WO2004050920A1 - Reaction vessel operation control method, device, computer program, and computer-readable record medium - Google Patents
Reaction vessel operation control method, device, computer program, and computer-readable record medium Download PDFInfo
- Publication number
- WO2004050920A1 WO2004050920A1 PCT/JP2003/012997 JP0312997W WO2004050920A1 WO 2004050920 A1 WO2004050920 A1 WO 2004050920A1 JP 0312997 W JP0312997 W JP 0312997W WO 2004050920 A1 WO2004050920 A1 WO 2004050920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- reaction vessel
- heat flux
- inverse problem
- problem analysis
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/24—Test rods or other checking devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
- C21C5/4673—Measuring and sampling devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2300/00—Process aspects
- C21B2300/04—Modeling of the process, e.g. for control purposes; CII
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2300/00—Process aspects
- C21C2300/06—Modeling of the process, e.g. for control purposes; CII
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a reaction vessel operation management method suitable for use in managing the operation of a reaction vessel involving a high-temperature gas reaction or a liquid reaction such as a blast furnace, a steel material heating furnace by combustion, a coal gasification reaction furnace, etc.
- the present invention relates to an apparatus, a computer program, and a computer-readable recording medium. Background art
- reaction vessel involving a high-temperature gas reaction or a liquid reaction such as a blast furnace, a steel heating furnace by combustion, or a coal gasification reaction furnace
- a reaction vessel for example, combustion behavior
- the state inside the reaction vessel has been estimated based on the temperature measured by a thermocouple embedded inside the wall of the reaction vessel. For example, if there is a sudden rise in temperature, it is estimated that abnormal heat is generated in the reaction vessel around the thermocouple, and if there is an extreme drop in temperature, heat is generated in the reaction vessel around the thermocouple. This is an empirical method such as estimating that a decrease in the calorific value has occurred such as a reduction in the reaction area.
- Figure 35 shows a two-dimensional cross section near the furnace wall of a reaction vessel (heating furnace) in which multiple thermocouples “X” are embedded.
- the boundary is indicated by a broken line in the furnace wall, one-dimensional means that only the heat flow in the direction along the broken line is considered. That is, for example, assuming heat conduction in la ⁇ lb ⁇ lc or ld ⁇ le directions, the heat flux on the furnace inner surface is estimated.
- it is general to determine the heat flux on the unknown inner furnace surface, assuming that the cooling condition of the outer furnace surface is known. Of course, it is also possible to reverse the known and unknown boundary conditions.
- Japanese Patent Application Laid-Open Publication No. 2000-1 — 324 217 discloses an inverse problem analysis of an unsteady one-dimensional heat conduction equation from a thermocouple embedded in a blast furnace hearth. It describes a method for estimating the heat flux.
- One of these methods is to estimate the heat flux at the opposite end point from the thermocouple temperature change at one point and the cooling condition (assumed to be known) at the end point.
- Such cooling conditions are given by the heat transfer coefficient and the temperature of the cooling water.
- uncertain estimated values This may have a negative effect on the accuracy of the heat flux estimate at the opposite end point, estimated using the value in the inverse problem.
- thermocouple temperature change is described.However, since it is a method to solve by giving one of the two points as a fixed temperature boundary condition However, it is difficult to estimate by capturing the relative temperature change between the two points, and it is possible to estimate the heat flux under the fixed temperature boundary condition, but outside of the side selected as the fixed temperature boundary condition The end point heat flux on the extension line cannot be estimated.
- the change in thickness due to the in-furnace melt attached to the surface of the refractory and the change in heat flux are simultaneously estimated, rather than the method of finding the heat flux at both ends while fixing the analysis length.
- Method. Introducing a mouthpiece that increases or decreases the amount of adherence by coagulation and dissolution phenomena into the inverse problem analysis firstly complicates the calculation procedure and makes the calculation unstable. Second, if a calculation procedure that changes the analysis length is entered at each time step, uncertainties may be mixed in the method of estimating the temperature distribution before and after the change in the length. Estimation accuracy may be worse I can't deny it.
- the conventional inverse problem analysis method is inadequate in many respects, and a new method for simultaneously estimating the heat flux at both ends by fixing the analysis length from multiple thermocouple information has been established. Therefore, a technique for accurately and stably estimating unsteady changes in heat flux is important.
- the original unsteady one-dimensional inverse one-dimensional heat conduction problem is to estimate the boundary conditions on the inner and outer surfaces of the furnace at the same time.
- temperature fluctuations measured by a certain thermocouple may be caused by a change in heat flux on the inner surface of the reaction vessel as described above, or may be caused by poor contact of a cooling device installed outside the reaction vessel. It cannot be distinguished whether the change is due to a change in heat flux on the outer surface of the reaction vessel.
- the heat conduction phenomenon should also occur in the vertical direction across the broken line shown in Fig. 35, and it is necessary to solve the inverse heat conduction problem in two dimensions. In this case, even if the upper and lower boundaries in Fig. 35 are assumed to be adiabatic, it is necessary to construct a two-dimensional inverse problem for estimating the fine heat flux distribution on the left and right boundaries.
- thermocouple information a method of estimating the temperature distribution by trial and error and simultaneously estimating the temperature distribution at both ends is also conceivable, so that the temperature change can be sufficiently expressed from multiple pieces of thermocouple information.
- the calculation becomes complicated as the number of thermocouples increases, and it is extremely difficult to obtain a temperature distribution solution that satisfies the measured temperature changes of all thermocouples.
- the unknown heat flux is calculated by alternately changing the two end points, and apparently the heat flux of the end point can be estimated at the same time.
- the measurement temperature as the fixed temperature boundary condition is alternately calculated repeatedly, and when the measured temperature and the calculated temperature of both thermocouples agree to some extent, both ends in the time step Heat flux solution.
- thermocouple positions when minimizing the absolute value of the difference between the measured temperature and the calculated temperature at two thermocouple positions, a criterion for how to balance the minimization at two independent thermocouple positions is required. It is difficult to set properly. It goes without saying that if this method is extended to the case of multiple thermocouples, it will be extremely difficult to determine the solution.
- the time course of the heat flux obtained by inverse problem analysis has been independently plotted and evaluated.However, if the change of the heat flux is large or small, it is very vague, It is difficult to judge how non-stationary changes (rapid changes) are in the state inside the container.
- the present invention has been made in view of the points mentioned above, and c to that of the heat flux changes and temperature changes in the inner and outer surfaces of the reaction vessel and can be simultaneously estimated the main purpose is the inverse problem The purpose is to stabilize the analysis and to evaluate the degree of unsteadiness of the state in the reaction vessel. Disclosure of the invention
- the operation management method for a reaction container is a method for managing the operation of a reaction container for controlling the operation of a reaction container accompanied by a temperature change reaction, wherein a plurality of the reaction containers are arranged at least in a thickness direction inside a wall of the reaction container. Based on the temperature measured at the measured temperature measurement point, the inverse problem analysis using an unsteady heat conduction equation is performed, thereby obtaining a temperature or a heat flux on the inner surface and the outer surface of the reaction vessel. It has features.
- another feature of the operation management method for the reaction vessel of the present invention is that the temperature measured at each of the temperature measurement points, the temperature on the inner surface and the outer surface of the reaction vessel, Or the minimum value of the sum of the squares of the difference between the temperature at each of the temperature measurement points calculated from the assumed value of the heat flux and the unsteady heat conduction equation is the inner surface and outer surface of the reaction vessel. In that the temperature or the heat flux is determined.
- the method includes a step of increasing the number of digits after the decimal point of the temperature data measured at the temperature measurement point, and The point is that the increased number of temperature data is used for the inverse problem analysis.
- the method includes a step of performing a filtering process on the temperature data measured at the temperature measurement point, and using the temperature data after the filtering process in the inverse problem analysis.
- the method includes a step of increasing the number of digits after the decimal point of the temperature data measured at the temperature measurement point, and a step of filtering the temperature data with the number of digits after the decimal point increased. Is used in the above inverse problem analysis.
- Another feature of the operation management method for a reaction vessel of the present invention is that, based on the temperature data measured at the temperature measurement points, analysis is performed by a steady-state method, whereby the inner surface of the reaction vessel is analyzed.
- the analysis procedure by the steady-state method for obtaining the temperature or the heat flux, the temperature or the heat flux on the inner surface of the reaction vessel obtained by the inverse problem analysis, and the temperature or the heat flux obtained by the analysis procedure by the steady-state method And a comparison procedure for comparison.
- the inverse problem analysis is an inverse problem analysis using an interpolation function or an external ⁇ function that satisfies an unsteady heat conduction equation. On the point.
- An operation management apparatus for a reaction vessel is an operation management apparatus for a reaction vessel for managing an operation of a reaction vessel accompanied by a temperature change reaction, and a plurality of the operation management apparatuses are arranged at least in a thickness direction inside a wall of the reaction vessel.
- the computer program of the present invention is a computer program for managing the operation of a reaction vessel accompanied by a temperature change reaction, wherein the computer program is measured at least at a plurality of temperature measurement points arranged in the thickness direction inside the wall of the reaction vessel.
- the computer program is measured at least at a plurality of temperature measurement points arranged in the thickness direction inside the wall of the reaction vessel.
- FIG. 1 is a diagram showing a schematic configuration of an operation management device for a reaction vessel according to the first embodiment.
- FIG. 2 is a flowchart for explaining the inverse problem analysis processing.
- FIG. 3 is a diagram for explaining an arrangement relationship of thermocouples in an example of the first embodiment.
- 4A to 4E are diagrams for explaining the analysis results in the example of the first embodiment.
- FIG. 5 is a diagram showing a schematic configuration of an operation management device for a reaction vessel according to the second embodiment.
- FIG. 6 is a diagram showing a schematic configuration of another operation management device for a reaction vessel in the second embodiment.
- FIG. 7 is a diagram for explaining an arrangement relationship of thermocouples in an example of the second embodiment.
- 8A to 8D are diagrams for explaining the analysis result in the example of the second embodiment.
- FIG. 9 is a diagram for explaining the arrangement relationship of thermocouples in another example of the second embodiment.
- FIGS. 10A to 10D are diagrams for explaining analysis results in another example of the second embodiment.
- FIG. 11 is a diagram showing a schematic configuration of a reaction vessel operation management device according to the third embodiment.
- FIG. 12 is a diagram for explaining the analysis by the stationary method.
- FIG. 13 is a diagram for explaining the analysis by the stationary method.
- FIG. 14 is a diagram for explaining a state in which the amount of heat input suddenly changes.
- FIG. 15 is a diagram for explaining the problem setting.
- FIG. 16 is a characteristic diagram showing a change in heat flux at each cross-sectional position when a heat flux that changes stepwise at a position of 4 m is given.
- FIG. 17 is a characteristic diagram showing a temperature change at each cross-sectional position when a heat flux that changes stepwise at a position of 4 m is given.
- FIG. 18 is a diagram showing an example in which the horizontal axis is mapped as the non-stationary index and the vertical axis is mapped as the steady heat flux.
- FIGS. 19A to 19E are diagrams for describing the analysis results in the example of the third embodiment.
- FIG. 20 is a diagram showing an example in which the horizontal axis represents the unsteadiness index and the vertical axis represents the constant heat flux in the example of the third embodiment.
- FIG. 21 is a flowchart for explaining the inverse problem analysis processing.
- FIG. 22 is a diagram for explaining an arrangement relationship of thermocouples in Example 1 of the third embodiment.
- FIG. 23 is a diagram for explaining an arrangement relationship of thermocouples in Example 1 of the third embodiment.
- FIGS. 24A and 24B are diagrams showing the results obtained by performing a forward problem analysis with artificial boundary conditions and determining the change over time in thermocouple temperature.
- Fig. 25A and Fig. 25B are diagrams showing the results of performing a forward problem analysis with artificial boundary conditions and determining the change over time in thermocouple temperature.
- FIG. 26 is a diagram schematically showing a relationship among a reference point, a known temperature point, and an estimated point.
- FIG. 27 is a diagram schematically showing a relationship among a reference point, a known temperature point, and an estimated point.
- Figure 28 shows the results of comparing the heat flux given by the forward problem analysis with the heat flux found by the inverse problem analysis.
- Figure 29 shows the results of comparing the heat flux given by the forward problem analysis with the heat flux found by the inverse problem analysis.
- FIGS. 30A to 30D are diagrams for explaining the analysis results in Example 1 of the fourth embodiment.
- FIGS. 31A to 31D illustrate the analysis results in Example 1 of the fourth embodiment.
- FIG. 31A to 31D illustrate the analysis results in Example 1 of the fourth embodiment.
- FIG. 32 is a diagram schematically showing a relationship among a reference point, a known temperature point, and an estimated point.
- FIG. 33 is a diagram for explaining an analysis result in Example 2 of the fourth embodiment.
- FIG. 34 is a diagram for explaining the analysis result in Example 2 of the fourth embodiment.
- FIG. 35 is a diagram showing a two-dimensional cross section of a reaction vessel in which a plurality of thermocouples are embedded.
- FIG. 1 shows a schematic configuration of the operation management device for a reaction vessel of the present embodiment.
- the operation management device for the reaction vessel has an input section 101 for inputting temperature data measured by a thermocouple embedded in the wall of the reaction vessel (see Fig. 35).
- Inverse problem analysis to determine the temperature or heat flux on the inner and outer surfaces of the reaction vessel by performing an inverse problem analysis using the transient heat conduction equation based on the temperature data input to the input unit 101 Unit 102 and an output unit 103 for displaying the temperature or heat flux on the inner surface and the outer surface of the reaction vessel calculated by the inverse problem analysis unit 102, for example, on a display (not shown).
- Equation (1) The unsteady heat conduction equation used for the inverse problem analysis is expressed as shown in the following equation (1).
- p is the density of the material in the reaction vessel
- c P is the specific heat of the material in the reaction vessel
- ⁇ is the calculated value of the temperature inside the reaction vessel
- t is time
- k is the thermal conductivity of the material in the reaction vessel.
- Heat conduction inverse problem analysis is based on the unsteady heat conduction equation that governs the calculation domain. Then, assuming the temperature inside the region as known, estimating boundary conditions such as temperature and heat flux at the region boundary. On the other hand, the heat conduction order problem analysis refers to estimating the temperature inside a region from known boundary conditions such as temperature and heat flux at the region boundary.
- Examples of the two-dimensional inverse problem analysis method include, for example, a method disclosed by the present applicant in Japanese Patent Application Laid-Open No. 2002-2066958. It can also be applied to title analysis.
- As an example of one-dimensional inverse problem analysis an analysis method proposed by Beck et al. Is known (Beck and others, Inverse Heat Conduction, 1985, Wiley, New Yo: rk).
- the concept shown in Japanese Patent Application Laid-Open No. 2002-209658 is used as a method of analyzing the inverse problem. That is, as shown in the following equation (2), the temperature Y measured by each thermocouple arranged in a certain one-dimensional direction (such as la ⁇ lb ⁇ lc or ld ⁇ le shown in Fig. 35) and the reaction Y
- the assumed value that minimizes the sum of the squares of the difference from the temperature T at each thermocouple position calculated by the transient heat conduction equation from the assumed value of the heat flux on the inner and outer surfaces of the vessel is the inner surface of the reaction vessel.
- t Incidentally obtained as heat flux at the outer surface, J is the number of thermocouples.
- Equation (3) shows an example of a zero-order regularization term.
- p is the number of divisions of the estimated heat flux, ⁇ .
- I a regularization parameter obtained from empirical values. 0 ⁇ () (3)
- Equation (5) represents the objective function representing the deviation of the measured temperature Y and calculated temperature T.
- Equation (6) is an objective function added to stabilize the calculation, and has the function of suppressing rapid changes in values in the space division direction.
- ⁇ in equation (6) are regularization parameters obtained from certain empirical values.
- the objective function is set so that the square of the difference between the temperature Y measured by a certain thermocouple and the temperature ⁇ calculated from the assumed value of the heat flux by the heat conduction equation model is minimized. ing.
- an objective function for performing regularization in the spatial direction is set so that the solution is stable even if there is a temperature measurement error.
- equation (4) Is used as the overall objective function, as shown in the following equation (7), a minimum point is searched for the unknown heat flux division region.
- Equation (8) indicates the heat flux, and it is assumed that the heat flux in the future time m + r _ 1 time step is constant from the heat flux q m force in the m time step.
- i which indicates the number of divisions in the time direction, changes up to the maximum M time steps
- j which indicates the number of thermocouples, changes up to J
- k which indicates the number of divisions of the heat flux distribution
- T * is a temperature reference value
- q * is a heat flux reference value.
- Equation (9) The number of divisions of the heat flux distribution Equation (9) is a simultaneous equation for estimating the change in heat flux when a temperature change occurs.
- this equation (9) Is used to determine the heat flux q at both ends.
- the calculated temperature at the thermocouple position in the previous time step is set as the initial T *, and q is obtained by Eq. (9).
- This q is given as the boundary condition of the forward problem heat conduction equation model calculated in parallel, and the temperature distribution is calculated.
- the calculated temperature value obtained here is used as the next temperature reference value T *, and q is revised again (substituting into equation (9) to find q again).
- Equation (10) represents a kind of sensitivity matrix. In short, it shows the ratio of the magnitude of the change of the calculated temperature T at the thermocouple position to the unit change of the heat flux q at the boundary endpoint. are doing.
- the value per unit time step can be calculated at each time step by the forward problem calculation performed at the same time as the inverse analysis.
- a more desirable solution will be described using a one-dimensional inverse problem analysis as an example. As described above, even if a one-dimensional inverse problem with the heat flux of the two end faces (the inner surface and outer surface of the reaction vessel) as unknown boundary conditions is constructed (formulated), in principle, a solution must be obtained. Can be done.
- thermocouples there may be multiple solutions depending on the number of thermocouples and the thermophysical conditions of the materials, and the calculation may be unstable.
- One of the reasons is that if the combination of “heat flux difference between unknown end faces” can be properly selected, there may be countless combinations of heat flux that express the temperature change at discrete temperature measurement points. Because there is. In particular, heat transfer In the case of a substance with low conductivity, even when estimating the boundary condition that causes the surface temperature to become extremely large or small, if only the temperature change at discrete measurement points is reproduced, one Recognition as a solution can also occur. This not only is impossible as a real phenomenon, but also makes the inverse problem calculation very unstable.
- the temperature of the thermocouple at the start of the inverse problem analysis (the temperature at the discrete measurement points) is given as a known value, but the initial conditions of the temperature distribution in other analysis domains are unknown. Is common. For this reason, the calculation is started from the tentative initial temperature distribution arbitrarily given, and while the calculation steps are proceeding, the actual temperature distribution is searched and estimated, and the temperature distribution is corrected gradually to an appropriate temperature distribution, and stably It is necessary to use a calculation logic that allows the calculation to proceed (for example, the temperature distribution referred to here means, in the calculation procedure of inverse problem analysis, the solution of the above equation (9) must be modified. This is the calculated value of the forward problem heat conduction equation model calculated in parallel).
- a temporary heat flux q is given as a heat flux on one of the inner surface and the outer surface of the reaction vessel, here, on the outer surface.
- T surf indicates the temperature at the unknown boundary, here the outer surface of the reaction vessel.
- This surface temperature T surf is usually also used to perform a forward problem analysis in order to correct the heat flux value during the inverse problem analysis, but it is equivalent to the surface temperature obtained in the forward problem analysis.
- the reference temperature Tb is a temperature outside the inside and outside and inside surfaces of the reaction vessel.
- the cooling condition of the reaction vessel is determined based on the water temperature and the like in the case of water cooling.
- the heat flux q on the left side of the above equation can be given as if it were known heat flux information.
- the heat transfer coefficient h and / or the external reference temperature T b are changed by several points, that is, the value of the temporary heat flux q on the outer surface of the reaction vessel is shaken by several points (point K), and the reaction is performed.
- the temporary heat flux q on the outer surface of the vessel and the heat flux on the inner surface of the reaction vessel that minimizes the sum of the squares of the differences in temperature ⁇ and ⁇ when given each temporary heat flux information q Are obtained (Step S203).
- the one-dimensional inverse problem analysis for simultaneously obtaining the heat flux changes on the inner surface and the outer surface of the reaction vessel can be stably executed. If the temperature change and the heat flux change on the inner surface and the outer surface of the reaction vessel can be simultaneously estimated, for example, the temperature fluctuation at a certain temperature measurement point is caused by the heat flux change on the inner surface of the reaction vessel. It is possible to distinguish whether the heat flux is caused by a change in heat flux on the outer surface of the reaction vessel caused by poor contact of a cooling device installed outside the reaction vessel or the like.
- the above method is simple to apply to one-dimensional inverse problem analysis, and is often effective as a practical problem.
- the reason is that the upper and lower ends of the reaction vessel are generally insulated (symmetric) in many cases, and there is no practical problem.
- inverse problem analysis can be performed assuming one dimension in the thickness direction within the area demarcated by the broken line in Fig. 35, and the results can be combined into two dimensions by combining them vertically.
- a two-dimensional inverse problem analysis is required.
- Such two-dimensional analysis consists of making the heat flux divisions at the left and right ends in Fig. 35 finer upward, and finding the minimum heat flux distribution by least squares at the temperature at these thermocouple positions. This is equivalent, and the present invention may be applied in accordance with the same method as the inverse problem formulation disclosed in Japanese Patent Application Laid-Open No. 2002-209658.
- the heat flux at the upper and lower ends in Fig. 35 may be unknown or known, but considering the stability of calculation, an appropriate heat flux (for example, adiabatic Etc.) and it is desirable to make it known. Based on the same idea, extension to three-dimensional analysis can be easily performed.
- thermocouples 1 t and 1 s are embedded at 0.1 [m] and 0.2 [m] from the outer end of the furnace. ing.
- the position of the thermocouple is arranged to be deviated to the outside of the furnace.
- FIGS. 4A to 4E show measured temperature data and analysis results of the thermocouples 1 s and 1 t.
- the horizontal axis is the number of days.
- Figure 4A shows the changes over time of the two thermocouples 1 s and It. According to the results, two places where the temperature is noticeably higher can be observed as enclosed by the ellipse (high temperature 1 and high temperature 2).
- Figures 4B and 4C show the results of calculating the temperature at the furnace inner end (the inner surface of the reactor) and the temperature at the furnace outer end (the outer surface of the reactor) using the inverse problem analysis method described above. .
- the high-temperature phenomenon 1 shows that the inner and outer ends of the furnace were simultaneously heated, and the effect of the reaction activation high temperature in the furnace affected the outer end of the furnace. It can be inferred.
- the high temperature phenomenon 2 almost no temperature fluctuation was observed at the inner end of the furnace, and it can be inferred that the temperature was raised simply because the cooling capacity outside the furnace was reduced.
- Fig. 4'D shows the change of the heat flux at the outer end and the inner end of the furnace similarly obtained by the inverse problem analysis method.
- Fig. 4E shows a characteristic diagram converted to the heat transfer coefficient h on the outer end of the furnace. From these results, the heat transfer coefficient h also fluctuated greatly near the high temperature phenomenon 2, and the cooling capacity gradually increased after about 300 days, and dropped sharply near the high temperature phenomenon 2. It can be understood that there is an abnormality in cooling due to some factor.
- FIG. 5 shows a schematic configuration of the operation management device for the reaction vessel of the present embodiment.
- reference numeral 201 denotes an arithmetic unit, which performs an operation to increase the number of digits after the decimal point using the temperature data input to the input unit 101, as described later.
- the inverse problem analysis unit 103 performs an inverse problem analysis using an unsteady heat conduction equation based on the temperature data in which the number of digits after the decimal point has been increased by the arithmetic unit 201, thereby obtaining a reaction vessel.
- the unit time step of the inverse problem calculation is long, it is necessary to estimate a change that goes far back in the past at least for that time step.
- the inverse problem calculation is a calculation result obtained by time averaging in the calculation time step, the restored heat flux change also captures a dull change, and a rapid change below the time step cannot be captured.
- shortening the unit time step of the inverse problem calculation means that during that short time, the small amount of heat transmitted from the position where the heat flux changes (for example, the inner surface of the blast furnace in contact with the hot metal) to the thermocouple position This means that temperature changes must be captured.
- the position of the thermocouple is far from the position where the heat flux changes, and the thermal conductivity of the material between them is small, the temperature movement in a short time becomes very small.
- thermocouple Therefore, the present inventors have conducted intensive studies in order to be able to estimate the past heat flux distribution as close as possible in a short time step while utilizing temperature data measured by a thermocouple.
- the global temperature When looking at the flow of data, it is common to evaluate the value by rounding down the temperature data after the decimal point.
- the manufacturer's guaranteed range of the temperature measurement device that converts the thermocouple contact voltage change into temperature may be up to one decimal place in most cases. Often temperature data is used. In other words, the collected and recorded temperature data is coarse, with zero or one decimal place.
- the time transition of temperature-the flow of temperature change is more important than the accuracy of temperature itself. If the temperature changes in a staircase, pursuing only the accuracy of the temperature itself, the inverse problem analysis would be unstable. In particular, when aiming for inverse problem analysis in a short time step, an unpredictable step-like temperature change may occur in that time step. Therefore, even if an inverse problem analysis is performed using this stepwise temperature change to obtain a heat flux solution, there is a possibility that a physically impossible solution may be reached. In fact, in most cases the solution diverges, making it impossible to continue the inverse problem analysis.
- Generating temperature data with an increased number of decimal places from temperature data with a small number of decimal places in a rational manner is an effective method for smoothing step-like temporal changes. It is.
- the arithmetic unit 201 collects temperature data with zero or one digit below the decimal point with a sampling time shorter than the time step in inverse problem analysis, averages them over time, and performs inverse problem analysis.
- the representative value of the temperature data used in the calculation time step in. For example, a small digit number of temperatures sampled at 5-minute intervals shorter than the time step (1 hour) in the inverse problem analysis is simply averaged over a 1-hour range, and a representative value of the 1-hour-step temperature data is obtained. I do. This makes it possible to apparently reduce the number of decimal points in the one-hour temperature data.
- the temperature data used for the inverse problem calculation is based on the temperature data (measured by the thermocouple) with zero decimal places and one decimal place that guarantees the accuracy measured by the thermocouple.
- the number of decimal places of It is possible to increase.
- the number of digits after the decimal point of the temperature data used for the inverse problem calculation may be increased by another method. For example, in a thermocouple, even if the assurance range of the temperature data itself is one decimal place, it is actually calculated based on the conversion formula that converts the voltage at the thermocouple junction into temperature, or the calibration is performed. A common method is to convert the voltage-temperature conversion table to temperature.
- the calculated temperature value of many digits is rounded off to one digit after the decimal point, and it is actually possible to obtain the number of decimal digits according to the capacity of the computer.
- a conversion formula for converting the voltage of a K-type thermocouple into temperature there is the following formula.
- T a + b ⁇ X + c ⁇ ⁇ 2 + d ⁇ X 3 + e ⁇ X + f ⁇ X 5 + g ⁇ X 6 + h ⁇ X 7 + i ⁇ X 8
- the contact voltage is a true contact voltage after cold junction temperature compensation.
- a filter 101a is provided in the input section 101 as shown in FIG. To be applied. That is, using the filter 10 la, Correct the temperature data measured in pairs and use the corrected temperature data for inverse problem analysis. If a filter is used, even if the original temperature data has a small number of decimal places, the decimal places can be apparently generated in the temperature data. Calculation of problem analysis is very stable.
- the mouth-pass filter corrects the measured data in order to remove the influence of fluctuation due to high-frequency noise mixed in the measured data sampled at equal time intervals.
- thermocouple position caused by a change inside the furnace far away is a low frequency change in time.
- high-frequency noise due to other causes is superimposed on the actual thermocouple contact voltage change (original signal before temperature conversion). Therefore, using temperature data that has been processed to remove ⁇ -frequency noise from actual measured temperature changes in an inverse problem analysis is a very physically meaningful method. Therefore, this method not only can improve the calculation stability of the inverse problem analysis, but also can improve the accuracy of estimating the heat flux.
- the number of digits after the decimal point was increased by some other method, as well as the temperature data whose number of digits was increased by taking the above-mentioned time average or using a conversion formula.
- Equations (12) to (14) show the equations of the three-term method, the five-term method, and the seven-term method, respectively, and the performance as a low-pass filter increases as the number of measured temperature data used for correction increases. Is improved. That is, only lower frequency signals can be extracted. Basically, it can be expressed by the coefficient of each term. 5) It becomes like (17).
- FIG. 7 shows a one-dimensional transient heat conduction model using a thermocouple embedded in a carbon brick installed on the bottom of the blast furnace bottom.
- TC 1 indicates a high-temperature thermocouple
- TC 2 indicates a low-temperature thermocouple. From the temperature changes measured by these thermocouples TC1 and TC2, the unsteady heat flux q1 on the high-temperature heat flux surface and the unsteady heat flux q2 on the cooling surface are calculated by the inverse problem analysis described above. Estimate at the same time.
- the position of the high-temperature heat flux surface is a fixed point 4.0 m deep from the cooling surface.
- FIG. 8A shows the estimation result of the heat flux q1 on the high temperature side obtained in the present example.
- the horizontal axis of 8D represents the date, and shows the results from September 1 to October 1. Actually, the calculation starts before September 1, and ends on October 1st.
- the time step of the inverse problem analysis is 8 time steps.
- Case 1 rounds off the temperature data measured by the thermocouple to one decimal place. This is the calculation result when filter processing is performed on the data with 0 decimal places.
- Case 2 is the calculation result when filtering the temperature data with two decimal places rounded to one decimal place.
- FIG. 8B and 8C show plots of the temperature data (temperature data used for inverse problem analysis) after filtering the high-temperature-side thermocouple TC1 and low-temperature-side thermocouple TC2.
- FIG. 8D shows the temperature difference between case 1 and case 2 (case 1—case 2) at the respective positions of thermocouples T C1 and T C2.
- the Spencer-type equation (Equation (2 1)) of up to 21 terms is used.
- a technique is used in which the number of terms is gradually reduced as approaching.
- the expressions (15) to (21) are used in a Windows format notation. That is, the number of terms decreases as the date approaches October 1, and finally equation (15) is used, and no filtering is performed on the last temperature data.
- Fig. 9 shows a schematic diagram similar to Fig. 7 for cases where the thermocouples are installed at different depths.
- Figure 10A shows the estimation results of the high-temperature side heat flux q1 when the calculation time step of the inverse problem analysis is set to 8 hours and when it is set to 6 hours. The results of these calculations are extracted from September 1 to October 1 of the long-term calculation results.
- FIGS. 10B and 10C show characteristic diagrams obtained by plotting the temperature data of the high-temperature-side thermocouple TC1 and the low-temperature-side thermocouple TC2 after the smoothing. Further, FIG. 10D shows the difference between the high-temperature side thermocouple temperature and the low-temperature side thermocouple temperature (T C 1 -T C 2) corresponding to the steady state heat flux.
- the quasi-stationary heat flux in the characteristic diagram in Fig. 10D can be interpreted as the average heat flux passing around the thermocouple position, and the value of the unsteady heat flux estimated at the hot surface 4 m deep
- the peaks do not always correspond to each other, but in this case, a peak lag of about 2-3 days is observed.
- the unsteady heat flux based on the inverse problem analysis detects the movement in the furnace approximately 2-3 days earlier than the conventional steady-state method.
- the 6-hour step calculation shows a movement with a sharper contour. If the time step is lengthened, only the averaged motion within that time can be captured, so shortening the time step as much as possible is more likely to express the actual internal motion.
- FIG. 11 shows a schematic configuration of the operation management apparatus for a reaction vessel of the present embodiment.
- reference numeral 301 denotes an analysis unit based on the steady-state method. By performing analysis based on the temperature data obtained through the input unit 101 by the steady-state method, the temperature on the inner surface of the reaction vessel is calculated. Or heat flux.
- Reference numeral 302 denotes a comparison unit which compares the temperature or heat flux obtained by the inverse problem analysis unit 102 with the temperature or heat flux obtained by the analysis unit 301 by the steady-state method.
- the output unit 103 displays the result compared by the comparison unit 302 on, for example, a display (not shown). Since the inverse problem analysis used in the present embodiment has been described in the first embodiment, the description is omitted here.
- the temperature at the inner surface of the reaction vessel is obtained from the temperature measurement values at two points in the depth direction (thickness direction of the wall (brick)) in the one-dimensional stationary method.
- the temperatures at the two points are connected by a straight line, and the temperature at the outside point is the temperature on the inner surface of the reaction vessel.
- the heat flux is the slope of the straight line, it can be obtained by multiplying the slope by the thermal conductivity k (the intermediate term in the following equation (22)).
- a straight line that satisfies the temperature at the plurality of points is obtained by the linear least squares method.
- the temperature at the outside point is defined as the temperature on the inner surface of the reaction vessel.
- the heat flux can be obtained by multiplying the slope of the straight line by the thermal conductivity k (the rightmost term in the following equation (22)).
- the heat flux (steady heat flux) obtained as a result of the analysis by the steady-state method can be expressed by a straight line, so that it takes the same value regardless of the cross-section, which is the heat flux (unsteady heat flux) obtained as a result of the inverse problem analysis. Bunch).
- the temperature gradient changes sensitively due to the effect of the outside, so it is easy to largely separate from the straight line of the steady method.
- Fig. 14 for example, if the inflow calorific value increases suddenly, the temperature gradient will increase locally, and if the inflow calorie decreases suddenly, the temperature gradient will decrease locally. If such a change is not instantaneous but extends for a long time (steady state), the distribution of the temperature gradient is gradually eliminated and converges on a certain straight line (steady state).
- the implication of estimating the heat flux on the inner surface of the reaction vessel by inverse problem analysis using the unsteady heat conduction equation is to accurately capture this local change in the temperature gradient. It is important to be able to make decisions.
- the unsteady heat flux is lower than the steady heat flux, it can be estimated that the steady heat flux (average heat flux) will tend to decrease in the future. Conversely, if the unsteady heat flux is higher than the steady heat flux, it can be estimated that the steady heat flux (average heat flux) will tend to increase in the future. Also, if the heat flux difference is large, the unsteadiness is large, so it can be judged that this suggests that the average heat flux will rapidly rise and fall in the future.
- the same evaluation can be performed by comparing the solution of the inverse problem analysis and the analysis by the steady-state method for the estimated temperature at the fixed position, instead of comparing the heat flux at the fixed position. Also, by examining the starting point where the heat flux difference between the two begins to change rapidly, it is possible to identify what caused the sudden rise or fall.
- the difference between the unsteady heat flux (or temperature) at a fixed position and the steady heat flux (or temperature) is used as an indicator of unsteadiness, and There is also a method of evaluating The non-stationarity index is calculated by the following formulas (23), (24) It is possible to define the heat flux difference or the temperature difference at a fixed position as a numerical value, so that a quantitative grasp can be obtained. It is important to clarify at which fixed position the value of the non-stationarity index is defined, and the value changes depending on the defined position, as described above.
- the fixed position reference is fixed at a very shallow position, the unsteadiness may become dull as shown in Fig. 16, and the desired comparison result may not be obtained. In such a case, it is desirable to set the standard for the reactor with the largest brick thickness, even if it is virtually.
- the non-stationary index only estimates the magnitude and directionality of the subsequent changes based on the current steady-state heat flux (steady-state temperature), and therefore depends on the magnitude of the heat flux at that time. The meaning changes. That is, the relationship between both the unsteadiness index and the absolute value of the heat flux is important.
- Fig. 18 schematically shows an example of mapping that concept.
- the horizontal axis shows the unsteadiness index ⁇ ⁇ ⁇ vine ⁇
- the vertical axis shows the steady heat flux, and this operation requires that the steady heat flux be kept above a certain reference value Q.
- the critical value of the unsteadyness index ⁇ T tran is set to 120 ° C.
- the value depends on the concept of stabilizing the operation, the allowable heat flux change, and the thermophysical properties of the reaction vessel wall. Of course, it changes depending on the value and the estimated position (thickness position). Also, here, the value on the vertical axis is the steady heat flux, but there is no problem even if it is unsteady heat flux.
- FIG. 9 shows a case where a thermocouple embedded in a carbon brick installed in the bottom of the blast furnace bottom is used.
- An example of an inverse problem analysis is shown, assuming a one-dimensional transient heat conduction model. Two thermocouples are biased toward the cooling surface side. TC 1 indicates a high temperature side thermocouple, and TC 2 indicates a low temperature side thermocouple. From the temperature changes measured by these thermocouples TC1 and TC2, the unsteady heat flux q1 on the high-temperature heat flux surface and the unsteady heat flux q2 on the cooling surface were simultaneously determined by the inverse problem analysis described above. presume. The position of the high-temperature heat flux surface is a fixed point 4.
- Figures 19C and 19D show the transition of the temperature at the high-temperature thermocouple TC1 and the temperature at the low-temperature thermocouple TC2 (temperature data used for the inverse problem analysis).
- the horizontal axis is the date Yes, showing results from September 1 to January 25.
- Figure 19A shows the results of the heat flux by the inverse problem analysis on the high-temperature heat flux surface (4 m position) estimated using the above temperature data, and the results of the heat flux by the steady-state method.
- the transition of the unsteady heat flux by the inverse problem analysis shows larger fluctuations, while the steady heat flux by the steady method changes slowly. Comparing these changes, it can be inferred that from around January 8, the difference in heat flux between the two methods increased, and that there was an unsteady change in the hot metal flow in the furnace.
- Figure 19B shows the results of the temperature estimation by the inverse problem analysis on the high-temperature heat flux surface (at a position of 4 m) estimated using the above temperature data, and the temperature estimation by the steady-state method. From this result, it is possible to read the same tendency as in the case of heat flux.
- Figure 19E shows the change in the unsteadiness index ⁇ tran tran at the high-temperature heat flux surface (4 m position) as a function of temperature. Expressing with such indicators makes it easier to see when the change originated.
- FIG. 20 shows the result of mapping this calculation result between the unsteadiness index ⁇ T tran and the steady heat flux.
- the results show that the critical value of the unsteadyness index ⁇ T tra ⁇ was set to 130 ° C. with the lowest reference value of the steady-state heat flux set at 350 ° W / m 2 , whereas the critical value of 130 ° C. In this case, the steady-state heat flux decreases rapidly after this value is cut, and eventually falls significantly below the reference value. Did not take any action.
- Unsteady index delta T t ra n are, so show a deviation from stationarity inside fixed point of the furnace. It can be grasped signs of early changes than before. Therefore, if an appropriate action standard can be set by utilizing the characteristics of this indicator, it will lead to a reduction in production costs, but it will be possible to promote marginal operation, which is a bad operating condition. It enables agile operation design to detect signs of deterioration in the furnace at an early stage and take immediate recovery action.
- the schematic configuration of the reaction vessel operation management device of the present embodiment is the same as that of FIG. 1 described in the first embodiment, but is input to the input unit 101 in the inverse problem analysis unit 102.
- the temperature or heat flux on the inner and outer surfaces of the reaction vessel by performing inverse problem analysis using an internal function or an external function that satisfies the transient heat conduction equation based on the temperature data It is characterized by the following.
- the boundary condition on the inner surface and outer surface of the reaction vessel as a simpler method is obtained.
- the change is estimated.
- the interpolation function or the outer ⁇ function is a function that connects the temperature at the measurement point and expresses a region other than that point, for example, the whole or a part of the analysis region.
- Linear functions such as linear function approximation and spline interpolation are known as internal functions that cannot be extrapolated. However, functions that can be extrapolated while satisfying the transient heat conduction equation are not known.
- Interpolation refers to estimating unknown points inside known points
- extrapolation refers to estimating outside and around known points.
- the inverse problem analysis unit 102 first expresses the solution of the unsteady heat conduction equation using a predetermined internal function or external function and parameters (step S 2 101) .
- t represents time
- X, y, and z represent position vector elements, and can be applied to a general three-dimensional coordinate system.
- ⁇ ⁇ , ⁇ " ⁇ ⁇ , ⁇ ⁇ , A y , ⁇ ⁇ , X, ⁇ , and ⁇ represent appropriate arbitrary constants, and the optimum value varies depending on the target system. The values of these arbitrary constants Care must be taken in choosing
- This function F ( X , y, z, t) automatically satisfies the transient heat conduction equation (25).
- this function F (x, y, z, t) is used to express the solution of the unsteady heat conduction equation in general, it is expressed as the following equation (27).
- x j , y j , and z j represent each element of an arbitrary reference position vector, represents an arbitrary reference time, and x , y, z, and t are points at which temperature is to be estimated.
- N j is the number of reference position vectors and the number of reference times in the time direction, respectively.
- a is a parameter, but if this value is determined, it is possible to determine an arbitrary position vector (X, y, z) and a temperature distribution T (X, y, z, t) at time t. You can.
- the value of the parameter in the solution of the transient heat conduction equation expressed by the above equation (27) is determined using the temperature information measured by the thermocouple (step S2102). The value of this parameter a can be determined by solving the following simultaneous equation (28).
- a ki l is the temperature T measured by the thermocouple. (x k , y k , z k , t 1 ), where the subscript k indicates the measurement position and the subscript 1 indicates the sampling time.
- the heat conduction inverse problem is based on the unsteady heat conduction equation governing the calculation domain, assuming that the temperature inside the domain is known, and the boundary conditions such as temperature and heat flux at the domain boundary or the initial conditions.
- the heat conduction order problem refers to the problem of estimating temperature information inside a region based on known boundary conditions.
- the temperature distribution at the wall boundary of the reaction vessel is also estimated at the same time, and although indirect, the boundary between the inner surface and the outer surface of the reaction vessel is obtained from the temperature information measured by the thermocouple. This is the inverse problem of deciding the conditions.
- the temperature gradient at the boundary can be estimated not only from the temperature distribution at the wall boundary of the reaction vessel but also from the temperature distribution in the vicinity, the heat flux at the wall boundary position of the reaction vessel is consequently obtained.
- the change can also be estimated.
- Figs. 22 and 23 show one-dimensional transient heat using thermocouples embedded in carbon bricks installed on the bottom (Fig. 2 2) and side walls (Fig. 2 3) of the blast furnace bottom.
- a model that attempted an inverse problem analysis assuming conduction is schematically shown.
- two thermocouples are embedded toward the cooling surface side
- TC1 is a hot-side thermocouple
- TC2 is a low-temperature-side thermocouple.
- the inverse problem analysis was used to determine the unsteady heat flux q1 on the hot heat flux surface and the unsteady heat flux q2 on the cooling surface. Estimate at the same time.
- Fig. 22 and 23 show one-dimensional transient heat using thermocouples embedded in carbon bricks installed on the bottom (Fig. 2 2) and side walls (Fig. 2 3) of the blast furnace bottom.
- TC1 is a hot-side thermocouple
- TC2 is a low-temperature-side thermocouple.
- the inverse problem analysis was used to determine the unstead
- the high-temperature heat flux surface position is a fixed point (4.0 m) at a depth of 4.0 ⁇ 1 from the cooling surface, and in Fig. 23, the high-temperature heat flux surface position is 2.0 m from the cooling surface.
- the fixed point (x 2.0 m).
- ⁇ x it is also an important factor to set the reference position vector and the reference time.
- Figures 26 and 27 show the reference point (reference position vector and reference time), the known temperature point (the thermocouple position vector whose temperature is being measured and the known temperature time), and the estimated point (temperature estimation position position). The relationship between the distance and the estimated time is schematically shown. In the examples of Figs. 26 and 27, the reference point and the known temperature point are matched, and Fig. 26 shows that three temperature points are used in the time direction and Fig.
- FIG. 27 shows that five temperature points are used in the time direction. I have.
- the estimation point selects the point closest to the present in the time direction (shown as "present"), and sets the position vector to the q1 and q2 positions did.
- the estimated points are indicated by "X”.
- the heat fluxes q1 and q2 at the estimation point are obtained with the settings in Fig. 26.
- the heat flux The heat fluxes q 1 and q 2 are obtained, and ⁇ ⁇ ⁇ ⁇ that can reproduce the boundary conditions relatively well compared to the heat fluxes 1 and q 2 in Figs.
- the value was determined by solving the simultaneous equations in Eq. (28).
- Eq. (27) the temperature distribution of the entire region is estimated, so the values of ql and q2 cannot be directly obtained. Therefore, the temperature (T p ) at the position vector (x p ) of the estimated point and the temperature (T p at 3. O mm inside of X p , c ) near the estimated point pole ( ⁇ ⁇ ) p , c ) was estimated and calculated by the following equation (31), and it was assumed that the heat flux q was at the estimated point.
- Fig. 28 shows the results of comparing the heat fluxes q1 and q2 given by the forward problem analysis with the heat fluxes q1 and q2 found by the inverse problem analysis for the model in Fig. 22.
- the solid lines are q1 (thick line) and q2 (thin line) given by the forward problem, and the plots are the estimated values of q1 (command) and q2 (country) obtained by the inverse analysis.
- Time step of inverse analysis is 28800 seconds, the value of tau chi at this time was 1800000 seconds.
- the value of ⁇ depends on the unit system of the analysis, but in this analysis, the MKS unit system is used.
- Fig. 29 shows the results of comparing q1 and q2 given in the forward problem analysis with q1 and q2 found in the inverse problem analysis for the model in Fig. 23.
- the solid lines are q 1 (thick line) and q 2 (fine line) given by the forward problem, and the plots are the estimated values of q 1 ( ⁇ ) and q 2 (garden) obtained by the inverse analysis.
- thermocouple TC1 temperature data in the characteristic diagrams of Figs. 30C and 31C thermocouple TC2 temperature data in the characteristic diagrams of Figs. 30D and 31D
- the characteristics of Fig. 30A and 31A The heat flux ql on the high temperature side in the figure and the heat flux q2 on the low temperature side in the characteristic diagrams in Figs. 30B and 31B are simultaneously estimated.
- the ⁇ ordinary method '' is a method of estimating the once-through heat flux that has been conventionally used, and multiplies the absolute value of the temperature difference between TG 1 and TC 2 by the thermal conductivity k x to calculate the distance between the TC 1 position and the TC 2 position. It is the value re-divided by the absolute value of In particular, it is noticeable in Figs. 31A to 31D, but it can be seen that ql of the steady-state method changes in the same shape several days later than the ql estimation. This is the effect of the lag time due to the effect of the heat capacity (p CP ) of the blast furnace carbon brick.
- Figure 32 schematically shows the relationship between the reference point, the known temperature point, and the estimated point.
- the future temperature change is estimated in the time direction with the position of the estimation point being the position of TC1 and the position of TC2.
- the unit time step of the temperature known point (past) and the estimated point (future) is
- the reference point is set by shifting the half-hour step by 14400 seconds, and the time step of the reference point is doubled to 57600 seconds.
- Figure 33 shows an example of the analysis results.
- the usual implicit difference approximation method time step 28,800 seconds was used.
- the plot ( ⁇ , garden) in Fig. 33 shows the estimation results by this method, using the six known temperature points (three TC1 and three TC2) immediately before the plot. This is the result of estimating six estimated points (future points) (see Figure 32). Overall, it has very good estimation performance. However, it can be seen that some points show estimates in completely different directions.
- the operation management device for a reaction vessel is configured by a computer CPU or MPU, RAM, ROM, or the like, and is realized by the operation of a computer program stored in RAM or ROM. Therefore, the computer program itself for realizing the functions of the above-described embodiment on a computer implements the functions of the above-described embodiment, and constitute the present invention.
- means for supplying the computer program to a computer for example, a recording medium storing the computer program constitutes the present invention.
- a recording medium for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
- the unsteadiness of the state in the reaction vessel is obtained. Strength can be evaluated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
A reaction vessel operation control device comprises an input unit (101) to which inputted is data on temperature measured by thermocouples at the inner and outer surfaces of the reaction vessel and an inverse problem analysis unit (102) for determining the temperatures or the heat fluxes at the inner and outer surfaces of the reaction vessel by conducting inverse problem analysis using an unsteady heat equation on the basis of the temperature data inputted into the input unit (101). The inverse problem analysis unit (102) calculates the temperatures T at the positions of the thermocouples by using the unsteady heat equation from the temporary values of the heat fluxes at the inner and outer surfaces of the reaction vessels. Then the inverse problem analysis unit (102) determines, as the heat fluxes, the temporary values of the heat fluxes at which the sum of the squares of the differences between the temperatures Y measured by the thermocouples linearly arranged and the calculated temperatures T is minimum.
Description
明 細 書 Specification
反応容器の操業管理方法、 装置、 コンピュータプログラム、 及びコンピュータ 読み取り可能な記録媒体 技術分'野 Operation management method, apparatus, computer program, and computer-readable recording medium for reaction vessel
本発明は、 例えば高炉、 燃焼による鋼材加熱炉、 石炭ガス化反応炉等の高温の ガス反応又は液体反応を伴う反応容器の操業を管理するのに利用して好適な反応 容器の操業管理方法、 装置、 コンピュータプログラム、 及ぴコンピュータ読み取 り可能な記録媒体に関する。 背景技術 The present invention relates to a reaction vessel operation management method suitable for use in managing the operation of a reaction vessel involving a high-temperature gas reaction or a liquid reaction such as a blast furnace, a steel material heating furnace by combustion, a coal gasification reaction furnace, etc. The present invention relates to an apparatus, a computer program, and a computer-readable recording medium. Background art
高炉、 燃焼による鋼材加熱炉、 石炭ガス化反応炉等の高温のガス反応又は液体 反応を伴う反応容器の操業を管理する場合、 一具体例として高炉炉底の溶銑湯流 れを監視するような場合には、 反応容器 (高炉) 内の状況 (例えば、 燃焼挙動) を観測し、 その状況を把握する必要がある。 When controlling the operation of a reaction vessel involving a high-temperature gas reaction or a liquid reaction such as a blast furnace, a steel heating furnace by combustion, or a coal gasification reaction furnace, one specific example is to monitor the flow of hot metal at the bottom of the blast furnace. In such a case, it is necessary to observe the situation inside the reaction vessel (blast furnace) (for example, combustion behavior) to understand the situation.
従来から、 反応容器の壁内部に埋め込まれた熱電対で測定された温度に基づい て、 反応容器内の状況を推定することがなされている。 例えば、 急激な温度上昇 があれば、 その熱電対周辺の反応容器内において異常な発熱が生じていると推定 し、 逆に極端な温度下降があれば、 その熱電対周辺の反応容器内において発熱反 応域の縮小等の発熱量低下が生じていると推定する等の経験的な手法である。 Conventionally, the state inside the reaction vessel has been estimated based on the temperature measured by a thermocouple embedded inside the wall of the reaction vessel. For example, if there is a sudden rise in temperature, it is estimated that abnormal heat is generated in the reaction vessel around the thermocouple, and if there is an extreme drop in temperature, heat is generated in the reaction vessel around the thermocouple. This is an empirical method such as estimating that a decrease in the calorific value has occurred such as a reduction in the reaction area.
しかしながら、 上記のような推定では、 実際の反応容器内での温度異常の発生 タイミングと温度測定したタイミングとの間でタイムラグが発生することは避け られない。 これは、 反応容器内の温度異常が熱流束変化として反応容器の表面に 伝わり、 その後、 反応容器の壁材料内部に一部の熱が溜まりつつ、 熱伝導効果に よって熱が徐々に伝わって、 最終的に熱電対に温度変化をもたらすためであり、 原理的に、 熱容量を有する固体内の熱伝導現象は若干の時間遅れを有する (非定 常性)。 However, in the above estimation, it is inevitable that a time lag occurs between the timing of the occurrence of the temperature abnormality in the actual reaction vessel and the timing of the temperature measurement. This is because the abnormal temperature in the reaction vessel is transmitted to the surface of the reaction vessel as a change in heat flux, and then part of the heat is accumulated inside the wall material of the reaction vessel, and the heat is gradually transmitted by the heat conduction effect. This is because the temperature change finally occurs in the thermocouple. In principle, the heat conduction phenomenon in a solid having a heat capacity has a slight time delay (non-stationary).
これに対して、 反応容器壁内の熱伝導現象を非定常 1次元の熱伝導逆問題と考 えて、 1つの熱電対温度変化、 又は、 1次元方向に並んだ複数の熱電対温度変化
から、 反応容器の内表面における熱流束変化を推定する手法が提案されている。 図 3 5は、 複数の熱電対 「X」 が埋め込まれた反応容器 (加熱炉) の炉壁近く の 2次元断面を示している。 炉壁内に破線で境界を示しているが、 1次元とはこ の破線に沿った方向の熱流れのみを考慮したことを意味している。即ち、例えば、 l a→ l b→ l cや l d→ l e方向の熱伝導を想定した場合に、 炉内表面におけ る熱流束を推定する。 このとき、 炉外表面の冷却条件を既知と仮定して、 未知と した炉内表面における熱流束を求めることが一般的である。 もちろん、 既知と未 知の境界条件を反対にすることも可能である。 On the other hand, considering the heat conduction phenomenon inside the reaction vessel wall as an unsteady one-dimensional heat conduction inverse problem, one thermocouple temperature change or multiple thermocouple temperature changes arranged in one-dimensional direction Therefore, a method for estimating a change in heat flux on the inner surface of a reaction vessel has been proposed. Figure 35 shows a two-dimensional cross section near the furnace wall of a reaction vessel (heating furnace) in which multiple thermocouples “X” are embedded. Although the boundary is indicated by a broken line in the furnace wall, one-dimensional means that only the heat flow in the direction along the broken line is considered. That is, for example, assuming heat conduction in la → lb → lc or ld → le directions, the heat flux on the furnace inner surface is estimated. At this time, it is general to determine the heat flux on the unknown inner furnace surface, assuming that the cooling condition of the outer furnace surface is known. Of course, it is also possible to reverse the known and unknown boundary conditions.
上記推定手法として、 例えば特開 2 0 0 1 — 2 3 4 2 1 7号公報では、 高炉炉 床に埋め込まれた熱電対から、 非定常 1次元熱伝導方程式の逆問題解析すること により、 端点の熱流束を推定する手法について述べられている。 As the above estimation method, for example, Japanese Patent Application Laid-Open Publication No. 2000-1 — 324 217 discloses an inverse problem analysis of an unsteady one-dimensional heat conduction equation from a thermocouple embedded in a blast furnace hearth. It describes a method for estimating the heat flux.
この手法の一つは、 1点の熱電対温度変化と、 端点の冷却条件 (既知と仮定) から、その反対側の端点の熱流束を推定する手法である。このような冷却条件は、 熱伝達係数と冷却水温度で与えることになるが、 特に、 熱伝達係数は、 冷却水の 平均流速から経験相関式により推定することになるので、 不確実な推定値になる 場合があり、その値を使って逆問題推定した反対側端点の熱流束推定値の精度に、 悪影響を及ぼす可能性がある。 One of these methods is to estimate the heat flux at the opposite end point from the thermocouple temperature change at one point and the cooling condition (assumed to be known) at the end point. Such cooling conditions are given by the heat transfer coefficient and the temperature of the cooling water.In particular, since the heat transfer coefficient is estimated from the average flow velocity of the cooling water using an empirical correlation formula, uncertain estimated values This may have a negative effect on the accuracy of the heat flux estimate at the opposite end point, estimated using the value in the inverse problem.
また、 もう一つの手法として、 2点の熱電対温度変化を用いた推定手法につい ても述べられているが、 2点の内、 1点を固定温度境界条件として与えて解く手 法であるので、 2点の相対的な温度変化を捉えて推定することは難しい上に、 固 定温度境界条件上での熱流束の推定は可能であるが、 固定温度境界条件に選んだ 側の、 その外側延長線上の端点熱流束は推定できないことになる。 Also, as another method, an estimation method using two points of thermocouple temperature change is described.However, since it is a method to solve by giving one of the two points as a fixed temperature boundary condition However, it is difficult to estimate by capturing the relative temperature change between the two points, and it is possible to estimate the heat flux under the fixed temperature boundary condition, but outside of the side selected as the fixed temperature boundary condition The end point heat flux on the extension line cannot be estimated.
更に、 上記いずれの方法においても、 解析長さを固定して両端の熱流束を求め る手法ではなく、 耐火物表面に付着する炉内溶融物による厚みの変化と、 熱流束 変化を同時に推定する手法である。 凝固 ·溶解現象によって付着量を増減する口 ジックを逆問題解析に導入すると、 第一に、 計算手続きが複雑になって計算が不 安定化しやすくなるという問題がある。 第二に、 各時間ステップで解析長さを変 化させる計算手続きが入ると、 長さを変化させた前後の温度分布の推定方法に不 確定な要素が混入する可能性があるので、 熱流束の推定精度が悪くなる可能性も
否定できない。 上述のように、 従来の逆問題解析手法では、 不十分な点が多く、 複数の熱電対 情報から、 解析長さを固定して、 その両端の熱流束を同時に推定する手法を新た に確立して、 非定常な熱流束の変化を精度良く、 安定的に推定する技術が重要と なる。 Furthermore, in any of the above methods, the change in thickness due to the in-furnace melt attached to the surface of the refractory and the change in heat flux are simultaneously estimated, rather than the method of finding the heat flux at both ends while fixing the analysis length. Method. Introducing a mouthpiece that increases or decreases the amount of adherence by coagulation and dissolution phenomena into the inverse problem analysis firstly complicates the calculation procedure and makes the calculation unstable. Second, if a calculation procedure that changes the analysis length is entered at each time step, uncertainties may be mixed in the method of estimating the temperature distribution before and after the change in the length. Estimation accuracy may be worse I can't deny it. As described above, the conventional inverse problem analysis method is inadequate in many respects, and a new method for simultaneously estimating the heat flux at both ends by fixing the analysis length from multiple thermocouple information has been established. Therefore, a technique for accurately and stably estimating unsteady changes in heat flux is important.
本来の非定常 1次元の熱伝導逆問題は、 炉内表面及ぴ炉外表面での境界条件を 同時推定することであり、 片側の境界条件を既知と仮定した逆問題解法では、 未 知とした境界条件の近似的な答えしか得ることができない。 例えば、 ある熱電対 で測定された温度変動が、 上述のような反応容器の内表面における熱流束変化に よるものなのか、 反応容器外に設置された冷却装置の接触不良等によって引き起 こされるような反応容器の外表面における熱流束変化によるものかを区別するこ とはできないことになる。 また、 より厳密に評価するには、 熱伝導現象は、 図 3 5に示す破線を跨いで上下方向にも起こるはずであり、 2次元での熱伝導逆問題 を解く ことが必要となる。 この場合には、 図 3 5の上下境界が断熱と仮定した場 合においても、 左右境界の細かな熱流束分布を推定する 2次元逆問題を構成する 必要があることになる。 The original unsteady one-dimensional inverse one-dimensional heat conduction problem is to estimate the boundary conditions on the inner and outer surfaces of the furnace at the same time. We can only get an approximate answer to the given boundary condition. For example, temperature fluctuations measured by a certain thermocouple may be caused by a change in heat flux on the inner surface of the reaction vessel as described above, or may be caused by poor contact of a cooling device installed outside the reaction vessel. It cannot be distinguished whether the change is due to a change in heat flux on the outer surface of the reaction vessel. In order to evaluate more rigorously, the heat conduction phenomenon should also occur in the vertical direction across the broken line shown in Fig. 35, and it is necessary to solve the inverse heat conduction problem in two dimensions. In this case, even if the upper and lower boundaries in Fig. 35 are assumed to be adiabatic, it is necessary to construct a two-dimensional inverse problem for estimating the fine heat flux distribution on the left and right boundaries.
この場合に、複数の熱電対情報から、その温度変化を十分に表現できるように、 試行錯誤的に温度分布を推定し、 両端の温度分布を同時に推定する手法も考えら れる。 しかし、 このような手法では、 熱電対の数が増えると計算が複雑化して、 全ての熱電対の計測温度変化を満たす温度分布解を得ることは、 極めて難しくな る。 また、 それぞれの熱電対において、 計測温度と計算温度の差の絶対値を何処 まで小さくすべきかの基準を決めることが困難なので、 計算手続きを一般化する ことが難しい。 In this case, a method of estimating the temperature distribution by trial and error and simultaneously estimating the temperature distribution at both ends is also conceivable, so that the temperature change can be sufficiently expressed from multiple pieces of thermocouple information. However, in such a method, the calculation becomes complicated as the number of thermocouples increases, and it is extremely difficult to obtain a temperature distribution solution that satisfies the measured temperature changes of all thermocouples. In addition, it is difficult to determine the standard for determining the absolute value of the difference between the measured temperature and the calculated temperature for each thermocouple, so it is difficult to generalize the calculation procedure.
この一つの例として、 2つの熱電対温度から、 上記特開 2 0 0 1— 2 3 4 2 1 As one example of this, from the two thermocouple temperatures,
7号公報の手法を応用して、未知の熱流束を、 2つの端点で交互に変えて計算し、 見かけ上、 同時に端点の熱流束を推定する方法が考えられる。 即ち、 固定温度境 界条件とする計測温度を交互に変えて繰り返して計算し、 両方の熱電対における 計測温度と計算温度が、 ある程度一致した時点で、 その時間ステップでの両端の
熱流束解とするものである。 しかし、 この手法においては、 それぞれの熱電対に おいて、 計測温度と計算温度の差の絶対値が、 どの程度まで小さくなつた時点で 解とすべきかを決めることが困難で、 場合によっては、 片方の熱電対温度を極め てよく表現する力 もう一方の熱電対温度はあまり表現できないような場合でも、 解として認識してしまう危険性をはらんでいる。 つまり、 2つの熱電対位置にお いて、 計測温度と計算温度の差の絶対値を最小化するに際して、 独立した 2つの 熱電対位置での最小化のバランスをどの程度にするべきかの基準を、 適切に設定 することが難しい。 また、 複数の熱電対の場合まで、 この方法を拡張すると、 解 の判定が極めて難しくなることは言うまでもない。 By applying the method of No. 7 publication, the unknown heat flux is calculated by alternately changing the two end points, and apparently the heat flux of the end point can be estimated at the same time. In other words, the measurement temperature as the fixed temperature boundary condition is alternately calculated repeatedly, and when the measured temperature and the calculated temperature of both thermocouples agree to some extent, both ends in the time step Heat flux solution. However, in this method, it is difficult to determine at which point the absolute value of the difference between the measured temperature and the calculated temperature should be solved for each thermocouple, and in some cases, Ability to express one thermocouple temperature extremely well Even if the other thermocouple temperature cannot be expressed very much, there is a risk that it will be recognized as a solution. In other words, when minimizing the absolute value of the difference between the measured temperature and the calculated temperature at two thermocouple positions, a criterion for how to balance the minimization at two independent thermocouple positions is required. It is difficult to set properly. It goes without saying that if this method is extended to the case of multiple thermocouples, it will be extremely difficult to determine the solution.
また、 複数の熱電対情報から、 両端の熱流束を同時に推定するための逆問題解 析を行うに際して、 その逆問題解析を安定化させる必要がある。 When performing inverse problem analysis to simultaneously estimate the heat flux at both ends from multiple thermocouple information, it is necessary to stabilize the inverse problem analysis.
さらに、 これまでは、 例えば逆問題解析により求めた熱流束の時間推移を単独 プロッ トして評価していたが、 熱流束の変化が大きい、 小さいだけでは非常に曖 昧であり、このままでは反応容器内の状態変化がどの程度非定常性のある変化(急 激な変化) なのかを判断することが難しい。 本発明は上記のような点に鑑みてなされたものであり、 反応容器の内表面及び 外表面における熱流束変化や温度変化を同時推定可能とすることを主目的とする c さらには、 逆問題解析を安定化させること、 反応容器内の状態の非定常性の強さ を評価し得るようにすることを目的とする。 発明の開示 Until now, for example, the time course of the heat flux obtained by inverse problem analysis has been independently plotted and evaluated.However, if the change of the heat flux is large or small, it is very vague, It is difficult to judge how non-stationary changes (rapid changes) are in the state inside the container. The present invention has been made in view of the points mentioned above, and c to that of the heat flux changes and temperature changes in the inner and outer surfaces of the reaction vessel and can be simultaneously estimated the main purpose is the inverse problem The purpose is to stabilize the analysis and to evaluate the degree of unsteadiness of the state in the reaction vessel. Disclosure of the invention
本発明の反応容器の操業管理方法は、 温度変化反応を伴う反応容器の操業を管 理するための反応容器の操業管理方法であって、 上記反応容器の壁内部の少なく とも厚み方向に複数配置された温度測定点で測定された温度に基づいて、 非定常 熱伝導方程式を用いた逆問題解析を行うことにより、 上記反応容器の内表面及び 外表面における温度或いは熱流束を求める手順を有する点に特徴を有する。 The operation management method for a reaction container according to the present invention is a method for managing the operation of a reaction container for controlling the operation of a reaction container accompanied by a temperature change reaction, wherein a plurality of the reaction containers are arranged at least in a thickness direction inside a wall of the reaction container. Based on the temperature measured at the measured temperature measurement point, the inverse problem analysis using an unsteady heat conduction equation is performed, thereby obtaining a temperature or a heat flux on the inner surface and the outer surface of the reaction vessel. It has features.
また、 本発明の反応容器の操業管理方法の他の特徴とするところは、 上記各温 度測定点で測定された温度と、 上記反応容器の内表面及び外表面における温度或
いは熱流束の仮定値から非定常熱伝導方程式により算出された上記各温度測定点 位置での温度との差の二乗の和が最小となる上記仮定値を上記反応容器の内表面 及び外表面における温度或いは熱流束として求める点にある。 Further, another feature of the operation management method for the reaction vessel of the present invention is that the temperature measured at each of the temperature measurement points, the temperature on the inner surface and the outer surface of the reaction vessel, Or the minimum value of the sum of the squares of the difference between the temperature at each of the temperature measurement points calculated from the assumed value of the heat flux and the unsteady heat conduction equation is the inner surface and outer surface of the reaction vessel. In that the temperature or the heat flux is determined.
また、 本発明の反応容器の操業管理方法の他の特徴とするところは、 上記温度 測定点で測定される温度データの小数点以下の桁数を増やす手順を有し、 上記小 数点以下の桁数を増やした温度データを上記逆問題解析に用いる点にある。 或い は、 上記温度測定点で測定される温度データにフィルタ処理を施す手順を有し、 上記フィルタ処理後の温度データを上記逆問題解析に用いる点にある。 或いは、 上記温度測定点で測定される温度データの小数点以下の桁数を増やす手順と、 上 記小数点以下の桁数を増やした温度データにフィルタ処理を施す手順とを有し、 上記フィルタ処理後の温度データを上記逆問題解析に用いる点にある。 Another feature of the operation management method for a reaction vessel of the present invention is that the method includes a step of increasing the number of digits after the decimal point of the temperature data measured at the temperature measurement point, and The point is that the increased number of temperature data is used for the inverse problem analysis. Alternatively, the method includes a step of performing a filtering process on the temperature data measured at the temperature measurement point, and using the temperature data after the filtering process in the inverse problem analysis. Alternatively, the method includes a step of increasing the number of digits after the decimal point of the temperature data measured at the temperature measurement point, and a step of filtering the temperature data with the number of digits after the decimal point increased. Is used in the above inverse problem analysis.
また、 本発明の反応容器の操業管理方法の他の特徴とするところは、 上記温度 測定点で測定される温度データに基づいて、定常法による解析を行うことにより、 上記反応容器の内表面における温度或いは熱流束を求める定常法による解析手順 と、 上記逆問題解析により求められた上記反応容器の内表面における温度或いは 熱流束と、 上記定常法による解析手順により求められた温度或いは熱流束とを比 較する比較手順とを有する点にある。 Another feature of the operation management method for a reaction vessel of the present invention is that, based on the temperature data measured at the temperature measurement points, analysis is performed by a steady-state method, whereby the inner surface of the reaction vessel is analyzed. The analysis procedure by the steady-state method for obtaining the temperature or the heat flux, the temperature or the heat flux on the inner surface of the reaction vessel obtained by the inverse problem analysis, and the temperature or the heat flux obtained by the analysis procedure by the steady-state method And a comparison procedure for comparison.
また、 本発明の反応容器の操業管理方法の他の特徴とするところは、 上記逆問 題解析は、 非定常熱伝導方程式を満たす内挿関数又は外揷関数を用いた逆問題解 析である点にある。 Another feature of the operation management method for a reaction vessel of the present invention is that the inverse problem analysis is an inverse problem analysis using an interpolation function or an external 揷 function that satisfies an unsteady heat conduction equation. On the point.
本発明の反応容器の操業管理装置は、 温度変化反応を伴う反応容器の操業を管 理するための反応容器の操業管理装置であって、 上記反応容器の壁内部の少なく とも厚み方向に複数配置された温度測定点で測定された温度に基づいて、 非定常 熱伝導方程式を用いた逆問題解析を行うことにより、 上記反応容器の内表面及び 外表面における温度或いは熱流束を求める手段を備えた点に特徴を有する。 An operation management apparatus for a reaction vessel according to the present invention is an operation management apparatus for a reaction vessel for managing an operation of a reaction vessel accompanied by a temperature change reaction, and a plurality of the operation management apparatuses are arranged at least in a thickness direction inside a wall of the reaction vessel. A means for determining the temperature or heat flux on the inner surface and the outer surface of the reaction vessel by performing an inverse problem analysis using an unsteady heat conduction equation based on the temperature measured at the measured temperature measurement point. It is characterized by points.
本発明のコンピュータプログラムは、 温度変化反応を伴う反応容器の操業を管 理するためのコンピュータプログラムであって、 上記反応容器の壁内部の少なく とも厚み方向に複数配置された温度測定点で測定された温度に基づいて、 非定常 熱伝導方程式を用いた逆問題解析を行うことにより、 上記反応容器の内表面及び
外表面における温度或いは熱流束を求める処理を実行させる点に特徴を有する。 本発明のコンピュータ読み取り可能な記録媒体は、 上記本発明のコンピュータ プログラムを格納した点に特徴を有する。 図面の簡単な説明 The computer program of the present invention is a computer program for managing the operation of a reaction vessel accompanied by a temperature change reaction, wherein the computer program is measured at least at a plurality of temperature measurement points arranged in the thickness direction inside the wall of the reaction vessel. By performing an inverse problem analysis using the unsteady heat conduction equation based on the temperature, the inner surface of the reaction vessel and It is characterized in that a process for obtaining a temperature or a heat flux on the outer surface is executed. The computer-readable recording medium of the present invention is characterized in that the above-mentioned computer program of the present invention is stored. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第 1の実施形態での反応容器の操業管理装置の概略構成を示す図であ る。 FIG. 1 is a diagram showing a schematic configuration of an operation management device for a reaction vessel according to the first embodiment.
図 2は、 逆問題解析処理を説明するためのフローチヤ一トである。 FIG. 2 is a flowchart for explaining the inverse problem analysis processing.
図 3は、 第 1の実施形態の実施例における熱電対の配置関係を説明するための 図である。 FIG. 3 is a diagram for explaining an arrangement relationship of thermocouples in an example of the first embodiment.
図 4 A〜4 Eは、 第 1の実施形態の実施例における解析結果を説明するための 図である。 4A to 4E are diagrams for explaining the analysis results in the example of the first embodiment.
図 5は、 第 2の実施形態での反応容器の操業管理装置の概略構成を示す図であ る。 FIG. 5 is a diagram showing a schematic configuration of an operation management device for a reaction vessel according to the second embodiment.
図 6は、 第 2の実施形態での別の反応容器の操業管理装置の概略構成を示す図 である。 FIG. 6 is a diagram showing a schematic configuration of another operation management device for a reaction vessel in the second embodiment.
図 7は、 第 2の実施形態の実施例における熱電対の配置関係を説明するための 図である。 FIG. 7 is a diagram for explaining an arrangement relationship of thermocouples in an example of the second embodiment.
図 8 A〜 8 Dは、 第 2の実施形態の実施例における解析結果を説明するための 図である。 8A to 8D are diagrams for explaining the analysis result in the example of the second embodiment.
図 9は、 第 2の実施形態の別の実施例における熱電対の配置関係を説明するた めの図である。 FIG. 9 is a diagram for explaining the arrangement relationship of thermocouples in another example of the second embodiment.
図 1 0 A〜1 0 Dは、 第 2の実施形態の別の実施例における解析結果を説明す るための図である。 FIGS. 10A to 10D are diagrams for explaining analysis results in another example of the second embodiment.
図 1 1は、 第 3の実施形態での反応容器の操業管理装置の概略構成を示す図で める。 FIG. 11 is a diagram showing a schematic configuration of a reaction vessel operation management device according to the third embodiment.
図 1 2は、 定常法による解析を説明するための図である。 FIG. 12 is a diagram for explaining the analysis by the stationary method.
図 1 3は、 定常法による解析を説明するための図である。 FIG. 13 is a diagram for explaining the analysis by the stationary method.
図 1 4は、 流入熱量が突然に変化した状態を説明するための図である。
図 1 5は、 問題設定を説明するための図である。 FIG. 14 is a diagram for explaining a state in which the amount of heat input suddenly changes. FIG. 15 is a diagram for explaining the problem setting.
図 1 6は、 4 m位置で階段状に変化する熱流束を与えた場合のそれぞれの断面 位置での熱流束変化を表す特性図である。 FIG. 16 is a characteristic diagram showing a change in heat flux at each cross-sectional position when a heat flux that changes stepwise at a position of 4 m is given.
図 1 7は、 4 m位置で階段状に変化する熱流束を与えた場合のそれぞれの断面 位置での温度変化を表す特性図である。 FIG. 17 is a characteristic diagram showing a temperature change at each cross-sectional position when a heat flux that changes stepwise at a position of 4 m is given.
図 1 8は、 横軸を非定常性指標、 縦軸を定常熱流束としてマッピングした例を 示す図である。 FIG. 18 is a diagram showing an example in which the horizontal axis is mapped as the non-stationary index and the vertical axis is mapped as the steady heat flux.
図 1 9 A〜 1 9 Eは、 第 3の実施形態の実施例における解析結果を説明するた めの図である。 FIGS. 19A to 19E are diagrams for describing the analysis results in the example of the third embodiment.
図 2 0は、 第 3の実施形態の実施例において、 横軸を非定常性指標、 縦軸を定 常熱流束としてマツビングした例を示す図である。 FIG. 20 is a diagram showing an example in which the horizontal axis represents the unsteadiness index and the vertical axis represents the constant heat flux in the example of the third embodiment.
図 2 1は、 逆問題解析処理を説明するためのフローチヤ一トである。 FIG. 21 is a flowchart for explaining the inverse problem analysis processing.
図 2 2は、 第 3の実施形態の実施例 1における熱電対の配置関係を説明するた めの図である。 FIG. 22 is a diagram for explaining an arrangement relationship of thermocouples in Example 1 of the third embodiment.
図 2 3は、 第 3の実施形態の実施例 1における熱電対の配置関係を説明するた めの図である。 FIG. 23 is a diagram for explaining an arrangement relationship of thermocouples in Example 1 of the third embodiment.
図 2 4 A、 図 2 4 Bは、 人工的な境界条件を付与した順問題解析を実行し、 熱 電対温度の経時変化を求めた結果を示す図である。 FIGS. 24A and 24B are diagrams showing the results obtained by performing a forward problem analysis with artificial boundary conditions and determining the change over time in thermocouple temperature.
図 2 5 A、 図 2 5 Bは、 人工的な境界条件を付与した順問題解析を実行し、 熱 電対温度の経時変化を求めた結果を示す図である。 Fig. 25A and Fig. 25B are diagrams showing the results of performing a forward problem analysis with artificial boundary conditions and determining the change over time in thermocouple temperature.
図 2 6は、 基準点、 温度既知点、 推定点の関係を模式的に示す図である。 図 2 7は、 基準点、 温度既知点、 推定点の関係を模式的に示す図である。 図 2 8は、 順問題解析で与えた熱流束と、 逆問題解析で求めた熱流束を比較し た結果を示す図である。 FIG. 26 is a diagram schematically showing a relationship among a reference point, a known temperature point, and an estimated point. FIG. 27 is a diagram schematically showing a relationship among a reference point, a known temperature point, and an estimated point. Figure 28 shows the results of comparing the heat flux given by the forward problem analysis with the heat flux found by the inverse problem analysis.
図 2 9は、 順問題解析で与えた熱流束と、 逆問題解析で求めた熱流束を比較し た結果を示す図である。 Figure 29 shows the results of comparing the heat flux given by the forward problem analysis with the heat flux found by the inverse problem analysis.
図 3 0 A〜 3 0 Dは、 第 4の実施形態の実施例 1における解析結果を説明する ための図である。 FIGS. 30A to 30D are diagrams for explaining the analysis results in Example 1 of the fourth embodiment.
図 3 1 A〜 3 1 Dは、 第 4の実施形態の実施例 1における解析結果を説明する
ための図である。 FIGS. 31A to 31D illustrate the analysis results in Example 1 of the fourth embodiment. FIG.
図 3 2は、 基準点、 温度既知点、 推定点の関係を模式的に示す図である。 FIG. 32 is a diagram schematically showing a relationship among a reference point, a known temperature point, and an estimated point.
図 3 3は、 第 4の実施形態の実施例 2における解析結果を説明するための図で める。 FIG. 33 is a diagram for explaining an analysis result in Example 2 of the fourth embodiment.
図 3 4は、 第 4の実施形態の実施例 2における解析結果を説明するための図で める。 FIG. 34 is a diagram for explaining the analysis result in Example 2 of the fourth embodiment.
図 3 5は、複数の熱電対が埋め込まれた反応容器の 2次元断面を示す図である。 発明を実施するための最良の形態 FIG. 35 is a diagram showing a two-dimensional cross section of a reaction vessel in which a plurality of thermocouples are embedded. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して、 本発明の好適な実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
(第 1の実施形態) (First Embodiment)
図 1には、 本実施形態の反応容器の操業管理装置の概略構成を示す。 同図に示 すように、 反応容器の操業管理装置は、 反応容器の壁内部に埋め込まれた熱電対 (図 3 5を参照) で測定された温度データが入力される入力部 1 0 1 と、 入力部 1 0 1に入力される温度データに基づいて、 非定常熱伝導方程式を用いた逆問題 解析を行うことにより、 反応容器の内表面及び外表面における温度或いは熱流束 を求める逆問題解析部 1 0 2 と、 逆問題解析部 1 0 2により演算された反応容器 の内表面及び外表面における温度或いは熱流束を、 例えば図示しないディスプレ ィに表示等するための出力部 1 0 3とを備えている。 FIG. 1 shows a schematic configuration of the operation management device for a reaction vessel of the present embodiment. As shown in the figure, the operation management device for the reaction vessel has an input section 101 for inputting temperature data measured by a thermocouple embedded in the wall of the reaction vessel (see Fig. 35). Inverse problem analysis to determine the temperature or heat flux on the inner and outer surfaces of the reaction vessel by performing an inverse problem analysis using the transient heat conduction equation based on the temperature data input to the input unit 101 Unit 102 and an output unit 103 for displaying the temperature or heat flux on the inner surface and the outer surface of the reaction vessel calculated by the inverse problem analysis unit 102, for example, on a display (not shown). Have.
以下、 主として逆問題解析部 1 0 2において行われる処理について詳細に説明 する。 逆問題解析に用いられる非定常熱伝導方程式は、 下記の式 ( 1 ) に示すよ うに表される。
式 ( l ) において、 pは反応容器の材料の密度、 c Pは反応容器の材料の比熱、 τは反応容器内部の温度の計算値、 tは時間、 kは反応容器の材料の熱伝導度を 表す。 Hereinafter, the processing mainly performed in the inverse problem analysis unit 102 will be described in detail. The unsteady heat conduction equation used for the inverse problem analysis is expressed as shown in the following equation (1). In the formula (l), p is the density of the material in the reaction vessel, c P is the specific heat of the material in the reaction vessel, τ is the calculated value of the temperature inside the reaction vessel, t is time, and k is the thermal conductivity of the material in the reaction vessel. Represents
熱伝導逆問題解析というのは、 計算領域を支配する非定常熱伝導方程式を基に
して、 領域内部の温度を既知として、 領域境界での温度や熱流束等の境界条件を 推定することをいう。 これに対して、 熱伝導順問題解析というのは、 既知である 領域境界での温度や熱流束等の境界条件から領域内部の温度を推定することをいHeat conduction inverse problem analysis is based on the unsteady heat conduction equation that governs the calculation domain. Then, assuming the temperature inside the region as known, estimating boundary conditions such as temperature and heat flux at the region boundary. On the other hand, the heat conduction order problem analysis refers to estimating the temperature inside a region from known boundary conditions such as temperature and heat flux at the region boundary.
5 Five
2次元逆問題解析の手法の例としては、 例えば、 本願出願人が先に特開 2 0 0 2 - 2 0 6 9 5 8号公報に開示したものがあり、 この手法はそのまま 1次元逆問 題解析へも適用できる。 また、 1次元逆問題解析の例として、 Beckらにより提案 さ れ た 解 析 手 法 が 知 ら れ て い る ( Beck そ の 他 、 Inverse Heat Conduction, 1985, Wiley, New Yo:rk)。 Examples of the two-dimensional inverse problem analysis method include, for example, a method disclosed by the present applicant in Japanese Patent Application Laid-Open No. 2002-2066958. It can also be applied to title analysis. As an example of one-dimensional inverse problem analysis, an analysis method proposed by Beck et al. Is known (Beck and others, Inverse Heat Conduction, 1985, Wiley, New Yo: rk).
また、 逆問題解析の最近の手法として、 カルマンフィルター理論や.、 射影フィ ルタ理論等の確率的推定法を適用することも考えられる。この手法は、現状では、 上記式 ( 1 ) の左辺をゼロと置いた、 定常熱伝導方程式 (観測方程式) への適用 が検討されているが、 非定常項を含めて適切に観測行列を構成できれば、 同様の 逆問題解析ができる可能性がある。 この定常微分方程式への、 確率推定法の適用 例としては、 登坂その他、 「逆問題の数理と解法 ·偏微分方程式の逆解析」 (東京 大学出版会 (1999)) に詳しい。 Also, as a recent method of inverse problem analysis, it is conceivable to apply probabilistic estimation methods such as Kalman filter theory, projection filter theory, and the like. At present, this method is considered to be applied to the steady-state heat conduction equation (observation equation), where the left side of equation (1) is set to zero. If possible, a similar inverse problem analysis may be possible. For an example of applying the probability estimation method to this steady-state differential equation, see Nobosaka and others, "Mathematics and Solution of Inverse Problems, Inverse Analysis of Partial Differential Equations" (The University of Tokyo Press (1999)).
本実施形態では、 逆問題解析の手法と して特開 2 0 0 2 - 2 0 6 9 5 8号公報 に示した考え方を用いている。 即ち、 下記の式 ( 2 ) に示すように、 ある 1次元 方向 (図 3 5に示す l a→ l b→ l cや l d→ l e等) に配置された各熱電対で 測定された温度 Yと、 反応容器の内表面及び外表面における熱流束の仮定値から 非定常熱伝導方程式により算出された各熱電対位置での温度 Tとの差の二乗の和 が最小となる仮定値を反応容器の内表面及び外表面における熱流束として求める t なお、 Jは熱電対の数を表す。 In the present embodiment, the concept shown in Japanese Patent Application Laid-Open No. 2002-209658 is used as a method of analyzing the inverse problem. That is, as shown in the following equation (2), the temperature Y measured by each thermocouple arranged in a certain one-dimensional direction (such as la → lb → lc or ld → le shown in Fig. 35) and the reaction Y The assumed value that minimizes the sum of the squares of the difference from the temperature T at each thermocouple position calculated by the transient heat conduction equation from the assumed value of the heat flux on the inner and outer surfaces of the vessel is the inner surface of the reaction vessel. and t Incidentally obtained as heat flux at the outer surface, J is the number of thermocouples.
MinY Yj-Tjf ( 2 ) MinY Yj-Tjf (2)
ゾ =ι このように複数の熱電対位置での温度 Τ、 Υを完全に一致させるような解 (反 応容器の内表面及び外表面における熱流束) を求めるのではなく、 最小二乗的に 満たすような解を求めることにより、 現実的な熱流束変化の推定が可能となる。
その理由は、 測定温度には様々な測定誤差要因が含まれるため、 完全に一致させ ることは実用的に意味がない場合があるといえるからである。 Zo = ι In this way, instead of finding a solution (heat flux on the inner and outer surfaces of the reaction vessel) that makes the temperatures Τ and で at multiple thermocouple positions completely coincide, the least squares are satisfied. By finding such a solution, it is possible to estimate a realistic change in heat flux. The reason for this is that the measurement temperature includes various measurement error factors, and it may be practically meaningless to make them completely consistent.
なお、 計算を安定化させるために、 正則化項を付加するようにしてもよい。 下 記の式 ( 3) には、 0次の正則化項の例を示す。 pは推定熱流束の分割数の数で あり、 α。は経験値から得られる正則化パラメータである。 0∑ ( ) ( 3) Note that a regularization term may be added to stabilize the calculation. Equation (3) below shows an example of a zero-order regularization term. p is the number of divisions of the estimated heat flux, α. Is a regularization parameter obtained from empirical values. 0∑ () (3)
ん -=ι 以下に、 より具体的に、 複数の熱電対位置での温度 Υを既知として、 反応容器 の內表面及び外表面における熱流束を推定する定式化と、 計算手続きの一例を示 す。 Below, more specifically, an example of a formulation for estimating the heat flux on the outer surface and the outer surface of the reaction vessel assuming the temperature at multiple thermocouple positions is known, and an example of a calculation procedure are shown below. .
下記の式 (4) 4の Smは全体の目的関数を表し、 下記の式 ( 5) は、 実測温度 Yと計算温度 Tの偏差を表す目的関数を示す。 下記の式 (6) は、 計算を安定化 するために付加した目的関数であり、 空間分割方向の値の急激な変化を抑える働 きがある。 式 ( 6) 中の α。や は、 一定の経験値から得られる正則化パラメ一 タである。 S m of formula (4) 4 below represents the entire objective function, the following equation (5) represents the objective function representing the deviation of the measured temperature Y and calculated temperature T. Equation (6) below is an objective function added to stabilize the calculation, and has the function of suppressing rapid changes in values in the space division direction. Α in equation (6). And are regularization parameters obtained from certain empirical values.
Sm{q) = Sr m{q)+Sa,n{q) (4) ZS m (q) = S r m (q) + S a , n (q) (4) Z
7=1 i=\ 7 = 1 i = \
P PP , P PP,
Sa m(q) = a0∑(qkJ2 +al∑ y,{qkm -qk^ (6) S a m (q) = a 0 ∑ (q k J 2 + a l ∑ y, (q km -q k ^ (6)
k k
上記式 (5) では、 ある熱電対で計測された温度 Yと、 熱流束の仮定値から熱 伝導方程式モデルにより算出された温度 Τの差の二乗が最小となるように目的関 数を設定している。 また、 上記式 ( 6 ) では、 温度測定誤差があっても解が安定 するように空間方向の正則化を施す目的関数を設定している。 そして、 式 (4)
を全体の目的関数として、 下記の式 ( 7 ) に示すように、 未知である熱流束分割 領域に対して極小点を探す。 In the above equation (5), the objective function is set so that the square of the difference between the temperature Y measured by a certain thermocouple and the temperature Τ calculated from the assumed value of the heat flux by the heat conduction equation model is minimized. ing. In the above equation (6), an objective function for performing regularization in the spatial direction is set so that the solution is stable even if there is a temperature measurement error. And equation (4) Is used as the overall objective function, as shown in the following equation (7), a minimum point is searched for the unknown heat flux division region.
dSm(q) dS m (q)
=0 7 ) = 0 7)
ここで、 式 ( 8 ) に示すように、 解を安定させる目的で、 各時間ステップの熱 流束値が、 一定の未来時間まで不変であると仮定する。 時間ステップは、 対象と する材料の熱物性 ·形状等によって変わる。 式 (8 ) の qは熱流束を示し、 m時 間ステップにおける熱流束 q m力 ら、将来時間 m + r _ 1時間ステップにおける熱 流束 が一定であると仮定している。 Here, as shown in Eq. (8), for the purpose of stabilizing the solution, it is assumed that the heat flux value at each time step does not change until a certain future time. The time step varies depending on the thermophysical properties and shape of the target material. In Equation (8), q indicates the heat flux, and it is assumed that the heat flux in the future time m + r _ 1 time step is constant from the heat flux q m force in the m time step.
qm = ,+ι =… = 1 = qm-i + ( 8 ) そして、 式 ( 7 ) の極小化を、 式 (8 ) の仮定を用いて展開すると、 式 ( 9 ) に示すように、 マ ト リ クス形に展開することができる。 q m =, + ι =… = 1 = q m -i + (8) Then, the minimization of equation (7) is expanded using the assumption of equation (8), as shown in equation (9). , Can be expanded into a matrix form.
[XT + ( 0H0 TH0 + aHx TH,)} = [Χτ] {Υ-Γ} ( 9 ) where Aq = {q-q } 丄, = T(q ) 式 ( 9 ) の XTXは式 (4 ) の右辺第 1項から導かれ、 ΧΤΧに続く 2項 (α。Η οΤΗ0+ α ,Η^Η,) は、 式 (4 ) の右辺第 2項から導かれる (上付の Τは、 転置行 列を表す)。 Xの構成は、補足式( 1 0 ) として下部に、 Xj, i,kとして示している。 ここで、 時間方向の分割数を示す i は、 最大 M時間ステップまで変化し、 熱電対 の数を示す j は、 最大 J個まで変化して、 熱流束分布の分割数を示す kは、 最大 Pまで変化する。 なお、 式 ( 9 ) の上付の *は、 繰り返し収束計算での参照値で あることを示しており、 T*は温度参照値、 q *は熱流束参照値である。 1次元の 場合は、 両端の境界条件を推定するので、 熱流束分布の分割数 kは、 最大 p = 2 である。
i = l,... ,...M 時間方向の分割数 [X T + ( 0 H 0 T H 0 + aH x T H,)} = [Χ τ ] {Υ-Γ} (9) where Aq = {qq} 丄, = T (q) X T X is derived from the first term of the right side of the equation (4), second term following the Χ Τ Χ (α .Η ο Τ Η 0 + α, Η ^ Η,) is hand side of formula (4) It is derived from the term (the superscript Τ represents the transposed matrix). The configuration of X is shown below as Xj, i, k as a supplementary expression (10). Here, i, which indicates the number of divisions in the time direction, changes up to the maximum M time steps, j, which indicates the number of thermocouples, changes up to J, and k, which indicates the number of divisions of the heat flux distribution, is k, which is the maximum It changes up to P. The superscript * in equation (9) indicates a reference value in the iterative convergence calculation, T * is a temperature reference value, and q * is a heat flux reference value. In the one-dimensional case, since the boundary conditions at both ends are estimated, the number of divisions k of the heat flux distribution is at most p = 2. i = l, ..., ... M Number of divisions in the time direction
J'= J 熱電対の数 J '= J Number of thermocouples
k = l,...p 熱流束分布の分割数 式 ( 9 ) は、 温度変化が起きた場合の熱流束の変化を推定する連立方程式であ り、 各時間ステップにおいて、 この式 ( 9 ) を用いて両端の熱流束 qを求める。 まずは、 前時間ステップでの熱電対位置での計算温度を初期 T*とし、 式 ( 9 ) に より qを求める。 この qを、 並行して計算している順問題熱伝導方程式モデルの 境界条件として与え、 温度分布を計算する。 ここで求めた温度計算値を、 次の温 度参照値 T*として、 qを再修正する (式 ( 9 ) に代入して qを再び求める)。 こ の操作を、 式 ( 5 ) が一定残差以下になる (収束) まで、 q と T*の修正を繰り返 し、 各時間ステップにおける両端の熱流束 (最終的な q ) を求めていく。 この計 算手続きを繰り返すことにより、 両端の熱流束 qの変化を、 2つ同時に推定する ことが可能となる。 k = l, ... p The number of divisions of the heat flux distribution Equation (9) is a simultaneous equation for estimating the change in heat flux when a temperature change occurs. In each time step, this equation (9) Is used to determine the heat flux q at both ends. First, the calculated temperature at the thermocouple position in the previous time step is set as the initial T *, and q is obtained by Eq. (9). This q is given as the boundary condition of the forward problem heat conduction equation model calculated in parallel, and the temperature distribution is calculated. The calculated temperature value obtained here is used as the next temperature reference value T *, and q is revised again (substituting into equation (9) to find q again). This operation is repeated by correcting q and T * until Equation (5) becomes smaller than the fixed residual (convergence), and the heat flux at both ends (final q) at each time step is calculated. . By repeating this calculation procedure, two changes in the heat flux q at both ends can be estimated simultaneously.
式 ( 1 0) は、 一種の感度行列を表しており、 端的に言う と、 境界端点での熱 流束 qの単位変化に対する熱電対位置での計算温度 Tの変化の大きさの比率を示 している。 式 ( 1 0 ) は、 逆解析と同時に計算している順問題計算によって、 各 時間ステップにおいて、 単位時間ステップあたりの値の計算が可能である。 以下、 1次元の逆問題解析を例にして、 より望ましい解法について説明する。 上述のように、 2つの端面 (反応容器の内表面及び外表面) の熱流束を未知の境 界条件とした 1次元逆問題を構成 (定式化) しても、 原理上は解を求めることが できる。 Equation (10) represents a kind of sensitivity matrix. In short, it shows the ratio of the magnitude of the change of the calculated temperature T at the thermocouple position to the unit change of the heat flux q at the boundary endpoint. are doing. In equation (10), the value per unit time step can be calculated at each time step by the forward problem calculation performed at the same time as the inverse analysis. In the following, a more desirable solution will be described using a one-dimensional inverse problem analysis as an example. As described above, even if a one-dimensional inverse problem with the heat flux of the two end faces (the inner surface and outer surface of the reaction vessel) as unknown boundary conditions is constructed (formulated), in principle, a solution must be obtained. Can be done.
ただし、 熱電対の数や材料の熱物性条件等によって多解となる場合があり、 計 算が不安定となる可能性がある。 その理由の一つは、 「未知両端面の熱流束差」 の 組み合わせを適当に選ぶことができれば、 離散的な温度測定点の温度変化を表現 する熱流束の組み合わせは無数に存在する可能性があるためである。 特に、 熱伝
導度の低い物質の場合、 表面温度が極端に大きくなつたり、 小さくなつたり して しまうような境界条件を推定してしまう場合でも、 離散測定点の温度の変化だけ を再現すれば、 一つの解として認識してしまうことも起こり得る。 これは、 現実 の現象としてはあり得ないことであるばかりでなく、 逆問題計算を非常に不安定 なものとする。 However, there may be multiple solutions depending on the number of thermocouples and the thermophysical conditions of the materials, and the calculation may be unstable. One of the reasons is that if the combination of “heat flux difference between unknown end faces” can be properly selected, there may be countless combinations of heat flux that express the temperature change at discrete temperature measurement points. Because there is. In particular, heat transfer In the case of a substance with low conductivity, even when estimating the boundary condition that causes the surface temperature to become extremely large or small, if only the temperature change at discrete measurement points is reproduced, one Recognition as a solution can also occur. This not only is impossible as a real phenomenon, but also makes the inverse problem calculation very unstable.
また、 実際の問題として、 逆問題解析を開始する時の熱電対の温度 (離散測定 点の温度) は既知として与えられるが、 その他の解析領域での温度分布の初期条 件は不明であることが一般的である。 このため、 任意に与えた仮初期温度分布か ら計算を始め、 計算ステップを進める中で、 実際の温度分布を探索 ·推定し、 妥 当な温度分布へと徐々に修正しながら、 安定的に計算を進めていけるような計算 ロジックにすることが求められる (ここで言う温度分布とは、 例えば、 逆問題解 析の計算手続きの中で、 上記式 ( 9 ) の解を修正する.ために並行して計算してい る順問題熱伝導方程式モデルの計算値である)。 このように、初期温度分布が不確 定であることも、 逆問題計算を不安定なものとする大きな要因の一つとなる。 以上のことは、 逆問題を安定化するためには、 逆問題解析の過程で、 ある程度 の表面温度の目安(拘束条件)を与える必要性があることを示しているといえる。 この考え方に基づき、 拘束条件を適当に与える手法を、 図 2のフローチャートを 参照して説明する。 As a practical problem, the temperature of the thermocouple at the start of the inverse problem analysis (the temperature at the discrete measurement points) is given as a known value, but the initial conditions of the temperature distribution in other analysis domains are unknown. Is common. For this reason, the calculation is started from the tentative initial temperature distribution arbitrarily given, and while the calculation steps are proceeding, the actual temperature distribution is searched and estimated, and the temperature distribution is corrected gradually to an appropriate temperature distribution, and stably It is necessary to use a calculation logic that allows the calculation to proceed (for example, the temperature distribution referred to here means, in the calculation procedure of inverse problem analysis, the solution of the above equation (9) must be modified. This is the calculated value of the forward problem heat conduction equation model calculated in parallel). Thus, the uncertainty of the initial temperature distribution is one of the major factors that make the inverse problem calculation unstable. The above indicates that in order to stabilize the inverse problem, it is necessary to provide some surface temperature guideline (constraint condition) in the process of inverse problem analysis. Based on this concept, a method for appropriately giving the constraint conditions will be described with reference to the flowchart in FIG.
まず、 反応容器の内表面及び外表面のいずれか片側、 ここでは外表面における 熱流束として仮の熱流束 qを与える。 この仮の熱流束 qの与え方として、 熱伝達 率 hと参照温度 T bとを用いて、 First, a temporary heat flux q is given as a heat flux on one of the inner surface and the outer surface of the reaction vessel, here, on the outer surface. As way of giving heat flux q of the temporary, by using the reference temperature T b and the heat transfer coefficient h,
q = h ( T surf— T b) q = h (T surf — T b )
として与える (ステップ S 2 0 1 )。 (Step S201).
T surfは未知境界、 ここでは反応容器の外表面における温度を示している。 この 表面温度 T surfは、 逆問題解析の過程で熱流束の値を修正するために、通常は順問 題解析も同時に行うが、 この順問題解析で求めた表面温度に相当する。 T surf indicates the temperature at the unknown boundary, here the outer surface of the reaction vessel. This surface temperature T surf is usually also used to perform a forward problem analysis in order to correct the heat flux value during the inverse problem analysis, but it is equivalent to the surface temperature obtained in the forward problem analysis.
また、参照温度 T bは反応容器の内部及び内外表面以外での温度である。例えば、 反応容器の冷却条件、 具体的には水冷ならば水温等に基づいて定めるようにして いる。
結果として、 上式の左辺である熱流束 qをあたかも既知の熱流束情報として与 えることができる。 このように仮の熱流束情報を与えることで、 熱伝達率 hと参 照温度 Tbという 2つの拘束条件を与えることとなり、任意の熱流束を与えるのに 比べて物理的な妥当性を確保して、 極端な温度分布が生じることを防ぐことが可 能となる。 The reference temperature Tb is a temperature outside the inside and outside and inside surfaces of the reaction vessel. For example, the cooling condition of the reaction vessel is determined based on the water temperature and the like in the case of water cooling. As a result, the heat flux q on the left side of the above equation can be given as if it were known heat flux information. By thus providing the heat flux information provisional will be given two constraint that references the temperature T b and the heat transfer coefficient h, ensuring physical plausibility than to provide any heat flux As a result, it is possible to prevent an extreme temperature distribution from occurring.
次に、反応容器の外表面における仮の熱流束 q (= h (Tsurf— Tb)) を与えて、 上式 (2)、 又は、 上式 (5) に示した温度 T、 Υの差の二乗の和が最小となる反 応容器の内表面における熱流束を、 反応容器の内表面における仮の熱流束として 算出する (ステップ S 2 0 2)。 このステップは、 逆問題解析のメインの計算手続 きであり、 具体的な解法の一つとして、 式 (4) から式 ( 9) に示した定式化と 計算手続きが、 そのまま適用できる。 この場合では、 式 (9) を解く際に、 反応 容器の外表面における仮の熱流束 q (= h (Tsurf-Tb)) は既知として与え、 反 応容器の内表面における仮の熱流束を未知として解くことを意味する。 Next, a temporary heat flux q (= h (T surf — T b )) on the outer surface of the reaction vessel is given, and the temperature T, Υ of the above equation (2) or (5) is obtained. The heat flux at the inner surface of the reaction vessel where the sum of the squares of the differences is minimized is calculated as a temporary heat flux at the inner surface of the reaction vessel (step S202). This step is the main calculation procedure of the inverse problem analysis, and the formulation and calculation procedures shown in Equations (4) to (9) can be directly applied as one of the specific solutions. In this case, when solving Equation (9), the provisional heat flux q (= h (T surf -T b )) on the outer surface of the reaction vessel is given as a known value, and the provisional heat flux on the inner surface of the reaction vessel is given. This means solving the bundle as unknown.
ここで、 上記のように片側 (反応容器の外表面) の熱流束情報を与えて、 逆問 題解析により求めた反対側 (反応容器の内表面) の熱流束は、 一つの解の可能性 を示しているに過ぎない。 また、既知と仮定した熱伝達率 hや参照温度 Tbも概算 値であり、 本来ならば未知の値である。 Here, given the heat flux information on one side (outer surface of the reaction vessel) as described above, the heat flux on the other side (inner surface of the reaction vessel) obtained by inverse problem analysis is one possibility of solution. It just shows. Further, the known and assumed heat transfer coefficient h and the reference temperature T b is also approximate, the unknown values would otherwise.
そこで、熱伝達率 h及び外部参照温度 Tbの両方或いはいずれかを数点変化させ て、 即ち、 反応容器の外表面における仮の熱流束 qの値を数点 (K点) 振って、 反応容器の外表面における仮の熱流束 qと、 各仮の熱流束情報 qを与えたとき温 度 Τ、 Υの差の二乗の和が最小となる反応容器の内表面における熱流束との組み 合わせを Κ個得る (ステップ S 2 0 3 )。 Therefore, the heat transfer coefficient h and / or the external reference temperature T b are changed by several points, that is, the value of the temporary heat flux q on the outer surface of the reaction vessel is shaken by several points (point K), and the reaction is performed. Combination of the temporary heat flux q on the outer surface of the vessel and the heat flux on the inner surface of the reaction vessel that minimizes the sum of the squares of the differences in temperature Τ and 最小 when given each temporary heat flux information q Are obtained (Step S203).
そして、 下記の式 ( 1 1 ) に示すように、 反応容器の外表面における仮の熱流 束 qと、 各仮の熱流束情報 qに対応して得られた反応容器の内表面における熱流 束との K個の組み合わせのうち、 温度 Τ、 Υの差の二乗の値が最も小さくなる組 み合わせを選び出し、 その組み合わせを反応容器の内表面及び外表面における熱 流束とする (ステップ S 2 04 )。 Then, as shown in the following equation (11), the heat flux q on the outer surface of the reaction vessel and the heat flux on the inner surface of the reaction vessel obtained corresponding to the respective heat flux information q Of the K combinations of and Υ, the combination that minimizes the value of the square of the difference between the temperatures Τ and Υ is selected, and that combination is used as the heat flux on the inner and outer surfaces of the reaction vessel (step S 204). ).
J J
Μιη Μη∑(厂 Ί] ( 1 1 ) Μιη Μη∑ (Factory Ί) (1 1)
J k=l,K
上式 ( 1 1 ) の大括弧の中は、 片側の熱流束を既知として逆問題解析した 1ケ ースの計算結果を示し、 その計算を Kケース計算した中から更に最小二乗差の最 も小さな結果を選び出すことを意味する。 J k = l, K The square brackets in the above equation (11) show the results of one case calculation in which the heat flux on one side was known and the inverse problem analysis was performed. It means choosing out small results.
この手続を、 各時間ステップにおいて繰り返し行うことにより、 反応容器の内 表面及び外表面における熱流束経時変化を逐次同時計算していくことができる。 以上述べたように、 反応容器の内表面及び外表面における熱流束変化を同時に 求めるような 1次元逆問題解析を安定して実行することができる。 そして、 反応 容器の内表面及び外表面における温度変化や熱流束変化を同時推定することがで きれば、 例えば、 ある温度測定点における温度変動が、 反応容器の内表面におけ る熱流束変化によるものなのか、 反応容器外に設置された冷却装置の接触不良等 によって引き起こされるような反応容器の外表面における熱流束変化によるもの かを区別するようなことが可能となる。 By repeating this procedure at each time step, it is possible to sequentially and simultaneously calculate the temporal change of the heat flux on the inner surface and the outer surface of the reaction vessel. As described above, the one-dimensional inverse problem analysis for simultaneously obtaining the heat flux changes on the inner surface and the outer surface of the reaction vessel can be stably executed. If the temperature change and the heat flux change on the inner surface and the outer surface of the reaction vessel can be simultaneously estimated, for example, the temperature fluctuation at a certain temperature measurement point is caused by the heat flux change on the inner surface of the reaction vessel. It is possible to distinguish whether the heat flux is caused by a change in heat flux on the outer surface of the reaction vessel caused by poor contact of a cooling device installed outside the reaction vessel or the like.
上記手法は 1次元逆問題解析に適用すると簡便であり、 実際問題として有効で ある場合が多い。 その理由は、 一般的には、 反応容器の上端と下端とは断熱条件 (対称) とする場合が多く、 実用的にも問題ないからである。 The above method is simple to apply to one-dimensional inverse problem analysis, and is often effective as a practical problem. The reason is that the upper and lower ends of the reaction vessel are generally insulated (symmetric) in many cases, and there is no practical problem.
したがって、 図 3 5の破線で区切られた範囲での厚み方向 1次元を仮定して逆 問題解析し、 その結果を上下方向に組み合わせることで、 2次元化することも可 能である。 Therefore, inverse problem analysis can be performed assuming one dimension in the thickness direction within the area demarcated by the broken line in Fig. 35, and the results can be combined into two dimensions by combining them vertically.
より厳密に図 3 5の上下方向の熱流れも考慮したい場合には、 2次元逆問題解 析が必要である。 このような 2次元解析は、 図 3 5の左右両端部の熱钸束分割を 上方向に細かく して、 これらの熱電対位置での温度を最小二乗的に最小な熱流束 分布を求めることと等価であり、 特開 2 0 0 2— 2 0 6 9 5 8号公報に開示した 逆問題定式化と同様の手法に従って本発明を適用すればよいこととなる。 If we want to strictly consider the heat flow in the vertical direction in Fig. 35, a two-dimensional inverse problem analysis is required. Such two-dimensional analysis consists of making the heat flux divisions at the left and right ends in Fig. 35 finer upward, and finding the minimum heat flux distribution by least squares at the temperature at these thermocouple positions. This is equivalent, and the present invention may be applied in accordance with the same method as the inverse problem formulation disclosed in Japanese Patent Application Laid-Open No. 2002-209658.
この場合に、 図 3 5の上端下端の熱流束に関しては、 未知としても、 既知とし ても構わないが、計算の安定性を考慮すると、物理的な考察から適当な熱流束(例 えば、 断熱等) を与えて既知とした方が望ましい。 同様の考えに基づいて、 3次 元解析への拡張も容易に行うことができる。 In this case, the heat flux at the upper and lower ends in Fig. 35 may be unknown or known, but considering the stability of calculation, an appropriate heat flux (for example, adiabatic Etc.) and it is desirable to make it known. Based on the same idea, extension to three-dimensional analysis can be easily performed.
(第 1の実施形態の実施例) (Example of the first embodiment)
第 1の実施形態の具体的な実施例として、 上記手法に従って、 ある金属精鍊炉
壁に埋め込まれた熱電対の測定温度データを逆問題解析した例を説明する。 図 3 に示すように、炉壁の厚さは総長 1 mであり、炉外端部から 0. 1 [m]、 0. 2 [m] の位置に熱電対 1 t、 1 sが埋め込まれている。 即ち、 熱電対の位置は炉外側に 偏った配置関係とされている。 なお、炉壁材の熱物性値は、 定圧熱容量 C P= 0. 1 7 [k c a l /k g -K] 7. 1 2 X 1 02[j /k g -K])s エネルギー密度 = 2 3 0 0 [k g Zm3]、熱伝導率 k = 1 8. 2 [k c a 1ノ m. h r .K] ( 7. 6 2 X 1 04[ J /m · h r -K]) である。 計算の時間刻みは 3時間とした。 As a specific example of the first embodiment, according to the above method, a certain metal refining furnace An example of inverse problem analysis of measured temperature data of a thermocouple embedded in a wall will be described. As shown in Fig. 3, the thickness of the furnace wall is 1 m in total, and thermocouples 1 t and 1 s are embedded at 0.1 [m] and 0.2 [m] from the outer end of the furnace. ing. In other words, the position of the thermocouple is arranged to be deviated to the outside of the furnace. The thermophysical properties of the furnace wall material are as follows: constant pressure heat capacity C P = 0.17 [kcal / kg-K] 7.12 X 10 2 [j / kg-K]) s energy density = 2 3 0 0 [kg Zm 3], the thermal conductivity k = 1 8. 2 [kca 1 Roh m. hr .K] (7. 6 2 X 1 0 4 [J / m · hr -K]). The calculation time step was 3 hours.
図 4 A〜4 Eには、 熱電対 1 s、 1 tの測定温度データ及び解析結果を示す。 横軸はいずれも日数である。 図 4 Aは 2つの熱電対 1 s、 I tの温度経時変化を 示す。 この結果によると、 楕円で囲んだように、 目立って高温化している個所が 2箇所観察することができる (高温化 1、 高温化 2)。 4A to 4E show measured temperature data and analysis results of the thermocouples 1 s and 1 t. The horizontal axis is the number of days. Figure 4A shows the changes over time of the two thermocouples 1 s and It. According to the results, two places where the temperature is noticeably higher can be observed as enclosed by the ellipse (high temperature 1 and high temperature 2).
しかしながら、 図 4 Aに示す結果だけでは、 これら高温化現象 1、 2が炉内が 高温化したことに起因するのか、 炉外の冷却能力が低下したことに起因するのか の区別をつけることができない。 However, the results shown in Fig. 4A alone can be used to distinguish whether these high-temperature phenomena 1 and 2 are due to a high temperature inside the furnace or a decrease in the cooling capacity outside the furnace. Can not.
図 4 B、 4 Cには、 上記逆問題解析の手法により炉内端部(反応容器の内表面) における温度及び炉外端部 (反応容器の外表面) における温度を求めた結果を示 す。 このように高温化現象を解析すると、 高温化現象 1は、 炉内端部と炉外端部 とが同時に高温化しており、 炉内の反応活性高温化の影響が炉外端部に影響した ものと推察することができる。 一方、 高温化現象 2は、 炉内端部での温度変動は ほとんど観察されず、 単に炉外の冷却能力が低下したために高温化したものと推 察することができる。 Figures 4B and 4C show the results of calculating the temperature at the furnace inner end (the inner surface of the reactor) and the temperature at the furnace outer end (the outer surface of the reactor) using the inverse problem analysis method described above. . Analyzing the high-temperature phenomenon in this way, the high-temperature phenomenon 1 shows that the inner and outer ends of the furnace were simultaneously heated, and the effect of the reaction activation high temperature in the furnace affected the outer end of the furnace. It can be inferred. On the other hand, in the high temperature phenomenon 2, almost no temperature fluctuation was observed at the inner end of the furnace, and it can be inferred that the temperature was raised simply because the cooling capacity outside the furnace was reduced.
図 4'Dには、 同じく上記逆問題解析の手法により求めた炉外端部及ぴ炉内端部 の熱流束の変化を示す。 また、 図 4 Eには、 炉外端部側の熱伝達率 hに換算した 特性図を示す。 この結果からも、 高温化現象 2付近では熱伝達率 hも大きく変動 しており、 3 0 0 日を越えたあたりから冷却能力が徐々に大きくなり、 高温化現 象 2付近で急激に低下したことが推定され、 何らかの要因により冷却に異常が生 じていることが分かる。 Fig. 4'D shows the change of the heat flux at the outer end and the inner end of the furnace similarly obtained by the inverse problem analysis method. Fig. 4E shows a characteristic diagram converted to the heat transfer coefficient h on the outer end of the furnace. From these results, the heat transfer coefficient h also fluctuated greatly near the high temperature phenomenon 2, and the cooling capacity gradually increased after about 300 days, and dropped sharply near the high temperature phenomenon 2. It can be understood that there is an abnormality in cooling due to some factor.
(第 2の実施形態)
図 5には、本実施形態の反応容器の操業管理装置の概略構成を示す。以下では、 上記第 1の実施形態との相違を中心に説明するとともに、 既に説明した構成要素 には同一の符号を付して、 その詳細な説明は省略する。 同図において、 2 0 1は 演算部であり、後述するように、入力部 1 0 1に入力された温度データを用いて、 その小数点以下の桁数を増やす演算を行う。 そして、 逆問題解析部 1 0 3では、 演算部 2 0 1により小数点以下の桁数を増やした温度データに基づいて、 非定常 熱伝導方程式を用いた逆問題解析を行うことにより、 反応容器の内表面及び外表 面における温度或いは熱流束を求める。 本実施形態で利用する逆問題解析につい ては、上記第 1の実施形態において説明したので、ここではその説明は省略する。 例えば上述した逆問題解析により反応容器の表面における熱流束変化の「現在」 の変化を推定するためには、 できるだけ近い過去の反応容器内の状況を推定する 必要がある。 そのためには、 逆問題計算の単位時間ステップを短くすることが考 えられる。 逆問題計算の単位時間ステップが長いと、 少なく ともその時間ステツ プ分、 大きく過去に遡った変化を推定してしまうことになる。 また、 逆問題計算 は、 計算時間ステップで時間平均した計算結果であるので、 復元した熱流束変化 も、 鈍った変化を捉えることになり、 時間ステップ以下の急激な変化は捉えられ ない。 (Second embodiment) FIG. 5 shows a schematic configuration of the operation management device for the reaction vessel of the present embodiment. In the following, description will be made focusing on differences from the above-described first embodiment, and the same reference numerals will be given to components already described, and detailed description thereof will be omitted. In the figure, reference numeral 201 denotes an arithmetic unit, which performs an operation to increase the number of digits after the decimal point using the temperature data input to the input unit 101, as described later. Then, the inverse problem analysis unit 103 performs an inverse problem analysis using an unsteady heat conduction equation based on the temperature data in which the number of digits after the decimal point has been increased by the arithmetic unit 201, thereby obtaining a reaction vessel. Determine the temperature or heat flux on the inner and outer surfaces. Since the inverse problem analysis used in this embodiment has been described in the first embodiment, the description is omitted here. For example, in order to estimate the “current” change of the heat flux change on the surface of the reaction vessel by the inverse problem analysis described above, it is necessary to estimate the past situation in the reaction vessel as close as possible. For this purpose, it is conceivable to shorten the unit time step of the inverse problem calculation. If the unit time step of the inverse problem calculation is long, it is necessary to estimate a change that goes far back in the past at least for that time step. In addition, since the inverse problem calculation is a calculation result obtained by time averaging in the calculation time step, the restored heat flux change also captures a dull change, and a rapid change below the time step cannot be captured.
ところが、 逆問題計算の単位時間ステップを短くするということは、 その短い 時間の間に、 熱流束の変化位置 (例えば、 溶銑と接触する高炉の内表面) から熱 電対位置まで伝わってくる小さな温度変化を捉えなければならないことを意味す る。 特に、 熱電対位置と熱流束の変化位置とが離れていて、 その間の物質の熱伝 導率が小さい場合、 短時間での温度の動きは非常に小さなものとなる。 However, shortening the unit time step of the inverse problem calculation means that during that short time, the small amount of heat transmitted from the position where the heat flux changes (for example, the inner surface of the blast furnace in contact with the hot metal) to the thermocouple position This means that temperature changes must be captured. In particular, when the position of the thermocouple is far from the position where the heat flux changes, and the thermal conductivity of the material between them is small, the temperature movement in a short time becomes very small.
このよ うな小さな温度変化から、 熱流束変化による温度変化を理論的に抽出し て、 その熱流束変化を復元する (短時間の逆問題解析) のためには、 温度測定方 法や温度データ処理方法に工夫が必要である。 To theoretically extract the temperature change due to the heat flux change from such a small temperature change and to restore the heat flux change (short-time inverse problem analysis), a temperature measurement method and temperature data processing are required. The method needs some ingenuity.
そこで、 本願発明者らは、 熱電対で測定される温度データを活用しつつ、 短い 時間ステップで、 できるだけ近い過去の熱流束分布を推定できるようにすべく、 鋭意検討を重ねた。 Therefore, the present inventors have conducted intensive studies in order to be able to estimate the past heat flux distribution as close as possible in a short time step while utilizing temperature data measured by a thermocouple.
高炉等の操業の場合、 温度の変化だけを見ていることもあって、 大局的な温度
の流れを見るに際しては、 小数点以下の温度データを切り捨てた値で評価するこ とが一般的である。 また、 現在の温度の時間変化を細かく見る場合でも、 熱電対 の接点電圧変化から温度に変換する温度測定装置のメーカ保証範囲がほとんどの 場合小数点 1桁までであることもあり、 小数点 1桁までの温度データを使用する ことが多い。 即ち、 採取して、 記録している温度デ一タは、 小数点 0桁か 1桁と いった粗いものである。 In the operation of a blast furnace, etc., since only the temperature change is observed, the global temperature When looking at the flow of data, it is common to evaluate the value by rounding down the temperature data after the decimal point. In addition, even when looking closely at the current temperature change over time, the manufacturer's guaranteed range of the temperature measurement device that converts the thermocouple contact voltage change into temperature may be up to one decimal place in most cases. Often temperature data is used. In other words, the collected and recorded temperature data is coarse, with zero or one decimal place.
ところが、 非常に微妙な温度変化を引き起こす原因となる、 遠く離れた位置で の境界条件変化 (熱流束変化) を推定する (逆問題解析) ためには、 温度変化の 小数点以下の挙動を推定することが非常に重要となる。 However, in order to estimate the boundary condition change (heat flux change) at a distant position that causes a very subtle temperature change (inverse problem analysis), the behavior of the temperature change after the decimal point is estimated. That is very important.
即ち、 逆問題解析においては、 温度そのものの精度よりは、 温度の時間推移 - 温度変化の流れが重要である。 温度そのものの精度だけを追求して、 階段状に温 度が変化してしまう と、 逆問題解析を不安定なものとしてしまう。 特に、 短い時 間ステップでの逆問題解析を指向すると、 その時間ステップでは考えられないよ うな階段状の温度変化が生じてしまうこともある。 そのため、 この階段状の温度 変化で逆問題解析して熱流束解が得られた場合でも、 物理的にありえない解に至 る可能性を秘めている。 実際、 そのほとんどの場合、 解が発散してしまい、 逆問 題解析の続行が不可能となる。 That is, in the inverse problem analysis, the time transition of temperature-the flow of temperature change is more important than the accuracy of temperature itself. If the temperature changes in a staircase, pursuing only the accuracy of the temperature itself, the inverse problem analysis would be unstable. In particular, when aiming for inverse problem analysis in a short time step, an unpredictable step-like temperature change may occur in that time step. Therefore, even if an inverse problem analysis is performed using this stepwise temperature change to obtain a heat flux solution, there is a possibility that a physically impossible solution may be reached. In fact, in most cases the solution diverges, making it impossible to continue the inverse problem analysis.
合理的な方法で、 小数点以下の桁数の少ない温度データから、 人工的に小数点 以下の桁数を増やした温度データを生成することは、 階段状の時間変化を滑らか にする上で有効な手法である。 Generating temperature data with an increased number of decimal places from temperature data with a small number of decimal places in a rational manner is an effective method for smoothing step-like temporal changes. It is.
その一つの手法として、 演算部 2 0 1において、 逆問題解析での時間ステップ より短いサンプリング時間で小数点以下 0桁や 1桁の温度データを採取し、 それ らを時間平均して、 逆問題解析での計算時間ステップで用いる温度データの代表 値とする。 例えば、 逆問題解析での時間ステップ ( 1時間) より短い 5分間隔で サンプリ ングした小桁数の温度を、 1時間範囲で単純平均して、 1時間ステップ の温度デ一タの代表値とする。 これにより、 見かけ上、 1時間温度データの小数 点数を增やすことが可能となる。 この手法を用いると、 熱電対で測定される精度 が保証されている小数点以下 0桁、 小数点以下 1桁の温度データ (熱電対で測定 されたもの) に基づいて、 逆問題計算に用いる温度データの小数点以下の桁数を
増やすことが可能である。 As one method, the arithmetic unit 201 collects temperature data with zero or one digit below the decimal point with a sampling time shorter than the time step in inverse problem analysis, averages them over time, and performs inverse problem analysis. The representative value of the temperature data used in the calculation time step in. For example, a small digit number of temperatures sampled at 5-minute intervals shorter than the time step (1 hour) in the inverse problem analysis is simply averaged over a 1-hour range, and a representative value of the 1-hour-step temperature data is obtained. I do. This makes it possible to apparently reduce the number of decimal points in the one-hour temperature data. When this method is used, the temperature data used for the inverse problem calculation is based on the temperature data (measured by the thermocouple) with zero decimal places and one decimal place that guarantees the accuracy measured by the thermocouple. The number of decimal places of It is possible to increase.
また、 別の手法により、 逆問題計算に用いる温度データの小数点以下の桁数を 増やすようにしてもよい。 例えば、 熱電対において、 温度データそのものの保証 範囲は小数点 1桁である場合でも、 実際には熱電対接点での電圧から温度へと換 算する変換式に基づいて計算するか、 キヤリブレーションを取った電圧一温度換 算表から温度に変換するかの方法が一般的である。 Also, the number of digits after the decimal point of the temperature data used for the inverse problem calculation may be increased by another method. For example, in a thermocouple, even if the assurance range of the temperature data itself is one decimal place, it is actually calculated based on the conversion formula that converts the voltage at the thermocouple junction into temperature, or the calibration is performed. A common method is to convert the voltage-temperature conversion table to temperature.
前者の方法では、 多数桁の温度計算値を四捨五入等して小数点以下 1桁にして いるわけであり、 実際には計算機の能力に応じた小数点桁数まで求めることが可 能である。例えば、 Kタイプの熱電対での電圧から温度に変換する変換式として、 下式に示すようなものがある。 In the former method, the calculated temperature value of many digits is rounded off to one digit after the decimal point, and it is actually possible to obtain the number of decimal digits according to the capacity of the computer. For example, as a conversion formula for converting the voltage of a K-type thermocouple into temperature, there is the following formula.
T = a + b · X + c ·Χ2+ d · X3+ e · X + f · X5+ g · X6+ h · X7+ i · X8 T = a + b · X + c · Χ 2 + d · X 3 + e · X + f · X 5 + g · X 6 + h · X 7 + i · X 8
T :温度 [°C] T: Temperature [° C]
X :接点電圧 [V] X: Contact voltage [V]
a = 0. 2 2 6 5 8 4 6 0 2 a = 0.22 6 5 8 4 6 0 2
b = 2 4 1 5 2. 1 0 9 0 0 b = 2 4 1 5 2.1 0 9 0 0
c = 6 7 2 3 3. 4 2 4 8 c = 6 7 2 3 3. 4 2 4 8
d = 2 2 1 0 3 4 0. 6 8 2 d = 2 2 1 0 3 4 0 .6 8 2
e =— 8 6 0 9 6 3 9. 9 e = — 8 6 0 9 6 3 9.9
f = 4. 8 3 5 0 6 X 1 010 f = 4.8 3 5 0 6 X 1 0 10
g = - 1. 1 8 4 5 2 X 1 012 g =-1.18 4 5 2 X 1 0 12
h = 1. 3 8 6 9 0 X 1 013 h = 1.3 8 6 9 0 X 1 0 13
i = - 6. 3 3 7 0 8 X 1 013 i = -6.3 3 7 0 8 X 1 0 13
上記のような変換式を用いて、接点電圧から温度に直接換算するようにすれば、 簡単に温度データの小数点以下の数値を求めることが可能である。 なお、 ここで いう接点電圧とは、 冷接点温度補償を経た真の接点電圧であることはいうまでも なレヽ。 By directly converting the contact voltage to the temperature using the above conversion formula, it is possible to easily obtain the decimal part of the temperature data. It is needless to say that the contact voltage here is a true contact voltage after cold junction temperature compensation.
ところで、 以上説明したように小数点以下の桁数を増やす以外にも、 図 6に示 すように、 入力部 1 0 1にフィルタ 1 0 1 aを設けておき、 温度データ前処理に フィルタ処理を施すことが挙げられる。 即ち、 フィルタ 1 0 l aを用いて、 熱電
対で測定された温度データを修正し、 その修正後の温度データを逆問題解析に用 いる。 フィルタを用いると、 元の温度データが小数点以下の桁数の少ないもので あっても、見かけ上、温度データに小数点以下の桁を生成することができるので、 温度の変化が滑らかになって逆問題解析の計算が非常に安定する。 By the way, in addition to increasing the number of digits after the decimal point as described above, a filter 101a is provided in the input section 101 as shown in FIG. To be applied. That is, using the filter 10 la, Correct the temperature data measured in pairs and use the corrected temperature data for inverse problem analysis. If a filter is used, even if the original temperature data has a small number of decimal places, the decimal places can be apparently generated in the temperature data. Calculation of problem analysis is very stable.
理論的に最も有効と思われるのは、 ローパスフィルタを用いることである。 口 一パスフィルタは、 等時間間隔でサンプリングした実測データに混入している高 周波ノィズによる変動の影響を除去するために、 実測データを捕正するものであ る。 What seems to be the most effective in theory is to use a low-pass filter. The mouth-pass filter corrects the measured data in order to remove the influence of fluctuation due to high-frequency noise mixed in the measured data sampled at equal time intervals.
逆問題解析においてローパスフィルタを用いて温度データを修正することが有 効な理由は、 熱電対から遠く離れた位置での熱流束の変化は、 耐火物内を熱拡散 現象によって伝わってくる間に鈍化して、 熱電対位置まで伝わった時には、 温度 変化が非常になまっている (低周波の変化が伝達される) と考えられるためであ る。 The reason why it is effective to use a low-pass filter to correct the temperature data in the inverse problem analysis is that the change in the heat flux at a position far from the thermocouple occurs while the heat flux is transmitted through the refractory through the heat diffusion phenomenon. This is because, when the temperature has slowed down and transmitted to the thermocouple position, the temperature change is considered to have become extremely large (low-frequency changes are transmitted).
これは、 遠く離れた炉内内部の変化によって引き起こされた熱電対位置での温 度変化は、 時間的に低周波な変化であることを意味する。 ところが、 実際の熱電 対の接点電圧変化 (温度変換前の元信号) には、 他の原因による高周波のノイズ が重畳されている。 そこで、 実際の測定温度変化から髙周波ノイズを取り除く処 理を施した温度データを逆問題解析で用いることは、 物理的に非常に意味のある 手法となる。 したがって、 この手法により、 逆問題解析の計算安定性を向上させ ることができるのみならず、 熱流束の推定精度を向上させることもできる。 口一パスフィルタ処理は、 先に述べた時間平均をとつたり、 変換式を使ったり して桁数を増やした温度データは勿論のこと、 その他なんらかの手法で小数点以 下の桁数を増やした温度データや、 元の小数点以下の桁数の少ない測定温度デー タに対して付与しても非常に有効である。 即ち、 小数点以下の桁数を増やすこと と、 ローパスフィルタ処理を施すことを併用してもよく、 それにより相乗的に温 度変化の平滑化を図ることができる。 This means that the temperature change at the thermocouple position caused by a change inside the furnace far away is a low frequency change in time. However, high-frequency noise due to other causes is superimposed on the actual thermocouple contact voltage change (original signal before temperature conversion). Therefore, using temperature data that has been processed to remove 髙 -frequency noise from actual measured temperature changes in an inverse problem analysis is a very physically meaningful method. Therefore, this method not only can improve the calculation stability of the inverse problem analysis, but also can improve the accuracy of estimating the heat flux. In the mouth-to-pass filter processing, the number of digits after the decimal point was increased by some other method, as well as the temperature data whose number of digits was increased by taking the above-mentioned time average or using a conversion formula. It is very effective even if it is added to temperature data or original measured temperature data with few decimal places. That is, increasing the number of digits after the decimal point and performing low-pass filtering may be used in combination, thereby synergistically smoothing the temperature change.
フィルタについては多種多様な種類が考えられるが、 例えば、 R. W. Hamming の Di gi tal f i l ters, Dover publ i cat ions Inc. 1998 等を参照するとよレヽ。 その他、 参考資料は多数存在する。
ローパスフィルタの古典的な手法としては、 等時間間隔でサンプリングした測 定温度データ Yを用いて中間点の温度を修正するものが知られている。 その修正 のための捕正式として、 下記の ( 1 2) 〜 ( 1 4) の式が導出される。 下付き文 字の i は時間のサンプリング回数を示しており、 現在時刻 i に対して、 前後の時 間の測定温度により修正を掛けることを意味する。 A wide variety of filters are conceivable. For example, see RW Hamming's Digital filters, Dover publications Inc. 1998, and the like. There are many other reference materials. As a classic method of a low-pass filter, a method of correcting the temperature at the midpoint using measured temperature data Y sampled at equal time intervals is known. The formulas (12) to (14) below are derived as formalism for the correction. The subscript i indicates the number of times of sampling, which means that the current time i is corrected by the measured temperature before and after.
( 1 2) (1 2)
96 96
— 11,6,12,14,12,6,1] ( 1 7) — 11,6,12,14,12,6,1] (1 7)
— [1,28,78,108,118,108,78,28,1] ( 1 8) 548 L , , — [1,28,78,108,118,108,78,28,1] (1 8) 548 L ,,
— 980 [ L-11, ( 1 9 ,138,,168,,178,,168,,138,,88,,18,-11]■! ) ,18,,88, 丄 320 [し- 3,-6,,-5,,3,,21,,46,,67,,74,,67,…46,21,,3,-5,-6,-3]」 (2 0) 丄 [- 1-3-5,-5.-2,6,18,33,47.57,60,57,47.33,18,6,-2. -5,-5,-3,-1] 350 L — 980 [ L -11, (19, 138 ,, 168 ,, 178 ,, 168 ,, 138 ,, 88 ,, 18, -11] ■!), 18 ,, 88, 丄 320 [Sh-3, -6 ,,-5,3,21,46,67,74,67, ... 46,21,3, -5, -6, -3] "(20) 丄 [- 1-3-5, -5.-2,6,18,33,47.57,60,57,47.33,18,6, -2. -5, -5, -3, -1] 350 L
( 2 1 ) 式 ( 1 2) 〜 ( 1 4) はそれぞれ 3項法、 5項法、 7項法の式を示しており、 修正に用いる測定温度データ数が増えるほど、 ローパスフィルタとしての性能が 向上する。 即ち、 より低周波の信号のみを抽出することができる。 基本的には、 各項の係数で表現できるので、 ウィンドウズ表示で表現すると、 それぞれ式 ( 1
5 ) 〜 ( 1 7 ) のようになる。 (21) Equations (12) to (14) show the equations of the three-term method, the five-term method, and the seven-term method, respectively, and the performance as a low-pass filter increases as the number of measured temperature data used for correction increases. Is improved. That is, only lower frequency signals can be extracted. Basically, it can be expressed by the coefficient of each term. 5) It becomes like (17).
一般的に、 項数が増えれば増えるほど、 ローパスフィルタ と しての性能は向上 し、 フィルタ設計の自由度が増える。 つまり、 多項フィルタにより、 高周波の外 乱が広範囲に除去することができるので、 逆問題解析の計算は極めて安定する。 その反面、 項数が増えると、 ある時刻点の修正温度値を得るために、 その前後の 複数時間点の測定温度を使用しなければならず、 これは実質的に過去に遡ってい ることになるため、 「逆問題解析で現在の熱流束を推定する.」という場合の「現在」 そのものが、 ローパスフィルタによって引き戻されることを意味する。 したがつ て、 ローパスフィルタによる逆問題解析の安定性を確保することと、 「現在」 の推 定時間をできるだけ今に近づけることの関係はトレードオフなので、 両者の関係 を鑑みながら、 適当な組み合わせを選ぶ必要がある。 In general, as the number of terms increases, the performance as a low-pass filter improves, and the degree of freedom in filter design increases. In other words, since the high-frequency disturbance can be removed over a wide range by the polynomial filter, the calculation of the inverse problem analysis is extremely stable. On the other hand, when the number of terms increases, the measured temperature at several time points before and after the time point must be used to obtain the corrected temperature value at a certain time point, which is substantially retroactive to the past. Therefore, in the case of "estimating the current heat flux by inverse problem analysis.", It means that the "present" itself is pulled back by the low-pass filter. Therefore, there is a trade-off between ensuring the stability of the inverse problem analysis using a low-pass filter and making the “current” estimation time as close to the present as possible, so an appropriate combination should be considered while considering the relationship between the two. You need to choose
こういう観点からいえば、 できるだけ小数点以下の桁数を増やした温度データ を用い、 階段状の温度変化を抑えた上で、 項数の少ないローパスフィルタを用い ることが、 「現在」 の熱流束を推定する上で有効となる。 From this point of view, using temperature data with as many decimal places as possible, using a low-pass filter with a small number of terms after suppressing the stepwise temperature change, reduces the `` current '' heat flux. It is effective in estimating.
(第 2の実施形態の実施例) (Example of the second embodiment)
第 2の実施形態の具体的な実施例として、 図 7には、 高炉炉底の底盤に設置さ れているカーボン煉瓦内に埋め込まれた熱電対を用いて、 1次元の非定常熱伝導 モデルを仮定して、 逆問題解析を試みた例を模式的に示す。 熱電対は、 冷却面側 に偏って 2本埋め込まれており、 T C 1は高温側熱電対、 T C 2は低温側熱電対 を示す。 これら熱電対 T C 1、 T C 2で測定される温度変化から、 上述した逆問 題解析により、 高温熱流束面での非定常熱流束 q 1 と、 冷却面での非定常熱流束 q 2とを同時に推定する。 高温熱流束面位置は冷却面から 4. 0 m奥の定点であ る。 仮定したカーボン煉瓦の熱物性値は、 比熱 C P= 7 1 2 J / ( k g 'K)、 密 度 p = 2 3 0 0 k g /m3、 熱伝導度 k = 2 1. 2 W/ (m.K) である。 As a specific example of the second embodiment, FIG. 7 shows a one-dimensional transient heat conduction model using a thermocouple embedded in a carbon brick installed on the bottom of the blast furnace bottom. Assuming that, the example of trying the inverse problem analysis is shown schematically. Two thermocouples are embedded on the cooling surface side, and TC 1 indicates a high-temperature thermocouple and TC 2 indicates a low-temperature thermocouple. From the temperature changes measured by these thermocouples TC1 and TC2, the unsteady heat flux q1 on the high-temperature heat flux surface and the unsteady heat flux q2 on the cooling surface are calculated by the inverse problem analysis described above. Estimate at the same time. The position of the high-temperature heat flux surface is a fixed point 4.0 m deep from the cooling surface. The assumed thermophysical properties of the carbon brick are as follows: specific heat C P = 7 12 J / (kg 'K), density p = 230 kg / m 3 , thermal conductivity k = 21.2 W / ( mK).
図 8 Aに、 本実施例で得られた高温側熱流束 q 1の推定結果を示す。 図 8 A〜 FIG. 8A shows the estimation result of the heat flux q1 on the high temperature side obtained in the present example. Fig. 8 A ~
8 Dの横軸は日付を表し、 9月 1 目から 1 0月 1 目までの結果を示している。 実 際には、 9月 1 目以前より計算を始めて、 計算終了は 1 0月 1 日である。 なお、 逆問題解析の時間ステップは、 8時間ステップである。 The horizontal axis of 8D represents the date, and shows the results from September 1 to October 1. Actually, the calculation starts before September 1, and ends on October 1st. The time step of the inverse problem analysis is 8 time steps.
ケース 1は、 熱電対により測定される温度データの小数点 1桁の数値を四捨五
入して、 小数点以下 0桁としたデータに対して、 フィルタ処理を実行した場合の 計算結果である。 ケース 2は、 温度データの小数点 2桁の数値を四捨五入して、 小数点以下 1桁としたデータに対して、 フィルタ処理を実行した場合の計算結果 である。 Case 1 rounds off the temperature data measured by the thermocouple to one decimal place. This is the calculation result when filter processing is performed on the data with 0 decimal places. Case 2 is the calculation result when filtering the temperature data with two decimal places rounded to one decimal place.
図 8 B 、 8 Cには、 高温側熱電対 T C 1及び低温側熱電対 T C 2のフィルタ処 理後の温度データ (逆問題解析に用いる温度データ) をプロッ トした特性図を示 す。 また、 図 8 Dには、 熱電対 T C 1 、 T C 2それぞれの位置でのケース 1 とケ ース 2 の温度差 (ケース 1—ケース 2 ) を示す。 Figures 8B and 8C show plots of the temperature data (temperature data used for inverse problem analysis) after filtering the high-temperature-side thermocouple TC1 and low-temperature-side thermocouple TC2. FIG. 8D shows the temperature difference between case 1 and case 2 (case 1—case 2) at the respective positions of thermocouples T C1 and T C2.
フィルタについては、 過去の温度データには極力多くの項数のローパスフィル タをかけて計算を安定化すべく、 最大 2 1項のスペンサ一の式 (式 (2 1 ) ) を用 い、 現在に近づくにつれて徐々に項数を減らしていく手法を用いている。 具体的 には、 ウィンドウズ形式の表記で、 式 ( 1 5 ) 〜 (2 1 ) を用いている。 即ち、 1 0月 1 日に近づくにつれて項数が減少し、最終的には式( 1 5 )を用いており、 最後の温度デ一タにはフィルタ処理を行っていない。 Regarding the filter, in order to stabilize the calculation by applying a low-pass filter with as many terms as possible to past temperature data, the Spencer-type equation (Equation (2 1)) of up to 21 terms is used. A technique is used in which the number of terms is gradually reduced as approaching. Specifically, the expressions (15) to (21) are used in a Windows format notation. That is, the number of terms decreases as the date approaches October 1, and finally equation (15) is used, and no filtering is performed on the last temperature data.
ケース 1、 ケース 2のいずれの場合でも、 過去の解析に関してはフィルタ効果 で非常に安定化しているが、 現在に近づくにつれて、 徐々に不安定化して、 最終 的な推定熱流束は、 現実的には考えられないほどの大きな振動を起こしている。 これは、 ローパスフィルタの効果が徐々に低下して、 計算が不安定になっている ことを示すと考えられる。 In both Case 1 and Case 2, the past analysis is very stable due to the filter effect, but gradually destabilizes as it approaches the present, and the final estimated heat flux becomes realistic. Is generating an incredibly large vibration. This is considered to indicate that the effect of the low-pass filter gradually decreases and the calculation becomes unstable.
ケース 1 とケース 2を比較すると、 ケース 2の方が最終的な振動の大きさを小 さく抑えることができていることが分かる。 これは、 小数点以下の桁数が多い温 度データの方が、 項数の少ないローパスフィルタでも、 比較的安定した計算が可 能であることを示している。 Comparing Case 1 and Case 2, it is clear that Case 2 is able to reduce the magnitude of the final vibration. This indicates that temperature data with more digits after the decimal point can perform relatively stable calculations with a low-pass filter with fewer terms.
更に、 いずれの場合も、 最後の推定結果で振動を起こしていることから、 同じ 桁数の温度データで比較した場合、 ローパスフィルタの項数を增やして、 温度デ ータを極力平滑化することが、 安定した解を得る上で有効な手段であることも示 している。 特に、 式 ( 1 5 ) 〜 (2 1 ) の形式のローパスフィルタを用いた場合、 式 ( 1 5 ) を用いても、 最後のデータにはフィルタがかからないので、 元の温度 データの小数点以下の値は多い方が、 見かけ上平滑化されやすいので、 逆問題解
析解が安定する。 In addition, in each case, oscillations were generated in the final estimation result, so when comparing temperature data with the same number of digits, the number of terms in the low-pass filter was reduced, and the temperature data was smoothed as much as possible. It is also shown that doing so is an effective means of obtaining a stable solution. In particular, when a low-pass filter of the form of equations (15) to (21) is used, even if equation (15) is used, no filter is applied to the last data, so the decimal point of the original temperature data Inverse problem solution The solution is stable.
ケース 1及びケース 2において、 温度データにフィルタを全くかけないで逆問 題解析を試みたが、 解が発散してしまい、 計算を進めることができなかった。 図 9には、 熱電対の設置深さの異なるケースについて、 図 7と同様の模式図を 示す。 図 1 0 Aに、 逆問題解析の計算時間ステップを 8時間とした場合と、 6時 間とした場合とについて、 高温側熱流束 q 1の推定結果を示す。 これらの計算結 果ついては、 もつと長い期間の計算結果の中での 9月 1 目から 1 0月 1 日までを 抽出して示す。 In Cases 1 and 2, inverse problem analysis was attempted without filtering the temperature data at all, but the solution diverged and the calculation could not proceed. Fig. 9 shows a schematic diagram similar to Fig. 7 for cases where the thermocouples are installed at different depths. Figure 10A shows the estimation results of the high-temperature side heat flux q1 when the calculation time step of the inverse problem analysis is set to 8 hours and when it is set to 6 hours. The results of these calculations are extracted from September 1 to October 1 of the long-term calculation results.
計算に用いた温度データは小数点以下 1桁のものを用い、 更にフィルタとして 式 (2 1 ) を用いて平滑化を行っている。 図 1 0 B、 1 0 Cには、 その平滑化後 の高温側熱電対 T C 1及び低温側熱電対 T C 2の温度データをプロッ トした特性 図を示す。 また、 図 1 0 Dは、 実質的には、 定常の熱流束に対応する、 高温側熱 電対温度と低温側熱電対温度との差 (T C 1 —T C 2 ) を示す。 The temperature data used for the calculation was one digit after the decimal point, and the filter was smoothed using equation (21). FIGS. 10B and 10C show characteristic diagrams obtained by plotting the temperature data of the high-temperature-side thermocouple TC1 and the low-temperature-side thermocouple TC2 after the smoothing. Further, FIG. 10D shows the difference between the high-temperature side thermocouple temperature and the low-temperature side thermocouple temperature (T C 1 -T C 2) corresponding to the steady state heat flux.
図 1 0 Dの疑似定常熱流束の推移と、 図 1 0 Aの逆問題解析により推定した非 定常熱流束のピーク同志の対応関係を比較して見ると、 直感的ながら、 逆問題解 析が遅れ時間を補正して、 非定常熱流束の方が早めにピークが表れていることが 分かる (図 1 0 A中の破線で示す)。 A comparison of the transition of the quasi-stationary heat flux in Fig. 10D and the correspondence between the peaks of the unsteady heat flux estimated by the inverse problem analysis in Fig. 10A shows that the inverse problem analysis is intuitive. It can be seen that the peak time appears earlier in the unsteady heat flux by correcting the delay time (shown by the broken line in Fig. 10A).
図 1 0 Dの特性図の疑似定常熱流束は、 熱電対位置周辺を通過している平均的 な熱流束と解釈でき、 4 m奥の高温面での値を推定した非定常熱流束の値と比較 して必ずしもピーク同志が対応しているとは限らないが、 この場合は、 概略 2〜 3 日のピーク遅れが観察される。換言すると、逆問題解析による非定常熱流束は、 従来の定常法よりも、概略 2〜 3日早めに炉内の動きを検知していることになる。 また、 図 1 0 Aの特性図での 8時間ステップ計算と 6時間ステップ計算を比較 すると、 6時間ステップの計算の方がより輪郭がはっきり した動きを示している。 時間ステップを長くすると、 その時間内の平均化した動きしか捉えることができ ないので、 極力時間ステップを短く とった方が、 実際の内部の動きを表現できる 可能性が高い。 The quasi-stationary heat flux in the characteristic diagram in Fig. 10D can be interpreted as the average heat flux passing around the thermocouple position, and the value of the unsteady heat flux estimated at the hot surface 4 m deep The peaks do not always correspond to each other, but in this case, a peak lag of about 2-3 days is observed. In other words, the unsteady heat flux based on the inverse problem analysis detects the movement in the furnace approximately 2-3 days earlier than the conventional steady-state method. Also, comparing the 8-hour step calculation and the 6-hour step calculation in the characteristic diagram of Fig. 10A, the 6-hour step calculation shows a movement with a sharper contour. If the time step is lengthened, only the averaged motion within that time can be captured, so shortening the time step as much as possible is more likely to express the actual internal motion.
(第 3の実施形態)
図 1 1には、 本実施形態の反応容器の操業管理装置の概略構成を示す。 以下で は、 上記第 1の実施形態との相違を中心に説明するとともに、 既に説明した構成 要素には同一の符号を付して、 その詳細な説明は省略する。 同図において、 3 0 1は定常法による解析部であり、 入力部 1 0 1を介して得られる温度データに基 づいて、 定常法による解析を行うことにより、 反応容器の内表面における温度或 いは熱流束を求める。 3 0 2は比較部であり、 逆問題解析部 1 0 2により求めら れた温度或いは熱流束と、 定常法による解析部 3 0 1により求められた温度或い は熱流束とを比較し、 具体的には両者の差を求めて評価の指標とする。 そして、 出力部 1 0 3は、 比較部 3 0 2により比較された結果を、 例えば図示しないディ スプレイに表示等する。 本実施形態で利用する逆問題解析については、 上記第 1 の実施形態において説明したので、 ここではその説明は省略する。 (Third embodiment) FIG. 11 shows a schematic configuration of the operation management apparatus for a reaction vessel of the present embodiment. In the following, description will be made focusing on differences from the first embodiment, and the same reference numerals will be given to the components already described, and detailed description thereof will be omitted. In the figure, reference numeral 301 denotes an analysis unit based on the steady-state method. By performing analysis based on the temperature data obtained through the input unit 101 by the steady-state method, the temperature on the inner surface of the reaction vessel is calculated. Or heat flux. Reference numeral 302 denotes a comparison unit which compares the temperature or heat flux obtained by the inverse problem analysis unit 102 with the temperature or heat flux obtained by the analysis unit 301 by the steady-state method. Specifically, a difference between the two is obtained and used as an evaluation index. Then, the output unit 103 displays the result compared by the comparison unit 302 on, for example, a display (not shown). Since the inverse problem analysis used in the present embodiment has been described in the first embodiment, the description is omitted here.
本実施形態で利用する定常法による解析について説明すると、 1次元定常法で、 深さ方向 (壁 (煉瓦) の厚み方向) 2点での温度測定値から反応容器の内表面で の温度を求める場合は、図 1 2に示すように、 2点における温度を直線で結んで、 外揷した点の温度を反応容器の内表面での温度とする。 また、 熱流束は、 その直 線の傾きであるので、 傾きに熱伝導度 kを掛けて求めることができる (下記の式 ( 2 2 ) の中間項)。 The analysis by the stationary method used in the present embodiment will be described. The temperature at the inner surface of the reaction vessel is obtained from the temperature measurement values at two points in the depth direction (thickness direction of the wall (brick)) in the one-dimensional stationary method. In this case, as shown in FIG. 12, the temperatures at the two points are connected by a straight line, and the temperature at the outside point is the temperature on the inner surface of the reaction vessel. Also, since the heat flux is the slope of the straight line, it can be obtained by multiplying the slope by the thermal conductivity k (the intermediate term in the following equation (22)).
また、 深さ方向に 2点より多い複数点での温度測定値を含む場合は、 図 1 3に 示すように、 例えば線形の最小二乗法により、 複数点における温度を最も満たす 直線を求めて、 その外揷点の温度を反応容器の内表面での温度とする。 また、 熱 流束は、その直線の傾きに熱伝導度 kを掛けて求めることができる (下記の式( 2 2 ) の最右項)。
定常法による解析の結果得られる熱流束 (定常熱流束) は直線で表現すること ができるので、 どの断面を取っても等しい値となり、 そこが逆問題解析の結果得 られる熱流束 (非定常熱流束) と異なる点でもある。 In addition, when the temperature measurement values at more than two points in the depth direction are included, as shown in Fig. 13, for example, a straight line that satisfies the temperature at the plurality of points is obtained by the linear least squares method. The temperature at the outside point is defined as the temperature on the inner surface of the reaction vessel. The heat flux can be obtained by multiplying the slope of the straight line by the thermal conductivity k (the rightmost term in the following equation (22)). The heat flux (steady heat flux) obtained as a result of the analysis by the steady-state method can be expressed by a straight line, so that it takes the same value regardless of the cross-section, which is the heat flux (unsteady heat flux) obtained as a result of the inverse problem analysis. Bunch).
壁の厚み方向の熱移動を支配しているのは、 上記式 ( 1 ) に示した 1次元の非
定常熱伝導方程式であるが、 概略の平均的な熱流束を簡易的に求めるためには、 定常法を用いても問題ない。 ところが、 実際には、 非定常熱伝導方程式の左辺項 で表現される煉瓦の熱容量効果によって、 煉瓦内の 1次元温度分布は定常法のよ うに直線の温度分布とはならず、 温度勾配の分布を持った曲線で表現される。 こ れは、 熱量が伝達していくには、 温度勾配による熱流れ現象 (熱伝導率 kの効果) だけではなく、 煉瓦内に蓄熱していく現象 (熱容量 p C Pの効果) も関係してい るカゝらである。 It is the one-dimensional non-linearity shown in the above equation (1) that governs the heat transfer in the wall thickness direction. Although it is a steady-state heat conduction equation, there is no problem even if the steady-state method is used to easily obtain the approximate average heat flux. However, in practice, due to the heat capacity effect of the brick expressed by the term on the left side of the transient heat conduction equation, the one-dimensional temperature distribution in the brick does not become a linear temperature distribution as in the steady state method, but a temperature gradient distribution. Is represented by a curve with This is the amount of heat is gradually transmitted, not only the heat flow phenomenon caused by the temperature gradient (the effect of the thermal conductivity k), (the effect of heat capacity p C P) phenomena continue to thermal storage in the bricks also relates It is a character that is.
特に、 外部と接する煉瓦境界面近く (境界条件を与える部分近傍) は、 外部の 影響により温度勾配が敏感に変化するので、 定常法の直線からは大きく剥離しや すい。 図 1 4に示すように、 例えば、 流入熱量が突然に増加すれば、 局所的に温 度勾配が上昇するし、 流入熱量が突然に減少すれば、 局所的に温度勾配が減少す る。 このよ うな変化が瞬間的なものではなく長時間に渡る場合 (定常化)、 徐々に 温度勾配の分布は解消され、ある一定の直線に収斂していくのである(定常状態)。 非定常熱伝導方程式を用いた逆問題解析により反応容器の内表面における熱流 束を推定する意味合いは、この局所的な温度勾配の変化を的確に捉える点にあり、 その非定常変化の大きさを判断できるようにすることが重要である。 In particular, near the boundary of the brick in contact with the outside (near the part where the boundary conditions are given), the temperature gradient changes sensitively due to the effect of the outside, so it is easy to largely separate from the straight line of the steady method. As shown in Fig. 14, for example, if the inflow calorific value increases suddenly, the temperature gradient will increase locally, and if the inflow calorie decreases suddenly, the temperature gradient will decrease locally. If such a change is not instantaneous but extends for a long time (steady state), the distribution of the temperature gradient is gradually eliminated and converges on a certain straight line (steady state). The implication of estimating the heat flux on the inner surface of the reaction vessel by inverse problem analysis using the unsteady heat conduction equation is to accurately capture this local change in the temperature gradient. It is important to be able to make decisions.
ここで、 ある定点での非定常熱流束 ·温度で比較することが重要である。 求め るべき定点の位置が変わると、 温度は勿論のこと、 非定常熱流束は変化してしま うからである。その変化の様子を示すために、図 1 5に示すような問題を設定し、 4 m位置で階段状に変化する熱流束を与えた場合のそれぞれの断面位置での熱流 束と温度の推移を検討した。 その結果を図 1 6、 1 7に示す。 なお、 初期の温度 分布は 2 7 °C—定で与えている。 Here, it is important to compare the unsteady heat flux and temperature at a certain fixed point. If the position of the fixed point to be obtained changes, not only the temperature but also the unsteady heat flux will change. In order to show the state of the change, a problem as shown in Fig. 15 was set, and the change of the heat flux and temperature at each cross-sectional position when the heat flux that changes stepwise at 4 m position was given. investigated. The results are shown in Figures 16 and 17. The initial temperature distribution is given at 27 ° C.
この試行計算が示唆していることは、 例えば 2 m位置、 l m位置での温度変化 を用いて、 逆問題解析により 3 m位置の熱流束を推定することと、 4 m位置の熱 流束を推定することでは、推定する熱流束の変化は異なることである。 2 m位置、 This trial calculation suggests that, for example, using the temperature change at the 2 m and lm positions, the heat flux at the 3 m position is estimated by inverse problem analysis, and the heat flux at the 4 m position is estimated. In estimating, the change in the estimated heat flux is different. 2 m position,
1 m位置に対してより深い位置である 4 m位置の方が、 より鋭角な変化を推定す ることができることを示しており、 3 m位置では、 かなり鈍化した熱流束しか推 定することができないのである。 This shows that the 4 m position, which is deeper than the 1 m position, can estimate a sharper change, and that at the 3 m position, only a considerably slowed heat flux can be estimated. I can't.
したがって、逆問題解析の結果を評価する際には、 「どの位置で」評価している
かが非常に重要な要素となり、推定位置が熱電対位置に対して深ければ深いほど、 熱流束の変化を正確に再現できることになる。その半面、推定位置が深くなれば、 熱電対の位置まで伝わってくる温度が小さくなるので、 逆問題解析は不安定化し やすくなり、 解が得られ難くなることは言うまでもない。 Therefore, when evaluating the result of inverse problem analysis, "where" This is a very important factor, and the deeper the estimated position is relative to the thermocouple position, the more accurately the change in heat flux can be reproduced. On the other hand, if the estimated position is deeper, the temperature transmitted to the thermocouple position will be lower, and it will be obvious that the inverse problem analysis is more likely to be unstable and it is difficult to obtain a solution.
既述したように、 これまでは、 逆問題解析により求めた定位置での熱流束の時 間推移を単独プロッ トして評価していたが、 熱流束の変化が大きい、 小さいだけ では非常に曖昧であり、 このままでは、 炉内の溶銑湯流れの変化がどの程度非定 常性のある変化 (急激な流れの変化) なのかを判断することが難しかった。 As described above, the time course of the heat flux at a fixed position obtained by inverse problem analysis has been evaluated by a single plot. It was ambiguous, and it was difficult to judge how unsteady the change in the molten metal flow in the furnace was (a sudden change in the flow).
本願発明者らは、鋭意研究を重ねた結果、非定常性の評価を明確にするために、 逆問題解析により求めた熱流束 (非定常熱流束) と、 定常法による解析により求 めた熱流束 (定常熱流束) とを一緒にプロッ トして比較することで、 非常に明解 に区別できることを見出した。 As a result of intensive studies, the inventors of the present application have found that in order to clarify the evaluation of unsteadiness, the heat flux (unsteady heat flux) obtained by inverse problem analysis and the heat flux obtained by analysis by the stationary method It was found that by plotting and comparing the heat flux (steady heat flux) together, it was very clear.
即ち、非定常熱流束が定常熱流束よりも低い側にくれば、今後、定常熱流束(平 均的な熱流束) は、 低下傾向になると推定することができる。 その反対に、 非定 常熱流束が定常熱流束よりも高い側にくれば、 今後、 定常熱流束 (平均的な熱流 束) は、 上昇傾向になると推定することができる。 また、 その熱流束差が大きい と、 非定常性が大きいので、 今後、 平均的な熱流束には急激な上昇 ·低下が起こ ることを示唆していると判断することができる。 That is, if the unsteady heat flux is lower than the steady heat flux, it can be estimated that the steady heat flux (average heat flux) will tend to decrease in the future. Conversely, if the unsteady heat flux is higher than the steady heat flux, it can be estimated that the steady heat flux (average heat flux) will tend to increase in the future. Also, if the heat flux difference is large, the unsteadiness is large, so it can be judged that this suggests that the average heat flux will rapidly rise and fall in the future.
これは、 定位置の熱流束を比較するのではなく、 定位置の推定温度について逆 問題解析と定常法による解析の解を比較することでも同様の評価が可能である。 また、両者の熱流束差が急激に変わり始める起点を調べれば、急激な上昇、又は、 低下の原因が何であつたかを特定することも可能となる。 The same evaluation can be performed by comparing the solution of the inverse problem analysis and the analysis by the steady-state method for the estimated temperature at the fixed position, instead of comparing the heat flux at the fixed position. Also, by examining the starting point where the heat flux difference between the two begins to change rapidly, it is possible to identify what caused the sudden rise or fall.
このことは、 その時点で講じた操業アクショ ンの良否を判断する場合にも、 非 常に有効な情報となり うる。 場合によっては、 その操業変更が望ましい熱流束変 化を引き起こしていなければ、 操業諸元を元に戻したり、 他に変更したりするた めの参考データともなり うる。 This can be very useful information for judging the quality of operation actions taken at that time. In some cases, as long as the operation change does not cause the desired heat flux change, it can also serve as reference data for restoring or otherwise changing operation specifications.
その非定常変化をより明確化するために、 定位置での非定常熱流束 (或いは温 度) と、 定常熱流束 (或いは温度) の差をとつて非定常性指標として、 非定常性 の強度を評価する方法も考えられる。 非定常性指標は、 下記の式 ( 2 3 )、 ( 2 4 )
等のように定義することが可能であり、 定位置での熱流束差、 又は、 温度差を数 値化することにより定量的な把握が可能となる。 非定常性指標は、 どの定位置で 定義した値なのかを明らかにすることが重要であり、 その定義位置によって値が 変化することは上述した通りである。
In order to clarify the unsteady change, the difference between the unsteady heat flux (or temperature) at a fixed position and the steady heat flux (or temperature) is used as an indicator of unsteadiness, and There is also a method of evaluating The non-stationarity index is calculated by the following formulas (23), (24) It is possible to define the heat flux difference or the temperature difference at a fixed position as a numerical value, so that a quantitative grasp can be obtained. It is important to clarify at which fixed position the value of the non-stationarity index is defined, and the value changes depending on the defined position, as described above.
qin,t 置での # 常逆問 解 ίίί! 熱流束 # inversion of q in and t置! Heat flux
qin,stdy :定位置での定常法での推定熱流束 tran一 in ran in,stdy ( 4 ) q in , stdy : Estimated heat flux by stationary method at fixed position tran-in in ran in, stdy (4)
qin!tran : ィ立 ¾での 解 ft 显« q in! tran : The solution at 立 立 ft
qinJran : 定位置での定常法での推定温度 この非定常熱伝導方程式による逆問題モデルは、あくまでもモデルであるので、 その非定常性を評価する目的で、 実際には壁がないと考えられるような深部位置 を定位置と定めて、 非定常熟伝導逆問題解析を施すことも可能である。 このよ う にあえて深い位置に設定すると、 計算は不安定になりやすいが、 非定常変化がシ ヤープに表れるので、 変化の起点を明確に示すことができる。 また、 深さは異な るが、 同じ種類の反応炉の操業実績と比較する際には、 定位置の基準を決めて解 析結果を比較できた方が、 同じ土俵で議論しやすい。 q inJran : Estimated temperature by stationary method at fixed position Since the inverse problem model based on the unsteady heat conduction equation is a model to the last, it is considered that there is actually no wall for the purpose of evaluating the unsteadiness. It is also possible to determine such a deep position as a fixed position and to perform the unsteady mature conduction inverse problem analysis. If the setting is made deeper in this way, the calculation tends to be unstable, but the unsteady change appears in the sharp, and the starting point of the change can be clearly shown. Also, although the depth is different, it is easier to discuss the same playing field when comparing the results of operation with reactors of the same type by determining the reference position and comparing the analysis results.
あまり浅い位置に定位置の基準を固定すると、 図 1 6に示すように、 非定常性 が鈍ってしまい、望ましい比較結果が得られない場合もある。このような場合は、 仮想的にでも、 最も煉瓦厚みが深い反応炉に基準を設定した方が望ましいと考え る。 If the fixed position reference is fixed at a very shallow position, the unsteadiness may become dull as shown in Fig. 16, and the desired comparison result may not be obtained. In such a case, it is desirable to set the standard for the reactor with the largest brick thickness, even if it is virtually.
また、 臨界の非定常性指標を定めておき、 その値を超えた場合に、 適切な操業 アクショ ンを付与するような一定の基準を定めることも可能となる。 ただし、 非 定常性指標は、 現状の定常熱流束 (定常定位置温度) を基準として、 その後の変 化の大きさ ·方向性を推定しているだけなので、 その時の熱流束の大きさによつ て意味合いは変わってくる。 即ち、 非定常性指標と熱流束の絶対値の両者の関係
が重要である。 In addition, it is possible to set a criticality unsteadiness index, and to set a certain criterion to give an appropriate operation action when the value is exceeded. However, the non-stationary index only estimates the magnitude and directionality of the subsequent changes based on the current steady-state heat flux (steady-state temperature), and therefore depends on the magnitude of the heat flux at that time. The meaning changes. That is, the relationship between both the unsteadiness index and the absolute value of the heat flux is important.
図 1 8に、 その考え方をマッピングした一例を模式的に示す。 横軸に非定常性 指標 Δ Τ\„Π、 縦軸に定常熱流束を取っている。 この操業では、 定常熱流束をある 基準値 Q以上に保持することが求められているとする。 さらに、 時系列の解析結 果を本図のマップ上にプロッ トすると、 〇プロッ トが 「→」 で示した軌跡で変化 しているとする。 最後の (直前の) 〇プロッ トは基準値以上の定常熱流束を示し ている力 非定常性指標 Δ Ttra„は臨界値一 2 0°Cを超えてマイナス方向に大きく 振れている。 このことは、 定常熱流束の現在の値は基準値以上であるが、 非定常 性指標 Δ Ttra„の臨界値一 2 0°Cを大きく超えて、将来的には大きく低下するであ ろうと、 警報を鳴らしていると解釈することができる。 Fig. 18 schematically shows an example of mapping that concept. The horizontal axis shows the unsteadiness index Δ Τ \ „ 、, and the vertical axis shows the steady heat flux, and this operation requires that the steady heat flux be kept above a certain reference value Q. When the results of the time-series analysis are plotted on the map in this figure, it is assumed that the plot changes along the locus indicated by “→”. The last (immediately) 〇 plot indicates a steady heat flux above the reference value. The unsteadyness index ΔT tra „swings significantly in the negative direction beyond the critical value of −20 ° C. This means that the current value of the steady state heat flux is higher than the reference value, but the critical value of the non-stationary index ΔT tra 大 き く is much larger than 120 ° C, and will be greatly reduced in the future. It can be interpreted that the alarm sounds.
この例では、非定常性指標 Δ Ttranの臨界値を一 2 0°Cとしているが、その値は、 操業の安定化への考え方や許容できる熱流束の変化代、 反応容器壁の熱物性値、 推定する定位置 (厚み位置) によっても勿論変化する。 また、 ここでは、 縦軸の 値を定常熱流束としているが、 非定常熱流束としてもなんら問題はない。 In this example, the critical value of the unsteadyness index ΔT tran is set to 120 ° C. The value depends on the concept of stabilizing the operation, the allowable heat flux change, and the thermophysical properties of the reaction vessel wall. Of course, it changes depending on the value and the estimated position (thickness position). Also, here, the value on the vertical axis is the steady heat flux, but there is no problem even if it is unsteady heat flux.
(第 3の実施形態の実施例) (Example of the third embodiment)
第 3の実施形態の具体的な実施例として、 上記第 2の実施形態と同様に、 図 9 には、 高炉炉底の底盤に設置されているカーボン煉瓦内に埋め込まれた熱電対を 用いて、 1次元の非定常熱伝導モデルを仮定して、 逆問題解析を試みた例を模式 的に示す。 熱電対は、 冷却面側に偏って 2本坦め込まれており、 TC 1は高温側 熱電対、 T C 2は低温側熱電対を示す。 これら熱電対 T C 1、 TC 2で測定され る温度変化から、 上述した逆問題解析により、 高温熱流束面での非定常熱流束 q 1 と、 冷却面での非定常熱流束 q 2 とを同時に推定する。 高温熱流束面位置は冷 却面から 4. O m奥の定点である。 仮定したカーボン煉瓦の熱物性値は、 比熱 C P= 7 1 2 J / (k g 'K)、 密度 p = 2 3 0 0 k g/m3、 熱伝導度 k = 2 1. 2 W/ (m-K) である。 また、 逆問題解析の時間ステップは 8時間であり、 5分間 隔でサンプリングした小数点以下 1桁までの温度データを 1時間で平均化して計 算に用いた。 As a specific example of the third embodiment, as in the second embodiment, FIG. 9 shows a case where a thermocouple embedded in a carbon brick installed in the bottom of the blast furnace bottom is used. An example of an inverse problem analysis is shown, assuming a one-dimensional transient heat conduction model. Two thermocouples are biased toward the cooling surface side. TC 1 indicates a high temperature side thermocouple, and TC 2 indicates a low temperature side thermocouple. From the temperature changes measured by these thermocouples TC1 and TC2, the unsteady heat flux q1 on the high-temperature heat flux surface and the unsteady heat flux q2 on the cooling surface were simultaneously determined by the inverse problem analysis described above. presume. The position of the high-temperature heat flux surface is a fixed point 4. O m deep from the cooling surface. The assumed thermal properties of the carbon brick are as follows: specific heat CP = 7 12 J / (kg 'K), density p = 230 kg / m 3 , thermal conductivity k = 21.2 W / (mK) It is. The time step of the inverse problem analysis was 8 hours, and the temperature data to one decimal place sampled at 5 minute intervals were averaged over 1 hour and used for the calculation.
図 1 9 C、 1 9 Dには、 高温側熱電対 T C 1での温度及び低温側熱電対 T C 2 での温度 (逆問題解析に用いる温度データ) の推移を示す。 なお、 横軸は日付で
あり、 9月 1 日から 1 1月 2 5日までの結果を示す。 Figures 19C and 19D show the transition of the temperature at the high-temperature thermocouple TC1 and the temperature at the low-temperature thermocouple TC2 (temperature data used for the inverse problem analysis). The horizontal axis is the date Yes, showing results from September 1 to January 25.
図 1 9 Aには、 上記温度データを用いて推定した高温熱流束面 (4 m位置) で の逆問題解析による熱流束と、 定常法による熱流束の結果を示す。 逆問題解析に よる非定常熱流束の推移の方が大きな変動を示す一方で、 定常法による定常熱流 束はゆったり と推移している。 この推移を比較すると、 1 1月 8 日頃より、 両手 法による熱流束の違いが大きくなり、 非定常な炉内溶銑流の変化があったことを 推定することができる。 Figure 19A shows the results of the heat flux by the inverse problem analysis on the high-temperature heat flux surface (4 m position) estimated using the above temperature data, and the results of the heat flux by the steady-state method. The transition of the unsteady heat flux by the inverse problem analysis shows larger fluctuations, while the steady heat flux by the steady method changes slowly. Comparing these changes, it can be inferred that from around January 8, the difference in heat flux between the two methods increased, and that there was an unsteady change in the hot metal flow in the furnace.
図 1 9 Bには、 上記温度データを用いて推定した高温熱流束面 (4 m位置) で の逆問題解析による温度推定値と、 定常法による温度推定値の結果を示す。 この 結果からも、 熱流束の場合と同様の傾向を読み取ることが可能である。 Figure 19B shows the results of the temperature estimation by the inverse problem analysis on the high-temperature heat flux surface (at a position of 4 m) estimated using the above temperature data, and the temperature estimation by the steady-state method. From this result, it is possible to read the same tendency as in the case of heat flux.
図 1 9 A、 1 9 Bに共通して言えることは、 いずれも非定常熱流束 (温度) の 方が、 定常熱流束 (温度) よりも早めに動いている点である。 非定常熱流束 (温 度) が上がれば (下がれば)、 2〜 3 日遅れて定常熱流束 (温度) が上がっている (下がっている)。特に、顕著に表れているのが 1 1月 8 日頃の両者の挙動である。 また、 同様の時間遅れは、 図 1 9 Dに示す熱電対温度の傾向と、 図 1 9 A、 1 9 Bの特性図を比較することでも定性的に確認できる。 What can be said in common with Figs. 19A and 19B is that the unsteady heat flux (temperature) moves faster than the steady heat flux (temperature). If the unsteady heat flux (temperature) rises (falls), the steady heat flux (temperature) rises (falls) a few days later. Particularly noticeable is the behavior of both parties around January 8th. The same time delay can also be qualitatively confirmed by comparing the thermocouple temperature trends shown in Fig. 19D with the characteristic diagrams in Figs. 19A and 19B.
図 1 9 Eには、 温度で表した高温熱流束面 (4 m位置) での非定常性指標 Δ Τ tranの変化を示す。 このような指標で表現することにより、 いつ変化の起点があつ たのかが見えやすくなる。 Figure 19E shows the change in the unsteadiness index Δ tran tran at the high-temperature heat flux surface (4 m position) as a function of temperature. Expressing with such indicators makes it easier to see when the change originated.
図 2 0には、 この計算結果を、非定常性指標 Δ T tranと定常熱流束との間でマツ ビングした結果を示す。 この結果は、 定常熱流束の最低基準値を 3 5 0 0 W/ m 2 として、非定常性指標 Δ T tra„の臨界値を一 3 0 °Cに設定した。ところが、一 3 0 °C では、 この値を切った後に急速に定常熱流束が低下して、 最終的には大幅に基準 値を下回る結果となっている。 一 3 0 °Cを切る前には、 熱流束を上げる特別な操 業ァクションはとっていなかった。 FIG. 20 shows the result of mapping this calculation result between the unsteadiness index ΔT tran and the steady heat flux. The results show that the critical value of the unsteadyness index ΔT tra 設定 was set to 130 ° C. with the lowest reference value of the steady-state heat flux set at 350 ° W / m 2 , whereas the critical value of 130 ° C. In this case, the steady-state heat flux decreases rapidly after this value is cut, and eventually falls significantly below the reference value. Did not take any action.
この結果から、 この計算条件では、 もう少し非定常性指標の臨界設定値の絶対 値を小さめに設定すべきことを示唆している。今後は、試行的に、 「非定常性指標 厶 T tranの臨界値を一 1 5 °C程度に合わせ、この値を勢いよく切った場合に適切な 操業アクショ ンを取るようにする」 というような操業基準に厳格化する等、 基準
設定後の操業結果に応じて設定値を適正化することが求められる。 From these results, it is suggested that, under these calculation conditions, the absolute value of the critical set value of the unsteadiness index should be set a little smaller. From now on, a trial will be made such that "The critical value of the unsteadyness indicator T tran should be adjusted to about 15 ° C, and if this value is cut off vigorously, an appropriate operation action will be taken." Stricter operating standards It is required to optimize the set value according to the operation result after the setting.
非定常性指標 Δ T t ra nは、炉の内部定点での定常性からの偏倚を示すものなので. 従来よりも早期に変化の兆候を捉えることができる。 したがって、 この指標の特 性を活用して適切なァクション基準を設定することができれば、 生産コス ト低減 には結びつくが、 操業条件として悪条件であるような、 ぎりぎりの操業を進めな がらも、 炉内の状況が悪化する兆候を早期に検知して、 即座に回復アクショ ンを 打つ機動的な操業設計が可能となる。 Unsteady index delta T t ra n are, so show a deviation from stationarity inside fixed point of the furnace. It can be grasped signs of early changes than before. Therefore, if an appropriate action standard can be set by utilizing the characteristics of this indicator, it will lead to a reduction in production costs, but it will be possible to promote marginal operation, which is a bad operating condition. It enables agile operation design to detect signs of deterioration in the furnace at an early stage and take immediate recovery action.
(第 4の実施形態) (Fourth embodiment)
本実施形態の反応容器の操業管理装置の概略構成は、 上記第 1の実施形態で説 明した図 1 と同様であるが、 逆問題解析部 1 0 2において、 入力部 1 0 1に入力 される温度データに基づいて、 非定常熱伝導方程式を満たす内揷関数又は外揷関 数を用いた逆問題解析を行うことにより、 反応容器の内表面及び外表面における 温度或いは熱流束分を求める点に特徴を有するものである。 The schematic configuration of the reaction vessel operation management device of the present embodiment is the same as that of FIG. 1 described in the first embodiment, but is input to the input unit 101 in the inverse problem analysis unit 102. The temperature or heat flux on the inner and outer surfaces of the reaction vessel by performing inverse problem analysis using an internal function or an external function that satisfies the transient heat conduction equation based on the temperature data It is characterized by the following.
以下、 主として逆問題解析部 1 0 2において行われる処理について詳細に説明 する。 逆問題解析に用いられる非定常熱伝導方程式は、 下記の式 (2 5 ) により 表される。 ハ dT ? d2T Ί d2T Ί が Γ Hereinafter, the processing mainly performed in the inverse problem analysis unit 102 will be described in detail. The unsteady heat conduction equation used for the inverse problem analysis is expressed by the following equation (25). C dT ? D 2 T Ί d 2 T Ί is Γ
p - CD— = k^— + k,、— +ん— ( 2 5 ) p-C D — = k ^ — + k ,, — + n — (2 5)
ot dx oy 本実施形態では、 上記非定常熱伝導方程式を満たす適当な内挿関数又は外揷関 数を用いることにより、 より簡便な手法としての反応容器の内表面及び外表面に おける境界条件の変化を推定するようにしている。 内挿関数又は外揷関数とは、 測定点での温度を結んで、 その点以外の領域、 例えば、 解析領域全体又は一部を 表現する関数である。 外揷のできない内揷関数としては、 1次関数近似やスプラ イン補間等が知られているが、 非定常熱伝導方程式を満たしながら、 外挿が可能 な関数は知られていない。 内挿とは既知点に囲まれた内部の未知点を推定するこ とをいい、 外挿とは既知点の外側や周囲を含めて推定することをいう。
図 2 1示すように、 逆問題解析部 1 0 2では、 まず、 所定の内揷関数又は外揷 関数及びパラメータを用いて非定常熱伝導方程式の解を表現する (ステップ S 2 1 0 1 )。 ot dx oy In the present embodiment, by using an appropriate interpolation function or an external function that satisfies the above-mentioned unsteady heat conduction equation, the boundary condition on the inner surface and outer surface of the reaction vessel as a simpler method is obtained. The change is estimated. The interpolation function or the outer 揷 function is a function that connects the temperature at the measurement point and expresses a region other than that point, for example, the whole or a part of the analysis region. Linear functions such as linear function approximation and spline interpolation are known as internal functions that cannot be extrapolated. However, functions that can be extrapolated while satisfying the transient heat conduction equation are not known. Interpolation refers to estimating unknown points inside known points, and extrapolation refers to estimating outside and around known points. As shown in FIG. 21, the inverse problem analysis unit 102 first expresses the solution of the unsteady heat conduction equation using a predetermined internal function or external function and parameters (step S 2 101) .
本願発明者らは、 鋭意研究を重ねた結果、 下記の式 ( 2 6 ) で表現される非定 常熱伝導方程式を満たす内挿関数又は外揷関数形を用いることで、 より物理的に 意味のある内揷又は外挿が施せることを見出した。 As a result of intensive studies, the inventors of the present application have found that using an interpolation function or an outer 揷 function form that satisfies the non-stationary heat conduction equation expressed by the following equation (26) gives a more physical meaning. It has been found that it is possible to perform internal or extrapolation with a certain degree.
( , y, z, t): exp (, y, z, t): exp
+て x + Then x
ノ
上式 ( 2 6) の tは時間を表し、 また、 X、 y、 zは位置べク トル要素を表し、 一般の 3次元座標系にも適用可能である。 τ χ、 τ " τ ζ、 Αχ、 Ay、 Αζ、 X、 Υ、 Ζは適当な任意定数を表し、 対象とする系によって、 最適な値は変化する。 これ らの任意定数の値の選択には、 注意する必要がある。 No In the above equation (26), t represents time, and X, y, and z represent position vector elements, and can be applied to a general three-dimensional coordinate system. τ χ , τ "τ ζ , Α χ , A y , Α ζ , X, Υ, and Ζ represent appropriate arbitrary constants, and the optimum value varies depending on the target system. The values of these arbitrary constants Care must be taken in choosing
この関数 F (X, y , z , t )は、 自動的に非定常熱伝導方程式 (2 5) 式を満 たす。 この関数 F (x, y, z , t )を用いて非定常熱伝導方程式の解を一般的に 表現すると、 下記の式 (2 7) として表現される。
上式 ( 2 7) の xj、 yj、 z jは任意の基準位置ベク トルの各要素、 は任意 の基準時間を表し、 x、 y、 z及ぴ tは温度を推定しょう としている点の位置べ
タ トルの要素及び時間である。 また、 N j、 は、 それぞれ基準位置ベク トルの 数、 及び、 時間方向の基準時間の数である。 これらの数は、 それぞれ、 温度測定 点の数、 即ち、 熱電対による温度測定点の数、 及ぴ、 測定温度の時間方向のサン プリング数と一致させることが多いが、必ずしも一致させる必要はなレ、。そして、 a はパラメ一タであるが、 この値が決まれば、 任意の位置ベク トル (X , y , z )、 時間 tでの温度分布 T ( X, y, z , t )を決めることができるのである。 次に、 上式 ( 2 7 ) により表現される非定常熱伝導方程式の解中のパラメータ の値を、 熱電対により測定された温度情報を用いて決める (ステップ S 2 1 0 2 )。 このパラメータ a の値は、 下記の連立方程式 ( 2 8 ) を解く ことで決 めることができる。 This function F ( X , y, z, t) automatically satisfies the transient heat conduction equation (25). When this function F (x, y, z, t) is used to express the solution of the unsteady heat conduction equation in general, it is expressed as the following equation (27). In the above equation ( 27 ), x j , y j , and z j represent each element of an arbitrary reference position vector, represents an arbitrary reference time, and x , y, z, and t are points at which temperature is to be estimated. Position of The elements and time of the turtle. N j is the number of reference position vectors and the number of reference times in the time direction, respectively. These numbers are often the same as the number of temperature measurement points, that is, the number of temperature measurement points by the thermocouple, and the number of samplings of the measurement temperature in the time direction, but it is not always necessary to match them. Les ,. Then, a is a parameter, but if this value is determined, it is possible to determine an arbitrary position vector (X, y, z) and a temperature distribution T (X, y, z, t) at time t. You can. Next, the value of the parameter in the solution of the transient heat conduction equation expressed by the above equation (27) is determined using the temperature information measured by the thermocouple (step S2102). The value of this parameter a can be determined by solving the following simultaneous equation (28).
NJ N J
X xj,yk - y zl zJ X - f )= a k'l ( 2 8 ) ゾ =1 !·=ι 上式 ( 2 8 ) の a ki lは熱電対により測定された温度 T ( x k, y k, z k, t 1)を示 しており、 下付き文字の kは測定位置、 下付き文字の 1 はサンプリング時間を表 す。 X x j , y k -yz l z J X-f) = a k'l (28) zo = 1! · = Ι In the above equation (28), a ki l is the temperature T measured by the thermocouple. (x k , y k , z k , t 1 ), where the subscript k indicates the measurement position and the subscript 1 indicates the sampling time.
以上述べた手法を用いることで、 空間及び時間方向に離散的な温度測定データ があれば、 非定常熱伝導方程式に支配される反応容器壁領域全体 (任意の時空間 位置) での温度推定値が得られることになる。 By using the method described above, if there are discrete temperature measurement data in the space and time directions, the temperature estimation value over the entire reaction vessel wall region (arbitrary space-time position) governed by the transient heat conduction equation Is obtained.
ここで、 熱伝導逆問題というのは、 計算領域を支配する非定常熱伝導方程式を 基にして、 領域内部の温度を既知として、 領域境界での温度や熱流束等の境界条 件又は初期条件を推定する問題を指す。これに対して、熱伝導順問題というのは、 既知である境界条件を基にして、 領域内部の温度情報を推定する問題を指す。 上記手法においては、 反応容器の壁境界での温度分布も同時に推定しているこ ととなり、 間接的ではあるが、 熱電対により測定された温度情報から反応容器の 内表面及ぴ外表面の境界条件を決める逆問題となっている。 Here, the heat conduction inverse problem is based on the unsteady heat conduction equation governing the calculation domain, assuming that the temperature inside the domain is known, and the boundary conditions such as temperature and heat flux at the domain boundary or the initial conditions. Points to the problem of estimating On the other hand, the heat conduction order problem refers to the problem of estimating temperature information inside a region based on known boundary conditions. In the above method, the temperature distribution at the wall boundary of the reaction vessel is also estimated at the same time, and although indirect, the boundary between the inner surface and the outer surface of the reaction vessel is obtained from the temperature information measured by the thermocouple. This is the inverse problem of deciding the conditions.
また、 反応容器の壁境界の温度分布だけではなく、 その近傍の温度分布から境 界での温度勾配が推定できるので、 結果的には反応容器の壁境界位置での熱流束
変化も推定できることになる。 In addition, since the temperature gradient at the boundary can be estimated not only from the temperature distribution at the wall boundary of the reaction vessel but also from the temperature distribution in the vicinity, the heat flux at the wall boundary position of the reaction vessel is consequently obtained. The change can also be estimated.
また、 この手法では空間次元数の制約はないので、 空間 1次元、 2次元、 3次 元の逆問題解析手法としてそのまま適用することができる。 In addition, since there is no restriction on the number of spatial dimensions in this method, it can be applied as it is to the inverse problem analysis method for 1-, 2-, and 3-dimensional spaces.
(第 4の実施形態の実施例 1 ) (Example 1 of the fourth embodiment)
第 4の実施形態の具体的な実施例 1 として、 1次元非定常熱伝導方程式系につ いて検討した。 1次元の場合、 支配方程式は、 下記の式 (2 9 ) のように簡略化 される (Ax= 1. 0)。 また、 内挿関数又は外揷関数も、 同様にして下記の式 ( 3 0 ) のよ うに簡略化される。 · As a specific example 1 of the fourth embodiment, a one-dimensional unsteady heat conduction equation system was examined. In the one-dimensional case, the governing equation is simplified (A x = 1.0) as shown in the following equation (29). Further, the interpolation function or the outer function is similarly simplified as in the following equation (30). ·
ハ dT , d2T C dT, d 2 T
p-cP— = ( 2 9) pc P — = (2 9)
dt dx dt dx
図 2 2、 2 3には、 高炉炉底の底盤 (図 2 2)、 側壁 (図 2 3 ) に設置されてい るカーボン煉瓦内に埋め込まれた熱電対を用いて、 1次元の非定常熱伝導を仮定 して逆問題解析を試みたモデルを模式的に示す。 いずれもの場合においても、 熱 電対は冷却面側に偏って 2本埋め込まれており、 T C 1は髙温側熱電対、 T C 2 は低温側熱電対を示す。 これら熱電対 T C 1、 T C 2で測定される温度変化に基 づいて、 逆問題解析により、 高温熱流束面での非定常熱流束 q 1 と、 冷却面での 非定常熱流束 q 2とを同時に推定する。 図 2 2では、 高温熱流束面位置は冷却面 から 4. 0 ^1奥の定点 ( = 4. 0 m)、 図 2 3では、 高温熱流束面位置は冷却面 から 2. 0 m奥の定点 (x = 2. 0 m) である。 仮定したカーボン煉瓦の熱物性 値は、 比熱 C P= 7 1 2 J Z ( k g ZK)、 密度 p = 2 3 0 0 k g /m3、 熱伝導 度 k x = 2 1. 2 W/ (m · K) である。 Figs. 22 and 23 show one-dimensional transient heat using thermocouples embedded in carbon bricks installed on the bottom (Fig. 2 2) and side walls (Fig. 2 3) of the blast furnace bottom. A model that attempted an inverse problem analysis assuming conduction is schematically shown. In each case, two thermocouples are embedded toward the cooling surface side, TC1 is a hot-side thermocouple, and TC2 is a low-temperature-side thermocouple. Based on the temperature changes measured by these thermocouples TC1 and TC2, the inverse problem analysis was used to determine the unsteady heat flux q1 on the hot heat flux surface and the unsteady heat flux q2 on the cooling surface. Estimate at the same time. In Fig. 22, the high-temperature heat flux surface position is a fixed point (4.0 m) at a depth of 4.0 ^ 1 from the cooling surface, and in Fig. 23, the high-temperature heat flux surface position is 2.0 m from the cooling surface. The fixed point (x = 2.0 m). The assumed thermal properties of carbon bricks are: specific heat C P = 7 1 2 JZ (kg ZK), density p = 230 kg / m 3 , thermal conductivity k x = 21.2 W / (m K).
ここで、 定数 τ Xを適切に設定することが重要である。 そこで、 まずは、 図 Here, it is important to set the constant τ X appropriately. So, first,
2 4 Α、 2 5 Αのような人工的な境界条件 q 1、 q 2を付与した順問題解析を実
行し、 T C 1、 及ぴ、 T C 2温度の経時変化を求めた (図 2 4 B、 2 5 B )0 ここ で、 順問題解析では、 通常の差分近似の陰解法 (時間ステップ 28800秒) を用い た。 そして、 図 24 B又は図 2 5 Bの各熱電対温度を既知条件として、 上記逆問 題解析を実行し、 最適なて x、 Xを探索する。 図 2 2のモデルに対しては図 24 A の条件を付与し、 図 2 3のモデルに対しては図 2 5 Aの条件を付与した。 本実施 例では、 熱電対間隔は不変であると考えることができるので、 X= Om—定が妥 当と判断して、 好適な τ xを選定することにした。 τ xを選定するに際しては、 基 準位置ベク トルや、 基準時間をどこに設定するかも重要な要素である。 図 2 6、 2 7に、 基準点 (基準位置べク トルと基準時間)、 温度既知点 (温度測定している 熱電対位置べク トルと温度既知時間)、推定点(温度推定する位置べク トルと推定 時間) の関係を模式的に示している。 図 2 6、 2 7の例では、 基準点と温度既知 点を一致させて、 図 2 6では時間方向 3点、 図 2 7では時間方向 5点の温度既知 点を用いていることを示している。 図 2 6、 2 7のいずれの場合も、 推定点は、 時間方向には最も現在に近い点 (「現在」 と図示) を選び、 位置べク トルとしては q 1及ぴ q 2位置に設定した。 図 2 6、 2 7中では、 推定点を 「X」 で示してい る。 図 2 2のモデルに対しては図 2 6の設定で推定点での熱流束 q 1、 q 2を求 め、 図 2 3のモデルに対しては図 2 7の設定で推定点での熱流束 q 1、 q 2を求 め、 それぞれ、 実際に与えた境界条件である図 24 A、 2 5 の熱流束 1、 q 2と比較して、比較的良好に境界条件を再現できる τ χの値を決定することにした c パラメータ を決めるに際しては、 (2 8) 式の連立方程式を解いて決定して いる。 逆問題解析では、 ( 2 7) 式で示したように、 領域全体の温度分布を推定す ることになるので、 q l、 q 2の値は直接には求めることができない。 したがつ て、 推定点の位置べク トル (xp) における温度 (Tp) と、 推定点極近傍の位置 ベク トル ( χρより 3. Omm 内側 : X p,c) における温度 (Tp,c) を推定し、 下式 ( 3 1 ) で計算して、 推定点での熱流束 qであると仮定した。 Perform forward problem analysis with artificial boundary conditions q 1 and q 2 such as 24Α and 25Α. The temperature change of TC1, TC2, and TC2 over time was calculated (Fig. 24B, 25B). 0 Here, in the forward problem analysis, the implicit solution method of ordinary difference approximation (time step 28800 seconds) Was used. Then, the above-mentioned inverse problem analysis is executed with each thermocouple temperature shown in FIG. 24B or FIG. 25B as a known condition, and the optimum x and X are searched. The model shown in Fig. 22 was given the condition shown in Fig. 24A, and the model shown in Fig. 23 was given the condition shown in Fig. 25A. In the present embodiment, since the thermocouple interval can be considered to be invariant, it is determined that X = Om—confirmation is appropriate, and a suitable τ x is selected. When selecting τ x , it is also an important factor to set the reference position vector and the reference time. Figures 26 and 27 show the reference point (reference position vector and reference time), the known temperature point (the thermocouple position vector whose temperature is being measured and the known temperature time), and the estimated point (temperature estimation position position). The relationship between the distance and the estimated time is schematically shown. In the examples of Figs. 26 and 27, the reference point and the known temperature point are matched, and Fig. 26 shows that three temperature points are used in the time direction and Fig. 27 shows that five temperature points are used in the time direction. I have. In both cases of Figs. 26 and 27, the estimation point selects the point closest to the present in the time direction (shown as "present"), and sets the position vector to the q1 and q2 positions did. In Figs. 26 and 27, the estimated points are indicated by "X". For the model in Fig. 22, the heat fluxes q1 and q2 at the estimation point are obtained with the settings in Fig. 26. For the model in Fig. 23, the heat flux The heat fluxes q 1 and q 2 are obtained, and τ できる that can reproduce the boundary conditions relatively well compared to the heat fluxes 1 and q 2 in Figs. In determining the c- parameter, the value was determined by solving the simultaneous equations in Eq. (28). In the inverse problem analysis, as shown in Eq. (27), the temperature distribution of the entire region is estimated, so the values of ql and q2 cannot be directly obtained. Therefore, the temperature (T p ) at the position vector (x p ) of the estimated point and the temperature (T p at 3. O mm inside of X p , c ) near the estimated point pole (χ ρ ) p , c ) was estimated and calculated by the following equation (31), and it was assumed that the heat flux q was at the estimated point.
T P—T P,c T P—T P, c
(3 1 ) (3 1)
XP XP,c
まずは、図 2 2のモデルに対して、順問題解析で与えた熱流束 q 1及び q 2と、 逆問題解析で求めた熱流束 q 1及び q 2を比較した結果を図 2 8に示す。実線が、 順問題で与えた q 1 (太線)、 q 2 (細線) であり、 プロッ トが逆解析で求めた q 1 (令)、 q 2 (國) の推定値である。 逆解析の時間ステップは、 28800秒であり、 この時の τ χの値は、 1800000秒であった。 この て χの値は、 解析の単位系によつ ても変わるが、 今回の解析では、 MKS 単位系を用いている。 q l、 q 2共に、 比 較的良好に、順問題の境界条件を再現していることが分かる。 τ xの選定値には比 較的余裕幅があり、 τ x= 1800000秒 ±200000秒程度では、 熱流束推定値に大きな 精度悪化は見られなかった。 ただし、 τ χ= 1000000秒、 τ χ= 2400000秒等に設定 すると、 明らかに推定精度が低下することが確認されている。 X P X P, c First, Fig. 28 shows the results of comparing the heat fluxes q1 and q2 given by the forward problem analysis with the heat fluxes q1 and q2 found by the inverse problem analysis for the model in Fig. 22. The solid lines are q1 (thick line) and q2 (thin line) given by the forward problem, and the plots are the estimated values of q1 (command) and q2 (country) obtained by the inverse analysis. Time step of inverse analysis is 28800 seconds, the value of tau chi at this time was 1800000 seconds. The value of χ depends on the unit system of the analysis, but in this analysis, the MKS unit system is used. It can be seen that both ql and q2 reproduce the boundary condition of the forward problem relatively well. There is a comparative margin in the selected value of τ x , and when τ x = about 1800000 seconds ± 200000 seconds, the heat flux estimation value did not show any significant deterioration in accuracy. However, τ χ = 1000000 sec, set to τ χ = 2400000 sec, etc. Then, obviously estimation accuracy is confirmed to be reduced.
同様にして、 図 2 3のモデルに対して、 順問題解析で与えた q 1及び q 2 と、 逆問題解析で求めた q 1及び q 2を比較した結果を図 2 9に示す。 実線が、 順問 題で与えた q 1 (太線)、 q 2 (細線)であり、プロッ トが逆解析で求めた q 1 (♦)、 q 2 (園) の推定値である。 逆解析の時間ステップは、 28800 秒であり、 この時 の τ χの値は、 1000000秒であった。 q 1、 q 2共に、 比較的良好に、 順問題の境 界条件を再現していることが分かる。 て x= 1800000秒 ±200000秒にすると、 推定 精度が極端に悪化する。 即ち、 図 2 3のモデルに対しては、 図 2 2の場合とは異 なった τ χの値で、 推定精度が良好となることが分かった。 このように、 好適な τ χは、 基準点、 温度既知点、 推定点の相対的な位置関係やそれらの数によって、 異 なった値になる傾向にあることが分かる。 Similarly, Fig. 29 shows the results of comparing q1 and q2 given in the forward problem analysis with q1 and q2 found in the inverse problem analysis for the model in Fig. 23. The solid lines are q 1 (thick line) and q 2 (fine line) given by the forward problem, and the plots are the estimated values of q 1 (♦) and q 2 (garden) obtained by the inverse analysis. Time step of inverse analysis is 28800 seconds, the value of tau chi at this time was 1000000 seconds. It can be seen that both q 1 and q 2 reproduce the boundary condition of the forward problem relatively well. If x = 1.800000 seconds ± 200000 seconds, the estimation accuracy will be extremely deteriorated. That is, for the model of FIG. 23 , it was found that the value of τ た different from that of FIG. Thus, preferred tau chi, the reference point, the temperature known point, the relative positional relationship and their number estimated point, it can be seen that there is a tendency that a value became different.
以上のようにして求めた τ χの値を使って、高炉の実温度を用いて逆問題解析し た結果 ( 4月 1 日から約 4ヶ月間の熱流束 q 1及び q 2経時変化) が、 図 3 0 AUsing the value of τ 求 め obtained as described above, the result of inverse problem analysis using the actual temperature of the blast furnace (heat fluxes q 1 and q 2 from April 1 for about 4 months) , Fig. 30 A
〜3 0 D、 及び、 図 3 1 A〜 3 1 Dである。 図 3 0 A〜 3 0 Dは、 高炉炉底底盤 の図 2 2のモデルの場合 ( τ χ=1800000 秒) であり、 図 3 1 Α〜 3 1 Dは、 高炉330 D and FIGS. 31A to 31D. Figure 3 0 A~ 3 0 D is the case in FIG 2 models of blast furnace bottom base plate (τ χ = 1800000 sec), FIG 3 1 Α~ 3 1 D is a blast furnace
^底側壁の図 2 3のモデルの場合 ( τ χ=1000000 秒) である。 これらの図は、 も つと長期に渡った解析結果から抜粋したものである。 図 3 0 C、 3 1 Cの特性図 の熱電対 T C 1温度、 図 3 0 D、 3 1 Dの特性図の熱電対 T C 2温度データを用 いて、 図 3 0 A、 3 1 Aの特性図の高温側熱流束 q l と、 図 3 0 B、 3 1 Bの特 性図の低温側熱流束 q 2を同時推定している。図 3 0 A、 3 1 Aの特性図中の「定
常法」 は、 従来より用いられている貫流熱流束推定方法であり、 T G 1 と T C 2 の温度差の絶対値に、熱伝導度 k xを乗じて、 T C 1位置と T C 2位置の距離の絶 対値で割り戻した値である。 特に図 3 1 A〜 3 1 Dに顕著に観察されるが、 q l 推定より数日遅れて、 定常法の q lが、 同じ様な形状で推移をしていることが分 かる。 これは、 高炉カーボン煉瓦の熱容量 ( p C P ) の効果による遅れ時間の影 響である。 定常法では、 この遅れ時間が考慮できないので、 平均的な熱流束しか 評価することができなレ、が、本方法では、この効果も考慮した推定ができるので、 炉内の熱流束変化を早く検知することが可能である。 ^ This is the case of the model in Fig. 23 of the bottom wall ( τχ = 1000000 seconds). These figures are excerpted from the long-term analysis results. Using the thermocouple TC1 temperature data in the characteristic diagrams of Figs. 30C and 31C, and the thermocouple TC2 temperature data in the characteristic diagrams of Figs. 30D and 31D, the characteristics of Fig. 30A and 31A The heat flux ql on the high temperature side in the figure and the heat flux q2 on the low temperature side in the characteristic diagrams in Figs. 30B and 31B are simultaneously estimated. `` Constant '' in the characteristic diagrams of Fig. 30 A and 31 A The `` ordinary method '' is a method of estimating the once-through heat flux that has been conventionally used, and multiplies the absolute value of the temperature difference between TG 1 and TC 2 by the thermal conductivity k x to calculate the distance between the TC 1 position and the TC 2 position. It is the value re-divided by the absolute value of In particular, it is noticeable in Figs. 31A to 31D, but it can be seen that ql of the steady-state method changes in the same shape several days later than the ql estimation. This is the effect of the lag time due to the effect of the heat capacity (p CP ) of the blast furnace carbon brick. In the stationary method, this delay time cannot be taken into account, so that only the average heat flux can be evaluated.However, in this method, the estimation can be made in consideration of this effect, so that the change in the heat flux in the furnace can be made faster. It is possible to detect.
(第 4の実施形態の実施例 2 ) (Example 2 of the fourth embodiment)
第 4の実施形態の具体的な実施例 2 として、図 2 2のモデルを用いて、 「未来の 温度変化」 を推定する例についても説明する。 図 3 2に、 基準点、 温度既知点、 推定点の関係を模式的に示した。 本実施例の場合では、 推定点の位置を T C 1の 位置、 及び、 T C 2の位置として、 時間方向には、 未来の温度変化を推定するこ とを意味する。温度既知点(過去)、及び、推定点(未来) の単位時間ステップは、 As a specific example 2 of the fourth embodiment, an example of estimating “future temperature change” using the model of FIG. 22 will be described. Figure 32 schematically shows the relationship between the reference point, the known temperature point, and the estimated point. In the case of the present embodiment, it means that the future temperature change is estimated in the time direction with the position of the estimation point being the position of TC1 and the position of TC2. The unit time step of the temperature known point (past) and the estimated point (future) is
28800 秒として、 図 3 2のように、 異なった位置ではあるが、 等間隔に並んでい る。 また、 基準点は、 半時間ステップ 14400秒ずらして設定し、 基準点の時間ス テツプは、 2倍の 57600秒としている。 また、 本実施例では、 式 (3 0 ) の内揷 関数又は外揷関数を用いて、 て 6000000秒、 X=0mとして、解析を実施している。 その他の設定は、 実施例 1 と同様である。 At 28800 seconds, they are at different positions but arranged at equal intervals as shown in Figure 32. In addition, the reference point is set by shifting the half-hour step by 14400 seconds, and the time step of the reference point is doubled to 57600 seconds. Further, in the present embodiment, the analysis is performed by using the internal function or the external function of the equation (30), assuming 6000000 seconds and X = 0m. Other settings are the same as in the first embodiment.
図 3 3には、 解析結果の一例を示す。 本手法の特徴を示す為に、 人工的な境界 条件である q l及び q 2 (太実線右軸) を与えたときの、 丁〇 1位置及び丁〇 2 位置での温度変化 (細実線左軸) を用いて、 その推定精度を検証した。 この順問 題解析は、 通常の差分近似の陰解法 (時間ステップ 28800秒) を用いた。 図 3 3 のプロッ ト (♦、 園) は、 本手法による推定結果を示すが、 そのプロッ トの直前 にある 6つの既知温度点 (T C 1が 3つ、 T C 2が 3つ) を用いて、 6つの推定 点 (未来点) を推定した結果である (図 3 2参照)。 全体的には、 非常によい推定 性能を有していることが分かる。 ただし、 一部の点において、 全く違った方向の 推定値を示している場合が散見できる。その代表例を楕円で囲って示しているが、 本手法での推定値が 「低下」 しているのに対して、 実際には温度上昇となってい
る。 これは、 既知温度点での温度が、 ステップ状の大きな境界条件の変化を跨い だ点に位置しており、 既知温度点が、 熱流束が低い時 (lOOOW/m2) の影響を多大 に受けているためであると考えられる。 このように、 極端に大きく境界条件が変 化する場合は推定精度は低下するが、 境界条件に大きな変化がない場合には極め て良好な推定精度を有することが分かる。 全く同じような検討結果と して、 図 3 4に、 台形状の熱流束によって、 T C 1 、 T C 2を生成させて、 未来点を推定し た場合の結果を示す。 この場合には、 図 3 3に比べると、 滑らかな境界条件の変 化であるため、 未来温度の推定精度は、 極めて良好となることが分かる。 Figure 33 shows an example of the analysis results. In order to show the features of this method, the temperature changes at the positions of the 〇1 and 〇2 when the artificial boundary conditions ql and q2 (thick solid line right axis) were given (fine solid line left axis) ), The accuracy of the estimation was verified. In this forward problem analysis, the usual implicit difference approximation method (time step 28,800 seconds) was used. The plot (♦, garden) in Fig. 33 shows the estimation results by this method, using the six known temperature points (three TC1 and three TC2) immediately before the plot. This is the result of estimating six estimated points (future points) (see Figure 32). Overall, it has very good estimation performance. However, it can be seen that some points show estimates in completely different directions. A representative example is shown with an ellipse, but the estimated value in this method is “decreased”, but the temperature is actually increased. You. This is because the temperature at the known temperature point is located at the point where the stepped large boundary condition changes, and the known temperature point has a large effect when the heat flux is low (lOOOW / m 2 ). It is thought that it is received. Thus, it can be seen that the estimation accuracy decreases when the boundary condition changes extremely significantly, but has extremely good estimation accuracy when there is no significant change in the boundary condition. Figure 34 shows the result of estimating the future point by generating TC1 and TC2 using trapezoidal heat flux as the same result. In this case, it can be seen that the estimation accuracy of the future temperature is extremely good because the change of the boundary condition is smoother than in FIG.
(その他の実施形態) (Other embodiments)
上述した実施形態の反応容器の操業管理装置は、 コンピュータの C P U或いは M P U、 R A M , R O M等により構成され、 R A Mや R O Mに記憶されたコンビ ユータプログラムが動作することによって実現される。 したがって、 コンビユー タに対し、 上記実施形態の機能を実現するためのコンピュータプログラム自体が 上述した実施形態の機能を実現することになり、 本発明を構成する。 The operation management device for a reaction vessel according to the above-described embodiment is configured by a computer CPU or MPU, RAM, ROM, or the like, and is realized by the operation of a computer program stored in RAM or ROM. Therefore, the computer program itself for realizing the functions of the above-described embodiment on a computer implements the functions of the above-described embodiment, and constitute the present invention.
また、 上記コンピュータプログラムをコンピュータに供給するための手段、 例 えばかかるコンピュータプログラムを格納した記録媒体は本発明を構成する。 記 録媒体と しては、 例えばフレキシブルデイスク、 ハードディスク、 光ディスク、 光磁気ディスク、 C D— R O M、 磁気テープ、 不揮発性のメモリカード、 R O M 等を用いることができる。 Further, means for supplying the computer program to a computer, for example, a recording medium storing the computer program constitutes the present invention. As a recording medium, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
なお、 上記実施形態において示した各部の形状及び構造は、 何れも本発明を実 施するにあたっての具体化のほんの一例を示したものに過ぎず、 これらによって 本発明の技術的範囲が限定的に解釈されてはならないものである。 即ち、 本発明 はその精神、 又はその主要な特徴から逸脱することなく、 様々な形で実施するこ とができる。 例えば、 本発明をネッ トワーク環境で利用すべく、 全部或いは一部 のコンピュータプログラムが他のコンピュータで実行されるようになつていても かまわなレ、。 産業上の利用可能性
本発明によれば、 反応容器の壁内部の少なく とも厚み方向に複数配置された温 度測定点で測定された温度に基づいて、 非定常熱伝導方程式を用いた逆問題解析 を行うことにより、 反応容器の内表面及び外表面における温度変化や熱流束変化 を同時推定することができる。 したがって、 例えば、 ある温度測定点における温 度変動が、 反応容器の内表面における熱流束変化によるものなのか、 反応容器外 に設置された冷却装置の接触不良等によって引き起こされるような反応容器の外 表面における熱流束変化によるものかを区別するようなことが可能となる。 また、 逆問題解析を行うことに際して、 例えば、 できるだけ近い過去の温度或 いは熱流束の変化を推定するために逆問題解析での時間ステップを短くするよう な場合でも、 温度データの小数点以下の桁数を増やしたり、 フィルタ処理を施し たりすることにより、 小さな温度変化を捉えることが可能となり、 逆問題解析を 安定化させることができる。 It should be noted that the shapes and structures of the respective parts shown in the above embodiments are merely examples of the specific embodiments for carrying out the present invention, and these limit the technical scope of the present invention. It must not be interpreted. That is, the present invention can be implemented in various forms without departing from its spirit or its main features. For example, in order to use the present invention in a network environment, all or some of the computer programs may be executed on another computer. Industrial applicability According to the present invention, an inverse problem analysis using an unsteady heat conduction equation is performed based on temperatures measured at least at a plurality of temperature measurement points arranged in the thickness direction inside the wall of the reaction vessel. Temperature changes and heat flux changes on the inner and outer surfaces of the reaction vessel can be estimated simultaneously. Therefore, for example, whether the temperature fluctuation at a certain temperature measurement point is due to a change in the heat flux on the inner surface of the reaction vessel, or outside the reaction vessel caused by poor contact of the cooling device installed outside the reaction vessel, etc. It is possible to distinguish whether the change is due to a change in heat flux on the surface. Also, when performing inverse problem analysis, for example, if the time step in inverse problem analysis is shortened in order to estimate a change in temperature or heat flux in the past as close as possible, the decimal point of the temperature data Increasing the number of digits or applying filter processing makes it possible to capture small temperature changes, and stabilize inverse problem analysis.
また、 例えば、 逆問題解析により求めた反応容器の内表面における熱流束と、 定常法により求めた反応容器の内表面における熱流束とを比較することにより、 反応容器内の状態の非定常性の強さを評価することができる。
Also, for example, by comparing the heat flux on the inner surface of the reaction vessel obtained by the inverse problem analysis with the heat flux on the inner surface of the reaction vessel obtained by the steady-state method, the unsteadiness of the state in the reaction vessel is obtained. Strength can be evaluated.
Claims
1 . 温度変化反応を伴う反応容器の操業を管理するための反応容器の操業管理 方法であって、 1. An operation management method for a reaction vessel for managing the operation of a reaction vessel accompanied by a temperature change reaction,
上記反応容器の壁内部の少なく とも厚み方向に複数配置された温度測定点で測 定された温度に基づいて、 非定常熱伝導方程式を用いた逆問題解析を行うことに より、 上記反応容器の内表面及び外表面における温度或いは熱流束を求める手順 を有することを特徴とする反応容器の操業管理方法。 By performing an inverse problem analysis using an unsteady heat conduction equation based on the temperatures measured at least at a plurality of temperature measurement points arranged in the thickness direction inside the reaction vessel wall, A method for managing the operation of a reaction vessel, comprising a step of obtaining a temperature or a heat flux on an inner surface and an outer surface.
2 . 上記各温度測定点で測定された温度と、 上記反応容器の内表面及び外表面 における温度或いは熱流束の仮定値から非定常熱伝導方程式により算出された上 記各温度測定点位置での温度との差の二乗の和が最小となる上記仮定値を上記反 応容器の内表面及び外表面における温度或いは熱流束として求めることを特徴と する請求項 1に記載の反応容器の操業管理方法。 2. The temperature measured at each of the above temperature measurement points and the temperature or heat flux on the inner and outer surfaces of the above-mentioned reaction vessel at the above-mentioned temperature measurement point positions calculated by the transient heat conduction equation from the assumed values of the heat flux. 2. The operation management method for a reaction vessel according to claim 1, wherein the assumed value that minimizes the sum of the square of the difference from the temperature is obtained as a temperature or a heat flux on the inner surface and the outer surface of the reaction vessel. .
3 . 上記反応容器の内表面及び外表面のいずれか一方における温度或いは熱流 束の仮定値を熱伝達率と上記反応容器の壁内部及び内外表面以外での参照温度と を用いて一方の仮定値として与え、 上記差の二乗の和が最小となる上記反応容器 の内表面及び外表面のいずれか他方における温度或いは熱流束を他方の仮定値と して算出することを特徴とする請求項 2に記載の反応容器の操業管理方法。 3. The assumed value of the temperature or heat flux on either the inner surface or the outer surface of the above-mentioned reaction vessel is calculated using the heat transfer coefficient and the reference temperature on the inside of the wall of the reaction vessel and on the outside of the inner and outer surfaces. Wherein the temperature or heat flux at one of the inner surface and the outer surface of the reaction vessel, at which the sum of the squares of the differences is minimized, is calculated as the other assumed value. The operation management method of the reaction vessel described in the above.
4 . 上記熱伝達率及び上記参照温度の少なく ともいずれかを変化させた上記一 方の仮定値と、 上記各一方の仮定値に対応して得られた上記他方の仮定値との複 数の組み合わせのうち、 上記差の二乗の和の最小の値が最も小さくなる組み合わ せを上記反応容器の内表面及び外表面における温度或いは熱流束とすることを特 徴とする請求項 3に記載の反応容器の操業管理方法。 4. A plurality of values of the one assumed value obtained by changing at least one of the heat transfer coefficient and the reference temperature, and the other assumed value obtained corresponding to each one assumed value. 4. The reaction according to claim 3, wherein the combination in which the minimum value of the sum of the squares of the differences is smallest among the combinations is the temperature or heat flux on the inner surface and the outer surface of the reaction vessel. Container operation management method.
5 . 上記一方の仮定値として上記反応容器の外表面における温度或いは熱流束 の仮定値を上記熱伝達率と上記参照温度とを用いて与え、 上記参照温度を上記反
応容器の冷却条件から定めることを特徴とする請求項 3に記載の反応容器の操業 管理方法。 ' 5. As one of the assumed values, an assumed value of the temperature or heat flux at the outer surface of the reaction vessel is given using the heat transfer coefficient and the reference temperature, and the reference temperature is calculated as 4. The operation management method for a reaction vessel according to claim 3, wherein the method is determined from cooling conditions of the reaction vessel. '
6 . 上記温度測定点は、 上記反応容器の壁内部に 2次元的或いは 3次元的に複 数配置されていることを特徴とする請求項 1に記載の反応容器の操業管理方法。 6. The operation management method for a reaction vessel according to claim 1, wherein a plurality of the temperature measurement points are arranged two-dimensionally or three-dimensionally inside a wall of the reaction vessel.
7 . 1次元非定常熱伝導方程式を組み合わせて 2次元或いは 3次元近似するこ とを特徴とする請求項 6に記載の反応容器の操業管理方法。 7. The operation management method for a reaction vessel according to claim 6, wherein the two-dimensional or three-dimensional approximation is performed by combining a one-dimensional transient heat conduction equation.
8 - 2次元非定常熱伝導方程式或いは 3次元非定常熱伝導方程式を用いること を特徴とする請求項 6に記載の反応容器の操業管理方法。 8. The operation management method for a reaction vessel according to claim 6, wherein a two-dimensional unsteady heat conduction equation or a three-dimensional unsteady heat conduction equation is used.
9 . 上記温度測定点で測定される温度データの小数点以下の桁数を増やす手順 を有し、 9. Include a procedure to increase the number of decimal places of the temperature data measured at the temperature measurement points,
上記小数点以下の桁数を増やした温度データを上記逆問題解析に用いることを 特徴とする請求項 1に記載の反応容器の操業管理方法。 2. The operation management method for a reaction vessel according to claim 1, wherein the temperature data in which the number of digits after the decimal point is increased is used for the inverse problem analysis.
1 0 . 上記温度データの小数点以下の桁数を増やす手順では、 上記逆問題解析 での計算時間ステップより短いサンプリング時間で温度データを採取し、 それら を時間平均して、 上記逆問題解析での計算時間ステップで用いる温度データの代 表値とすることを特徴とする請求項 9に記載の反応容器の操業管理方法。 10. In the procedure to increase the number of decimal places of the above temperature data, temperature data is collected with a sampling time shorter than the calculation time step in the above inverse problem analysis, and they are averaged over time. 10. The operation management method for a reaction vessel according to claim 9, wherein a representative value of the temperature data used in the calculation time step is used.
1 1 . 上記温度測定点で測定される温度データにフィルタ処理を施す手順を有 し、 1 1. There is a procedure to filter the temperature data measured at the above temperature measurement points.
上記フィルタ処理後の温度データを上記逆問題解析に用いることを特徴とする 請求項 1に記載の反応容器の操業管理方法。 2. The operation management method for a reaction vessel according to claim 1, wherein the temperature data after the filtering is used for the inverse problem analysis.
1 2 . 上記温度測定点で測定される温度データの小数点以下の桁数を増やす手 順と、
上記小数点以下の桁数を増やした温度データにフィルタ処理を施す手順とを有 し、 1 2. The procedure to increase the number of decimal places of the temperature data measured at the above temperature measurement points, Filtering the temperature data with an increased number of digits after the decimal point.
上記フィルタ処理後の温度データを上記逆問題解析に用いることを特徴とする 請求項 1に記載の反応容器の操業管理方法。 2. The operation management method for a reaction vessel according to claim 1, wherein the temperature data after the filtering is used for the inverse problem analysis.
1 3 . 上記フィルタ処理は口一パスフィルタ処理であることを特徴とする請求 項 1 1又は 1 2に記載の反応容器の操業管理方法。 13. The operation management method for a reaction vessel according to claim 11 or 12, wherein the filter processing is a one-pass filter processing.
1 4 . 上記温度測定点で測定される温度データに基づいて、 定常法による解析 を行うことにより、 上記反応容器の内表面における温度或いは熱流束を求める定 常法による解析手順と、 14. A steady-state analysis procedure for obtaining the temperature or heat flux on the inner surface of the reaction vessel by performing a steady-state analysis based on the temperature data measured at the temperature measurement points,
上記逆問題解析により求められた上記反応容器の内表面における温度或いは熱 流束と、 上記定常法による解析手順により求められた温度或いは熱流束とを比較 する比較手順とを有することを特徴とする請求項 1に記載の反応容器の操業管理 方法。 And a comparison procedure for comparing the temperature or heat flux at the inner surface of the reaction vessel obtained by the inverse problem analysis with the temperature or heat flux obtained by the analysis procedure by the steady-state method. An operation management method for a reaction vessel according to claim 1.
1 5 . 上記比較手順では、 上記逆問題解析により求められた温度或いは熱流束 と、 上記定常法による解析手順により求められた温度或いは熱流束との差を求め ることを特徴とする請求項 1 4に記載の反応容器の操業管理方法。 15. The comparison procedure is to calculate a difference between the temperature or heat flux obtained by the inverse problem analysis and the temperature or heat flux obtained by the analysis procedure by the stationary method. 4. The operation management method for a reaction vessel according to 4.
1 6 . 上記逆問題解析は、 非定常熱伝導方程式を満たす内挿関数又は外揷関数 を用いた逆問題解析であることを特徴とする請求項 1に記載の反応容器の操業管 理方法。 16. The method according to claim 1, wherein the inverse problem analysis is an inverse problem analysis using an interpolation function or an outer function that satisfies an unsteady heat conduction equation.
1 7 . 上記非定常熱伝導方程式は、 密度 p、 比熱 C P X方向の熱伝導度 k x y方向の熱伝導度 k y z方向の熱伝導度 k zとして、 As an 7. The unsteady heat conduction equation, the density p, the specific heat C P X direction of the heat conductivity k x y direction of the heat conductivity k y z direction of the heat conductivity k z,
3T Ί d2T Ί d2T , d2T 3T Ί d 2 T Ί d 2 T, d 2 T
P ' D 二 kx ~ - + kv ~~ - + k. ~ - p dt x dx2 y dy2 ― dz2
であることを特徴とする請求項 1 6に記載の反応容器の操業管理方法 c P ' D2 k x ~-+ k v ~~-+ k. ~-P dt x dx 2 y dy 2 ― dz 2 The operation management method for a reaction vessel according to claim 16, wherein
1 8 . 上記內揷関数又は外揷関数は、位置ベク トル ( X, y, z )、時間 t とし. X、 Υ、 Ζ、 τ χ、 τ y、 Ax、 Ay、 Azを任意の定数として、 1 8. The above 內 揷 function or outer function is the position vector (X, y, z) and time t. X, Υ, Ζ, τ χ , τ y , A x , A y , A z are arbitrary. As a constant
の関係を有することを特徴とする請求項 1 7に記載の反応容器の操業管理方法。 The operation management method for a reaction vessel according to claim 17, wherein the method has the following relationship.
1 9 . パラメータひ ^、 基準位置ベク トル ( X j, y j, 2 、 基準時間 、 基 準位置べク トルの数 Ν」·、 基準時間の数 Ni、 上記非定常熱伝導方程式の解を、 N, 1 9. Parameter H, reference position vector (X j , y j , 2 , reference time, number of reference position vectors Ν ”·, reference time number Ni, solve the above transient heat conduction equation , N,
T x, y, z,t) = aj,i^-i ( — ゾ , — ゾ, z— ー^ T x, y, z, t) = a j, i ^ -i (— zo, — zo, z — ー ^
ゾ =1 !=1 により表現することを特徴とする請求項 1 8に記載の反応容器の操業管理方法。 19. The operation management method for a reaction vessel according to claim 18, wherein the expression is expressed by zo = 1! = 1.
2 0. kを温度測定位置、 1 を温度サンプリング時間とし、 温度測定点で測定 された温度情報 a klとして、 上記パラメータ α wを、 2 0. k the temperature measurement positions, 1 and temperature sampling time, as the temperature information a kl measured by the temperature measuring point, the parameter alpha w,
ak a k
2 1 . 適当な境界条件を与えた順問題解析を実施し、 その解析で得られた数点 の温度変化を使って、 非定常熱伝導方程式を満たす内挿関数又は外揷関数を用い た逆問題解析を行い、 順問題解析で付与した境界条件又は温度分布を最も再現で きるように、 X、 Y、 Ζ、 て y、 τ z、 A x、 A y、 A zの値を決定することを特 徴とする請求項 1 8に記載の反応容器の操業管理方法。 2 1. Perform a forward problem analysis with appropriate boundary conditions, and use the temperature changes at several points obtained by the analysis to apply an inverse function using an interpolation function or an external を 満 た す function that satisfies the transient heat conduction equation. Perform problem analysis and determine the values of X, Y, Ζ, y , τ z , A x , A y , A z so that the boundary conditions or temperature distribution given in the forward problem analysis can be reproduced most. 19. The operation management method for a reaction vessel according to claim 18, which is characterized in that:
2 2 . 温度変化反応を伴う反応容器の操業を管理するための反応容器の操業管 理装置であって、 22. A reaction vessel operation control device for controlling the operation of a reaction vessel accompanied by a temperature change reaction,
上記反応容器の壁内部の少なく とも厚み方向に複数配置された温度測定点で測 定された温度に基づいて、 非定常熱伝導方程式を用いた逆問題解析を行うことに より、 上記反応容器の内表面及ぴ外表面における温度或いは熱流束を求める手段 を備えたことを特徴とする反応容器の操業管理装置。 By performing an inverse problem analysis using an unsteady heat conduction equation based on the temperatures measured at least at a plurality of temperature measurement points arranged in the thickness direction inside the reaction vessel wall, An operation management device for a reaction vessel, comprising: means for determining a temperature or a heat flux on an inner surface and an outer surface.
2 3 . 温度変化反応を伴う反応容器の操業を管理するためのコンビュ一タブ口 グラムであって、 23. A combi-tab mouth gram for controlling the operation of a reaction vessel with a temperature change reaction,
上記反応容器の壁内部の少なく とも厚み方向に複数配置された瘟度測定点で測 定された温度に基づいて、 非定常熱伝導方程式を用いた逆問題解析を行うことに より、 上記反応容器の内表面及び外表面における温度或いは熱流束を求める処理 を実行させることを特徴とするコンピュータプログラム。 By performing an inverse problem analysis using an unsteady heat conduction equation on the basis of the temperatures measured at at least a plurality of measurement points of the degree of the Phoenix inside the wall of the above-described reaction vessel, A computer program for executing a process for determining a temperature or a heat flux on an inner surface and an outer surface of a computer.
2 4 . 請求項 2 3に記載のコンピュータプログラムを格納したことを特徴とす るコンピュータ読み取り可能な記録媒体。
24. A computer-readable recording medium storing the computer program according to claim 23.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-348429 | 2002-11-29 | ||
JP2002348429A JP2004003800A (en) | 2002-04-11 | 2002-11-29 | Operation management method and device for reaction vessel, computer program, and computer readable storage medium |
JP2003044672A JP4299554B2 (en) | 2003-02-21 | 2003-02-21 | Inverse problem analysis method, apparatus, computer program, and computer-readable storage medium |
JP2003-044672 | 2003-02-21 | ||
JP2003085817A JP4559708B2 (en) | 2003-03-26 | 2003-03-26 | Evaluation method for evaluating state in reaction vessel, operation management method, evaluation apparatus, computer program, and computer-readable storage medium |
JP2003-085817 | 2003-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004050920A1 true WO2004050920A1 (en) | 2004-06-17 |
Family
ID=32475218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/012997 WO2004050920A1 (en) | 2002-11-29 | 2003-10-09 | Reaction vessel operation control method, device, computer program, and computer-readable record medium |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200415343A (en) |
WO (1) | WO2004050920A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104540968A (en) * | 2012-07-25 | 2015-04-22 | 技术资源有限公司 | Starting a smelting process |
CN111723498A (en) * | 2020-05-07 | 2020-09-29 | 西安电子科技大学 | Oil pipeline inner layer temperature extrapolation monitoring method based on microprocessor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06264153A (en) * | 1993-03-09 | 1994-09-20 | Sumitomo Metal Ind Ltd | Method for predicting slab temperature in continuous type heating furnace |
JPH06265415A (en) * | 1993-03-12 | 1994-09-22 | Kobe Steel Ltd | Measuring method for unsteady heat conducting heat flux |
JP2000317594A (en) * | 1999-05-10 | 2000-11-21 | Nippon Steel Corp | Solidified shell thickness within molten metal casting mold and method for predicting powder inflow thickness |
JP2001234217A (en) * | 2000-02-28 | 2001-08-28 | Nippon Steel Corp | Estimation and prediction method for blast furnace bottom condition |
JP2002206958A (en) * | 2001-01-10 | 2002-07-26 | Nippon Steel Corp | Apparatus and method for detecting level of hot water and computer readable storage medium |
-
2003
- 2003-10-09 WO PCT/JP2003/012997 patent/WO2004050920A1/en active Application Filing
- 2003-10-13 TW TW092128247A patent/TW200415343A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06264153A (en) * | 1993-03-09 | 1994-09-20 | Sumitomo Metal Ind Ltd | Method for predicting slab temperature in continuous type heating furnace |
JPH06265415A (en) * | 1993-03-12 | 1994-09-22 | Kobe Steel Ltd | Measuring method for unsteady heat conducting heat flux |
JP2000317594A (en) * | 1999-05-10 | 2000-11-21 | Nippon Steel Corp | Solidified shell thickness within molten metal casting mold and method for predicting powder inflow thickness |
JP2001234217A (en) * | 2000-02-28 | 2001-08-28 | Nippon Steel Corp | Estimation and prediction method for blast furnace bottom condition |
JP2002206958A (en) * | 2001-01-10 | 2002-07-26 | Nippon Steel Corp | Apparatus and method for detecting level of hot water and computer readable storage medium |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104540968A (en) * | 2012-07-25 | 2015-04-22 | 技术资源有限公司 | Starting a smelting process |
US20150259758A1 (en) * | 2012-07-25 | 2015-09-17 | Technological Resources Pty. Limited | Starting a smelting process |
US9771626B2 (en) * | 2012-07-25 | 2017-09-26 | Technological Resources Pty. Limited | Starting a smelting process |
CN104540968B (en) * | 2012-07-25 | 2018-09-14 | 塔塔钢铁公司 | Start a kind of smelting technology |
CN111723498A (en) * | 2020-05-07 | 2020-09-29 | 西安电子科技大学 | Oil pipeline inner layer temperature extrapolation monitoring method based on microprocessor |
CN111723498B (en) * | 2020-05-07 | 2024-04-09 | 西安电子科技大学 | Oil pipeline inner layer temperature extrapolation monitoring method based on microprocessor |
Also Published As
Publication number | Publication date |
---|---|
TW200415343A (en) | 2004-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2113552B1 (en) | Coke-oven wall-surface evaluating apparatus, coke-oven wall-surface repair supporting apparatus, coke-oven wall-surface evaluating method, coke-oven wall-surface repair supporting method, and computer program | |
JP4998039B2 (en) | Observation data assimilation method | |
WO2004050920A1 (en) | Reaction vessel operation control method, device, computer program, and computer-readable record medium | |
EP3712281B1 (en) | Blast control device for blast furnace and method therefor | |
JP4299554B2 (en) | Inverse problem analysis method, apparatus, computer program, and computer-readable storage medium | |
JP5304734B2 (en) | Heat treatment simulation method | |
JP2005134383A (en) | Evaluation method and apparatus for heating and cooling characteristics, operational management method and apparatus for reactor vessel, computer program, and computer-readable recording medium | |
JP4843790B2 (en) | Temperature measurement method using ultrasonic waves | |
JP4833621B2 (en) | Method, apparatus, computer program, and computer-readable recording medium for estimating temperature or heat flux of reaction vessel | |
CN100495004C (en) | Method for judging metal phase change characteristic number in air cooling state | |
JP4559708B2 (en) | Evaluation method for evaluating state in reaction vessel, operation management method, evaluation apparatus, computer program, and computer-readable storage medium | |
JP4743781B2 (en) | Method, apparatus, and computer program for estimating temperature and heat flux of inner wall surface of container | |
JP2004025202A (en) | Method and instrument for detecting molten metal surface level, computer program and computer readable storage medium | |
JP4681127B2 (en) | Hot water surface height detection apparatus, method, and computer-readable storage medium | |
JP2002514749A (en) | Metallurgical furnace temperature measurement method | |
JP2005082862A (en) | Method and device for estimating inner surface position in reaction vessel, and computer program | |
JP5064433B2 (en) | Method, apparatus and program for estimating heat flux on inner surface of container | |
JP2016221537A (en) | Method for controlling temperature of molten metal holding vessel, method for controlling refractory layer thickness of molten metal holding vessel, method for controlling molten metal temperature inside molten metal holding vessel, device for controlling temperature of molten metal holding vessel, and program for controlling temperature of molten metal holding vessel | |
JP4964720B2 (en) | Method, apparatus, and computer program for estimating future temperature of measured object | |
JP2004003800A (en) | Operation management method and device for reaction vessel, computer program, and computer readable storage medium | |
JP4850803B2 (en) | Method for estimating temperature inside material, method for estimating heat flux, apparatus, and computer program | |
JP2002363619A (en) | Method for controlling lower part in blast furnace | |
JP5042878B2 (en) | Container wall state management method, apparatus, and computer program | |
JP2005043129A (en) | Heat flow analyzing method and heat flow analyzing system | |
JP2003301207A (en) | Device for assuming flowing state, method, computer program, and machine-readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CN KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |