WO2004048356A1 - Inorganic ionic molecular crystal - Google Patents

Inorganic ionic molecular crystal Download PDF

Info

Publication number
WO2004048356A1
WO2004048356A1 PCT/JP2003/014624 JP0314624W WO2004048356A1 WO 2004048356 A1 WO2004048356 A1 WO 2004048356A1 JP 0314624 W JP0314624 W JP 0314624W WO 2004048356 A1 WO2004048356 A1 WO 2004048356A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
ascorbic acid
inorganic ionic
ascorbate
ionic molecular
Prior art date
Application number
PCT/JP2003/014624
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Sato
Motoji Ikeya
Original Assignee
Osaka Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization filed Critical Osaka Industrial Promotion Organization
Priority to AU2003284557A priority Critical patent/AU2003284557A1/en
Publication of WO2004048356A1 publication Critical patent/WO2004048356A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • C01F11/183Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • A61K33/10Carbonates; Bicarbonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Definitions

  • the present invention can be used, for example, as an ultraviolet absorber, a vitamin c supplement, a detection element material of an electron spin resonance (ESR) radiation dosimeter, and the like.
  • ESR electron spin resonance
  • Ascorbic acid also known as vitamin C, is a vital nutrient in the body.
  • proline cannot be converted to hydroxyproline in the collagens that make up the skin, resulting in scurvy.
  • ascorbic acid has an antioxidant function and eliminates free radicals generated in a living body. For this reason, ascorbic acid is generally marketed as a nutritional supplement. Focusing on the antioxidant function, ascorbic acid is widely used as an antioxidant for foods and pharmaceuticals. As such, ascorbic acid has been studied in various ways for its function, and is used in various fields. However, all studies on ascorbic acid so far have been in aqueous solutions, and few studies have been performed on solids.For example, studies on inorganic ionic molecular crystals have not been studied. .
  • UV absorbers include paraaminobenzoic acid derivatives such as octyl paradimethylaminobenzoate, benzophenone derivatives such as oxybenzone, methoxycinnamic acid derivatives, and salicylic acid derivatives.
  • paraaminobenzoic acid derivatives such as octyl paradimethylaminobenzoate
  • benzophenone derivatives such as oxybenzone, methoxycinnamic acid derivatives
  • salicylic acid derivatives such as octyl paradimethylaminobenzoate
  • these conventional UV absorbers when used on human skin, they may bind to the entire epidermis and cause contact dermatitis or photo-contact dermatitis. ing.
  • an ultraviolet scattering agent has been used instead of the above-mentioned ultraviolet absorber.
  • the ultraviolet scattering agent include titanium oxide and zinc oxide.
  • vitamin C supplements include those using ascorbic acid or its salts as they are, and those obtained by tableting with excipients.
  • vitamin C is easily dissolved in water and decomposed by reacting with oxygen.
  • vitamin C since vitamin C has an acid taste, if it is added to foods and soft drinks as it is, there is a problem that the taste is altered.
  • conventional radiation measuring instruments include a film badge that uses blackening of photographic film, a scintillation measuring instrument that uses the recombination emission of electrons and holes generated by radiation, and a semiconductor PN junction that emits ionization current pulses.
  • semiconductor detectors for measurement thermoluminescence dosimeters, and photostimulated luminescence dosimeters.
  • the dose is obtained by observing the microwave absorption of the exposed body using the principle of electron spin resonance (ESR). The development of SR dosimeter is in progress.
  • Electron spin resonance means that when an unpaired electron with a spin quantum number S is placed in a static magnetic field, the energy level is Zemman-split into 2 S + 1, but the microphones that are equal between these adjacent levels A phenomenon in which absorption occurs resonatingly when a mouth wave is applied.
  • the ESR radiation dosimeter described in Japanese Patent Publication No. 6-59-5959 uses electron spin resonance to determine the number of unpaired electrons generated when a chemical bond is broken when an inorganic crystal material is irradiated with radiation. Measurement to obtain the exposure dose.
  • the ESR dosimeter is a non-destructive measuring instrument, it has the legal proof that the absorbed dose does not disappear even if the absorbed dose is read, which is an advantage over thermoluminescence dosimeters and photostimulated luminescence dosimeters. Having. Organic substances such as amino acids and sugar may be used as the detection element material of the ESR radiation dosimeter.
  • the ESR radiation dosimeter using alanine as the detection element material is a standard dosimeter in the middle and high line area. As popular. This detection element is produced, for example, by compressing alanine powder into a pellet and embedding it in paraffin to solidify.
  • the detector is exposed to radiation and light, and the amount of the radical is measured with an ESR dosimeter.
  • This measuring method is performed as follows. That is, first, the exposed detector material is placed in a quartz sample tube with an inner diameter of about 4 mm and placed in a microwave cavity resonator. The microwave output is kept constant and the magnetic field is modulated. The signal modulated by the magnetic field modulation is amplified by an amplifier, and the signal is extracted as a first derivative form dPZdH of the microwave absorption signal P (H), which is converted into a radiation dose.
  • conventional ESR radiation dosimeters have the problem of having extremely low sensitivity.
  • the conventional ESR radiation dosimeter can be used for radiation sterilization of blood for transfusion that requires 0.1 Gy to 20 Gy. Did not. There are two reasons for the lower sensitivity. The first reason is that the ESR radiation dosimeter using alanine as the detector element has a wide ESR absorption curve (up to 0.6 mT), so its signal intensity is low and its radial density is low. This is because the measurement range becomes lower. This is because the radical concentration is proportional to the area of the ESR absorption curve. The second reason is that signals generated when pulverizing the aranine crystal into powder are overlapped.
  • the present invention has been made in view of such circumstances, and can be used as an ultraviolet absorber, a benzoin C supplement, a detection element material of an ESR radiation dosimeter, and the like, and solves these conventional problems.
  • the aim is to provide possible new inorganic ionic molecular crystals.
  • the inorganic ionic molecular crystal of the present invention is an inorganic ionic molecular crystal containing an inorganic acid and a metal, in which ascorbic acid, ascorbate, an ascorbic acid derivative and Contains at least one ascorbate ion (hereinafter also referred to as "ascorbic acid, etc.”).
  • this inorganic ionic molecular crystal contains ascorbic acid and the like inside, it can be used as, for example, an ultraviolet absorber, a vitamin C supplement, and a detection element material of an ESR radiation dosimeter.
  • an ultraviolet absorber a vitamin C supplement
  • a detection element material of an ESR radiation dosimeter a detection element material of an ESR radiation dosimeter.
  • an ultraviolet absorber containing the same does not cause inconvenience due to binding to the skin and a photocatalytic reaction, and exhibits a favorable ultraviolet absorbing effect.
  • the inorganic ionic molecular crystal of the present invention contains ascorbic acid and the like inside thereof, ascorbic acid and the like do not dissolve in non-acidic water and are shielded from the outside, and thus are oxidatively decomposed by oxygen. And it does not affect the taste of food or soft drinks. If the inorganic ionic molecular crystal of the present invention is used as a detection element material for an ESR radiation dosimeter, the line width of the ESR absorption curve can be reduced to, for example, about 60 times smaller than the conventional one, and the microwave output intensity can be reduced. For example, the modulating magnetic field is reduced to about 1/100 of the conventional;
  • FIG. 1 shows an example of applying the inorganic ionic molecular crystal of the present invention to an ultraviolet absorber. It is a figure showing the measurement result of light absorbency in an example.
  • FIG. 2 is a diagram showing the measurement results of absorbance in another example in which the inorganic ionic molecular crystal of the present invention was applied to an ultraviolet absorber.
  • FIG. 3 is a diagram showing the measurement results of absorbance in other examples in which the inorganic ionic molecular crystals of the present invention were applied to an ultraviolet absorber.
  • FIG. 4 is a diagram showing the measurement results of absorbance in other examples in which the inorganic ionic molecular crystals of the present invention were applied to an ultraviolet absorber.
  • FIG. 5 is a diagram showing an ESR spectrum in one embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
  • FIG. 6 is a diagram showing a relationship between an ESR signal intensity and a modulation magnetic field in another embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
  • FIG. 7 is a diagram showing the relationship between ESR signal intensity and microphone mouth wave output in still another embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
  • FIG. 8 is a diagram showing an ESR spectrum in still another example in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
  • FIG. 9 is a diagram showing an ESR signal in still another example in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
  • FIG. 10 is a diagram showing a relationship between an annealing temperature and an ESR signal intensity in still another embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
  • Fig. 11 shows the radiation dose and ESR in still another embodiment in which the inorganic ionic molecular crystal of the present invention was applied to the detection element of an ESR radiation dosimeter. It is a figure showing relation with signal strength.
  • the metal includes, for example, sodium, potassium, lithium, strontium, calcium, magnesium, and barium. These metals may be used alone or in combination of two or more. Of these, magnesium, calcium, and strontium are preferred, and calcium and d are more preferred.
  • the inorganic acid includes, for example, carbonic acid, sulfuric acid, and phosphoric acid. Of these, carbonic acid is preferred.
  • the inorganic ionic molecular crystal of the present invention include calcium carbonate crystal, magnesium carbonate crystal, barium carbonate crystal, calcium sulfate crystal, magnesium sulfate crystal, barium sulfate crystal, calcium phosphate crystal, magnesium calcium carbonate [CaM] g (C 0 3) 2] crystals, there is a carbonate stolons lithium crystal or the like.
  • preferred are calcium carbonate crystals.
  • the inorganic ionic molecular crystal of the present invention contains at least one of ascorbic acid, ascorbate, an ascorbic acid derivative and an ascorbate ion.
  • Ascorbate includes, for example, sodium ascorbate, rhascorbate, and ascorbate There are lucidium salts and the like, which may be used alone or in combination of two or more. Ascorbate ion is monovalent and divalent, and varies with pH. ⁇ ⁇ ⁇ when changing from ascorbic acid to ascorbate ion (monovalent) is 4.1, and p K when changing from ascorbate ion (monovalent) to ascorbate ion (divalent) '. 2 is 1 1.57.
  • the total or single content of ascorbic acid, ascorbate, ascorbic acid derivative and ascorbate ion is not particularly limited, but may be, for example, 0.001 to 1 with respect to the entire inorganic ionic molecular crystal including this.
  • the method for producing the inorganic ionic molecular crystal of the present invention is not particularly limited, and includes, for example, the following first production method and second production method.
  • the first production method at least one of an aqueous solution of an inorganic acid ion and an aqueous solution of a metal ion contains at least one of ascorbic acid, an ascorbate salt, and an ascorbic acid derivative.
  • the method of mixing the two aqueous solutions is not particularly limited. For example, a method in which one solution is added to the other solution Is also good.
  • the two aqueous solutions may be mixed by injecting the two aqueous solutions into a certain container. In the case of the latter method, for example, mixing can be performed by using a spray.
  • Examples of the inorganic acid aqueous solution include an aqueous solution of sodium carbonate, an aqueous solution of potassium carbonate, an aqueous solution of ammonium carbonate, an aqueous solution of sodium sulfate, an aqueous solution of potassium sulfate, and an aqueous solution of ammonium phosphate.
  • Examples of the aqueous metal ion solution include an aqueous solution of calcium chloride, an aqueous solution of calcium acetate, an aqueous solution of magnesium chloride, an aqueous solution of strontium chloride, and an aqueous solution of barium chloride.
  • the molar ratio between the inorganic acid ion and the metal ion is preferably 1: 1.
  • a 1 M aqueous solution of 1 M calcium chloride may be added to a 0.1 M aqueous solution of sodium carbonate to precipitate calcium carbonate crystals.
  • calcium carbonate crystals may be precipitated by pouring the mixture into a container while mixing the 0.1 M aqueous solution of calcium chloride with the aqueous solution of 0.1 M sodium carbonate.
  • the water used in the solution of the present invention is not particularly limited, but is preferably ion-exchanged water, distilled water, ultrapure water, or the like.
  • ascorbic acid or ascorbate it is only necessary to adjust ⁇ of an aqueous solution of an inorganic acid and add ascorbic acid or ascorbate to this.
  • ascorbic acid or a salt thereof is added to an aqueous solution of sodium carbonate having a pH of 11.41, a large amount of divalent ions will be present, and a mixture of potassium carbonate and carbonic acid (pH 1.05) will be added. If ascorbic acid or a salt thereof is added, many monovalent ions are present.
  • the method for adjusting the pH is not particularly limited, and may be adjusted by, for example, adding an alkaline substance such as sodium hydroxide, potassium hydroxide, or calcium hydroxide, or an acidic substance such as hydrochloric acid or sulfuric acid.
  • the second production method comprises the steps of: adding an ascorbic acid metal salt to an aqueous solution of an inorganic acid ion to precipitate an inorganic ionic molecular crystal; reducing the amount of ascorbic acid, ascorbate and ascorbate ions in the crystal; It is a production method in which both are contained.
  • the ultraviolet absorbent of the present invention contains the inorganic ionic molecular crystals of the present invention.
  • the absorption wavelength of the inorganic ionic molecular crystal of the present invention is, for example, in the range of 250 to 320 nm, and is characterized by having an absorption wavelength in the UVB region (280 to 315 nm). In addition, ascorbic acid itself does not have a remarkable absorption wavelength in the UVB region.
  • the content ratio of the inorganic ionic molecular crystals with respect to the entire ultraviolet absorber is not particularly limited, and is, for example, in the range of 0.001 to 100% by mass.
  • the proportion of ascorbic acid or the like in the inorganic ionic molecular crystals in the ultraviolet absorbent of the present invention is not particularly limited, but is, for example, in the range of 0.1 to 5% by mass relative to the whole inorganic ionic molecular crystals. Preferably, it is in the range of 0.5 to 2% by mass, more preferably in the range of 1 to 2% by mass.
  • the ultraviolet absorber may include, as other components, an ultraviolet scattering agent, glycerin, other ultraviolet absorbers, etc. By using the ultraviolet absorber in combination with the ultraviolet scattering agent, the ultraviolet absorber of the present invention can block ultraviolet rays. The wavelength bandwidth expands. Examples of the ultraviolet light scattering agent include titanium oxide and zinc oxide.
  • the ultraviolet scattering agent is preferably contained in the inorganic ion molecule crystal.
  • the content ratio of the ultraviolet light scattering agent is not particularly limited, and is, for example, in the range of 0.01 to 10% by mass based on the whole ultraviolet light absorbing agent.
  • the particle size of the ultraviolet light scattering agent is not particularly limited, but is, for example, in the range of 0.001 to 0.1 zm.
  • the form of the inorganic ionic molecular crystals can be changed from powder to a fluid form, thereby expanding the applications.
  • the ratio of inorganic ionic molecular crystals on the surface of the UV absorber can be increased as compared with powder, and as a result, the UV absorption effect is maintained.
  • the mixing ratio of glycerin is not particularly limited, and is, for example, in a range of 10 to 70% by mass based on the whole ultraviolet absorber.
  • the ultraviolet absorbent of the present invention can be used for various uses such as cosmetics, pharmaceuticals, clothing, resin additives, paper, rubber, and plastics.
  • the vitamin C supplement of the present invention contains the inorganic ionic molecular crystal of the present invention.
  • the inorganic ionic molecular crystal contains ascorbic acid and the like inside, the ascorbic acid and the like are in a state of being cut off from the outside.
  • the ratio of the inorganic ionic molecular crystals is not particularly limited, and is, for example, 0.001 to 100% by mass based on the entire supplement.
  • the proportion of ascorbic acid and the like in the inorganic ionic molecular crystals in the vitamin C supplement of the present invention is not particularly limited, but
  • the vitamin C supplement of the present invention may contain other components such as other vitamins (A, B group, D, E, etc.), amino acids, minerals (zinc, calcium, etc.). Good.
  • the form of the vitamin C supplement of the present invention is not particularly limited, and may be, for example, a powder, a tablet or the like.
  • the vitamin C supplement of the present invention can be used in addition to ordinary vitamins (supplements), for example, toothpaste (bleeding prevention, etc.), potash supplements (helping calcium absorption, etc.), milk such as yogurt, etc. May be used for products.
  • the detection element material of the ESR radiation dosimeter of the present invention includes the inorganic ionic molecular crystal of the present invention.
  • the detection element material is a powder
  • the detection element may be one in which this powder is put in a capsule, or one in which this powder is immobilized with polystyrene or paraffin using a flux.
  • the shape of the detection element is not particularly limited, and various shapes such as a rod shape, a plate shape, and a tape shape are possible.
  • the ratio of ascorbic acid or the like in the inorganic ionic molecular crystals in the detection element material of the present invention is not particularly limited, but may be, for example, 0.01 to 0.3% by mass based on the entire inorganic ionic molecular crystals.
  • the range is preferably in the range of 0.05 to 0.2% by mass.
  • the detection can be performed by adjusting the content of those metal ions, or by adjusting the amount of ascorbic acid or the like to be added. It is possible to adjust the sensitivity of the device material to radiation.
  • the sensitivity of the detection element material to radiation can be adjusted by heating the detection element material to thermally decompose the added ascorbic acid and the like.
  • the inorganic ion molecular crystal contains a paramagnetic metal ion for correcting the intensity of unpaired electrons or radicals.
  • the permanent metal ions include, for example, manganese ions, chromium ions, copper ions, and the like. These may be used alone or in combination of two or more. Of these, manganese ions and chromium ions are preferred, and manganese ions are more preferred.
  • an ESR radiation dosimeter includes a detection element in which a detection material that generates unpaired electrons due to radiation is stylized, and a device that measures ESR in the detection material.
  • An ESR radiation dosimeter for measuring the concentration of a pair of electrons or the concentration of a radical containing the unpaired electron, and determining a radiation dose from the measured value, wherein the detection material is the detection element material of the present invention.
  • the measurement of radiation using the ESR radiation dosimeter of the present invention is performed, for example, as follows. That is, first, an inorganic ionic molecular crystal of the present invention, which is compression-molded into a pellet, is embedded in paraffin and solidified to produce a detection element. This detection element is exposed to radiation or light. After the exposure, the detection element is placed in a quartz sample tube with an inner diameter of about 4 mm and placed in a microwave cavity resonator.
  • the microwave output is kept constant and the magnetic field is modulated.
  • the signal modulated by the magnetic field modulation is amplified by an amplifier, and a signal is extracted as a first derivative form dPZdH of the microwave absorption signal P (H), which is converted into a radiation dose.
  • Example 1 400 ml of a 0.1 M aqueous sodium carbonate solution and 40 ml of a 1 M aqueous calcium chloride solution were prepared. Then, 3.1 lg or 0.31 g of ascorbic acid was added to the aqueous sodium carbonate solution. The amount of ascorbic acid added is adjusted so as to be 1% by mass or 0.1% by mass of the entire calcium carbonate crystal including the same. Then, the calcium carbonate aqueous solution was added to the sodium carbonate aqueous solution to precipitate calcium carbonate crystals containing ascorbic acid inside the crystals. The obtained crystals have two kinds of ascorbic acid concentrations of 0.1% by mass and 1% by mass.
  • the curve shows the absorbance of ascorbic acid (vitamin C) alone.
  • vitamin C ascorbic acid
  • Example 2 calcium carbonate containing 1% by mass of ascorbic acid was prepared. Mix this with glycerin in a volume ratio of 1: 1 Then, the absorbance was measured. This measurement was also performed in the same manner as in Example 1. As a reference example, the absorbance of calcium carbonate containing 1% by mass of ascorbic acid was also measured. The result is shown in FIG. In the figure, the upper curve shows the absorbance when mixed with glycerin, and the lower curve shows the absorbance when not mixed with glycerin. As shown, the absorbance was improved by mixing with dalyserin.
  • Example 2 zinc oxide (particle size: 0.02 m) was added to an aqueous solution of sodium carbonate by lO Omg, and 6.2 g or 0.62 g of ascorbic acid was added.
  • the zinc oxide was obtained by uniformly dispersing particles in the aqueous solution by ultrasonic waves.
  • calcium carbonate containing ascorbic acid and zinc oxide was prepared in the same manner as in Example 1, and the absorbance was measured. This measurement was also performed in the same manner as in Example 1. Further, as a reference example, the absorbance of calcium carbonate containing 1% by mass of ascorbic acid was also measured.
  • Figure 3 shows the results.
  • the solid line shows the absorbance when zinc oxide is contained
  • the dotted line shows the absorbance when zinc oxide is not contained.
  • absorption was confirmed in the UVA region (315-380 nm) in addition to the UVB region (280-315 nm).
  • Example 1 Ascorbic acid was added to the aqueous sodium carbonate solution at various concentrations. Except for this, calcium carbonate containing ascorbic acid at various concentrations was prepared in the same manner as in Example 1, and the absorbance (293 nm) was measured. This measurement is performed in the same manner as in Example 1. Was. Figure 4 shows the results. As shown, the absorbance increased as the ascorbic acid content increased.
  • the conditions for this measurement are: absorbed dose of 70 Gy (gray), modulated magnetic field width of 0.02 mT, magnetic field sweep width of 2 mT, and microwave output intensity of OlmW.
  • Figure 5 shows the measurement results.
  • the upper curve is the ESR absorption signal of DL-alanine.
  • the lower curve is the ESR absorption signal of calcium carbonate containing ascorbic acid.
  • the signal width of ascorbic acid-containing calcium carbonate is about 1/60 smaller than the signal in the middle of DL-alanine.
  • Figure 6 shows the results of the magnetic field modulation
  • Figure 7 shows the results of the microwave output.
  • the calcium carbonate containing ascorbic acid is more optimal than the DL-alanine in the optimal condition of each modulating magnetic field (the modulating magnetic field immediately before the signal intensity is saturated).
  • the ESR signal strength is about 3 times better.
  • the modulation magnetic field is 0.02 mT
  • the calcium carbonate containing ascorbic acid has a higher ESR under the optimum conditions of the microwave output (modulation magnetic field immediately before the signal intensity is saturated) than DL-alanine.
  • the signal strength is about 10 times better.
  • the thermal stability of ascorbic acid-containing calcium carbonate radical and DL-alanine radical in ESR measurement was examined.
  • the thermal stability of manganese ion-containing calcium carbonate was also investigated. Heating was performed by annealing at various temperatures for 15 minutes. That is, while the temperature is gradually increased from room temperature, the temperature is kept constant at a certain temperature for 15 minutes, the ESR is measured, and then the temperature is raised and the temperature is kept constant at the next temperature for 15 minutes. The same sample was kept at various temperatures for 15 minutes, and the ESR was measured each time. Such an experiment is called isochronous annealing experiment.
  • the conditions for ESR measurement were as follows: in the case of calcium carbonate containing ascorbic acid, a microwave output of 0.02 mW and a modulation magnetic field of 0.02 mT, and in the case of DL-alanine, a microwave output of lmW and a modulation magnetic field of 0.lmT, In the case of Mn 2 + , the microwave output is lmW and the modulation magnetic field is 0.1 lmT.
  • Figure 10 shows these results. As shown in the figure, ascorbic acid-containing calcium carbonate was superior in thermal stability by about 10 ° C to DL-alanine, and was superior in thermal stability at high temperatures. In addition, ascorbic acid-containing calcium carbonate had a sufficiently low decay rate at room temperature.
  • the ascorbic acid-containing calcium carbonate was irradiated with ⁇ rays at various doses, and its ESR signal intensity was measured.
  • the measurement conditions were as follows: microwave output 0.0 2 mW, modulation field 0.02 mT.
  • the results are shown in FIG.
  • the ESR signal intensity also increased in proportion to the X-ray absorption.
  • the minimum detection sensitivity (20 mGy) was determined by the SZN ratio.
  • the inorganic ionic molecular crystal of the present invention has ascorbic acid and the like inside the crystal.
  • This inorganic ion crystal can be applied to, for example, an ultraviolet absorber, a vitamin C supplement, and an ESR detection element material, and can solve these conventional problems.
  • the inorganic ionic molecular crystal of the present invention can be used for other purposes.

Abstract

An inorganic ionic molecular crystal that can be used as an ultraviolet absorber, a vitamin C supplement or a detection element material for ESR radiation dose meter. 40 ml of 1 M aqueous calcium chloride solution is added to 400 ml of 0.1 M aqueous sodium carbonate solution containing ascorbic acid to thereby precipitate calcium carbonate crystals. The thus obtained calcium carbonate in its crystal contains ascorbic acid. By virtue of the activity of the ascorbic acid, this calcium carbonate exhibits ultraviolet absorption in the UVB region as shown in Fig. 1 and can find application in ESR radiation dose meter and vitamin C supplements.

Description

無機イオン性分子結晶  Inorganic ionic molecular crystals
技術分野 Technical field
本発明は、 例えば、 紫外線吸収剤、 ビタミン c補給剤および電子スピ ン共鳴 (E S R ) 放射線線量計の検出素子材料等として使用可能である 明  INDUSTRIAL APPLICABILITY The present invention can be used, for example, as an ultraviolet absorber, a vitamin c supplement, a detection element material of an electron spin resonance (ESR) radiation dosimeter, and the like.
新規の無機イオン性分子結晶に.関する。 It relates to a new inorganic ionic molecular crystal.
田 背景技術  Field background technology
ァスコルビン酸は、 別名、 ビタミン Cとして知られており、 生体の必 須栄養素である。 ァスコルビン酸が欠乏すると、 皮膚を構成するコラー ゲンにおいて、 プロリンがハイドロキシプロリンに変換できず、 この結 果、 壊血病になってしまう。 この他、 ァスコルビン酸は、 抗酸化機能を 有しており、 生体内で発生したフリ一ラジカルを消去したりしている。 このため、 ァスコルビン酸は、 栄養補助剤として一般に市販されている 。 また、 抗酸化機能に着目されて、 ァスコルビン酸は、 食品や医薬品等 の酸化防止剤として汎用されている。 このように、 ァスコルビン酸は、 その機能について様々な研究がなされており、 いろいろな分野で使用さ れている。 しかしながら、 ァスコルビン酸に関するこれまでの研究は、 全て水溶液中のものであり、 固体中での働きについての研究は少なく、 例えば、 無機イオン性分子結晶中での働きについては、 研究されていな かった。  Ascorbic acid, also known as vitamin C, is a vital nutrient in the body. When ascorbic acid is deficient, proline cannot be converted to hydroxyproline in the collagens that make up the skin, resulting in scurvy. In addition, ascorbic acid has an antioxidant function and eliminates free radicals generated in a living body. For this reason, ascorbic acid is generally marketed as a nutritional supplement. Focusing on the antioxidant function, ascorbic acid is widely used as an antioxidant for foods and pharmaceuticals. As such, ascorbic acid has been studied in various ways for its function, and is used in various fields. However, all studies on ascorbic acid so far have been in aqueous solutions, and few studies have been performed on solids.For example, studies on inorganic ionic molecular crystals have not been studied. .
一方、 紫外線吸収剤、 ビタミン C補給剤および E S R放射線線量計に ついて、 従来から、 つぎのような問題が指摘されている。 まず、 従来の紫外線吸収剤としては、 パラジメチルァミノ安息香酸ォ クチル等のパラアミノ安息香酸系、 ォキシベンゾン等のベンゾフエノン 誘導体、 メトキシ桂皮酸誘導体、 サリチル酸誘導体等がある。 しかしな がら、 これら従来の紫外線吸収剤を人の皮膚に使用する場合は、 表皮全 体に結合するおそれがあり、 このため、 接触性皮膚炎若しくは光接触性 皮膚炎を起すおそれがあるといわれている。 このような問題を考慮して 、 上記の紫外線吸収剤に代えて紫外線散乱剤が使用されるようになって きた。 紫外線散乱剤としては、 酸化チタン、 酸化亜鉛等がある。 しかし ながら、 これらの紫外線散乱剤は、 粉体表面での光触媒活性が高いため 、 配合成分の安定性に問題があり、 このため各種表面処理等を施して活 性および反応性を弱めているが、.問題が完全に解決されているわけでは ない。 つぎに、 ビタミン C補給剤は、 ァスコルビン酸若しくはその塩を、 そ のまま使用したものや、 賦型剤で錠剤化したもの等がある。 しかしなが ら、 ビタミン Cは水に容易に溶けて酸素と反応して分解されるという問 題がある。 また、 ビタミン Cは、 酸味を有するため、 これを食品や清涼 飲料にそのまま添加すると、 味が変質するという問題がある。 つぎに、 従来の放射線計測器としては、 写真フィルムの黒化を利用し たフィルムバッジや、 放射線により生じる電子とホールの再結合発光を 利用するシンチレーシヨン計測器、 電離電流パルスを半導体 P N接合で 測定する半導体検出器、 熱ルミネッセンス線量計、 光刺激ルミネッセン ス線量計など種々のものがある。 この他に、 近年、 電子スピン共鳴 (E S R ) の原理を用いて被曝体のマイクロ波吸収を観測して線量を得る E S R線量計の開発が進んでいる。 電子スピン共鳴とは、 スピン量子数 S を持つ不対電子が静磁場におかれると、 エネルギー準位が 2 S + 1個に ゼ一マン分裂するが、 この隣り合った準位間に等しいマイク口波を加え ると共鳴的に吸収が起きる現象をいう。 特公昭 6 1—5 6 9 5 9号公報 に記載の E S R放射線線量計は、 無機結晶材料に放射線を照射した際に 、 化学結合が切断されて生じる不対電子の個数を、 電子スピン共鳴を用 いて測定し、 被曝線量を得るというものである。 E S R線量計は、 非破 壊測定器であるので、 吸収線量を読み取ってもこの吸収線量が消えない という点で法的証拠能力があり、 熱ルミネッセンス線量計、 光刺激ルミ ネッセンス線量計にない利点を有する。 E S R放射線線量計の検出素子 材料としては、 アミノ酸や砂糖等の有機物質が使用される場合があり、 ァラニンを検出素子材料として用いた E S R放射線線量計は、 中高線領 域の標準的な線量計として普及している。 この検出素子は、 例えば、 ァ ラニン粉末をペレツト状に圧縮成形したものを、 パラフィンに埋め込ん で固形化して作製される。 この検出素子に放射線や光を曝して、 E S R 線量計でそのラジカルの量を測定するのである。 この測定方法は、 以下 のように実施される。 すなわち、 まず、 被曝後の検出素子材料を内径 4 mm程度の石英試料管にいれて、 マイクロ波空洞共振器中に設置する。 マイクロ波出力は一定にしておいて、 磁場変調をかける。 磁場変調によ り、 変調された信号を増幅器によって増幅し、 マイクロ波吸収信号 P ( H ) の一次微分形 d P Z d Hとして信号を取り出し、 これを放射線量に 換算する。 しかしながら、 従来の E S R放射線線量計は、 感度が著しく低いとい う問題を有する。 例えば、 0 . 1 G yから 2 0 G yを必要とする輸血用 血液の放射線殺菌等において、 従来の E S R放射線線量計は、 使用でき なかった。 感度が低くなる理由は、 二つある。 第 1の理由は、 ァラニン を検出素子材料として使用した E S R放射線線量計では、 E S R吸収曲 線の線幅 (〜0 . 6 m T ) が広いので、 その信号強度が小さくなり、 ラ ジカルの濃度の測定範囲が低くなるからである。 これは、 ラジカル濃度 が E S R吸収曲線の面積に比例するからである。 第 2の理由は、 ァラニ ン結晶を粉砕し粉末にするときにできる信号が重なっているためである 。 これらの他に、 従来の E S R放射線線量計の問題としては、 電子スピ ン共鳴の測定条件として、 マイクロ波の出力強度 l mW、 変調磁場強度0 . l m T以上を必要とし、 そのため高性能な電子スピン共鳴装置を必 要とするという問題があげられる。 発明の開示 On the other hand, the following problems have been pointed out with respect to UV absorbers, vitamin C supplements, and ESR radiation dosimeters. First, conventional UV absorbers include paraaminobenzoic acid derivatives such as octyl paradimethylaminobenzoate, benzophenone derivatives such as oxybenzone, methoxycinnamic acid derivatives, and salicylic acid derivatives. However, when these conventional UV absorbers are used on human skin, they may bind to the entire epidermis and cause contact dermatitis or photo-contact dermatitis. ing. In consideration of such a problem, an ultraviolet scattering agent has been used instead of the above-mentioned ultraviolet absorber. Examples of the ultraviolet scattering agent include titanium oxide and zinc oxide. However, these ultraviolet scattering agents have a high photocatalytic activity on the powder surface, and thus have a problem in the stability of the compounded components. Therefore, various surface treatments and the like are performed to reduce the activity and the reactivity. The problem is not completely solved. Next, vitamin C supplements include those using ascorbic acid or its salts as they are, and those obtained by tableting with excipients. However, there is a problem that vitamin C is easily dissolved in water and decomposed by reacting with oxygen. Also, since vitamin C has an acid taste, if it is added to foods and soft drinks as it is, there is a problem that the taste is altered. Next, conventional radiation measuring instruments include a film badge that uses blackening of photographic film, a scintillation measuring instrument that uses the recombination emission of electrons and holes generated by radiation, and a semiconductor PN junction that emits ionization current pulses. There are various types such as semiconductor detectors for measurement, thermoluminescence dosimeters, and photostimulated luminescence dosimeters. In addition, in recent years, the dose is obtained by observing the microwave absorption of the exposed body using the principle of electron spin resonance (ESR). The development of SR dosimeter is in progress. Electron spin resonance means that when an unpaired electron with a spin quantum number S is placed in a static magnetic field, the energy level is Zemman-split into 2 S + 1, but the microphones that are equal between these adjacent levels A phenomenon in which absorption occurs resonatingly when a mouth wave is applied. The ESR radiation dosimeter described in Japanese Patent Publication No. 6-59-5959 uses electron spin resonance to determine the number of unpaired electrons generated when a chemical bond is broken when an inorganic crystal material is irradiated with radiation. Measurement to obtain the exposure dose. Since the ESR dosimeter is a non-destructive measuring instrument, it has the legal proof that the absorbed dose does not disappear even if the absorbed dose is read, which is an advantage over thermoluminescence dosimeters and photostimulated luminescence dosimeters. Having. Organic substances such as amino acids and sugar may be used as the detection element material of the ESR radiation dosimeter.The ESR radiation dosimeter using alanine as the detection element material is a standard dosimeter in the middle and high line area. As popular. This detection element is produced, for example, by compressing alanine powder into a pellet and embedding it in paraffin to solidify. The detector is exposed to radiation and light, and the amount of the radical is measured with an ESR dosimeter. This measuring method is performed as follows. That is, first, the exposed detector material is placed in a quartz sample tube with an inner diameter of about 4 mm and placed in a microwave cavity resonator. The microwave output is kept constant and the magnetic field is modulated. The signal modulated by the magnetic field modulation is amplified by an amplifier, and the signal is extracted as a first derivative form dPZdH of the microwave absorption signal P (H), which is converted into a radiation dose. However, conventional ESR radiation dosimeters have the problem of having extremely low sensitivity. For example, the conventional ESR radiation dosimeter can be used for radiation sterilization of blood for transfusion that requires 0.1 Gy to 20 Gy. Did not. There are two reasons for the lower sensitivity. The first reason is that the ESR radiation dosimeter using alanine as the detector element has a wide ESR absorption curve (up to 0.6 mT), so its signal intensity is low and its radial density is low. This is because the measurement range becomes lower. This is because the radical concentration is proportional to the area of the ESR absorption curve. The second reason is that signals generated when pulverizing the aranine crystal into powder are overlapped. In addition to these, conventional ESR radiation dosimeters also have a problem in that the measurement conditions for electron spin resonance require a microwave output intensity of l mW and a modulation magnetic field intensity of 0.1 mT or more, and therefore a high-performance electron dosimeter. The problem is that a spin resonance device is required. Disclosure of the invention
本発明は、 このような事情に鑑みなされたもので、 紫外線吸収剤、 ビ 夕ミン C補給剤および E S R放射線線量計の検出素子材料等に使用可能 であって、 これらの従来の問題点を解決可能な新規の無機イオン性分子 結晶の提供を、 その目的とする。 前記目的を達成するために、 本発明の無機イオン性分子結晶は、 無機 酸および金属を含む無機イオン性分子結晶であって、 この結晶内に、 ァ スコルビン酸、 ァスコルビン酸塩、 ァスコルビン酸誘導体およびァスコ ルビン酸イオンの少なくとも一つ (以下 「ァスコルビン酸等」 ともいう ) を含有する。 この無機イオン性分子結晶は、 その内部にァスコルビン酸等を含有し ているため、 これにより、 例えば、 紫外線吸収剤、 ビタミン C補給剤お よび E S R放射線線量計の検出素子材料として使用でき、 しかも、 これ らの従来の問題を解決できる。 なお、 従来、 無機イオン性分子結晶とァ スコルビン酸等との混合物があつたかもしれないが、 本発明は、 このよ うな混合物ではなく、 無機イオン性分子結晶内に、 ァスコルビン酸等が 存在する点が、 特徴である。 例えば、 本発明の無機イオン性分子結晶は、 その内部にァスコルビン 酸等を含有するため、 ァスコルビン酸単体に比べてバンド幅の広い紫外 線吸収作用を有する。 したがって、 これを含む紫外線吸収剤は、 皮膚へ の結合および光触媒反応による不都合が生じることがなく、 しかも良好 な紫外線吸収作用を示す。 また、 本発明の無機イオン性分子結晶は、 その内部にァスコルビン酸 等を含有するため、 酸性以外の水にァスコルビン酸等が溶け出すことが なく、 外部から遮断されているため、 酸素による酸化分解も防止され、 かつ食品や清涼飲料水等の味にも影響を与えない。 そして、 本発明の無機イオン性分子結晶を E S R放射線線量計の検出 素子材料として使用すれば、 E S R吸収曲線の線幅を、 例えば、 従来の 6 0分の 1程度に、 マイクロ波出力強度を、 例えば、 従来の 1 0 0分の 1程度に、 変調磁場を; 例えば、 従来の 1 0分の 1程度に抑制しつつもThe present invention has been made in view of such circumstances, and can be used as an ultraviolet absorber, a benzoin C supplement, a detection element material of an ESR radiation dosimeter, and the like, and solves these conventional problems. The aim is to provide possible new inorganic ionic molecular crystals. In order to achieve the above object, the inorganic ionic molecular crystal of the present invention is an inorganic ionic molecular crystal containing an inorganic acid and a metal, in which ascorbic acid, ascorbate, an ascorbic acid derivative and Contains at least one ascorbate ion (hereinafter also referred to as "ascorbic acid, etc."). Since this inorganic ionic molecular crystal contains ascorbic acid and the like inside, it can be used as, for example, an ultraviolet absorber, a vitamin C supplement, and a detection element material of an ESR radiation dosimeter. this These conventional problems can be solved. It should be noted that, conventionally, a mixture of an inorganic ionic molecular crystal and ascorbic acid or the like may exist, but in the present invention, ascorbic acid or the like is present in the inorganic ionic molecular crystal instead of such a mixture. The point is the characteristic. For example, the inorganic ionic molecular crystal of the present invention contains ascorbic acid and the like, and therefore has an ultraviolet absorbing effect having a wider band width than that of ascorbic acid alone. Therefore, an ultraviolet absorber containing the same does not cause inconvenience due to binding to the skin and a photocatalytic reaction, and exhibits a favorable ultraviolet absorbing effect. In addition, since the inorganic ionic molecular crystal of the present invention contains ascorbic acid and the like inside thereof, ascorbic acid and the like do not dissolve in non-acidic water and are shielded from the outside, and thus are oxidatively decomposed by oxygen. And it does not affect the taste of food or soft drinks. If the inorganic ionic molecular crystal of the present invention is used as a detection element material for an ESR radiation dosimeter, the line width of the ESR absorption curve can be reduced to, for example, about 60 times smaller than the conventional one, and the microwave output intensity can be reduced. For example, the modulating magnetic field is reduced to about 1/100 of the conventional;
、 高感度を実現することができる。 この結果、 例えば、 医療用放射線量 計 (例えば、 輸血用血液放射線殺菌用や放射線治療用) としても使用で きる E S R放射線線量計も可能となる。 図面の簡単な説明 , High sensitivity can be realized. As a result, for example, an ESR radiation dosimeter that can be used as a medical radiation dosimeter (for example, for blood transfusion sterilization or radiation therapy for blood transfusion) is also possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の無機イオン性分子結晶を紫外線吸収剤に応用した一 実施例における吸光度の測定結果を示す図である。 FIG. 1 shows an example of applying the inorganic ionic molecular crystal of the present invention to an ultraviolet absorber. It is a figure showing the measurement result of light absorbency in an example.
図 2は、 本発明の無機イオン性分子結晶を紫外線吸収剤に応用したそ の他の実施例における吸光度の測定結果を示す図である。  FIG. 2 is a diagram showing the measurement results of absorbance in another example in which the inorganic ionic molecular crystal of the present invention was applied to an ultraviolet absorber.
図 3は、 本発明の無機イオン性分子結晶を紫外線吸収剤に応用したさ らにその他の実施例における吸光度の測定結果を示す図である。  FIG. 3 is a diagram showing the measurement results of absorbance in other examples in which the inorganic ionic molecular crystals of the present invention were applied to an ultraviolet absorber.
図 4は、 本発明の無機イオン性分子結晶を紫外線吸収剤に応用したさ らにその他の実施例における吸光度の測定結果を示す図である。  FIG. 4 is a diagram showing the measurement results of absorbance in other examples in which the inorganic ionic molecular crystals of the present invention were applied to an ultraviolet absorber.
図 5は、 本発明の無機イオン性分子結晶を E S R放射線線量計の検出 素子に応用した一実施例における E S Rスぺクトルを示す図である。 図 6は、 本発明の無機イオン性分子結晶を E S R放射線線量計の検出 素子に応用したその他の実施例における E S R信号強度と変調磁場との 関係を示す図である。  FIG. 5 is a diagram showing an ESR spectrum in one embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter. FIG. 6 is a diagram showing a relationship between an ESR signal intensity and a modulation magnetic field in another embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
図 7は、 本発明の無機イオン性分子結晶を E S R放射線線量計の検出 素子に応用したさらにその他の実施例における E S R信号強度とマイク 口波出力との関係を示す図である。  FIG. 7 is a diagram showing the relationship between ESR signal intensity and microphone mouth wave output in still another embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
図 8は、 本発明の無機イオン性分子結晶を E S R放射線線量計の検出 素子に応用したさらにその他の実施例における E S Rスぺクトルを示す 図である。  FIG. 8 is a diagram showing an ESR spectrum in still another example in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
図 9は、 本発明の無機イオン性分子結晶を E S R放射線線量計の検出 素子に応用したさらにその他の実施例における E S R信号を示す図であ る。  FIG. 9 is a diagram showing an ESR signal in still another example in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
図 1 0は、 本発明の無機イオン性分子結晶を E S R放射線線量計の検 出素子に応用したさらにその他の実施例におけるァニーリング温度と E S R信号強度との関係を示す図である。  FIG. 10 is a diagram showing a relationship between an annealing temperature and an ESR signal intensity in still another embodiment in which the inorganic ionic molecular crystal of the present invention is applied to a detection element of an ESR radiation dosimeter.
図 1 1は、 本発明の無機イオン性分子結晶を E S R放射線線量計の検 出素子に応用したさらにその他の実施例におけるァ線照射線量と E S R 信号強度との関係を示す図である。 発明を実施するための最良の形態 Fig. 11 shows the radiation dose and ESR in still another embodiment in which the inorganic ionic molecular crystal of the present invention was applied to the detection element of an ESR radiation dosimeter. It is a figure showing relation with signal strength. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳しく説明する。 本発明の無機イオン性分子結晶において、 前記金属は、 例えば、 ナト リウム、 カリウム、 リチウム、 ストロンチウム、 カルシウム、 マグネシ ゥムおよびバリウムがある。 これらの金属は、 単独で使用してもよく、 2種類以上で併用してもよい。 このなかでも、 好ましいのは、 マグネシ ゥム、 カルシウム、 ストロンチウムであり、 より好ましいのはカルシゥ d、あ ·©。 本発明の無機イオン性分子結晶において、 前記無機酸は、 例えば、 炭 酸、 硫酸、 リン酸がある。 このなかでも、 炭酸が好ましい。 本発明の無機イオン性分子結晶の具体例としては、 炭酸カルシウム結 晶、 炭酸マグネシウム結晶、 炭酸バリウム結晶、 硫酸カルシウム結晶、 硫酸マグネシウム結晶、 硫酸バリウム結晶、 リン酸カルシウム結晶、 炭 酸マグネシウムカルシウム [ C a M g ( C 0 3 ) 2 ] 結晶、 炭酸ストロン チウム結晶等がある。 このなかで、 好ましいのは炭酸カルシウム結晶で ある。 本発明の無機イオン性分子結晶には、 ァスコルビン酸、 ァスコルビン 酸塩、 ァスコルビン酸誘導体およびァスコルビン酸イオンの少なくとも 一つが含まれている。 ァスコルビン酸塩としては、 例えば、 ァスコルビ ン酸ナトリゥム塩、 ァスコルビン酸力リゥム塩およびァスコルビン酸力 ルシゥム塩等があり、 これらは単独で使用してもよく、 2種類以上で併 用してもよい。 ァスコルビン酸イオンは、 1価と 2価があり、 p Hによ つて変化する。 ァスコルピン酸からァスコルビン酸イオン (1価) に変 化する場合の ρ Κ^は、 4 . 1であり、 ァスコルビン酸イオン ( 1価) からァスコルビン酸イオン (2価) 'に変化する場合の p K 2は 1 1 . 5 7である。 紫外線吸収剤に使用する場合は、 U V B領域に吸収を持つ 2 価のァスコルビン酸イオンが多く含まれることが好ましく、 E S R放射 線線量計の検出素子材料に使用する場合は、 1価のァスコルピン酸ィォ ンのラジカルが有用であるから、 1価のァスコルビン酸ィオンが多く含 まれることが好ましい。 ァスコルビン酸、 ァスコルビン酸塩、 ァスコル ビン酸誘導体およびァスコルビン酸イオンの合計若しくは単独の含有量 は、 特に制限されないが、 これを含む無機イオン性分子結晶全体に対し 、 例えば、 0 . 0 0 1〜 1 0質量%の範囲であり、 紫外線吸収剤の用途 の場合、 好ましくは 1〜 5質量%であり、 E S R放射線線量計の用途の 場合、 好ましくは 0 . 0 0 1〜0 . 1質量%の範囲である。 つぎに、 本発明の無機イオン性分子結晶の製造方法は、 特に制限され ないが、 例えば、 つぎの第 1の製造方法と、 第 2の製造方法とがある。 前記第 1の製造方法は、 無機酸イオン水溶液および金属イオン水溶液 の少なくとも一方に、 ァスコルビン酸、 ァスコルビン酸塩およびァスコ ルビン酸誘導体の少なくとも一つを含有させ、 前記両水溶液を混合して 無機イオン性分子結晶を析出させる際に、 前記結晶中に、 ァスコルビン 酸、 ァスコルビン酸塩、 ァスコルビン酸誘導体およびァスコルビン酸ィ オンの少なくとも一つを含有させる製造方法である。 前記両水溶液の混 合方法は、 特に制限されず、 例えば、 一方の溶液に他方の溶液を加えて も良い。 この他、 ある容器に、 前記両水溶液を混ぜながら注入すること で混合してもよい。 後者の方法の場合、 例えば、 スプレーを用いて混合 することができる。 前記無機酸水溶液としては、 例えば、 炭酸ナトリウム水溶液、 炭酸力 リウム水溶液、 炭酸アンモニア水溶液、 硫酸ナトリウム水溶液、 硫酸力 リウム水溶液、 リン酸アンモニア水溶液等がある。 また、 金属イオン水 溶液としては、 例えば、 塩化カルシウム水溶液、 酢酸カルシウム水溶液 、 塩化マグネシウム水溶液、 塩化ストロンチウム水溶液、 塩化バリウム 水溶液等がある。 また、 無機酸イオンと金属イオンのモル比は、 1 : 1 が好ましい。 例えば、 0 . 1 M炭酸ナトリウム水溶液に、 これの 1 Z 1 0体積量の 1 M塩化カルシウム水溶液を加えて炭酸カルシウム結晶を析 出させてもよい。 この他に、 0 . 1 M炭酸ナトリウム水溶液に、 0 . 1 M塩化カルシウム水溶液を混ぜながら容器に注ぎ込んで、 炭酸カルシゥ ム結晶を析出させてもよい。 なお、 本発明の本溶液に使用する水は、 特 に制限されないが、 イオン交換水、 蒸留水、 超純水等が好ましい。 また 、 ァスコルビン酸イオンの価数を調整する方法として、 例えば、 無機酸 水溶液の ρ Ηを調整して、 これにァスコルビン酸若しくはァスコルビン 酸塩を添加すればよい。 例えば、 P H 1 1 . 4 1の炭酸ナトリウム水溶 液にァスコルピン酸若しくはその塩を加えれば、 2価のイオンが多く存 在し、 炭酸カリウムと炭酸の混合水溶液 (p H l 1 . 0 5 ) にァスコル ビン酸若しくはその塩を加えれば、 1価のイオンが多く存在する。 p H の調整方法は、 特に制限されず、 例えば、 水酸化ナトリウム、 水酸化力 リウム、 水酸化カルシウム等のアルカリ性物質や、 塩酸、 硫酸等の酸性 物質を添加することにより、 行ってもよい。 前記第 2の製造方法は、 無機酸イオン水溶液に、 ァスコルビン酸金属 塩を添加して無機イオン性分子結晶を析出させる際に、 前記結晶中にァ スコルビン酸、 ァスコルビン酸塩およびァスコルビン酸イオンの少なく とも一つを含有させる製造方法である。 つぎに、 本発明の紫外線吸収剤は、 前記本発明の無機イオン性分子結 晶を含むものである。 本発明の無機イオン性分子結晶の吸収波長は、 例 えば、 2 50〜 32 0 nmの範囲であり、 UVB領域 ( 2 8 0〜 3 1 5 nm) に吸収波長を持つのが特徴である。 なお、 ァスコルビン酸自身は 、 UVB領域に顕著な吸収波長を持たない。 前記紫外線吸収剤全体に対 する前記無機イオン性分子結晶の含有割合は、 特に制限されず、 例えば 、 0. 0 0 1〜 1 0 0質量%の範囲である。 本発明の紫外線吸収剤にお ける無機イオン分子結晶中のァスコルビン酸等の割合は、 特に制限され ないが、 前記無機イオン性分子結晶全体に対し、 例えば、 0. 1〜5質 量%の範囲、 好ましくは、 0. 5〜2質量%の範囲、 より好ましくは 1 〜2質量%の範囲である。 前記紫外線吸収剤は、 その他の成分として、 紫外線散乱剤、 グリセリン、 その他の紫外線吸収剤等を含んでいてもよ レ 前記紫外線散乱剤との併用により、 本発明の紫外線吸収剤は、 紫外 線遮断波長帯幅が広がる。 前記紫外線散乱剤としては、 例えば、 酸化チ タン、 酸化亜鉛等がある。 なお、 前記紫外線散乱剤は、 前記無機イオン 分子結晶中に含有されていることが好ましい。 紫外線散乱剤の含有割合 は、 特に制限されず、 紫外線吸収剤全体に対し、 例えば、 0. 0 1〜 1 0質量%の範囲である。 また、 紫外線散乱剤の粒径は、 特に制限されな いが、 例えば、 0. 00 1~0. 1 zmの範囲である。 一方、 グリセリ ンを含むことによって、 無機イオン性分子結晶の形態を粉体から、 流動 性のものに変えることができ、 これによつて用途が広がる。 また、 ダリ セリンを配合して流動性を持たせることにより、 粉体の場合に比べて、 紫外線吸収剤における表面の無機イオン性分子結晶の割合を増加させる ことができ、 この結果、 紫外線吸収効果を維持しつつ無機イオン性分子 結晶の配合量を減少させることが可能となる。 グリセりンの配合割合は 、 特に制限されず、 紫外線吸収剤全体に対し、 例えば、 1 0〜7 0質量 %の範囲である。 本発明の紫外線吸収剤は、 化粧品、 医薬品、 衣料品、 樹脂添加剤、 紙、 ゴム、 プラスチック等、 様々な用途に使用できる。 つぎに、 本発明のビタミン C補給剤は、 前記本発明の無機イオン性分 子結晶を含む。 前述のように、 この無機イオン性分子結晶は、 その内部 にァスコルビン酸等を含むため、 ァスコルビン酸等は外部と遮断された 状態にある。 本発明のビタミン C補給剤において、 前記無機イオン性分 子結晶の割合は、 特に制限されず、 前記補給剤全体に対し、 例えば、 0 . 0 0 1〜 1 0 0質量%である。 本発明のビタミン C補給剤における無 機イオン分子結晶中のァスコルビン酸等の割合は、 特に制限されないがHereinafter, the present invention will be described in more detail. In the inorganic ionic molecular crystal of the present invention, the metal includes, for example, sodium, potassium, lithium, strontium, calcium, magnesium, and barium. These metals may be used alone or in combination of two or more. Of these, magnesium, calcium, and strontium are preferred, and calcium and d are more preferred. In the inorganic ionic molecular crystal of the present invention, the inorganic acid includes, for example, carbonic acid, sulfuric acid, and phosphoric acid. Of these, carbonic acid is preferred. Specific examples of the inorganic ionic molecular crystal of the present invention include calcium carbonate crystal, magnesium carbonate crystal, barium carbonate crystal, calcium sulfate crystal, magnesium sulfate crystal, barium sulfate crystal, calcium phosphate crystal, magnesium calcium carbonate [CaM] g (C 0 3) 2] crystals, there is a carbonate stolons lithium crystal or the like. Among them, preferred are calcium carbonate crystals. The inorganic ionic molecular crystal of the present invention contains at least one of ascorbic acid, ascorbate, an ascorbic acid derivative and an ascorbate ion. Ascorbate includes, for example, sodium ascorbate, rhascorbate, and ascorbate There are lucidium salts and the like, which may be used alone or in combination of two or more. Ascorbate ion is monovalent and divalent, and varies with pH. Ρ Κ ^ when changing from ascorbic acid to ascorbate ion (monovalent) is 4.1, and p K when changing from ascorbate ion (monovalent) to ascorbate ion (divalent) '. 2 is 1 1.57. When used as an ultraviolet absorber, it is preferable to contain a large amount of divalent ascorbate ions having an absorption in the UVB region, and when used as a detection element material for an ESR radiation dosimeter, monovalent ascorbic acid ion is used. It is preferable that a large amount of monovalent ascorbic acid ion is contained because the radical of carboxylic acid is useful. The total or single content of ascorbic acid, ascorbate, ascorbic acid derivative and ascorbate ion is not particularly limited, but may be, for example, 0.001 to 1 with respect to the entire inorganic ionic molecular crystal including this. 0% by mass, preferably 1 to 5% by mass in the case of use of an ultraviolet absorber, and preferably 0.001 to 0.1% by mass in the case of use of an ESR radiation dosimeter. It is. Next, the method for producing the inorganic ionic molecular crystal of the present invention is not particularly limited, and includes, for example, the following first production method and second production method. In the first production method, at least one of an aqueous solution of an inorganic acid ion and an aqueous solution of a metal ion contains at least one of ascorbic acid, an ascorbate salt, and an ascorbic acid derivative. A method for producing a molecular crystal wherein at least one of ascorbic acid, ascorbate, an ascorbic acid derivative and an ascorbic acid ion is contained in the crystal. The method of mixing the two aqueous solutions is not particularly limited. For example, a method in which one solution is added to the other solution Is also good. Alternatively, the two aqueous solutions may be mixed by injecting the two aqueous solutions into a certain container. In the case of the latter method, for example, mixing can be performed by using a spray. Examples of the inorganic acid aqueous solution include an aqueous solution of sodium carbonate, an aqueous solution of potassium carbonate, an aqueous solution of ammonium carbonate, an aqueous solution of sodium sulfate, an aqueous solution of potassium sulfate, and an aqueous solution of ammonium phosphate. Examples of the aqueous metal ion solution include an aqueous solution of calcium chloride, an aqueous solution of calcium acetate, an aqueous solution of magnesium chloride, an aqueous solution of strontium chloride, and an aqueous solution of barium chloride. The molar ratio between the inorganic acid ion and the metal ion is preferably 1: 1. For example, a 1 M aqueous solution of 1 M calcium chloride may be added to a 0.1 M aqueous solution of sodium carbonate to precipitate calcium carbonate crystals. Alternatively, calcium carbonate crystals may be precipitated by pouring the mixture into a container while mixing the 0.1 M aqueous solution of calcium chloride with the aqueous solution of 0.1 M sodium carbonate. The water used in the solution of the present invention is not particularly limited, but is preferably ion-exchanged water, distilled water, ultrapure water, or the like. As a method for adjusting the valency of ascorbate ions, for example, it is only necessary to adjust ρΗ of an aqueous solution of an inorganic acid and add ascorbic acid or ascorbate to this. For example, if ascorbic acid or a salt thereof is added to an aqueous solution of sodium carbonate having a pH of 11.41, a large amount of divalent ions will be present, and a mixture of potassium carbonate and carbonic acid (pH 1.05) will be added. If ascorbic acid or a salt thereof is added, many monovalent ions are present. The method for adjusting the pH is not particularly limited, and may be adjusted by, for example, adding an alkaline substance such as sodium hydroxide, potassium hydroxide, or calcium hydroxide, or an acidic substance such as hydrochloric acid or sulfuric acid. The second production method comprises the steps of: adding an ascorbic acid metal salt to an aqueous solution of an inorganic acid ion to precipitate an inorganic ionic molecular crystal; reducing the amount of ascorbic acid, ascorbate and ascorbate ions in the crystal; It is a production method in which both are contained. Next, the ultraviolet absorbent of the present invention contains the inorganic ionic molecular crystals of the present invention. The absorption wavelength of the inorganic ionic molecular crystal of the present invention is, for example, in the range of 250 to 320 nm, and is characterized by having an absorption wavelength in the UVB region (280 to 315 nm). In addition, ascorbic acid itself does not have a remarkable absorption wavelength in the UVB region. The content ratio of the inorganic ionic molecular crystals with respect to the entire ultraviolet absorber is not particularly limited, and is, for example, in the range of 0.001 to 100% by mass. The proportion of ascorbic acid or the like in the inorganic ionic molecular crystals in the ultraviolet absorbent of the present invention is not particularly limited, but is, for example, in the range of 0.1 to 5% by mass relative to the whole inorganic ionic molecular crystals. Preferably, it is in the range of 0.5 to 2% by mass, more preferably in the range of 1 to 2% by mass. The ultraviolet absorber may include, as other components, an ultraviolet scattering agent, glycerin, other ultraviolet absorbers, etc. By using the ultraviolet absorber in combination with the ultraviolet scattering agent, the ultraviolet absorber of the present invention can block ultraviolet rays. The wavelength bandwidth expands. Examples of the ultraviolet light scattering agent include titanium oxide and zinc oxide. The ultraviolet scattering agent is preferably contained in the inorganic ion molecule crystal. The content ratio of the ultraviolet light scattering agent is not particularly limited, and is, for example, in the range of 0.01 to 10% by mass based on the whole ultraviolet light absorbing agent. The particle size of the ultraviolet light scattering agent is not particularly limited, but is, for example, in the range of 0.001 to 0.1 zm. On the other hand, by including glycerin, the form of the inorganic ionic molecular crystals can be changed from powder to a fluid form, thereby expanding the applications. Also, Dali By adding serine to impart fluidity, the ratio of inorganic ionic molecular crystals on the surface of the UV absorber can be increased as compared with powder, and as a result, the UV absorption effect is maintained. In addition, it is possible to reduce the blending amount of the inorganic ionic molecular crystals. The mixing ratio of glycerin is not particularly limited, and is, for example, in a range of 10 to 70% by mass based on the whole ultraviolet absorber. The ultraviolet absorbent of the present invention can be used for various uses such as cosmetics, pharmaceuticals, clothing, resin additives, paper, rubber, and plastics. Next, the vitamin C supplement of the present invention contains the inorganic ionic molecular crystal of the present invention. As described above, since the inorganic ionic molecular crystal contains ascorbic acid and the like inside, the ascorbic acid and the like are in a state of being cut off from the outside. In the vitamin C supplement of the present invention, the ratio of the inorganic ionic molecular crystals is not particularly limited, and is, for example, 0.001 to 100% by mass based on the entire supplement. The proportion of ascorbic acid and the like in the inorganic ionic molecular crystals in the vitamin C supplement of the present invention is not particularly limited, but
、 前記無機イオン性分子結晶全体に対し、 例えば、 0 . 0 0 1〜 1 0質 量%の範囲、 好ましくは、 0 . 1〜 5質量%の範囲、 より好ましくは 1 〜 5質量%の範囲である。 また、 本発明のビタミン C補給剤は、 例えば 、 他のビタミン類 (A , B群、 D、 E等) 、 アミノ酸類、 ミネラル類 ( 亜鉛、 カルシウム等) 等のその他の成分を含んでいてもよい。 また、 本 発明のビタミン C補給剤の形態は、 特に制限されず、 例えば、 粉末、 錠 剤等であってもよい。 また、 本発明のビタミン C補給剤は、 通常のビタ ミン剤 (サプリメント) の他に、 例えば、 歯磨き粉 (出血防止等) 、 力 ルシゥムサプリメント (カルシウムの吸収を助ける等) 、 ヨーグルト等 の乳製品に使用してもよい。 つぎに、 本発明の E S R放射線線量計の検出素子材料は、 前記本発明 の無機イオン性分子結晶を含む。 この検出素子は、 例えば、 検出素子材 料が粉末の場合、 この粉末をカプセルに入れたもの、 またはこの粉末を 融剤によって、 ポリスチレンやパラフィンなどと固定化したものであつ てもよい。 また、 検出素子の形状は、 特に制限されず、 ロッド状、 板状 、 テープ状等、 種々の形状が可能である。 また、 本発明の検出素子材料 における無機イオン分子結晶中のァスコルビン酸等の割合は、 特に制限 されないが、 前記無機イオン性分子結晶全体に対し、 例えば、 0 . 0 1 〜0 . 3質量%の範囲、 好ましくは、 0 . 0 5〜 0 . 2質量%の範囲で ある。 前記無機イオン性分子結晶において、 二種類以上の金属イオンを用い る場合は、 それらの金属イオンの含有率を調整することで、 また、 添加 するァスコルビン酸等の量を調整することで、 前記検出素子材料の放射 線に対する感度を調整することが可能である。 また、 前記検出素子材料 を加熱して、 添加したァスコルビン酸等を熱的に分解することにより、 検出素子材料の放射線に対する感度を調整することも可能である。 本発明の E S R放射線線量計の検出素子材料において、 前記無機ィォ ン性分子結晶は、 不対電子若しくはラジカルの強度校正用としての常磁 性金属イオンを含むことが好ましい。 常時性金属イオンとしては、 例え ば、 マンガンイオン、 クロムイオン、 銅イオン等がある。 これらは、 単 独で使用してもよく、 2種類以上で併用してもよい。 このなかでも、 好 ましいのは、 マンガンイオン、 クロムイオンであり、 より好ましいのは 、 マンガンイオンである。 また、 常磁性金属イオンの割合は、 無機ィォ ン性分子結晶全体に対し、 例えば、 l〜 5 0 0 p p mであり、 好ましく は 1 0〜 5 0 p p mである。 常磁性金属イオンは、 前記無機酸イオン水 溶液若しくは前記金属イオン水溶液または双方に添加することにより、 無機イオン性分子結晶の析出の際に、 前記結晶中に含ませることができ る。 つぎに、 本発明の E S R放射線線量計は、 放射線によって不対電子を 生じる検出材料を定型化した検出素子と、 前記検出材料中の E S Rを測 定する装置とを有し、 前記検出材料の不対電子の濃度若しくは前記不対 電子を含むラジカルの濃度を測定し、 この測定値から放射線量を決定す る E S R放射線線量計であって、 前記検出材料が、 前記本発明の検出素 子材料を含む。 本発明の E S R放射線線量計を用いた放射線の測定は、 例えば、 以下のようにして行う。 すなわち、 まず、 本発明の無機イオン性分子結晶をペレット状に圧縮 成形したものを、 パラフィンに埋め込んで固形化して検出素子を作製す る。 この検出素子を放射線や光を曝す。 そして、 被曝後の検出素子を内 径 4 mm程度の石英試料管にいれて、 マイクロ波空洞共振器中に設置す る。 マイクロ波出力は一定にしておいて、 磁場変調をかける。 磁場変調 により、 変調された信号を増幅器によって増幅し、 マイクロ波吸収信号 P ( H ) の一次微分形 d P Z d Hとして信号を取り出し、 これを放射線 量に換算する。 実施例 For example, in the range of 0.001 to 10% by mass, preferably in the range of 0.1 to 5% by mass, and more preferably in the range of 1 to 5% by mass, based on the whole inorganic ionic molecular crystal. It is. Also, the vitamin C supplement of the present invention may contain other components such as other vitamins (A, B group, D, E, etc.), amino acids, minerals (zinc, calcium, etc.). Good. The form of the vitamin C supplement of the present invention is not particularly limited, and may be, for example, a powder, a tablet or the like. In addition, the vitamin C supplement of the present invention can be used in addition to ordinary vitamins (supplements), for example, toothpaste (bleeding prevention, etc.), potash supplements (helping calcium absorption, etc.), milk such as yogurt, etc. May be used for products. Next, the detection element material of the ESR radiation dosimeter of the present invention includes the inorganic ionic molecular crystal of the present invention. For example, when the detection element material is a powder, the detection element may be one in which this powder is put in a capsule, or one in which this powder is immobilized with polystyrene or paraffin using a flux. The shape of the detection element is not particularly limited, and various shapes such as a rod shape, a plate shape, and a tape shape are possible. Further, the ratio of ascorbic acid or the like in the inorganic ionic molecular crystals in the detection element material of the present invention is not particularly limited, but may be, for example, 0.01 to 0.3% by mass based on the entire inorganic ionic molecular crystals. The range is preferably in the range of 0.05 to 0.2% by mass. When two or more types of metal ions are used in the inorganic ionic molecular crystal, the detection can be performed by adjusting the content of those metal ions, or by adjusting the amount of ascorbic acid or the like to be added. It is possible to adjust the sensitivity of the device material to radiation. Further, the sensitivity of the detection element material to radiation can be adjusted by heating the detection element material to thermally decompose the added ascorbic acid and the like. In the detection element material of the ESR radiation dosimeter according to the present invention, it is preferable that the inorganic ion molecular crystal contains a paramagnetic metal ion for correcting the intensity of unpaired electrons or radicals. The permanent metal ions include, for example, manganese ions, chromium ions, copper ions, and the like. These may be used alone or in combination of two or more. Of these, manganese ions and chromium ions are preferred, and manganese ions are more preferred. Further, the ratio of the paramagnetic metal ion is, for example, 1 to 500 ppm with respect to the entire inorganic ionizable molecular crystal, and is preferably Is from 10 to 50 ppm. The paramagnetic metal ion can be included in the inorganic acid ion aqueous solution or the metal ion aqueous solution or both by adding the paramagnetic metal ion to the inorganic ion molecular crystal when the inorganic ion molecular crystal is precipitated. Next, an ESR radiation dosimeter according to the present invention includes a detection element in which a detection material that generates unpaired electrons due to radiation is stylized, and a device that measures ESR in the detection material. An ESR radiation dosimeter for measuring the concentration of a pair of electrons or the concentration of a radical containing the unpaired electron, and determining a radiation dose from the measured value, wherein the detection material is the detection element material of the present invention. Including. The measurement of radiation using the ESR radiation dosimeter of the present invention is performed, for example, as follows. That is, first, an inorganic ionic molecular crystal of the present invention, which is compression-molded into a pellet, is embedded in paraffin and solidified to produce a detection element. This detection element is exposed to radiation or light. After the exposure, the detection element is placed in a quartz sample tube with an inner diameter of about 4 mm and placed in a microwave cavity resonator. The microwave output is kept constant and the magnetic field is modulated. The signal modulated by the magnetic field modulation is amplified by an amplifier, and a signal is extracted as a first derivative form dPZdH of the microwave absorption signal P (H), which is converted into a radiation dose. Example
つぎに、 本発明の実施例について説明する。  Next, examples of the present invention will be described.
(実施例 1 ) 0 . 1 M炭酸ナトリゥム水溶液 4 0 0 m lおよび 1 M塩化カルシウム 水溶液 4 0 m 1を準備した。 そして、 前記炭酸ナトリウム水溶液に、 ァ スコルビン酸を 3 . l g若しくは 0 . 3 1 g添加した。 ァスコルビン酸 の添加量は、 これを含む炭酸カルシウム結晶全体の 1質量%若しくは 0 . 1質量%となるように調整した量である。 そして、 前記炭酸ナトリウ ム水溶液に前記塩化カルシウム水溶液を加えることにより、 結晶内部に ァスコルビン酸を含む炭酸カルシウム結晶を析出させた。 得られた結晶 は、 ァスコルビン酸濃度が、 0 . 1質量%と 1質量%の 2種類である。 前記 2種類のァスコルビン酸含有炭酸カルシウム結晶について、 各波 長における吸光度を測定した。 この測定は、 積分球を用いた拡散反射測 定により行い、 標準試料として硫酸バリウムを用い、 測定機は、 島津製 作所の S imazu UV-3101PCを用いた。 また、 コント口一ルとして、 ァスコ ルビン酸 (ビタミン C ) および炭酸カルシウムについても吸光度を測定 した。 この結果を、 図 1に示す。 同図において、 曲線 Aは、 ァスコルビ ン酸 1質量%含有の炭酸カルシウムの吸光度を示し、 曲線 Bは、 ァスコ ルビン酸 0 . 1質量%含有の炭酸カルシウムの吸光度を示し、 曲線 Cは 、 炭酸カルシウム単体の吸光度を示し、 曲線 Dは、 ァスコルビン酸 (ビ タミン C ) 単体の吸光度を示す。 図示のように、 ァスコルビン酸含有炭 酸カルシウムは、 紫外線領域で吸光を示し、 特に U V B領域で高い吸光 を示した。 また、 ァスコルビン酸の含有量を増やせば、 吸光度も向上し た。 (Example 1) 400 ml of a 0.1 M aqueous sodium carbonate solution and 40 ml of a 1 M aqueous calcium chloride solution were prepared. Then, 3.1 lg or 0.31 g of ascorbic acid was added to the aqueous sodium carbonate solution. The amount of ascorbic acid added is adjusted so as to be 1% by mass or 0.1% by mass of the entire calcium carbonate crystal including the same. Then, the calcium carbonate aqueous solution was added to the sodium carbonate aqueous solution to precipitate calcium carbonate crystals containing ascorbic acid inside the crystals. The obtained crystals have two kinds of ascorbic acid concentrations of 0.1% by mass and 1% by mass. The absorbance at each wavelength was measured for the two kinds of calcium carbonate crystals containing ascorbic acid. This measurement was performed by diffuse reflection measurement using an integrating sphere, barium sulfate was used as a standard sample, and Simazu UV-3101PC manufactured by Shimadzu Corporation was used as a measuring instrument. Absorbance was also measured for ascorbic acid (vitamin C) and calcium carbonate as controls. Figure 1 shows the results. In the figure, curve A shows the absorbance of calcium carbonate containing 1% by mass of ascorbic acid, curve B shows the absorbance of calcium carbonate containing 0.1% by mass of ascorbic acid, and curve C shows the absorbance of calcium carbonate containing 0.1% by mass of ascorbic acid. The curve shows the absorbance of ascorbic acid (vitamin C) alone. As shown, calcium carbonate containing ascorbic acid showed absorption in the ultraviolet region, and particularly high absorption in the UVB region. Also, increasing the content of ascorbic acid improved the absorbance.
(実施例 2 ) (Example 2)
実施例 1と同じ方法により、 ァスコルビン酸を 1質量%含有する炭酸 カルシウムを調製した。 これと、 グリセリンとを、 体積比 1 : 1で混合 し、 これの吸光度を測定した。 この測定も、 実施例 1と同じ方法で行つ た。 また、 参考例として、 ァスコルビン酸を 1質量%含有する炭酸カル シゥムの吸光度も併せて測定した。 この結果を、 図 2に示す。 同図にお いて、 上の曲線がグリセリンと混合した場合の吸光度を示し、 下の曲線 が、 グリセリンと混合しない場合の吸光度を示す。 図示のように、 ダリ セリンと混合することによって、 吸光度が向上した。 In the same manner as in Example 1, calcium carbonate containing 1% by mass of ascorbic acid was prepared. Mix this with glycerin in a volume ratio of 1: 1 Then, the absorbance was measured. This measurement was also performed in the same manner as in Example 1. As a reference example, the absorbance of calcium carbonate containing 1% by mass of ascorbic acid was also measured. The result is shown in FIG. In the figure, the upper curve shows the absorbance when mixed with glycerin, and the lower curve shows the absorbance when not mixed with glycerin. As shown, the absorbance was improved by mixing with dalyserin.
(実施例 3) (Example 3)
実施例 1の方法において、 炭酸ナトリウム水溶液に、 酸化亜鉛 (粒径 0. 02 m) を l O Omg添加し、 ァスコルビン酸 6. 2 g若しくは 0. 62 g添加した。 また、 酸化亜鉛は、 超音波により粒子を前記水溶 液に均一に分散させた。 これら以外は、 実施例 1と同じ方法により、 ァ スコルビン酸と酸化亜鉛を含有する炭酸カルシウムを調製し、 この吸光 度を測定した。 この測定も、 実施例 1と同じ方法で行った。 また、 参考 例として、 ァスコルビン酸を 1質量%含有する炭酸カルシウムの吸光度 も併せて測定した。 この結果を、 図 3に示す。 同図において、 実線が、 酸化亜鉛を含有する場合の吸光度を示し、 点線が、 酸化亜鉛を含有しな い場合の吸光度を示す。 図示のように、 酸化亜鉛を配合することにより 、 UVB領域 (2 8 0〜 3 1 5 n m) に加え、 UVA領域 ( 3 1 5〜 3 80 nm) においても、 吸光が確認できた。  In the method of Example 1, zinc oxide (particle size: 0.02 m) was added to an aqueous solution of sodium carbonate by lO Omg, and 6.2 g or 0.62 g of ascorbic acid was added. The zinc oxide was obtained by uniformly dispersing particles in the aqueous solution by ultrasonic waves. Except for these, calcium carbonate containing ascorbic acid and zinc oxide was prepared in the same manner as in Example 1, and the absorbance was measured. This measurement was also performed in the same manner as in Example 1. Further, as a reference example, the absorbance of calcium carbonate containing 1% by mass of ascorbic acid was also measured. Figure 3 shows the results. In the figure, the solid line shows the absorbance when zinc oxide is contained, and the dotted line shows the absorbance when zinc oxide is not contained. As shown in the figure, by adding zinc oxide, absorption was confirmed in the UVA region (315-380 nm) in addition to the UVB region (280-315 nm).
(実施例 4) (Example 4)
実施例 1の方法において、 炭酸ナトリウム水溶液に、 ァスコルビン酸 を、 種々濃度で添加した。 これ以外は、 実施例 1と同じ方法により、 種 々濃度でァスコルビン酸を含有する炭酸カルシウムを調製し、 この吸光 度 ( 2 9 3 nm) を測定した。 この測定も、 実施例 1と同じ方法で行つ た。 その結果を、 図 4に示す。 図示のように、 ァスコルピン酸の含有量 が増加するにつれて、 吸光度も上昇した。 In the method of Example 1, ascorbic acid was added to the aqueous sodium carbonate solution at various concentrations. Except for this, calcium carbonate containing ascorbic acid at various concentrations was prepared in the same manner as in Example 1, and the absorbance (293 nm) was measured. This measurement is performed in the same manner as in Example 1. Was. Figure 4 shows the results. As shown, the absorbance increased as the ascorbic acid content increased.
(実施例 5、 比較例 1) (Example 5, Comparative Example 1)
炭酸カリウムと炭酸ナトリウムからなる 0. 1M炭酸水溶液 20 0 m 1および、 0. 1 M塩化カルシウム水溶液を準備した。 前記炭酸水溶液 にァスコルビン酸ナトリウムを 0. 0 7 9 g添加した。 そして、 前記炭 酸水溶液と前記塩化カルシウム水溶液を一定の速度 ( 1. 3m l Zs e c) で同時にまぜ、 混合液をビーカーに溜めることに j;り結晶内部にァ スコルビン酸イオンを含む炭酸カルシウム結晶 (白色粉末) を析出させ た。 得られた結晶は、 ァスコルビン酸濃度が 0. 08質量%でぁる。 こ の白色粉末を E S R放射線線量計の検出素子とした。 他方、 粉末 DL— ァラニンを同様に E S R放射線線量計の検出素子とし、 これを比較例 1 とした。 これらの検出素子に対し、 T線をそれぞれ照射した。 これらの 検出素子を、 それぞれ内径 4mm程度の石英試料管に約 20 Omg納め 、 この石英試料管を空洞共振器の中に挿入した。 そして、 マイクロ波出 力は一定にしておいて、 磁場変調をかけた。 この磁場変調により、 変調 された信号を増幅器によって増幅し、 マイクロ波吸収信号 P (H) の 一次微分形 d PZdHとして信号を取り出すことにより、 E S R吸収信 号を測定した。 この測定の条件は、 吸収線量が 7 0 Gy (グレイ) 、 変 調磁場の幅が 0. 0 2mT、 磁場走引幅が 2mT、 マイクロ波出力強度 0. O lmWである。 この測定結果を、 図 5に示す。 同図において、 上 の曲線が、 DL—ァラニンの ES R吸収信号であり。 下の曲線が、 ァス コルビン酸含有炭酸カルシウムの E S R吸収信号である。 図示のように 、 ァスコルピン酸含有炭酸カルシウムの信号幅は、 DL—ァラニンの真 中の信号にくらべ、 約 60分の 1程度小さいことがわかる。 つぎに、 前記検出素子について、 E S R測定時の設定条件のである磁 場変調およびマイクロ波出力の最適条件を調べた。 磁場変調の結果を、 図 6に示し、 マイクロ波出力の結果を図 7に示す。 図 6に示すようにマ イク口波出力 0. 02mWの条件では、 ァスコルビン酸含有炭酸カルシ ゥムは、 DL—ァラニンに比べ、 それぞれの変調磁場の最適条件 (信号 強度が飽和する直前の変調磁場) において、 E S R信号強度が約 3倍よ い。 また、 図 7に示すように変調磁場 0. 02mTでは、 ァスコルビン 酸含有炭酸カルシウムは、 DL—ァラニンに比べ、 それぞれのマイクロ 波出力の最適条件 (信号強度が飽和する直前の変調磁場) において、 E S R信号強度が約 1 0倍よい。 これらの結果を総合すると、 ァスコルビ ン酸含有炭酸カルシウムの信号強度は、 ァラニンに対し、 ほぼ半減する といえる。 ァ線を照射せずに、 ァスコルビン酸含有炭酸カルシウム検出素子およ び D L—ァラニン検出素子の E S R信号を測定した。 この測定において 、 ァスコルビン酸含有炭酸カルシウムの条件は、 マイクロ波出力 0. 0 2mW, 調磁場 0. 02mTであり、 DL—ァラニンの条件は、 マイク 口波出力 5mW、 変調磁場 0. 63mTであり、 それぞれ最適の条件と した。 この結果を、 図 8に示す。 図示のように、 未照射にもかかわらず 、 DL—ァラニンには、 すでに E S R信号が存在し、 最低検出線量は、 この信号に依存する。 これに対し、 ァスコルビン酸含有炭酸カルシウム は、 E S R信号がなく、 最低検出線量は、 装置の性能に依存することに なる。 ァ線を低量 ( 6 8 0mGy) で照射して、 ァスコルビン酸含有炭酸力 ルシゥム検出素子の E S R信号を測定した。 この時の条件は、 マイクロ 波出力 0. 02111 、 変調磁場0. 02mTであり、 ESR測定装置と して、 J EOL RE— IX (日本電子社製) を使用した。 この結果を、 図 9に示す。 図示のように、 ァ線が低量であっても検出することができ た。 ァスコルビン酸含有炭酸カルシゥムラジカルおよび DL—ァラニンラ ジカルの、 E S R測定における熱安定性を、 それぞれ調べた。 また、 参 考例として、 マンガンイオン含有炭酸カルシウムの熱安定性も調べた。 加熱は、 種々温度で 15分間ァニールすることにより行った。 すなわち 、 室温から徐々に温度を上げていくなかで、 ある温度で 1 5分間一定に 保持した後、 ESRを測定し、 その後、 昇温して次の温度で 1 5分間一 定に保持した後、 また ESRを測定し、 というように、 同じサンプルを 種々温度で一定に 1 5分間保持した後、 その都度 E S Rを測定した。 こ のような実験を等時焼鈍実験という。 ESR測定の条件は、 ァスコルビ ン酸含有炭酸カルシウムの場合、 マイクロ波出力 0. 02mW、 変調磁 場 0. 02mTであり、 DL—ァラニンの場合、 マイクロ波出力 lmW 、 変調磁場 0. lmTであり、 Mn2 +の場合、 マイクロ波出力 lmW、 変調磁場 0. lmTである。 これらの結果を図 10に示す。 図示のよう に、 ァスコルビン酸含有炭酸カルシウムは、 DL—ァラニンに比べ、 約 10 o°cほど熱安定性に優れており、 高温での熱安定性に優れていた。 また、 ァスコルビン酸含有炭酸カルシウムは、 室温での減衰率も十分に 小さかった。 ァスコルビン酸含有炭酸カルシウムについて種々線量で τ線を照射し 、 その E S R信号強度を測定した。 測定条件は、 マイクロ波出力 0. 0 2mW、 変調磁場 0. 02mTである。 この結果を図 1 1に示す。 図示 のように、 ァ線吸収量に比例して、 E S R信号強度も上昇した。 なお、 最低検出感度 (2 0mGy) は、 SZN比で決めた。 産業上の利用可能性 200 ml of a 0.1 M aqueous carbonate solution composed of potassium carbonate and sodium carbonate and a 0.1 M aqueous calcium chloride solution were prepared. 0.079 g of sodium ascorbate was added to the aqueous carbonate solution. Then, the aqueous solution of carbonic acid and the aqueous solution of calcium chloride are simultaneously mixed at a constant speed (1.3 ml Zsec), and the mixed solution is collected in a beaker. (White powder) was precipitated. The obtained crystals have an ascorbic acid concentration of 0.08% by mass. This white powder was used as the detector for the ESR radiation dosimeter. On the other hand, powder DL-alanine was used as the detection element of the ESR radiation dosimeter in the same manner, and this was designated as Comparative Example 1. Each of these detectors was irradiated with T-rays. Each of these detectors was placed in a quartz sample tube having an inner diameter of about 4 mm in an amount of about 20 mg, and this quartz sample tube was inserted into the cavity resonator. Then, the microwave output was kept constant and the magnetic field was modulated. The ESR absorption signal was measured by amplifying the signal modulated by this magnetic field modulation with an amplifier and extracting the signal as the first derivative dPZdH of the microwave absorption signal P (H). The conditions for this measurement are: absorbed dose of 70 Gy (gray), modulated magnetic field width of 0.02 mT, magnetic field sweep width of 2 mT, and microwave output intensity of OlmW. Figure 5 shows the measurement results. In the figure, the upper curve is the ESR absorption signal of DL-alanine. The lower curve is the ESR absorption signal of calcium carbonate containing ascorbic acid. As shown in the figure, the signal width of ascorbic acid-containing calcium carbonate is about 1/60 smaller than the signal in the middle of DL-alanine. Next, with respect to the detection element, the optimum conditions of the magnetic field modulation and the microwave output, which are the setting conditions at the time of the ESR measurement, were examined. Figure 6 shows the results of the magnetic field modulation, and Figure 7 shows the results of the microwave output. As shown in Fig. 6, under the condition of 0.02 mW of the output of the microphone, the calcium carbonate containing ascorbic acid is more optimal than the DL-alanine in the optimal condition of each modulating magnetic field (the modulating magnetic field immediately before the signal intensity is saturated). ), The ESR signal strength is about 3 times better. As shown in Fig. 7, when the modulation magnetic field is 0.02 mT, the calcium carbonate containing ascorbic acid has a higher ESR under the optimum conditions of the microwave output (modulation magnetic field immediately before the signal intensity is saturated) than DL-alanine. The signal strength is about 10 times better. Taken together, these results indicate that the signal intensity of calcium carbonate containing ascorbic acid is almost halved compared to that of alanine. The ESR signals of the calcium carbonate detection element containing ascorbic acid and the DL-alanine detection element were measured without irradiation with α-rays. In this measurement, the conditions of ascorbic acid-containing calcium carbonate were as follows: microwave output: 0.02 mW, modulating magnetic field: 0.02 mT, DL-alanin: microphone: mouth wave output: 5 mW, modulating magnetic field: 0.63 mT, The optimum conditions were set for each. The results are shown in FIG. As shown, despite non-irradiation, DL-alanine already has an ESR signal, and the lowest detected dose depends on this signal. In contrast, calcium carbonate containing ascorbic acid does not have an ESR signal, and the minimum detected dose depends on the performance of the device. Irradiation at a low dose (680 mGy), the carbonic acid containing ascorbic acid The ESR signal of the luminous detector was measured. The conditions at this time were a microwave output of 0.02111 and a modulating magnetic field of 0.02 mT, and J EOL RE-IX (manufactured by JEOL Ltd.) was used as the ESR measuring device. The result is shown in FIG. As shown in the figure, detection was possible even when the amount of a-ray was low. The thermal stability of ascorbic acid-containing calcium carbonate radical and DL-alanine radical in ESR measurement was examined. As a reference example, the thermal stability of manganese ion-containing calcium carbonate was also investigated. Heating was performed by annealing at various temperatures for 15 minutes. That is, while the temperature is gradually increased from room temperature, the temperature is kept constant at a certain temperature for 15 minutes, the ESR is measured, and then the temperature is raised and the temperature is kept constant at the next temperature for 15 minutes. The same sample was kept at various temperatures for 15 minutes, and the ESR was measured each time. Such an experiment is called isochronous annealing experiment. The conditions for ESR measurement were as follows: in the case of calcium carbonate containing ascorbic acid, a microwave output of 0.02 mW and a modulation magnetic field of 0.02 mT, and in the case of DL-alanine, a microwave output of lmW and a modulation magnetic field of 0.lmT, In the case of Mn 2 + , the microwave output is lmW and the modulation magnetic field is 0.1 lmT. Figure 10 shows these results. As shown in the figure, ascorbic acid-containing calcium carbonate was superior in thermal stability by about 10 ° C to DL-alanine, and was superior in thermal stability at high temperatures. In addition, ascorbic acid-containing calcium carbonate had a sufficiently low decay rate at room temperature. The ascorbic acid-containing calcium carbonate was irradiated with τ rays at various doses, and its ESR signal intensity was measured. The measurement conditions were as follows: microwave output 0.0 2 mW, modulation field 0.02 mT. The results are shown in FIG. As shown, the ESR signal intensity also increased in proportion to the X-ray absorption. The minimum detection sensitivity (20 mGy) was determined by the SZN ratio. Industrial applicability
以上のように、 本発明の無機イオン性分子結晶は、 その結晶内部にァ スコルビン酸等を有する。 この無機イオン結晶は、 例えば、 紫外線吸収 剤、 ビタミン C補給剤および E S R検出素子材料に応用でき、 しかも、 これらの従来の問題点を解決できる。 本発明の無機イオン性分子結晶は 、 その他の用途にも使用可能である。  As described above, the inorganic ionic molecular crystal of the present invention has ascorbic acid and the like inside the crystal. This inorganic ion crystal can be applied to, for example, an ultraviolet absorber, a vitamin C supplement, and an ESR detection element material, and can solve these conventional problems. The inorganic ionic molecular crystal of the present invention can be used for other purposes.

Claims

請求の範囲 The scope of the claims
1 . 無機酸および金属を含む無機イオン性分子結晶であって、 この結 晶内に、 ァスコルビン酸、 ァスコルビン酸塩、 ァスコルビン酸誘導体お よびァスコルビン酸イオンからなる群から選択される少なくとも一つを 含有する無機イオン性分子結晶。 1. An inorganic ionic molecular crystal containing an inorganic acid and a metal, wherein the crystal contains at least one selected from the group consisting of ascorbic acid, ascorbate, an ascorbic acid derivative, and an ascorbate ion. Inorganic ionic molecular crystals.
2 . 金属が、 ナトリウム、 カリウム、 リチウム、 ストロンチウム、 力 ルシゥム、 マグネシウムおよびバリゥムからなる群から選択された少な くとも一つである請求の範囲 1記載の無機イオン性分子結晶。 2. The inorganic ionic molecular crystal according to claim 1, wherein the metal is at least one selected from the group consisting of sodium, potassium, lithium, strontium, potassium, magnesium and balium.
3 . 無機酸が、 炭酸、 リン酸および硫酸の少なくとも一つである請求 の範囲 1または 2記載の無機イオン性分子結晶。 3. The inorganic ionic molecular crystal according to claim 1, wherein the inorganic acid is at least one of carbonic acid, phosphoric acid, and sulfuric acid.
4 . 無機イオン性分子結晶が、 炭酸カルシウム結晶、 炭酸マグネシゥ ム結晶、 炭酸バリウム結晶、 硫酸カルシウム結晶、 硫酸マグネシウム結 晶、 硫酸バリウム結晶、 リン酸カルシウム結晶、 炭酸マグネシウムカル シゥム結晶および炭酸ストロンチウム結晶からなる群から選択される少 なくとも一つである請求の範囲 1記載の無機イオン性分子結晶。 4. The inorganic ionic molecular crystal is composed of calcium carbonate crystal, magnesium carbonate crystal, barium carbonate crystal, calcium sulfate crystal, magnesium sulfate crystal, barium sulfate crystal, calcium phosphate crystal, magnesium carbonate calcium crystal and strontium carbonate crystal. 2. The inorganic ionic molecular crystal according to claim 1, which is at least one selected from the group consisting of:
5 . ァスコルビン酸塩が、 ァスコルビン酸ナトリウム塩、 ァスコルビ ン酸カリゥム塩およびァスコルビン酸カルシウム塩からなる群から選択 される少なくとも一つである請求の範囲 1から 4のいずれかに記載の無 機イオン性分子結晶。 5. The organic ionic liquid according to any one of claims 1 to 4, wherein the ascorbate is at least one selected from the group consisting of sodium ascorbate, potassium ascorbate and calcium ascorbate. Molecular crystals.
6 . ァスコルビン酸イオンが、 1価のイオンおよび 2価のイオンの少 なくとも一方である請求の範囲 1から 4のいずれかに記載の無機イオン 性分子結晶。 6. Ascorbate ion is less of monovalent and divalent ions 5. The inorganic ionic molecular crystal according to any one of claims 1 to 4, which is at least one.
7 . ァスコルピン酸、 ァスコルビン酸塩、 ァスコルビン酸誘導体およ びァスコルビン酸イオンの合計含有量が、 これを含む無機イオン性分子 結晶全体に対し、 0 . 0 0 1〜 1 0質量%の範囲である請求の範囲 1か ら 5のいずれかに記載の無機イオン性分子結晶。 7. The total content of ascorbic acid, ascorbate, ascorbic acid derivative and ascorbate ion is in the range of 0.001 to 10% by mass based on the whole inorganic ionic molecular crystal including the same. The inorganic ionic molecular crystal according to any one of claims 1 to 5.
8 . 請求の範囲 1から 7のいずれかに記載の無機イオン性分子結晶の 製造方法であって、 無機酸イオン水溶液および金属イオン水溶液の少な くとも一方に、 ァスコルビン酸、 ァスコルビン酸塩およびァスコルビン 酸誘導体の少なくとも一つを含有させ、 前記両水溶液を混合して無機ィ オン性分子結晶を析出させる際に、 前記結晶中に、 ァスコルビン酸、 ァ スコルビン酸塩、 ァスコルビン酸誘導体およびァスコルビン酸イオンの 少なくとも一つを含有させる製造方法。 8. The method for producing an inorganic ionic molecular crystal according to any one of claims 1 to 7, wherein at least one of the aqueous solution of an inorganic acid ion and the aqueous solution of a metal ion comprises ascorbic acid, ascorbate, and ascorbic acid. When at least one of the derivatives is contained and the two aqueous solutions are mixed to precipitate an inorganic ion molecular crystal, at least one of ascorbic acid, ascorbate, an ascorbic acid derivative and an ascorbate ion is contained in the crystal. Manufacturing method to contain one.
9 . 請求の範囲 1から 7のいずれかに記載の無機イオン性分子結晶の 製造方法であって、 無機酸イオン水溶液に、 ァスコルビン酸金属塩を添 加して無機イオン性分子結晶を析出させる際に、 前記結晶中にァスコル ビン酸、 ァスコルビン酸塩およびァスコルビン酸イオンの少なくとも一 つを含有させる製造方法。 9. The method for producing an inorganic ionic molecular crystal according to any one of claims 1 to 7, wherein a metal salt of ascorbic acid is added to an aqueous solution of an inorganic acid ion to precipitate the inorganic ionic molecular crystal. A method for producing a crystal comprising at least one of ascorbic acid, ascorbate and ascorbate ions in the crystal.
1 0 . 請求の範囲 1から 7のいずれかに記載の無機イオン性分子結晶 を含む紫外線吸収剤。 10. An ultraviolet absorber comprising the inorganic ionic molecular crystal according to any one of claims 1 to 7.
1 1 . 無機イオン性分子結晶中に、 紫外線散乱剤を含む請求の範囲 1 0記載の紫外線吸収剤。 11. The claim 1 wherein the inorganic ionic molecular crystal contains an ultraviolet scattering agent. The ultraviolet absorbent according to 0.
1 2. 紫外線散乱剤が、 酸化チタンおよび酸化亜鉛の少なくとも一つ である請求の範囲 1 1記載の紫外線吸収剤。 12. The ultraviolet absorber according to claim 11, wherein the ultraviolet scattering agent is at least one of titanium oxide and zinc oxide.
1 3. グリセリンを含む請求の範囲 1 0から 1 2のいずれかに記載の 紫外線吸収剤。 1 3. The ultraviolet absorber according to any one of claims 10 to 12, comprising glycerin.
14. 請求の範囲 1から 7のいずれかに記載の無機イオン性分子結晶 を含むビタミン C補給剤。 14. A vitamin C supplement comprising the inorganic ionic molecular crystal according to any one of claims 1 to 7.
1 5. 電子スピン共鳴 (E S R) 放射線線量計の検出素子材料であつ て、 請求の範囲 1から 7のいずれかに記載の無機イオン性分子結晶を含 む検出素子材料。 1 5. A detection element material for an electron spin resonance (ESR) radiation dosimeter, comprising the inorganic ionic molecular crystal according to any one of claims 1 to 7.
1 6. 放射線によって不対電子を生じる検出材料を定型化した検出素 子と、 前記検出材料中の電子スピン共鳴 (E S R) を測定する装置とを 有し、 前記検出材料の不対電子の濃度若しくは前記不対電子を含むラジ カルの濃度を測定し、 この測定値から放射線量を決定する E S R放射線 線量計であって、 前記検出材料が、 請求の範囲 1 5記載の検出素子材料 を含む E S R放射線線量計。 1 6. A detection element that stylizes a detection material that generates unpaired electrons due to radiation, and a device that measures electron spin resonance (ESR) in the detection material, wherein the concentration of unpaired electrons in the detection material is Alternatively, an ESR radiation dosimeter for measuring the concentration of the radical containing the unpaired electrons and determining the radiation dose from the measured value, wherein the detection material comprises the detection element material according to claim 15. Radiation dosimeter.
1 7. 不対電子若しくはラジカルの強度校正用として、 常磁性金属ィ オンを前記無機イオン性分子結晶中に含む請求の範囲 1 6記載の E S R 放射線線量計。 17. The ESR radiation dosimeter according to claim 16, wherein a paramagnetic metal ion is included in the inorganic ionic molecular crystal for calibration of unpaired electron or radical strength.
1 8. 常磁性金属イオンが、 マンガンイオン、 クロムイオンおよび銅 イオンの少なくとも一つである請求の範囲 1 7記載の E S R放射線線量 計。 18. The ESR radiation dosimeter according to claim 17, wherein the paramagnetic metal ion is at least one of a manganese ion, a chromium ion, and a copper ion.
PCT/JP2003/014624 2002-11-19 2003-11-18 Inorganic ionic molecular crystal WO2004048356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003284557A AU2003284557A1 (en) 2002-11-19 2003-11-18 Inorganic ionic molecular crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-335753 2002-11-19
JP2002335753A JP2004168701A (en) 2002-11-19 2002-11-19 Inorganic ionic molecular crystal

Publications (1)

Publication Number Publication Date
WO2004048356A1 true WO2004048356A1 (en) 2004-06-10

Family

ID=32375732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014624 WO2004048356A1 (en) 2002-11-19 2003-11-18 Inorganic ionic molecular crystal

Country Status (3)

Country Link
JP (1) JP2004168701A (en)
AU (1) AU2003284557A1 (en)
WO (1) WO2004048356A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707175B (en) * 2009-11-12 2011-06-15 江苏泽铭荧光材料有限公司 Electronic powder for energy-saving lamp and preparation method thereof
US9695390B2 (en) 2010-08-23 2017-07-04 President And Fellows Of Harvard College Acoustic waves in microfluidics
US20190015449A1 (en) * 2017-07-17 2019-01-17 Dr. Marlowe's Weight Loss Institute, P.L.L.C. Supplement for treating side effects of medications which cause metabolic acidosis
US10258987B2 (en) 2014-06-26 2019-04-16 President And Fellows Of Harvard College Fluid infection using acoustic waves
US11559806B2 (en) 2015-08-27 2023-01-24 President And Fellows Of Harvard College Acoustic wave sorting
US11701658B2 (en) 2019-08-09 2023-07-18 President And Fellows Of Harvard College Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887882B2 (en) * 2005-02-09 2011-02-15 Essilor International (Compagnie Generale D'optique) Stabilized ultra-violet absorbers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135171A (en) * 1980-03-27 1981-10-22 Jeol Ltd Measuring method of radiation amount using electron spin
JPS59203728A (en) * 1983-05-06 1984-11-17 Earth Chem Corp Ltd Preparation of calcium carbonate crystal
JPH01253681A (en) * 1988-04-01 1989-10-09 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Body to be measured for electronic spin resonance absorption radiation dosimeter
US5120762A (en) * 1987-10-19 1992-06-09 Takeda Chemical Industries, Ltd. Method for production of stabilized sodium ascorbate powder
JPH0775728A (en) * 1993-06-18 1995-03-20 Suzuki Yushi Kogyo Kk Production of uniform inorganic microbead

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135171A (en) * 1980-03-27 1981-10-22 Jeol Ltd Measuring method of radiation amount using electron spin
JPS59203728A (en) * 1983-05-06 1984-11-17 Earth Chem Corp Ltd Preparation of calcium carbonate crystal
US5120762A (en) * 1987-10-19 1992-06-09 Takeda Chemical Industries, Ltd. Method for production of stabilized sodium ascorbate powder
JPH01253681A (en) * 1988-04-01 1989-10-09 Kagaku Gijutsucho Hoshasen Igaku Sogo Kenkyusho Body to be measured for electronic spin resonance absorption radiation dosimeter
JPH0775728A (en) * 1993-06-18 1995-03-20 Suzuki Yushi Kogyo Kk Production of uniform inorganic microbead

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO H. ET AL: "Electron spin resonance of ascorbyl (Vitamin C) radicals in synthetic CaCO3 by UV irradiation", JPN. J. APPL. PHYS., vol. 42, no. 2A, 2003, pages 428 - 433, XP002978029 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707175B (en) * 2009-11-12 2011-06-15 江苏泽铭荧光材料有限公司 Electronic powder for energy-saving lamp and preparation method thereof
US9695390B2 (en) 2010-08-23 2017-07-04 President And Fellows Of Harvard College Acoustic waves in microfluidics
US10570361B2 (en) 2010-08-23 2020-02-25 President And Fellows Of Harvard College Acoustic waves in microfluidics
US11229911B2 (en) 2010-08-23 2022-01-25 President And Fellows Of Harvard College Acoustic waves in microfluidics
US10258987B2 (en) 2014-06-26 2019-04-16 President And Fellows Of Harvard College Fluid infection using acoustic waves
US11559806B2 (en) 2015-08-27 2023-01-24 President And Fellows Of Harvard College Acoustic wave sorting
US20190015449A1 (en) * 2017-07-17 2019-01-17 Dr. Marlowe's Weight Loss Institute, P.L.L.C. Supplement for treating side effects of medications which cause metabolic acidosis
US10342824B2 (en) * 2017-07-17 2019-07-09 Dr. Marlowe's Weight Loss Institute, P.L.L.C. Supplement for treating side effects of medications which cause metabolic acidosis
US11701658B2 (en) 2019-08-09 2023-07-18 President And Fellows Of Harvard College Systems and methods for microfluidic particle selection, encapsulation, and injection using surface acoustic waves

Also Published As

Publication number Publication date
JP2004168701A (en) 2004-06-17
AU2003284557A1 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
Lu et al. High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy
CN100592921C (en) Activatable particles, preparations and uses.
US5871708A (en) Radioactive patch/film and process for preparation thereof
US8227204B2 (en) Ionizing-radiation-responsive compositions, methods, and systems
US8164074B2 (en) Ionizing-radiation-responsive compositions, methods, and systems
WO2004048356A1 (en) Inorganic ionic molecular crystal
US20170224821A1 (en) Ionizing-radiation-responsive compositions, methods, and systems
US20060000977A1 (en) Device for generating images and/or projections
Jiang et al. A soft X-ray activated lanthanide scintillator for controllable NO release and gas-sensitized cancer therapy
Clark The physiological action of light
Matsumoto et al. A quantitative analysis of carbon-ion beam-induced reactive oxygen species and redox reactions
US20100176343A1 (en) Energy-transfer nanocomposite materials and methods of making and using same
CN105440188A (en) Novel three-dimensional gel dosimetric material and preparation method thereof
US8168958B2 (en) Ionizing-radiation-responsive compositions, methods, and systems
CN108904466A (en) A method of the hydrogel beads containing ZnO encapsulate insoluble drug
Kovacs et al. Alcohol solutions of triphenyl-tetrazolium chloride as high-dose radiochromic dosimeters
US20090104113A1 (en) Ionizing-radiation-responsive compositions, methods, and systems
GB2453860A (en) Ionising-radiation sensitive composition comprising luminescent and photosensitive materials
US8529426B2 (en) Ionizing-radiation-responsive compositions, methods, and systems
Wielopolski et al. Continuous three‐dimensional radiation dosimetry in tissue‐equivalent phantoms using electron paramagnetic resonance in L‐α‐alanine
Brik et al. Metabolism in tooth enamel and reliability of retrospective dosimetry
EP0730873B1 (en) A radioactive patch/film and process for preparation thereof
JP5614165B2 (en) diamond
Sato et al. Organic molecules and nanoparticles in inorganic crystals: Vitamin C in CaCO 3 as an ultraviolet absorber
Jiang et al. Polymer Systems for Ionizing Radiation Dosimetry and Radiotherapy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase