WO2004051081A1 - Wind turbine comprising pivot-mounted wind sensors - Google Patents

Wind turbine comprising pivot-mounted wind sensors Download PDF

Info

Publication number
WO2004051081A1
WO2004051081A1 PCT/FR2003/003504 FR0303504W WO2004051081A1 WO 2004051081 A1 WO2004051081 A1 WO 2004051081A1 FR 0303504 W FR0303504 W FR 0303504W WO 2004051081 A1 WO2004051081 A1 WO 2004051081A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
sensors
wind turbine
turbine according
fixed
Prior art date
Application number
PCT/FR2003/003504
Other languages
French (fr)
Inventor
Marcel Mathou
Original Assignee
Marcel Mathou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcel Mathou filed Critical Marcel Mathou
Priority to AU2003294097A priority Critical patent/AU2003294097A1/en
Publication of WO2004051081A1 publication Critical patent/WO2004051081A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/216Rotors for wind turbines with vertical axis of the anemometer type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/218Rotors for wind turbines with vertical axis with horizontally hinged vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/402Transmission of power through friction drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/74Adjusting of angle of incidence or attack of rotating blades by turning around an axis perpendicular the rotor centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • Wind turbine with wind sensors mounted on a swing Wind turbine with wind sensors mounted on a swing.
  • the present invention relates to a wind turbine.
  • a wind turbine comprising a shaft mounted vertically to rotate on a frame, horizontal support arms fixed to the shaft and extending radially with respect thereto, and wind sensor panels mounted between the support arms for pivot around vertical axes, each wind sensor panel having a width slightly greater than the distance between the pivot axes of the wind sensor panels, so that when the wind turbine is subjected to a wind in a determined direction, half of the wind sensor panels receive. the wind on a f which tends to support the wind sensor panels on each other in a vertical plane containing the support arms while the other half of the wind sensor panels float freely in the direction of the wind.
  • wind turbines Due to the considerable difference in surface area between the part of the wind turbine that captures the wind by moving in the same direction as it and the part of the wind turbine that goes upwind, the wind turbine described in this document seems extremely satisfactory from the point of view of the energy collected which can be transmitted to a pump or to a generator.
  • wind turbines are by definition intended for use in windy regions. However, there is no windy region in which the wind is regular. On the contrary, all the windy regions known to date are subject to winds of varying powers. In addition, the regions with the strongest wind, which are theoretically the most sought-after regions to collect a significant amount of energy, are hampered. The regions where the variations in wind power are the most significant, which results in gusts of wind on the wind turbines installed in these regions.
  • An object of the present invention is to provide a wind turbine having a structure allowing both to collect a significant part of the wind energy while retaining a flexibility of operation avoiding deterioration of the wind turbine during an abnormal increase in wind power, whatever be the circumstances of this increase in power.
  • a wind turbine comprising a shaft mounted vertically to rotate on a frame, horizontal support arms fixed to the shaft and extending radially by relative thereto and wind sensors fixed to the support arm, the wind sensors being mounted on the support arms to pivot freely around a horizontal axis and comprising a front wall defining a concave face and a convex face.
  • each of the wind sensors takes an equilibrium position which is a function of the power of the wind which it receives, the wind sensor retracting all the more as the wind is stronger, while moreover the difference of wind flow between the concave face and the convex face ensures a differential force between the part of the wind turbine going down the wind and the part of the wind machine going up the wind so that substantial energy is captured.
  • the wind sensors are spaced from each other, and are preferably arranged in a checkerboard pattern. This minimizes wind deflection - by wind sensors, and as a result, we minimize the backdraft and wind swirls that are usually created by conventional wind turbine structures and lead to deterioration during jumps. wind. BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic sectional view through a vertical axial plane of a first embodiment of the wind turbine according to the invention
  • FIG. 2 is a partial schematic top view of the wind turbine according to the first embodiment of the invention
  • FIG. 3 is a perspective view of a wind sensor according to the first embodiment of the invention
  • FIG. 4 is a sectional view along the plane
  • FIG. 5 is a perspective view of a third embodiment of wind sensor according to the invention.
  • the wind turbine comprises a shaft 1 illustrated in the form of a metal tube of circular section mounted vertically to rotate around its axis on a frame element 2 comprising a concrete block 3 in which is fixed a housing 4 comprising different centering and support bearings for the shaft 1.
  • a circular plate 5 is fixed to the shaft 1 in the vicinity of the base thereof.
  • the plate 5 - is supported by wheels 6 carried by a support structure 7 fixed under the plate 5.
  • the wheels 6 are supported on a raceway 8 produced in a second frame element comprising a solid concrete 9 in the shape of a circular crown.
  • each generator 10 comprises a drive wheel 11 which bears on the inner edge dull circular rail 12 carried by the plate 5. It is also possible to arrange the generators radially on a support at the edge of the plate 5, the drive wheel then bearing directly under the plate 5. This arrangement allows 'save the very expensive speed multipliers which are usually necessary when the generator is connected to the central shaft of the wind turbine, in particular as described in the aforementioned document.
  • the wind turbine comprises a series of support arms 13 extending horizontally along radii with respect to the central shaft 1 and integral in rotation with the latter.
  • the support arms 13, which here are formed of metal tubes of circular section, are on the one hand embedded in openings 14 made in the central shaft 1, and are d 'other hand connected to each other and to the plate 5 by spacers 15 extending in a vertical plane, and by spacers 16 extending in a horizontal plane ( Figure 2).
  • the spacers 15 and 16 are preferably formed by beams or cables.
  • the spacers 15 form cells 17 arranged in a checkerboard pattern and separating wind sensors 18 mounted to pivot freely on the horizontal support arms 13 as will be described below.
  • a wind sensor has a front wall formed of two wall elements 19, made for example from polyethylene plates fixed perpendicularly to each other at a V having an edge 20 which extends parallel to the corresponding support arm 13.
  • the wall elements 19 thus delimit a concave face 21 and a convex face 22 of the wind sensor 18.
  • the sensors On the side of the concave face 21, the sensors include spacers 23 which are fixed to the wall elements 19 perpendicular thereto.
  • the two wall elements 19 are of identical dimensions and the spacers 23 are square with cut corners.
  • the spacers 23 are preferably rigidly connected by connecting bars 43.
  • Counterweights 24, here in the form of discs with bevelled edges, are fixed to the spacers 23 in an appropriate position so that at rest as illustrated in FIG. 3, the wall elements 19 extend substantially at 45 ° relative to a vertical plane.
  • the upper edge of each wind sensor 18 is mounted to pivot on the corresponding support arm 13 by flanges 25, preferably also made of polyethylene to allow silent rotation of the wind sensor on the corresponding support arm, each flange 25 being disposed straddling a support arm 13 and comprising wings 26 extending on either side of the upper wall element 19 to which the wings 26 are fixed by fixing means 27, such as bolts or rivets which pass through the wings 26 and the wall elements 19.
  • each wind sensor 18 takes an equilibrium position which is a function of the power of the wind, the geometry of the wind sensor, the weight of each of the components, and the arrangement of the counterweight 24.
  • the wind sensors 18 assume an equilibrium position in which the front wall of each wind sensor extends on one side of the arm corresponding support 13 while the spacers 23 project on an opposite side as illustrated by FIG. 2 on which the wind sensors 18 have been shown only for the arms supports 13 arranged at 0 °, 45 °, 90 ° and 135 ° relative to the direction of the wind represented by arrows in thick line.
  • the direction of rotation of the wind turbine has also been shown in Figure 2 by a thick line.
  • the wind sensors 18 of the right part of the figure therefore move in the direction of the wind, that is to say that they descend the wind, while the wind sensors of the left part of Figure 2 go up in the wind.
  • the flow of the wind has been represented by a dashed line for a single wind sensor 18.
  • the wind sensors which are in the wind relative to the shaft 1 that is to say those which are in the upper half of the figure, receive the wind in an exactly symmetrical manner with respect to the sensors which are downwind, ie in the lower half of the figure with respect to the shaft 1.
  • the sensors at 0 ° with respect to the wind direction are therefore neutral with respect to the rotation drive of the wind turbine.
  • the sensors arranged at 45 ° in the downward direction the wind is deflected by the spacers 23 to be channeled in a part of the concave face of the wind sensors.
  • wind sensors are therefore effective for driving the wind turbine in rotation.
  • the sensors arranged in the same orientation but in the upward direction have their face convex to the wind so that the latter is deflected by exerting on the wind sensors a much weaker force than the wind sensors in the downward direction.
  • the downwind sensors receive the wind on the entire concave face while the upwind sensors receive the wind on the convex face so that the balance of forces is very largely favorable to a rotary drive of the wind turbine.
  • the balance of forces is identical to that of the sensors arranged at 45 °.
  • the wind sensors pivot around the support arms to a position where the downwind sensors are practically in a symmetrical position with the windward sensors, so that on the one hand the sensors all have surfaces inclined favorably for a flow of the wind, which avoids the application of too great a force on the wind sensors, and on the other hand the forces applied to the sensors descending the wind are substantially identical to the forces applied to the windward sensors, so that the wind turbine tends to slow down in spite of the increase in wind force and a runaway of the wind turbine is avoided unlike the devices produced previously.
  • FIG. 4 illustrates a second embodiment of the wind sensors.
  • the wind sensors 41 comprise two spacers 28 having front edges 29 extending perpendicular to each other, and at 45 ° relative to the vertical.
  • Two corrugated sheet plates 30 are fixed along the edges 29 by screws 31 fixed in the thickness of the spacers 28.
  • the spacers 28 are rigidly connected by connecting bars 44.
  • the corrugations of the corrugated sheet plates 30 extend perpendicular to the plane of the spacers 28.
  • the front edges 32 of the two corrugated sheets 30 are spaced from each other and define a rectangular opening 33 substantially halfway up the wind sensor.
  • the wind sensor is fixed to the support arm 13 by triangular gussets 34 having an oblong opening 35 which opens onto the base of the gusset 34 in a to allow the engagement of the gusset 34 on the bar 13, the gusset 34 being then appropriately fixed to a spacer 28 by bolts or rivets 36 which pass through the gussets 34 as well as the spacers 28.
  • the spacers 28 and the gussets 34 are preferably made from polyethylene plates.
  • the corrugated sheets 30 provide braking and therefore increased compression of the wind entering the wind sensor through the concave face while the opening 33 allows the compressed air to escape without creating overpressure at the interior of the cavity delimited by the internal faces of the corrugated sheet plates 30.
  • the dimensions of the corrugated sheet plates 30 as well as the dimensions of the opening 33 will be adapted as a function of the average force of the wind in the area in which the wind turbine is located. In areas of relatively low wind, and in which the wind swings are of low amplitude, it is possible to extend the lower corrugated sheet along the lower edge of the spacer 28 in order to increase the surface of capture of the wind when the sensor is slightly inclined towards the front relative to its equilibrium position at rest illustrated in FIG. 4. As in the previous embodiment, the spacers 28 can be fitted with counterweights making it possible to adjust the balance of the sensors of wind in different conditions of use.
  • FIG. 5 illustrates a third embodiment of the wind sensor 42 in which the front wall is produced by a corrugated sheet plate 37 formed in an arc of a circle and held in this form by horizontal partitions 38 fixed along the edges upper and lower of the corrugated sheet plate 37.
  • the corrugations are arranged vertically.
  • the wind sensor also comprises two spacers 39 fixed on the one hand to the front wall 37 and on the other hand to the end plates 38.
  • the spacers 39 ensure the rigidity of the assembly and also serve to suspend the wind sensor to a support arm 13 by means of flanges 40 fixed to the spacers 39. Due to its flatter shape than the previous embodiments, this third embodiment will be better suited to regions in which the wind has a high speed may be subject to strong variations.
  • the wall elements forming the front wall have been described in an arrangement at 90 ° relative to each other, the sensors according to the invention can be produced with wall elements forming a different angle, a larger angle providing a sensor whose concavity will be less pronounced, which is less favorable from the point of view of the energy transmitted to the wind turbine, but which will offer less resistance to wind when the sensor is lifted by a strong wind, which will minimize the risk of deterioration when the wind turbine is subjected to a strong wind.
  • the second embodiment it is also possible to cover the outside face of the corrugated sheet plates 30 with plates with a smooth surface in order to minimize the friction of the wind and to favor its deflection when the convex face is facing the wind. (wind sensors).
  • the cells immediately adjacent to the shaft 1 do not include wind sensors. Given the small distance of these cells from the axis of rotation of the shaft 1, the installation of wind sensors in this part of the wind turbine would increase the wind resistance without bringing a significant increase in the power supplied to the wind turbine. It is therefore preferable to let the wind flow freely in this part of the wind turbine.
  • the shaft 1 has been described according to an embodiment from a tube of circular section, this tree can be made in any polygonal section and be made in the form of an openwork metal frame minimizing the wind resistance.
  • the wind sensors according to the invention can be produced according to structures and with extremely varied materials, including sensors of wooden wind, the front wall being able to be realized by assemblies of wooden boards mounted according to crosspieces in order to recover part of the wind energy while allowing a passage of the wind through the collectors so as to avoid backflow of the wind with all the problems that arise from it.
  • wind turbine according to the invention has been illustrated with only three stages in FIG. 1, it will be noted that the structure described makes it possible to significantly increase the number of stages as well as the diameter of each stage, and by consequently, the power of the wind turbine.
  • the metal plate 5 will advantageously be replaced by an assembly of beams making a metal construction annular connecting the arms 13 to each other and supporting the sets of wheels 6.

Abstract

The invention relates to a wind turbine comprising a shaft (1) which is mounted vertically in order to rotate on a base (2). Horizontal support arms (13) are fixed to the aforementioned shaft (1) and extend radially in relation to said shaft. Moreover, wind sensors (18) are mounted to the support arms (13) such as to pivot freely around horizontal axes, said sensors comprising a front panel which defines a concave face (21) and a convex face (22).

Description

Eolienne à capteurs de vent montés en balançoire.Wind turbine with wind sensors mounted on a swing.
La présente invention concerne une eolienne.The present invention relates to a wind turbine.
ARRIERE PLAN DE L'INVENTION On a déjà proposé de réaliser des éoliennes présentant des structures extrêmement variées . On connaît en particulier du document US-B-BACKGROUND OF THE INVENTION It has already been proposed to produce wind turbines having extremely varied structures. We know in particular from document US-B-
6,413,038, une eolienne comportant un arbre monté verticalement pour tourner sur un bâti, des bras supports horizontaux fixés à l'arbre et s'étendant radialement par rapport à celui-ci, et des panneaux capteurs de vent mon- tés entre les bras supports pour pivoter autour d'axes verticaux, chaque panneau capteur de vent ayant une largeur légèrement supérieure à la distance entre les axes de pivotement des panneaux capteurs de vent, de sorte que lorsque l'éolienne est soumise à un vent selon une direc- tion déterminée, une moitié des panneaux capteurs de vent reçoit . le vent sur une f ce qui tend à mettre en appui les panneaux capteurs de vent les uns sur les autres dans un plan vertical contenant les bras supports tandis que l'autre moitié des panneaux capteurs de vent flottent li- bre ent selon la direction du vent.6,413,038, a wind turbine comprising a shaft mounted vertically to rotate on a frame, horizontal support arms fixed to the shaft and extending radially with respect thereto, and wind sensor panels mounted between the support arms for pivot around vertical axes, each wind sensor panel having a width slightly greater than the distance between the pivot axes of the wind sensor panels, so that when the wind turbine is subjected to a wind in a determined direction, half of the wind sensor panels receive. the wind on a f which tends to support the wind sensor panels on each other in a vertical plane containing the support arms while the other half of the wind sensor panels float freely in the direction of the wind.
En raison de la différence de surface considérable entre la partie de l'éolienne qui capte le vent en se déplaçant dans la même direction que celui-ci et la partie de l'éolienne qui remonte au vent, l'éolienne décrite dans ce document semble extrêmement satisfaisante du point de vue de l'énergie recueillie qui peut être transmise à une pompe ou à une génératrice. Toutefois, les éoliennes sont par définition destinées à être utilisées dans des régions venteuses. Or il n'existe pas de région venteuse dans laquelle le vent est régulier. Au contraire, toutes les régions venteuses connues à ce jour sont soumises à des vents de puissances variables . En outre, les régions où le vent est le plus puissant, qui sont théoriquement les régions les plus recherchées pour recueillir une quantité d'énergie importante, sont gêné- ralement les régions où les variations de puissance du vent sont les plus importantes, ce qui se traduit par des coups de vent sur les éoliennes installées dans ces régions . Lors de l'utilisation d'une eolienne telle que décrite dans le document précité, tous les panneaux capteurs de vent portés par des bras supports s'étendant selon un rayon donné, sont disposés simultanément en travers du vent et constituent donc un obstacle important à l'écoulement du vent. Lors d'un coup de vent tous les panneaux sont donc simultanément soumis à une pression très importante qui risque de faire exploser les panneaux ou de plier les bras supports. Dans un cas comme dans l'autre, un coup de vent risque de provoquer des détério- rations importantes incompatibles avec un fonctionnement régulier de l'éolienne.Due to the considerable difference in surface area between the part of the wind turbine that captures the wind by moving in the same direction as it and the part of the wind turbine that goes upwind, the wind turbine described in this document seems extremely satisfactory from the point of view of the energy collected which can be transmitted to a pump or to a generator. However, wind turbines are by definition intended for use in windy regions. However, there is no windy region in which the wind is regular. On the contrary, all the windy regions known to date are subject to winds of varying powers. In addition, the regions with the strongest wind, which are theoretically the most sought-after regions to collect a significant amount of energy, are hampered. The regions where the variations in wind power are the most significant, which results in gusts of wind on the wind turbines installed in these regions. When using a wind turbine as described in the aforementioned document, all the wind sensor panels carried by support arms extending according to a given radius, are arranged simultaneously across the wind and therefore constitute a significant obstacle to wind flow. During a gust of wind all the panels are therefore simultaneously subjected to a very high pressure which risks exploding the panels or bending the support arms. In either case, a gust of wind may cause significant damage incompatible with regular operation of the wind turbine.
Dans certaines structures d' éoliennes, notamment dans les éoliennes à hélices, il a en outre été prévu des dispositifs mécaniques commandés en fonction de la vi- tesse du vent pour provoquer un échappement des panneaux capteurs de vent dès que le vent atteint une vitesse risquant de provoquer une détérioration de l'éolienne. Toutefois, le temps de réaction de la chaîne cinématique entre les anémomètres et les mécanismes d'effacement des éléments capteurs de vent, est généralement tel qu'en cas de coup de vent un effacement des éléments capteurs de vent n'est pas obtenu en temps utile, ce qui provoque des détériorations de l'éolienne.In certain wind turbine structures, in particular in propeller wind turbines, mechanical devices controlled according to the wind speed are also provided to cause the wind sensor panels to escape as soon as the wind reaches a risky speed. cause deterioration of the wind turbine. However, the reaction time of the kinematic chain between the anemometers and the mechanisms for erasing the wind sensor elements is generally such that in the event of a gale an erase of the wind sensor elements is not obtained in time useful, which causes deterioration of the wind turbine.
OBJET DE L'INVENTION Un but de la présente invention est de proposer une eolienne ayant une structure permettant tout à la fois de recueillir une partie importante de l'énergie du vent tout en conservant une souplesse de fonctionnement évitant une détérioration de l'éolienne lors d'une aug- mentation anormale de la puissance du vent, quelles que soient les circonstances de cette augmentation de puissance.OBJECT OF THE INVENTION An object of the present invention is to provide a wind turbine having a structure allowing both to collect a significant part of the wind energy while retaining a flexibility of operation avoiding deterioration of the wind turbine during an abnormal increase in wind power, whatever be the circumstances of this increase in power.
BREVE DESCRIPTION DE L'INVENTION En vue de la réalisation de ce but, on propose selon l'invention, une eolienne comportant un arbre monté verticalement pour tourner sur un bâti, des bras supports horizontaux fixés à l'arbre et s'étendant radialement par rapport à celui-ci et des capteurs de vent fixés au bras support, les capteurs de vent étant montés sur les bras supports pour pivoter librement autour d'un axe horizontal et comprenant une paroi frontale délimitant une face concave et une face convexe .BRIEF DESCRIPTION OF THE INVENTION With a view to achieving this object, there is proposed according to the invention, a wind turbine comprising a shaft mounted vertically to rotate on a frame, horizontal support arms fixed to the shaft and extending radially by relative thereto and wind sensors fixed to the support arm, the wind sensors being mounted on the support arms to pivot freely around a horizontal axis and comprising a front wall defining a concave face and a convex face.
Ainsi, chacun des capteurs de vent prend une position d'équilibre qui est fonction de la puissance du vent qu'il reçoit, le capteur de vent s 'escamotant d'autant plus que le vent est plus fort, tandis que par ailleurs la différence d'écoulement du vent entre la face concave et la face convexe assure une force différentielle entre la partie de l'éolienne descendant le vent et la partie de l'éolienne remontant le vent de sorte qu'une énergie substantielle est captée.Thus, each of the wind sensors takes an equilibrium position which is a function of the power of the wind which it receives, the wind sensor retracting all the more as the wind is stronger, while moreover the difference of wind flow between the concave face and the convex face ensures a differential force between the part of the wind turbine going down the wind and the part of the wind machine going up the wind so that substantial energy is captured.
Selon une version avantageuse de l'invention, les capteurs de vent sont espacés les uns des autres, et sont de préférence disposés en damier. On minimise ainsi la déviation du vent- par des capteurs de vent, et par voie de conséquence, on minimise le refoulement et les tourbillonnements de vent qui sont habituellement créés par des structures d' éoliennes conventionnelles et donnent lieu à des détériorations lors de sautes de vent. BREVE DESCRIPTION DES DESSINSAccording to an advantageous version of the invention, the wind sensors are spaced from each other, and are preferably arranged in a checkerboard pattern. This minimizes wind deflection - by wind sensors, and as a result, we minimize the backdraft and wind swirls that are usually created by conventional wind turbine structures and lead to deterioration during jumps. wind. BRIEF DESCRIPTION OF THE DRAWINGS
' D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit de plusieurs modes de réalisation de l'invention, en référence aux figures ci-jointes parmi lesquelles : - la figure 1 est une vue en coupe schématique par un plan axial vertical d'un premier mode de réalisation de l'éolienne selon l'invention, ' Other characteristics and advantages of the invention will appear on reading the following description of several embodiments of the invention, with reference to the attached figures among which: FIG. 1 is a schematic sectional view through a vertical axial plane of a first embodiment of the wind turbine according to the invention,
- la figure 2 est une vue de dessus schématique partielle de l'éolienne selon le premier mode de réalisation de l'invention,FIG. 2 is a partial schematic top view of the wind turbine according to the first embodiment of the invention,
- la figure 3 est une vue en perspective d'un capteur de vent selon le premier mode de réalisation de 1' invention, - la figure 4 est une vue en coupe selon le plan- Figure 3 is a perspective view of a wind sensor according to the first embodiment of the invention, - Figure 4 is a sectional view along the plane
IV-IV de la figure 3 d'un second mode de réalisation de capteurs de vent selon l'invention,IV-IV of FIG. 3 of a second embodiment of wind sensors according to the invention,
- la figure 5 est une vue en perspective d'un troisième mode de réalisation de capteur de vent selon l'invention.- Figure 5 is a perspective view of a third embodiment of wind sensor according to the invention.
DESCRIPTION DETAILLEE DE L'INVENTION • Selon l'invention, l'éolienne comporte un arbre 1 illustré sous forme d'un tube métallique de section circulaire monté verticalement pour tourner autour de son axe sur un élément de bâti 2 comprenant un massif de béton 3 dans lequel est fixé un boîtier 4 comprenant différents roulements de centrage et de support de l'arbre 1. Une plaque circulaire 5 est fixée à l'arbre 1 au voisinage de la base de celui-ci. Au voisinage de sa périphé- rie, la plaque 5 - est supportée par des roues 6 portées par une structure support 7 fixée sous la plaque 5. Les roues 6 prennent appui sur un chemin de roulement 8 réalisé dans un second élément de bâti comprenant un massif en béton 9 en forme de couronne circulaire. Dans l'utilisation de l'éolienne selon l'invention en tant qu'unité de production d'électricité, une ou plusieurs génératrices 10, dont une seule a été représentée sur la figure, sont fixées sur le côté du massif de béton 9. Chaque génératrice 10 comporte une roue d'entraînement 11 qui prend appui sur le bord in- terne d'un rail circulaire 12 porté par la plaque 5. On peut également prévoir de disposer les génératrices radialement sur un support en bordure de la plaque 5, la roue d'entraînement prenant alors appui directement sous la plaque 5. Cette disposition permet d'économiser les dispositifs multiplicateurs de vitesse très onéreux qui sont habituellement nécessaires lorsque la génératrice est reliée à l'arbre central de l'éolienne, en particulier comme décrit dans le document précité. Par ailleurs, l'éolienne comporte une série de bras supports 13 s'étendant horizontalement selon des rayons par rapport à l'arbre central 1 et solidaires en rotation de celui-ci. A cet effet, dans le mode de réalisation illustré, les bras supports 13, qui sont ici for- mes de tubes métalliques de section circulaire, sont d'une part encastrés dans des ouvertures 14 réalisées dans l'arbre central 1, et sont d'autre part reliées entre eux et à la plaque 5 par des entretoises 15 s'étendant dans un plan vertical, et par des entretoises 16 s'étendant dans un plan horizontal (figure 2) . Les entretoises 15 et 16 sont de préférence formées par des poutrelles ou des câbles.DETAILED DESCRIPTION OF THE INVENTION • According to the invention, the wind turbine comprises a shaft 1 illustrated in the form of a metal tube of circular section mounted vertically to rotate around its axis on a frame element 2 comprising a concrete block 3 in which is fixed a housing 4 comprising different centering and support bearings for the shaft 1. A circular plate 5 is fixed to the shaft 1 in the vicinity of the base thereof. In the vicinity of its periphery, the plate 5 - is supported by wheels 6 carried by a support structure 7 fixed under the plate 5. The wheels 6 are supported on a raceway 8 produced in a second frame element comprising a solid concrete 9 in the shape of a circular crown. When using the wind turbine according to the invention as an electricity production unit, one or more generators 10, only one of which has been shown in the figure, are fixed to the side of the concrete block 9. Each generator 10 comprises a drive wheel 11 which bears on the inner edge dull circular rail 12 carried by the plate 5. It is also possible to arrange the generators radially on a support at the edge of the plate 5, the drive wheel then bearing directly under the plate 5. This arrangement allows 'save the very expensive speed multipliers which are usually necessary when the generator is connected to the central shaft of the wind turbine, in particular as described in the aforementioned document. Furthermore, the wind turbine comprises a series of support arms 13 extending horizontally along radii with respect to the central shaft 1 and integral in rotation with the latter. To this end, in the illustrated embodiment, the support arms 13, which here are formed of metal tubes of circular section, are on the one hand embedded in openings 14 made in the central shaft 1, and are d 'other hand connected to each other and to the plate 5 by spacers 15 extending in a vertical plane, and by spacers 16 extending in a horizontal plane (Figure 2). The spacers 15 and 16 are preferably formed by beams or cables.
Dans le mode de réalisation illustré, les entretoises 15 forment des cellules 17 disposées en damiers et séparant des capteurs de vent 18 montés pour pivoter librement sur les bras supports horizontaux 13 ainsi qu'il va être décrit ci-dessous.In the illustrated embodiment, the spacers 15 form cells 17 arranged in a checkerboard pattern and separating wind sensors 18 mounted to pivot freely on the horizontal support arms 13 as will be described below.
Dans le mode de * réalisation des figures 1 à 3, chaque capteur de vent comporte une paroi frontale formée de deux éléments de parois 19, réalisés par exemple à partir de plaques en polyéthylène, fixés perpendiculairement l'un à l'autre selon un V présentant une arête 20 qui s'étend parallèlement au bras support 13 correspondant. Les éléments de parois 19 délimitent ainsi une face concave 21 et une face convexe 22 du capteur de vent 18. Du côté de la face concave 21, les capteurs comportent des entretoises 23 qui sont fixées aux éléments de parois 19 perpendiculairement à ceux-ci. Dans le mode de réalisation illustré, les deux éléments de parois 19 sont de dimensions identiques et les entretoises 23 sont de forme carrée à coins coupés. Pour renforcer la rigidité du capteur de vent les entretoises 23 sont de préférences reliées rigidement par des barres de liaison 43. Des contrepoids 24, ici en forme de disques à bords biseautés, sont fixés aux entretoises 23 dans une position appropriée pour qu'au repos comme illustré sur la figure 3, les éléments de parois 19 s'étendent sensiblement à 45° par rapport à un plan vertical . Le bord supérieur de chaque capteur de vent 18 est monté pour pivoter sur le bras support 13 correspondant par des brides 25, de préférence réalisées également en polyéthylène pour permettre un pivotement silencieux du capteur de vent sur le bras support correspondant, chaque bride 25 étant disposée à cheval sur un bras support 13 et comportant des ailes 26 s'étendant de part et d'autre de l'élément de paroi supérieur 19 auquel les ailes 26 sont fixées par des moyens de fixation 27, tels que des boulons ou des rivets qui traversent les ailes 26 et les éléments de paroi 19. * In the illustrated embodiment of Figures 1 to 3, a wind sensor has a front wall formed of two wall elements 19, made for example from polyethylene plates fixed perpendicularly to each other at a V having an edge 20 which extends parallel to the corresponding support arm 13. The wall elements 19 thus delimit a concave face 21 and a convex face 22 of the wind sensor 18. On the side of the concave face 21, the sensors include spacers 23 which are fixed to the wall elements 19 perpendicular thereto. In the illustrated embodiment, the two wall elements 19 are of identical dimensions and the spacers 23 are square with cut corners. To reinforce the rigidity of the wind sensor, the spacers 23 are preferably rigidly connected by connecting bars 43. Counterweights 24, here in the form of discs with bevelled edges, are fixed to the spacers 23 in an appropriate position so that at rest as illustrated in FIG. 3, the wall elements 19 extend substantially at 45 ° relative to a vertical plane. The upper edge of each wind sensor 18 is mounted to pivot on the corresponding support arm 13 by flanges 25, preferably also made of polyethylene to allow silent rotation of the wind sensor on the corresponding support arm, each flange 25 being disposed straddling a support arm 13 and comprising wings 26 extending on either side of the upper wall element 19 to which the wings 26 are fixed by fixing means 27, such as bolts or rivets which pass through the wings 26 and the wall elements 19.
Lorsque l'éolienne est soumise à du vent, chaque capteur de vent 18 prend une position d'équilibre qui est fonction de la puissance du vent, de la géométrie du capteur de vent, du poids de chacun des composants, et de la disposition des contrepoids 24. Dans le mode de réalisation des figures 1 à 3 et pour un vent faible, les cap- teurs de vent 18 prennent une position d'équilibre dans laquelle la paroi frontale de chaque capteur de vent s'étend sur un côté du bras support 13 correspondant tandis que les entretoises 23 débordent sur un côté opposé comme illustré par la figure 2 sur laquelle les capteurs de vent 18 ont été représentés seulement pour les bras supports 13 disposés à 0°, 45°, 90° et 135° par rapport à la direction du vent figurée par des flèches en trait épais. Le sens de rotation de l'éolienne a également été figuré sur la figure 2 par un trait épais. Les capteurs de vent 18 de la partie droite de la figure se déplacent donc dans le sens du vent, c'est-à-dire qu'ils descendent le vent, tandis que les capteurs de vent de la partie gauche de la figure 2 remontent au vent.When the wind turbine is subjected to wind, each wind sensor 18 takes an equilibrium position which is a function of the power of the wind, the geometry of the wind sensor, the weight of each of the components, and the arrangement of the counterweight 24. In the embodiment of FIGS. 1 to 3 and for a weak wind, the wind sensors 18 assume an equilibrium position in which the front wall of each wind sensor extends on one side of the arm corresponding support 13 while the spacers 23 project on an opposite side as illustrated by FIG. 2 on which the wind sensors 18 have been shown only for the arms supports 13 arranged at 0 °, 45 °, 90 ° and 135 ° relative to the direction of the wind represented by arrows in thick line. The direction of rotation of the wind turbine has also been shown in Figure 2 by a thick line. The wind sensors 18 of the right part of the figure therefore move in the direction of the wind, that is to say that they descend the wind, while the wind sensors of the left part of Figure 2 go up in the wind.
Pour chaque orientation précitée, l'écoulement du vent a été représenté par un trait mixte pour un seul capteur de vent 18. On remarque à ce propos que pour une direction de 0° par rapport à la direction du vent, les capteurs de vent qui sont au vent par rapport à l'arbre 1, c'est-à-dire ceux qui sont dans la moitié supérieure de la figure, reçoivent le vent de façon exactement symétrique par rapport aux capteurs qui sont sous le vent, c'est-à-dire dans la moitié basse de la figure par rapport à l'arbre 1. Les capteurs à 0° par rapport à la direction du vent sont donc neutres vis-à-vis de l'entraînement en rotation de l'éolienne. Pour les capteurs disposés à 45° dans le sens descendant, le vent est dévié par les entretoises 23 pour être canalisé dans une partie de la face concave des capteurs de vent . Ces capteurs de vent sont donc efficaces pour l'entraînement en rotation de l'éolienne. Simultanément, les capteurs disposés selon la même orientation mais dans le sens montant, présentent leur face convexe au vent de sorte que celui-ci est dévié en exerçant sur les capteurs de vent une force beaucoup plus faible que les capteurs de vent dans le sens descendant. Pour une orientation à 90°, les capteurs de vent descendant reçoivent le vent sur la totalité de la face concave tandis que les capteurs dans le sens remontant reçoivent le vent sur la face convexe de sorte que le bilan des forces est très largement favora- ble à un entraînement en rotation de l'éolienne. Pour les capteurs disposés selon une orientation en 135° par rapport à la direction du vent, le bilan des forces est identique à celui des capteurs disposés à 45°. Si la force du vent s'accroît de façon dangereuse, les capteurs de vent pivotent autour des bras supports jusqu'à une position où les capteurs descendant le vent sont pratiquement dans une position symétrique aux capteurs remontant le vent, de sorte que d'une part les capteurs présentent tous des surfaces inclinées de façon favorable pour un écoulement du vent, ce qui évite l'application d'une force trop importante sur les capteurs de vent, et d'autre part les forces appliquées aux capteurs descendant le vent sont sensiblement identiques aux forces appliquées aux capteurs remontant le vent, de sorte que l'éolienne a tendance à ralentir en dépit de l'augmentation de force du vent et l'on évite un emballement de l'éolienne contrairement aux dispositifs réalisés antérieurement .For each aforementioned orientation, the flow of the wind has been represented by a dashed line for a single wind sensor 18. It is noted in this connection that for a direction of 0 ° relative to the wind direction, the wind sensors which are in the wind relative to the shaft 1, that is to say those which are in the upper half of the figure, receive the wind in an exactly symmetrical manner with respect to the sensors which are downwind, ie in the lower half of the figure with respect to the shaft 1. The sensors at 0 ° with respect to the wind direction are therefore neutral with respect to the rotation drive of the wind turbine. For the sensors arranged at 45 ° in the downward direction, the wind is deflected by the spacers 23 to be channeled in a part of the concave face of the wind sensors. These wind sensors are therefore effective for driving the wind turbine in rotation. Simultaneously, the sensors arranged in the same orientation but in the upward direction, have their face convex to the wind so that the latter is deflected by exerting on the wind sensors a much weaker force than the wind sensors in the downward direction. . For a 90 ° orientation, the downwind sensors receive the wind on the entire concave face while the upwind sensors receive the wind on the convex face so that the balance of forces is very largely favorable to a rotary drive of the wind turbine. For the sensors arranged in an orientation at 135 ° to the wind direction, the balance of forces is identical to that of the sensors arranged at 45 °. If the force of the wind increases dangerously, the wind sensors pivot around the support arms to a position where the downwind sensors are practically in a symmetrical position with the windward sensors, so that on the one hand the sensors all have surfaces inclined favorably for a flow of the wind, which avoids the application of too great a force on the wind sensors, and on the other hand the forces applied to the sensors descending the wind are substantially identical to the forces applied to the windward sensors, so that the wind turbine tends to slow down in spite of the increase in wind force and a runaway of the wind turbine is avoided unlike the devices produced previously.
La figure 4 illustre un second mode de réalisa- tion des capteurs de vent. Dans ce mode de réalisation, le capteurs de vent 41 comportent deux entretoises 28 comportant des bords avant 29 s'étendant perpendiculairement l'un à l'autre, et à 45° par rapport à la verticale. Deux plaques en tôle ondulée 30 sont fixées le long des bords 29 par des vis 31 fixées dans l'épaisseur des entretoises 28. Les entretoises 28 sont reliées rigidement par des barres de liaison 44. Les ondulations des plaques de tôle ondulée 30 s'étendent perpendiculairement au plan des entretoises 28. Les bords avant 32 des deux plaques de tôle ondulée 30 sont espacés l'un de l'autre et délimitent une ouverture rectangulaire 33 sensiblement à mi- hauteur du capteur de vent. Dans ce mode de réalisation le capteur de vent est fixé sur le bras support 13 par des goussets triangulaires 34 comportant une ouverture oblongue 35 qui débouche sur la base du gousset 34 de fa- çon à permettre l'engagement du gousset 34 sur la barre 13, le gousset 34 étant ensuite fixé de façon appropriée à une entretoise 28 par des boulons ou des rivets 36 qui traversent les goussets 34 ainsi que les entretoises 28. Comme dans le mode de réalisation précédent, les entretoises 28 et les goussets 34 sont de préférence réalisés à partir de plaques de polyéthylène .FIG. 4 illustrates a second embodiment of the wind sensors. In this embodiment, the wind sensors 41 comprise two spacers 28 having front edges 29 extending perpendicular to each other, and at 45 ° relative to the vertical. Two corrugated sheet plates 30 are fixed along the edges 29 by screws 31 fixed in the thickness of the spacers 28. The spacers 28 are rigidly connected by connecting bars 44. The corrugations of the corrugated sheet plates 30 extend perpendicular to the plane of the spacers 28. The front edges 32 of the two corrugated sheets 30 are spaced from each other and define a rectangular opening 33 substantially halfway up the wind sensor. In this embodiment the wind sensor is fixed to the support arm 13 by triangular gussets 34 having an oblong opening 35 which opens onto the base of the gusset 34 in a to allow the engagement of the gusset 34 on the bar 13, the gusset 34 being then appropriately fixed to a spacer 28 by bolts or rivets 36 which pass through the gussets 34 as well as the spacers 28. As in the mode of previous embodiment, the spacers 28 and the gussets 34 are preferably made from polyethylene plates.
Dans ce mode de réalisation les tôles ondulées 30 assurent un freinage et donc une compression accrue du vent pénétrant dans le capteur de vent par la face concave tandis que l'ouverture 33 permet à l'air compressé de s'échapper sans créer de surpression à l'intérieur de la cavité délimitée par les faces internes des plaques de tôle ondulée 30. En pratique, les dimensions des plaques en tôle ondulée 30 ainsi que les dimensions de l'ouverture 33 seront adaptées en fonction de la force moyenne du vent dans la zone dans laquelle l'éolienne est implantée. Dans les zones de vent relativement faible, et dans lesquelles les sautes de vent sont de faible ampli- tude, on pourra prolonger la tôle ondulée inférieure le long du bord inférieur de l' entretoise 28 afin d'augmenter la surface de captage du vent lorsque le capteur est légèrement incliné vers l'avant par rapport à sa position d'équilibre au repos illustré sur la figure 4. Comme dans le mode de réalisation précédent, les entretoises 28 pourront être équipées de contrepoids permettant de régler l'équilibre des capteurs de vent dans différentes conditions d'utilisation.In this embodiment the corrugated sheets 30 provide braking and therefore increased compression of the wind entering the wind sensor through the concave face while the opening 33 allows the compressed air to escape without creating overpressure at the interior of the cavity delimited by the internal faces of the corrugated sheet plates 30. In practice, the dimensions of the corrugated sheet plates 30 as well as the dimensions of the opening 33 will be adapted as a function of the average force of the wind in the area in which the wind turbine is located. In areas of relatively low wind, and in which the wind swings are of low amplitude, it is possible to extend the lower corrugated sheet along the lower edge of the spacer 28 in order to increase the surface of capture of the wind when the sensor is slightly inclined towards the front relative to its equilibrium position at rest illustrated in FIG. 4. As in the previous embodiment, the spacers 28 can be fitted with counterweights making it possible to adjust the balance of the sensors of wind in different conditions of use.
La figure 5 illustre un troisième mode de réali- sation du capteur de vent 42 dans lequel la paroi frontale est réalisée par une plaque en tôle ondulée 37 formée en arc de cercle et maintenue selon cette forme par des cloisons horizontales 38 fixées le long des bords supérieur et inférieur de la plaque en tôle ondulée 37. Pour faciliter la mise en forme de la plaque en tôle on- dulée 37, les ondulation sont disposées verticalement. Le capteur de vent comporte également deux entretoi'ses 39 fixées d'une part à la paroi frontale 37 et d'autre part aux plaques d'extrémité 38. Les entretoises 39 assurent une rigidité de l'ensemble et servent en outre à suspendre le capteur de vent à un bras support 13 au moyen de brides 40 fixées aux entretoises 39. En raison de sa forme plus plate que les modes de réalisation précédents, ce troisième mode de réalisation sera mieux adapté aux régions dans lesquelles le vent a une vitesse élevée pouvant être sujettes à de fortes variations.FIG. 5 illustrates a third embodiment of the wind sensor 42 in which the front wall is produced by a corrugated sheet plate 37 formed in an arc of a circle and held in this form by horizontal partitions 38 fixed along the edges upper and lower of the corrugated sheet plate 37. To facilitate the shaping of the sheet metal plate on- dule 37, the corrugations are arranged vertically. The wind sensor also comprises two spacers 39 fixed on the one hand to the front wall 37 and on the other hand to the end plates 38. The spacers 39 ensure the rigidity of the assembly and also serve to suspend the wind sensor to a support arm 13 by means of flanges 40 fixed to the spacers 39. Due to its flatter shape than the previous embodiments, this third embodiment will be better suited to regions in which the wind has a high speed may be subject to strong variations.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et est susceptibles de variantes qui apparaîtront à l'homme du métier sans sortir du cadre de 1 ' invention tel que défini par les revendications .Of course, the invention is not limited to the embodiments described and is susceptible of variants which will appear to a person skilled in the art without departing from the scope of the invention as defined by the claims.
En particulier, bien que dans les deux premiers modes de réalisation, les éléments de parois formant la paroi frontale aient été décrits selon une disposition à 90° l'un par rapport à l'autre, on pourra réaliser les capteurs selon l'invention avec des éléments de paroi formant un angle différent, un angle plus important réalisant un capteur dont la concavité sera moins prononcée, ce qui est moins favorable du point de vue de l'énergie transmise à l'éolienne, mais qui offrira une moindre résistance au vent lorsque le capteur est relevé par un vent violent, ce qui minimisera les risques de détérioration lorsque l'éolienne est soumise à un vent violent.In particular, although in the first two embodiments, the wall elements forming the front wall have been described in an arrangement at 90 ° relative to each other, the sensors according to the invention can be produced with wall elements forming a different angle, a larger angle providing a sensor whose concavity will be less pronounced, which is less favorable from the point of view of the energy transmitted to the wind turbine, but which will offer less resistance to wind when the sensor is lifted by a strong wind, which will minimize the risk of deterioration when the wind turbine is subjected to a strong wind.
Dans le second mode de réalisation, on peut éga- lement prévoir de recouvrir la face extérieure des plaques en tôle ondulée 30 par des plaques à surface lisse afin de minimiser le frottement du vent et de favoriser sa déviation lorsque la face convexe est face au vent (capteurs remontant le vent) . On notera également sur la figure 1 que dans le mode de réalisation illustré, les cellules immédiatement adjacentes à l'arbre 1 ne comportent pas de capteurs de vent. Compte tenu de la faible distance de ces cellules par rapport à l'axe de rotation de l'arbre 1, la mise en place de capteurs de vent dans cette partie de l'éolienne augmenterait la résistance au vent sans apporter d'augmentation significative de la puissance fournie à l'éolienne. Il est donc préférable de laisser le vent s'écouler librement dans cette partie de l'éolienne. Bien que l'arbre 1 ait été décrit selon une réalisation à partir d'un tube de section circulaire, cet arbre peut être réalisé selon toute section polygonale et être réalisé sous forme d'une charpente métallique ajourée minimisant la prise au vent. Bien qu'il ait été fait plus particulièrement référence au polyéthylène et à la tôle ondulée comme matériaux constitutifs des capteurs de vent, on pourra réaliser les capteurs de vent selon l'invention selon des structures et avec des matériaux extrêmement variés, y compris des capteurs de vent en bois, la paroi frontale pouvant être réalisée par des assemblages de planchettes de bois montées selon des croisillons afin de récupérer une partie de l'énergie du vent tout en permettant un passage du vent à travers les capteurs de façon à éviter des refoulements du vent avec tous les problèmes qui en découlent .In the second embodiment, it is also possible to cover the outside face of the corrugated sheet plates 30 with plates with a smooth surface in order to minimize the friction of the wind and to favor its deflection when the convex face is facing the wind. (wind sensors). Note also in Figure 1 that in the illustrated embodiment, the cells immediately adjacent to the shaft 1 do not include wind sensors. Given the small distance of these cells from the axis of rotation of the shaft 1, the installation of wind sensors in this part of the wind turbine would increase the wind resistance without bringing a significant increase in the power supplied to the wind turbine. It is therefore preferable to let the wind flow freely in this part of the wind turbine. Although the shaft 1 has been described according to an embodiment from a tube of circular section, this tree can be made in any polygonal section and be made in the form of an openwork metal frame minimizing the wind resistance. Although particular reference has been made to polyethylene and corrugated sheet as constituent materials of wind sensors, the wind sensors according to the invention can be produced according to structures and with extremely varied materials, including sensors of wooden wind, the front wall being able to be realized by assemblies of wooden boards mounted according to crosspieces in order to recover part of the wind energy while allowing a passage of the wind through the collectors so as to avoid backflow of the wind with all the problems that arise from it.
Bien que l'éolienne selon l'invention ait été illustrée avec trois étages seulement sur la figure 1, on remarquera que la structure décrite permet d'augmenter de façon notable le nombre d'étages ainsi que le diamètre de chaque -étage, et par voie de conséquence, la puissance de l' eolienne.Although the wind turbine according to the invention has been illustrated with only three stages in FIG. 1, it will be noted that the structure described makes it possible to significantly increase the number of stages as well as the diameter of each stage, and by consequently, the power of the wind turbine.
Pour des éoliennes de grande dimension, la plaque métallique 5 sera avantageusement remplacée par un assem- blage de poutrelles réalisant une construction métallique annulaire reliant les bras 13 entre eux et supportant les jeux de roues 6. For large wind turbines, the metal plate 5 will advantageously be replaced by an assembly of beams making a metal construction annular connecting the arms 13 to each other and supporting the sets of wheels 6.

Claims

04/05108113REVENDICATIONS 04 / 05108113REVENDICATIONS
1. Eolienne comportant un arbre (1) monté verticalement pour tourner sur un bâti (2) , des bras supports horizontaux (13) fixés à l'arbre (1) et s'étendant radialement par rapport à celui-ci et des capteurs de vent fixés aux bras supports, caractérisée en ce que les capteurs de vent (18, 41, 42) sont montés sur les bras supports pour pivoter librement autour d'un axe horizontal,. et comportent une paroi frontale délimitant une face concave (21) et une face convexe (22) .1. Wind turbine comprising a shaft (1) mounted vertically to rotate on a frame (2), horizontal support arms (13) fixed to the shaft (1) and extending radially with respect thereto and sensors wind fixed to the support arms, characterized in that the wind sensors (18, 41, 42) are mounted on the support arms to pivot freely around a horizontal axis ,. and have a front wall defining a concave face (21) and a convex face (22).
2. Eolienne selon la revendication 1, caractérisée en ce que les capteurs de vent (18) sont espacés les uns des autres . 2. Wind turbine according to claim 1, characterized in that the wind sensors (18) are spaced from each other.
3. Eolienne selon la revendication 2, caractérisée en ce que les capteurs de vent (18) sont disposés en damiers .3. Wind turbine according to claim 2, characterized in that the wind sensors (18) are arranged in a checkerboard pattern.
4. Eolienne selon la revendication 1, caractérisée en ce que la paroi frontale (30) comporte au moins une ouverture (33) .4. Wind turbine according to claim 1, characterized in that the front wall (30) has at least one opening (33).
5. Eolienne selon la revendication 4, caractérisée en ce que l'ouverture (33) s'étend au centre des capteurs (41) .5. Wind turbine according to claim 4, characterized in that the opening (33) extends to the center of the sensors (41).
' 6. Eolienne selon la revendication 1, caractéri- see en ce que la paroi frontale des capteurs de vent (18) comporte deux éléments de parois (19) fixés entre eux selon un V présentant une arête (20) s'étendant parallèlement au bras support (13) «correspondant .6. Wind turbine according to claim 1, characterized in that the front wall of the wind sensors (18) comprises two wall elements (19) fixed to each other according to a V having an edge (20) extending parallel to the support arm (13) "corresponding.
7. Eolienne selon la revendication 6, caractéri- sée en- ce que les capteurs de vent (18) comportent des entretoises (23) s'étendant perpendiculairement aux parois en V.7. Wind turbine according to claim 6, characterized in that the wind sensors (18) comprise spacers (23) extending perpendicular to the V-shaped walls.
8. Eolienne selon la revendication 7, caractérisée en ce que les entretoises (23) débordent de la paroi frontale (19) du côté de la face concave (21) . 04/0510818. Wind turbine according to claim 7, characterized in that the spacers (23) project from the front wall (19) on the side of the concave face (21). 04/051081
1414
9. Eolienne selon la revendication 1, caractérisée en ce que la paroi frontale (30) comporte une surface non lisse du côté de la face concave.9. Wind turbine according to claim 1, characterized in that the front wall (30) has a non-smooth surface on the side of the concave face.
10. Eolienne selon la revendication 1, caractéri- sée en ce qu'elle comporte une plaque (5) fixée à l'arbre10. Wind turbine according to claim 1, characterized in that it comprises a plate (5) fixed to the shaft
(I) et prenant appui par des roues (6) sur une partie (9) du bâti formant un chemin de roulement (8) .(I) and bearing by wheels (6) on a part (9) of the frame forming a raceway (8).
11. Eolienne selon la revendication 10, caractérisée en ce qu'elle comporte au moins une génératrice (10) fixée au bâti et comportant une roue d'entraînement11. Wind turbine according to claim 10, characterized in that it comprises at least one generator (10) fixed to the frame and comprising a drive wheel
(II) prenant appui sur un rail circulaire (12) porté par la plaque (5) . (II) bearing on a circular rail (12) carried by the plate (5).
PCT/FR2003/003504 2002-11-29 2003-11-27 Wind turbine comprising pivot-mounted wind sensors WO2004051081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003294097A AU2003294097A1 (en) 2002-11-29 2003-11-27 Wind turbine comprising pivot-mounted wind sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0215016A FR2847951A1 (en) 2002-11-29 2002-11-29 WIND SENSOR WIND MOUNTED IN SWING
FR02/15016 2002-11-29

Publications (1)

Publication Number Publication Date
WO2004051081A1 true WO2004051081A1 (en) 2004-06-17

Family

ID=32309829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003504 WO2004051081A1 (en) 2002-11-29 2003-11-27 Wind turbine comprising pivot-mounted wind sensors

Country Status (3)

Country Link
AU (1) AU2003294097A1 (en)
FR (1) FR2847951A1 (en)
WO (1) WO2004051081A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE885867A (en) * 1980-10-24 1981-02-16 Leblanc Jacques WIND SENSOR OPERATING A VERTICAL AXIS WIND TURBINE
GB2119025A (en) * 1982-04-27 1983-11-09 Herbert Jackson Use of wind power
WO1993023669A1 (en) * 1992-05-13 1993-11-25 Alfred Wilhelm Wind power engine with no housing
FR2805311A1 (en) * 2000-02-22 2001-08-24 Jean Marie Golsse Open type six bladed radial turbine for connecting to electricity generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE885867A (en) * 1980-10-24 1981-02-16 Leblanc Jacques WIND SENSOR OPERATING A VERTICAL AXIS WIND TURBINE
GB2119025A (en) * 1982-04-27 1983-11-09 Herbert Jackson Use of wind power
WO1993023669A1 (en) * 1992-05-13 1993-11-25 Alfred Wilhelm Wind power engine with no housing
FR2805311A1 (en) * 2000-02-22 2001-08-24 Jean Marie Golsse Open type six bladed radial turbine for connecting to electricity generator

Also Published As

Publication number Publication date
AU2003294097A1 (en) 2004-06-23
FR2847951A1 (en) 2004-06-04

Similar Documents

Publication Publication Date Title
EP2635801B1 (en) Transverse flow marine turbine with autonomous stages
WO2007012726A1 (en) Wind power engine
EP2294313B1 (en) Blade for a device for generating energy from a fluid flow and device comprising a rotor using said blades
FR2913072A1 (en) VERTICAL AXIS WIND
EP1971771A1 (en) Horizontal-axis wind generator
US7883318B2 (en) Self-orienting, linear drive apparatus for harvesting power from the wind
FR2908840A1 (en) Electric generator or hydraulic pump driving device for use on e.g. building, has ring cooperated with rollers distributed in equal distance at periphery of ring, where each roller is supported on faces at their bearing on profile of ring
WO2004051081A1 (en) Wind turbine comprising pivot-mounted wind sensors
FR2899651A1 (en) Electrical generator drive device for e.g. service building, has vertical axis wind turbine with large diameter and enclosure with three sectors, where one of sectors has shutters whose position is adjusted with wind force by servomotors
WO2010109081A1 (en) Rotor for a power generator, in particular for wind turbines
FR2902157A1 (en) Vertical axis rotor e.g. savonius rotor, for transforming wind energy into e.g. mechanical energy, has cylindrical sheath coaxial to cylindrical turbine and with vertical opening to permit penetration of wind into sheath to act on vanes
WO2004063565A1 (en) Wind concentrating device for vertical axis wind turbine
FR2541734A1 (en) Wind machine turbine
EP0034541B1 (en) Flue or vertical pipe for gas discharge
EP3874164B1 (en) Wind turbine mast section, wind turbine mast and assembly method
WO2001086120A1 (en) Double-helical energy converter with peripheral channels
FR3025259B1 (en) VERTICAL AXLE WIND
FR2962172A1 (en) VERTICAL WIND TURBINE
WO2008107411A2 (en) Device for generating electric power from the wind motive power
EP3983669B1 (en) Wind turbine and energy conversion facility comprising such a wind turbine
WO2009056748A2 (en) Vertical-axis wind energy conversion device
FR3061244A1 (en) WIND OPERATING DEVICE
CH714054A1 (en) A device with an oscillating rectilinear wing for the transformation of the kinetic energy from the wind or an aquatic current into a mechanical energy and method for such a transformation.
FR2872867A1 (en) Aerogenerator for generating energy from wind force, has rotor comprising blades which are quasi-parallel to rotation axle that is horizontal and in direction of winds, where blades have semi-tapered shape
FR3012179A1 (en) COMPACT FLOATING HYDROELECTRIC POWER PLANT

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP