-11-13 南京市第一医院 椎间盘射频消融穿刺光校准辅助装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355398C (zh) * 2005-04-29 2007-12-19 乔恩珍 数控立体定位系统
CN102940533B (zh) * 2012-12-07 2015-12-09 童智慧 穿刺定位器
CN106370158B (zh) * 2016-11-17 2018-11-16 盐城工学院 一种土木工程用水平微动调节装置
CN108634996B (zh) * 2018-07-24 2023-06-23 无锡市第二人民医院 一种用于ct引导下的激光辅助角度系统的归零操作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058114A (en) * 1974-09-11 1977-11-15 Siemens Aktiengesellschaft Ultrasonic arrangement for puncturing internal body organs, vessels and the like
US4930525A (en) * 1989-03-28 1990-06-05 Palestrant Aubrey M Method for performing C.T. guided drainage and biopsy procedures
US5102391A (en) * 1990-02-13 1992-04-07 Aubrey Palestrant Guidance device for C. T. guided drainage and biopsy procedures
CN2114422U (zh) * 1992-02-28 1992-09-02 深圳安科高技术有限公司 高精度脑立体定向仪
CN2160357Y (zh) * 1993-05-06 1994-04-06 李青 腰椎间盘穿刺定位导向仪
CN1198918A (zh) * 1997-03-13 1998-11-18 西门子公司 用来标示仪器导向路径的装置
JP2000070272A (ja) * 1998-08-27 2000-03-07 Shimadzu Corp 生検用穿刺針の差し込み案内装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058114A (en) * 1974-09-11 1977-11-15 Siemens Aktiengesellschaft Ultrasonic arrangement for puncturing internal body organs, vessels and the like
US4930525A (en) * 1989-03-28 1990-06-05 Palestrant Aubrey M Method for performing C.T. guided drainage and biopsy procedures
US5102391A (en) * 1990-02-13 1992-04-07 Aubrey Palestrant Guidance device for C. T. guided drainage and biopsy procedures
CN2114422U (zh) * 1992-02-28 1992-09-02 深圳安科高技术有限公司 高精度脑立体定向仪
CN2160357Y (zh) * 1993-05-06 1994-04-06 李青 腰椎间盘穿刺定位导向仪
CN1198918A (zh) * 1997-03-13 1998-11-18 西门子公司 用来标示仪器导向路径的装置
JP2000070272A (ja) * 1998-08-27 2000-03-07 Shimadzu Corp 生検用穿刺針の差し込み案内装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107928763A (zh) * 2017-11-13 2018-04-20 王强 穿刺进针角度尺
CN111407372A (zh) * 2020-03-31 2020-07-14 嘉兴市第一医院 一种定位穿刺引导装置
CN111407372B (zh) * 2020-03-31 2021-04-16 嘉兴市第一医院 一种定位穿刺引导装置
CN111920513A (zh) * 2020-08-24 2020-11-13 南京市第一医院 椎间盘射频消融穿刺光校准辅助装置

Also Published As

Publication number Publication date
CN2585626Y (zh) 2003-11-12
AU2003289655A1 (en) 2004-07-09

Similar Documents

Publication Publication Date Title
US6110112A (en) Medical guide apparatus for breath-coordinated puncturing of the body or a body cavity
US5665095A (en) Stereotactic guidance device
US4651732A (en) Three-dimensional light guidance system for invasive procedures
US6298262B1 (en) Instrument guidance for stereotactic surgery
US4706665A (en) Frame for stereotactic surgery
CN1151756C (zh) 用来标示仪器导向路径的装置
CN106999171B (zh) 用于引导手术针的设备
US6273896B1 (en) Removable frames for stereotactic localization
US5053042A (en) Biopsy needle guide for use with CT scanner
US4592352A (en) Computer-assisted tomography stereotactic system
US5598269A (en) Laser guided alignment apparatus for medical procedures
US6159221A (en) Stereotactic apparatus and methods
WO2017000538A1 (zh) 可拆卸组装圆弧形精准定位设备
CN109692033B (zh) 一种经皮腰椎间孔镜穿刺辅助定位器
WO2022199123A1 (zh) 一种用于ct穿刺辅助引导定位装置
JP2000510717A (ja) マーカーシステムとそれと組み合わせた立体定位処置
WO2017050201A1 (zh) 微创医疗机器人系统
CN105310782B (zh) 手术激光定位系统
CN111973236A (zh) 一种医疗器械
CN1522672A (zh) 立体定向肿瘤热疗系统
WO2004054459A1 (fr) Appareil de guidage de faisceau laser pour poncture
CN205234654U (zh) 手术激光定位系统
CN215688294U (zh) 穿刺定位辅助装置以及穿刺组件
CN1522667A (zh) 可重复定位脑立体定位系统
CN1522674A (zh) 可重复定位的躯干部立体定位方法和装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP