WO2004053595A1 - Positive type photoresist composition for lcd production and method of forming resist pattern - Google Patents
Positive type photoresist composition for lcd production and method of forming resist pattern Download PDFInfo
- Publication number
- WO2004053595A1 WO2004053595A1 PCT/JP2003/015621 JP0315621W WO2004053595A1 WO 2004053595 A1 WO2004053595 A1 WO 2004053595A1 JP 0315621 W JP0315621 W JP 0315621W WO 2004053595 A1 WO2004053595 A1 WO 2004053595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resist pattern
- photoresist composition
- lcd
- positive photoresist
- soluble
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
- G03F7/0233—Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
- G03F7/0236—Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/022—Quinonediazides
- G03F7/023—Macromolecular quinonediazides; Macromolecular additives, e.g. binders
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
Definitions
- the present invention relates to a positive photoresist composition for producing an LCD and a method for forming a resist pattern.
- liquid crystal display elements that form a liquid crystal display part on a glass substrate
- they are relatively inexpensive and can form resist patterns with excellent sensitivity, resolution and shape.
- Positive photoresist materials comprising a nopolak resin-quinonediazide group-containing compound system used in the manufacture of semiconductor devices are often used.
- disc-shaped silicon wafers with a maximum diameter of 8 inches (about 200 mm) to 12 inches (about 300 mm) are used, whereas in the manufacture of LCDs, a minimum is used.
- a square glass substrate of about 36 OmmX 460 mm is used.
- the substrate on which the resist material is applied is, of course, different in terms of material and shape, but in terms of its size, the substrate used in the manufacture of semiconductor elements is used. Is very different.
- resist materials for manufacturing LCDs are required to be able to form a resist pattern having excellent characteristics such as shape and dimensional stability over a wide substrate surface.
- resist materials for LCD production are desired to be inexpensive in addition to the above-mentioned characteristics. ing.
- Patent Documents 1 to 6 There have been many reports as resist materials for LCD manufacturing (for example, Patent Documents 1 to 6 below).
- the resist materials described in Patent Literatures 1 to 6 are inexpensive and have excellent applicability, sensitivity, resolution, shape and dimensional stability for small substrates of, for example, about 36 Omm x 46 Omm.
- a resist pattern can be formed. Therefore, it can be suitably used for the purpose of manufacturing a relatively small LCD.
- the resolution is expressed by the following formula of the following equation:
- R is the resolution limit, is the proportionality constant determined by the resist, process, and image formation method, ⁇ is the wavelength of light used in the exposure process, and ⁇ is the numerical aperture of the lens]
- the resolution can be increased by using a light source having a short wavelength ⁇ or by using a high-speed exposure process.
- a light source having a short wavelength ⁇ instead of the g-line (436 nm) exposure used in conventional LCD manufacturing, photolithography technology using shorter-wavelength i-line (365 nm) exposure is used to increase resolution. Can be raised.
- next-generation LCD integrated circuits such as drivers, DACs (digital-to-analog converters), image processors, video controllers, and RAMs are mounted on a single glass substrate at the same time as the display.
- integrated circuits such as drivers, DACs (digital-to-analog converters), image processors, video controllers, and RAMs are mounted on a single glass substrate at the same time as the display.
- Technology is being actively developed for the high-performance LCDs that are formed, so-called “system LCDs” (Semiconductor FPD World 2001. 9, pp. 50-67).
- the integrated circuit part is formed on the substrate in addition to the display part. Therefore, the substrate tends to be larger. Therefore, it is desirable to perform exposure under a lower NA condition than in normal LCD manufacturing.
- the pattern size of the display portion is about 2 to 10 m
- the integrated circuit portion is formed with a fine size of about 0.5 to 2.0 m. . Therefore, it is preferable to simultaneously form the display portion and the integrated circuit portion having different pattern dimensions under the same exposure condition, and to set the linearity [the same exposure condition (different mask size on the reticle but the same exposure light amount)].
- a resist material that excels in the characteristics of accurately reproducing a resist pattern corresponding to different mask dimensions on a reticle when exposed at a higher resolution than conventional resist materials for LCD manufacturing is desired.
- Patent Literature 6 Japanese Patent Application Laid-Open No. 2001-75272 describes a liquid crystal resist containing a soluble resin and a photosensitive component, but not containing a sensitizer.
- this liquid crystal resist had problems such as being unsuitable for i-line exposure, difficulty in forming a resist pattern of 2.0 or less required for manufacturing system LCDs, and lacking linearity.
- the present invention has excellent linearity under low NA
- the display part and the finer resist pattern of the integrated circuit part can be simultaneously obtained in a good pattern shape. It is an object of the present invention to provide a resist material and a method for forming a resist pattern which are suitable as the above.
- a positive photoresist composition for an LCD comprises (A) an alkali-soluble nopolak which can be synthesized by a condensation reaction of a phenol containing 3,4-xylenol with an aldehyde. (C) a phenolic hydroxyl group-containing conjugate having a molecular weight of 1000 or less,
- This positive photoresist composition for LCD is preferable as a positive photoresist composition for LCD for an i-ray exposure process.
- a positive photoresist composition for an LCD having an NA of 0.3 or less for an exposure process.
- a positive photoresist composition for LCD for producing LCD in which an integrated circuit and a liquid crystal display portion are formed on one substrate.
- the system LCD refers to “LCD in which an integrated circuit and a liquid crystal display portion are formed on one substrate”.
- the method for forming a resist pattern of the present invention comprises:
- the resist film after the heat treatment is subjected to a development treatment using an alkaline aqueous solution, and a resist pattern for an integrated circuit having a pattern size of 2.0 m or less is formed on the substrate. Simultaneously forming a resist pattern for the liquid crystal display part of
- FIG. 1 shows a positive photoresist composition applied to a glass substrate, baked, dried, and exposed to a pattern for evaluation of linearity under low NA conditions.
- FIG. 5 is an explanatory view showing that liquid is pooled from a substrate end portion X to a substrate end portion Z.
- the component (A) is an alkali-soluble resin component containing an alkali-soluble nopolak resin which can be synthesized by a condensation reaction between a phenol containing 3,4-xylenol and an aldehyde.
- a nopolak resin having excellent linearity and suitable as a resist material for a system LCD can be obtained.
- the heat resistance is good. If the heat resistance of the positive photoresist composition is good, the dimensions of the resist pattern after the heat treatment step Suitable for LCD because of low change rate, and suitable for system LCD because the rectangular shape of the resist pattern is good for forming integrated circuits.
- the lower limit of the proportion of 3,4-xylenol in the phenols is at least 5 mol%, preferably at least 7 mol%, and the upper limit is at most 40 mol%, preferably at most 30 mol%, more preferably 20 mol% or less. By setting the lower limit or more, a good effect can be obtained.
- the content of 3,4-xylenol in the phenols may be 100 mol%, but if the amount of 3,4-xylenol is too large, the sensitivity may decrease. It is preferable that it is not more than the upper limit.
- phenols one or more arbitrarily selected from those generally used as a nopolak resin material for a positive photoresist composition may be used in addition to 3,4-xylenol. be able to.
- examples thereof include phenols such as m-cresol, ⁇ -cresol, xylenol other than 3,4-xylenol, and trimethylphenol, and among them, m-cresol is preferable in terms of improving sensitivity.
- a positive photoresist composition for LCD In the case of a positive photoresist composition for LCD, a high sensitivity of, for example, about 5 OmJ is considered preferable from the viewpoints of improvement in production efficiency, throughput, and the like. Satisfying things are easily obtained.
- 3,4-xylenol When 3,4-xylenol is combined with phenols other than 3,4-xylenol, the content of 3,4-xylenol is 5 to 30 mol%, preferably 7 to 20 mol%. It is preferable because the effect of phenols other than 3,4-xylenol can be exerted while maintaining the effect of 3,4-xylenol.
- the lower limit or more is effective in terms of resolution and linearity under low NA conditions. Further, heat resistance is also improved, which is preferable in terms of suppressing scum. It is preferable from the viewpoint of sensitivity that the content is not more than the upper limit.
- the proportion of m-cresol in the phenols is preferably 95 to 40 mol%, and more preferably 93 to 60 mol%, from the viewpoint of sensitivity. Sensitivity is improved by setting the content to 40 mol% or more, and the content of 3,4-xylenol can be ensured by setting the content to 95 mol% or less, which is preferable in terms of resolution, linearity, and the like.
- phenols other than 3,4-xylenol and m-cresol can be used as necessary, but other phenols are, in particular, 3,4-xylenol.
- m-cresol When used together with m-cresol, it may be 0 to 30 mol% in the phenols (that is, whether or not other phenols are used is optional), and preferably 5 to 20 mol%. It is preferable in terms of resolution, linearity characteristics, and sensitivity.
- aldehyde one or more arbitrarily selected ones can be used without particular limitation as long as they are generally used for synthesizing a nopolak resin for a positive photoresist composition.
- acetoaldehyde propionaldehyde, salicylaldehyde, formaldehyde, formaldehyde precursor, 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, and the like.
- formaldehyde are preferred, and those in which both are combined are particularly preferred.
- propionaldehyde it is preferable to use 5% by mole or more, preferably 15% by mole or more of aldehydes, since resolution is good and a rectangular resist pattern tends to be obtained.
- formaldehyde When formaldehyde is used, it is preferable to use 50 mol% or more, preferably 60 mol% or more of aldehydes from the viewpoint of sensitivity.
- the molar ratio of ropionaldehyde: formaldehyde is 10:90 to 30:70, Preferably it is 25:75. Within this range, the effects of high sensitivity, high resolution, and high heat resistance can be obtained.
- an alkali-soluble nopolak resin that can be synthesized using a phenol containing 3,4-xylenol and m-cresol.
- the aldehydes include an alcohol-soluble novolak resin that can be synthesized using an aldehyde containing one or both (preferably both) of propionaldehyde and formaldehyde.
- alkali-soluble nopolak resins that can be synthesized using phenols containing 3,4-xylenol and m-cresol, and aldehydes containing propionaldehyde and formaldehyde. At this time, it is more preferable to satisfy the conditions of 5 to 30 mol% of 3,4-xylenol, 95 to 40 mol% of m-cresol, and 0 to 30 mol% of other phenols in the phenol.
- the alkali-soluble nopolak resin can be synthesized according to a conventional method, for example, by subjecting a phenol and an aldehyde to a condensation reaction in the presence of an acid catalyst.
- the molar ratio of the phenols to the aldehydes is, for example, 1: 0.5 to 1: 0.95, preferably 1: 0.6 to 1: 0.9.
- the mass-average molecular weight (Mw) of the alkali-soluble nopolak resin is 3000 to 30,000, preferably 4000 to 20000 in terms of polystyrene by GPC (gel permeation chromatography) from the viewpoint of coating properties and heat resistance.
- the alkali-soluble nopolak resin may be used alone or in combination of two or more. Can be used.
- the component (A) may contain, in addition to the essential alkali-soluble nopolak resin, other alcohol-soluble resins.
- the compounding amount of the other alkali-soluble resin in the component (A) is, for example, 50% by mass or less, preferably 30% by mass or less (the lower limit is not particularly limited, but may be 0% by mass). . Within this range, the effect of the essential alkali-soluble nopolak resin is not likely to be impaired, which is preferable.
- any other alcohol-soluble resin that can be blended can be used without particular limitation as long as it is generally used in a positive photoresist composition.
- hydroxystyrene such as a homopolymer of hydroxystyrene, a copolymer of hydroxystyrene and another styrene monomer, and a copolymer of hydroxystyrene and acrylic acid or methacrylic acid or a derivative thereof.
- Acrylic acid or methacrylic acid resin which is a copolymer of acrylic acid or methacrylic acid and a derivative thereof.
- the component (B) is a naphthoquinonediazide esterified product.
- the component (B) is not particularly limited as long as it is generally used as a photosensitive component in a positive photoresist composition, and one or more components can be arbitrarily selected and used.
- RR 8 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms.
- R 1Q and R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; when R 9 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, Q 1 represents a hydrogen atom or a carbon atom;
- R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms.
- c a is an integer of 1 to 3
- Q 1 is bonded with the end end of R 9 is, Q 1 is R 9 and, together with the carbon atoms between Q 1, R 9,
- A, b represents an integer of 1 to 3
- d represents an integer of 0 to 3
- n represents an integer of 0 to 3]
- the esterified product of a phenolic compound and a naphthoquinonediazidosulfonic acid compound represented by the formula is suitable for photolithography using i-line and forms a fine resist pattern of 2.0 m or less under low NA conditions with good shape It is suitable for trying. That is, it is preferable in terms of high resolution and also in terms of linearity.
- Q 1 and R 9 and the carbon atom between Q 1 and R 9 form a cycloalkyl group having a carbon chain of 3 to 6
- Q 1 and R 9 combine to form a carbon atom It forms 2 to 5 alkylene groups.
- the phenolic compounds corresponding to the general formula include tris (4-hydroxyphenyl) methane, bis (4-hydroxy-3-methylphenyl) -2-hydroxyphenylmethane, and bis (4-hydroxy-2,3,5-trimethylphenyl).
- 2-Hydroxyphenylmethane bis (4-hydroxy-1,3,5-dimethylphenyl) 1,4-hydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -1,3-hydroxyphenylmethane, bis ( 4-Hydroxy-1,3,5-dimethylphenyl-1-hydroxyphenylmethane, bis (4-hydroxy 2,5-dimethylphenyl) -4-hydroxyphenylmethane, bis (4-hydroxy-2,5) 1-hydroxyphenylmethane, bis (4-hydroxy-1,2,5-dimethylphenyl) 1,2-hydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) 1,3,4-dihydroxyphenylme
- Examples include condensed phenol compounds such as 1,1-bis (4-hydroxyphenyl) cyclohexane.
- a photoresist composition containing one or more (preferably these three types) naphthoquinonediazide ester of a phenol compound is a resist having high sensitivity, high resolution, and good shape. This is preferable in that a pattern can be formed.
- the amount of the component (B) is preferably at least 10% by mass, more preferably at least 15% by mass.
- the compounding amount of (B1) is 50 to 90% by mass, preferably 60 to 80% by mass.
- the amount of (B2) is 5 to 20% by mass, preferably 10 to 15% by mass, and the amount of (B3) is 5 to 20% by mass, preferably 10 to 15% by mass.
- a compound represented by the above general formula (I) and naphthoquinone-1-1 A predetermined amount of 2-diazido 4 (or 5) -sulfonyl chloride is dissolved in an organic solvent such as dioxane, n-methylpyrrolidone, dimethylacetamide, and tetrahydrofuran, and tritylamine, triethanolamine, pyridine, and carbonic acid are dissolved therein.
- One or more basic catalysts such as alkali and alkali bicarbonate can be added and reacted, and the resulting product can be prepared by washing with water and drying.
- component (B) as described above, other naphthoquinone diazide esterified compounds may be used in addition to the preferred exemplified naphthoquinone diazide esterified compounds.
- an esterification reaction product of a phenolic compound such as polyhydroxybenzophenone-alkyl gallate and a naphthoquinonediazidosulfonic acid compound may be used.
- the use amount of these other naphthoquinonediazide esterified compounds is preferably 80% by mass or less, particularly 50% by mass or less in the component (B), from the viewpoint of improving the effects of the present invention.
- the amount of the component (B) in the photoresist composition is 20 to 70% by mass, preferably 25 to 60% by mass, based on the total amount of the component (A) and the following component (C). .
- the amount of the component (B) By setting the amount of the component (B) to be not less than the above lower limit, an image faithful to the pattern can be obtained, and transferability is improved.
- the content is not more than the above upper limit, the sensitivity can be prevented from deteriorating, the uniformity of the formed resist film can be improved, and the resolution can be improved.
- the component (C) is a phenolic hydroxyl group-containing compound.
- the material suitable for LCD can be obtained.
- the molecular weight of the component (C) is preferably 100 or less, preferably 700 or less, substantially 200 or more, and preferably 300 or more, from the viewpoint of the above effects.
- phenolic water generally used in a photoresist composition is used.
- the acid group-containing compound is not particularly limited as long as it satisfies the above-mentioned molecular weight condition, and one or more kinds can be arbitrarily selected and used.
- the following general formula (III) is not particularly limited as long as it satisfies the above-mentioned molecular weight condition, and one or more kinds can be arbitrarily selected and used.
- RU to R 18 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms.
- R 2Q and R 21 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; when R 19 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, Q 2 represents a hydrogen atom;
- R 22 and R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms.
- the expressed; g a is an integer of 1 to 3
- Q 2 is bonded with the terminal of R 19 is, Q 2 is R 19, and, together with the carbon atoms between Q 2 and R 19, carbon Chain represents a cycloalkyl group of 3 to 6
- e, f represents an integer of 1 to 3
- h represents 0
- n represents an integer of 0 to 3]
- the phenol compound represented by the following is preferable because it shows the above characteristics well.
- the phenol compound used in the naphthoquinonediazide esterified product of the phenol compound exemplified in the above-mentioned component (B) can be preferably used.
- Isopropyl]-4-[1,1 _bis (4-hydroxyphenyl) ethyl] benzene is preferred.
- the amount of the component (C) is in the range of 10 to 70% by mass, preferably 20 to 60% by mass, based on the component (A) from the viewpoint of the effect.
- component (D) one or more kinds can be selected and used without particular limitation as long as they are general ones used in a photoresist composition, and propylene glycol monoalkyl ether acetate, And those containing Z or 2-heptanone are preferred because they have excellent coatability and excellent uniformity of the thickness of a resist film on a large glass substrate.
- both propylene daricol monoalkyl ether acetate and 21-heptane can be used, but the spin coat method or the like, when used alone or in combination with another organic solvent, is used. In many cases, it is preferable in terms of the uniformity of the film thickness at the time of coating.
- the propylene glycol monoalkyl ether acetate preferably contains 50 to 100% by mass of the component (D).
- Propylene dalycol monoalkyl ether acetate has, for example, a linear or branched alkyl group having 1 to 3 carbon atoms.
- PGMEA propylene glycol monomethyl ether acetate
- 2-hepno-non is not particularly limited, but as described above, (B) It is a suitable solvent when combined with a non-benzophenone-based photosensitive component as a futoquinone diester.
- 2-Heptane-non is a very preferable solvent because it has excellent heat resistance as compared with PGMEA and has the property of giving a resist composition with reduced scum generation.
- other solvents can be mixed with these preferable solvents.
- an alkyl lactate such as methyl lactate or ethyl lactate (preferably ethyl lactate) is blended, a resist pattern having excellent uniformity in the thickness of the resist film and excellent shape can be formed.
- the mass ratio is 0.1 to 10 times, preferably 1 to 5 times the mass ratio of propylene glycol monoalkyl ether acetate to propylene glycol monoalkyl ether acetate. It is desirable to mix twice the amount of alkyl lactate.
- Organic solvents such as carboxylactone and propylene glycol monobutyl ether can also be used.
- arptyrolactone When arptyrolactone is used, it is added in an amount of 0.01 to 1 times by mass, preferably 0.05 to 0.5 times by mass with respect to propylene glycol monoalkyl ether acetate. It is desirable to do.
- organic solvents that can be blended include the following.
- ketones such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isoamyl ketone; ethylene glycol, propylene glycol, ethylene glycol, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, and monomers thereof.
- Polyhydric alcohols such as tyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether and derivatives thereof; cyclic ethers such as dioxane; and methyl acetate, ethyl acetate, butyl acetate, Esters such as methyl ruvinate, ethyl pyruvate, methyl methoxypropionate, and ethyl ethoxypropionate.
- the content is not more than 50% by mass in the component (D).
- the positive photoresist composition of the present invention contains compatible additives as necessary, for example, an additional resin and a plasticizer for improving the performance of the resist film, as long as the object of the present invention is not impaired.
- compatible additives for example, an additional resin and a plasticizer for improving the performance of the resist film, as long as the object of the present invention is not impaired.
- Conventional additives can be included.
- Antihalation dyes include ultraviolet absorbers (eg, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dimethylamino-2', 4,1-dihydroxybenzophenone, 5-amino-3- Methyl-11-phenyl-1-41- (4-hydroxyphenylazo) pyrazole, 4-dimethylamino-4'-hydroxyazobenzene, 4-methylethyl-4'-ethoxyazobenzene, 4-ethylethylaminoazobenzene, curcumin Etc.) can be used.
- ultraviolet absorbers eg, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dimethylamino-2', 4,1-dihydroxybenzophenone, 5-amino-3- Methyl-11-phenyl-1-41- (4-hydroxyphenylazo) pyrazole, 4-dimethylamino-4'-hydroxyazobenzene, 4-methylethyl-4'-ethoxyazobenzen
- the surfactant can be added, for example, to prevent striation.
- Florad FC-430, FC431 (trade name, manufactured by Sumitomo 3M Co., Ltd.), EFTOP EF 122A, EF 122B, EF 122C, EF 126 (trade name, manufactured by Tochem Products Co., Ltd.) and R-08 (trade name, manufactured by INHIKIN INK CHEMICAL INDUSTRIES, LTD.).
- the positive photoresist composition of the present invention is preferably prepared by dissolving the component (A), the component (B), the component (C) and, if necessary, other components in the organic solvent (D). be able to.
- the amount of the component (D) is preferably adjusted appropriately so as to dissolve the components (A) to (C) and other components used as necessary, and to obtain a uniform positive photoresist composition. I can do it.
- the solid content [components (A) to (C) and other components used as needed] is 10 to 50% by mass, more preferably 20 to 35% by mass.
- the above-mentioned positive photoresist composition of the present invention is applied to a substrate using a spinner or the like to form a coating film.
- a glass substrate is preferred as the substrate.
- Amorphous silica is usually used as the glass substrate, but low temperature polysilicon or the like is preferable in the field of system LCD.
- the composition of the present invention since the composition of the present invention has excellent resolution under low NA conditions, it is large in size of 50 O mm x 60 O mm or more, especially 55 O mm X 65 O mm or more. Substrate can be used.
- the glass substrate on which the coating film is formed is subjected to a heat treatment (prebaking) at, for example, 100 to 140 ° C. to remove the residual solvent, thereby forming a resist coating film.
- prebaking it is preferable to perform proximity baking in which a gap is provided between the hot plate and the substrate.
- the resist film is selectively exposed using a mask on which a mask pattern is drawn.
- i-line As a light source, it is preferable to use i-line (365 nm) in order to form a fine pattern.
- the exposure process employed in this exposure is preferably a low NA exposure process having an NA of 0.3 or less, preferably 0.2 or less, and more preferably 0.15 or less.
- a mask pattern for forming a resist pattern when a system LCD is manufactured, in the step of performing the selective exposure, a mask pattern for forming a resist pattern of 2.0 m or less, It is preferable to use a mask on which both the resist pattern forming mask patterns are drawn.
- the resist film after the selective exposure is subjected to a heat treatment (post-exposure bake: PEB).
- PEB method there are a proximity bake where a gap is provided between the hot plate and the substrate, and a direct bake where no gap is provided. Then, in order to obtain a diffusion effect by PEB without causing the substrate to be warped, a method of performing direct baking after performing proximity baking is preferable.
- the heating temperature is 90 ⁇ : L 40 ° C, especially 110 ⁇ 130 preferable.
- a developing solution for example, an alkaline aqueous solution such as a 1 to 10% by mass aqueous solution of tetramethylammonium hydroxide (TMAH)
- TMAH tetramethylammonium hydroxide
- the exposed portions are dissolved and removed.
- a resist pattern is formed.
- a mask on which both the resist pattern forming mask pattern of 2.0 or less and the resist pattern forming mask pattern of more than 2.0 m are drawn is used, the resist pattern for the integrated circuit and the liquid crystal are formed on the substrate.
- a resist pattern for the display portion is simultaneously formed.
- the resist pattern can be formed by washing the developing solution remaining on the resist pattern surface with a rinse solution such as pure water.
- the positive photoresist composition for LCD of the present invention has excellent linearity, a resist pattern that faithfully reproduces both rough and fine mask patterns can be obtained. Therefore, when a step of simultaneously forming a resist pattern using a mask on which both are drawn is performed, a resist pattern for an integrated circuit having a pattern size of 2.0 m or less and a resist pattern of more than 2.0 m are formed on the substrate.
- the resist pattern for the liquid crystal display portion can be formed at the same time.
- the positive photoresist composition of the present invention is suitable for an exposure process under low NA conditions. It is also suitable for i-line exposure processes. Therefore, in the manufacture of LCD, a resist pattern of at least a display portion can be obtained with high resolution.
- the positive photoresist composition of the present invention is excellent in linearity under low NA conditions, a rough pattern and a fine pattern can be formed on one substrate under the same exposure conditions. Therefore, even under a low NA condition, a resist pattern for a display portion of a system LCD and a finer integrated circuit portion can be obtained at a high resolution at the same time, which is suitable for manufacturing a system LCD.
- an alcohol-soluble nopolak resin containing 3,4-xylenol as the component (A) heat resistance is improved, and the residual film property after alkali development is improved. Furthermore, since the resolution is good, the system Suitable for LCD.
- the positive photoresist composition for LCD it is necessary that the width of the depth of focus (DOF) is large to some extent from the viewpoint of production efficiency, easy control of production conditions, and the like.
- the positive photoresist composition for LCD can realize a range of depth of focus (for example, 15 / m or more) that can be practically used for LCD.
- the positive photoresist composition for LCDs of the present invention can provide high resolution under low NA conditions (a uniform and good resolution can be obtained even when a large area is exposed) and a linearity. It is also preferable, and can be preferably used as a general positive photoresist composition for LCDs, and is particularly suitable for system LCDs.
- a high-resolution resist pattern can be formed even in an exposure process under a low NA condition suitable for LCD production.
- a resist pattern for an integrated circuit with a pattern size of 2.0 m or less, for example, and a resist pattern for a liquid crystal display portion with a pattern size of more than 2.0 m, for example, can be simultaneously formed on a substrate. It can be used favorably in the manufacture of LCDs.
- Glass substrate (55 OmmX 65 Omm) on which a Ti film is formed using a positive photoresist composition by a resist coating device for large substrates (apparatus name: TR3600 manufactured by Tokyo Ohka Kogyo Co., Ltd.)
- the temperature of the hot plate is set to 100 ° C
- the first drying is performed for 90 seconds by a proximity bake with an interval of about lmm
- the temperature of the hot plate is set to 90 ° C
- the second drying was performed for 90 seconds by a proximity bake with an interval of 0.5 mm to form a resist film having a thickness of 1.5 ⁇ .
- the temperature of the hot plate is set to 120 ° C, a heat treatment is performed for 30 seconds by a proximity bake at intervals of 0.5 mm, and then a direct bake is performed at the same temperature without any space. Heat treatment was performed for 60 seconds.
- a 23.degree. C., 2.38 mass% TMAH aqueous solution was developed using a developing device (device name: TD-3900, demonstration machine, manufactured by Tokyo Ohka Kogyo Co., Ltd.) having a slit nozzle.
- TD-3900 demonstration machine, manufactured by Tokyo Ohka Kogyo Co., Ltd.
- the cross-sectional shape of the obtained resist pattern was observed by SEM (scanning electron microscope) photograph, and the reproducibility of the 1.5 mL & S resist pattern was evaluated.
- the focus was shifted up and down as appropriate, and the width of the depth of focus (DOF) obtained in 1.5 mL & S within the range of the dimensional change rate of 10% of the soil was obtained in units of / zm.
- the substrate surface on which 1.5 mL & S was drawn was observed with an SEM to check for scum.
- the substrate on which 1.5 mL & S is drawn is left on a hot plate set at 140 for 300 seconds, and then left in an oven set at 200 ° C for 30 minutes. did.
- ⁇ indicates that the dimensional change rate of 1.5 mL & S was more than 100% to 105% or less
- 105 indicates that the dimensional change rate was more than 105% to 110% or less
- X indicates that the rate of change was more than 110%.
- B 2 Esterification reaction product of 1 mol of B 2 ′ and 4 mol of 5-NQD
- B 3 Esterification reaction product of 1 mol of B 3 ′ and 2 mol of 5—NQD (C) phenolic hydroxyl group
- C phenolic hydroxyl group
- PGMEA surfactant product name "R-08”; equivalent to 450 ppm based on the total weight of components (A) to (C) and components (A) to (C)) (Nippon Dainippon Ink and Chemicals Co., Ltd.) is dissolved in PGMEA, which is the component (D), and the solid content [total of (A) to (C) components] is adjusted to 25 to 28% by mass. This was filtered using a membrane filter having a pore size of 0.2 to prepare a positive photoresist composition.
- a positive photoresist composition was prepared in the same manner as in Example 1 except that the components (A) to (D) were changed to those shown in Table 1 below. table 1
- B 1 / B 2 / B 3 (6/1/1) means that B 1 / B 2 / B 3 is mixed at a mass ratio of 6/1/1 as described above. Indicates that it was used.
- A2-8, C2, and D2-3 are as follows.
- Mw / Mn 3.05 nopolak resin
- Heat resistance and sensitivity are commonly required for LCDs and system LCDs.
- the composition of Comparative Example 2 has a very low sensitivity of 100 mJ because the component (A) is different from that of the present invention, and is adopted in the field of LCD manufacturing where high sensitivity of about 5 OmJ is required. Was a very difficult material.
- the composition of Comparative Example 3 has a linearity because the component (A) is different from that of the present invention. Was bad.
- Comparative Example 4 was inferior in linearity and narrow in the depth of focus (DOF) because the component (A) was different from that of the present invention. Industrial applicability
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Materials For Photolithography (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Liquid Crystal (AREA)
Abstract
A positive type photoresist composition for LCD production, characterized by comprising (A) an alkali-soluble resin ingredient comprising an alkali-soluble novolak resin synthesized by the condensation of one or more phenols comprising 3,4-xylenol with an aldehyde, (B) an esterified naphthoquinonediazide, (C) a compound containing a phenolic hydroxy group and having a molecular weight of 1,000 or lower, and (D) an organic solvent; and a process for producing a resist pattern. With the composition, satisfactory resolution can be attained even under low-NA conditions. The composition has excellent linearity even under low-NA conditions and is hence suitable for use in producing system LCDs.
Description
明 細 書 Specification
L CD製造用ポジ型ホトレジスト組成物およびレジストパターンの形成方法 技術分野 Technical Field of the Invention Positive photoresist composition for LCD production and method of forming resist pattern
本発明は、 LCD製造用のポジ型ホトレジスト組成物およびレジストパターン の形成方法に関する。 The present invention relates to a positive photoresist composition for producing an LCD and a method for forming a resist pattern.
なお、 本出願は、 日本国特許出願 特願 2002— 355365を基礎として おり、 その内容をここに組み込むものとする。 背景技術 This application is based on Japanese Patent Application No. 2002-355365, the contents of which are incorporated herein. Background art
これまで、 ガラス基板上に液晶ディスプレイ部分を形成する液晶表示素子 (L CD) の製造においては、 比較的安価であることや、 感度、 解像性及び形状に優 れたレジストパターンを形成できることから、 半導体素子の製造に用いられてい · るノポラック樹脂一キノンジアジド基含有化合物の系からなるポジ型ホトレジス ト材料が多く利用されている。 Until now, in the manufacture of liquid crystal display elements (LCDs) that form a liquid crystal display part on a glass substrate, they are relatively inexpensive and can form resist patterns with excellent sensitivity, resolution and shape. Positive photoresist materials comprising a nopolak resin-quinonediazide group-containing compound system used in the manufacture of semiconductor devices are often used.
しかし、 例えば、 半導体素子の製造においては、 最大、 直径 8インチ (約 20 0mm) 〜12インチ (約 300mm) の円盤型シリコンゥェ一ハが用いられて いるのに対し、 LCDの製造においては、 最小でも 36 OmmX 460mm程度 の角型のガラス基板が用いられている。 However, for example, in the manufacture of semiconductor devices, disc-shaped silicon wafers with a maximum diameter of 8 inches (about 200 mm) to 12 inches (about 300 mm) are used, whereas in the manufacture of LCDs, a minimum is used. However, a square glass substrate of about 36 OmmX 460 mm is used.
このように、 LCDの製造分野においては、 レジスト材料を塗布する基板は、 材質や形状の面で異なることは勿論であるが、 その大きさの点で、 半導体素子の 製造に用いられているものとは大きく異なっている。 As described above, in the field of manufacturing LCDs, the substrate on which the resist material is applied is, of course, different in terms of material and shape, but in terms of its size, the substrate used in the manufacture of semiconductor elements is used. Is very different.
そのため、 LCD製造用のレジスト材料には、 広い基板面全面に対して形状お よび寸法安定性等の特性が良好なレジストパターンを形成できることが求められ ている。 For this reason, resist materials for manufacturing LCDs are required to be able to form a resist pattern having excellent characteristics such as shape and dimensional stability over a wide substrate surface.
また、 LCDの製造には非常に多くのレジスト材料が消費されるため、 LCD 製造用のレジスト材料には、 上述のような特性に加え、 安価であることも望まれ
ている。 In addition, since a large amount of resist material is consumed in the production of LCDs, resist materials for LCD production are desired to be inexpensive in addition to the above-mentioned characteristics. ing.
これまで、 LCD製造用のレジスト材料として多くの報告がある (例えば、 下 記特許文献 1〜 6) 。 特許文献 1〜6に記載のレジスト材料は、 安価であり、 ま た、 例えば 36 OmmX 46 Omm程度の小型の基板に対しては、 塗布性、 感度、 解像性、 形状および寸法安定性に優れるレジストパターンを形成できる。 そのた め、 比較的小型の LCDを製造する目的においては好適に用いることができる。 There have been many reports as resist materials for LCD manufacturing (for example, Patent Documents 1 to 6 below). The resist materials described in Patent Literatures 1 to 6 are inexpensive and have excellent applicability, sensitivity, resolution, shape and dimensional stability for small substrates of, for example, about 36 Omm x 46 Omm. A resist pattern can be formed. Therefore, it can be suitably used for the purpose of manufacturing a relatively small LCD.
[特許文献 1 ] [Patent Document 1]
特開平 9一 160231号公報 JP-A-9-1160231
[特許文献 2 ] [Patent Document 2]
特開平 9一 211855号公報 Japanese Patent Application Laid-Open No. 9-1 211855
[特許文献 3 ] - 特開 2000— 112120号公報 [Patent Document 3]-JP-A-2000-112120
[特許文献 4] [Patent Document 4]
特開 2000— 131835号公報 JP 2000-131835
[特許文献 5] [Patent Document 5]
特開 2000— 181055号公報 JP 2000-181055 A
[特許文献 6 ] [Patent Document 6]
特開 2001 - 75272号公報 しかしながら、 近年、 パソコンのディスプレイの大型化や液晶テレビの普及等 に伴い、 従来よりも大型の LCDに対する需要が高まっている。 また、 低価格化 も求められていることなどから、 LCDの製造効率の向上が求められている。 そのため、 LCDの製造分野においては、 スループット (単位時間あたり処理 数量) 向上の観点から、 露光面積をできるだけ広く、 少なくとも 100mm2程 度とすることが望まれている。 また、 シリコンゥエーハに比べて凹凸の大きいガ ラス基板において、 広い露光範囲内におけるレジスト被膜の平面均一性を保つこ とは非常に困難であることから、 焦点深度 (DOF) を大きくとれることが望ま れている。 そのため、 一般に、 LCDの製造は、 NA (レンズの開口数) が例え
ば 0 . 3以下、 特には 0 . 2以下の低 N A条件の露光プロセスを用いることが好 ましいとされている。 However, in recent years, with the enlargement of personal computer displays and the spread of liquid crystal televisions, the demand for larger LCDs than before has been increasing. In addition, the demand for lower prices has led to a demand for improved LCD manufacturing efficiency. Therefore, in the field of LCD manufacturing, it is desired that the exposure area be as large as possible and at least about 100 mm 2 from the viewpoint of improving the throughput (the number of processes per unit time). In addition, it is extremely difficult to maintain the uniformity of the resist film over a wide exposure range on a glass substrate with large irregularities compared to a silicon wafer, so a large depth of focus (DOF) can be obtained. It is desired. For this reason, LCD manufacturing is generally described as NA (numerical aperture of lens). For example, it is preferable to use an exposure process under a low NA condition of 0.3 or less, particularly 0.2 or less.
しかしながら、 低 NA条件の露光プロセスを用いた場合、 従来の L C D製造用 のレジスト材料では、 例えば 0 . 3以下の低 NA条件下で、 形状に優れたレジス トパターンを高解像度で形成することが困難であった。 However, when using an exposure process under low NA conditions, conventional resist materials for LCD manufacturing can form resist patterns with excellent shapes at high resolution under low NA conditions of, for example, 0.3 or less. It was difficult.
すなわち、 一般に、 解像度 (解像限界) は、 次式で示されるレ一リの式: That is, in general, the resolution (resolution limit) is expressed by the following formula of the following equation:
[式中、 Rは解像限界、 はレジストやプロセス、 像形成法で決まる比例定数、 λは露光プロセスに用いる光の波長、 ΝΑはレンズの開口数を表す] [Where R is the resolution limit, is the proportionality constant determined by the resist, process, and image formation method, λ is the wavelength of light used in the exposure process, and ΝΑ is the numerical aperture of the lens]
で表される。 したがって、 波長 λの短い光源を用いることや、 高 Ν Αの露光プロ セスを用いることにより解像度を上げることができる。 例えば、 従来 L C Dの製 造に用いられていた g線 (4 3 6 nm) 露光に代えて、 より短波長の i線 (3 6 5 n m) 露光を用いたホトリソグラフィ技術を用いることにより解像度を上げる ことができる。 It is represented by Therefore, the resolution can be increased by using a light source having a short wavelength λ or by using a high-speed exposure process. For example, instead of the g-line (436 nm) exposure used in conventional LCD manufacturing, photolithography technology using shorter-wavelength i-line (365 nm) exposure is used to increase resolution. Can be raised.
しかしながら、 L C Dの製造においては、 上述のように、 露光面積が狭くなる、 また焦点深度が小さくなる高 N A化は好ましくなく、 低 N A条件での露光プロセ スを用いることが望まれていた。 したがって、 高い解像度を得ることは困難であ つた。 However, in the manufacture of LCD, as described above, it is not preferable to increase the NA, which results in a smaller exposure area and a smaller depth of focus, and it has been desired to use an exposure process under low NA conditions. Therefore, it was difficult to obtain high resolution.
また、 高解像度のレジストパターン、 つまり微細なレジストパターンが得られ たとしても、 パターン寸法が微細になればなる程、 焦点深度幅特性は著しく劣化 する傾向があるため、 微細なレジストパターンを焦点深度幅特性良く形成するこ とは困難であった。 In addition, even if a high-resolution resist pattern, that is, a fine resist pattern, is obtained, the finer the pattern dimension, the more the focus depth width characteristic tends to be significantly deteriorated. It was difficult to form with good width characteristics.
さらに、 現在、 次世代の L C Dとして、 1枚のガラス基板上に、 ドライバ、 D A C (デジタル一アナログコンバータ一) 、 画像プロセッサ、 ビデオコント口一 ラ、 R AMなどの集積回路部分がディスプレイ部分と同時に形成される、 いわゆ る 「システム L C D」 と呼ばれる高機能 L C Dに対する技術開発が盛んに行われ ている (Semiconductor FPD World 2001. 9, pp. 50-67) 。 Furthermore, as a next-generation LCD, integrated circuits such as drivers, DACs (digital-to-analog converters), image processors, video controllers, and RAMs are mounted on a single glass substrate at the same time as the display. Technology is being actively developed for the high-performance LCDs that are formed, so-called “system LCDs” (Semiconductor FPD World 2001. 9, pp. 50-67).
この場合、 基板上には、 ディスプレイ部分に加え、 集積回路部分も形成される
ため、 基板がさらに大型化する傾向がある。 よって、 通常の LCD製造の場合よ りもさらに低 N A条件での露光が望ましい。 In this case, the integrated circuit part is formed on the substrate in addition to the display part. Therefore, the substrate tends to be larger. Therefore, it is desirable to perform exposure under a lower NA condition than in normal LCD manufacturing.
さらに、 係るシステム LCDにおいては、 例えば、 ディスプレイ部分のパター ン寸法が 2〜10 m程度であるのに対し、 集積回路部分は 0. 5〜2. 0 m 程度と微細な寸法で形成されている。 そのため、 同一露光条件で、 このようにパ ターン寸法の異なるディスプレイ部分と集積回路部分とを同時に形成することが 好ましく、 リニアリティ [同一露光条件 (レチクル上のマスク寸法は異なるが露 光量が同じ条件) で露光した場合にレチクル上の異なるマスク寸法に対応したレ ジストパターンを精度良く再現する特性] が優れた、 従来の LCD製造用レジス ト材料よりも高解像度のレジスト材料が望まれる。 Further, in such a system LCD, for example, the pattern size of the display portion is about 2 to 10 m, whereas the integrated circuit portion is formed with a fine size of about 0.5 to 2.0 m. . Therefore, it is preferable to simultaneously form the display portion and the integrated circuit portion having different pattern dimensions under the same exposure condition, and to set the linearity [the same exposure condition (different mask size on the reticle but the same exposure light amount)]. A resist material that excels in the characteristics of accurately reproducing a resist pattern corresponding to different mask dimensions on a reticle when exposed at a higher resolution than conventional resist materials for LCD manufacturing is desired.
しかし、 上述のように、 従来の LCD製造用のレジスト材料は、 低 NA条件下 で、 高解像度で形成することが困難であるので、 システム LCDの製造用に用い ることは難しい。 例えば 0. 3以下の低 NA条件下では、 形状に優れた、 例えば 2. 0 m以下の微細なレジストパターンの形成が困難であり、 得られるレジス トパターンは矩形ではなくテーパー形状を呈する傾向にあり、 焦点深度幅特性も 劣っていた。 However, as described above, conventional resist materials for LCD manufacturing are difficult to form at high resolution under low NA conditions, and thus are difficult to use for manufacturing system LCDs. For example, under a low NA condition of 0.3 or less, it is difficult to form a fine resist pattern excellent in shape, for example, 2.0 m or less, and the obtained resist pattern tends to have a tapered shape instead of a rectangular shape. And the depth of focus characteristics were also inferior.
具体的には、 例えば前記特許文献 6 (特開 2001 - 75272号公報) には、 アル力リ可溶性樹脂と感光性成分を含み、 増感剤を含まない液晶用レジストが記 載されている。 Specifically, for example, Patent Literature 6 (Japanese Patent Application Laid-Open No. 2001-75272) describes a liquid crystal resist containing a soluble resin and a photosensitive component, but not containing a sensitizer.
しかしながら、 この液晶用レジストは、 i線露光に適さない、 システム LCD の製造に求められる 2. 0 以下のレジストパターンの形成は困難である、 リ ニァリティに欠ける、 などの問題を有していた。 However, this liquid crystal resist had problems such as being unsuitable for i-line exposure, difficulty in forming a resist pattern of 2.0 or less required for manufacturing system LCDs, and lacking linearity.
したがって、 システム LCDの製造プロセスには、 リニアリティが良好であり、 例えば 0. 3以下の低 NA条件下でも、 形状に優れた微細なレジストパターンを 形成可能なレジスト材料が望まれていた。 発明の開示 Therefore, there has been a demand for a resist material that has good linearity and that can form a fine resist pattern having an excellent shape even under a low NA condition of 0.3 or less, for example, in a system LCD manufacturing process. Disclosure of the invention
すなわち、 本発明は、 低 N A条件下でのリニアリティに優れ、 システム LCD
の、 ディスプレイ部分と、 それよりも微細な集積回路部分のレジストパターンと を同時に良好なパターン形状で得ることができる、 1つの基板上に集積回路と液 晶ディスプレイ部分が形成される LCDの製造用として好適なレジスト材料及び レジストパターンの形成方法を提供することを課題とする。 That is, the present invention has excellent linearity under low NA For the manufacture of LCDs, in which the integrated circuit and the liquid crystal display part are formed on one substrate, the display part and the finer resist pattern of the integrated circuit part can be simultaneously obtained in a good pattern shape. It is an object of the present invention to provide a resist material and a method for forming a resist pattern which are suitable as the above.
前記課題を解決するために、 本発明の LCD用ポジ型ホトレジスト組成物は、 (A) 3, 4一キシレノールを含有するフエノール類とアルデヒド類との縮合反 応により合成され得るアル力リ可溶性ノポラック樹脂を含有するアル力リ可溶性 樹脂成分、 (C) 分子量が 1000以下のフエノール性水酸基含有ィ匕合物、 In order to solve the above-mentioned problems, a positive photoresist composition for an LCD according to the present invention comprises (A) an alkali-soluble nopolak which can be synthesized by a condensation reaction of a phenol containing 3,4-xylenol with an aldehyde. (C) a phenolic hydroxyl group-containing conjugate having a molecular weight of 1000 or less,
(D) 有機溶剤、 (D) an organic solvent,
を含むことを特徴とする。 It is characterized by including.
この L CD用ポジ型ホトレジスト組成物は、 i線露光プロセス用 L CD用ポジ 型ホトレジスト組成物として、 好ましいものである。 This positive photoresist composition for LCD is preferable as a positive photoresist composition for LCD for an i-ray exposure process.
また、 NAが0. 3以下の露光プロセス用 LCD用ポジ型ホトレジスト組成物 として好適なものである。 Further, it is suitable as a positive photoresist composition for an LCD having an NA of 0.3 or less for an exposure process.
さらに、 1つの基板上に集積回路と液晶ディスプレイ部分が形成された L CD 製造用の L CD用ポジ型ホトレジスト組成物として好適なものである。 Further, it is suitable as a positive photoresist composition for LCD for producing LCD in which an integrated circuit and a liquid crystal display portion are formed on one substrate.
なお、 本発明の説明においてシステム LCDという場合には、 「1つの基板上 に集積回路と液晶ディスプレイ部分が形成された LCD」 を指すものとする。 また、 本発明のレジストパターンの形成方法は、 In the description of the present invention, the system LCD refers to “LCD in which an integrated circuit and a liquid crystal display portion are formed on one substrate”. Further, the method for forming a resist pattern of the present invention comprises:
(1) 前記本発明のポジ型ホトレジスト組成物を基板上に塗布し、 塗膜を形成す る工程、 (1) a step of applying the positive photoresist composition of the present invention on a substrate to form a coating film;
(2) 上記塗膜が形成された基板を加熱処理 (プリべーク) し、 基板上にレジス ト被膜を形成する工程、 (2) heat-treating (pre-baking) the substrate on which the coating film is formed to form a resist coating on the substrate;
(3) 上記レジスト被膜に対し、 2. 0 以下のレジストパターン形成用マス クパターンと、 2. 0 m超のレジストパターン形成用マスクパターンの双方が 描かれたマスクを用いて選択的露光を行う工程、
( 4) 上記選択的露光後のレジスト被膜に対し、 加熱処理 (ポストェクスポージ ヤーべーク) を施す工程、 (3) Selective exposure is performed on the above resist film using a mask on which both a mask pattern for forming a resist pattern of 2.0 or less and a mask pattern for forming a resist pattern of more than 2.0 m are drawn. Process, (4) subjecting the resist film after the selective exposure to a heat treatment (post-exposure bake);
( 5 ) 上記加熱処理後のレジスト被膜に対し、 アルカリ水溶液を用いた現像処理 を施し、 上記基板上に、 パターン寸法 2 . O ^ m以下の集積回路用のレジストパ ターンと、 2 . 0 m超の液晶ディスプレイ部分用のレジストパターンを同時に 形成する工程、 (5) The resist film after the heat treatment is subjected to a development treatment using an alkaline aqueous solution, and a resist pattern for an integrated circuit having a pattern size of 2.0 m or less is formed on the substrate. Simultaneously forming a resist pattern for the liquid crystal display part of
( 6 ) 上記レジストパターン表面に残った現像液を洗い落とすリンス工程、 を含むことを特徴とする。 ' 図面の簡単な説明 (6) a rinsing step of washing away the developer remaining on the surface of the resist pattern. '' Brief description of the drawings
図 1は、 低 N A条件下におけるリニアリティ評価のために、 ポジ型ホトレジス ト組成物をガラス基板に塗布し、 ベークし乾燥し、 パターン露光した後、 スリツ トコ一夕一を有する現像装置で現像液を基板端部 Xから Zにかけて液盛りする旨 の説明図である。 発明を実施するための最良の形態 Fig. 1 shows a positive photoresist composition applied to a glass substrate, baked, dried, and exposed to a pattern for evaluation of linearity under low NA conditions. FIG. 5 is an explanatory view showing that liquid is pooled from a substrate end portion X to a substrate end portion Z. BEST MODE FOR CARRYING OUT THE INVENTION
[L C D用ポジ型ホトレジスト組成物] [Positive photoresist composition for LCD]
< (A) 成分 > <(A) component>
(A) 成分は、 3, 4—キシレノールを含有するフエノール類とアルデヒド類 との縮合反応により合成され得るアルカリ可溶性ノポラック樹脂を含有するアル カリ可溶性樹脂成分である。 The component (A) is an alkali-soluble resin component containing an alkali-soluble nopolak resin which can be synthesized by a condensation reaction between a phenol containing 3,4-xylenol and an aldehyde.
前記フエノ一ル類において、 3 , 4—キシレノールを用いることにより、 低 N A条件での解像性の点で優れた、 L C D製造用のレジスト材料の調整に好適なノ ポラック樹脂を得ることができる。 By using 3,4-xylenol in the phenols, it is possible to obtain a nopolak resin which is excellent in resolution under low NA conditions and is suitable for preparing a resist material for LCD production. .
そして、 リニアリティに優れ、 システム L C D用のレジスト材料に好適なノポ ラック樹脂を得ることができる。 In addition, a nopolak resin having excellent linearity and suitable as a resist material for a system LCD can be obtained.
また、 耐熱性も良好である、 という効果が得られる。 ポジ型ホトレジスト組成 物において、 耐熱性が良好であると、 加熱処理工程後のレジストパターンの寸法
変化率が少ないため、 L C D用に適し、 さらにレジストパターンの矩形形状が集 積回路形成に良好であるため、 システム L C D用に適している。 In addition, the heat resistance is good. If the heat resistance of the positive photoresist composition is good, the dimensions of the resist pattern after the heat treatment step Suitable for LCD because of low change rate, and suitable for system LCD because the rectangular shape of the resist pattern is good for forming integrated circuits.
また、 レジストパターン形成後のスカムの発生も少ないという効果も得られる。 フエノール類中の 3, 4一キシレノールの割合は、 下限値は 5モル%以上、 好 ましくは 7モル%以上、 上限値は 4 0モル%以下、 好ましくは 3 0モル%以下、 さらに好ましくは 2 0モル%以下とされる。 下限値以上とすることにより、 良好 な効果が得られる。 なお、 フエノール類中の 3, 4一キシレノールの含有量は 1 0 0モル%であってもよいが、 3, 4—キシレノールの配合量が多いと感度が低 下するおそれがあるため、 上記の上限値以下であることが好ましい。 Further, an effect that scum after the formation of the resist pattern is small is also obtained. The lower limit of the proportion of 3,4-xylenol in the phenols is at least 5 mol%, preferably at least 7 mol%, and the upper limit is at most 40 mol%, preferably at most 30 mol%, more preferably 20 mol% or less. By setting the lower limit or more, a good effect can be obtained. The content of 3,4-xylenol in the phenols may be 100 mol%, but if the amount of 3,4-xylenol is too large, the sensitivity may decrease. It is preferable that it is not more than the upper limit.
前記フエノール類において、 3, 4—キシレノールの他に用いうるものとして は、 一般にポジ型ホトレジスト組成物用のノポラック樹脂の材料として用いられ るものから任意に 1種または 2種以上を選択して用いることができる。 例えば m 一クレゾ一ル、 ρ—クレゾ一ル、 3 , 4—キシレノール以外のキシレノール、 ト リメチルフエノール等のフエノール類が挙げられが、 中でも m—クレゾールが感 度向上の点で好ましい。 In the above-mentioned phenols, one or more arbitrarily selected from those generally used as a nopolak resin material for a positive photoresist composition may be used in addition to 3,4-xylenol. be able to. Examples thereof include phenols such as m-cresol, ρ-cresol, xylenol other than 3,4-xylenol, and trimethylphenol, and among them, m-cresol is preferable in terms of improving sensitivity.
L C D用ポジ型ホ卜レジスト組成物においては、 製造効率向上、 スループット 等の点から、 例えば 5 O m J程度の高感度ィヒが好ましいとされており、 m—クレ ゾールを併用するとこの条件を満足するものが得られやすい。 In the case of a positive photoresist composition for LCD, a high sensitivity of, for example, about 5 OmJ is considered preferable from the viewpoints of improvement in production efficiency, throughput, and the like. Satisfying things are easily obtained.
また、 3 , 4—キシレノールと 3, 4一キシレノール以外のフエノール類とを 組み合わせたときには、 3, 4—キシレノールの含有量を 5〜 3 0モル%、 好ま しくは 7〜2 0モル%とすると、 3, 4—キシレノールの効果を維持しつつ、 3 , 4—キシレノール以外のフエノール類によって付加される効果をも発揮させるこ とができ、 好ましい。 When 3,4-xylenol is combined with phenols other than 3,4-xylenol, the content of 3,4-xylenol is 5 to 30 mol%, preferably 7 to 20 mol%. It is preferable because the effect of phenols other than 3,4-xylenol can be exerted while maintaining the effect of 3,4-xylenol.
下限値以上とすることにより、 低 N A条件下における解像性やリニァリティの 点で有効である。 また、 耐熱性も向上し、 スカムの発生抑制の点でも好ましい。 上限値以下とすることにより、 感度の点で好ましい。 Setting the lower limit or more is effective in terms of resolution and linearity under low NA conditions. Further, heat resistance is also improved, which is preferable in terms of suppressing scum. It is preferable from the viewpoint of sensitivity that the content is not more than the upper limit.
例えば上述の様に 3, 4一キシレノールと、 m—クレゾールと、 後述する様に 必要に応じて他のフエノール類を組み合わせる場合に、 3 , 4—キシレノールの
含有量を上記割合とすることにより、 低 N A条件下において、 高解像性、 高耐熱 性で、 かつ高感度で、 スカムの発生も抑制できるという特性を備えたものを提供 できる。 またリニアリティに優れたものを提供できる。 For example, as described above, when combining 3,4-xylenol, m-cresol, and other phenols as necessary as described below, By adjusting the content to the above ratio, it is possible to provide a material having high resolution, high heat resistance, high sensitivity, and the ability to suppress generation of scum under low NA conditions. In addition, a product excellent in linearity can be provided.
また、 このとき、 フエノール類中の m—クレゾールの割合は、 9 5〜4 0モ ル%、 好ましくは 9 3〜 6 0モル%であることが、 感度の点で好ましい。 4 0モ ル%以上とすることにより感度が向上し、 9 5モル%以下とすることにより、 3, 4一キシレノールの配合量も確保できるので、 解像性、 リニアリティー等の点で 好ましい。 At this time, the proportion of m-cresol in the phenols is preferably 95 to 40 mol%, and more preferably 93 to 60 mol%, from the viewpoint of sensitivity. Sensitivity is improved by setting the content to 40 mol% or more, and the content of 3,4-xylenol can be ensured by setting the content to 95 mol% or less, which is preferable in terms of resolution, linearity, and the like.
また、 上述の様に、 必要に応じて、 3 , 4—キシレノール、 m—クレゾール以 外のその他のフエノ一ル類も用いることができるが、 その他のフエノール類は、 特に 3, 4一キシレノールと m—クレゾ一ルとともに用いる場合、 フエノール類 中、 0〜3 0モル% (すなわちその他のフエノール類を用いるか否かは任意であ る。 ) 、 好ましくは 5〜2 0モル%であることが、 解像性、 リニアリティ特性、 感度の点で好ましい。 Further, as described above, other phenols other than 3,4-xylenol and m-cresol can be used as necessary, but other phenols are, in particular, 3,4-xylenol. When used together with m-cresol, it may be 0 to 30 mol% in the phenols (that is, whether or not other phenols are used is optional), and preferably 5 to 20 mol%. It is preferable in terms of resolution, linearity characteristics, and sensitivity.
アルデヒド類としては、 一般にポジ型ホトレジスト組成物用のノポラック樹脂 の合成に用いられるものであれば、 特に制限なく 1種または 2種以上任意に選択 して用いることができる。 例えばァセトアルデヒド、 プロピオンアルデヒド、 サ リチルアルデヒド、 ホルムアルデヒド、 ホルムアルデヒド前駆体、 2—ヒドロキ シベンズアルデヒド、 3—ヒドロキシベンズアルデヒド、 4ーヒドロキシベンズ アルデヒド等が挙げられるが、 製造上の利便性の点からプロピオンアルデヒド、 ホルムアルデヒドが好ましく、 特にこれらを両方組み合わせたものが好ましい。 プロピオンアルデヒドを用いる場合、 アルデヒド類の 5モル%以上、 好ましく は 1 5モル%以上用いると、 解像性が良好で、 矩形形状のレジストパターンが得 られる傾向にある点から好ましい。 As the aldehyde, one or more arbitrarily selected ones can be used without particular limitation as long as they are generally used for synthesizing a nopolak resin for a positive photoresist composition. For example, there are acetoaldehyde, propionaldehyde, salicylaldehyde, formaldehyde, formaldehyde precursor, 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, and the like. And formaldehyde are preferred, and those in which both are combined are particularly preferred. In the case of using propionaldehyde, it is preferable to use 5% by mole or more, preferably 15% by mole or more of aldehydes, since resolution is good and a rectangular resist pattern tends to be obtained.
ホルムアルデヒドを用いる場合、 アルデヒド類の 5 0モル%以上、 好ましくは 6 0モル%以上用いると感度の点から好ましい。 ロピオンアルデヒド:ホルムアルデヒドのモル比が 1 0 : 9 0〜 3 0 : 7 0、 好
ましくは 25 : 75であると好ましい。 この範囲内にすることにより、 高感度、 高解像度、 高耐熱という効果が得られる。 When formaldehyde is used, it is preferable to use 50 mol% or more, preferably 60 mol% or more of aldehydes from the viewpoint of sensitivity. The molar ratio of ropionaldehyde: formaldehyde is 10:90 to 30:70, Preferably it is 25:75. Within this range, the effects of high sensitivity, high resolution, and high heat resistance can be obtained.
ここで、 本発明において必須の当該アル力リ可溶性ノポラック樹脂の特に好ま しい態様を整理すると以下の様になる。 Here, a particularly preferred embodiment of the soluble nopolak resin essential in the present invention is summarized as follows.
すなわち、 3, 4—キシレノールと m—クレゾールを含有するフエノール類を 用いて合成され得るアルカリ可溶性ノポラック樹脂を含むと好ましい。 That is, it is preferable to include an alkali-soluble nopolak resin that can be synthesized using a phenol containing 3,4-xylenol and m-cresol.
また、 3, 4_キシレノール 5〜30モル%、 m—クレゾール 95〜40モ ル%、 その他のフエノ一ル類 0〜30モル% (その他のフエノール類は任意であ る) を含有するフエノ一ル類を用いて合成され得るアル力リ可溶性ノポラック樹 脂を含むと好ましい。 A phenol containing 3,4_xylenol 5 to 30 mol%, m-cresol 95 to 40 mol%, and other phenols 0 to 30 mol% (other phenols are optional). It is preferable to include a soluble nopolak resin which can be synthesized by using a compound.
また、 上記アルデヒド類として、 プロピオンアルデヒドとホルムアルデヒドの 一方または両方 (好ましくは両方) を含有するアルデヒド類を用いて合成され得 るアル力リ可溶性ノボラック樹脂を含むと好ましい。 It is preferable that the aldehydes include an alcohol-soluble novolak resin that can be synthesized using an aldehyde containing one or both (preferably both) of propionaldehyde and formaldehyde.
したがって、 最も好ましいものは、 3, 4—キシレノールと m—クレゾールを 含有するフエノール類と、 プロピオンアルデヒド及びホルムアルデヒドを含有す るアルデヒド類を用いて合成され得るアルカリ可溶性ノポラック樹脂である。 そして、 このとき、 フエノール類中、 3, 4—キシレノール 5〜30モル%、 m—クレゾ一ル 95〜40モル%、 その他のフエノール類 0〜 30モル%という 条件を満足するとさらに好ましい。 Therefore, most preferred are alkali-soluble nopolak resins that can be synthesized using phenols containing 3,4-xylenol and m-cresol, and aldehydes containing propionaldehyde and formaldehyde. At this time, it is more preferable to satisfy the conditions of 5 to 30 mol% of 3,4-xylenol, 95 to 40 mol% of m-cresol, and 0 to 30 mol% of other phenols in the phenol.
当該アルカリ可溶性ノポラック樹脂は、 常法にしたがって、 例えばフエノール 類とアルデヒド類とを酸触媒存在下に縮合反応させることによつて合成すること ができる。 The alkali-soluble nopolak resin can be synthesized according to a conventional method, for example, by subjecting a phenol and an aldehyde to a condensation reaction in the presence of an acid catalyst.
なお、 フエノール類とアルデヒド類のモル比は、 例えば 1 : 0. 5〜1 : 0. 95、 好ましくは 1 : 0. 6〜1 : 0. 9とされる。 The molar ratio of the phenols to the aldehydes is, for example, 1: 0.5 to 1: 0.95, preferably 1: 0.6 to 1: 0.9.
当該アルカリ可溶性ノポラック樹脂の質量平均分子量 (Mw) は、 塗布性、 耐 熱性の点から GPC (ゲルパーミネーシヨンクロマトグラフィ) によるポリスチ レン換算で、 3000〜 30000、 好ましくは 4000〜 20000とされる。 なお、 当該アルカリ可溶性ノポラック樹脂は、 1種また 2種以上組み合わせて
用いることができる。 The mass-average molecular weight (Mw) of the alkali-soluble nopolak resin is 3000 to 30,000, preferably 4000 to 20000 in terms of polystyrene by GPC (gel permeation chromatography) from the viewpoint of coating properties and heat resistance. The alkali-soluble nopolak resin may be used alone or in combination of two or more. Can be used.
また、 本発明において、 (A) 成分には、 必須のアルカリ可溶性ノポラック樹 脂の他に、 他のアル力リ可溶性樹脂を配合することもできる。 In the present invention, the component (A) may contain, in addition to the essential alkali-soluble nopolak resin, other alcohol-soluble resins.
他のアルカリ可溶性樹脂の配合量は、 (A) 成分中、 例えば 5 0質量%以下、 好ましくは 3 0質量%以下とされる (下限値は特に限定しないが 0質量%であつ てもよい) 。 この範囲内であれば、 上記必須のアルカリ可溶性ノポラック樹脂の 効果を阻害するおそれがなく、 好ましい。 The compounding amount of the other alkali-soluble resin in the component (A) is, for example, 50% by mass or less, preferably 30% by mass or less (the lower limit is not particularly limited, but may be 0% by mass). . Within this range, the effect of the essential alkali-soluble nopolak resin is not likely to be impaired, which is preferable.
必須のアル力リ可溶性ノボラック樹脂の他に、 配合可能なアル力リ可溶性樹脂 は、 一般にポジ型ホトレジス卜組成物に用いられるアル力リ可溶性樹脂であれば 特に制限なく用いることができる。 例えばヒロドキシスチレンの単独重合体や、 ヒドロキシスチレンと他のスチレン単量体との共重 体、 ヒロドキシスチレンと アクリル酸またはメタクリル酸ぁるいはその誘導体との共重合体などのヒドロキ シスチレン系樹脂;アクリル酸またはメタクリル酸とその誘導体との共重合体で あるァクリル酸またはメタクリル酸系樹脂などが挙げられる。 In addition to the essential alcohol-soluble novolak resin, any other alcohol-soluble resin that can be blended can be used without particular limitation as long as it is generally used in a positive photoresist composition. For example, hydroxystyrene such as a homopolymer of hydroxystyrene, a copolymer of hydroxystyrene and another styrene monomer, and a copolymer of hydroxystyrene and acrylic acid or methacrylic acid or a derivative thereof. Acrylic acid or methacrylic acid resin which is a copolymer of acrylic acid or methacrylic acid and a derivative thereof.
< (B ) 成分 > <(B) component>
(B) 成分はナフトキノンジアジドエステル化物である。 The component (B) is a naphthoquinonediazide esterified product.
(B ) 成分は、 一般にポジ型ホトレジスト組成物において、 感光性成分として 用いられているものであれば特に制限なく、 1種または 2種以上任意に選択して 用いることができる。 The component (B) is not particularly limited as long as it is generally used as a photosensitive component in a positive photoresist composition, and one or more components can be arbitrarily selected and used.
その中でも特に下記一般式 (I ) Among them, the following general formula (I)
〔式中、 R R 8はそれぞれ独立に水素原子、 ハロゲン原子、 炭素原子数 1〜6 のアルキル基、 炭素原子数 1〜6のアルコキシ基、 または炭素原子数 3〜 6のシ クロアルキル基を表し; R1Q、 R 11はそれぞれ独立に水素原子または炭素原子数 1〜6のアルキル基を表し; R 9が水素原子または炭素数 1〜6のアルキル基の 場合は、 Q1は水素原子、 炭素数 1〜6のアルキル基または下記化学式 (I I) で表される残基 Wherein RR 8 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms. R 1Q and R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; when R 9 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, Q 1 represents a hydrogen atom or a carbon atom; An alkyl group of the formulas 1 to 6 or a residue represented by the following chemical formula (II)
(式中、 R12および R13はそれぞれ独立に水素原子、 ハロゲン原子、 炭素原子数 1〜6のアルキル基、 炭素原子数 1〜6のアルコキシ基、 または炭素原子数 3〜 6のシクロアルキル基を表し; cは 1~3の整数を示す) であり、 Q1が R9の末 端と結合する場合は、 Q1は R9および、 Q1と R9との間の炭素原子とともに、 炭 素鎖 3〜 6のシクロアルキル基を表し; a、 bは 1〜3の整数を表し; dは 0〜 3の整数を表し; nは 0〜 3の整数を表す〕 (Wherein R 12 and R 13 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms. the expressed; c a is an integer of 1 to 3), if Q 1 is bonded with the end end of R 9 is, Q 1 is R 9 and, together with the carbon atoms between Q 1, R 9, A, b represents an integer of 1 to 3; d represents an integer of 0 to 3; n represents an integer of 0 to 3]
で表されるフエノール化合物と、 ナフトキノンジアジドスルホン酸化合物とのェ ステル化物が、 i線を用いたホトリソグラフィに適し、 また低 N A条件下の 2. 0 m以下の微細なレジストパターンを形状良く形成しょうとする場合に好適で ある。 すなわち、 高解像度の点で好ましく、 リニアリティの点でも好ましい。 なお、 Q1と R9および、 Q1と R9との間の炭素原子とともに、 炭素鎖 3〜6の シクロアルキル基を形成する場合には、 Q1と R9は結合して、 炭素数 2〜5のァ ルキレン基を形成している。 The esterified product of a phenolic compound and a naphthoquinonediazidosulfonic acid compound represented by the formula is suitable for photolithography using i-line and forms a fine resist pattern of 2.0 m or less under low NA conditions with good shape It is suitable for trying. That is, it is preferable in terms of high resolution and also in terms of linearity. When Q 1 and R 9 and the carbon atom between Q 1 and R 9 form a cycloalkyl group having a carbon chain of 3 to 6, Q 1 and R 9 combine to form a carbon atom It forms 2 to 5 alkylene groups.
当該一般式に該当するフエノール化合物としては、 トリス (4—ヒドロシキフ ェニル) メタン、 ビス (4ーヒドロキシー 3—メチルフエニル) —2—ヒドロキ シフエニルメタン、 ビス (4—ヒドロキシー 2, 3, 5一トリメチルフエニル)
— 2—ヒドロキシフエニルメタン、 ビス (4ーヒドロキシ一 3, 5—ジメチルフ ェニル) 一4ーヒドロキシフエニルメタン、 ビス (4—ヒドロキシー 3, 5—ジ メチルフエニル) 一 3—ヒドロキシフエニルメタン、 ビス (4—ヒドロキシ一 3, 5—ジメチルフエニル) 一 2—ヒドロキシフエニルメタン、 ビス (4—ヒドロキ シー 2, 5—ジメチルフエニル) —4—ヒドロキシフエニルメタン、 ビス (4— ヒドロキシー 2, 5ージメチルフエニル) 一 3—ヒドロキシフエニルメタン、 ビ ス (4—ヒドロキシ一 2, 5—ジメチルフエニル) 一2—ヒドロキシフエニルメ タン、 ビス (4ーヒドロキシ— 3, 5—ジメチルフエニル) 一3, 4—ジヒドロ キシフエニルメタン、 ビス (4—ヒドロキシー 2, 5—ジメチルフエニル) -3, 4ージヒドロキシフエニルメタン、 ビス (4ーヒドロキシー 2, 5ージメチルフ ェニル) _2, 4—ジヒドロキシフエニルメタン、 ビス (4—ヒドロキシフエ二 ル) 一 3—メトキシ一 4ーヒドロキシフエニルメタン、 ビス (5—シクロへキシ ル—4ーヒドロキシ一 2—メチルフエニル) 一 4—ヒドロキシフエニルメタン、 ビス (5—シクロへキシルー 4ーヒドロキシー 2—メチルフエニル) 一 3—ヒド ロキシフエニルメタン、 ビス (5—シクロへキシル一4—ヒドロキシー 2—メチ ルフエニル) 一 2—ヒドロキシフエニルメタン、 ビス (5—シクロへキシル—4 ーヒドロキシー 2—メチルフエニル) -3, 4ージヒドロキシフエニルメタンな どのトリスフエノ一ル型化合物; The phenolic compounds corresponding to the general formula include tris (4-hydroxyphenyl) methane, bis (4-hydroxy-3-methylphenyl) -2-hydroxyphenylmethane, and bis (4-hydroxy-2,3,5-trimethylphenyl). — 2-Hydroxyphenylmethane, bis (4-hydroxy-1,3,5-dimethylphenyl) 1,4-hydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -1,3-hydroxyphenylmethane, bis ( 4-Hydroxy-1,3,5-dimethylphenyl-1-hydroxyphenylmethane, bis (4-hydroxy 2,5-dimethylphenyl) -4-hydroxyphenylmethane, bis (4-hydroxy-2,5) 1-hydroxyphenylmethane, bis (4-hydroxy-1,2,5-dimethylphenyl) 1,2-hydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) 1,3,4-dihydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -3,4-dihydroxyphenylmethane, bis ( 4-Hydroxy-2,5-dimethylphenyl) _2,4-dihydroxyphenylmethane, bis (4-hydroxyphenyl) -1,3-methoxy-1-4-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-1 2-Methylphenyl) 1-4-Hydroxyphenylmethane, Bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) 1-3-Hydroxyphenylmethane, Bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) Trisphenol-type compounds such as i-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -3,4-dihydroxyphenylmethane;
2;· 4—ビス (3, 5—ジメチルー 4ーヒドロキシベンジル) _ 5—ヒドロキ シフエノール、 2, 6—ビス (2, 5—ジメチルー 4ーヒドロキシベンジル) 一 4ーメチルフエノール等のリニア型 3核体フェノール化合物; 2; · 4-bis (3,5-dimethyl-4-hydroxybenzyl) _5-hydroxyphenol, 2,6-bis (2,5-dimethyl-4-hydroxybenzyl) linear trinuclear such as 1,4-methylphenol Body phenolic compounds;
1, 1一ビス 〔3— (2—ヒドロキシ一 5—メチルベンジル) —4ーヒドロキ シ— 5—シクロへキシルフェニル〕 イソプロパン、 ビス [2, 5—ジメチル一 3 一 (4ーヒドロキシー 5 _メチルベンジル) 一 4ーヒドロキシフエニル] メタン、 ビス [2, 5—ジメチルー 3— (4—ヒドロキシベンジル) 一 4ーヒドロキシフ ェニル] メタン、 ビス [3— (3, 5—ジメチルー 4—ヒドロキシベンジル) - 4—ヒドロキシ一 5—メチルフエニル] メタン、 ビス [3— (3, 5—ジメチル 一 4ーヒドロキシベンジル) 一 4ーヒドロキシー 5 _ェチルフエニル] メタン、
ビス [3— (3, 5—ジェチル一 4ーヒドロキシベンジル) 一 4ーヒドロキシー 5—メチルフエニル] メタン、 ビス [3— (3, 5—ジェチル— 4—ヒドロキシ ベンジル) 一4—ヒドロキシ— 5—ェチルフエニル] メタン、 ビス [2—ヒドロ キシ— 3— (3, 5—ジメチル— 4—ヒドロキシベンジル) 一 5—メチルフエ二 ル] メタン、 ビス [2—ヒドロキシ一 3— (2—ヒドロキシ一 5—メチルベンジ ル) 一5—メチルフエニル] メタン、 ビス [4ーヒドロキシー 3— (2—ヒドロ キシ— 5—メチルベンジル) —5—メチルフエニル] メタン、 ビス [2, 5—ジ メチルー 3— (2—ヒドロキシー5—メチルベンジル) 一 4—ヒドロキシフエ二 ル] メタン等のリニア型 4核体フエノール化合物; 1,1-bis [3- (2-hydroxy-1-5-methylbenzyl) -4-hydroxy-5-cyclohexylphenyl] isopropane, bis [2,5-dimethyl-1-31 (4-hydroxy-5-methylbenzyl) ) 1-4-Hydroxyphenyl] methane, bis [2,5-dimethyl-3- (4-hydroxybenzyl) 1-4-hydroxyphenyl] methane, bis [3- (3,5-dimethyl-4-hydroxybenzyl) -4- Hydroxy-5-methylphenyl] methane, bis [3- (3,5-dimethyl-14-hydroxybenzyl) -1-hydroxy-5-ethylphenyl] methane, Bis [3- (3,5-Jetyl-1-hydroxybenzyl) 1-4-Hydroxy-5-methylphenyl] methane, Bis [3- (3,5-Getyl-4-hydroxybenzyl) 1-4-Hydroxy-5-ethylphenyl] Methane, bis [2-hydroxy-3- (3,5-dimethyl-4-hydroxybenzyl) -15-methylphenyl] methane, bis [2-hydroxy-13- (2-hydroxy-15-methylbenzyl) 1-Methylphenyl] methane, bis [4-hydroxy-3- (2-hydroxy-5-methylbenzyl) —5-methylphenyl] methane, bis [2,5-dimethyl-3- (2-hydroxy-5-methylbenzyl) Linear 4-nucleated phenolic compounds such as [1-4-hydroxyphenyl] methane;
2, 4—ビス [2—ヒドロキシ一 3— (4—ヒドロキシベンジル) 一 5—メチ ルベンジル] 一 6ーシクロへキシルフエノ一ル、 2, 4—ビス [4—ヒドロキシ - 3 - (4ーヒドロキシベンジル) 一 5—メチルベンジル] —6—シクロへキシ ルフエノール、 2, 6—ビス [2, 5一ジメチルー 3— (2—ヒドロキシ— 5— メチルベンジル) 一 4—ヒドロキシベンジル] —4一メチルフエノール等のリニ ァ型 5核体フエノール化合物等のリ二ァ型ポリフエノール化合物; 2,4-bis [2-hydroxy-1- (4-hydroxybenzyl) -1-methylbenzyl] -16-cyclohexylphenol, 2,4-bis [4-hydroxy-3- (4-hydroxybenzyl) 1,5-methylbenzyl] -6-cyclohexylphenol, 2,6-bis [2,5-dimethyl-3- (2-hydroxy-5-methylbenzyl) 1-4-hydroxybenzyl] -4-methylphenol Linear polyphenol compounds such as linear pentanuclear phenol compounds;
ビス (2, 3, 4一トリヒドロキシフエニル) メタン、 ビス (2, 4一ジヒド ロキシフエニル) メタン、 2, 3, 4一トリヒドロキシフエ二ルー 4'ーヒドロ キシフエニルメタン、 2― (2, 3, 4—トリヒドロキシフエニル) 一 2 - (2 ', 3', 4'—トリヒドロキシフエニル) プロパン、 2— (2, 4ージヒドロキ シフエニル) 一2— (2', 4'ージヒドロキシフエニル) プロパン、 2— (4- ヒドロキシフエニル) 一 2— (4'—ヒドロキシフエニル) プロパン、 2— (3 一フルオロー 4—ヒドロキシフエニル) 一 2— (3'—フルオロー 4'ーヒドロキ シフエ二ル) プロパン、 2— (2, 4—ジヒドロキシフエニル) 一 2— (4'— ヒドロキシフエニル) プロパン、 2— (2, 3, 4—トリヒドロキシフエニル) —2— (4'—ヒドロキシフエニル) プロパン、 2— (2, 3, 4—トリヒドロ キシフエニル) - 2 - (4,ーヒドロキシ一 3', 5'ージメチルフエニル) プロ パンなどのビスフエノール型化合物; Bis (2,3,4-trihydroxyphenyl) methane, Bis (2,4-dihydroxyphenyl) methane, 2,3,4-Trihydroxyphenyl 4'-hydroxyphenylmethane, 2- (2, 3, 4-trihydroxyphenyl) 1- (2 ', 3', 4'-trihydroxyphenyl) propane, 2- (2, 4-dihydroxyphenyl) 1-2- (2 ', 4' dihydroxyphenyl) Enyl) propane, 2- (4-hydroxyphenyl) -1- (4'-hydroxyphenyl) propane, 2- (3-fluoro-4-hydroxyphenyl) 1-2- (3'-fluoro-4'-hydroxyphenyl Nil) propane, 2- (2,4-dihydroxyphenyl) 1 2- (4'-hydroxyphenyl) propane, 2- (2,3,4-trihydroxyphenyl) —2— (4'— Hydroxyphenyl) propane, 2- (2,3,4-trihydroxyphenyl) - 2 - (4,-hydroxy one 3 ', 5' over-dimethyl-phenylalanine) bisphenol type compounds such as propane;
1一 [1— (4—ヒドロキシフエニル) イソプロピル] —4一 [1, 1—ビス
(4ーヒドロキシフエニル) ェチル] ベンゼン、 1一 [1— (3—メチルー 4一 ヒドロキシフエニル) イソプロピル] —4— [1, 1一ビス (3—メチルー 4一 ヒドロキシフエニル) ェチル] ベンゼン、 などの多核枝分かれ型化合物; 1- [1— (4-Hydroxyphenyl) isopropyl] —4-1- [1,1-bis (4-Hydroxyphenyl) ethyl] benzene, 1- [1- (3-methyl-4-hydroxyphenyl) isopropyl] —4- [1,1-bis (3-methyl-4-hydroxyphenyl) ethyl] benzene Polynuclear branched compounds such as and
1, 1一ビス (4—ヒドロキシフエニル) シクロへキサンなどの縮合型フエノ ール化合物などが挙げられる。 Examples include condensed phenol compounds such as 1,1-bis (4-hydroxyphenyl) cyclohexane.
これらは 1種または 2種以上組み合わせて用いることができる。 These can be used alone or in combination of two or more.
中でもビス (5—シクロへキシル一4—ヒドロキシ— 2—メチルフエニル) ― 3, 4—ジヒドロキシフエニルメタン [以下 (B 1 ' ) と略記する。 ] 、 ビス (2, 4ージヒドロキシフエニル) メタン [以下 (B2' ) と略記する。 ] 、 ビ ス (4ーヒドロキシー 2, 3, 5—トリメチルフエニル) 一 2—ヒドロキシフエ ニルメタン [以下、 (B3' ) と略記する。 ] の 3種類のうち、 1種またはそれ 以上 (好ましくはこれら 3種) のフエノール化合物のナフトキノンジアジドエス テル化物を含有するホトレジスト組成物は、 高感度、 高解像性、 形状の良好なレ ジストパターンを形成できる点で好ましい。 Among them, bis (5-cyclohexyl-1-hydroxy-2-methylphenyl) —3,4-dihydroxyphenylmethane [hereinafter abbreviated as (B 1 ′)]. ], Bis (2,4-dihydroxyphenyl) methane [hereinafter abbreviated as (B2 ')]. ], Bis (4-hydroxy-2,3,5-trimethylphenyl) -12-hydroxyphenylmethane [hereinafter abbreviated as (B3 ')]. Among these three types, a photoresist composition containing one or more (preferably these three types) naphthoquinonediazide ester of a phenol compound is a resist having high sensitivity, high resolution, and good shape. This is preferable in that a pattern can be formed.
なお、 以下、 前記 (B 1' ) 、 (B2' ) 、 (B 3 ' ) のそれぞれのナフトキ ノンジアジドエステル化物を、 (B l) 、 (B2) 、 (B 3) と略記する。 Hereinafter, the naphthoquinonediazide esterified compounds of (B1 ′), (B2 ′) and (B3 ′) are abbreviated as (Bl), (B2) and (B3).
(B 1) 、 (B2) 、 または (B3) を用いる場合、 (B) 成分中の配合量は、 それぞれ 10質量%以上、 さらに 15質量%以上であると好ましい。 When (B1), (B2) or (B3) is used, the amount of the component (B) is preferably at least 10% by mass, more preferably at least 15% by mass.
また、 (B l) 、 (B2) 、 (B 3) を全て用いる場合は効果の点から、 それ ぞれの配合量は (B 1) が 50〜90質量%、 好ましくは 60〜80質量%、 (B 2) の配合量が 5〜20質量%、 好ましくは 10〜15質量%、 (B 3) の 配合量が 5〜20質量%、 好ましくは 10〜15質量%とされる。 When all of (Bl), (B2) and (B3) are used, from the viewpoint of the effect, the compounding amount of (B1) is 50 to 90% by mass, preferably 60 to 80% by mass. The amount of (B2) is 5 to 20% by mass, preferably 10 to 15% by mass, and the amount of (B3) is 5 to 20% by mass, preferably 10 to 15% by mass.
上記一般式 (I) で表される化合物のフエノール性水酸基の全部または一部を
テル化する方法は、 常法により行うことが できる。 All or part of the phenolic hydroxyl group of the compound represented by the above general formula (I) The tellurization can be carried out by a conventional method.
例えば、 ナフトキノンジアジドスルホニルクロライドを上記一般式 (I) で表 される化合物と縮合させることにより得ることができる。 For example, it can be obtained by condensing naphthoquinonediazidosulfonyl chloride with the compound represented by the above general formula (I).
具体的には、 例えば上記一般式 (I) で表される化合物と、 ナフトキノン一 1,
2—ジアジドー 4 (または 5 ) —スルホニルクロライドとを、 ジォキサン、 n— メチルピロリドン、 ジメチルァセトアミド、 テトラヒドロフラン等の有機溶媒に 所定量溶解し、 ここにトリヱチルァミン、 トリエタノールァミン、 ピリジン、 炭 酸アルカリ、 炭酸水素アルカリ等の塩基性触媒を 1種以上を加えて反応させ、 得 られた生成物を水洗、 乾燥して調製することができる。 Specifically, for example, a compound represented by the above general formula (I) and naphthoquinone-1-1, A predetermined amount of 2-diazido 4 (or 5) -sulfonyl chloride is dissolved in an organic solvent such as dioxane, n-methylpyrrolidone, dimethylacetamide, and tetrahydrofuran, and tritylamine, triethanolamine, pyridine, and carbonic acid are dissolved therein. One or more basic catalysts such as alkali and alkali bicarbonate can be added and reacted, and the resulting product can be prepared by washing with water and drying.
(B ) 成分としては、 上述の様に、 これら例示した好ましいナフトキノンジァ ジドエステル化物の他に、 他のナフトキノンジアジドエステル化物も用いること ができる。 例えばポリヒドロキシべンゾフエノンゃ没食子酸アルキル等のフエノ ール化合物とナフトキノンジアジドスルホン酸化合物とのエステル化反応生成物 なども用いられ得る。 As the component (B), as described above, other naphthoquinone diazide esterified compounds may be used in addition to the preferred exemplified naphthoquinone diazide esterified compounds. For example, an esterification reaction product of a phenolic compound such as polyhydroxybenzophenone-alkyl gallate and a naphthoquinonediazidosulfonic acid compound may be used.
これら他のナフトキノンジアジドエステル化物の使用量は (B) 成分中、 8 0 質量%以下、 特には 5 0質量%以下であることが、 本発明の効果の向上の点から 好ましい。 The use amount of these other naphthoquinonediazide esterified compounds is preferably 80% by mass or less, particularly 50% by mass or less in the component (B), from the viewpoint of improving the effects of the present invention.
ホトレジスト組成物中の (B) 成分の配合量は、 (A) 成分と下記 (C) 成分 との合計量に対し 2 0〜7 0質量%、 好ましくは 2 5〜6 0質量%とされる。 The amount of the component (B) in the photoresist composition is 20 to 70% by mass, preferably 25 to 60% by mass, based on the total amount of the component (A) and the following component (C). .
(B ) 成分の配合量を上記下限値以上とすることにより、 パターンに忠実な画 像が得られ、 転写性が向上する。 上記上限値以下とすることにより、 感度の劣化 を防ぐことができ、 形成されるレジスト膜の均質性が向上し、 解像性が向上する という効果が得られる。 By setting the amount of the component (B) to be not less than the above lower limit, an image faithful to the pattern can be obtained, and transferability is improved. When the content is not more than the above upper limit, the sensitivity can be prevented from deteriorating, the uniformity of the formed resist film can be improved, and the resolution can be improved.
< (C) 成分 > <(C) component>
(C) 成分は、 フエノール性水酸基含有化合物である。 この (C) 成分を用い ることにより、 感度向上効果に優れ、 低 NA条件での i線露光プロセスにおいて も、 高感度、 高解像度であり、 L C Dの製造に適した材料、 さらに好ましくはリ ニァリティに優れたシステム L C Dに適した材料が得られる。 The component (C) is a phenolic hydroxyl group-containing compound. By using this component (C), a material that is excellent in sensitivity improvement effect, has high sensitivity and high resolution even in the i-line exposure process under low NA conditions, and is suitable for LCD manufacturing, more preferably linearity Excellent system The material suitable for LCD can be obtained.
(C) 成分の分子量は 1 0 0 0以下、 好ましくは 7 0 0以下、 実質的には 2 0 0以上、 好ましくは 3 0 0以上であることが、 上記効果の点から好ましい。 The molecular weight of the component (C) is preferably 100 or less, preferably 700 or less, substantially 200 or more, and preferably 300 or more, from the viewpoint of the above effects.
( C) 成分としては、 一般にホトレジスト組成物に用いられるフエノール性水
酸基含有化合物であって、 好ましくは上記分子量の条件を満足するものであれば、 特に制限はなく、 1種または 2種以上を任意に選択して用いることができる。 そ して、 中でも、 下記一般式 (I I I) As the component (C), phenolic water generally used in a photoresist composition is used. The acid group-containing compound is not particularly limited as long as it satisfies the above-mentioned molecular weight condition, and one or more kinds can be arbitrarily selected and used. In particular, the following general formula (III)
〔式中、 RU~R 18はそれぞれ独立に水素原子、 ハロゲン原子、 炭素原子数 1〜 6のアルキル基、 炭素原子数 1〜6のアルコキシ基、 または炭素原子数 3〜6の シクロアルキル基を表し; R2Q、 R21はそれぞれ独立に水素原子または炭素原子 数 1〜6のアルキル基を表し; R 19が水素原子または炭素数 1〜 6のアルキル基 の場合は、 Q2は水素原子、 炭素数 1〜6のアルキル基または下記化学式 (I V) で表される残基 (In the formula, RU to R 18 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms. R 2Q and R 21 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; when R 19 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, Q 2 represents a hydrogen atom; An alkyl group having 1 to 6 carbon atoms or a residue represented by the following chemical formula (IV)
(式中、 R22および R23はそれぞれ独立に水素原子、 ハロゲン原子、 炭素原子数 1〜6のアルキル基、 炭素原子数 1〜6のアルコキシ基、 または炭素原子数 3〜 6のシクロアルキル基を表し; gは 1〜3の整数を示す) であり、 Q2が R19の 末端と結合する場合は、 Q2は R19および、 Q2と R19との間の炭素原子とともに、 炭素鎖 3〜6のシクロアルキル基を表し; e、 fは 1〜3の整数を表し; hは 0
〜 3の整数を表し; nは 0〜 3の整数を表す〕 (In the formula, R 22 and R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms. the expressed; g a is an integer of 1 to 3), if Q 2 is bonded with the terminal of R 19 is, Q 2 is R 19, and, together with the carbon atoms between Q 2 and R 19, carbon Chain represents a cycloalkyl group of 3 to 6; e, f represents an integer of 1 to 3; h represents 0 Represents an integer of 3 to 3; n represents an integer of 0 to 3]
で表されるフエノール化合物が、 上記の特性を良く示し、 好ましい。 The phenol compound represented by the following is preferable because it shows the above characteristics well.
具体的には、 例えば上記 (B ) 成分において例示した、 フエノール化合物のナ フトキノンジアジドエステル化物において用いられる、 フエノール化合物を好適 に用いることができ、 中でも 1一 [ 1一 (4一ヒロドキシフエニル) イソプロピ ル] - 4 - [ 1 , 1 _ビス ( 4ーヒドロキシフエニル) ェチル] ベンゼンが好ま しい。 Specifically, for example, the phenol compound used in the naphthoquinonediazide esterified product of the phenol compound exemplified in the above-mentioned component (B) can be preferably used. ) Isopropyl]-4-[1,1 _bis (4-hydroxyphenyl) ethyl] benzene is preferred.
(C ) 成分の配合量は、 効果の点から、 (A) 成分に対し 1 0〜7 0質量%、 好ましくは 2 0〜6 0質量%の範囲とされる。 く (D) 成分〉 The amount of the component (C) is in the range of 10 to 70% by mass, preferably 20 to 60% by mass, based on the component (A) from the viewpoint of the effect. (D) ingredient>
(D) 成分は、 ホトレジスト組成物に用いられる一般的なものであれば特に制 限なく 1種または 2種以上を選択して用いることができるが、 プロピレングリコ —ルモノアルキルエーテルァセテ一ト、 及び Zまたは 2—ヘプ夕ノンを含有する ものが、 塗布性に優れ、 大型ガラス基板上でのレジスト被膜の膜厚均一性に優れ ている点で好ましい。 As the component (D), one or more kinds can be selected and used without particular limitation as long as they are general ones used in a photoresist composition, and propylene glycol monoalkyl ether acetate, And those containing Z or 2-heptanone are preferred because they have excellent coatability and excellent uniformity of the thickness of a resist film on a large glass substrate.
なお、 プロピレンダリコールモノアルキルエーテルァセテ一トと 2一ヘプタノ ンの両方を用いることもできるが、 それぞれ単独で、 あるいは他の有機溶剤と混 合して用いた方がスピンコート法などを利用した塗布時の膜厚均一性の点で好ま しい場合が多い。 It is to be noted that both propylene daricol monoalkyl ether acetate and 21-heptane can be used, but the spin coat method or the like, when used alone or in combination with another organic solvent, is used. In many cases, it is preferable in terms of the uniformity of the film thickness at the time of coating.
プロピレングリコ一ルモノアルキルエーテルァセテ一トは、 (D) 成分中、 5 0〜1 0 0質量%含有することが好ましい。 The propylene glycol monoalkyl ether acetate preferably contains 50 to 100% by mass of the component (D).
プロピレンダリコールモノアルキルェ一テルアセテートは、 例えば炭素数 1〜 3の直鎖または分岐鎖状のアルキル基を有するものであり、 中でも、 プロピレン グリコールモノメチルエーテルアセテート (以下、 P GME Aと略記することが ある) が、 大型ガラス基板上でのレジスト被膜の膜厚均一性に非常に優れるため、 特に好ましい。 Propylene dalycol monoalkyl ether acetate has, for example, a linear or branched alkyl group having 1 to 3 carbon atoms. Among them, propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMEA) Is particularly preferable because the film thickness of the resist film on the large glass substrate is very excellent.
一方、 2—ヘプ夕ノンは、 特に限定するものではないが、 上述の様に (B) ナ
フトキノンジアジ エステル化物として、 非べンゾフエノン系の感光性成分と組 み合わせたときに好適な溶媒である。 On the other hand, 2-hepno-non is not particularly limited, but as described above, (B) It is a suitable solvent when combined with a non-benzophenone-based photosensitive component as a futoquinone diester.
2—ヘプ夕ノンは、 P GME Aに比べると耐熱性に優れ、 スカム発生が低減化 されたレジスト組成物を与えるという特性を有し、 非常に好ましい溶剤である。 また、 これらの好ましい溶媒に、 他の溶媒を混合して用いることもできる。 例えば乳酸メチル、 乳酸ェチルなど (好ましくは乳酸ェチル) の乳酸アルキル を配合すると、 レジスト被膜の膜厚均一性に優れ、 形状に優れたレジストパター ンを形成することができて好ましい。 2-Heptane-non is a very preferable solvent because it has excellent heat resistance as compared with PGMEA and has the property of giving a resist composition with reduced scum generation. Further, other solvents can be mixed with these preferable solvents. For example, when an alkyl lactate such as methyl lactate or ethyl lactate (preferably ethyl lactate) is blended, a resist pattern having excellent uniformity in the thickness of the resist film and excellent shape can be formed.
プロピレングリコール乇ノアルキルエーテルァセテ一トと乳酸アルキルとを混 合して用いる場合は、 プロピレングリコ一ルモノアルキルエーテルアセテートに 対して質量比で 0 . 1〜1 0倍量、 好ましくは 1〜 5倍量の乳酸アルキルを配合 することが望ましい。 When a mixture of propylene glycol monoalkyl ether acetate and alkyl lactate is used, the mass ratio is 0.1 to 10 times, preferably 1 to 5 times the mass ratio of propylene glycol monoalkyl ether acetate to propylene glycol monoalkyl ether acetate. It is desirable to mix twice the amount of alkyl lactate.
また、 ァ—プチロラクトンやプロピレングリコールモノブチルエーテルなどの 有機溶剤も用いることができる。 Organic solvents such as carboxylactone and propylene glycol monobutyl ether can also be used.
ァープチロラクトンを用いる場合には、 プロピレングリコールモノアルキルェ 一テルアセテートに対して質量比で 0 . 0 1〜1倍量、 好ましくは 0 . 0 5〜0 . 5倍量の範囲で配合することが望ましい。 When arptyrolactone is used, it is added in an amount of 0.01 to 1 times by mass, preferably 0.05 to 0.5 times by mass with respect to propylene glycol monoalkyl ether acetate. It is desirable to do.
なお、 その他に配合可能な有機溶剤としては、 具体的には、 例えば以下のもの が挙げられる。 Specific examples of other organic solvents that can be blended include the following.
すなわち、 アセトン、 メチルェチルケトン、 シクロへキサノン、 メチルイソァ ミルケトン等のケトン類;エチレングリコール、 プロピレングリコール、 ジェチ レングリコール、 エチレングリコールモノアセテート、 プロピレングリコ一ルモ ノアセテート、 ジエチレングリコールモノアセテート、 あるいはこれらのモノメ チルエーテル、 モノェチルエーテル、 モノプロピルエーテル、 モノブチルエーテ ルまたはモノフエニルエーテル等の多価アルコール類およびその誘導体;ジォキ サンのような環式エーテル類;および酢酸メチル、 酢酸ェチル、 酢酸プチル、 ピ ルビン酸メチル、 ピルビン酸ェチル、 メトキシプロピオン酸メチル、 エトキシプ ロピオン酸ェチル等のエステル類などである。
これらの溶剤を用いる場合、 (D) 成分中、 50質量%以下であることが望ま しい。 That is, ketones such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isoamyl ketone; ethylene glycol, propylene glycol, ethylene glycol, ethylene glycol monoacetate, propylene glycol monoacetate, diethylene glycol monoacetate, and monomers thereof. Polyhydric alcohols such as tyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether and derivatives thereof; cyclic ethers such as dioxane; and methyl acetate, ethyl acetate, butyl acetate, Esters such as methyl ruvinate, ethyl pyruvate, methyl methoxypropionate, and ethyl ethoxypropionate. When such a solvent is used, it is desirable that the content is not more than 50% by mass in the component (D).
本発明のポジ型ホトレジスト組成物には、 本発明の目的を損なわない範囲で、 必要に応じて相容性のある添加物、 例えばレジスト膜の性能などを改良するため の付加的樹脂、 可塑剤、 保存安定剤、 界面活性剤、 現像した像をより一層可視的 にするための着色料、 より増感効果を向上させるための増感剤ゃハレーション防 止用染料、 密着性向上剤、 などの慣用の添加物を含有させることができる。 The positive photoresist composition of the present invention contains compatible additives as necessary, for example, an additional resin and a plasticizer for improving the performance of the resist film, as long as the object of the present invention is not impaired. , Storage stabilizers, surfactants, coloring agents to make the developed image more visible, sensitizers to further improve the sensitizing effect, dyes for preventing halation, adhesion improvers, etc. Conventional additives can be included.
ハレーション防止用染料としては、 紫外線吸収剤 (例えば 2, 2' , 4, 4' ーテトラヒドロキシベンゾフエノン、 4ージメチルアミノー 2 ' , 4, 一ジヒド ロキシベンゾフエノン、 5—アミノー 3—メチルー 1一フエニル一 4一 (4ーヒ ドロキシフエニルァゾ) ピラゾール、 4ージメチルアミノー 4' ーヒドロキシァ ゾベンゼン、 4ージェチルアミノー 4' ーェトキシァゾベンゼン、 4一ジェチル アミノアゾベンゼン、 クルクミン等) 等を用いることができる。 Antihalation dyes include ultraviolet absorbers (eg, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dimethylamino-2', 4,1-dihydroxybenzophenone, 5-amino-3- Methyl-11-phenyl-1-41- (4-hydroxyphenylazo) pyrazole, 4-dimethylamino-4'-hydroxyazobenzene, 4-methylethyl-4'-ethoxyazobenzene, 4-ethylethylaminoazobenzene, curcumin Etc.) can be used.
界面活性剤は、 例えばストリエーション防止等のために添加することができ、 例えばフロラード FC— 430、 FC431 (商品名、 住友 3M (株) 製) 、 ェ フトップ EF 122A、 EF 122B、 EF 122C、 EF 126 (商品名、 ト ーケムプロダクツ (株) 製) 等のフッ素系界面活性剤、 R— 08 (商品名、 大日 本ィンキ化学工業株式会社製) などを用いることができる。 The surfactant can be added, for example, to prevent striation. For example, Florad FC-430, FC431 (trade name, manufactured by Sumitomo 3M Co., Ltd.), EFTOP EF 122A, EF 122B, EF 122C, EF 126 (trade name, manufactured by Tochem Products Co., Ltd.) and R-08 (trade name, manufactured by INHIKIN INK CHEMICAL INDUSTRIES, LTD.).
本発明のポジ型ホトレジスト組成物は、 好ましくは、 (A) 成分、 (B) 成分、 (C) 成分及び必要に応じてその他の成分を、 (D) 有機溶剤に溶解することに より調製することができる。 The positive photoresist composition of the present invention is preferably prepared by dissolving the component (A), the component (B), the component (C) and, if necessary, other components in the organic solvent (D). be able to.
なお、 (D) 成分の使用量は、 好ましくは (A) 〜 (C) 成分及び必要に応じ て用いられるその他の成分を溶解し、 均一なポジ型ホトレジスト組成物が得られ る様に適宜調整し得る。 好ましくは固形分濃度 [ (A) 〜 (C) 成分及び必要に 応じて用いられるその他の成分] が 10〜 50質量%、 さらに好ましくは 20〜 35質量%となる様に用いられる。 The amount of the component (D) is preferably adjusted appropriately so as to dissolve the components (A) to (C) and other components used as necessary, and to obtain a uniform positive photoresist composition. I can do it. Preferably, the solid content [components (A) to (C) and other components used as needed] is 10 to 50% by mass, more preferably 20 to 35% by mass.
[レジストパターンの形成方法]
以下に、 L C Dの製造におけるレジストパターンの好適な形成方法の一例を示 す。 [Method of forming resist pattern] An example of a preferred method for forming a resist pattern in the manufacture of an LCD will be described below.
まず、 上述の本発明のポジ型ホトレジスト組成物を、 スピンナ一等で基板に塗 布して塗膜を形成する。 基板としてはガラス基板が好ましい。 ガラス基板として は、 通常アモルファスシリカが用いられるが、 システム L C Dの分野においては、 低温ポリシリコン等が好ましいとされる。 このガラス基板としては、 本発明の組 成物は低 N A条件下での解像性に優れるため、 5 0 O mmx 6 0 O mm以上、 特 には 5 5 O mmX 6 5 0 mm以上の大型の基板を用いることができる。 First, the above-mentioned positive photoresist composition of the present invention is applied to a substrate using a spinner or the like to form a coating film. A glass substrate is preferred as the substrate. Amorphous silica is usually used as the glass substrate, but low temperature polysilicon or the like is preferable in the field of system LCD. As the glass substrate, since the composition of the present invention has excellent resolution under low NA conditions, it is large in size of 50 O mm x 60 O mm or more, especially 55 O mm X 65 O mm or more. Substrate can be used.
ついで、 この塗膜が形成されたガラス基板を例えば 1 0 0〜 1 4 0 °Cで加熱処 理 (プリべ一ク) して残存溶媒を除去し、 レジスト被膜を形成する。 プリべーク 方法としては、 ホットプレートと基板の間に隙間を持たせるプロキシミティーべ —クを行うことが好ましい。 Next, the glass substrate on which the coating film is formed is subjected to a heat treatment (prebaking) at, for example, 100 to 140 ° C. to remove the residual solvent, thereby forming a resist coating film. As a prebaking method, it is preferable to perform proximity baking in which a gap is provided between the hot plate and the substrate.
さらに、 上記レジスト被膜に対し、 マスクパターンが描かれたマスクを用いて 選択的露光を行う。 Further, the resist film is selectively exposed using a mask on which a mask pattern is drawn.
光源としては、 微細なパターンを形成するために i線 (3 6 5 nm) を用いる ことが好ましい。 また、 この露光で採用する露光プロセスは、 NAが0 . 3以下、 好ましくは 0 . 2以下、 より好ましくは 0 . 1 5以下の低 N A条件の露光プロセ スであることが好ましい。 このレジストパターンの形成方法において、 システム L C Dを製造する場合には、 当該選択的露光を行う工程において、 上記マスクと して、 2 . 0 m以下のレジストパターン形成用マスクパターンと、 2 . 0 超のレジストパターン形成用マスクパターンの双方が描かれたマスクを用いるこ とが好ましい。 As a light source, it is preferable to use i-line (365 nm) in order to form a fine pattern. The exposure process employed in this exposure is preferably a low NA exposure process having an NA of 0.3 or less, preferably 0.2 or less, and more preferably 0.15 or less. In the method of forming a resist pattern, when a system LCD is manufactured, in the step of performing the selective exposure, a mask pattern for forming a resist pattern of 2.0 m or less, It is preferable to use a mask on which both the resist pattern forming mask patterns are drawn.
次いで、 選択的露光後のレジスト被膜に対し、 加熱処理 (ポストェクスポ一ジ ヤーべーク: P E B) を施す。 P E B方法としては、 ホットプレートと基板の間 に隙間を持たせるプロキシミティ一ベーク、 隙間を持たせないダイレクトべ一ク が挙げられる。 そして、 基板の反りを生じさせることをなく、 P E Bによる拡散 効果を得るために、 プロキシミティべ一クを行った後、 ダイレクトベークを行う 方法が好ましい。 なお、 加熱温度は 9 0〜: L 4 0 °C、 特には 1 1 0〜 1 3 0 が
好ましい。 Next, the resist film after the selective exposure is subjected to a heat treatment (post-exposure bake: PEB). As the PEB method, there are a proximity bake where a gap is provided between the hot plate and the substrate, and a direct bake where no gap is provided. Then, in order to obtain a diffusion effect by PEB without causing the substrate to be warped, a method of performing direct baking after performing proximity baking is preferable. The heating temperature is 90 ~: L 40 ° C, especially 110 ~ 130 preferable.
上記 P E B後のレジスト被膜に対し、 現像液、 例えば 1〜1 0質量%テトラメ チルアンモニゥムヒドロキシド (TMAH) 水溶液のようなアルカリ水溶液を用 いた現像処理を施すと、 露光部分が溶解除去されて、 レジストパターンが形成さ れる。 上記 2 . 0 以下のレジストパターン形成用マスクパターンと、 2 . 0 m超のレジストパターン形成用マスクパターンの双方が描かれたマスクを用い た場合は、 基板上に集積回路用のレジストパターンと液晶ディスプレイ部分用の レジストパターンが同時に形成される。 When the resist film after PEB is subjected to a developing treatment using a developing solution, for example, an alkaline aqueous solution such as a 1 to 10% by mass aqueous solution of tetramethylammonium hydroxide (TMAH), the exposed portions are dissolved and removed. Thus, a resist pattern is formed. When a mask on which both the resist pattern forming mask pattern of 2.0 or less and the resist pattern forming mask pattern of more than 2.0 m are drawn is used, the resist pattern for the integrated circuit and the liquid crystal are formed on the substrate. A resist pattern for the display portion is simultaneously formed.
さらに、 レジストパターン表面に残った現像液を純水などのリンス液で洗い落 とすことによりレジストパターンを形成できる。 Further, the resist pattern can be formed by washing the developing solution remaining on the resist pattern surface with a rinse solution such as pure water.
そして、 本発明 L C D用ポジ型ホトレジスト組成物は、 リニアリティに優れて いるので、 マスクパターンのラフなパターンと微細なパターンの両方を忠実に再 現したレジストパターンが得られる。 よって、 上記双方が描かれたマスクを用い てレジストパターンを同時に形成する工程を行うと、 上記基板上に、 パターン寸 法 2 . 0 m以下の集積回路用のレジストパターンと、 2 . 0 m超の液晶ディ スプレイ部分用のレジストパターンを同時に形成することができる。 Since the positive photoresist composition for LCD of the present invention has excellent linearity, a resist pattern that faithfully reproduces both rough and fine mask patterns can be obtained. Therefore, when a step of simultaneously forming a resist pattern using a mask on which both are drawn is performed, a resist pattern for an integrated circuit having a pattern size of 2.0 m or less and a resist pattern of more than 2.0 m are formed on the substrate. The resist pattern for the liquid crystal display portion can be formed at the same time.
以上説明したように、 本発明のポジ型ホトレジスト組成物は、 低 N A条件下で の露光プロセスに適している。 また、 i線露光プロセスにも適している。 そのた め、 L C Dの製造において、 少なくともディスプレイ部分のレジストパターンを、 高い解像度で得ることができる。 As described above, the positive photoresist composition of the present invention is suitable for an exposure process under low NA conditions. It is also suitable for i-line exposure processes. Therefore, in the manufacture of LCD, a resist pattern of at least a display portion can be obtained with high resolution.
さらに、 本発明のポジ型ホトレジスト組成物は、 低 N A条件下でのリニアリテ ィにも優れているので、 1つの基板上に、 ラフなパターンと微細なパターンとを 同一露光条件で形成できる。 したがって、 低 N A条件下でも、 システム L C Dの ディスプレイ部分と、 それよりも微細な集積回路部分のレジストパターンも、 同 時に高解像度で得ることができ、 システム L C Dの製造用として好適である。 また、 (A) 成分において、 3, 4ーキシレノールを含むアル力リ可溶性ノポ ラック樹脂を用いることにより、 耐熱性が良好となり、 またアルカリ現像後の残 膜性が向上するため、 L C D用に適し、 さらに解像性が良好であるため、 システ
ム LCD用に適している。 Further, since the positive photoresist composition of the present invention is excellent in linearity under low NA conditions, a rough pattern and a fine pattern can be formed on one substrate under the same exposure conditions. Therefore, even under a low NA condition, a resist pattern for a display portion of a system LCD and a finer integrated circuit portion can be obtained at a high resolution at the same time, which is suitable for manufacturing a system LCD. In addition, by using an alcohol-soluble nopolak resin containing 3,4-xylenol as the component (A), heat resistance is improved, and the residual film property after alkali development is improved. Furthermore, since the resolution is good, the system Suitable for LCD.
さらに、 好ましくは必須のアル力リ可溶性ノボラック樹脂におけるフエノール 類の組み合わせ等により、 高感度も実現できる。 Furthermore, high sensitivity can also be realized by a combination of phenols in the essential alcohol-soluble novolak resin.
また、 スカムの発生も少ないという効果も有する。 It also has the effect of reducing scum generation.
なお、 LCD用ポジ型ホトレジスト組成物においては、 焦点深度 (DOF) の 幅がある程度大きいことが、 製造効率、 製造条件の制御の容易性等の点から、 必 要とされるが、 本発明の LCD用ポジ型ホトレジスト組成物は、 LCD用として 実用可能な焦点深度の幅 (例えば 15 / m以上) を実現することができる。 In addition, in the positive photoresist composition for LCD, it is necessary that the width of the depth of focus (DOF) is large to some extent from the viewpoint of production efficiency, easy control of production conditions, and the like. The positive photoresist composition for LCD can realize a range of depth of focus (for example, 15 / m or more) that can be practically used for LCD.
なお、 良好なリニアリティは、 高解像度特性と等価ではなく、 ポジ型レジスト 組成物においては、 解像度が良好であっても、 リニアリティが不良である場合も める。 Note that good linearity is not equivalent to high resolution characteristics, and a positive resist composition may have poor linearity even if resolution is good.
これに対し、 本発明の LCD用ポジ型ホトレジスト組成物は、 低 N A条件下で の高解像度が得られる (広い面積を露光した場合でも均一で良好な解像性が得ら れる) とともに、 リニアリティも良好なものであり、 一般的な LCD用ポジ型ホ トレジスト組成物としても好ましく用いることができるとともに、 特にシステム LCD用として、 好適なものである。 In contrast, the positive photoresist composition for LCDs of the present invention can provide high resolution under low NA conditions (a uniform and good resolution can be obtained even when a large area is exposed) and a linearity. It is also preferable, and can be preferably used as a general positive photoresist composition for LCDs, and is particularly suitable for system LCDs.
また、 低 N A条件下における解像度に優れた上記ポジ型ホトレジスト組成物を 用いる本発明のレジストパターンの形成方法によれば、 L CD製造におけるスル ープットが向上する。 Further, according to the method for forming a resist pattern of the present invention using the above positive photoresist composition having excellent resolution under low NA conditions, throughput in the production of LCD is improved.
さらに、 本発明のレジストパターンの形成方法によれば、 LCDの製造に適し た低 N A条件の露光プロセスにおいても、 高解像度のレジストパターンを形成す ることができる。 特に、 基板上に、 例えばパターン寸法 2. 0 m以下の集積回 路用のレジス卜パターンと、 例えば 2. 0 m超の液晶ディスプレイ部分用のレ ジストパターンを同時に形成することができるので、 システム LCDの製造に好 適に用いることができる。 実施例 Further, according to the method for forming a resist pattern of the present invention, a high-resolution resist pattern can be formed even in an exposure process under a low NA condition suitable for LCD production. In particular, a resist pattern for an integrated circuit with a pattern size of 2.0 m or less, for example, and a resist pattern for a liquid crystal display portion with a pattern size of more than 2.0 m, for example, can be simultaneously formed on a substrate. It can be used favorably in the manufacture of LCDs. Example
次に実施例を示して本発明をさらに詳細に説明するが、 本発明は以下の実施例
に限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to this.
[ポジ型ホトレジスト組成物の評価方法] [Method for evaluating positive photoresist composition]
下記の実施例または比較例のポジ型ホトレジスト組成物について下記の諸物性 The following physical properties of the positive photoresist compositions of the following Examples or Comparative Examples
(1) 〜 (5) の評価方法を以下に示す。 The evaluation methods (1) to (5) are described below.
(1) リニアリティ評価: (1) Linearity evaluation:
ポジ型ホトレジスト組成物を大型基板用レジスト塗布装置 (装置名: TR 3 6 0 0 0 東京応化工業 (株) 製) を用いて T i膜が形成されたガラス基板 (5 5 OmmX 6 5 Omm) 上に塗布したのち、 ホットプレートの温度を 1 00°Cとし、 約 lmmの間隔をあけたプロキシミティべークにより 90秒間の第 1回目の乾燥 を行い、 次いでホットプレートの温度を 90°Cとし、 0. 5mmの間隔をあけた プロキシミティべークにより 90秒間の第 2回目の乾燥を施し、 膜厚 1. 5 τη のレジスト被膜を形成した。 Glass substrate (55 OmmX 65 Omm) on which a Ti film is formed using a positive photoresist composition by a resist coating device for large substrates (apparatus name: TR3600 manufactured by Tokyo Ohka Kogyo Co., Ltd.) After application on top, the temperature of the hot plate is set to 100 ° C, the first drying is performed for 90 seconds by a proximity bake with an interval of about lmm, and then the temperature of the hot plate is set to 90 ° C The second drying was performed for 90 seconds by a proximity bake with an interval of 0.5 mm to form a resist film having a thickness of 1.5 τη.
次いで 3. 0 mラインアンドスペース (L&S) および 1. 5 L&Sの レジストパターンを再現するためのマスクパターンが同時に描かれたテストチヤ ートマスク (レチクル) を介して、 i線露光装置 (装置名: FX— 7 02 J、 二 コン社製; NA=0. 14) を用いて、 3. 0 tmL&Sを忠実に再現すること のできる露光量 (Eop露光量) にて選択的露光を行った。 Then, through a test chart mask (reticle) on which a mask pattern for reproducing the 3.0 m line-and-space (L & S) and 1.5 L & S resist patterns was drawn simultaneously, an i-line exposure device (device name: FX- Selective exposure was carried out using an exposure dose (Eop exposure dose) that can faithfully reproduce 3.0 tmL & S, using 7002J, manufactured by Nicon Corporation; NA = 0.14).
次いで、 ホットプレートの温度を 1 20°Cとし、 0. 5mmの間隔をあけて、 プロキシミティべ一クにより、 3 0秒間の加熱処理を施し、 次いで同じ温度で間 隔をあけないダイレクトベークにより 60秒間の加熱処理を施した。 Next, the temperature of the hot plate is set to 120 ° C, a heat treatment is performed for 30 seconds by a proximity bake at intervals of 0.5 mm, and then a direct bake is performed at the same temperature without any space. Heat treatment was performed for 60 seconds.
次いで、 2 3°C、 2. 38質量%TMAH水溶液をスリットコ一夕ノズルを有 する現像装置 (装置名: TD— 3 9 00 0デモ機、 東京応化工業 (株) 製) を用 いて、 図 1に示したように基板端部 Xから Yを経て Zにかけて、 1 0秒間を掛け て基板上に液盛りし、 5 5秒間保持した後、 30秒間水洗し、 スピン乾燥した。 その後、 得られたレジストパターンの断面形状を SEM (走査型電子顕微鏡) 写真にて観察し、 1. 5 mL&Sのレジストパターンの再現性を評価した。 Next, a 23.degree. C., 2.38 mass% TMAH aqueous solution was developed using a developing device (device name: TD-3900, demonstration machine, manufactured by Tokyo Ohka Kogyo Co., Ltd.) having a slit nozzle. As shown in 1, from the substrate end portion X to Y through Z, it took 10 seconds to pour the liquid on the substrate, held for 55 seconds, washed with water for 30 seconds, and spin-dried. Then, the cross-sectional shape of the obtained resist pattern was observed by SEM (scanning electron microscope) photograph, and the reproducibility of the 1.5 mL & S resist pattern was evaluated.
(2) 感度評価: (2) Sensitivity evaluation:
感度評価の指標として、 上記 Eo p露光量を用いた。
(3) 解像性評価: The above Eop exposure amount was used as an index for sensitivity evaluation. (3) Evaluation of resolution:
上記 E o p露光量における限界解像度を求めた。 The limiting resolution at the above E op exposure was determined.
(4) DOF特性評価: (4) DOF characteristics evaluation:
上記 Eo p露光量において、 焦点を適宜上下にずらし、 1. 5 mL&Sが土 10%の寸法変化率の範囲内で得られた焦点深度 (DOF) の幅を/ zm単位で求 めた。 In the above Eop exposure amount, the focus was shifted up and down as appropriate, and the width of the depth of focus (DOF) obtained in 1.5 mL & S within the range of the dimensional change rate of 10% of the soil was obtained in units of / zm.
(5) スカム評価: (5) Scum rating:
上記 Eo p露光量において、 1. 5 mL&Sが描かれた基板表面を SEMに て観察し、 スカムの有無を調べた。 At the above Eop exposure amount, the substrate surface on which 1.5 mL & S was drawn was observed with an SEM to check for scum.
(6) 耐熱性評価: (6) Heat resistance evaluation:
上記 Eo p露光量において、 1. 5 mL&Sが描かれた基板を、 140 に 設定されたホットプレート上に 300秒間静置し、 次に 200°Cに設定されたォ ーブン中に 30分間静置した。 その結果、 1. 5 mL&Sの寸法変化率が 10 0%超〜105%以下であったものを◎、 105%超〜110%以下であったも のを〇、 110%超のものを Xとして表した。 At the above Eop exposure amount, the substrate on which 1.5 mL & S is drawn is left on a hot plate set at 140 for 300 seconds, and then left in an oven set at 200 ° C for 30 minutes. did. As a result, ◎ indicates that the dimensional change rate of 1.5 mL & S was more than 100% to 105% or less, 105 indicates that the dimensional change rate was more than 105% to 110% or less, and X indicates that the rate of change was more than 110%. expressed.
(実施例 1) (Example 1)
(A) 〜 (D) 成分として以下のものを用意した。 The following components were prepared as components (A) to (D).
(A) アルカリ可溶性ノポラック樹脂 100質量部 (A) 100 parts by mass of alkali-soluble nopolak resin
A1 : [m—クレゾ一ル Z3, 4一キシレノール =9Z1 (モル比) の混合フ ェノール 1モルと、 プロピオンアルデヒド Zホルムアルデヒド = 1/3 (モル 比) の混合アルデヒド 0. 86モルを用いて常法により合成した、 Mw=475 0、 Mw/Mn (分散度) =2. 44のノポラック樹脂] (B) ナフトキノンジアジドエステ 匕物 40質量咅 β A1: [M-cresol Z3,4-xylenol = 9Z1 (molar ratio) 1 mole of mixed phenol and propionaldehyde Z formaldehyde = 0.83 mole of mixed aldehyde of 1/3 (molar ratio) Nopolak resin of Mw = 4750, Mw / Mn (dispersion degree) = 2.44, synthesized by a method] (B) Naphthoquinonediazide ester 40 mass 咅 β
B 1/B2/B3を、 6Z1Z1 (質量比) で混合したナフトキノンジアジド エステル化物 Naphthoquinonediazide esterified compound of B1 / B2 / B3 mixed with 6Z1Z1 (mass ratio)
Β 1 : Β 1 ' 1モルと、 1, 2—ナフトキノンジアジド— 5—スルホン酸ク
口ライド (以下「5— NQD」という) 2モルとのエステル化反応生成物 Β1: モ ル 1'1 mole and 1,2-naphthoquinonediazide-5-sulfonic acid Mouth ride (hereinafter referred to as “5-NQD”) Esterification reaction product with 2 moles
B 2 : B 2' 1モルと、 5—NQD 4モルとのエステル化反応生成物 B 3 : B 3' 1モルと、 5— NQD 2モルとのエステル化反応生成物 (C) フエノール性水酸基含有化合物 25質量部 B 2: Esterification reaction product of 1 mol of B 2 ′ and 4 mol of 5-NQD B 3: Esterification reaction product of 1 mol of B 3 ′ and 2 mol of 5—NQD (C) phenolic hydroxyl group Compound 25 parts by mass
C 1 : 1一 [1一 (4一ヒロドキシフエニル) イソプロピル] —4— [1, 1 一ビス (4ーヒドロキシフエニル) ェチル] ベンゼン C 1: 1- [1- (4-hydroxyphenyl) isopropyl] —4 -— [1,1-bis (4-hydroxyphenyl) ethyl] benzene
(D) 有機溶剤 (D) Organic solvent
D 1 : PGMEA 上記 (A) 〜 (C) 成分と、 これら (A) 〜 (C) 成分の合計質量に対して 4 50 ppmに相当する量の界面活性剤 (製品名 「R— 08」 ;大日本インキ化学 工業株式会社製) を、 (D) 成分である PGMEAに溶解し、 固形分 [ (A) 〜 (C) 成分の合計]濃度が 25〜28質量%になるように調整し、 これを孔径 0. 2 のメンブランフィルターを用いてろ過し、 ポジ型ホトレジスト組成物を調 製した。 D1: PGMEA surfactant (product name "R-08"; equivalent to 450 ppm based on the total weight of components (A) to (C) and components (A) to (C)) (Nippon Dainippon Ink and Chemicals Co., Ltd.) is dissolved in PGMEA, which is the component (D), and the solid content [total of (A) to (C) components] is adjusted to 25 to 28% by mass. This was filtered using a membrane filter having a pore size of 0.2 to prepare a positive photoresist composition.
(実施例 2〜6) 、 (比較例 1〜5) (Examples 2 to 6), (Comparative Examples 1 to 5)
(A) 〜 (D) 成分を、 下記表 1に記載したものに代えた以外は、 実施例 1と同 様にしてポジ型ホトレジスト組成物を調製した。 表 1 A positive photoresist composition was prepared in the same manner as in Example 1 except that the components (A) to (D) were changed to those shown in Table 1 below. table 1
(A) (B) (C) (D) (A) (B) (C) (D)
(質量比) (Mass ratio)
1 A1 C 1 D 1 1 A1 C 1 D 1
施 Out
例 2 A2 同上 同上 同上 Example 2 A2 Same as above Same as above Same as above
3 A3 同上 同上 同上
4 A4 同上 同上 同上 3 A3 Same as above Same as above 4 A4 Same as above Same as above
5 A1 同上 同上 D2 5 A1 Same as above Same as above D2
6 同上 同上 同上 D 3 6 Same as above Same as above D 3
1 A5 同上 同上 D 1 1 A5 Same as above D 1
比 2 A6 同上 同上 同上 Ratio 2 A6 Same as above Same as above Same as above
較 3 A7 同上 同上 同上 Comparison 3 A7 Same as above Same as above Same as above
例 4 A8 同上 同上 同上 Example 4 A8 Same as above Same as above Same as above
5 A 1 同上 C 2 同上 なお、 表 1中の Al、 B l〜3、 C l、 及び D 1は上記の通りである。 5 A 1 Same as above C 2 Same as above Note that Al, B1 to 3, C1 and D1 in Table 1 are as described above.
また、 (B) 成分について、 B 1/B 2/B 3 (6/1/1)とは、 上述の様に B 1 /B 2/B 3を 6/1/1の質量比で混合して用いたことを示している。 For component (B), B 1 / B 2 / B 3 (6/1/1) means that B 1 / B 2 / B 3 is mixed at a mass ratio of 6/1/1 as described above. Indicates that it was used.
また、 A2〜8、 C2、 D 2〜3は以下の通りである。 A2-8, C2, and D2-3 are as follows.
A 2 : m—クレゾール Z 3, 4一キシレノール = 97/3 (モル比) の混合フエ ノール 1モルと、 プロピオンアルデヒドノホルムアルデヒド =1/3 (モル比) の混合アルデヒド 0. 86モルを用いて常法により合成した、 Mw= 7000、 Mw/Mn=3. 5のノポラック樹脂 A 2: m-cresol Z 3,4 Using 1 mole of a mixed phenol of 97/3 (molar ratio) and 0.86 mole of a mixed aldehyde of propionaldehydenoformaldehyde = 1/3 (molar ratio) Nopolak resin of Mw = 7000, Mw / Mn = 3.5 synthesized by a conventional method
A3 : m—クレゾール /3, 4一キシレノール =6 4 (モル比) の混合フエノ ール 1モルと、 プロピオンアルデヒド ホルムアルデヒド = 1Z3 (モル比) の 混合アルデヒド 0. 86モルを用いて常法により合成した、 Mw=4000、 M w/Mn = 2. 5のノポラック樹脂 A3: Synthesized by a conventional method using 1 mol of a mixed phenol of m-cresol / 3,4-monoxylenol = 64 (molar ratio) and 0.86 mole of a mixed aldehyde of propionaldehyde formaldehyde = 1Z3 (molar ratio). Nopolak resin with Mw = 4000, Mw / Mn = 2.5
A 4 : m—クレゾール Z 3, 4一キシレノール / 2, 5一キシレノール = 60/ 15/25 (モル比) の混合フエノール 1モルと、 ホルムアルデヒド/サリチル アルデヒド =4/1 (モル比) の混合アルデヒド 0. 85モルを用いて常法によ り合成した、 Mw=7000、 Mw/Mn=3. 5のノポラック樹脂 A 4: m-cresol Z 3,4 1-xylenol / 2,5-1-xylenol = 1 mole of a mixed phenol 60/15/25 (molar ratio) and formaldehyde / salicylaldehyde = 4/1 (molar ratio) mixed aldehyde Nopolak resin with Mw = 7000 and Mw / Mn = 3.5 synthesized by a conventional method using 0.85 mol
A 5 : m—クレゾ一ル Z p—クレゾール 2, 3, 5一トリメチルフエノーリレ = 45/35/25 (モル比) の混合フエノール 1モルと、 ホルムアルデヒド Zサ リチルアルデヒド = 2 Z 1 (モル比) の混合アルデヒド 0. 85モルを用いて常 法により合成した、 Mw=5000、 Mw/Mn = 3. 5のノポラック樹脂 A 6 : m—クレゾール Zp—クレゾール Z 2, 3, 5一トリメチルフエノール =
90/5/5 (モル比) の混合フエノール 1モルと、 ホルムアルデヒド /クロ卜 ンアルデヒド =2/1 (モル比) の混合アルデヒド 0. 85モルを用いて常法に より合成した、 Mw=4000、 Mw/Mn = 3. 05のノポラック樹脂A 5: m-cresol Zp-cresol 2,3,5-trimethylphenol (1 mol) mixed with 45/35/25 (molar ratio) and formaldehyde Z salicylaldehyde = 2 Z1 (mol Nopolak resin of Mw = 5000, Mw / Mn = 3.5, synthesized using 0.85 mol of a mixed aldehyde of the following ratio: A 6: m-cresol Zp-cresol Z 2,3,5-trimethylphenol = Mw = 4000 synthesized by a conventional method using 1 mol of a mixed phenol at 90/5/5 (molar ratio) and 0.85 mol of a mixed aldehyde of formaldehyde / crotonaldehyde = 2/1 (molar ratio). , Mw / Mn = 3.05 nopolak resin
A 7 : m—クレゾール 1モルと、 ホルムアルデヒド 0. 85モルを用いて常法に より合成した、 Mw=7050、 Mw/Mn=3. 5のノポラック樹脂 A7: Nopolak resin of Mw = 7050, Mw / Mn = 3.5 synthesized by a conventional method using 1 mol of m-cresol and 0.85 mol of formaldehyde
A8 : m—クレゾール/ p—クレゾールノ2, 3, 5—トリメチルフエノール = A8: m-cresol / p-cresolno 2,3,5-trimethylphenol =
45/35/25 (モル比) の混合フエノール 1モルと、 ホルムアルデヒド 0.1 mole of a mixed phenol at 45/35/25 (molar ratio) and 0.
85モルを用いて常法により合成した、 Mw=2500、 Mw/Mn = 1. 9の ノポラック樹脂 Nopolak resin of Mw = 2500, Mw / Mn = 1.9 synthesized by conventional method using 85 mol
C 2 : m—クレゾールとホルムアルデヒドとを用いて合成した Mw= 1300の ノポラック低分子量体 C 2: Nopolak low molecular weight compound with Mw = 1300 synthesized using m-cresol and formaldehyde
D 2 : 2—ヘプ夕ノン D 2: 2—Hep Yu Non
D 3 :乳酸ェチル
D 3: Ethyl lactate
表 2 Table 2
L CD用ポジ型ホトレジスト組成物としては、 低 N A条件下での高解像性が求 められる。 High resolution under low NA conditions is required for a positive photoresist composition for LCD.
また、 システム LCD用としては、 さらに、 リニアリティが求められる。 In addition, linearity is required for system LCDs.
耐熱性、 感度については、 LCD用、 システム LCD用に共通して求められる ものである。 Heat resistance and sensitivity are commonly required for LCDs and system LCDs.
表 2に示した結果から明らかな様に、 実施例 1 8の組成は、 いずれもその条 件を満たすものであった。 As is clear from the results shown in Table 2, the compositions of Example 18 all satisfied the conditions.
また、 スカムの発生もなく、 焦点深度 (DOF) の幅も広く、 これらの点にお いても良好なものであった。 In addition, there was no scum and the depth of focus (DOF) was wide, and these points were favorable.
これに対し、 比較例 1の組成は、 (A) 成分が本発明のものとは異なるため、 リニアリティ、 感度、 解像性の評価は良好であったものの、 スカムの発生がみら れたことから、 製品として実用化が困難な材料であつた。 On the other hand, in the composition of Comparative Example 1, since the component (A) was different from that of the present invention, the evaluation of linearity, sensitivity, and resolution was good, but scum was observed. Therefore, the material was difficult to commercialize as a product.
比較例 2の組成は、 (A) 成分が本発明のものとは異なるため、 感度が 100 mJと非常に遅く、 5 OmJ程度の高感度化が求められる LCD製造の分野にお いては、 採用が著しく困難な材料であった。 The composition of Comparative Example 2 has a very low sensitivity of 100 mJ because the component (A) is different from that of the present invention, and is adopted in the field of LCD manufacturing where high sensitivity of about 5 OmJ is required. Was a very difficult material.
比較例 3の組成は、 (A) 成分が本発明のものとは異なるため、 リニアリティ
が不良であった。 The composition of Comparative Example 3 has a linearity because the component (A) is different from that of the present invention. Was bad.
比較例 4の組成は、 (A) 成分が本発明のものとは異なるため、 リニアリティ が不良であり、 焦点深度幅 (D O F) も狭かった。 産業上の利用可能性 The composition of Comparative Example 4 was inferior in linearity and narrow in the depth of focus (DOF) because the component (A) was different from that of the present invention. Industrial applicability
本発明の L C D用ポジ型ホトレジスト組成物及びレジストパターンの製造方法 においては、 低 N A条件下でも良好な解像度が得られる。 また、 低 NA条件下で のリニアリティにも優れていることから、 システム L C Dの製造用として好適で ある。
In the method of producing a positive photoresist composition for LCD and a resist pattern according to the present invention, good resolution can be obtained even under low NA conditions. Also, since it has excellent linearity under low NA conditions, it is suitable for the production of system LCD.
Claims
1 . (A) 3 , 4—キシレノールを含有するフエノール類とアルデヒド類との縮 合反応により合成され得るアルカリ可溶性ノポラック樹脂を含有するアルカリ可 溶性樹脂成分、1. (A) an alkali-soluble resin component containing an alkali-soluble nopolak resin which can be synthesized by a condensation reaction of a phenol containing 3,4-xylenol with an aldehyde,
C) 分子量 1 0 0 0以下の請フエノール性水酸基含有化合物、 C) a phenolic hydroxyl group-containing compound having a molecular weight of 100 or less,
(D) 有機溶剤、 (D) an organic solvent,
を含むことを特徴とする L C D製造用ポのジ型ホトレジスト組成物A di-type photoresist composition for LCD production, comprising:
2 . 上記アル力リ可溶性ノポラック樹脂が、 3囲, 4—キシレノールと m—クレ ゾールを含有するフエノール類を用いて合成され得るアルカリ可溶性ノポラック 樹脂を含むことを特徴とする請求項 1に記載の L C D製造用ポジ型ホトレジスト 組成物。 3 . 上記アルカリ可溶性ノポラック樹脂が、 2. The method according to claim 1, wherein the alcohol-soluble nopolak resin contains an alkali-soluble nopolak resin which can be synthesized using a phenol containing 3-surrounding, 4-xylenol and m-cresol. Positive photoresist composition for LCD production. 3. The alkali-soluble nopolak resin is
3, 4一キシレノール 5〜3 0モ ル%、 m—クレゾール 9 5〜4 0モル%、 その他のフエノール類 0〜 3 0モル% を含有するフエノ一ル類を用いて合成され得るアル力リ可溶性ノポラック樹脂で あることを特徴とする請求項 2に記載の L C D製造用ポジ型ホトレジスト組成物。 3,4-Xylenol 5 to 30 mol%, m-cresol 95 to 40 mol%, and other phenols 0 to 30 mol% can be synthesized using phenols. 3. The positive photoresist composition for producing an LCD according to claim 2, wherein the composition is a soluble nopolak resin.
4. 上記アルカリ可溶性ノポラック樹脂が、 プロピオンアルデヒドとホルムァ ルデヒドを含有するアルデヒド類を用いて合成され得るアルカリ可溶性ノポラッ ク樹脂であることを特徴とする請求項 1に記載の L C D製造用ポジ型ホトレジス ト組成物。 5 . 上記 (D) 成分中のプロピレンダリコールモノアルキルエーテルァセテ一 トの含有量が、 4. The positive photoresist according to claim 1, wherein the alkali-soluble nopolak resin is an alkali-soluble nopolak resin which can be synthesized using an aldehyde containing propionaldehyde and formaldehyde. Composition. 5. The content of propylene daricol monoalkyl ether acetate in the above component (D) is
5 0〜1 0 0質量%であることを特徴とする請求項 1に記載の L C D製造用ポジ型ホトレジスト組成物。
2. The positive photoresist composition for producing an LCD according to claim 1, wherein the content is 50 to 100% by mass.
6. 上記 (D) 成分中の 2—ヘプ夕ノンの含有量が、 50〜100質量%であ ることを特徴とする請求項 1に記載の L CD製造用ポジ型ホトレジスト組成物。 6. The positive photoresist composition for producing LCD according to claim 1, wherein the content of 2-heptanone in the component (D) is 50 to 100% by mass.
7. i線露光プロセス用である請求項 1に記載の L C D製造用ポジ型ホトレジ スト組成物。 7. The positive photoresist composition for LCD production according to claim 1, which is used for an i-ray exposure process.
8. NAが 0. 3以下の露光プロセス用である請求項 1に記載の LCD製造用 ポジ型ホトレジスト組成物。 8. The positive photoresist composition for producing an LCD according to claim 1, which is used for an exposure process having an NA of 0.3 or less.
9. 1つの基板上に集積回路と液晶ディスプレイ部分が形成された L CD製造 用である請求項 1に記載のポジ型ホトレジスト組成物。 9. The positive photoresist composition according to claim 1, which is used for manufacturing an LCD in which an integrated circuit and a liquid crystal display portion are formed on one substrate.
10. ( 1 ) 請求項 1に記載のポジ型ホトレジスト組成物を基板上に塗布し、 塗膜を形成する工程、 10. (1) a step of applying the positive photoresist composition according to claim 1 onto a substrate to form a coating film,
(2) 上記塗膜が形成された基板を加熱処理 (プリべーク) し、 基板上にレジス ト被膜を形成する工程、 (2) heat-treating (pre-baking) the substrate on which the coating film is formed to form a resist coating on the substrate;
(3) 上記レジスト被膜に対し、 2. 0 以下のレジストパターン形成用マス クパターンと、 2. 0 m超のレジストパターン形成用マスクパターンの双方が 描かれたマスクを用いて選択的露光を行う工程、 (3) Selective exposure is performed on the above resist film using a mask on which both a mask pattern for forming a resist pattern of 2.0 or less and a mask pattern for forming a resist pattern of more than 2.0 m are drawn. Process,
(4) 上記選択的露光後のレジスト被膜に対し、 加熱処理 (ポストェクスポージ ヤーべーク) を施す工程、 (4) subjecting the resist film after the selective exposure to a heat treatment (post-exposure bake);
(5) 上記加熱処理後のレジスト被膜に対し、 アルカリ水溶液を用いた現像処理 を施し、 上記基板上に、 パターン寸法 2. O^m以下の集積回路用のレジストパ ターンと、 2. 0 m超の液晶ディスプレイ部分用のレジストパターンを同時に 形成する工程、 (5) The resist film after the above-mentioned heat treatment is subjected to a development treatment using an alkaline aqueous solution, and a resist pattern for an integrated circuit having a pattern size of 2. Simultaneously forming a resist pattern for the liquid crystal display part of
(6) 上記レジストパターン表面に残った現像液を洗い落とすリンス工程、 を含むことを特徵とするレジストパターンの形成方法。
(6) A method for forming a resist pattern, comprising: rinsing the developer remaining on the surface of the resist pattern.
11. 上記 (3) 選択的露光を行う工程が、 i線を光源に用いた露光プロセス により行われることを特徵とする請求項 10に記載のレジストパターンの形成方 法。 11. The method for forming a resist pattern according to claim 10, wherein the step (3) of performing selective exposure is performed by an exposure process using i-line as a light source.
12. 上記 (3) 選択的露光を行う工程が、 NAが 0. 3以下の低 NA条件下 での露光プロセスにより行われることを特徴とする請求項 10に記載のレジスト パターンの形成方法。
12. The method of forming a resist pattern according to claim 10, wherein the step (3) of performing the selective exposure is performed by an exposure process under a low NA condition of NA of 0.3 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2003801047522A CN1720484B (en) | 2002-12-06 | 2003-12-05 | Positive type photoresist composition for LCD production and method of forming resist pattern |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-355365 | 2002-12-06 | ||
JP2002355365A JP4071611B2 (en) | 2002-12-06 | 2002-12-06 | Positive photoresist composition for LCD production and method for forming resist pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004053595A1 true WO2004053595A1 (en) | 2004-06-24 |
Family
ID=32500786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/015621 WO2004053595A1 (en) | 2002-12-06 | 2003-12-05 | Positive type photoresist composition for lcd production and method of forming resist pattern |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP4071611B2 (en) |
KR (1) | KR20050085257A (en) |
CN (1) | CN1720484B (en) |
TW (1) | TWI257526B (en) |
WO (1) | WO2004053595A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100167476A1 (en) * | 2008-12-29 | 2010-07-01 | Samsung Electronics Co., Ltd. | Photoresist composition and method of fabricating thin film transistor substrate |
CN113589649A (en) * | 2021-08-13 | 2021-11-02 | 北京北旭电子材料有限公司 | Resin composition, photoresist composition and patterning method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4707987B2 (en) * | 2004-09-16 | 2011-06-22 | 東京応化工業株式会社 | Chemically amplified positive photoresist composition |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0792669A (en) * | 1993-09-21 | 1995-04-07 | Japan Synthetic Rubber Co Ltd | Radiation-sensitive resin composition |
JPH07191461A (en) * | 1993-12-27 | 1995-07-28 | Sumitomo Chem Co Ltd | Positive resist composition |
US5620828A (en) * | 1994-12-28 | 1997-04-15 | Fuji Photo Film Co., Ltd. | Positive photoresist composition containing quinonediazide esterification product, novolak resin and pocyhydroxy alkali dissolution accelerator |
JPH09160231A (en) * | 1995-12-11 | 1997-06-20 | Tokyo Ohka Kogyo Co Ltd | Positive type photoresist coating solution |
JPH11326951A (en) * | 1998-05-20 | 1999-11-26 | Seiko Epson Corp | Production of electrooptical device and electrooptical device |
JP2000112120A (en) * | 1998-10-02 | 2000-04-21 | Tokyo Ohka Kogyo Co Ltd | Positive photoresist coating liquid and display device substrate using same |
JP2001075272A (en) * | 1999-09-08 | 2001-03-23 | Tokyo Ohka Kogyo Co Ltd | Positive type photoresist composition for production of liquid crystal device |
JP2001142224A (en) * | 1999-08-31 | 2001-05-25 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2002332323A (en) * | 2001-05-09 | 2002-11-22 | Tokyo Ohka Kogyo Co Ltd | Novolak resin, its manufacturing method, and positive type photoresist composition using the same |
-
2002
- 2002-12-06 JP JP2002355365A patent/JP4071611B2/en not_active Expired - Fee Related
-
2003
- 2003-12-04 TW TW092134214A patent/TWI257526B/en not_active IP Right Cessation
- 2003-12-05 CN CN2003801047522A patent/CN1720484B/en not_active Expired - Lifetime
- 2003-12-05 KR KR1020057009888A patent/KR20050085257A/en not_active Application Discontinuation
- 2003-12-05 WO PCT/JP2003/015621 patent/WO2004053595A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0792669A (en) * | 1993-09-21 | 1995-04-07 | Japan Synthetic Rubber Co Ltd | Radiation-sensitive resin composition |
JPH07191461A (en) * | 1993-12-27 | 1995-07-28 | Sumitomo Chem Co Ltd | Positive resist composition |
US5620828A (en) * | 1994-12-28 | 1997-04-15 | Fuji Photo Film Co., Ltd. | Positive photoresist composition containing quinonediazide esterification product, novolak resin and pocyhydroxy alkali dissolution accelerator |
JPH09160231A (en) * | 1995-12-11 | 1997-06-20 | Tokyo Ohka Kogyo Co Ltd | Positive type photoresist coating solution |
JPH11326951A (en) * | 1998-05-20 | 1999-11-26 | Seiko Epson Corp | Production of electrooptical device and electrooptical device |
JP2000112120A (en) * | 1998-10-02 | 2000-04-21 | Tokyo Ohka Kogyo Co Ltd | Positive photoresist coating liquid and display device substrate using same |
JP2001142224A (en) * | 1999-08-31 | 2001-05-25 | Semiconductor Energy Lab Co Ltd | Method for manufacturing semiconductor device |
JP2001075272A (en) * | 1999-09-08 | 2001-03-23 | Tokyo Ohka Kogyo Co Ltd | Positive type photoresist composition for production of liquid crystal device |
JP2002332323A (en) * | 2001-05-09 | 2002-11-22 | Tokyo Ohka Kogyo Co Ltd | Novolak resin, its manufacturing method, and positive type photoresist composition using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100167476A1 (en) * | 2008-12-29 | 2010-07-01 | Samsung Electronics Co., Ltd. | Photoresist composition and method of fabricating thin film transistor substrate |
US8790859B2 (en) * | 2008-12-29 | 2014-07-29 | Samsung Display Co., Ltd. | Photoresist composition and method of fabricating thin film transistor substrate |
CN113589649A (en) * | 2021-08-13 | 2021-11-02 | 北京北旭电子材料有限公司 | Resin composition, photoresist composition and patterning method |
CN113589649B (en) * | 2021-08-13 | 2024-06-04 | 北京北旭电子材料有限公司 | Resin composition, photoresist composition and patterning method |
Also Published As
Publication number | Publication date |
---|---|
CN1720484A (en) | 2006-01-11 |
JP2004191394A (en) | 2004-07-08 |
KR20050085257A (en) | 2005-08-29 |
CN1720484B (en) | 2010-05-05 |
TWI257526B (en) | 2006-07-01 |
TW200417817A (en) | 2004-09-16 |
JP4071611B2 (en) | 2008-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003195496A (en) | Positive photoresist composition for manufacture of liquid crystal display device and method for forming resist pattern | |
JP4101670B2 (en) | Positive photoresist composition for LCD production and method for forming resist pattern | |
JP2005221515A (en) | Positive photoresist composition for production of system lcd and resist pattern forming method | |
JP4071611B2 (en) | Positive photoresist composition for LCD production and method for forming resist pattern | |
JP4364596B2 (en) | Positive photoresist composition and method for forming resist pattern | |
JP3640638B2 (en) | Method for forming resist pattern for liquid crystal display device manufacturing | |
JP2005010487A (en) | Method for forming resist pattern | |
KR100558125B1 (en) | Positive photoresist composition for manufacturing system lcd, manufacturing method for the positive photoresist and formation method of resist pattern | |
TWI263863B (en) | Positive photo resist composition and method of forming resist pattern | |
JP2005010215A (en) | Positive photoresist composition for manufacture of circuit board having integrated circuit and liquid crystal display section fabricated on one board, and method for forming resist pattern | |
KR100685198B1 (en) | Positive photoresist composition for manufacturing system lcd and formation method of resist pattern | |
KR100572185B1 (en) | Positive resist composition for manufacturing lcd and method for forming resist pattern | |
KR100596988B1 (en) | Positive type photoresist composition and method of forming resist pattern | |
KR100585303B1 (en) | Positive photoresist composition for manufacturing substrate provided with integrated circuits and liquid crystal on one substrate and formation method of resist pattern | |
JP3789926B2 (en) | Positive photoresist composition | |
KR100642960B1 (en) | Positive photoresist composition for system lcd production and resist pattern formation method | |
JP2004045618A (en) | Positive photoresist composition and method for forming resist pattern | |
JP2004145207A (en) | Positive photoresist composition for manufacture of liquid crystal display (lcd) and method for forming resist pattern | |
JP2005010753A (en) | Positive type photoresist composition for manufacturing system lcd, and method for forming resist pattern | |
JP2004341431A (en) | Positive resist composition and method for forming resist pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 20038A47522 Country of ref document: CN Ref document number: 1020057009888 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057009888 Country of ref document: KR |