WO2004053185A1 - Method for the conservation of metal surfaces - Google Patents

Method for the conservation of metal surfaces Download PDF

Info

Publication number
WO2004053185A1
WO2004053185A1 PCT/DE2003/003991 DE0303991W WO2004053185A1 WO 2004053185 A1 WO2004053185 A1 WO 2004053185A1 DE 0303991 W DE0303991 W DE 0303991W WO 2004053185 A1 WO2004053185 A1 WO 2004053185A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
dielectric barrier
electrode
plasma treatment
barrier discharge
Prior art date
Application number
PCT/DE2003/003991
Other languages
German (de)
French (fr)
Inventor
Uwe Landau
Original Assignee
OTB Oberflächentechnik in Berlin GmbH & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OTB Oberflächentechnik in Berlin GmbH & Co. filed Critical OTB Oberflächentechnik in Berlin GmbH & Co.
Priority to AU2003296518A priority Critical patent/AU2003296518A1/en
Priority to EP03812556A priority patent/EP1570100A1/en
Publication of WO2004053185A1 publication Critical patent/WO2004053185A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding

Definitions

  • the present invention relates to a method for the preservation of metal surfaces and objects or workpieces with correspondingly preserved surfaces.
  • the object of the present invention is therefore to provide a method for the preservation of metal surfaces, by means of which in particular oxidation or tarnishing of the surfaces is reliably prevented or at least greatly weakened or reduced without the surface being attacked or in terms of its desired application properties is changed.
  • the method sought is intended in particular to enable simple and inexpensive preservation of metal surfaces comprising copper, nickel, silver or their alloys, so that it is also suitable for electronic, in particular microelectronic, applications in which the provision and processing of corresponding surfaces with a very high surface quality is of great importance for numerous areas of application. In order to ensure sufficiently high yields, it should also enable continuous or at least quasi-continuous processing in one pass.
  • the metal surfaces are subjected to a plasma treatment in a reactive gas atmosphere containing CO 2 and / or N 2 .
  • gases mentioned can be used either individually or in any mixing ratio. However, mixtures with other gases, such as argon, are also possible. Conveniently, gases from standard gas cylinders can be used.
  • This plasma treatment of the metal surfaces according to the invention brings about a lasting suppression of the oxidation reactions which otherwise normally take place on the surface and thus leads to a preservation of the surfaces without these being attacked or their application properties being adversely changed.
  • This not only leads to reliable oxidation protection of the surfaces under normal ambient conditions, but also prevents or delays tarnishing, at least even at higher temperatures, i.e. Oxidize the surfaces.
  • nickel silver and copper surfaces preserved according to the invention are resistant to tarnishing, for example at 200 ° C. for at least 1 hour and at 250 ° C. for at least 5 minutes.
  • the plasma treatment also causes (known per se) the desired cleaning of the surfaces from organic impurities and thus also leads to a noticeable improvement in the surface quality for subsequent machining or processing processes, so that additional cleaning steps to remove these undesirable impurities are eliminated.
  • additional cleaning steps to remove these undesirable impurities are eliminated.
  • the preservation method according to the invention is particularly suitable for metal surfaces comprising copper, nickel, silver or their alloys, so that it is suitable for numerous electronic and microelectronic applications, such as, for example, the preservation of copper alloy carrier tapes for the production of electronic components (diodes, ICs, switches) , etc.) or PCBs. However, it can also be used for other metals or metal alloys. If necessary, these can also be applied to a non-metallic base, such as a plastic (endless) belt.
  • the reactive gas is preferably allowed to flow relative to the surface in order to remove the reaction products formed and to bring new gas to the surface.
  • a flow rate between about 0.05 and 1 m / s has proven itself.
  • a dielectric barrier discharge (DBE) is preferably used, which can be carried out under atmospheric pressure and at ambient temperature without great technical outlay and thus economically very cheaply.
  • a dielectric barrier discharge which is also called dielectric barrier discharge or silent discharge
  • the workpiece with the surface to be preserved is exposed to a corona discharge, which takes place between a discharge electrode and a counter electrode, at least one of which is dieelective with respect to the one between them formed discharge space is isolated.
  • the metal surface to be treated is grounded and used as a counter electrode for at least one discharge electrode which is dielectrically insulated from the discharge gap for a direct dielectric barrier discharge between the two electrodes. This ensures that no voltage potential builds up on the metal surface, so that it can be easily touched during the preservation process.
  • a discharge electrode is used as the discharge electrode, which reproduces the surface contours of the surface to be treated in a plane-parallel manner.
  • the plasma treatment can also be carried out by a direct dielectric barrier discharge in a discharge space or discharge gap between plane-parallel electrodes, at least one of which is electrically insulated.
  • This can be a glass electrode, for example, which is provided with a conductive layer on one side.
  • the plasma treatment can also be carried out according to the invention by means of an indirect dielectric barrier discharge, in which the discharges take place adjacent to the surface to be treated and are brought into contact with the surface by the inflowing reactive gas used, for example by means of so-called plasma nozzles.
  • the inflowing reactive gas used for example by means of so-called plasma nozzles.
  • ceramic is also usually used as the dielectric.
  • a correspondingly lower frequency between approximately 50 and 60 Hz can also be used in a corresponding device.
  • the surfaces to be treated are preferably preserved continuously or quasi-continuously in a single pass.
  • the method according to the invention is particularly suitable for the preservation of metallic tapes, in particular metallic lead frames as tape material (contacts, lead frames or carrier tapes, wires) for the production of electronic components (semiconductor components, switches or switch contacts bonded to lead frames) in the processing forms customary today ,
  • metallic tapes in particular metallic lead frames as tape material (contacts, lead frames or carrier tapes, wires)
  • electronic components semiconductor components, switches or switch contacts bonded to lead frames
  • These belts can simply be fed continuously as an endless belt under ambient conditions through a suitable plasma treatment device filled with a reactive gas of the type mentioned and can be preserved there against oxidation influences in a simple and very inexpensive manner.
  • the method according to the invention also enables a very economical preservation of tape strips (cut strips) of typically about 100-300 mm in length and a quasi-continuous processing of individual parts, such as PCBs or electronic shield housings arranged one behind the other, in continuous operation. These can be applied, for example, on a suitable plastic tape.
  • the plasma treatment method according to the invention makes it possible to produce workpieces with correspondingly preserved metal surfaces in a simple and inexpensive manner for numerous fields of application.
  • the surfaces here preferably comprise copper, nickel, silver or their alloys, such as e.g. German silver.
  • FIG. 1 shows a schematic representation of a first surface preservation according to the invention by means of a direct dielectric barrier discharge
  • FIG. 2 shows a schematic representation of a second surface preservation according to the invention by means of a direct dielectric barrier discharge
  • Fig. 3 is a schematic representation of a surface preservation according to the invention by means of an indirect dielectric barrier discharge.
  • FIG. 1 shows a copper alloy strip 10 as a workpiece, which is moved in the form of an endless strip at ambient temperature and pressure at about 1 m / min in the direction of arrow 12 from right to left.
  • the copper alloy strip 10 is grounded, so that no voltage potential builds up on the metal surface 10a during the preservation process and an operator can easily touch it in order to intervene in the processing process if necessary.
  • a discharge electrode 14 Opposite to the copper alloy strip 10 there is a discharge electrode 14 arranged parallel to it, which forms with the copper alloy strip 10 a narrow dielectric discharge space or discharge gap 16 of approximately 2 mm in height.
  • pure CO 2 flows from a reactive gas supply device (not shown), such as a commercially available gas bottle, in the direction of arrow 18 from left to right through the discharge gap 16 in order to discharge reaction products formed from the discharge gap 16 and to supply fresh carbon dioxide to bring up the surface 10a to be preserved.
  • the flow rate is about 0.1 m / s. Depending on the application, this value can vary in certain areas. For example, in some applications, lower flow velocities of up to about 0.05 m / s and less or higher flow velocities of up to about 1 m / s and more can be set.
  • nitrogen from commercially available gas bottles or a CO 2 / N 2 mixture with any mixing ratio can also be used. It is also possible to add other gases, such as Ar.
  • the discharge electrode 14 comprises an approximately 5 mm thick glass pane 14a (although a ceramic pane can optionally also be used as a dielectric) with a conductive layer 14b applied on the back, to which a high-frequency AC voltage of typically approximately 5 kV and a frequency of typically approximately 30 kHz is applied , At this high-frequency voltage, electrical discharges are made in the discharge gap 16 between the glass pane 14a and the surface 10a of the copper alloy strip 10 Discharges ignited, which are shown as discharge filaments 20. These discharge filaments 20 constantly re-ignite due to the alternating voltage present, so that a spatially homogeneous plasma is present in the discharge gap 16 on average over time.
  • This plasma interacts with the surface 10a of the copper alloy strip 10 and reliably preserves it even at higher ambient temperatures against the formation of an undesired oxidation layer or against tarnishing, without the surface 10a being attacked or disadvantageous in terms of its desired application properties for subsequent microelectronic treatment or processing processes would be changed. This eliminates the need for prior cleaning of the metal surface 10a, which has been formed in the interim, from oxide layers that have formed in the meantime.
  • the plasma treatment also brings about a very desirable additional cleaning of the metal surface 10a from any adhering organic contaminants, such as e.g. Oils or greases, and not only leads to a corresponding improvement in the surface quality, but also makes additional cleaning steps for removing these organic contaminants superfluous.
  • organic contaminants such as e.g. Oils or greases
  • FIG. 2 shows an exemplary, two-sided surface preservation according to the invention of a copper alloy strip 10, which is again wound onto a winding reel 26 at a speed of approximately 1 m / s from a decoiler 22 via two counter-rotating deflection reels 24a, 24b.
  • Three dielectrically insulated discharge electrodes 14 are arranged at a distance from the two deflection reels 24a, 24b, the three discharge electrodes 14 assigned to the deflection reel 24a being located above the deflection reel 24a and the three discharge electrodes 14 assigned to the deflection reel 24b being located below the deflection reel 24b.
  • the flow rate is again about 0.1 m / s.
  • nitrogen carbon dioxide from standard gas cylinders can also be used. If necessary, mixtures of both gases can also be used.
  • the copper alloy strip 10 is now guided over the first and under the second deflection reel 24a or 24b through the first and second discharge space 16a or 16b in such a way that in the first discharge space 16a its top side and then in the second discharge space 16b its bottom side with the interacts electrical discharges 20, which are generated by applying a suitable high-frequency voltage to the discharge electrodes 14 in the two discharge spaces 16a, 16b.
  • the copper alloy strip 10 is provided on both sides with a surface protection according to the invention against oxidation or tarnishing.
  • the plasma treatment of a workpiece surface to be preserved can also be carried out by a direct dielectric barrier discharge between plane-parallel electrodes, of which in turn at least one is electrically insulated with respect to a dielectric discharge space formed between them.
  • Glass or ceramic panes which are provided with a conductive layer on their respective opposite side, can in turn serve as electrodes.
  • the workpiece to be preserved is simply inserted into the discharge space between the two discharge electrodes.
  • three-dimensional workpieces can, for example, also be arranged in a formula electrode which reproduces the contours of the workpiece in a plane-parallel manner.
  • FIG. 3 exemplarily illustrates the surface preservation of a workpiece 10 with a metal surface 10a according to the invention by means of an indirect dielectric barrier discharge.
  • a discharge electrode 14 with an associated counter electrode 14 ' is arranged adjacent to the metal surface 10a to be preserved, the discharge electrode 14 being electrically insulated by a dielectric 14a with respect to an electrical discharge space 16 formed between the electrodes 14, 14'.
  • a high-frequency voltage of the type mentioned is in turn applied to the discharge electrode 14, so that electrical discharges are continuously ignited in the discharge space 16.
  • These discharges are brought into contact with the metal surface 10a by means of carbon dioxide, which flows in the direction of the arrow 18 through the discharge space 16 against the metal surface 10a, with which they in turn interact in the known manner and thereby effect the desired surface preservation.

Abstract

Disclosed is a method for the conservation of metal surfaces (10a) by means of plasma treatment in a CO2 containing and/or N2- containing reactive gas atmosphere, wherein the metal surfaces (10a) are preferably exposed to a dielectric barrier discharge (DBE) at atmospheric pressure. Ignition occurs with a high-frequency alternating current of typically approximately 1-10 kV between a discharge electrode (14) and a counter electrode (10), whereby at least one thereof is insulated dielectrically in relation to the discharge chamber (16) formed therebetween by means of a suitable dielectric (14a) such as, for instance glass or ceramic material. Preferably, the metal surface (10a) to be treated is earthed and used as a counter electrode (10) for at least one discharge electrode (14) which is embodied as a form electrode which reproduces the surface contours in a plane-parallel manner. The dielectric barrier discharge cannot, however, also be performed between plane-parallel electrodes whereby at least one of which is electrically insulated. According to the invention, an indirect dielectric barrier discharge can also be used, whereby the discharges (20) are carried out in an adjacent position in relation to the metal surface (10a) and whereby the respectively used inflowing reactive gas, is brought into contact therewith by means of plasma jets, for example. The above-mentioned method is particulary suitable for continuous or quasi-continuous conservation of metal strips (10), cut strips, circuit boards or succesively arranged individual parts.

Description

Verfahren zur Konservierung von Metalloberflächen Process for the preservation of metal surfaces
Beschreibungdescription
Die vorliegende Erfindung betrifft ein Verfahren zur Konservierung von Metalloberflächen und Gegenstände oder Werkstücke mit entsprechend konservierten Oberflächen.The present invention relates to a method for the preservation of metal surfaces and objects or workpieces with correspondingly preserved surfaces.
Metalloberflächen hoher Güte spielen auf zahlreichen technischen Anwendungsgebieten eine große Rolle. Insbesondere in der Mikroelektronik führt die fortschreitende Miniaturisierung elektronischer Bauteile zu immer höheren Anforderungen an die Oberflächengüte, als unabdingbare Voraussetzung zur Erzielung der notwendigen hohen Ausbeuten in den mikroelektronischen Bearbeitungsprozessen. In diesem Zusammenhang wirken sich nicht nur feinste Verunreinigungen, wie z.B. durch Öle oder Fette, sondern auch dünne Oxidschichten sehr nachteilig aus, die sich während der Lagerung und des Transports von Werkstücken nahezu unvermeidlich auf der Oberfläche bilden. Bei Kupferlegierungsbändern zur Fertigung von Elektronikkomponenten beispielsweise fallen leichte Oxidschichten aufgrund einer rötlichen Verfärbung sofort auf und beeinflussen bei den erforderlichen Löt-, Bond- oder Klebearbeiten die Haftfestigkeit negativ. Diese Oxidschichten stellen gerade bei langen Transport- und Lagerzeiten ein großes Problem dar, das in der industriellen Praxis eine ansonsten überflüssige Nachreinigung der Bänder in einer Beize erforderlich macht.High-quality metal surfaces play a major role in numerous technical fields of application. In microelectronics in particular, the progressive miniaturization of electronic components leads to ever higher demands on the surface quality, as an indispensable prerequisite for achieving the necessary high yields in the microelectronic machining processes. In this context, not only the finest impurities, e.g. by oils or greases, but also very thin oxide layers, which almost inevitably form on the surface during the storage and transport of workpieces. In the case of copper alloy strips for the production of electronic components, for example, light oxide layers are immediately noticeable due to a reddish discoloration and have a negative effect on the adhesive strength when the soldering, bonding or adhesive work is required. These oxide layers represent a major problem, particularly in the case of long transport and storage times, which in industrial practice necessitates the otherwise unnecessary subsequent cleaning of the strips in a pickle.
Die Aufgabe der vorliegenden Erfindung besteht daher in der Schaffung eines Verfahrens zur Konservierung von Metalloberflächen, durch das insbesondere eine Oxidation oder ein Anlaufen der Oberflächen zuverlässig verhindert oder zumindest jedoch stark abgeschwächt oder verringert wird, ohne dass die Oberfläche hierbei angegriffen oder in ihren gewünschten anwendungstechnischen Eigenschaften verändert wird. Das gesuchte Verfahren soll insbesondere eine einfache und kostengünstige Konservierung von Metalloberflächen ermöglichen, die Kupfer, Nickel, Silber oder deren Legierungen umfassen, so dass es auch für elektronische, insbesondere mikroelektronische, Anwendungen geeignet ist, bei denen die Bereitstellung und Bearbeitung entsprechender Oberflächen mit einer sehr hohen Oberflächengüte für zahlreiche Anwendungsgebiete von größter Bedeutung ist. Zur Gewährleistung hinreichend hoher Ausbeuten soll es zudem eine kontinuierliche oder zumindest quasi-kontinuierliche Verarbeitung im Durchlauf ermöglichen. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Metalloberflächen einer Plasmabehandlung in einer CO2- und/oder N2-haltigen Reaktivgasatmosphare unterzogen werden. Die genannten Gase können hierbei entweder jeweils für sich oder aber auch in beliebigen Mischungsverhältnissen untereinander verwendet werden. Es sind jedoch auch Mischungen mit anderen Gasen, wie z.B. Argon, möglich. Praktischerweise können hierbei einfach Gase aus handelsüblichen Gasflaschen eingesetzt werden.The object of the present invention is therefore to provide a method for the preservation of metal surfaces, by means of which in particular oxidation or tarnishing of the surfaces is reliably prevented or at least greatly weakened or reduced without the surface being attacked or in terms of its desired application properties is changed. The method sought is intended in particular to enable simple and inexpensive preservation of metal surfaces comprising copper, nickel, silver or their alloys, so that it is also suitable for electronic, in particular microelectronic, applications in which the provision and processing of corresponding surfaces with a very high surface quality is of great importance for numerous areas of application. In order to ensure sufficiently high yields, it should also enable continuous or at least quasi-continuous processing in one pass. This object is achieved according to the invention in that the metal surfaces are subjected to a plasma treatment in a reactive gas atmosphere containing CO 2 and / or N 2 . The gases mentioned can be used either individually or in any mixing ratio. However, mixtures with other gases, such as argon, are also possible. Conveniently, gases from standard gas cylinders can be used.
Diese erfindungsgemäße Plasmabehandlung der Metalloberflächen bewirkt eine nachhaltige Unterdrückung der ansonsten auf der Oberfläche üblicherweise ablaufenden Oxidations- reaktionen und führt damit zu einer Konservierung der Oberflächen, ohne dass diese angegriffen oder in ihren anwendungstechnischen Eigenschaften nachteilig verändert werden. Es führt hierbei nicht nur bei üblichen Umgebungsbedingungen zu einem zuverlässigen Oxidationsschutz der Oberflächen, sondern verhindert oder verzögert zumindest auch bei höheren Temperaturen nachhaltig ein Anlaufen, d.h. Oxidieren, der Oberflächen. So sind erfindungsgemäß konservierte Neusilber- und Kupfer-Oberflächen beispielsweise bei 200 °C für zumindest 1 Stunde und bei 250 °C für zumindest 5 min anlaufbeständig.This plasma treatment of the metal surfaces according to the invention brings about a lasting suppression of the oxidation reactions which otherwise normally take place on the surface and thus leads to a preservation of the surfaces without these being attacked or their application properties being adversely changed. This not only leads to reliable oxidation protection of the surfaces under normal ambient conditions, but also prevents or delays tarnishing, at least even at higher temperatures, i.e. Oxidize the surfaces. For example, nickel silver and copper surfaces preserved according to the invention are resistant to tarnishing, for example at 200 ° C. for at least 1 hour and at 250 ° C. for at least 5 minutes.
Darüber hinaus bewirkt die Plasmabehandlung auch eine (an sich bereits bekannte) erwünschte Reinigung der Oberflächen von organischen Verunreinigungen und führt damit auch dadurch zu einer spürbaren Verbesserung der Oberflächengüte für nachfolgende Be- oder Verarbeitungsprozesse, so dass zusätzliche Reinigungsschritte zur Beseitigung dieser unerwünschten Verunreinigungen entfallen. Bezüglich näherer Informationen zu diesen Reinigungseffekten durch eine Plasmabehandlung sei an dieser Stelle beispielhaft auf die DE 43 32 866 A1 verwiesen, deren Informationsgehalt hiermit voll umfänglich in die vorliegenden Unterlagen mit aufgenommen wird.In addition, the plasma treatment also causes (known per se) the desired cleaning of the surfaces from organic impurities and thus also leads to a noticeable improvement in the surface quality for subsequent machining or processing processes, so that additional cleaning steps to remove these undesirable impurities are eliminated. With regard to more detailed information on these cleaning effects by means of a plasma treatment, reference is made here, by way of example, to DE 43 32 866 A1, the information content of which is hereby fully incorporated into the present documents.
Das erfindungsgemäße Konservierungsverfahren ist insbesondere für Metalloberflächen geeignet, die Kupfer, Nickel, Silber oder deren Legierungen umfassen, so dass es für zahlreiche elektronische und mikroelektronische Anwendungen geeignet ist, wie z.B. die Konservierung von Kupferlegierungs-Trägerbändern zur Herstellung von Elektronikkomponenten (Dioden, ICs, Schalter, usw.) oder auch von Leiterplatten. Es kann jedoch auch für andere Metalle oder Metalllegierungen nutzbringend verwendet werden. Diese können gegebenenfalls auch auf einer nicht-metallischen Unterlage, wie z.B. ein Kunststoff- (Endlos-)Band, aufgebracht sein. Zur Steigerung der Oberflächenreaktionen lässt man das Reaktivgas vorzugsweise relativ zur Oberfläche strömen, um entstehende Reaktionsprodukte abzuführen und neues Gas an die Oberfläche heranzuführen. Hierbei hat sich eine Strömungsgeschwindigkeit zwischen etwa 0,05 und 1 m/s bewährt.The preservation method according to the invention is particularly suitable for metal surfaces comprising copper, nickel, silver or their alloys, so that it is suitable for numerous electronic and microelectronic applications, such as, for example, the preservation of copper alloy carrier tapes for the production of electronic components (diodes, ICs, switches) , etc.) or PCBs. However, it can also be used for other metals or metal alloys. If necessary, these can also be applied to a non-metallic base, such as a plastic (endless) belt. In order to increase the surface reactions, the reactive gas is preferably allowed to flow relative to the surface in order to remove the reaction products formed and to bring new gas to the surface. Here, a flow rate between about 0.05 and 1 m / s has proven itself.
Zur konservierenden Plasmabehandlung der Metalloberflächen können prinzipiell alle herkömmlichen Plasmaverfahren, wie z.B. eine Plasmabehandlung in einer Vakuum- Plasma-Anlage, eingesetzt werden. Vorzugsweise wird aus wirtschaftlichen Gründen jedoch eine Dielektrische-Barriereentladung (DBE) verwendet, die ohne größeren technischen Aufwand und damit wirtschaftlich sehr günstig unter Atmosphärendruck und bei Umgebungstemperatur durchgeführt werden kann. Bei einer solchen Dielektrischen- Barriereentladung, die auch dielektrisch behinderte Entladung oder stille Entladung genannt wird, wird das Werkstück mit der zu konservierenden Oberfläche einer Korona-Entladung ausgesetzt, die zwischen einer Entladungselektrode und einer Gegenelektrode erfolgt, von denen zumindest eine dieelektisch bezüglich des zwischen ihnen gebildeten Entladungsraums isoliert ist.In principle, all conventional plasma processes such as e.g. a plasma treatment in a vacuum plasma system can be used. For economic reasons, however, a dielectric barrier discharge (DBE) is preferably used, which can be carried out under atmospheric pressure and at ambient temperature without great technical outlay and thus economically very cheaply. In such a dielectric barrier discharge, which is also called dielectric barrier discharge or silent discharge, the workpiece with the surface to be preserved is exposed to a corona discharge, which takes place between a discharge electrode and a counter electrode, at least one of which is dieelective with respect to the one between them formed discharge space is isolated.
Bei einer erfindungsgemäßen Ausführungsform wird die zu behandelnde Metalloberfläche geerdet und als Gegenelektrode für zumindest einer Entladungselektrode verwendet, die dielektrisch bezüglich des Entladungsspaltes für eine direkte Dielektrische-Barriereentladung zwischen den beiden Elektroden isoliert ist. Damit ist sichergestellt, dass sich auf der Metalloberfläche kein Spannungspotential aufbaut, so dass sie während des Konservierungsprozesses gegebenenfalls problemlos berührt werden kann. Als Entladungselektrode wird hierbei insbesondere eine Formelektode verwendet, welche die Oberflächenkonturen der zu behandelnden Oberfläche plan-parallel wiedergibt.In one embodiment of the invention, the metal surface to be treated is grounded and used as a counter electrode for at least one discharge electrode which is dielectrically insulated from the discharge gap for a direct dielectric barrier discharge between the two electrodes. This ensures that no voltage potential builds up on the metal surface, so that it can be easily touched during the preservation process. In particular, a discharge electrode is used as the discharge electrode, which reproduces the surface contours of the surface to be treated in a plane-parallel manner.
Bei einer weiteren erfindungsgemäßen Ausführungsform kann die Plasmabehandlung jedoch auch durch eine direkte Dielektrische-Barriereentladung in einem Entladungsraum oder Entladungsspalt zwischen planparallelen Elektroden erfolgen, von denen zumindest eine elektrisch isoliert ist. Hierbei kann es sich beispielsweise um eine Glaselektrode handeln, die auf einer Seite mit einer leitfähigen Schicht versehen ist.In a further embodiment according to the invention, however, the plasma treatment can also be carried out by a direct dielectric barrier discharge in a discharge space or discharge gap between plane-parallel electrodes, at least one of which is electrically insulated. This can be a glass electrode, for example, which is provided with a conductive layer on one side.
Die Plasmabehandlung kann erfindungsgemäß jedoch auch durch eine indirekte Dielektrische-Barriereentladung erfolgen, bei der die Entladungen benachbart zu der zu behandelnden Oberfläche erfolgen und durch das jeweils eingesetzte anströmende Reaktivgas, beispielsweise durch sogenannte Plasmadüsen, mit der Oberfläche in Kontakt gebracht werden. Als Dielektrikum wird neben dem bereits genannten Glas üblicherweise auch Keramik verwendet.However, the plasma treatment can also be carried out according to the invention by means of an indirect dielectric barrier discharge, in which the discharges take place adjacent to the surface to be treated and are brought into contact with the surface by the inflowing reactive gas used, for example by means of so-called plasma nozzles. In addition to the glass already mentioned, ceramic is also usually used as the dielectric.
Zur Erzeugung der dielektrischen Barriereentladungen wird typischerweise eine Spannung zwischen etwa 1 und 10 kV, insbesondere jedoch etwa 5 kV, mit einer Frequenz zwischen etwa 20 und 200 kHz, insbesondere etwa 30 kHz, verwendet. Anstelle der Hochfrequenz kann in einer entsprechenden Vorrichtung jedoch auch eine wesentlich niedrigere Frequenz zwischen etwa 50 und 60 Hz eingesetzt werden.A voltage between approximately 1 and 10 kV, in particular, however, approximately 5 kV, with a frequency between approximately 20 and 200 kHz, in particular approximately 30 kHz, is typically used to generate the dielectric barrier discharges. Instead of the high frequency, however, a correspondingly lower frequency between approximately 50 and 60 Hz can also be used in a corresponding device.
Die Konservierung der zu behandelnden Oberflächen erfolgt hierbei aus wirtschaftlichen Gründen vorzugsweise kontinuierlich oder quasi-kontinuierlich im Durchlauf.For economic reasons, the surfaces to be treated are preferably preserved continuously or quasi-continuously in a single pass.
Das erfindungsgemäße Verfahren eignet sich insbesondere zur Konservierung metallischer Bänder, insbesondere metallische Stanzgitter als Bandmaterial (Kontakte, Leadframes oder Trägerbänder, Drähte) zur Fertigung von elektronischen Bauteilen (auf Stanzgitter gebondete Halbleiter-Bauelemente, Schalter oder Schaltkontakte, usw.) in den heute üblichen Verarbeitungsformen. Diese Bänder können einfach als Endlosband unter Umgebungsbedingungen kontinuierlich durch eine mit einem Reaktivgas der genannten Art gefüllte geeignete Plasmabehandlungsvorrichtung geführt und dort auf einfache und sehr kostengünstige Art und Weise gegen Oxidationseinflüsse konserviert werden. Das erfindungsgemäße Verfahren ermöglicht jedoch auch eine sehr wirtschaftliche Konservierung von Bandstreifen (Cut Strips) von typisch etwa 100 - 300 mm Länge sowie eine quasi-kontinuierliche Verarbeitung von Einzelteilen, wie z.B. hintereinander angeordnete Leiterplatten oder elektronische Abschirmungsgehäuse, im Durchlauf. Diese können beispielweise auf einem geeigneten Kunststoff-Band aufgebracht sein.The method according to the invention is particularly suitable for the preservation of metallic tapes, in particular metallic lead frames as tape material (contacts, lead frames or carrier tapes, wires) for the production of electronic components (semiconductor components, switches or switch contacts bonded to lead frames) in the processing forms customary today , These belts can simply be fed continuously as an endless belt under ambient conditions through a suitable plasma treatment device filled with a reactive gas of the type mentioned and can be preserved there against oxidation influences in a simple and very inexpensive manner. However, the method according to the invention also enables a very economical preservation of tape strips (cut strips) of typically about 100-300 mm in length and a quasi-continuous processing of individual parts, such as PCBs or electronic shield housings arranged one behind the other, in continuous operation. These can be applied, for example, on a suitable plastic tape.
Durch das erfindungsgemäße Plasmabehandlungsverfahren lassen sich für zahlreiche Anwendungsgebiete auf einfache und kostengünstige Art und Weise Werkstücke mit entsprechend konservierten Metalloberflächen herstellen. Die Oberflächen umfassen hierbei vorzugsweise Kupfer, Nickel, Silber oder deren Legierungen, wie z.B. Neusilber.The plasma treatment method according to the invention makes it possible to produce workpieces with correspondingly preserved metal surfaces in a simple and inexpensive manner for numerous fields of application. The surfaces here preferably comprise copper, nickel, silver or their alloys, such as e.g. German silver.
Weitere Einzelheiten, Merkmale und Vorteile der vorliegenden Erfindung ergeben sich nicht nur aus den zugehörigen Ansprüchen - für sich und/oder in Kombination - sondern auch aus der nachfolgenden Beschreibung dreier bevorzugter erfindungsgemäßer Ausführungsbeispiele in Verbindung mit den zugehörigen Zeichnungen. In den Zeichnungen zeigen: Fig. 1 eine schematische Darstellung einer ersten erfindungsgemäßen Oberflächenkonservierung mittels einer direkten Dielektrischen-Barriereentladung;Further details, features and advantages of the present invention result not only from the associated claims - individually and / or in combination - but also from the following description of three preferred exemplary embodiments according to the invention in conjunction with the associated drawings. The drawings show: 1 shows a schematic representation of a first surface preservation according to the invention by means of a direct dielectric barrier discharge;
Fig. 2 eine schematische Darstellung einer zweiten erfindungsgemäßen Oberflächenkonservierung mittels einer direkten Dielektrischen-Barriereentladung; und2 shows a schematic representation of a second surface preservation according to the invention by means of a direct dielectric barrier discharge; and
Fig. 3 eine schematische Darstellung einer erfindungsgemäßen Oberflächenkonservierung mittels einer indirekten Dielektrischen-Barriereentladung.Fig. 3 is a schematic representation of a surface preservation according to the invention by means of an indirect dielectric barrier discharge.
Fig. 1 zeigt ein Kupferlegierungsband 10 als Werkstück, das in Form eines Endlosbandes bei Umgebungstemperatur und Umgebungsdruck mit etwa 1 m/min in Richtung des Pfeils 12 von rechts nach links bewegt wird. Das Kupferlegierungsband 10 ist geerdet, so dass sich während des Konservierungsprozesses auf der Metalloberfläche 10a kein Spannungspotential aufbauen und es von einer Bedienungsperson problemlos berührt werden kann, um gegebenenfalls in den Verarbeitungsprozess einzugreifen..1 shows a copper alloy strip 10 as a workpiece, which is moved in the form of an endless strip at ambient temperature and pressure at about 1 m / min in the direction of arrow 12 from right to left. The copper alloy strip 10 is grounded, so that no voltage potential builds up on the metal surface 10a during the preservation process and an operator can easily touch it in order to intervene in the processing process if necessary.
Gegenüberliegend zu dem Kupferlegierungsband 10 befindet sich eine parallel dazu angeordnete Entladungselektode 14, die mit dem Kupferlegierungsband 10 einen schmalen dielektrischen Entladungsraum oder Entladungsspalt 16 von etwa 2 mm Höhe bildet.Opposite to the copper alloy strip 10 there is a discharge electrode 14 arranged parallel to it, which forms with the copper alloy strip 10 a narrow dielectric discharge space or discharge gap 16 of approximately 2 mm in height.
In dem Entladungsspalt 16 strömt reines CO2 aus einer (nicht dargestellten) Reaktivgas- Versorgungseinrichtung, wie z.B. eine handelsübliche Gasflasche, in Richtung des Pfeils 18 von links nach rechts durch den Entladungsspalt 16, um entstehende Reaktionsprodukte aus dem Entladungsspalt 16 abzuführen und frisches Kohlendioxid an die zu konservierende Oberfläche 10a heranzuführen. Die Strömungsgeschwindigkeit beträgt hierbei etwa 0,1 m/s. Je nach Anwendungszweck kann dieser Wert jedoch in gewissen Bereichen variieren. So können bei manchen Anwendungen beispielsweise auch geringere Strömungsgeschwindigkeiten von bis zu etwa 0,05 m/s und weniger oder auch höhere Strömungsgeschwindigkeiten von bis zu etwa 1 m/s und mehr eingestellt werden. Anstelle des Kohlendioxids kann auch Stickstoff aus handelsüblichen Gasflaschen oder eine CO2/N2- Mischung mit einem beliebigen Mischungsverhältnis verwendet werden. Zudem ist auch die Zudosierung anderer Gase, wie z.B. Ar, möglich.In the discharge gap 16, pure CO 2 flows from a reactive gas supply device (not shown), such as a commercially available gas bottle, in the direction of arrow 18 from left to right through the discharge gap 16 in order to discharge reaction products formed from the discharge gap 16 and to supply fresh carbon dioxide to bring up the surface 10a to be preserved. The flow rate is about 0.1 m / s. Depending on the application, this value can vary in certain areas. For example, in some applications, lower flow velocities of up to about 0.05 m / s and less or higher flow velocities of up to about 1 m / s and more can be set. Instead of carbon dioxide, nitrogen from commercially available gas bottles or a CO 2 / N 2 mixture with any mixing ratio can also be used. It is also possible to add other gases, such as Ar.
Die Entladungselektode 14 umfaßt eine etwa 5 mm dicke Glasscheibe 14a (wobei jedoch gegebenenfalls auch eine Keramikscheibe als Dielektrikum verwendbar ist) mit einer rückseitig aufgebrachten leitenden Schicht 14b, an der eine hochfrequente Wechselspannung von typischerweise etwa 5 kV und einer Frequenz von typischerweise etwa 30 kHz anliegt. Bei dieser Hochfrequenzspannung werden in dem Entladungsspalt 16 zwischen der Glasscheibe 14a und der Oberfläche 10a des Kupferlegierungsbandes 10 elektrische Entladungen gezündet, die als Entladungsfilamente 20 dargestellt sind. Diese Entladungsfilamente 20 zünden durch die anliegende Wechselspannung ständig neu und an anderer Stelle, so dass in dem Entladungsspalt 16 im zeitlichen Mittel ein räumlich homogenes Plasma vorhanden ist. Dieses Plasma wechselwirkt mit der Oberfläche 10a des Kupferlegierungsbandes 10 und konserviert diese selbst bei höheren Umgebungstemperaturen zuverlässig gegen die Bildung einer unerwünschten Oxidationsschicht oder gegen ein Anlaufen, ohne dass die Oberfläche 10a hierbei angegriffen oder in ihren gewünschten anwendungstechnischen Eigenschaften für nachfolgende mikroelektronische Be- oder Verarbeitungsprozesse nachteilig verändert würde. Hierdurch entfällt eine im Stand der Technik an sich üblicherweise erforderliche vorgeschaltete Reinigung der Metalloberfläche 10a von zwischenzeitlich gebildeten Oxidschichten.The discharge electrode 14 comprises an approximately 5 mm thick glass pane 14a (although a ceramic pane can optionally also be used as a dielectric) with a conductive layer 14b applied on the back, to which a high-frequency AC voltage of typically approximately 5 kV and a frequency of typically approximately 30 kHz is applied , At this high-frequency voltage, electrical discharges are made in the discharge gap 16 between the glass pane 14a and the surface 10a of the copper alloy strip 10 Discharges ignited, which are shown as discharge filaments 20. These discharge filaments 20 constantly re-ignite due to the alternating voltage present, so that a spatially homogeneous plasma is present in the discharge gap 16 on average over time. This plasma interacts with the surface 10a of the copper alloy strip 10 and reliably preserves it even at higher ambient temperatures against the formation of an undesired oxidation layer or against tarnishing, without the surface 10a being attacked or disadvantageous in terms of its desired application properties for subsequent microelectronic treatment or processing processes would be changed. This eliminates the need for prior cleaning of the metal surface 10a, which has been formed in the interim, from oxide layers that have formed in the meantime.
Wie bereits erwähnt, bewirkt die Plasmabehandiung zudem auch eine sehr erwünschte zusätzliche Reinigung der Metalloberfläche 10a von eventuell anhaftenden organischen Verunreinigungen, wie z.B. Öle oder Fette, und führt damit nicht nur zu einer entsprechenden Verbesserung der Oberflächengüte, sondern macht auch zusätzliche Reinigungsschritte zur Beseitigung dieser organischen Verunreinigungen überflüssig.As already mentioned, the plasma treatment also brings about a very desirable additional cleaning of the metal surface 10a from any adhering organic contaminants, such as e.g. Oils or greases, and not only leads to a corresponding improvement in the surface quality, but also makes additional cleaning steps for removing these organic contaminants superfluous.
Fig. 2 zeigt eine beispielhafte, zweiseitige erfindungsgemäße Oberflächenkonservierung eines Kupferlegierungsbandes 10, das wieder mit einer Geschwindigkeit von etwa 1m/s von einer Abwickelhaspel 22 über zwei beanstandete gegensinnig drehende Umlenkhaspeln 24a, 24b auf eine Aufwickelhaspel 26 aufgewickelt wird. Beabstandet zu den beiden Umlenkhaspeln 24a, 24b sind jeweils drei dielektrisch isolierte Entladungselektroden 14 angeordnet, wobei sich die der Umlenkhaspel 24a zugeordneten drei Entladungselektroden 14 oberhalb der Umlenkhaspel 24a und die der Umlenkhaspel 24b zugeordneten drei Entladungselektroden 14 unterhalb der Umlenkhaspel 24b befinden.2 shows an exemplary, two-sided surface preservation according to the invention of a copper alloy strip 10, which is again wound onto a winding reel 26 at a speed of approximately 1 m / s from a decoiler 22 via two counter-rotating deflection reels 24a, 24b. Three dielectrically insulated discharge electrodes 14 are arranged at a distance from the two deflection reels 24a, 24b, the three discharge electrodes 14 assigned to the deflection reel 24a being located above the deflection reel 24a and the three discharge electrodes 14 assigned to the deflection reel 24b being located below the deflection reel 24b.
Die beiden Umlenkhaspeln 24a und 24b bilden mit den ihnen jeweils zugeordneten drei Entladungselektroden 14 je einen Entladungsraum 16a, 16b, durch die man jeweils aus einer (nicht dargestellten) Gasversorgungseinrichtung in Richtung der Pfeile 18 Stickstoff einströmen lässt, um entstehende Reaktionsprodukte aus den beiden Entladungsräumen 16a, 16b abzuführen und frischen Stickstoff an die zu konservierende Oberflächen 10a heranzuführen. Die Strömungsgeschwindigkeit beträgt hierbei wiederum etwa 0,1 m/s. Anstelle des Stickstoffs kann auch Kohlendioxid aus handelsüblichen Gasflaschen verwendet werden. Gegebenenfalls können auch Mischungen beider Gase eingesetzt werden. Das Kupferlegierungsband 10 wird nun so über der ersten und unter der zweiten Umlenkhaspel 24a bzw. 24b durch den ersten und zweiten Entladungsraum 16a bzw. 16b geführt, dass in dem ersten Entladungsraum 16a zunächst seine Oberseite und dann in dem zweiten Entladungsraum 16b seine Unterseite mit den elektrischen Entladungen 20 wechselwirkt, die durch Anlegen einer geeigneten Hochfrequenzspannung an die Entladungselektroden 14 in den beiden Endladungsräumen 16a, 16b erzeugt werden. Hierdurch wird das Kupferlegierungsband 10 beidseitig mit einem erfindungsgemäßen Oberflächenschutz gegen eine Oxidation oder ein Anlaufen versehen.The two deflection reels 24a and 24b, together with the three discharge electrodes 14 assigned to them, each form a discharge space 16a, 16b, through which nitrogen can be flowed in from a gas supply device (not shown) in the direction of the arrows 18 in order to produce reaction products from the two discharge spaces 16a , 16b and to bring fresh nitrogen to the surfaces 10a to be preserved. The flow rate is again about 0.1 m / s. Instead of nitrogen, carbon dioxide from standard gas cylinders can also be used. If necessary, mixtures of both gases can also be used. The copper alloy strip 10 is now guided over the first and under the second deflection reel 24a or 24b through the first and second discharge space 16a or 16b in such a way that in the first discharge space 16a its top side and then in the second discharge space 16b its bottom side with the interacts electrical discharges 20, which are generated by applying a suitable high-frequency voltage to the discharge electrodes 14 in the two discharge spaces 16a, 16b. As a result, the copper alloy strip 10 is provided on both sides with a surface protection according to the invention against oxidation or tarnishing.
Die Plasmabehandlung einer zu konservierenden Werkstückoberfläche kann erfindungsgemäß jedoch auch durch eine direkte Dielektrische-Barriereentladung zwischen planparallelen Elektroden erfolgen, von denen wiederum zumindest eine bezüglich eines zwischen ihnen gebildeten dielektrischen Entladungsraums elektrisch isoliert ist. Als Elektroden können hierbei beispielsweise wiederum Glas- oder Keramikscheiben dienen, die auf ihrer jeweils abgewandten Seite mit einer leitfähigen Schicht versehen sind. Das zu konservierende Werkstück wird hierbei einfach in den Entladungsraum zwischen den beiden Entladungselektroden eingeführt.However, according to the invention, the plasma treatment of a workpiece surface to be preserved can also be carried out by a direct dielectric barrier discharge between plane-parallel electrodes, of which in turn at least one is electrically insulated with respect to a dielectric discharge space formed between them. Glass or ceramic panes, which are provided with a conductive layer on their respective opposite side, can in turn serve as electrodes. The workpiece to be preserved is simply inserted into the discharge space between the two discharge electrodes.
Dreidimensionale Werkstücke können beispielsweise jedoch auch in einer Formelektrode angeordnet werden, welche die Konturen des Werkstücks plan-parallel wiedergibt.However, three-dimensional workpieces can, for example, also be arranged in a formula electrode which reproduces the contours of the workpiece in a plane-parallel manner.
Fig. 3 veranschaulicht beispielhaft die erfindungsgemäße Oberflächenkonservierung eines Werkstücks 10 mit einer Metalloberfläche 10a mittels einer indirekten Dielektrischen- Barriereentladung. Benachbart zu der zu konservierenden Metalloberfläche 10a sind eine Entladungselektrode 14 mit einer zugeordneten Gegenelektrode 14' angeordnet, wobei die Entladungselektrode 14 bezüglich eines zwischen den Elektroden 14,14' gebildeten elektrischen Entladungsraums 16 durch ein Dielektrikum 14a elektrisch isoliert ist. An der Entladungselektrode 14 liegt wiederum eine Hochfrequenzspannung der genannten Art an, so dass in dem Entladungsraum 16 ständig elektrische Entladungen gezündet werden. Diese Entladungen werden durch Kohlendioxid, das in Richtung des Pfeils 18 durch den Entladungsraum 16 gegen die Metalloberfläche 10a strömt, mit der Metalloberfläche 10a in Kontakt gebracht, mit der sie wiederum auf die bekannte Art und Weise wechselwirken und dadurch die gewünschte Oberflächenkonservierung bewirken. 3 exemplarily illustrates the surface preservation of a workpiece 10 with a metal surface 10a according to the invention by means of an indirect dielectric barrier discharge. A discharge electrode 14 with an associated counter electrode 14 'is arranged adjacent to the metal surface 10a to be preserved, the discharge electrode 14 being electrically insulated by a dielectric 14a with respect to an electrical discharge space 16 formed between the electrodes 14, 14'. A high-frequency voltage of the type mentioned is in turn applied to the discharge electrode 14, so that electrical discharges are continuously ignited in the discharge space 16. These discharges are brought into contact with the metal surface 10a by means of carbon dioxide, which flows in the direction of the arrow 18 through the discharge space 16 against the metal surface 10a, with which they in turn interact in the known manner and thereby effect the desired surface preservation.

Claims

Patentansprüche claims
1. Verfahren zur Konservierung von Metalloberflächen (10a), dadurch gekennzeichnet, dass die Metalloberflächen (10a) einer Plasmabehandlung in einer CO2- und/oder N2- haltigen Reaktivgasatmosphare unterzogen werden.1. A method for the preservation of metal surfaces (10a), characterized in that the metal surfaces (10a) are subjected to a plasma treatment in a reactive gas atmosphere containing CO 2 and / or N 2 .
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass Metalloberflächen (10a) konserviert werden, die Kupfer, Nickel, Silber oder deren Legierungen umfassen.2. The method according to claim 1, characterized in that metal surfaces (10a) are preserved, which comprise copper, nickel, silver or their alloys.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man das Reaktivgas relativ zur Metalloberfläche (10a) strömen lässt.3. The method according to claim 1 or 2, characterized in that the reactive gas is allowed to flow relative to the metal surface (10a).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass eine Strömungsgeschwindigkeit zwischen 0,05 und 1 m/s eingestellt wird.4. The method according to claim 3, characterized in that a flow rate between 0.05 and 1 m / s is set.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Plasmabehandlung eine Dielektrische-Barriereentladung unter Atmosphärendruck verwendet wird.5. The method according to any one of the preceding claims, characterized in that a dielectric barrier discharge under atmospheric pressure is used for the plasma treatment.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die zu behandelnde Metalloberfläche (10a) geerdet und bei der Dielektrischen-Barriereentladung als Gegenelektrode (10) für zumindest eine Entladungselektrode (14) verwendet wird.6. The method according to claim 5, characterized in that the metal surface to be treated (10a) is grounded and used in the dielectric barrier discharge as a counter electrode (10) for at least one discharge electrode (14).
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Entladungselektrode (14) eine Formelektode verwendet wird, welche die Oberflächenkonturen plan-parallel wiedergibt. 7. The method according to claim 6, characterized in that a formula electrode is used as the discharge electrode (14), which reproduces the surface contours plane-parallel.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Plasmabehandlung durch eine direkte Dielektrische-Barriereentladung zwischen planparallelen Elektroden (14,14') erfolgt.8. The method according to claim 5, characterized in that the plasma treatment is carried out by a direct dielectric barrier discharge between plane-parallel electrodes (14, 14 ').
9. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Plasmabehandlung durch eine indirekte Dielektrische-Barriereentladung erfolgt, bei der die Entladungen durch das Reaktivgas mit der Oberfläche (10a) in Kontakt gebracht werden.9. The method according to claim 5, characterized in that the plasma treatment is carried out by an indirect dielectric barrier discharge, in which the discharges are brought into contact with the surface (10a) by the reactive gas.
10. Verfahren nach einem der Ansprüche 5 - 9, dadurch gekennzeichnet, dass als Dielektrikum (14a) Glas oder Keramik verwendet wird.10. The method according to any one of claims 5-9, characterized in that glass or ceramic is used as the dielectric (14a).
11. Verfahren nach einem der Ansprüche 5 - 10, dadurch gekennzeichnet, dass eine Hochspannung zwischen 1 und 10 kV mit einer Frequenz zwischen 20 und 200 kHz verwendet wird.11. The method according to any one of claims 5-10, characterized in that a high voltage between 1 and 10 kV with a frequency between 20 and 200 kHz is used.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Konservierung kontinuierlich oder quasi-kontinuierlich im Durchlauf erfolgt.12. The method according to any one of the preceding claims, characterized in that the preservation is carried out continuously or quasi-continuously in one pass.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass metallische Bänder (10), Bandstreifen (Cut Strips), Leiterplatten oder hintereinander angeordnete Einzelteile verarbeitet werden.13. The method according to claim 12, characterized in that metallic strips (10), strip strips (cut strips), printed circuit boards or individual parts arranged one behind the other are processed.
14. Werkstück (10) mit einer durch ein Plasmabehandlungsverfahren nach einem der vorhergehenden Ansprüche konservierten Metalloberfläche (10a).14. Workpiece (10) with a metal surface (10a) preserved by a plasma treatment method according to one of the preceding claims.
15. Werkstück nach Anspruch 14, dadurch gekennzeichnet, dass die Metalloberfläche (10a) Kupfer, Nickel, Silber oder deren Legierungen umfasst. 15. Workpiece according to claim 14, characterized in that the metal surface (10a) comprises copper, nickel, silver or their alloys.
PCT/DE2003/003991 2002-12-06 2003-12-03 Method for the conservation of metal surfaces WO2004053185A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003296518A AU2003296518A1 (en) 2002-12-06 2003-12-03 Method for the conservation of metal surfaces
EP03812556A EP1570100A1 (en) 2002-12-06 2003-12-03 Method for the conservation of metal surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10257344.1 2002-12-06
DE2002157344 DE10257344A1 (en) 2002-12-06 2002-12-06 Process for the preservation of metal surfaces

Publications (1)

Publication Number Publication Date
WO2004053185A1 true WO2004053185A1 (en) 2004-06-24

Family

ID=32477458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003991 WO2004053185A1 (en) 2002-12-06 2003-12-03 Method for the conservation of metal surfaces

Country Status (4)

Country Link
EP (1) EP1570100A1 (en)
AU (1) AU2003296518A1 (en)
DE (1) DE10257344A1 (en)
WO (1) WO2004053185A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133524A3 (en) * 2005-06-14 2007-04-12 Peter Doncheff Dineff Method for plasma chemical surface modification
WO2007080102A1 (en) 2006-01-14 2007-07-19 Fachhochschule Hildesheim/Holzminden/Göttingen Method and apparatus for treating a surface, in particular in order to free it of impurities
WO2007141032A1 (en) * 2006-06-07 2007-12-13 Fachhochschule Hildesheim/Holzminden/Göttingen Process and apparatus for selective inducement of a dissociation of molecules with monochromatic light
DE102007037406A1 (en) * 2007-08-08 2009-06-04 Neoplas Gmbh Method and device for plasma assisted surface treatment
EP3377668A4 (en) * 2015-11-22 2019-07-17 Atmospheric Plasma Solutions, Inc. Method and device for promoting adhesion of metallic surfaces

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024027B4 (en) 2007-05-22 2011-01-05 Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - Method and device for the combined treatment of a surface with a plasma and with electromagnetic radiation and their application
DE102007033701A1 (en) 2007-07-14 2009-01-22 Xtreme Technologies Gmbh Method and arrangement for cleaning optical surfaces in plasma-based radiation sources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332866A1 (en) * 1993-09-27 1995-03-30 Fraunhofer Ges Forschung Surface treatment with barrier discharge
DE19717698A1 (en) * 1997-04-26 1998-10-29 Fraunhofer Ges Forschung Method and device for cleaning activation of electrical conductor tracks and circuit board surfaces
DE10031002A1 (en) * 2000-06-30 2002-01-10 Ccr Gmbh Beschichtungstechnolo Production of thin oxide or nitride layers used as tunnel barrier material for magnetoresistive sensors comprises using a plasma beam to convert the substrate into the corresponding oxide or nitride and adjusting the reaction speed
WO2003093526A2 (en) * 2002-04-29 2003-11-13 Fachhochschule Hildesheim/Holzmin Den/Göttingen Method and device for treating the outer surface of a metal wire, particularly for carrying out a coating pretreatment.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332866A1 (en) * 1993-09-27 1995-03-30 Fraunhofer Ges Forschung Surface treatment with barrier discharge
DE19717698A1 (en) * 1997-04-26 1998-10-29 Fraunhofer Ges Forschung Method and device for cleaning activation of electrical conductor tracks and circuit board surfaces
DE10031002A1 (en) * 2000-06-30 2002-01-10 Ccr Gmbh Beschichtungstechnolo Production of thin oxide or nitride layers used as tunnel barrier material for magnetoresistive sensors comprises using a plasma beam to convert the substrate into the corresponding oxide or nitride and adjusting the reaction speed
WO2003093526A2 (en) * 2002-04-29 2003-11-13 Fachhochschule Hildesheim/Holzmin Den/Göttingen Method and device for treating the outer surface of a metal wire, particularly for carrying out a coating pretreatment.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133524A3 (en) * 2005-06-14 2007-04-12 Peter Doncheff Dineff Method for plasma chemical surface modification
WO2007080102A1 (en) 2006-01-14 2007-07-19 Fachhochschule Hildesheim/Holzminden/Göttingen Method and apparatus for treating a surface, in particular in order to free it of impurities
WO2007141032A1 (en) * 2006-06-07 2007-12-13 Fachhochschule Hildesheim/Holzminden/Göttingen Process and apparatus for selective inducement of a dissociation of molecules with monochromatic light
DE102007037406A1 (en) * 2007-08-08 2009-06-04 Neoplas Gmbh Method and device for plasma assisted surface treatment
EP3377668A4 (en) * 2015-11-22 2019-07-17 Atmospheric Plasma Solutions, Inc. Method and device for promoting adhesion of metallic surfaces
US11041235B2 (en) 2015-11-22 2021-06-22 Atmospheric Plasma Solutions, Inc. Method and device for promoting adhesion of metallic surfaces
US11384420B2 (en) 2015-11-22 2022-07-12 Atmospheric Plasma Solutions, Inc. Method and device for promoting adhesion of metallic surfaces

Also Published As

Publication number Publication date
DE10257344A1 (en) 2004-07-08
EP1570100A1 (en) 2005-09-07
AU2003296518A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
DE102005029360B4 (en) Two methods for continuous atmospheric pressure Plasma treatment of workpieces, in particular material plates or sheets
DE4022401A1 (en) METHOD FOR TREATING THE SURFACE OF A SUBSTRATE
EP1019945B1 (en) Method and device for surface-treating substrates
EP1570100A1 (en) Method for the conservation of metal surfaces
DE19717698A1 (en) Method and device for cleaning activation of electrical conductor tracks and circuit board surfaces
EP0402798A2 (en) Coating device
DE19546569A1 (en) Solder connection method for large scale integration and power semiconductor
DE19702124A1 (en) Workpiece surface cleaning, activating, wetting and/or coating
EP0158318B1 (en) Process for making tin oxide interference layers particularly of heat reflecting coated glass panes, by reactive magnetron pulverisation, and heat reflecting glass plane provided with a tin oxide layer according to it
DE2134377C3 (en) Process for the deposition of thin layers on metallic workpieces by means of cathode sputtering
DE19753684C1 (en) Device for treating workpieces in a low-pressure plasma
WO2008055617A1 (en) Device for the pre-treatment of substrates
AT504466B1 (en) METHOD AND DEVICE FOR DEGASSING OBJECTS OR MATERIALS USING THE OXIDATIVE RADICALS
DE2158274A1 (en) INDUCTION HEATING COIL FOR CRUCIBLE-FREE ZONE MELTING OF BARS MADE OF SEMICONDUCTOR MATERIAL
DE3508005A1 (en) METHOD AND DEVICE FOR CLEANING THE PINS OF A "DUAL-IN-LINE" SEMICONDUCTOR PACK BEFORE SOLDERING
DE3405478A1 (en) Metallic flat profile, especially a metal strip
EP1513625B1 (en) Method and device for treating the outer surface of a metal wire, particularly for carrying out a coating pretreatment
EP1292725B1 (en) Method for manufacturing products
EP1674190A1 (en) Method for laser welding or laser brasing of aluminium and aluminium alloys
DE695645C (en) Process for the production of a cathode for high-voltage tubes with auto-electronic discharge
EP1575078A1 (en) Method for surface treatment of substrates
DD211018A1 (en) METHOD FOR PRODUCING FLAT PLASMA DISPLAY FIELDS
DE102018220173A1 (en) Device and method for producing reduced metal surfaces
DE3037586A1 (en) Welding of metal wire or strip onto edge of substrate strip - by roller seam resistance welding machine using two pairs of guide and electrode rollers
CH643303A5 (en) Appliance for coating surfaces by means of cathode sputtering

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003812556

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003812556

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP