WO2004047164A1 - Semiconductor device having elevated device isolation structure and production method therefor - Google Patents

Semiconductor device having elevated device isolation structure and production method therefor Download PDF

Info

Publication number
WO2004047164A1
WO2004047164A1 PCT/JP2003/014524 JP0314524W WO2004047164A1 WO 2004047164 A1 WO2004047164 A1 WO 2004047164A1 JP 0314524 W JP0314524 W JP 0314524W WO 2004047164 A1 WO2004047164 A1 WO 2004047164A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
gate electrode
element isolation
semiconductor
Prior art date
Application number
PCT/JP2003/014524
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Wakabayashi
Jong-Wook Lee
Risho Koh
Shigeharu Yamagami
Yukishige Saito
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to AU2003280804A priority Critical patent/AU2003280804A1/en
Publication of WO2004047164A1 publication Critical patent/WO2004047164A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT

Definitions

  • the present invention relates to a semiconductor device having an elevated element isolation structure and a method of manufacturing the same.
  • the present invention relates to a structure of a MI SFET (metal-insulating film-silicon) having a raised element isolation structure and a method of manufacturing the same.
  • MI SFET metal-insulating film-silicon
  • isolation between element regions is performed by trench isolation technology such as STI (Shallow Trench Iso1 ation).
  • trench isolation technology such as STI (Shallow Trench Iso1 ation).
  • a conventional normal STI trench isolation structure that is, a substrate 101, a buried oxide film 102, a SOI film 103, a gate insulating film 104, a gate electrode 105, and a device as shown in FIG.
  • the gate electrode faces the gate electrode. Electric field tends to concentrate on the part where In particular, after various processes such as etching, the isolation electrode embedded in the trench is etched as shown in Fig. 6 (b), so that the gate electrode surrounds the SOI edge. As a result, the electric field is more easily concentrated on the upper end of the SOI film 103. As a result, the leakage current increases at the upper corner of the SOI film, and the threshold voltage decreases.
  • Patent Document 1 discloses that in a trench isolation structure on a bulk substrate, the upper end of a buried oxide film (an element isolation film in the present application) is located above a gate oxide film and at the same time. It is described that using a manufacturing method having a flat upper surface is effective in suppressing the inverse narrow channel effect.
  • Patent Document 2 discloses an example in which a lift-up element isolation structure is applied to an SO I-MI SFET in order to suppress a leakage current at an active region (SO I film) end. It is shown.
  • Non-Patent Document 1 ELevated Field INsulator
  • SEP S / D Elevated by Poly-Si Plugging
  • ELFIN raised element isolation structure
  • a MOSFET having an elevated element isolation structure is manufactured as follows (JP-A-2001-24202).
  • FIG. 7 is a schematic plan view illustrating the arrangement relationship between the element region 122, the element isolation region 123 that partitions the element region, and the gate electrode 115.
  • the hatched lines indicate the end 121 of the element region below the gate electrode.
  • FIGS. 8 and 9 (a) to (e) and (f1-1 to 3), which are cross-sectional structures including the gate electrode on the active region, parallel to the current direction of the channel. explain.
  • the gate insulating film 114 and the first are exposed by an exposure step and an etching step so as to leave an element region. For example, it is removed by plasma etching.
  • an element isolation insulating film 117 (silicon oxide film) is buried, and the surface heights of the first conductive film 115a and the element isolation insulating film 117 are increased by CMP.
  • a resist 119 is applied as shown in FIG. Patterning.
  • the pattern of the resist 119 is the same as the gate electrode pattern shown in FIG.
  • the second conductive film 115b, the first conductive film 115a and the gate insulating film 114 are etched by using the resist 119 as a resist.
  • the resist 119 is removed.
  • (f-1 1) is the X-X 'cross-sectional view (the cross-sectional structure including the gate electrode on the active region perpendicular to the channel current direction)
  • (f-1 2) is the channel current direction
  • (f-1 3) Is a plan view.
  • the upper surface of the element isolation insulating film 117 is at least as thick as the first conductive film 115a than the gate insulating film formed on the SOI film 113. It is located above.
  • the SOI film 113, the gate insulating film 114, and the first conductive film (polycrystalline silicon film) 115a are cut almost vertically at the element separation end when viewed in FIG. 9 (f-1). It is a rectangular shape. That is, in such an elevated element isolation structure, since the upper corner of the SOI film 113 faces only the corner of the first conductive film 115a, as shown in FIG. There is no concentration of the electric field, and the reverse narrow channel effect can be prevented.
  • Patent Document 1 JP-A-6-177239
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-1-24202
  • Non-Patent Document 1 2002 Symposium on VLSI Technology, Digest of Technical Papers, p. 42-43,
  • Non-patent document 2 IEEE Electron Device Letters, Vol.23, No.8, p.467
  • Non-patent document 3 IEICE technical report, SDM99-229, p.29-36 Or, even though the suppression of the inverse narrow channel effect has been considerably improved, further improvement is desired.
  • the antenna damage tolerance subjected in a subsequent step, TDDB (ti me depe nd dielec .tricbre akd own) characteristics, V sub V by (substrate potential) th (threshold Voltage is also required to be improved.
  • MIS FET devices In MIS FET devices, it is known that levels and the like are formed in the insulating film due to plasma damage during plasma etching, etc., which causes an increase in leakage current and a reduction in reliability. It has been reported that the MISFET on the bulk substrate is more susceptible to plasma damage due to the unique structure in which a buried insulating film is provided below the semiconductor layer on which the device is formed (see IEICE Technical Report, SDM 99-229, p. 2936, Non-Patent Document 3). In the case of an SOI device with an elevated isolation structure, plasma damage in the etching process of the isolation region shown in Fig. 8 (b) may enter the gate insulating film and the buried oxide film. This is considered to be large when the SOI film 113, the gate insulating film 114, and the first conductive film 115a are rectangular.
  • the edge portion (between the SOI film 113 and the first conductive film 115a forming the gate electrode) sandwiching the gate insulating film is considered.
  • the electric field is still likely to concentrate at the edge portion of the SOI film, even though it is mitigated by the raised element isolation structure as compared with the conventional structure, and this is completely recovered. It is thought that this combination with the unacceptable plasma damage hinders the above-mentioned property improvement. Disclosure of the invention
  • the present invention has been made in order to solve such a problem.
  • the antenna damage resistance, gate leakage current, TDDB characteristics, and V th (threshold voltage) due to V sub (substrate potential) in a later process are provided. It is an object of the present invention to provide a semiconductor device having excellent characteristics such as controllability, in particular, a SII device having a raised element isolation structure.
  • the present invention provides a buried insulating film formed on a base semiconductor layer, A device isolation film reaching the film, a semiconductor active layer partitioned by the device isolation film and located on the buried insulating film, a gate insulating film provided on a part of the semiconductor active layer, A semiconductor device having a gate electrode provided to face the semiconductor active layer with a film interposed therebetween, wherein the element isolation film has an upper surface raised above the gate insulating film surface as viewed from the substrate.
  • An element isolation structure wherein in a cross section orthogonal to the current direction of the channel and including the gate electrode, at least a part of an end in contact with the element isolation film, from the element center side to the element isolation film side end,
  • the present invention relates to a semiconductor device having a parse beak portion in which the thickness of a gate insulating film is gradually increased.
  • the semiconductor active layer ie, the SOI film
  • the reduction of the electric field concentration between the gate electrodes improves the characteristics of the gate insulating film, such as antenna damage resistance in later processes, reliability of the gate insulating film, gate leak current, and TDDB characteristics. .
  • the present invention also provides a buried insulating film formed on a base semiconductor layer, an element isolation film reaching the buried insulating film, and a semiconductor active layer partitioned by the element isolation film and located on the buried insulating film.
  • a gate insulating film provided on a part of the semiconductor active layer; and a gate electrode provided facing the semiconductor active layer via the gate insulating film.
  • the device isolation film has a raised device isolation structure in which the upper surface is above the gate insulating film surface as viewed from the substrate, and is in contact with the device isolation film in a cross section orthogonal to the channel current direction and including the gate electrode.
  • the bottom of the semiconductor active layer gradually recedes upward from the element center side to the element isolation film side end at least at a part of the end, and the thickness becomes thinner. Thick It relates to a semiconductor device and having a bottom Pazubiku portion and summer.
  • FIG. 1 is a cross-sectional view showing one example of the semiconductor device of the present invention.
  • FIG. 2 is a sectional process view showing one example of the manufacturing method of the present invention.
  • FIG. 3 is a cross-sectional view of the semiconductor device manufactured in the example. '
  • FIG. 4 is a graph showing the gate width dependence of the threshold voltage of the semiconductor device manufactured in the example.
  • FIG. 5 is a graph showing the gate voltage dependence of the gate leak current of the semiconductor device manufactured in the example.
  • FIG. 6 is a diagram showing an element isolation structure of a conventional semiconductor device.
  • FIG. 7 is a top view of the semiconductor device.
  • FIG. 8 is a process sectional view illustrating a conventional method for manufacturing a semiconductor device.
  • FIG. 9 is a process cross-sectional view illustrating a conventional method for manufacturing a semiconductor device.
  • FIG. 10 is a diagram illustrating electric field concentration in the structure of a conventional semiconductor device.
  • FIG. 11 is a diagram illustrating electric field concentration in the structure of a conventional semiconductor device.
  • FIG. 12 is a diagram illustrating electric field concentration in the structure of a conventional semiconductor device.
  • FIG. 13 is a cross-sectional view showing one example of the semiconductor device of the present invention.
  • FIG. 14 is a sectional view showing an example of the semiconductor device of the present invention.
  • FIG. 15 is a cross-sectional view showing one example of the semiconductor device of the present invention.
  • FIG. 1 [(c) is a top view, (a) is an XX ′ cross-sectional view, and (b) is a YYY ′ cross-sectional view] shows a characteristic portion of the semiconductor device of the present invention.
  • the upper surface of the element isolation film 7 is located above the gate insulating film.
  • an interlayer insulating film or the like may be further formed on the element isolation film 7, but the upper surface of the element isolation film is provided with a gate electrode (the second gate electrode material 5b in this example). It is defined by the lower surface of the part.
  • the upper surface of the element isolation film 7 is located usually at least 20 nm or more, preferably at least 50 nm or more above the central flat portion of the gate insulating film 4. Usually, the position is less than 200 nm.
  • a source region and a drain region are formed in the SOI film 3 by a subsequent process, and a contact hole or the like is provided after being filled with an interlayer insulating film in a normal structure.
  • the present invention includes a semiconductor device having such a structure.
  • the thickness of the gate insulating film increases from the element center side toward the element isolation end at the portion A in FIG. 1A, that is, at the element isolation end of the gate insulating film.
  • a portion where the thickness of the gate insulating film at the element isolation end is increased is called a parse beak portion.
  • the electric field concentration can be reduced.
  • electric field concentration occurs at a part of the upper corner of the SOI layer 113.
  • the gate electrode 115a does not extend to the element isolation insulating film 117. In comparison, the degree of electric field concentration is small.
  • a parse beak portion is provided above the S0I layer 3, and the upper corner of the S ⁇ I layer is rounded. Therefore, the electric field is alleviated, and the generation of leakage current at the upper corner, the deterioration of the sub-threshold characteristics due to the generation of the leakage current (the deterioration of the ON / OFF ratio due to the increase of the S factor), and the deterioration of characteristics such as the inverse narrow channel effect are reduced. Be suppressed.
  • the portion that is wider than the center of the gate insulating film is defined as the penetration distance, and the penetration distance L l from the end of the first gate electrode material 5a, SO I Expressed as the penetration distance L 2 from the edge of the film 3.
  • L 1 and L 2 are larger than 0, that is, if there is any penetration, the concentration of the electric field can be prevented, but usually both L 1 and L 2 are 1 nm or more. It is preferably at least 2 nm, more preferably at least 5 nm. On the other hand, if it is too large, an effective channel width cannot be secured and an inverse narrow channel effect appears. Therefore, it is preferably 25 nm or less, more preferably 20 nm or less.
  • the effect of the divergence of the purse beak is at least as long as it is larger than the gate insulating film thickness. If it is too large, the adverse effect of the inverse narrow channel effect will appear.
  • the thickness is preferably within 10 times the thickness of the gate insulating film.
  • the thickness is preferably 50% or less of the I film thickness.
  • L 1 and L 2 may be equal or different. However, in particular, if the penetration distance L2 on the SOI film side is too large, the inverse narrow channel effect becomes large, and the fluctuation of the threshold becomes large. Therefore, it is preferable that the penetration is not larger than necessary. Therefore, it is preferable that L2 and L1. For L 2, it is more preferably 25 nm or less and 5% or less of the channel width. On the other hand, since L1 is less affected by the inverse narrow channel effect, it is preferable to increase L1 as compared with L2 to reduce electric field concentration. Even when comparing the radii of curvature of the corners, the upper one has a larger radius of curvature than the lower one, and the corners are more rounded. The method of forming asymmetrically is described in the manufacturing method. '
  • the bottom of the SOI film 3 gradually recedes upward from the center of the device toward the isolation end, and the thickness of the buried insulating film decreases. However, it is gradually thicker than the center of the device. In the present invention, such a thick portion is referred to as a bottom parse peak portion. As the thickness of the buried insulating layer increases toward the end and the distance from the base semiconductor layer 1 of the substrate increases, the electric field concentration at the bottom end of the SOI film is reduced.
  • the electric field generated by the charge 132 in the buried oxide film and the charge 131 in the element isolation insulating film concentrates on the lower corner portion 133 of the SOI layer.
  • the electric charge 131 in the buried oxide film and the electric charge 131 in the device isolation effect film have a positive electric charge, so that the potential of the lower corner portion 133 of the SOI layer is lowered.
  • a leakage current occurs at the lower corner portion 133, and an inverse narrow channel effect occurs as the threshold voltage at the end decreases. .
  • a bottom bird's beak portion is provided on the bottom surface of the S01 layer 3, and the lower corner portion 133 is rounded. Therefore, the electric field concentration in the lower corner part 133 is reduced, and the lower corner of the n-channel SOI-MOS FET caused by the charge 131 in the buried oxide film and the charge 131 in the element isolation insulating film is reduced. The leak current and the reverse narrow channel effect in the section 133 and the narrow channel effect in the p-channel SOI-MOSFET can be prevented.
  • FIG. 11 (b) is a cross-sectional view in the ⁇ _ 'direction of FIG. 11 (a), which is a plan view
  • FIG. 11 (c) is a Y—Y of FIG. 11 (a), which is a plan view.
  • FIG. Reference numeral 135 denotes a source region. This is also a problem unique to SOI devices that does not exist in MOS FETs on the PARK substrate.
  • a bottom parse beak portion is provided on the bottom surface of the S01 layer 3, and the lower corner portion 133 is rounded.
  • the concentration of the electric field from the drain in the lower corner portion 133 is reduced, and a leak current is generated in the lower corner portion 133, and the sub-threshold characteristic is deteriorated due to the leak current (the ON / OFF ratio is deteriorated due to an increase in the S factor). ) And characteristic degradation such as the inverse narrow channel effect are suppressed.
  • FIG. 11 shows the direction of the electric field in n-channel SOI-M ⁇ SFET, but in the p-channel SOI-MOS FET, the direction of the electric field is opposite to that in Fig. 11 except that it is opposite.
  • the problems and the effects and effects of the invention are the same.
  • L3 is also usually 1 nm or more, preferably 2 nm.
  • an effective channel width cannot be ensured even if it is too large, it is preferably 25 nm or less, more preferably 20 nm or less, and most preferably 15 nm or less. At the same time, it is preferably 5% or less of the channel width (ie, gate width).
  • the present invention has a large effect when the S ⁇ I layer is thin, and is preferably applied to an SOI substrate in which the thickness of the SOI layer is 100 nm or less, preferably 50 nm or less.
  • the rate at which the SII film is thinned at the edge of the SOI layer is 20% or less, particularly preferably 10% or less, of the SOI film thickness immediately below the gate electrode.
  • the thickness of the SOI layer is usually 1 nm or more.
  • the insulating film is thicker from both the center and the end of the element in both the A and B sections, but only the parse beak of the gate insulating film or the bottom bird's beak The effect can be seen even if it has only.
  • the parse beak portion of the gate insulating film and the bottom parse beak portion of the bottom of the semiconductor active layer are formed over the entire end portion in contact with the element isolation film.
  • the form was shown. However, the effect can be obtained even if it is formed in a part of each region (for example, only on one side viewed from the central part of the element). That is, in the present invention, even if a parse beak is provided on at least a part of the end in contact with the element isolation film, or a bottom parse beak is provided on at least a part of the end in contact with the element isolation film. If it is, the effect can be seen.
  • the present invention includes a partial isolation structure having a body contact region in which a SOI film is partially pulled out to make contact.
  • FIG. 13 is an example of such a case, and when viewed in an X--X 'section, which is a section including a gate electrode in a plan view, as shown in FIG. 12 is separated from the MOSFET element region by the partial isolation film 8, while the SOI film is divided by the partial isolation film 8.
  • the structure is such that the body region 13 (p ⁇ in the case of nMOS) and the body contact region 12 (P + in the case of nMOS) are connected under the partial isolation film 8. In the body contact region, a contact hole is provided in a later step to make electrical connection.
  • the SOI film is dug partway and the partial isolation film 8 is buried, and a parse beak is formed at the end of the gate insulating film even at the end in contact with the partial isolation film 8, so that the electric field concentration
  • the mitigation effect is equivalent to that shown in Figure 1.
  • FIG. 14 shows that the SOI film is left flat without digging the SOI film in the partial isolation region, and only the gate electrode side (in this case, the first gate electrode material 5a) is recessed, and the parse beak is performed. Is formed.
  • the partial separation film 8 has a structure embedded up to the surface of the SII film.
  • FIG. 15 shows a structure in which the SOI film is left flat without digging the SOI film and no bird's beak is provided.
  • the parse beak portion is provided only on one side of the channel region.
  • the base semiconductor layer is preferably silicon.
  • the buried insulating film is formed by a SIMOX method or a bonding method, and is usually a silicon oxide layer.
  • the thickness of the buried insulating film is not limited, but in the present invention, particularly when a lower parse beak portion is formed, the effect is great when applied to a film having a thickness of 200 nm or less, preferably 15 O nm or less. It is.
  • the SOI film is usually preferably a single crystal silicon layer. When the present invention is applied, the effective thickness is 10 Onm or less, preferably 50 nm or less, as described above.
  • the element isolation film is generally a silicon oxide film, which is formed by ordinary plasma CVD (chemical deposition), but other insulating films mainly composed of silicon oxide such as BSG, PSG, BPSG, and silicon nitride films It may be a silicon oxynitride film, Si OF, or a stacked film of these.
  • the gate insulating film is not particularly limited as long as it satisfies the characteristics as a gate insulating film.
  • a high-dielectric-constant insulating film other than Si-based insulating films such as a silicon oxide film, a silicon oxynitride film (Si ⁇ N film) and a silicon nitride film (SiN film) may be used.
  • the first gate electrode material can be a conductive material such as a metal, but is preferably formed of polycrystalline silicon or polycrystalline silicon germanium.
  • the second gate electrode material is not particularly limited and can be formed of a normal electrode material, and a conductive material such as polycrystalline silicon (including silicide), metal, etc. can be used. However, it is preferably polycrystalline silicon or polycrystalline silicon germanium (both include silicide).
  • first and second gate electrode materials include refractory metals such as Ti, W, Ta, Co, and Mo and alloys thereof, and nitrides or silicides of these metals. However, any material can be used as long as it is suitably used for the gate electrode. Also, the first and second gate electrode materials may have a laminated structure of different conductive materials from the viewpoint of preventing impurity diffusion, improving adhesion, controlling threshold voltage (work function control), and the like.
  • a side oxide film may be present between the SOI film and the first gate electrode material and the element isolation film as described in a manufacturing method described later. In that case, the side oxide film forms a part of the element isolation film.
  • an SOI substrate having a buried insulating film 2 and an SOI film 3 on a base silicon layer 1 is prepared.
  • This SOI substrate structure is formed by, for example, a SI MOX method or a bonding method.
  • a gate insulating film 4 is formed on the SOI film 3 by a thermal oxidation method or the like.
  • a first polycrystalline silicon film 5a is deposited to a thickness of, for example, 200 to 10 nm by a CVD method or the like.
  • a silicon nitride film 6 having a thickness of, for example, 0 to 300 nm is deposited as a stopper film in the CMP step.
  • the silicon nitride film is also effective for suppressing the oxidation of the surface of the first polycrystalline silicon film when forming the side oxide film in a later step.
  • a stopper film such as a silicon nitride film may not be formed as long as it can be planarized with an acceptable level of controllability in the planarization step.
  • a resist 9 is formed on the silicon nitride film 6
  • patterning is performed using a normal exposure and development process so that the resist remains in a portion to be an element region.
  • the silicon nitride film 6, the first polycrystalline silicon film 5a, the gate insulating film 4 and the SOI film 3 are etched by plasma etching until the buried insulating film 2 is exposed.
  • a cleaning step is performed.
  • SPM cleaning aqueous solution of sulfuric acid and hydrogen peroxide
  • APM cleaning aqueous solution of ammonia and hydrogen peroxide
  • the etching rate of the silicon oxide film is extremely low (for example, 1/47) compared to the processing using both the SPM cleaning and the APM cleaning. Therefore, only the SPM is required to reduce the penetration distance. Is preferred.
  • As the SPM cleaning liquid a commonly used mixture of about 96% by weight of concentrated sulfuric acid and about 30% by weight of hydrogen peroxide having a mixing volume ratio of about 1: 1 to 10: 1 can be used.
  • the washing time can be appropriately selected, but is usually 1 to 10 minutes. SPM cleaning solution concentration, cleaning Depending on the time, the bird's beak penetration does not seem to have much effect.
  • the APM cleaning liquid For the APM cleaning liquid, use a commonly used mixture of about 30% by weight of ammonia, about 30% by weight of hydrogen peroxide, and pure water with a mixing volume ratio of about 1: 1: 20 to 1:10:20. be able to.
  • the washing time can be appropriately selected, but is usually 1 to 30 minutes.
  • the penetration distance of the parse beak differs depending on the concentration of the APM cleaning solution and the cleaning time, it is preferable to appropriately set the penetration depth in accordance with the intended penetration amount.
  • the side surfaces of the SOI film and the first polycrystalline silicon film are oxidized to form side surface oxide films 10.
  • the penetration distance of the purse beak can also be controlled by the conditions of this oxidation step. In order not to increase the penetration distance excessively, it is preferable to use an atmosphere in which oxygen is diluted with nitrogen without using hydrogen gas.
  • the oxidation is preferably performed by thermal oxidation under dry conditions.
  • the thickness of the side oxide film is 1 nm or more, usually about the thickness of the gate insulating film (1 to 2 nm) or more, preferably 3 nm or more. Also, if the side oxide film is made thicker, the penetration distance of the pulse beak becomes larger, so that it is preferably 25 nm or less, more preferably 20 nm or less.
  • the gate insulating film can be formed vertically asymmetrically, that is, the gate insulating films can be formed so that the penetration distances L1 and L2 are different.
  • the gate insulating films can be formed so that the penetration distances L1 and L2 are different.
  • L1 and L2 are formed almost equally, and at lower temperatures, 600-850 ° C, e.g., 700 ° C, L1 is greater than L2. growing.
  • the radius of curvature is larger on the upper side of the gate insulating film than on the lower side.
  • the edge of the gate insulating film etched in the previous cleaning step is also oxidized to form a purge peak.
  • the buried oxide film is also thickened near the SOI end. It is also effective in annihilating the level formed in the element isolation region etching process, and is effective in reducing the leak current of the gate insulating film and improving the reliability.
  • an element isolation film 7 is deposited in the element isolation groove 7a, for example, a silicon oxide film having a thickness of 50 to 500 nm, for example, about 300 nm, is deposited by a normal plasma CVD method. .
  • Cleaning is preferably performed as a pretreatment, and a cleaning method with a very low etching rate of the silicon oxide film, for example, SPM cleaning is preferably used.
  • a cleaning method in which the etching rate of the silicon oxide film is very low, the space between the first polysilicon film 5 and the SOI film 3 is constituted only by the gate insulating film or the silicon oxide film 71.
  • an insulating film formed by CVD or the like has inferior insulating properties to an insulating film formed by thermal oxidation, but by using a cleaning method with a very low etching rate, an element isolation film formed by CVD or the like can be used. It does not enter the gate insulating film.
  • the element isolation film 7 is planarized by chemical mechanical polishing (CMP) using the silicon nitride film 6 as a stopper to form the structure shown in FIG. 2 (e). Is done.
  • CMP chemical mechanical polishing
  • the silicon nitride film 6 is removed, and the first polycrystalline silicon film 5 is exposed.
  • the silicon nitride film 6 it is preferable to use, for example, a wet etching using a phosphoric acid solution, and thereafter to perform a treatment before the polycrystalline silicon deposition, for example, with a hydrofluoric acid solution.
  • a wet etching using a phosphoric acid solution
  • a hydrofluoric acid solution for example, with a hydrofluoric acid solution.
  • isotropic etching such as treatment with a phosphoric acid solution and a hydrofluoric acid solution is performed, the upper end of the element isolation film 7 is also isotropically etched to form notches 11.
  • the silicon nitride film 6 When the silicon nitride film 6 is removed, the silicon nitride film 6 and the silicon oxide film (element isolation film) 7 are etched at a constant rate, instead of the selective removal of silicon nitride as described above. By doing so, it is possible to remove the silicon nitride film while keeping the flat shape, so that the notch 11 is not formed.
  • a second polycrystalline silicon film 5b is deposited to a thickness of 10 to 200 nm, for example, 5 O nm thick by a normal CVD method as a gate electrode for contact extraction.
  • the notch 1 1 is formed as in this example, the second The polycrystalline silicon film 5b extends to the element isolation film 7 more than the end of the first polycrystalline silicon film 5a. With such a notch, the resistance of the gate electrode can be reduced accordingly.
  • a desirable spread distance L4 of the notch is, for example, from:! To 50 nm, and preferably about 5 to 10 nm.
  • the step is desirably 200 nm or less, and more desirably 10 nm or less, from the viewpoint of ensuring alignment during manufacturing.
  • the gate electrode is etched by a normal high-density plasma etching technique after patterning by a normal exposure technique so as to leave a resist in a portion to be a gate electrode.
  • the resist is peeled off by an ordinary method to complete a gate electrode having a laminated structure of the second polycrystalline silicon film 5b and the first polycrystalline silicon film 5a.
  • step a an SOI substrate having a 100 nm buried insulating film formed on a silicon substrate by a SI MOX method and a 30 nm thick silicon SOI film is prepared, and a gate insulating film 4 is formed using an oxygen nitride gas (NO Using a mixed gas of) and oxygen, a 1.9 nm thick silicon oxynitride film (SiON film) was formed by thermal oxidation at 950.
  • NO oxygen nitride gas
  • SiON film silicon oxynitride film
  • a first polycrystalline silicon film 5 is deposited to a thickness of 50 nm by a normal CVD method at 620 ° C., and then silicon nitride used as a stopper film in the CMP process is formed.
  • Film 6 was deposited to a thickness of 100 nm by CVD at 160 ° C.
  • the element isolation groove 7a was formed by the steps described in the embodiment. At this time, the mask pattern was changed to form each gate width (0.3 m to 10 m) of FIG. 6 described later.
  • step c) after the resist 9 was stripped, the resist 9 was washed using an SPM cleaning solution (containing concentrated sulfuric acid and hydrogen peroxide).
  • step e after forming an element isolation groove and performing SPM cleaning (the cleaning liquid is the same as that used in step c)), a 300 nm thick element isolation insulating film 7 is formed by a normal plasma CVD method. A silicon oxide film was formed. Thereafter, the element isolation insulating film 7 was planarized by a chemical mechanical polishing method using the silicon nitride film 6 as a stopper. In the step), the silicon nitride film 6 was removed with a phosphoric acid solution, and then with a hydrofluoric acid solution. Pre-processed.
  • a second polycrystalline silicon film 8 was deposited to a thickness of 50 nm by a normal CVD method as a gate electrode for contact extraction.
  • the second polycrystalline silicon film 8 was formed so as to be wider by 5 nm on the element isolation insulating film 7 side than the end of the first polycrystalline silicon film 8.
  • step h the MOS SFET was fabricated by patterning the gate length to 50 nm and performing the steps after the formation of the gate-side wall insulating film.
  • Example 1 the cleaning after removing the resist 9 in the step c) was performed using an SPM cleaning liquid (containing concentrated sulfuric acid and hydrogen peroxide) and an APM cleaning liquid (containing ammonia and hydrogen peroxide). Example 1 was repeated except that after the cleaning, the APM cleaning was further performed.
  • SPM cleaning liquid containing concentrated sulfuric acid and hydrogen peroxide
  • APM cleaning liquid containing ammonia and hydrogen peroxide
  • FIGS. 3A and 3B show XX and cross-sectional views of the semiconductor devices formed in Example 1 and Example 2 in the direction perpendicular to the channel direction, respectively.
  • the distance between the first polycrystalline silicon film 5 and the SOI film 3 becomes gradually thicker from the device center toward the device isolation end. Also, SO It can be seen that the distance between the I film 3 and the silicon substrate 1 gradually increases in thickness from the element center to the element isolation end at the end. The thickness of the SOI film 3 is gradually reduced from the center of the device to the isolation end.
  • 1 ⁇ 1 was 2511111, 2 was 25! 1111, and L3 was 5 nm.
  • FIG. 4 is a graph showing the gate width dependence of the threshold voltage of an nMOS FET having a gate length of 1 m formed by changing the gate width in Examples 1 and 2.
  • FIG. 5 is a graph showing IV measurement results of 5000 MOS FETs having a gate length of 1 m and a gate width of 2 m manufactured in Example 1 and Example 2 in parallel.
  • both the MOSFET manufactured by the manufacturing method of Example 1 and the MOSFET manufactured by the manufacturing method of Example 2 show a decrease in the threshold voltage and a decrease in the gate leakage current, but the MOSFET manufactured in Example 1
  • the threshold voltage fluctuation can be further suppressed, and the inverse narrow channel effect is significantly suppressed.
  • the threshold voltage fluctuation width is 5 OmV or less.
  • the presence of the bird's beak reduces the electric field concentration at the upper end of the SOI film.
  • the penetration distance of the parse beak is preferably not too large.
  • Example 3 in Step d) of Example 1, the temperature of the formation of the side oxide film was lowered, and thermal oxidation was performed at a relatively low temperature of 700. Under these conditions, the oxidation rate of polycrystalline silicon is higher than that of single crystal silicon, and as a result, the upper and lower asymmetry of the gate insulating film increases.
  • the oxidation rate of polycrystalline silicon at 700 ° C is about 10 to 20% faster than that of monocrystalline silicon, depending on the film quality.
  • the penetration distances L l and L 2 are also approximately the oxidation rate ratio. And an asymmetrical pearlsby formation is realized. Industrial applicability
  • antenna damage resistance ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ damage resistance, gate leak current, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the penetration distance of the bird's-beak is not too large, even in the case of an element having a very small gate width, it is effective in preventing the threshold voltage from lowering and reducing the leak current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A semiconductor device using an SOI substrate having an elevated device isolation structure, comprising a bird’s beak unit, where the thickness of a gate insulation film is gradually increases from a device center side toward a device isolation end, disposed at the end in contact with a device isolation area on a section being orthogonal to a channel current direction and including the gate electrode. The semiconductor device is excellent in characteristics such as resistance against antenna damage subjected to in the post-process, gate leak current, TDDB characteristics, and Vth (threshold voltage) controllability by Vsub (substrate potential).

Description

せり上げ素子分離構造を有する半導体装置及びその製造方法 技術分野  TECHNICAL FIELD The present invention relates to a semiconductor device having an elevated element isolation structure and a method of manufacturing the same.
本発明はせり上げ素子分離構造を有する MI SFET (金属一絶縁膜ーシリコ ン) の構造及びその製造方法に関する。  The present invention relates to a structure of a MI SFET (metal-insulating film-silicon) having a raised element isolation structure and a method of manufacturing the same.
背景技術  Background art
従来、 SO I (S i l i c on on I n s u l a t o r) 基板を用いた素 子構造では、 素子領域間の分離を ST I (Sh a l l ow T r e n c h I s o 1 a t i on) 等のトレンチ分離技術により行うことで、 素子領域間を電気的 に分離できる利点がある。  Conventionally, in an element structure using a silicon on insulator (SOI) substrate, isolation between element regions is performed by trench isolation technology such as STI (Shallow Trench Iso1 ation). There is an advantage that the element regions can be electrically separated.
しかし、 従来の通常の ST Iのトレンチ分離構造、 即ち、 図 6 (a) に示すよ うな、 基板 10 1、 埋め込み酸化膜 102、 SO I膜 103、 ゲート絶縁膜 10 4、 ゲート電極 105および素子分離膜 107有する構造で、 素子分離膜の高さ がゲート絶縁膜より高くない素子構造の場合には、 SO I膜 103の端の上部コ ーナ一部分で矢印で示すように、 ゲート電極と対向する部分に電界が集中しやす い。 特に、 実際にエッチング等の種々のプロセスを経た後は、 図 6 (b) に示す ように、 トレンチに埋め込んだ分離分離膜がエッチングされるために、 ゲート電 極が SO I端を囲むように形成され、 その結果 SO I膜 103の上部端に電界が より集中しやすくなる。 このため SO I膜上部コーナ一で、 リーク電流が大きく なり、 しきい電圧が低下したりする。  However, a conventional normal STI trench isolation structure, that is, a substrate 101, a buried oxide film 102, a SOI film 103, a gate insulating film 104, a gate electrode 105, and a device as shown in FIG. In the case of a structure having the isolation film 107 and an element structure in which the height of the element isolation film is not higher than the gate insulating film, as shown by an arrow at a part of the upper corner of the end of the SOI film 103, the gate electrode faces the gate electrode. Electric field tends to concentrate on the part where In particular, after various processes such as etching, the isolation electrode embedded in the trench is etched as shown in Fig. 6 (b), so that the gate electrode surrounds the SOI edge. As a result, the electric field is more easily concentrated on the upper end of the SOI film 103. As a result, the leakage current increases at the upper corner of the SOI film, and the threshold voltage decreases.
そこで、 このような素子領域端部における寄生チャネルの発生を抑制して、 ト ランジス夕の逆狭チャネル効果を抑制し、 さらにトランジスタのオフリーク電流 を抑制する目的のために、 S i層の上面、 特にゲート酸化膜よりも素子分離膜の 表面を不連続にせり上げた構造の素子分離構造が提案されている。 例えば特開平 6 - 177239号公報 (特許文献 1 ) には、 バルク基板上のトレンチ分離構造 において、 埋め込み酸化膜 (本願でいう素子分離膜) の上端がゲート酸化膜より も上に位置すると同時にその上面が平坦であるような製造方法を用いることが逆 狭チャンネル効果を抑制することに効果があることが記載されている。 一方、 特 開 2001— 24202号公報 (特許文献 2) には、 活性領域 (SO I膜) 端で のリ一ク電流を抑制する目的で、 せり上げ素子分離構造を SO I -MI SFET に適用した例が示されている。 Therefore, for the purpose of suppressing the occurrence of the parasitic channel at the end of the element region, suppressing the reverse narrow channel effect of the transistor, and suppressing the off-leak current of the transistor, the upper surface of the Si layer, In particular, an element isolation structure in which the surface of the element isolation film is raised more discontinuously than the gate oxide film has been proposed. For example, Japanese Unexamined Patent Publication No. 6-177239 (Patent Document 1) discloses that in a trench isolation structure on a bulk substrate, the upper end of a buried oxide film (an element isolation film in the present application) is located above a gate oxide film and at the same time. It is described that using a manufacturing method having a flat upper surface is effective in suppressing the inverse narrow channel effect. On the other hand, Japanese Unexamined Patent Application Publication No. 2001-24202 (Patent Document 2) discloses an example in which a lift-up element isolation structure is applied to an SO I-MI SFET in order to suppress a leakage current at an active region (SO I film) end. It is shown.
また、 2002 Symposium on VLSI Technology, Digest of Technical Papers, pp. 42-43, " ELFIN (ELevated Field INsulator) and SEP (S/D Elevated by Poly-Si Plugging) Processor Ultra-Thin SOI MOSFETs with High Performance and High Reliability" Jong-Wook Lee et al. (非特許文献 1 ) 、 及び IEEE Electron Device Letters, Vol.23, No.8 p.467 (非特許文献 2) では、 せり上 げ素子分離構造 (ELFIN) により、 逆狭チャンネル効果を防止することができる ことが記載されている。  2002 Symposium on VLSI Technology, Digest of Technical Papers, pp. 42-43, "ELFIN (ELevated Field INsulator) and SEP (S / D Elevated by Poly-Si Plugging) Processor Ultra-Thin SOI MOSFETs with High Performance and High Reliability "Jong-Wook Lee et al. (Non-Patent Document 1) and IEEE Electron Device Letters, Vol.23, No.8, p.467 (Non-Patent Document 2) use a raised element isolation structure (ELFIN). It describes that the reverse narrow channel effect can be prevented.
せり上げ素子分離構造を有する MOSFETは、 次のように製造される (特開 2001-24202号公報) 。  A MOSFET having an elevated element isolation structure is manufactured as follows (JP-A-2001-24202).
まず、 図 7は、 素子領域 122、 素子領域を区画する素子分離領域 123、 ゲ —ト電極 115の配置関係を説明する平面模式図である。 この図において、 斜線 はゲート電極下の素子領域端部 121を示す。  First, FIG. 7 is a schematic plan view illustrating the arrangement relationship between the element region 122, the element isolation region 123 that partitions the element region, and the gate electrode 115. In this figure, the hatched lines indicate the end 121 of the element region below the gate electrode.
製造工程断面図を、 チャネルの電流方向に平行し、 活性領域上のゲート電極を 含む断面構造である図 8および図 9の (a) 〜 (e) 、 (f 一 1〜3) を用いて 説明する。  The cross-sectional views of the manufacturing process are shown in FIGS. 8 and 9 (a) to (e) and (f1-1 to 3), which are cross-sectional structures including the gate electrode on the active region, parallel to the current direction of the channel. explain.
図 8 (a) に示すように、 .シリコン基板 111上に、 埋め込み酸化膜 112、 その上に SO I膜 113を設けた SO I基板を予め用意した後、 ゲート絶縁膜 1 14、 および第 1の導電膜 115 a (例えば多結晶シリコン膜) を形成する。 次に図 # 3 (b) に示す通り、 露光工程とエッチング工程により、 素子領域を 残すように、 素子分離領域となる箇所 1 17 aの第 1の導電膜、 ゲート絶縁膜お よび S O I膜を例えばプラズマエッチングにより除去する。  As shown in FIG. 8 (a), after a SOI substrate having a buried oxide film 112 and an SOI film 113 provided thereon is prepared in advance on a silicon substrate 111, the gate insulating film 114 and the first (For example, a polycrystalline silicon film). Next, as shown in FIG. 3 (b), the first conductive film, the gate insulating film, and the SOI film at the portion 117a to be an element isolation region are exposed by an exposure step and an etching step so as to leave an element region. For example, it is removed by plasma etching.
さらに、 図 8 (c) に示す通り、 素子分離絶縁膜 117 (酸化シリコン膜) を 埋設し、 CMPにより第 1の導電性膜 115 aと素子分離絶縁膜 117の表面高 さを ίΗΪえる。  Further, as shown in FIG. 8C, an element isolation insulating film 117 (silicon oxide film) is buried, and the surface heights of the first conductive film 115a and the element isolation insulating film 117 are increased by CMP.
次に図 8 (d) に示す通り、 第 2の導電膜 115 b (例えば多結晶シリコン膜 ) を形成後、 図 8 (e) に示すように、 レジスト 119を塗布し、 露光工程によ りパターニングする。 このときのレジスト 1 1 9のパターンは、 図 7に示したゲ ―ト電極パターンと同一である。 Next, as shown in FIG. 8D, after forming a second conductive film 115b (for example, a polycrystalline silicon film), a resist 119 is applied as shown in FIG. Patterning. At this time, the pattern of the resist 119 is the same as the gate electrode pattern shown in FIG.
図 9 (f - 1) 〜 (f 一 3) に示すように、 レジスト 1 19をレジストとして 、 第 2の導電膜 115 b、 第 1の導電膜 1 15 aおよびゲート絶縁膜 1 14を、 エッチングしてソース · ドレインを形成する領域の SO I膜 1 1 3を露出させた 後、 レジスト 1 19を除去する。 ここで ( f 一 1) は X— X' 断面図 (チャネル の電流方向に直交し、 活性領域上のゲート電極を含む断面構造) 、 (f 一 2) は チャネル電流方向、 (f 一 3) は平面図である。  As shown in FIGS. 9 (f-1) to (f-13), the second conductive film 115b, the first conductive film 115a and the gate insulating film 114 are etched by using the resist 119 as a resist. After exposing the SOI film 113 in the region where the source / drain is to be formed, the resist 119 is removed. Here, (f-1 1) is the X-X 'cross-sectional view (the cross-sectional structure including the gate electrode on the active region perpendicular to the channel current direction), (f-1 2) is the channel current direction, and (f-1 3) Is a plan view.
せり上げ素子分離構造では、 この図のように素子分離絶縁膜 1 17の上面が、 SO I膜 1 13上に形成したゲ一ト絶縁膜より少なくとも第 1の導電膜 1 15 a の厚さだけ上方に位置している。 SO I膜 1 13及びゲート絶縁膜 1 14、 第 1 の導電膜 (多結晶シリコン膜) 1 1 5 aは、 図 9 (f - 1) で見たとき、 素子分 離端でほぼ垂直に切られた矩形状の形状である。 即ち、 このようなせり上げ素子 分離構造では、 SO I膜 1 13の上部コーナーが、 第 1の導電膜 1 15 aのコー ナ一とのみ対向しているために、 図 6で示したような電界の集中がなく逆狭チヤ ネル効果を防止することができる。  In the lift-up element isolation structure, as shown in this figure, the upper surface of the element isolation insulating film 117 is at least as thick as the first conductive film 115a than the gate insulating film formed on the SOI film 113. It is located above. The SOI film 113, the gate insulating film 114, and the first conductive film (polycrystalline silicon film) 115a are cut almost vertically at the element separation end when viewed in FIG. 9 (f-1). It is a rectangular shape. That is, in such an elevated element isolation structure, since the upper corner of the SOI film 113 faces only the corner of the first conductive film 115a, as shown in FIG. There is no concentration of the electric field, and the reverse narrow channel effect can be prevented.
先行技術のリスト  List of prior art
特許文献 1 : 特開平 6— 177239号公報  Patent Document 1: JP-A-6-177239
特許文献 2 : 特開 200 1— 24202号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2001-1-24202
非特許文献 1 : 2002 Symposium on VLSI Technology, Digest of Tec nical Papers, p. 42-43,  Non-Patent Document 1: 2002 Symposium on VLSI Technology, Digest of Technical Papers, p. 42-43,
非特許文献 2 : IEEE Electron Device Letters, Vol.23, No.8 p.467 非特許文献 3: 電子情報通信学会技術報告、 SDM99— 229、 p. 29 -36 このようにゲートリ一ク電流低減、 あるいは逆狭チャネル効果抑制について、 かなり改善されているとはいえ、 さらなる改善が望まれている。 また、 後工程で うけるアンテナダメージ耐性、 TDDB ( t i me d e p e nd d i e l e c .t r i c b r e akd own) 特性、 Vsub (基板電位) による Vth (しき い電圧) 制御性等に関しても、 改善が望まれている。 Non-patent document 2: IEEE Electron Device Letters, Vol.23, No.8, p.467 Non-patent document 3: IEICE technical report, SDM99-229, p.29-36 Or, even though the suppression of the inverse narrow channel effect has been considerably improved, further improvement is desired. The antenna damage tolerance subjected in a subsequent step, TDDB (ti me depe nd dielec .tricbre akd own) characteristics, V sub V by (substrate potential) th (threshold Voltage is also required to be improved.
M I S FET素子においては、 プラズマエッチングの際のプラズマダメージ等 により、 絶縁膜に準位等が形成されリーク電流増加ゃ絶緣信頼性劣化の原因とな ることが知られているが、 SO I素子では素子が形成される半導体層の下部に埋 め込み絶縁膜が設けられるという特有の構造に起因して、 バルク基板上の M I S FETに比べてプラズマダメージを受けやすくなることが報告されている (電子 情報通信学会技術報告、 S DM 99— 229、 p. 29 36、 非特許文献 3) 。 せり上げ素子分離構造の SO I素子の場合も、 図 8 (b) で示した素子分離領 域のエッチング工程でのプラズマダメージが、 ゲート絶縁膜及び埋め込み酸化膜 中に入ることが考えられる。 SO I膜 1 13及びゲート絶縁膜 1 14、 第 1の導 電膜 1 1 5 aが矩形である場合に大きいと考えられる。  In MIS FET devices, it is known that levels and the like are formed in the insulating film due to plasma damage during plasma etching, etc., which causes an increase in leakage current and a reduction in reliability. It has been reported that the MISFET on the bulk substrate is more susceptible to plasma damage due to the unique structure in which a buried insulating film is provided below the semiconductor layer on which the device is formed (see IEICE Technical Report, SDM 99-229, p. 2936, Non-Patent Document 3). In the case of an SOI device with an elevated isolation structure, plasma damage in the etching process of the isolation region shown in Fig. 8 (b) may enter the gate insulating film and the buried oxide film. This is considered to be large when the SOI film 113, the gate insulating film 114, and the first conductive film 115a are rectangular.
従って、 本来プラズマダメ一ジを受けやすいと考えられる SO I構造にせり上 げ素子分離を適用する場合には、 バルク基板上の MOS FETに文すしてせり上げ 素子分離を適用する場合に比べて、 前記特性の改善をするための工夫が特に必要 になると言える。  Therefore, when applying device isolation to an SOI structure that is originally susceptible to plasma damage, compared to applying device isolation to a MOS FET on a bulk substrate, It can be said that a device for improving the characteristics is particularly necessary.
さらに本発明者の検討では、 このような矩形である場合には、 ゲート絶縁膜を 挟んだエッジ部分 (SO I膜 1 13およびゲート電極を構成している第 1の導電 膜 1 15 aの間) 、 および SO I膜の埋め込み酸化膜に対向したエッジ部分では 、 従来の構造に比べればせり上げ素子分離構造によって緩和されているとしても 、 依然として電界が集中しやすい状況にあり、 これが完全に回復されないプラズ マダメージと相俟って、 前述のような特性の改善の妨げになっていると考えられ る。 発明の開示  Further, according to the study of the present inventor, in the case of such a rectangular shape, the edge portion (between the SOI film 113 and the first conductive film 115a forming the gate electrode) sandwiching the gate insulating film is considered. At the edge of the SOI film facing the buried oxide film, the electric field is still likely to concentrate at the edge portion of the SOI film, even though it is mitigated by the raised element isolation structure as compared with the conventional structure, and this is completely recovered. It is thought that this combination with the unacceptable plasma damage hinders the above-mentioned property improvement. Disclosure of the invention
即ち、 本発明はこのような問題を解決するためになされたものであり、 後工程 でうけるアンテナダメージ耐性、 ゲートリーク電流、 TDDB特性、 Vsub (基 板電位) による Vth (しきい電圧) 制御性等の特性に優れた半導体装置、 特にせ り上げ素子分離構造の S〇 I素子を提供することを目的とする。 That is, the present invention has been made in order to solve such a problem. The antenna damage resistance, gate leakage current, TDDB characteristics, and V th (threshold voltage) due to V sub (substrate potential) in a later process are provided. It is an object of the present invention to provide a semiconductor device having excellent characteristics such as controllability, in particular, a SII device having a raised element isolation structure.
本発明は、 ベース半導体層上に形成された埋め込み絶縁膜と、 この埋め込み絶 緣膜に達する素子分離膜と、 この素子分離膜により区画され、 前記埋め込み絶縁 膜上に位置する半導体活性層と、 この半導体活性層上の一部に設けられたゲート 絶縁膜と、 このゲート絶縁膜を介して、 前記半導体活性層と対向して設けられた ゲート電極とを有する半導体装置であって、 前記素子分離膜は、 その上面が前記 ゲート絶縁膜面より基板からみて上方にあるせり上げ素子分離構造であり、 チヤ ネルの電流方向に直交しゲ一ト電極を含む断面において、 素子分離膜と接する端 部の少なくとも一部に、 素子中央側から素子分離膜側端に向けて、 前記ゲート絶 縁膜の厚さが次第に厚くなつているパーズビーク部を有することを特徴とする半 導体装置に関する。 The present invention provides a buried insulating film formed on a base semiconductor layer, A device isolation film reaching the film, a semiconductor active layer partitioned by the device isolation film and located on the buried insulating film, a gate insulating film provided on a part of the semiconductor active layer, A semiconductor device having a gate electrode provided to face the semiconductor active layer with a film interposed therebetween, wherein the element isolation film has an upper surface raised above the gate insulating film surface as viewed from the substrate. An element isolation structure, wherein in a cross section orthogonal to the current direction of the channel and including the gate electrode, at least a part of an end in contact with the element isolation film, from the element center side to the element isolation film side end, The present invention relates to a semiconductor device having a parse beak portion in which the thickness of a gate insulating film is gradually increased.
この構成によれば、 ゲート絶縁膜端において、 半導体活性層 (即ち、 S O I膜 According to this configuration, at the edge of the gate insulating film, the semiconductor active layer (ie, the SOI film)
) およびゲート電極間での電界の集中が緩和されているために、 ゲート絶縁膜特 性に関して、 後工程でうけるアンテナダメージ耐性、 ゲート絶縁膜の信頼性、 ゲ ートリーク電流および T D D B特性等が改善する。 ) And the reduction of the electric field concentration between the gate electrodes improves the characteristics of the gate insulating film, such as antenna damage resistance in later processes, reliability of the gate insulating film, gate leak current, and TDDB characteristics. .
また本発明は、 ベース半導体層上に形成された埋め込み絶縁膜と、 この埋め込 み絶縁膜に達する素子分離膜と、 この素子分離膜により区画され、 前記埋め込み 絶縁膜上に位置する半導体活性層と、 この半導体活性層上の一部に設けられたゲ ート絶縁膜と、 このゲート絶縁膜を介して、 前記半導体活性層と対向して設けら れたゲート電極とを有する半導体装置であって、 前記素子分離膜は、 その上面が 前記ゲート絶縁膜面より基板からみて上方にあるせり上げ素子分離構造であり、 チャネルの電流方向に直交しゲート電極を含む断面において、 素子分離膜と接す る端部の少なくとも一部に、 素子中央側から素子分離膜側端に向けて、 前記半導 体活性層の底部が上側に次第に後退して厚さが薄くなり前記埋め込み絶縁膜が次 第に厚くなつている底部パーズビーク部を有することを特徴とする半導体装置に 関する。  The present invention also provides a buried insulating film formed on a base semiconductor layer, an element isolation film reaching the buried insulating film, and a semiconductor active layer partitioned by the element isolation film and located on the buried insulating film. A gate insulating film provided on a part of the semiconductor active layer; and a gate electrode provided facing the semiconductor active layer via the gate insulating film. The device isolation film has a raised device isolation structure in which the upper surface is above the gate insulating film surface as viewed from the substrate, and is in contact with the device isolation film in a cross section orthogonal to the channel current direction and including the gate electrode. The bottom of the semiconductor active layer gradually recedes upward from the element center side to the element isolation film side end at least at a part of the end, and the thickness becomes thinner. Thick It relates to a semiconductor device and having a bottom Pazubiku portion and summer.
この構成によれば、 埋め込み絶縁膜側の島状半導体端部において、 電界集中が 緩和されているので、 埋め込み絶縁膜特性に関して、 後工程でうけるアンテナダ メージ耐性および V s u b (基板電位) による V t h (しきい電圧) 制御性等の特性 が改善する。 According to this configuration, since the electric field concentration is reduced at the end of the island-shaped semiconductor on the side of the buried insulating film, regarding the characteristics of the buried insulating film, the antenna damage resistance and the V th due to V sub (substrate potential) in a later process are reduced. (Threshold voltage) Characteristics such as controllability are improved.
尚、 上記 2つの構成を併せ持つ構成が最も好ましい。 図面の簡単な説明 Note that a configuration having both of the above two configurations is most preferable. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の半導体装置の 1例を示す断面図である。  FIG. 1 is a cross-sectional view showing one example of the semiconductor device of the present invention.
図 2は、 本発明の製造方法の 1例を示す断面工程図である。  FIG. 2 is a sectional process view showing one example of the manufacturing method of the present invention.
図 3は、 実施例で製造された半導体装置の断面図である。 '  FIG. 3 is a cross-sectional view of the semiconductor device manufactured in the example. '
図 4は、 実施例で製造された半導体装置のしきい値電圧のゲ一ト幅依存性を示 すグラフである。  FIG. 4 is a graph showing the gate width dependence of the threshold voltage of the semiconductor device manufactured in the example.
図 5は、 実施例で製造された半導体装置のゲ一トリーク電流のゲ一ト電圧依存 特性を示すグラフである。  FIG. 5 is a graph showing the gate voltage dependence of the gate leak current of the semiconductor device manufactured in the example.
図 6は、 従来の半導体装置の素子分離構造を示す図である。  FIG. 6 is a diagram showing an element isolation structure of a conventional semiconductor device.
図 7は、 半導体装置の上面図である。  FIG. 7 is a top view of the semiconductor device.
図 8は、 従来の半導体装置の製造方法を示す工程断面図である。  FIG. 8 is a process sectional view illustrating a conventional method for manufacturing a semiconductor device.
図 9は、 従来の半導体装置の製造方法を示す工程断面図である。  FIG. 9 is a process cross-sectional view illustrating a conventional method for manufacturing a semiconductor device.
図 1 0は、 従来の半導体装置の構造における電界集中を説明する図である。 図 1 1は、 従来の半導体装置の構造における電界集中を説明する図である。 図 1 2は、 従来の半導体装置の構造における電界集中を説明する図である。 図 1 3は、 本発明の半導体装置の 1例を示す断面図である。  FIG. 10 is a diagram illustrating electric field concentration in the structure of a conventional semiconductor device. FIG. 11 is a diagram illustrating electric field concentration in the structure of a conventional semiconductor device. FIG. 12 is a diagram illustrating electric field concentration in the structure of a conventional semiconductor device. FIG. 13 is a cross-sectional view showing one example of the semiconductor device of the present invention.
図 1 4は、 本発明の半導体装置の 1例を示す断面図である。  FIG. 14 is a sectional view showing an example of the semiconductor device of the present invention.
図 1 5は、 本発明の半導体装置の 1例を示す断面図である。  FIG. 15 is a cross-sectional view showing one example of the semiconductor device of the present invention.
符号の説明:  Explanation of symbols:
1 ベース半導体、 ベースシリコン層  1 Base semiconductor, base silicon layer
2 埋め込み絶 縁層  2 Embedded insulation layer
3 半導体活性層 ( S〇 I膜)  3 Semiconductor active layer (S〇I film)
4 ゲート絶縁膜  4 Gate insulating film
5 ゲート電極  5 Gate electrode
5 a 第 1のゲート電極材料、 第 1の多結晶シリコン膜  5a First gate electrode material, first polycrystalline silicon film
5 b 第 2のゲート電極材料、 第 2の多結晶シリコン膜  5 b Second gate electrode material, second polycrystalline silicon film
6 窒化シリコン膜  6 Silicon nitride film
7 素子分離膜 素子分離溝 7 Element separation membrane Element isolation groove
部分分離膜  Partial separation membrane
側面酸化膜  Side oxide film
切り欠き  Notch
ボディコンタクト領域  Body contact area
ボディ領域  Body area
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1 〔 (c ) は上面図、 (a ) は X— X ' 断面図、 (b ) は Y— Y ' 断面図〕 は、 本発明の半導体装置の特徴部分を示したもので、 ベース半導体層 1、 埋め込 み絶縁層 2、 半導体活性層 (以下、 S〇 I膜という) 3、 ゲート絶縁膜 4、 ゲ一 ト電極 5 (この例では、 第 1のゲート電極材料 5 aと第 2のゲート電極材料 5 b からなる) および素子分離膜 7を備えている。  FIG. 1 [(c) is a top view, (a) is an XX ′ cross-sectional view, and (b) is a YYY ′ cross-sectional view] shows a characteristic portion of the semiconductor device of the present invention. Layer 1, buried insulating layer 2, semiconductor active layer (hereinafter referred to as SII film) 3, gate insulating film 4, gate electrode 5 (in this example, first gate electrode material 5a and second And a device isolation film 7.
せり上げ素子分離構造では、 素子分離膜 7の上面がゲ一ト絶縁膜より上に位置 している。 後工程で、 素子分離膜 7の上に、 さらに層間絶縁膜等が形成されるこ とはあるが、 素子分離膜の上面は、 ゲート電極 (この例では第 2ゲート電極材料 5 b ) の引き出し部分の下面で規定される。 素子分離膜 7の上面は、 ゲート絶縁 膜 4の中央の平坦部分より、 通常 2 0 n m以上、 好ましくは 5 0 n m以上だけ上 に位置している。 通常は、 2 0 0 n mより以下の位置である。  In the raised element isolation structure, the upper surface of the element isolation film 7 is located above the gate insulating film. In a later step, an interlayer insulating film or the like may be further formed on the element isolation film 7, but the upper surface of the element isolation film is provided with a gate electrode (the second gate electrode material 5b in this example). It is defined by the lower surface of the part. The upper surface of the element isolation film 7 is located usually at least 20 nm or more, preferably at least 50 nm or more above the central flat portion of the gate insulating film 4. Usually, the position is less than 200 nm.
また、 この図では示していないが、 その後の工程により S O I膜 3にはソース 領域 · ドレイン領域が形成され、 通常の構造では層間絶縁膜で埋め込まれた後コ ン夕クトホール等が設けられる。 本発明は、 そのような構造の半導体素子を含む ものである。  Although not shown in this figure, a source region and a drain region are formed in the SOI film 3 by a subsequent process, and a contact hole or the like is provided after being filled with an interlayer insulating film in a normal structure. The present invention includes a semiconductor device having such a structure.
本発明では、 図 1 ( a ) 中の A部、 ゲート絶縁膜の素子分離端部分において、 素子中央側から素子分離端に向けてゲート絶縁膜の厚さが広がっている。 本発明 では、 素子分離端部のゲート絶緣膜の厚さが広がった部分をパーズビーク部とい う。 このように端に向かってゲート絶縁膜の厚さが広がった形状では、 電界集中 を緩和することができる。 せり上げ素子分離を M I SFETに適用した従来技術では、 図 12に示すよう に、 SO I層 1 13の上部コーナ一部において電界集中がおこる。 この場合、 図 6 (a) あるいは図 6 (b) の場合とは異なり、 ゲート電極 1 1 5 aが素子分離 絶縁膜 1 17へ伸びないので、 図 6 (a) あるいは図 6 (b) に比べると電界集 中の度合は小さい。 According to the present invention, the thickness of the gate insulating film increases from the element center side toward the element isolation end at the portion A in FIG. 1A, that is, at the element isolation end of the gate insulating film. In the present invention, a portion where the thickness of the gate insulating film at the element isolation end is increased is called a parse beak portion. In such a shape in which the thickness of the gate insulating film increases toward the end, the electric field concentration can be reduced. In the prior art in which lift-up element isolation is applied to a MISFET, as shown in FIG. 12, electric field concentration occurs at a part of the upper corner of the SOI layer 113. In this case, unlike the case of FIG. 6 (a) or FIG. 6 (b), the gate electrode 115a does not extend to the element isolation insulating film 117. In comparison, the degree of electric field concentration is small.
ここで、 バルク基板上の通常の MO S F E Tにせり上げ素子分離を適用した場 合であれば、 図 12に示すような電界集中により、 素子領域の上部コーナ一の電 位が変動してリーク電流が発生したり、 逆短チャネル効果が発生することはない 。 これは、 バルク基板上の通常の MOSFETでは、 電界が集中する部分よりも 下に、 しきい値電圧を安定化させるのに充分な量の不純物が注入されているため である。  Here, if lift-up element isolation is applied to a normal MOSFET on a bulk substrate, the electric field concentration shown in Fig. 12 causes the potential at the upper corner of the element region to fluctuate and the leakage current to increase. And no reverse short channel effect occurs. This is due to the fact that conventional MOSFETs on bulk substrates are implanted with enough impurity below the field concentration to stabilize the threshold voltage.
しかし、 SO I素子の場合には、 電界集中の影響を受けると考えられる薄い S O I層に、 しきい値電圧を調整するための不純物がすべて集中して配置されるこ とになるので、 図 12に示すような弱い電界集中でも、 逆短チャネル効果やリー ク電流の発生等の特性劣化は発生してしまう。  However, in the case of SOI devices, all the impurities for adjusting the threshold voltage are concentrated on the thin SOI layer, which is considered to be affected by electric field concentration. Even with a weak electric field concentration as shown in (1), characteristic degradation such as the reverse short channel effect and generation of leak current will occur.
これに対して、 本発明においては図 1 (a) の記号 Aの部分に示すように、 S 0 I層 3の上部においてパーズビーク部が設けられ、 S〇 I層の上部コーナ一が 丸まっているので、 電界が緩和され、 上部コーナー部におけるリーク電流の発生 、 リーク電流発生に伴うサブスレツショルド特性の劣化 (Sファクタの増大によ るオンノオフ比の劣化) 及び逆狭チャネル効果等の特性劣化が抑制される。 ここで、 図 1 (a) に示すように、 ゲート絶縁膜の中央部に比べて広がってい る部分をくい込み距離とし、 第 1のゲート電極材料 5 aの端からのくい込み距離 L l、 SO I膜 3の端からのくい込み距離 L 2として表す。 くい込み距離 L 1お よび L 2は 0より大きければ、 即ち少しでもくい込みがあれば、 それだけ電界の 集中を防止することができるが、 通常は、 L 1および L 2の両方とも 1 nm以上 であり、 好ましくは 2 nm以上であり、 より好ましくは 5 nm以上である。 また 、 大きすぎると有効なチャネル幅が確保できず、 逆狭チャネル効果が現れるので 、 好ましくは 25 nm以下であり、 より好ましくは 20 nm以下である。 また、 同時にチャネル幅の 5 %以下であることが好ましい。 また、 パーズビークの広がり幅は、 少なくともゲート絶縁膜厚より大きければ それだけ効果がある。 大きく過ぎると逆狭チャンネル効果の悪影響が現れるのでOn the other hand, in the present invention, as shown by the symbol A in FIG. 1 (a), a parse beak portion is provided above the S0I layer 3, and the upper corner of the S〇I layer is rounded. Therefore, the electric field is alleviated, and the generation of leakage current at the upper corner, the deterioration of the sub-threshold characteristics due to the generation of the leakage current (the deterioration of the ON / OFF ratio due to the increase of the S factor), and the deterioration of characteristics such as the inverse narrow channel effect are reduced. Be suppressed. Here, as shown in FIG. 1 (a), the portion that is wider than the center of the gate insulating film is defined as the penetration distance, and the penetration distance L l from the end of the first gate electrode material 5a, SO I Expressed as the penetration distance L 2 from the edge of the film 3. If the penetration distances L 1 and L 2 are larger than 0, that is, if there is any penetration, the concentration of the electric field can be prevented, but usually both L 1 and L 2 are 1 nm or more. It is preferably at least 2 nm, more preferably at least 5 nm. On the other hand, if it is too large, an effective channel width cannot be secured and an inverse narrow channel effect appears. Therefore, it is preferably 25 nm or less, more preferably 20 nm or less. At the same time, it is preferably 5% or less of the channel width. In addition, the effect of the divergence of the purse beak is at least as long as it is larger than the gate insulating film thickness. If it is too large, the adverse effect of the inverse narrow channel effect will appear.
、 通常はゲート絶縁膜厚の 10倍以内が好ましく、 同時にゲート電極直下の soUsually, the thickness is preferably within 10 times the thickness of the gate insulating film.
I膜厚の 50%以下の厚さが好ましい。 The thickness is preferably 50% or less of the I film thickness.
また、 L 1と L 2は等しくても異なっていてもよい。 しかし、 特に SO I膜側 のくい込み距離 L 2が大きく過ぎると逆狭チャネル効果が大きくなつたり、 しき い値の変動が大きくなるので、 必要以上に大きくない方が好ましい。 従って、 L 2く L 1であることが好ましい。 L 2に関して、 より好ましくは、 25 nm以下 であり、 チャネル幅の 5%以下である。 一方、 L 1に関しては、 逆狭チャンネル 効果の影響が少ないので、 L 2と比較して大きくして、 電界集中緩和を図ること が好ましい。 尚、 コーナー部分の曲率半径を比較した場合でも、 上側の方が下側 より曲率半径が大きく、 コーナー部分がより丸まっている。 非対称に形成する方 法は、 製造方法で述べる。 '  Also, L 1 and L 2 may be equal or different. However, in particular, if the penetration distance L2 on the SOI film side is too large, the inverse narrow channel effect becomes large, and the fluctuation of the threshold becomes large. Therefore, it is preferable that the penetration is not larger than necessary. Therefore, it is preferable that L2 and L1. For L 2, it is more preferably 25 nm or less and 5% or less of the channel width. On the other hand, since L1 is less affected by the inverse narrow channel effect, it is preferable to increase L1 as compared with L2 to reduce electric field concentration. Even when comparing the radii of curvature of the corners, the upper one has a larger radius of curvature than the lower one, and the corners are more rounded. The method of forming asymmetrically is described in the manufacturing method. '
また、 S〇 I層はフラット (L 2 = 0) とし、 ゲート電極側だけにゲート絶縁 膜を厚膜化 (L 1>0) させてもよい。  Further, the S〇I layer may be flat (L 2 = 0), and the gate insulating film may be thickened (L 1> 0) only on the gate electrode side.
また、 図 1 (a) の B部では、 SO I膜 3の底部が、 素子中央側から素子分離 端に向けて上側に次第に後退して、 厚さが薄くなり、 一方、 埋め込み絶縁膜の厚 さが、 素子中央に比べて次第に厚くなつている。 本発明では、 このように厚くな つている部分を底部パーズピーク部というものとする。 このように端に向かって 埋め込み絶縁層の厚さが厚くなり、 基板のベース半導体層 1との距離が広がって いることにより、 SO I膜の底端部での電界集中が緩和される。  In part B of FIG. 1 (a), the bottom of the SOI film 3 gradually recedes upward from the center of the device toward the isolation end, and the thickness of the buried insulating film decreases. However, it is gradually thicker than the center of the device. In the present invention, such a thick portion is referred to as a bottom parse peak portion. As the thickness of the buried insulating layer increases toward the end and the distance from the base semiconductor layer 1 of the substrate increases, the electric field concentration at the bottom end of the SOI film is reduced.
SOI素子においては、 埋めこみ酸化膜中の電荷 132及び素子分離絶縁膜中の 電荷 131によってもたらされる電界が、 SOI層の下部コーナー部 133に集中 する。 通常、 埋めこみ酸化膜中の電荷 131と素子分離裨緣膜中の電荷 13 1は 正の電荷を持つので、 SOI層の下部コーナー部 1 33の電位を低下させる。 この 結果、 nチャネル SO I— M〇S FETにおいては、 下部コーナー部 133にお いてリーク電流が発生したり、 端部のしきい値電圧低下に伴って逆狭チャネル効 果が発生したりする。 また、 pチャネル SO I— M〇S FETにおいては、 端部 のしきい値電圧が上昇するので、 狭チャネル効果、 すなわちチャネル幅の縮小に 伴いしきい値電圧が上昇するという効果が発生する (図 10) 。 これはバルク基 板上の MO S F ETには存在しない、 S 0 I素子特有の問題である。 In the SOI element, the electric field generated by the charge 132 in the buried oxide film and the charge 131 in the element isolation insulating film concentrates on the lower corner portion 133 of the SOI layer. Usually, the electric charge 131 in the buried oxide film and the electric charge 131 in the device isolation effect film have a positive electric charge, so that the potential of the lower corner portion 133 of the SOI layer is lowered. As a result, in the n-channel SO I-M〇S FET, a leakage current occurs at the lower corner portion 133, and an inverse narrow channel effect occurs as the threshold voltage at the end decreases. . Also, in the p-channel SO I-M〇S FET, the threshold voltage at the end rises, so the narrow channel effect, that is, the reduction of the channel width This has the effect of increasing the threshold voltage (Figure 10). This is a problem peculiar to the SOI element, which does not exist in the MOSFET on the bulk substrate.
これに対して、 本発明においては図 1 (a) の記号 Bの部分に示すように、 S 01層 3の底面において、 底部バ一ズビーク部が設けられ、 下部コーナー部 13 3が丸まっているので、 下部コーナ一部 133における電界集中が緩和され、 埋 めこみ酸化膜中の電荷 1 31及び素子分離絶縁膜中の電荷 131によってもたら される、 nチャネル SO I -MOS FETの下部コーナ一部 133におけるリー ク電流及び逆狭チャネル効果、 pチャネル SO I一 MOSFETにおける狭チヤ ネル効果を防ぐことができる。 '  On the other hand, in the present invention, as shown by the symbol B in FIG. 1 (a), a bottom bird's beak portion is provided on the bottom surface of the S01 layer 3, and the lower corner portion 133 is rounded. Therefore, the electric field concentration in the lower corner part 133 is reduced, and the lower corner of the n-channel SOI-MOS FET caused by the charge 131 in the buried oxide film and the charge 131 in the element isolation insulating film is reduced. The leak current and the reverse narrow channel effect in the section 133 and the narrow channel effect in the p-channel SOI-MOSFET can be prevented. '
また、 ゲート長の短い S O I—MOS FETにおいては、 図 1 1に示すように ドレイン領域 136から発生した電界 134がゲート電極下部の SO I膜に 1 1 3の電位に与えるという影響が顕著化するが、 この場合も図 10の場合と同様、 SOI層の下部コ一ナ一部 133での電界集中が顕著になり、 nチャネル SO I一 MOS FETの場合は下部コーナ一部 133の電位が低下し、 pチャネル SO I 一 MOS FETの場合は下部コーナー部 133の電位が上昇する。 この結果、 n チャネル SO I -MOS FET, pチャネル SO I— MO S F E Tのいずれの場 合においても、 下部コーナ一部 133におけるリーク電流の発生、 リーク電流発 生に伴うサブスレツショルド特性の劣化 (Sファクタの増大によるオン オフ比 の劣化) 及び逆狭チャネル効果等の特性劣化が引き起こされる。 なお、 図 1 1 ( b) は、 平面図である図 1 1 (a) の Χ_Χ' 方向における断面図、 図 1 1 (c ) は平面図である図 1 1 (a) のの Y— Y' 方向における断面図を示す。 また 1 35はソ一ス領域を示す。 これもまたパルク基板上の MOS FETには存在しな い、 S 0 I素子特有の問題である。  Also, in an SOI-MOS FET having a short gate length, as shown in FIG. 11, the effect that the electric field 134 generated from the drain region 136 affects the SOI film under the gate electrode to the potential of 113 is remarkable. However, also in this case, as in the case of FIG. 10, the electric field concentration at the lower corner portion 133 of the SOI layer becomes remarkable, and in the case of the n-channel SOI-MOS FET, the potential at the lower corner portion 133 decreases. However, in the case of a p-channel SO I-MOS FET, the potential of the lower corner 133 increases. As a result, in both the n-channel SOI-MOS FET and the p-channel SOI-MO SFET, the occurrence of leakage current in the lower corner part 133 and the deterioration of the subthreshold characteristics due to the leakage current ( The deterioration of the ON / OFF ratio due to the increase of the S factor) and the characteristic deterioration such as the inverse narrow channel effect are caused. FIG. 11 (b) is a cross-sectional view in the Χ_ 'direction of FIG. 11 (a), which is a plan view, and FIG. 11 (c) is a Y—Y of FIG. 11 (a), which is a plan view. FIG. Reference numeral 135 denotes a source region. This is also a problem unique to SOI devices that does not exist in MOS FETs on the PARK substrate.
これに対して、 本発明においては図 1 (a) の記号 Bの部分に示すように、 S 01層 3の底面において、 底部パーズビーク部が設けられ、 下部コーナー部 13 3が丸まっているので、 下部コーナー部 133におけるドレインからの電界の集 中が緩和され、 下部コーナー部 133におけるリーク電流の発生、 リーク電流発 生に伴うサブスレツショルド特性の劣化 (Sファクタの増大によるオン Zオフ比 の劣化) 及び逆狭チャネル効果等の特性劣化が抑制される。 また、 図 1 1は nチャネル SO I一 M〇S F ETにおける電界の方向を示した が、 pチャネル SO I— MOS FETにおいては、 図 1 1とは電界の方向が逆で あることを除いて、 問題点及び発明の効果、 作用は同一である。 On the other hand, in the present invention, as shown by the symbol B in FIG. 1 (a), a bottom parse beak portion is provided on the bottom surface of the S01 layer 3, and the lower corner portion 133 is rounded. The concentration of the electric field from the drain in the lower corner portion 133 is reduced, and a leak current is generated in the lower corner portion 133, and the sub-threshold characteristic is deteriorated due to the leak current (the ON / OFF ratio is deteriorated due to an increase in the S factor). ) And characteristic degradation such as the inverse narrow channel effect are suppressed. Fig. 11 shows the direction of the electric field in n-channel SOI-M 一 SFET, but in the p-channel SOI-MOS FET, the direction of the electric field is opposite to that in Fig. 11 except that it is opposite. The problems and the effects and effects of the invention are the same.
ここで図 1 (a) に示すように、 SO I膜の底端部が上に後退している部分を L 3とする。 L 3に関しても、 通常は l nm以上であり、 好ましくは 2 nmであ る。 また、 大きすぎても有効なチャネル幅が確保できないため、 好ましくは 25 nm以下、 さらに好ましくは 20 nm以下、 最も好ましくは 15 nm以下である 。 また、 同時にチャネル幅 (即ちゲート幅) の 5%以下であることが好ましい。 本発明は、 S〇 I層が薄い場合に効果が大きく、 好ましくは SO I層の厚さが 100 nm以下、 好ましくは 50 nm以下の SO I基板に適用することが好まし い。 その際、 SO I層端において、 S〇 I膜が薄膜化される割合としては、 ゲ一 ト電極直下の SO I膜厚の 20%以下、 特に好ましくは 10%以下である。 尚、 通常、 SO I層の厚さは 1 nm以上である。  Here, as shown in FIG. 1A, the portion where the bottom end of the SOI film is receded upward is defined as L3. L3 is also usually 1 nm or more, preferably 2 nm. Further, since an effective channel width cannot be ensured even if it is too large, it is preferably 25 nm or less, more preferably 20 nm or less, and most preferably 15 nm or less. At the same time, it is preferably 5% or less of the channel width (ie, gate width). The present invention has a large effect when the S 層 I layer is thin, and is preferably applied to an SOI substrate in which the thickness of the SOI layer is 100 nm or less, preferably 50 nm or less. At that time, the rate at which the SII film is thinned at the edge of the SOI layer is 20% or less, particularly preferably 10% or less, of the SOI film thickness immediately below the gate electrode. Incidentally, the thickness of the SOI layer is usually 1 nm or more.
図 1の例では、 A部、 B部の両方で絶縁膜が素子中央より端部にかけて厚くな つている例を示したが、 ゲ一ト絶縁膜部のパーズビーク部のみ、 または底部バ一 ズビーク部のみを有していても効果が見られる。 通常は、 ゲート絶縁膜部のバー ズビーク部および底部パーズビーク部の両方を備えることが好ましい。  In the example shown in Fig. 1, the insulating film is thicker from both the center and the end of the element in both the A and B sections, but only the parse beak of the gate insulating film or the bottom bird's beak The effect can be seen even if it has only. Usually, it is preferable to have both a bird's beak portion and a bottom parse beak portion of the gate insulating film portion.
また、 図 1の例では、 ゲート電極を含む断面において、 ゲート絶縁膜のパーズ ビーク部、 および半導体活性層の底部の底部パーズビーク部が、 素子分離膜と接 する端部の全体に形成されている形態を示していた。 しかし、 それぞれ一部の領 域に (例えば素子中央部から見た片側のみに) 形成されていても効果が見られる 。 即ち、 本発明においては、 素子分離膜と接する端部の少なくとも一部にパーズ ビーク部が設けられていても、 また、 素子分離膜と接する端部の少なくとも一部 に底部パーズビ一ク部が設けられていれば、 効果が見られる。  Further, in the example of FIG. 1, in the cross section including the gate electrode, the parse beak portion of the gate insulating film and the bottom parse beak portion of the bottom of the semiconductor active layer are formed over the entire end portion in contact with the element isolation film. The form was shown. However, the effect can be obtained even if it is formed in a part of each region (for example, only on one side viewed from the central part of the element). That is, in the present invention, even if a parse beak is provided on at least a part of the end in contact with the element isolation film, or a bottom parse beak is provided on at least a part of the end in contact with the element isolation film. If it is, the effect can be seen.
例えば、 SO I膜を部分的に引き出してコンタクトをとるようなボディコン夕 クト領域を有する部分分離構造も本発明に包含される。 図 13は、 その 1例であ り、 図 13 (b) 平面図のゲート電極を含む断面である X— X' 断面で見たとき に、 図 13 (a) に示すように、 ボディコンタクト領域 12は部分分離膜 8によ り MOSFETの素子領域から分離され、 一方、 SO I膜は部分分離膜 8で分断 されることなく、 ボディ領域 13 (nMOSでは p— ) とボディコンタクト領域 12 (nMOSでは P+) が部分分離膜 8の下部で連結している構造である。 ポ デイコンタクト領域には、 後の工程でコンタクトホールが設けられて電気的接続 がとられる。 For example, the present invention includes a partial isolation structure having a body contact region in which a SOI film is partially pulled out to make contact. FIG. 13 is an example of such a case, and when viewed in an X--X 'section, which is a section including a gate electrode in a plan view, as shown in FIG. 12 is separated from the MOSFET element region by the partial isolation film 8, while the SOI film is divided by the partial isolation film 8. The structure is such that the body region 13 (p− in the case of nMOS) and the body contact region 12 (P + in the case of nMOS) are connected under the partial isolation film 8. In the body contact region, a contact hole is provided in a later step to make electrical connection.
この図の構造では、 SO I膜を途中まで掘り込んで部分分離膜 8を埋め込んで あり、 部分分離膜 8に接する端でもゲート絶縁膜端部にパーズビーク部が形成さ れているため、 電界集中緩和の効果は、 図 1で示した場合と同等である。  In the structure shown in this figure, the SOI film is dug partway and the partial isolation film 8 is buried, and a parse beak is formed at the end of the gate insulating film even at the end in contact with the partial isolation film 8, so that the electric field concentration The mitigation effect is equivalent to that shown in Figure 1.
また、 図 14は、 部分分離領域で SO I膜を掘り込まずに SO I膜を平坦なま ま残し、 ゲート電極側 (この場合は第 1のゲート電極材料 5 a) のみを後退させ てパーズビークを形成した構造である。 部分分離膜 8は S〇 I膜の表面まで埋め 込まれている構造である。  In addition, FIG. 14 shows that the SOI film is left flat without digging the SOI film in the partial isolation region, and only the gate electrode side (in this case, the first gate electrode material 5a) is recessed, and the parse beak is performed. Is formed. The partial separation film 8 has a structure embedded up to the surface of the SII film.
また、 図 15は、 SO I膜を掘り込まずに SO I膜を平坦なまま残し、 バ一ズ ビークを設けない構造である。 この構造では、 パーズビーク部はチャネル領域の 片側のみに設けられる。  FIG. 15 shows a structure in which the SOI film is left flat without digging the SOI film and no bird's beak is provided. In this structure, the parse beak portion is provided only on one side of the channel region.
図 14および図 15の構造については、 バ一ズビーク形成の効果は低下してし まうが、 それでも全く設けない従来技術よりは優れている。  14 and 15, the effect of bird's beak formation is reduced, but it is still superior to the conventional technique in which no bird's beak is provided.
本発明の半導体装置を構成する部材は、 基板として通常はシリコン基板が用い られるので、 ベース半導体層はシリコンが好ましい。 埋め込み絶縁膜は、 S IM OX法で形成されるか、 貼り合わせ法によって形成され、 通常は酸化シリコン層 となっている。 埋め込み絶縁膜の膜厚は制限はないが、 本発明で特に低部パーズ ビーク部を形成する場合には、 厚さ 200 nm以下であるものに適用すると効果 が大きく、 好ましくは 1 5 O nm以下である。 S O I膜は、 通常は単結晶シリコ ン層が好ましい。 本発明を適用すると有効な厚さは前述のとおり 10 Onm以下 、 好ましくは 50 nm以下である。  Since the members constituting the semiconductor device of the present invention usually use a silicon substrate as the substrate, the base semiconductor layer is preferably silicon. The buried insulating film is formed by a SIMOX method or a bonding method, and is usually a silicon oxide layer. The thickness of the buried insulating film is not limited, but in the present invention, particularly when a lower parse beak portion is formed, the effect is great when applied to a film having a thickness of 200 nm or less, preferably 15 O nm or less. It is. The SOI film is usually preferably a single crystal silicon layer. When the present invention is applied, the effective thickness is 10 Onm or less, preferably 50 nm or less, as described above.
素子分離膜は、 一般には酸化シリコン膜であり、 通常のプラズマ CVD (化学 堆積法) によって形成されるが、 BSG、 PSG、 BP SG等の酸化シリコンを 主体とするその他の絶縁膜、 シリコン窒化膜、 シリコン酸窒化膜、 S i OF、 あ るいはこれらの積層膜であってもよい。  The element isolation film is generally a silicon oxide film, which is formed by ordinary plasma CVD (chemical deposition), but other insulating films mainly composed of silicon oxide such as BSG, PSG, BPSG, and silicon nitride films It may be a silicon oxynitride film, Si OF, or a stacked film of these.
ゲート絶縁膜は、 ゲート絶縁膜として特性を満たすものであれば特に制限はな く、 酸化シリコン膜、 酸窒化シリコン膜 (S i〇N膜) および窒化シリコン膜 ( S i N膜) 等の S i系の絶縁膜の他、 高誘電率絶縁膜でもよい。 高誘電率絶緣膜 としては、 H f 02、 H f ON, H f S i〇および H f S i ON等の H f 系の絶 縁膜、 Z r02、 Z r〇N、 Z r S i Oおよび Z r S i ON等の Z r系の絶縁膜 、 A 1203、 A 1〇N、 A 1 S i 0、 A 1 S i ON等の A 123系の絶縁膜、 L a 203、 L a〇N、 L a S i 0、 L a S i ON等の L a 203系の絶縁膜が挙げら れる。 尚、 ここで ON含有膜の組成、 S i含有系の組成比は任意に選ぶことがで さる。 The gate insulating film is not particularly limited as long as it satisfies the characteristics as a gate insulating film. In addition, a high-dielectric-constant insulating film other than Si-based insulating films such as a silicon oxide film, a silicon oxynitride film (Si〇N film) and a silicon nitride film (SiN film) may be used. As the high dielectric constant insulation 緣膜, H f 0 2, H f ON, H f S I_〇 and H f S i ON like the H f based insulation Enmaku, Z r0 2, Z R_〇_N, Z r S i O and Z r S i Z r based insulating film ON like, a 1 2 0 3, a 1_Rei_N, a 1 S i 0, a 1 S i a 1 2 〇 3 based insulating film such as ON , L a 2 0 3, L A_〇_N, L a S i 0, L a S i L a 2 0 3 based insulating film such as ON is exemplified et be. Here, the composition of the ON-containing film and the composition ratio of the Si-containing system can be arbitrarily selected.
第 1のゲート電極材料は、 金属等の導電性材料を用いることができるが、 好ま しくは多結晶シリコンまたは多結晶シリコンゲルマニウムで形成される。  The first gate electrode material can be a conductive material such as a metal, but is preferably formed of polycrystalline silicon or polycrystalline silicon germanium.
第 2のゲ一卜電極材料は、 特に制限はなく通常の電極材料で形成することがで き、 多結晶シリコン (シリサイド化したものを含む) 、 金属等の導電性材料を用 いることができるが、 好ましくは多結晶シリコンまたは多結晶シリコンゲルマ二 ゥム (どちらもシリサイド化したものを含む) である。  The second gate electrode material is not particularly limited and can be formed of a normal electrode material, and a conductive material such as polycrystalline silicon (including silicide), metal, etc. can be used. However, it is preferably polycrystalline silicon or polycrystalline silicon germanium (both include silicide).
第 1ノ第 2のゲ一ト電極材料として用いられるその他の導電性材料としては、 Ti,W,Ta,Co,Mo等の高融点金属及びその合金、 これらの金属の窒化物またはシリ サイドなどがあげられるが、 ゲート電極として好適に用いられる材料であればよ い。 また、 第 1Z第 2のゲート電極材料とも、 不純物拡散防止、 密着性向上、 し きい値電圧制御 (仕事関数制御) 等の観点から、 異種導電材料の積層構造を取る こともある。  Other conductive materials used as the first and second gate electrode materials include refractory metals such as Ti, W, Ta, Co, and Mo and alloys thereof, and nitrides or silicides of these metals. However, any material can be used as long as it is suitably used for the gate electrode. Also, the first and second gate electrode materials may have a laminated structure of different conductive materials from the viewpoint of preventing impurity diffusion, improving adhesion, controlling threshold voltage (work function control), and the like.
尚、 この図では、 図示していないが、 SO I膜および第 1ゲート電極材料と素 子分離膜の間には、 後述する製造方法で説明するように側面酸化膜が存在してい てもよく、 その場合、 側面酸化膜は素子分離膜の一部を構成する。  Although not shown in this figure, a side oxide film may be present between the SOI film and the first gate electrode material and the element isolation film as described in a manufacturing method described later. In that case, the side oxide film forms a part of the element isolation film.
次に、 本発明の半導体装置の製造方法の 1例を、 シリコン系の材料を用いた場 合について図 2を参照しながら説明する。  Next, an example of a method for manufacturing a semiconductor device according to the present invention will be described with reference to FIG. 2 in the case where a silicon-based material is used.
工程 a)  Process a)
まず、 ベースシリコン層 1上に、 埋め込み絶縁膜 2、 SO I膜 3を備えた SO I基板を用意する。 この SO I基板構造は例えば、 S I MOX法や貼り合わせ法 等により形成される。 図 2 (a) に示すように、 まず、 SO I膜 3上にゲート絶縁膜 4を、 熱酸化法 等により形成する。 次に、 ゲート電極の一部として、 第 1の多結晶シリコン膜 5 aを、 CVD法等により例えば 200〜 10 nmの厚さで堆積する。 さらに、 後 の CM P工程のストツパ一膜として例えば窒化シリコン膜 6を例えば 0〜 300 nmの厚さで堆積する。 窒化シリコン膜は、 後の工程において側面酸化膜を形成 する際に、 第 1の多結晶シリコン膜の表面の酸化を抑制するためにも有効である 。 但し、 平坦化工程の際に、 許容し得る程度に制御性よく平坦化できるのであれ ば、 窒化シリコン膜等のストッパー膜は形成しなくてもよい。 First, an SOI substrate having a buried insulating film 2 and an SOI film 3 on a base silicon layer 1 is prepared. This SOI substrate structure is formed by, for example, a SI MOX method or a bonding method. As shown in FIG. 2A, first, a gate insulating film 4 is formed on the SOI film 3 by a thermal oxidation method or the like. Next, as a part of the gate electrode, a first polycrystalline silicon film 5a is deposited to a thickness of, for example, 200 to 10 nm by a CVD method or the like. Further, for example, a silicon nitride film 6 having a thickness of, for example, 0 to 300 nm is deposited as a stopper film in the CMP step. The silicon nitride film is also effective for suppressing the oxidation of the surface of the first polycrystalline silicon film when forming the side oxide film in a later step. However, a stopper film such as a silicon nitride film may not be formed as long as it can be planarized with an acceptable level of controllability in the planarization step.
工程 b)  Step b)
次に、 図 2 (b) に示すように、 窒化シリコン膜 6上にレジスト 9を形成後、 通常の露光 ·現像工程を用いて、 素子領域となる部分にレジストが残るようにパ ターニングした後、 窒化シリコン膜 6、 第 1の多結晶シリコン膜 5 a、 ゲート絶 縁膜 4および SO I膜 3を、 プラズマエッチング法により埋め込み絶縁膜 2が露 出するまでエッチングして、 素子分離溝 7 aを形成する。  Next, as shown in FIG. 2 (b), after a resist 9 is formed on the silicon nitride film 6, patterning is performed using a normal exposure and development process so that the resist remains in a portion to be an element region. The silicon nitride film 6, the first polycrystalline silicon film 5a, the gate insulating film 4 and the SOI film 3 are etched by plasma etching until the buried insulating film 2 is exposed. To form
工程 )  Process)
次に、 図 2 (c) に示すように、 レジスト 9を剥離した後、 洗浄工程を行う。 この洗浄工程と、 次に行う側面酸化工程とを最適化することにより、 本発明のバ ーズビーク部の形成が可能になる。 このレジスト剥離後に、 洗浄することが好ま しい。 洗浄方法としては、 SPM洗浄 (硫酸と過酸化水素の水溶液) 、 または S PM洗浄と APM洗浄 (アンモニアと過酸化水素の水溶液) の併用が好ましい。 この洗浄によって、 ゲート絶縁膜 4の端部がエッチングされ、 そのエッチングの 程度によってパーズビーク部のくい込み距離が異なってくる。 ゲート絶緣膜のェ ツチングの程度は、 この洗浄液の選択によって異なる。  Next, as shown in FIG. 2 (c), after removing the resist 9, a cleaning step is performed. By optimizing the cleaning step and the side oxidation step to be performed next, it is possible to form a bird's beak portion of the present invention. After the resist is stripped, it is preferable to wash the resist. As a cleaning method, SPM cleaning (aqueous solution of sulfuric acid and hydrogen peroxide) or a combination of SPM cleaning and APM cleaning (aqueous solution of ammonia and hydrogen peroxide) is preferable. By this cleaning, the edge of the gate insulating film 4 is etched, and the penetration distance of the parse beak varies depending on the degree of the etching. The degree of the etching of the gate insulating film depends on the selection of the cleaning solution.
SPM洗浄では、 S PM洗浄と APM洗浄の併用による処理に比べて、 酸化シ リコン膜のエッチング速度が極めて小さい (例えば 1/47) であるので、 くい 込み距離を小さくするためには S PMのみによる洗浄が好ましい。 S PM洗浄液 は、 96重量%程度の濃硫酸と 30重量%程度の過酸化水素の混合体積比が、 1 : 1〜10 : 1程度の通常用いられているもの ¾用いることができる。 洗浄時間 は、 適宜選ぶことができるが通常 1~10分である。 SPM洗浄液の濃度、 洗浄 時間によっては、 バ一ズビークくい込み距離にあまり影響はないようである。In the SPM cleaning, the etching rate of the silicon oxide film is extremely low (for example, 1/47) compared to the processing using both the SPM cleaning and the APM cleaning. Therefore, only the SPM is required to reduce the penetration distance. Is preferred. As the SPM cleaning liquid, a commonly used mixture of about 96% by weight of concentrated sulfuric acid and about 30% by weight of hydrogen peroxide having a mixing volume ratio of about 1: 1 to 10: 1 can be used. The washing time can be appropriately selected, but is usually 1 to 10 minutes. SPM cleaning solution concentration, cleaning Depending on the time, the bird's beak penetration does not seem to have much effect.
APM洗浄液は、 30重量%程度のアンモニアと 30重量%程度の過酸化水素 と純水との混合体積比が、 1 : 1 : 20〜 1 : 10 : 20程度の通常用いられて いるものを用いることができる。 洗浄時間は、 適宜選ぶことができるが通常 1〜 30分である。 但し、 APM洗浄液の濃度、 洗浄時間によりパーズビークくい込 み距離が異なってくるので、 目的とするくい込み量にあわせて適宜設定すること が好ましい。 For the APM cleaning liquid, use a commonly used mixture of about 30% by weight of ammonia, about 30% by weight of hydrogen peroxide, and pure water with a mixing volume ratio of about 1: 1: 20 to 1:10:20. be able to. The washing time can be appropriately selected, but is usually 1 to 30 minutes. However, since the penetration distance of the parse beak differs depending on the concentration of the APM cleaning solution and the cleaning time, it is preferable to appropriately set the penetration depth in accordance with the intended penetration amount.
工程 d)  Process d)
次に、 図 2 (d) に示すように、 素子分離の信頼性を向上させるため、 SO I 膜及び第 1の多結晶シリコン膜の側面を酸化して側面酸化膜 10を形成する。 こ の酸化工程の条件によっても、 パーズビークのくい込み距離を制御することがで きる。 くい込み距離を過度に大きくしないためには、 水素ガスを用いず、 酸素を 窒素で希釈した雰囲気を用いることが好ましい。 酸化方法としてはドライ条件下 での熱酸化で行うことが好ましい。  Next, as shown in FIG. 2D, in order to improve the reliability of element isolation, the side surfaces of the SOI film and the first polycrystalline silicon film are oxidized to form side surface oxide films 10. The penetration distance of the purse beak can also be controlled by the conditions of this oxidation step. In order not to increase the penetration distance excessively, it is preferable to use an atmosphere in which oxygen is diluted with nitrogen without using hydrogen gas. The oxidation is preferably performed by thermal oxidation under dry conditions.
側面酸化膜の厚さは、 l nm以上、 通常ゲート絶縁膜の厚さ程度 (l~2 nm ) 以上、 好ましくは 3 nm以上である。 また、 側面酸化膜を厚くしょうとすると 、 パ一ズビークのくい込み距離が大きくなるので、 好ましくは 25 nm以下、 よ り好ましくは 20 nm以下である。  The thickness of the side oxide film is 1 nm or more, usually about the thickness of the gate insulating film (1 to 2 nm) or more, preferably 3 nm or more. Also, if the side oxide film is made thicker, the penetration distance of the pulse beak becomes larger, so that it is preferably 25 nm or less, more preferably 20 nm or less.
また、 酸化工程の条件を変更することで、 ゲート絶縁膜を上下非対称に形成す ること、 即ち、 くい込み距離 L 1と L 2が異なるように形成することができる。 特に、 比較的高温、 850〜1 100 、 例えば 950°Cでは、 L 1と L 2がほ ぼ等しく形成され、 それより低温、 600〜850°C、 例えば 700°Cでは L 1 が L 2より大きくなる。 また、 その際、 曲率半径も、 ゲート絶縁膜の上側で下側 より大きくなる。  Further, by changing the conditions of the oxidation step, the gate insulating film can be formed vertically asymmetrically, that is, the gate insulating films can be formed so that the penetration distances L1 and L2 are different. In particular, at relatively high temperatures, 850-1100, e.g., 950 ° C, L1 and L2 are formed almost equally, and at lower temperatures, 600-850 ° C, e.g., 700 ° C, L1 is greater than L2. growing. Also, at that time, the radius of curvature is larger on the upper side of the gate insulating film than on the lower side.
この工程で、 前の洗浄工程でエッチングされたゲート絶縁膜端部も酸化されて パーズピーク部が形成される。 埋め込み酸化膜も SO I端近辺で厚膜化される。 また、 素子分離領域のエッチング工程で形成される準位の消滅にも有効で、 ゲー ト絶縁膜のリーク電流低減や信頼性向上に効果がある。  In this step, the edge of the gate insulating film etched in the previous cleaning step is also oxidized to form a purge peak. The buried oxide film is also thickened near the SOI end. It is also effective in annihilating the level formed in the element isolation region etching process, and is effective in reducing the leak current of the gate insulating film and improving the reliability.
工程 e) 次に、 図 2 (e) に示すように、 素子分離溝 7 aに素子分離膜 7を、 例えば通 常のプラズマ CVD法により 50〜500 nm厚、 例えば 300 nm程度の酸化 シリコン膜を堆積する。 Step e) Next, as shown in FIG. 2E, an element isolation film 7 is deposited in the element isolation groove 7a, for example, a silicon oxide film having a thickness of 50 to 500 nm, for example, about 300 nm, is deposited by a normal plasma CVD method. .
尚、 その前処理として洗浄することが好ましく、 酸化シリコン膜のエッチング 速度が非常に低い洗浄方法、 例えば SPM洗浄を用いることが好ましい。 酸化シ リコン膜のエッチング速度が非常に低い洗浄方法を用いることにより、 第 1の多 結晶シリコン膜 5と S 0 I膜 3との間がゲ一ト絶縁膜または酸化シリコン膜 71 のみで構成される。 一般に、 CVD等で形成する絶縁膜は、 熱酸化で形成した絶 縁膜に比べて絶縁特性で劣るが、 エッチング速度が非常に低い洗浄方法を用いる ことにより、 C V D等で形成する素子分離膜がゲ一ト絶縁膜部分に入り込むこと がない。  Cleaning is preferably performed as a pretreatment, and a cleaning method with a very low etching rate of the silicon oxide film, for example, SPM cleaning is preferably used. By using a cleaning method in which the etching rate of the silicon oxide film is very low, the space between the first polysilicon film 5 and the SOI film 3 is constituted only by the gate insulating film or the silicon oxide film 71. You. In general, an insulating film formed by CVD or the like has inferior insulating properties to an insulating film formed by thermal oxidation, but by using a cleaning method with a very low etching rate, an element isolation film formed by CVD or the like can be used. It does not enter the gate insulating film.
その後、 化学機械研磨法 (Ch em i c a l Me c h an i c a l P o l i s h i n g : CMP) により、 窒化シリコン膜 6をストッパーとして、 素子 分離膜 7の平坦化を行い、 図 2 (e) に示す構造までが形成される。  After that, the element isolation film 7 is planarized by chemical mechanical polishing (CMP) using the silicon nitride film 6 as a stopper to form the structure shown in FIG. 2 (e). Is done.
工程 f )  Process f)
次に、 図 2 (f ) に示すように、 窒化シリコン膜 6を除去し、 第 1の多結晶シ リコン膜 5を露出させる。 窒化シリコン膜 6を除去するときに、 例えば燐酸溶液 を用いたゥエツトエッチングを用い、 またその後に多結晶シリコン堆積前の処理 として例えば弗酸溶液で処理することが好ましい。 燐酸溶液および弗酸溶液の処 理のような等方性のエッチング処理を行うと、 素子分離膜 7についてもその上面 の端部が等方的にエッチングされて切り欠き 1 1が形成される。  Next, as shown in FIG. 2 (f), the silicon nitride film 6 is removed, and the first polycrystalline silicon film 5 is exposed. When the silicon nitride film 6 is removed, it is preferable to use, for example, a wet etching using a phosphoric acid solution, and thereafter to perform a treatment before the polycrystalline silicon deposition, for example, with a hydrofluoric acid solution. When isotropic etching such as treatment with a phosphoric acid solution and a hydrofluoric acid solution is performed, the upper end of the element isolation film 7 is also isotropically etched to form notches 11.
なお、 窒化シリコン膜 6を除去する際、 上述のような窒化シリコンの選択的除 去ではなく、 例えば窒化シリコン膜 6と酸化シリコン膜 (素子分離膜) 7とが等 速でエッチングされるようにすれば、 平坦形状を保ったままでシリコン窒化膜を 除去し、 切り欠き部 1 1が形成されないようにすることも可能である。  When the silicon nitride film 6 is removed, the silicon nitride film 6 and the silicon oxide film (element isolation film) 7 are etched at a constant rate, instead of the selective removal of silicon nitride as described above. By doing so, it is possible to remove the silicon nitride film while keeping the flat shape, so that the notch 11 is not formed.
工程  Process
次に、 図 2 (g) に示すように、 コンタクト引き出し用のゲート電極として、 第 2の多結晶シリコン膜 5 bを通常の CVD法で 10〜200 nm厚、 例えば 5 O nm厚に堆積する。 この例のように、 切り欠き 1 1を形成したときは、 第 2の 多結晶シリコン膜 5 bは、 第 1の多結晶シリコン膜 5 aの端よりも素子分離膜 7 に広がる。 このように切り欠き部分があるとそれだけゲート電極の抵抗を低下す ることができる。 その為には、 望ましい切り欠き部の広がり距離 L 4は、 例えば :!〜 50 nmであり、 好ましくは 5〜 10 nm程度である。 また、 段差は製造時 の目合わせを確実に行うという観点から 200 nm以下であることが望ましく、 さらに好ましくは 10 nm以下である。 Next, as shown in FIG. 2 (g), a second polycrystalline silicon film 5b is deposited to a thickness of 10 to 200 nm, for example, 5 O nm thick by a normal CVD method as a gate electrode for contact extraction. . When the notch 1 1 is formed as in this example, the second The polycrystalline silicon film 5b extends to the element isolation film 7 more than the end of the first polycrystalline silicon film 5a. With such a notch, the resistance of the gate electrode can be reduced accordingly. For this purpose, a desirable spread distance L4 of the notch is, for example, from:! To 50 nm, and preferably about 5 to 10 nm. Further, the step is desirably 200 nm or less, and more desirably 10 nm or less, from the viewpoint of ensuring alignment during manufacturing.
工程 h)  Step h)
次に、 図 2 (h) に示すように、 通常の露光技術でゲート電極となる部分のレ ジストを残すようにパターエングした後、 通常の高密度プラズマエッチング技術 によりゲート電極のエッチングを行う。 次にレジストを通常の方法で剥離して、 第 2の多結晶シリコン膜 5 bと第 1の多結晶シリコン膜 5 aの積層構造からなる ゲート電極が完成する。  Next, as shown in FIG. 2 (h), the gate electrode is etched by a normal high-density plasma etching technique after patterning by a normal exposure technique so as to leave a resist in a portion to be a gate electrode. Next, the resist is peeled off by an ordinary method to complete a gate electrode having a laminated structure of the second polycrystalline silicon film 5b and the first polycrystalline silicon film 5a.
その後、 ゲート側壁絶縁膜、 ソース, ドレイン領域、 シリサイド膜の形成等を 行い、 層間絶縁膜を堆積し、 配線を形成して MI SFETが完成する。 実施例  After that, the gate sidewall insulating film, source / drain regions, and silicide film are formed, an interlayer insulating film is deposited, and wiring is formed to complete the MISFET. Example
<実施例 1 >  <Example 1>
実施形態で説明した製造方法において、 次に説明するように条件を設定した。 工程 a) において、 シリコン基板に S I MOX法により形成された 100 nm 埋め込み絶縁膜と、 30 nm厚のシリコン SO I膜を有する SO I基板を用意し 、 ゲート絶縁膜 4を、 窒化酸素ガス (NO) と酸素の混合ガスを用い、 950 の熱酸化法により酸窒化シリコン膜 (S i ON膜) を 1. 9 nmの厚さに形成し た。 次に、 ゲート電極の一部として、 第 1の多結晶シリコン膜 5を、 通常の 62 0°Cの CVD法により、 50 nmの厚さで堆積した後、 CMP工程のストッパー 膜として用いる窒化シリコン膜 6を、 160°Cの CVD法により 100 nmの厚 さに堆積した。  In the manufacturing method described in the embodiment, conditions were set as described below. In step a), an SOI substrate having a 100 nm buried insulating film formed on a silicon substrate by a SI MOX method and a 30 nm thick silicon SOI film is prepared, and a gate insulating film 4 is formed using an oxygen nitride gas (NO Using a mixed gas of) and oxygen, a 1.9 nm thick silicon oxynitride film (SiON film) was formed by thermal oxidation at 950. Next, as a part of the gate electrode, a first polycrystalline silicon film 5 is deposited to a thickness of 50 nm by a normal CVD method at 620 ° C., and then silicon nitride used as a stopper film in the CMP process is formed. Film 6 was deposited to a thickness of 100 nm by CVD at 160 ° C.
工程 b) では、 実施形態で説明した工程により、 素子分離溝 7 aを形成した。 このとき、 マスクパターンを変更して、 後述する図 6の各ゲート幅 (0. 3 m から 10 m) になるように形成した。 工程 c) において、 レジスト 9を剥離後、 S PM洗浄液 (濃硫酸と過酸化水素 を含む) を用いて、 洗浄した。 工程 d) では、 酸素を窒素で希釈したガス (酸素:窒素 = 1 : 4) を用いて、 950°Cでドライ酸化により SO I層と第 1の多結晶シリコン膜の側面に、 側面 酸化膜 7 1を、 20 nmの厚さに形成した。 In the step b), the element isolation groove 7a was formed by the steps described in the embodiment. At this time, the mask pattern was changed to form each gate width (0.3 m to 10 m) of FIG. 6 described later. In step c), after the resist 9 was stripped, the resist 9 was washed using an SPM cleaning solution (containing concentrated sulfuric acid and hydrogen peroxide). In step d), using a gas obtained by diluting oxygen with nitrogen (oxygen: nitrogen = 1: 4), dry oxidation is performed at 950 ° C. on the side surfaces of the SOI layer and the first polycrystalline silicon film. 71 was formed to a thickness of 20 nm.
工程 e) では、 素子分離溝を形成した後に、 S PM洗浄した後 〔洗浄液は工程 c) で用いたものと同じ〕 、 素子分離絶縁膜 7として、 通常のプラズマ CVD法 により 30 0 nm厚の酸化シリコン膜を形成した。 その後、 化学機械研磨法によ り、 窒化シリコン膜 6をストッパーとして、 素子分離絶縁膜 7の平坦化を行った 工程 ) では、 窒化シリコン膜 6を燐酸溶液で除去した後、 さらに弗酸溶液で 前処理した。  In step e), after forming an element isolation groove and performing SPM cleaning (the cleaning liquid is the same as that used in step c)), a 300 nm thick element isolation insulating film 7 is formed by a normal plasma CVD method. A silicon oxide film was formed. Thereafter, the element isolation insulating film 7 was planarized by a chemical mechanical polishing method using the silicon nitride film 6 as a stopper. In the step), the silicon nitride film 6 was removed with a phosphoric acid solution, and then with a hydrofluoric acid solution. Pre-processed.
工程 g) では、 コンタクト引き出し用のゲート電極として、 第 2の多結晶シリ コン膜 8を通常の CVD法で 50 nm厚で堆積した。 第 2の多結晶シリコン膜 8 は、 第 1の多結晶シリコン膜 8の端よりも素子分離絶縁膜 7側に、 5 nmだけ広 がつた形状で形成された。  In step g), a second polycrystalline silicon film 8 was deposited to a thickness of 50 nm by a normal CVD method as a gate electrode for contact extraction. The second polycrystalline silicon film 8 was formed so as to be wider by 5 nm on the element isolation insulating film 7 side than the end of the first polycrystalline silicon film 8.
工程 h) では、 ゲート長が 50 nmになるようにパターンエングし、 ゲート側 壁絶縁膜形成以後の工程を経て MO SFETを製造した。  In step h), the MOS SFET was fabricated by patterning the gate length to 50 nm and performing the steps after the formation of the gate-side wall insulating film.
<実施例 2 >  <Example 2>
実施例 1において、 工程 c) のレジスト 9を剥離後の洗浄を、 S PM洗浄液 ( 濃硫酸と過酸化水素を含む) と、 APM洗浄液 (アンモニアと過酸化水素を含む ) を用いて、 S PM洗浄を行った後、 さらに APM洗浄を行った以外は、 実施例 1を繰り返した。  In Example 1, the cleaning after removing the resist 9 in the step c) was performed using an SPM cleaning liquid (containing concentrated sulfuric acid and hydrogen peroxide) and an APM cleaning liquid (containing ammonia and hydrogen peroxide). Example 1 was repeated except that after the cleaning, the APM cleaning was further performed.
<実施例 1と実施例 2の結果 >  <Results of Example 1 and Example 2>
実施例 1および実施例 2で形成した半導体装置の、 チャネル方向に垂直方向の X— X, 断面図を、 それぞれ図 3 (a) 、 (b) に示す。  FIGS. 3A and 3B show XX and cross-sectional views of the semiconductor devices formed in Example 1 and Example 2 in the direction perpendicular to the channel direction, respectively.
これらの図より、 第 1の多結晶シリコン膜 5と SO I膜 3との間の距離が、 素 子中央から素子分離端に向けて徐々に厚膜化していることが分かる。 また、 SO I膜 3とシリコン基板 1の間の距離は、 端部において素子中央から素子分離端に 向けて徐々に厚膜化することが分かる。 SO I膜 3の膜厚は、 素子中央から素子 分離端に向けて徐々に薄膜化している。 From these figures, it can be seen that the distance between the first polycrystalline silicon film 5 and the SOI film 3 becomes gradually thicker from the device center toward the device isolation end. Also, SO It can be seen that the distance between the I film 3 and the silicon substrate 1 gradually increases in thickness from the element center to the element isolation end at the end. The thickness of the SOI film 3 is gradually reduced from the center of the device to the isolation end.
実施例 1で製造された M〇S FETでは、 し 1が1 511111、 2が1 511111、 L 3が 5 nmであった。 薄膜化する S〇 I膜厚の割合が、 素子領域の SO I膜厚 の 20 %以下であった。  In the M〇S FET manufactured in Example 1, 1 was 1 511111, 2 was 1 511111, and L3 was 5 nm. The ratio of the S〇I film thickness to be thinned was less than 20% of the SOI film thickness in the element region.
実施例 2で製造された半導体装置では、 1^ 1が2511111、 し 2が25 !1111、 L 3が 5 nmであった。  In the semiconductor device manufactured in Example 2, 1 ^ 1 was 2511111, 2 was 25! 1111, and L3 was 5 nm.
図 4は、 実施例 1および実施例 2で、 ゲート幅を変更して形成したゲート長 1 mの nMOS FETのしきい値電圧のゲート幅依存性を示すグラフである。 ま た、 図 5は、 実施例 1および実施例 2で製造したゲート長 1 m、 ゲート幅 2 m の MOS FET 5000個並列での I— V測定結果を示すグラフである。 FIG. 4 is a graph showing the gate width dependence of the threshold voltage of an nMOS FET having a gate length of 1 m formed by changing the gate width in Examples 1 and 2. FIG. 5 is a graph showing IV measurement results of 5000 MOS FETs having a gate length of 1 m and a gate width of 2 m manufactured in Example 1 and Example 2 in parallel.
実施例 1の製造方法で製造した MO S F E T、 実施例 2の製造方法で製造した MOSFETともに、 しきい電圧の低下、 ゲートリーク電流の低下が見られてい るが、 実施例 1で製造した MOSFETでは、 実施例 2で製造した MOSFET に比べて、 さらにしきい値電圧変動を抑制でき、 逆狭チャネル効果が顕著に抑制 されている。 実施例 1の MOSFETでは、 例えばゲート幅が 0. 4 mの場合 、 しきい値電圧変動幅は 5 OmV以下である。  Both the MOSFET manufactured by the manufacturing method of Example 1 and the MOSFET manufactured by the manufacturing method of Example 2 show a decrease in the threshold voltage and a decrease in the gate leakage current, but the MOSFET manufactured in Example 1 However, as compared with the MOSFET manufactured in Example 2, the threshold voltage fluctuation can be further suppressed, and the inverse narrow channel effect is significantly suppressed. In the MOSFET of the first embodiment, for example, when the gate width is 0.4 m, the threshold voltage fluctuation width is 5 OmV or less.
本発明では、 バ一ズビーク部が存在することにより、 SO I膜の上端での電界 集中が緩和される。 しかし、 そのパーズビークのくい込み距離は大きすぎないこ とが好ましいことがわかる。  In the present invention, the presence of the bird's beak reduces the electric field concentration at the upper end of the SOI film. However, it can be seen that the penetration distance of the parse beak is preferably not too large.
<実施例 3 >  <Example 3>
実施例 3では、 実施例 1の工程 d) において、 側面酸化膜形成の温度を下げて 比較的低温の 700 で熱酸化を行った。 この条件は、 単結晶シリコンに比べて 多結晶シリコンの方が酸化速度が速い条件であるので、 その結果ゲート絶縁膜の 上下の非対称性が大きくなる。 700°Cにおける多結晶シリコンの酸化速度は、 その膜質にもよるが、 単結晶シリコンに比べて 10〜20%程度早くなる。 この ような条件で側面酸化をおこなうと、 食い込み距離 L l、 L 2も概ね酸化速度比 に応じた大きさとなり、 非対称なパーズビ一ク形成が実現される。 産業上の利用可能性 In Example 3, in Step d) of Example 1, the temperature of the formation of the side oxide film was lowered, and thermal oxidation was performed at a relatively low temperature of 700. Under these conditions, the oxidation rate of polycrystalline silicon is higher than that of single crystal silicon, and as a result, the upper and lower asymmetry of the gate insulating film increases. The oxidation rate of polycrystalline silicon at 700 ° C is about 10 to 20% faster than that of monocrystalline silicon, depending on the film quality. When side oxidation is performed under such conditions, the penetration distances L l and L 2 are also approximately the oxidation rate ratio. And an asymmetrical pearlsby formation is realized. Industrial applicability
本発明によれば、 後工程でうけるアンテナダメージ耐性、 ゲートリーク電流、 According to the present invention, antenna damage resistance, gate leak current,
TDDB (t ime d e p e nd d i e l e c t r i c b r e a k d ow n) 特性、 Vsub (基板電位) による VLh (しきい電圧) 制御性等を改善するこ とができる。 It is possible to improve the characteristics of TDDB (time delay dielectric breakdown) and the controllability of V Lh (threshold voltage) by V sub (substrate potential).
また、 バ一ズビークのくい込み距離が大きすぎないときには、 ゲート幅が極め て小さい素子の場合でも、 しきい電圧の低下防止、 リーク電流の低下に効果があ る。  In addition, when the penetration distance of the bird's-beak is not too large, even in the case of an element having a very small gate width, it is effective in preventing the threshold voltage from lowering and reducing the leak current.

Claims

請求の範囲 The scope of the claims
1 . ベ一ス半導体層上に形成された埋め込み絶縁膜と、 1. a buried insulating film formed on the base semiconductor layer;
この埋め込み絶縁膜に達する素子分離膜と、  An element isolation film reaching the buried insulating film;
この素子分離膜により区画され、 前記埋め込み絶縁膜上に位置する半導体活性 層と、  A semiconductor active layer partitioned by the element isolation film and located on the buried insulating film;
この半導体活性層上の一部に設けられたゲート絶縁膜と、  A gate insulating film provided on a part of the semiconductor active layer;
このゲート絶縁膜を介して、 前記半導体活性層と対向して設けられたゲート電 極と  A gate electrode provided opposite to the semiconductor active layer via the gate insulating film.
を有する半導体装置であって、 A semiconductor device having
前記素子分離膜は、 その上面が前記ゲート絶縁膜面より基板からみて上方にあ るせり上げ素子分離構造であり、  The device isolation film has a lift-up device isolation structure whose upper surface is above the gate insulating film surface as viewed from the substrate,
チャネルの電流方向に直交しゲート電極を含む断面において、 素子分離膜と接 する端部の少なくとも一部に、 素子中央側から素子分離膜側端に向けて、 前記ゲ ート絶縁膜の厚さが次第に厚くなつているバーズビ一ク部を有することを特徴と する半導体装置。 '  In a cross section orthogonal to the current direction of the channel and including the gate electrode, the thickness of the gate insulating film is formed at least at a part of the end in contact with the element isolation film from the element center side toward the element isolation film side end. A semiconductor device characterized by having a bird's beak portion that is gradually thicker. '
2 . 前記パーズビーク部のゲ一ト幅方向の長さが、 2 5 n m以下であること を特徴とする請求項 1記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the length of the parse beak portion in the gate width direction is 25 nm or less.
3 . 前記パーズビーク部のゲート幅方向の長さが、 チャネル幅の 5 %以下で あることを特徴とする請求項 1または 2記載の半導体装置。 3. The semiconductor device according to claim 1, wherein a length of the parse beak portion in a gate width direction is 5% or less of a channel width.
4 . 前記パーズビーク部のくい込み距離が、 上下非対称であって、 ゲ一ト電 極側のくい込み距離が、 半導体活性層側のくい込み距離より大きいことを特徴と する請求項 1〜 3のいずれかに記載の半導体装置。 4. The penetration distance of the parse beak portion is vertically asymmetric, and the penetration distance on the gate electrode side is longer than the penetration distance on the semiconductor active layer side. 13. The semiconductor device according to claim 1.
5 . チャネルの電流方向に直交しゲート電極を含む断面において、 素子分離 膜と接する端部の少なくとも一部に、 素子中央側から素子分離膜側端に向けて、 前記半導体活性層の底部が上側に次第に後退して厚さが薄くなり前記埋め込み絶 縁膜が次第に厚くなつている底部バ一ズビーク部をさらに有することを特徴とす る請求項 1〜 4のいずれかに記載の半導体装置。 5. In the cross section orthogonal to the current direction of the channel and including the gate electrode, at least a part of the end in contact with the element isolation film, from the element center side to the element isolation film side end, 5. The semiconductor device according to claim 1, further comprising a bottom bird's beak in which the bottom of the semiconductor active layer gradually recedes upward, the thickness becomes thinner, and the buried insulating film becomes gradually thicker. 13. A semiconductor device according to claim 1.
6 . 前記底部バ一ズビーク部のゲート幅方向の長さが、 2 5 n m以下である ことを特徴とする請求項 5記載の半導体装置。 6. The semiconductor device according to claim 5, wherein the length of the bottom bird's beak in the gate width direction is 25 nm or less.
7 . ベース半導体層上に形成された埋め込み絶縁膜と、 7. a buried insulating film formed on the base semiconductor layer;
この埋め込み絶縁膜に達する素子分離膜と、  An element isolation film reaching the buried insulating film;
この素子分離膜により区画され、 前記埋め込み絶縁膜上に位置する半導体活性 層と、  A semiconductor active layer partitioned by the element isolation film and located on the buried insulating film;
この半導体活性層上の一部に設けられたゲート絶縁膜と、  A gate insulating film provided on a part of the semiconductor active layer;
このゲート絶縁膜を介して、 前記半導体活性層と対向して設けられたゲート電 極と  A gate electrode provided opposite to the semiconductor active layer via the gate insulating film.
を有する半導体装置であって、 A semiconductor device having
前記素子分離膜は、 その上面が前記ゲート絶縁膜面より基板からみて上方にあ るせり上げ素子分離構造であり、  The device isolation film has a lift-up device isolation structure whose upper surface is above the gate insulating film surface as viewed from the substrate,
チャネルの電流方向に直交しゲート電極を含む断面において、 素子分離膜と接 する端部の少なくとも一部に、 素子中央側から素子分離膜側端に向けて、 前記半 導体活性層の底部が上側に次第に後退して厚さが薄くなり前記埋め込み絶縁膜が 次第に厚くなつている底部バ一ズビーク部を有することを特徴とする半導体装置  In a cross section orthogonal to the current direction of the channel and including the gate electrode, the bottom of the semiconductor active layer is located above at least a part of the end in contact with the element isolation film, from the element center side toward the element isolation film side end. A buried insulating film having a bottom bird's beak portion which gradually retreats and becomes thinner and thinner.
8 . 前記底部パーズビーク部のゲート幅方向の長さが、 2 5 n m以下である ことを特徴とする請求項 7記載の半導体装置。 8. The semiconductor device according to claim 7, wherein the length of the bottom parse beak in the gate width direction is 25 nm or less.
9 . 前記半導体活性層の厚さが 2 0 0 n m以下の範囲であることを特徴とす る請求項 1〜 8のいずれかに記載の半導体装置。 9. The semiconductor device according to claim 1, wherein the semiconductor active layer has a thickness of 200 nm or less.
1 0 . 前記素子分離膜の上面が、 前記ゲート絶緣膜の中央部より 2 0 n m以上 、 上方に位置することを特徴とする請求項 1〜 9のいずれかに記載の半導体装置 10. The semiconductor device according to claim 1, wherein an upper surface of the element isolation film is located at least 20 nm or more above a central portion of the gate insulating film. 10.
1 1 . 前記ゲート電極は、 ゲート絶緣膜に接し、 前記素子分離膜の上面より下 側に位置する第 1のゲート電極材料と、 この第 1のゲ一ト絶縁膜に接して引き出 し部分を形成する第 2のゲー卜電極材料で構成され、 11. The gate electrode is in contact with a gate insulating film, a first gate electrode material located below an upper surface of the element isolation film, and a portion drawn out in contact with the first gate insulating film. Composed of a second gate electrode material forming
チャネルの電流方向に直交しゲ一ト電極を含む断面において、 前記素子分離膜 の上面の端部に切り欠きが設けられ、  In a cross section orthogonal to the current direction of the channel and including the gate electrode, a notch is provided at an end of the upper surface of the element isolation film,
前記第 2のゲート電極材料は、 切り欠き部を覆いながら前記素子分離膜の上面 に引き出されてゲ一ト電極を構成していることを特徴とする請求項 1〜 1 0のい ずれかに記載の半導体装置。  The method according to any one of claims 1 to 10, wherein the second gate electrode material is drawn out to the upper surface of the element isolation film while covering a cutout portion to form a gate electrode. 13. The semiconductor device according to claim 1.
1 2 . ベース半導体層上に形成された埋め込み絶縁膜と、 1 2. A buried insulating film formed on the base semiconductor layer,
この埋め込み絶縁膜に達する素子分離膜と、  An element isolation film reaching the buried insulating film;
この素子分離膜により区画され、 前記埋め込み絶縁膜上に位置する半導体活性 層と、  A semiconductor active layer partitioned by the element isolation film and located on the buried insulating film;
この半導体活性層上の一部に設けられたゲート絶縁膜と、  A gate insulating film provided on a part of the semiconductor active layer;
このゲート絶縁膜を介して、 前記半導体活性層と対向して設けられたゲート電 極とを有する半導体装置であって、  A semiconductor device having a gate electrode provided to face the semiconductor active layer via the gate insulating film,
前記素子分離膜は、 その上面が前記ゲート絶縁膜面より基板からみて上方にあ るせり上げ素子分離構造であり、  The device isolation film has a lift-up device isolation structure whose upper surface is above the gate insulating film surface as viewed from the substrate,
前記ゲート電極は、 ゲート絶縁膜に接し、 前記素子分離膜の上面より下側に位 置する第 1のゲート電極材料と、 この第 1のゲート絶緣膜に接して引き出し部分 を形成する第 2のゲート電極材料で構成され、  The gate electrode is in contact with a gate insulating film, a first gate electrode material located below an upper surface of the element isolation film, and a second material forming a lead portion in contact with the first gate insulating film. Composed of gate electrode material,
チャネルの電流方向に直交しゲート電極を含む断面において、 前記素子分離膜 の上面の端部に切り欠きが設けられ、  In a cross section orthogonal to the channel current direction and including the gate electrode, a notch is provided at an end of the upper surface of the element isolation film,
前記第 2のゲート電極材料は、 切り欠き部を覆いながら前記素子分離膜の上面 に引き出されてゲート電極を構成していることを特徴とする半導体装置。 A semiconductor device, wherein the second gate electrode material is drawn out to the upper surface of the element isolation film while covering a cutout portion to form a gate electrode.
1 3 . ベース半導体層、 埋め込み絶縁膜および半導体層の積層構造を有する半 導体基板を用意する工程と、 13. A step of preparing a semiconductor substrate having a laminated structure of a base semiconductor layer, a buried insulating film, and a semiconductor layer;
前記半導体層上にゲート絶縁膜材料を形成する工程と、  Forming a gate insulating film material on the semiconductor layer;
前記ゲート絶縁膜材料上に第 1のゲート電極材料を堆積する工程と、 素子領域部分を覆うレジストパターンを形成し、 これをレジストとして用いて Depositing a first gate electrode material on the gate insulating film material, forming a resist pattern covering an element region portion, and using this as a resist
、 第 1のゲート電極材料、 ゲート絶縁膜材料および半導体層をエッチングし、 前 記埋め込み絶縁膜の少なくとも一部を露出させ、 前記半導体層を半導体活性層に 区画する素子分離溝を形成する工程と、 Etching a first gate electrode material, a gate insulating film material, and a semiconductor layer to expose at least a part of the buried insulating film, and form an element isolation groove for partitioning the semiconductor layer into a semiconductor active layer. ,
半導体活性層、 ゲート絶縁膜材料および第 1のゲート電極材料の露出している 側面を酸化して側面酸化膜を形成すると同時に、  At the same time as oxidizing the exposed side surfaces of the semiconductor active layer, the gate insulating film material and the first gate electrode material to form side oxide films,
( a ) 露出しているゲート絶縁膜材料端部に素子中央側から素子分離溝端に 向けて絶縁膜の厚さが次第に厚くなつているパーズビーク部、 および  (a) a parse beak where the thickness of the insulating film gradually increases from the center of the device toward the end of the isolation trench at the exposed end of the gate insulating film material; and
( b ) 素子中央側から素子分離膜側端に向けて、 前記半導体活性層の底部が 上側に次第に後退して厚さが薄くなり前記埋め込み絶縁膜が次第に厚くなつてい る底部パーズビーク部  (b) A bottom parse beak portion in which the bottom portion of the semiconductor active layer gradually recedes upward from the device center side toward the device isolation film side end and becomes thinner, and the buried insulating film becomes gradually thicker.
の少なくとも一方を形成する工程と、 Forming at least one of:
前記素子分離溝を埋めながら少なくとも前記第 1のゲート電極材料の高さ以上 の厚さに素子分離膜材料を堆積する工程と、  Depositing a device isolation film material to a thickness at least equal to or greater than the height of the first gate electrode material while filling the device isolation trenches;
前記素子分離膜材料の表面を平坦化して素子分離膜を形成する工程と、 第 2のゲ一ト電極材料を前記第 1のゲート電極材料との電気的接続をとりなが ら堆積する工程と  Forming a device isolation film by flattening the surface of the device isolation film material, and depositing a second gate electrode material while making electrical connection with the first gate electrode material.
を有する半導体装置の製造方法。 A method of manufacturing a semiconductor device having:
1 4 . ベ一ス半導体層、 埋め込み絶縁膜および半導体層の積層構造を有する半 導体基板を用意する工程と、 14. a step of preparing a semiconductor substrate having a laminated structure of a base semiconductor layer, a buried insulating film, and a semiconductor layer;
前記半導体層上にゲート絶縁膜材料を形成する工程と、  Forming a gate insulating film material on the semiconductor layer;
前記ゲート絶縁膜材料上に第 1のゲート電極材料を堆積する工程と、 前記第 1のゲ一ト電極材料上に化学機械研磨ストッパー膜を堆積する工程と 前記ストッパー膜上に、 素子領域を覆うレジストパターンを形成し、 これをレ ジストとして用いて、 前記ストッパ一膜、 第 1のゲート電極材料、 ゲート絶縁膜 材料および半導体層をエッチングし、 前記埋め込み絶縁膜の少なくとも一部を露 出させ、 前記半導体層を半導体活性層に区画する素子分離溝を形成する工程と、 半導体活性層、 ゲ一ト絶縁膜材料および第 1のゲート電極材料の露出している 側面を酸化して側面酸化膜を形成すると同時に、 Depositing a first gate electrode material on the gate insulating film material; depositing a chemical mechanical polishing stopper film on the first gate electrode material; Forming a resist pattern covering the element region on the stopper film, using the resist pattern as a resist, etching the stopper film, the first gate electrode material, the gate insulating film material, and the semiconductor layer; Exposing at least a part of the film to form an element isolation trench for partitioning the semiconductor layer into a semiconductor active layer; exposing the semiconductor active layer, the gate insulating film material and the first gate electrode material; At the same time as oxidizing the side surface to form a side oxide film,
( a ) 露出しているゲート絶縁膜材料端部に素子中央側から素子分離溝端に 向けて絶縁膜の厚さが次第に厚くなつているパーズピーク部、 および  (a) a parse peak portion where the thickness of the insulating film gradually increases from the center of the device toward the end of the isolation trench at the exposed end of the gate insulating film material; and
( b ) 素子中央側から素子分離膜側端に向けて、 前記半導体活性層の底部が 上側に次第に後退して厚さが薄くなり前記埋め込み絶縁膜が次第に厚くなつてい る底部パーズビーク部  (b) A bottom parse beak portion in which the bottom portion of the semiconductor active layer gradually recedes upward from the device center side toward the device isolation film side end and becomes thinner, and the buried insulating film becomes gradually thicker.
の少なくとも一方を形成する工程と、 Forming at least one of:
前記素子分離溝を埋めながら少なくとも前記ストッパー膜の高さ以上の厚さに 素子分離膜材料を堆積する工程と、  Depositing an element isolation film material to a thickness of at least the height of the stopper film while filling the element isolation groove;
前記ストッパー膜をストツバ一として、 前記素子分離膜材料の表面を平坦化し て素子分離膜を形成する工程と、  Forming a device isolation film by flattening the surface of the device isolation film material using the stopper film as a stopper;
前記ストッパー膜を除去した後、 第 2のゲート電極材料を堆積する工程と を有する半導体装置の製造方法。  Removing the stopper film and then depositing a second gate electrode material.
1 5 . 前記の素子分離溝を形成する工程の後、 前記ゲート絶縁膜材料および前 記埋め込み絶縁膜の少なくとも一方に対してエッチング作用のある洗浄液を用い て洗浄することを特徴とする請求項 1 3または 1 4記載の半導体装置の製造方法 15. The method according to claim 1, wherein after the step of forming the element isolation trench, at least one of the gate insulating film material and the buried insulating film is cleaned with a cleaning liquid having an etching action. 3. The method for manufacturing a semiconductor device according to 3 or 14.
1 6 . 前記洗浄液が、 硫酸と過酸化水素を含む洗浄液およびアンモニアと過酸 化水素を含む洗浄液の少なくとも 1つであることを特徵とする請求項 1 5記載の 半導体装置の製造方法。 16. The method for manufacturing a semiconductor device according to claim 15, wherein the cleaning liquid is at least one of a cleaning liquid containing sulfuric acid and hydrogen peroxide and a cleaning liquid containing ammonia and hydrogen peroxide.
1 7 . 前記の素子分離溝を形成する工程の後、 アンモニアと過酸化水素を含む 洗浄液を用いずに、 硫酸と過酸化水素を含む洗浄液を用いて洗浄することを特徴 とする請求項 1 3または 1 4記載の半導体装置の製造方法。 17. After the step of forming the element isolation groove, contains ammonia and hydrogen peroxide 15. The method for manufacturing a semiconductor device according to claim 13, wherein cleaning is performed using a cleaning solution containing sulfuric acid and hydrogen peroxide without using a cleaning solution.
1 8 . 前記ストッパー膜を除去する際に、 等方性エッチングにより、 前記素子 分離膜の上面の端面を後退させて切り欠き部を形成することを特徴とする請求項 1 4記載の半導体装置の製造方法。 18. The semiconductor device according to claim 14, wherein, when the stopper film is removed, a notch is formed by retreating an end surface of an upper surface of the element isolation film by isotropic etching. Production method.
PCT/JP2003/014524 2002-11-15 2003-11-14 Semiconductor device having elevated device isolation structure and production method therefor WO2004047164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280804A AU2003280804A1 (en) 2002-11-15 2003-11-14 Semiconductor device having elevated device isolation structure and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-332240 2002-11-15
JP2002332240A JP2004165566A (en) 2002-11-15 2002-11-15 Semiconductor device having lift element isolation structure and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2004047164A1 true WO2004047164A1 (en) 2004-06-03

Family

ID=32321656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014524 WO2004047164A1 (en) 2002-11-15 2003-11-14 Semiconductor device having elevated device isolation structure and production method therefor

Country Status (3)

Country Link
JP (1) JP2004165566A (en)
AU (1) AU2003280804A1 (en)
WO (1) WO2004047164A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756926B2 (en) * 2005-06-17 2011-08-24 Okiセミコンダクタ株式会社 Method for manufacturing element isolation structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326991A (en) * 1991-09-24 1994-07-05 Rohm Co., Ltd. Semiconductor device having silicon carbide grown layer on insulating layer and MOS device
JPH0917868A (en) * 1995-06-27 1997-01-17 Nippon Steel Corp Wiring connection structure of semiconductor integrated circuit device and its manufacturing method
JPH09252114A (en) * 1996-03-15 1997-09-22 Toshiba Corp Manufacture of semiconductor device
WO1997050118A1 (en) * 1996-06-27 1997-12-31 Commissariat A L'energie Atomique Method for producing a transistor with self-aligned contacts and field insulation
JP2002176049A (en) * 2000-12-08 2002-06-21 Sharp Corp Method of manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326991A (en) * 1991-09-24 1994-07-05 Rohm Co., Ltd. Semiconductor device having silicon carbide grown layer on insulating layer and MOS device
JPH0917868A (en) * 1995-06-27 1997-01-17 Nippon Steel Corp Wiring connection structure of semiconductor integrated circuit device and its manufacturing method
JPH09252114A (en) * 1996-03-15 1997-09-22 Toshiba Corp Manufacture of semiconductor device
WO1997050118A1 (en) * 1996-06-27 1997-12-31 Commissariat A L'energie Atomique Method for producing a transistor with self-aligned contacts and field insulation
JP2002176049A (en) * 2000-12-08 2002-06-21 Sharp Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
AU2003280804A1 (en) 2004-06-15
JP2004165566A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US7777273B2 (en) MOSFET having recessed channel
US7449733B2 (en) Semiconductor device and method of fabricating the same
US7701010B2 (en) Method of fabricating transistor including buried insulating layer and transistor fabricated using the same
KR100584776B1 (en) Method of forming active structure, isolation and MOS transistor
KR100338767B1 (en) Trench Isolation structure and semiconductor device having the same, trench isolation method
US8178921B2 (en) Semiconductor device having reduced standby leakage current and increased driving current and method for manufacturing the same
US6787423B1 (en) Strained-silicon semiconductor device
US7119384B2 (en) Field effect transistor and method for fabricating it
US6271541B2 (en) Semiconductor device with high gettering capability to impurity present in semiconductor layer of SOI substrate
US9595578B2 (en) Undercut insulating regions for silicon-on-insulator device
US6838733B2 (en) Semiconductor device and fabrication method with etch stop film below active layer
US8389391B2 (en) Triple-gate transistor with reverse shallow trench isolation
CN105448730A (en) Semiconductor structure and method of forming same
US20060202259A1 (en) Semiconductor device and method of fabricating the same
US6847086B2 (en) Semiconductor device and method of forming the same
US6979867B2 (en) SOI chip with mesa isolation and recess resistant regions
US6642536B1 (en) Hybrid silicon on insulator/bulk strained silicon technology
JPH1174526A (en) Semiconductor device and its manufacture
JP4619140B2 (en) MOS field effect transistor and manufacturing method thereof
WO2004047164A1 (en) Semiconductor device having elevated device isolation structure and production method therefor
US7061128B2 (en) Semiconductor device and manufacturing method of the same
JP2008171910A (en) Method for manufacturing semiconductor device
US5904543A (en) Method for formation of offset trench isolation by the use of disposable spacer and trench oxidation
KR20070101435A (en) Semiconductor device and method for manufacturing the same
KR20040003900A (en) Method for manufacturing a semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase