WO2004046396A1 - 超音波衝撃処理による金属切断面の疲労強度向上方法および長寿命の金属製品 - Google Patents

超音波衝撃処理による金属切断面の疲労強度向上方法および長寿命の金属製品 Download PDF

Info

Publication number
WO2004046396A1
WO2004046396A1 PCT/JP2003/014669 JP0314669W WO2004046396A1 WO 2004046396 A1 WO2004046396 A1 WO 2004046396A1 JP 0314669 W JP0314669 W JP 0314669W WO 2004046396 A1 WO2004046396 A1 WO 2004046396A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
cut
cut surface
fatigue strength
impact treatment
Prior art date
Application number
PCT/JP2003/014669
Other languages
English (en)
French (fr)
Inventor
Tomonori Tominaga
Kazumi Matsuoka
Koji Honma
Hiroyuki Tanahashi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to AU2003280852A priority Critical patent/AU2003280852A1/en
Priority to JP2004553196A priority patent/JP4235176B2/ja
Publication of WO2004046396A1 publication Critical patent/WO2004046396A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present invention provides a method for clarifying a cut surface of a metal, particularly a metal plate, by ultrasonic impact treatment.
  • the present invention relates to a method for improving fatigue strength, and a long-life metal product manufactured by applying the method.
  • the problem of metal fatigue may limit the strength of the metal material.
  • such a cold-worked portion or cut surface has a large residual tensile stress as in the case of the welded portion.
  • such a portion often has a stress concentration portion such as a notch.
  • shot peening is widely used for parts such as gears, although they are not used for thin sheets (“Carburizing and quenching”, 2nd edition, published by Nikkan Kogyo Shimbun (Carburized steel shots) Toping) (February 26, 1999))).
  • the grinding process is not easy to use for mass-produced products, because not only does it require skill to implement it, but it also takes a lot of time to work and causes a large increase in cost.
  • the shotpy Jung treatment is a method of processing a metal surface by colliding steel particles at high speed with the metal surface.
  • the surface hardness and the compressive residual stress can be improved.
  • the range in which the residual stress can be improved by the shot peening treatment is at most about 300 ⁇ m from the surface, and the effect of suppressing the crack growth by the shot peening treatment is limited. Become. Therefore, the shotpy jung treatment is not necessarily a sufficient method in terms of the effect of suppressing crack growth, and requires a large machine and a champer for placing the object to be treated. It is difficult to process objects.
  • the shot peening process since the shot peening process has a low selectivity for the processing target site, it is impossible to process only the cut surface to be processed. In other words, the shot peening treatment sometimes leaves traces of treatment on parts that do not need to be treated, and impairs the appearance of the metal product.Therefore, it has a problem that it cannot be used for objects that require design. .
  • the present inventor has been enthusiastically developing.
  • the impact energy is applied to the processed portion of the metal to be processed by the ultrasonic impact treatment
  • the plastic becomes plastic near the metal surface.
  • Improves fatigue resistance by imparting deformation and compressive residual stress or relaxing tensile residual stress.Also, once a fatigue crack has entered, it stops the propagation of the crack and renders it harmless. I found what I could do.
  • the present invention is based on the above findings, and the gist is as follows.
  • the small notch existing on the cut surface can be reduced to a centerline average roughness Ra (JISB0601) of ⁇ ⁇ or less. Smooths and removes hardened tissue with a hardness of more than 400 ⁇ ⁇ ⁇ , and less than 200 / Xm generated from the metal surface
  • the metal is a steel having a tensile strength of 400 N / mm 2 or more, and the fatigue of the cut metal surface by the ultrasonic impact treatment according to any of (1) to (3), wherein the metal is steel. Strength improvement method.
  • metal plates according to (5) is, to the tensile strength 4 0 0 NZmm 2 or more steel plates der wherein Rukoto.
  • FIG. 1 is a diagram showing an aspect of a cut surface when a metal plate is cut by gas.
  • A shows the state of the cut surface at the time of cutting, and
  • B shows the surface shape of the cut cross section after cutting.
  • FIG. 2 is a diagram showing an aspect of a cut surface when a metal plate is cut by shearing.
  • A shows the state of the cut surface at the time of cutting
  • (b) shows the state of the cut surface. The surface shape of the cut surface after cutting is shown.
  • FIG. 3 is a diagram showing an embodiment in which an ultrasonic impact treatment is performed on a cut surface of a metal plate.
  • A shows a mode in which ultrasonic impact treatment is performed on the cut surface and the upper and lower ends in the thickness direction
  • (b) shows an embodiment in which ultrasonic impact treatment is performed on the cut surface with an ultrasonic vibrator having a concave surface. An embodiment will be described.
  • FIG. 4 is a graph showing the relationship between the as-cut surface roughness (Rao) on the cut surface and the surface roughness (Rau) after the ultrasonic impact treatment.
  • (A) shows the case where the metal plate is cut by shearing, and
  • (b) shows the case where the metal plate is cut with gas.
  • Figure 5 shows the surface roughness (Rao, Rau) before and after the ultrasonic impact treatment on the cut surface.
  • (A) shows the case where the grinder treatment was performed after the gas cutting, and
  • (b) shows the case where the saw was cut.
  • FIG. 1 shows an aspect of a cut surface when the metal plate 1 is cut by gas.
  • FIG. 1 (a) shows the state of the cut surface when the metal plate 1 is cut by the gas panner 12, and FIG. 1 (b) shows the surface shape of the cut surface after cutting.
  • the gas cut surface 3 has an uneven surface shape as shown in FIG. 1 (b).
  • the size of the unevenness in the measurement section is as large as lOO / m or more.
  • FIG. 2 shows the cut surface when the metal plate is cut by shearing.
  • FIG. 2 (a) shows the state of the cut surface when the metal plate 1 is cut by the blade 4 of the shearing machine
  • FIG. 2 (b) shows the surface shape of the cut surface after shearing cutting.
  • the cut surfaces 3 and 5 of the metal plate 1 are subjected to, for example, ultrasonic impact treatment with an amplitude of 20 to 60 ⁇ m, a frequency of 19 to 60 kHz, and an output of 0.2 to 3 kW. And smoothes small notches on the cut surface, removes hardened structures, and compresses cracks generated from the cut surface (fracture surface) of the metal plate 1 by plastic flow. However, the growth of the cracks can be stopped and harmless.
  • the crack penetrated into the inside from the surface and in addition to the length on the surface, the depth of penetration from the surface also affected the crack propagation, but the length on the surface and the most penetrated Since the depth to the position is almost the same, if the length on the surface of the crack is reduced, the depth of the crack is also reduced.
  • the length on the surface of a crack that can be visually observed is treated as an index for stopping the propagation of the crack and rendering it harmless.
  • FIG. 3 shows an embodiment in which the cut surface is subjected to ultrasonic impact treatment.
  • Fig. 3 (a) shows an embodiment in which the ultrasonic vibrator 8 applies ultrasonic shock treatment to the cut surface of the metal plate 1 and the upper and lower ends in the plate thickness direction, and
  • Fig. 3 (b) An embodiment will be described in which ultrasonic impact processing is performed on the cut surface by the ultrasonic vibrator 8 having a concave surface portion.
  • W Fig. 4 and Fig. 5 show the surface roughness in the longitudinal direction on the cut surface cut by various cutting methods.
  • FIG. 4 shows the relationship between the as-cut surface roughness (Rao) and the surface roughness after ultrasonic shock treatment (Rau) of the cut surface obtained by shearing and cutting the metal plate and the gas cut surface.
  • FIG. 5 shows the surface roughness before and after the ultrasonic impact treatment on the cut surface subjected to the grinder treatment after the gas cutting and the cut surface subjected to the saw cutting.
  • the cut surface after gas cutting has large irregularities, but by applying the ultrasonic impact treatment of the present invention to the cut surface, small notches existing on the cut surface can be removed. It can be seen that the center line average roughness Ra can be smoothed to 10 ⁇ m or less.
  • a hardened structure having a surface hardness of 400 HV or more can be removed by applying an ultrasonic impact treatment to a cut surface of the steel plate having a tensile strength of 40 O NZmm 2 or more.
  • a fine crack of 200 ⁇ m or less generated from the surface of the steel sheet can be compressed by plastic flow into a crack having a length of 50% or less of the original length.
  • the crack can be formed into a crack having a depth of 50% or less of the original depth by compression bonding by plastic flow.
  • Nos. 1 to 7 are invention examples, and Nos. 8 to 1 are comparative examples.
  • Comparative example N 0.8, 9 and 14 treated cut surface In this case, the fatigue strength of the cut surface was degraded by gas cutting, shearing cutting, and plasma cutting.
  • the hardness was 40 HV or less
  • the center line average roughness Ra was 10 ⁇ m or less
  • the residual stress was reduced.
  • the length of the small crack of 200 / xm on the cut surface was shortened to 50% of the original length (see No. 3), and the fatigue strength was improved. I have.
  • the fatigue strength of the cut surface of a metal plate can be improved and a long-life metal product can be manufactured. Therefore, the present invention has great applicability as a technology for manufacturing metal products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laser Beam Processing (AREA)

Abstract

金属の切断面に超音波衝撃処理を施すことにより、切断面に存在する小さなノッチを中心線平均粗さRaでμm以下に平滑化するか、または、金属の切断面に凹面を有するピンによる超音波衝撃処理を施すことにより、該切断面に曲面部を形成して応力集中を緩和し、かつ、硬さ400Hv以上の硬化組織を除去し、さらに、金属の表面から発生した200μm以下の微細なき裂を、塑性流動により圧着して元の長さの50%以下のき裂にすることを特徴とする超音波衝撃処理による金属切断面の疲労強度向上方法。

Description

超音波衝撃処理による金属切断面の疲労強度向上方法および長寿命 の金属製品
〔技術分野〕
本発明は、 超音波衝撃処理によ り 、 金属、 特に金属板の切断面の 明
疲労強度を向上させる方法、 および、 その方法を適用して製造した 長寿命の金属製品に関する。
〔背景技術〕
近年、 高性能化、 高機能化、 軽量化、 低コス ト化等を推進するた めに、 構造部材に使用する金属材料の高強度化が進んでいる。 しか し、 例えば、 船舶、 海洋構造物、 橋梁などの、 使用期間中に繰り返 し荷重を受ける構造物においては、 通常、, 高強度化に伴い構造部材 に発生する応力も高くなり、 金属疲労の問題が顕在化する場合も多 レ、。
それ故、 この金属疲労の問題で、 金属材料の高強度化が制限され る場合もある。
一般に、 構造物において疲労き裂が問題となる箇所は、 主と して 、 応力集中部や溶接部であるが、 その他、 冷間加工部や切断面でも 疲労き裂がしばしば問題となる。
通常、 このよ うな冷間加工部や切断面には、 溶接部と同様に、 大 きな引張残留応力が存在する。 また、 このよ うな部位には、 しばし ばノ ッチなどの応力集中部が存在する場合がある。
さ らに、 ガス切断などの熱を与える切断法では、 急熱急冷によ り 、 切断面に、 著しく硬くて脆い組織が形成され易い。 そのよ うな組 織が形成された部位は、 母材部よ り も疲労強度が著しく低いのが通 例である。 '
特に、 薄板の加工においては、 多くの場合、 プレスなどの冷間加 ェを用い、 そして、 切断においては、 切断面での疲労強度が低下す ることが指摘されているシャーリ ングを用いるので、 溶接部以外の 冷間加工部や切断部において疲労強度を確保することが必要になる 疲労き裂が発生する可能性が高い鋼材の切断部に対しては、 疲労 強度を向上させる方法と して、 一般に、 グラインデイング処理が用 いられる。 グラインデイング処理は、 グライ ンダーによって切断面 を研削して、 表面に形成された脆い硬化組織や引張り残留応力が残 る部分を除去し、 応力集中を緩和する手法である。
その他、 薄板では使われることはないが、 ギアなどの部品に対し ては、 ショ ッ トピーニング処理が広く用いられる ( 「浸炭焼入れの 実際」 第 2版 日刊工業新聞社発行 (浸炭鋼のショ ッ トピーニング ) ( 1 9 9 9年 2月 2 6 日) ) 。
しかし、 グラインデイング処理は、 その実施に熟練を必要とする のみならず、 作業に多大な時間を要し、 大きなコス ト増加原因とな るので、 大量生産の製品に使うには難がある。
また、 グラインデイング処理に際し、 グラインダーの歯の回転方 向を応力の作用方向と平行にしなければ、 歯痕が、 き裂のような形 で金属表面に残り、 それが進展して、 かえって、 金属製品の疲労強 度を低下させることがある。 さ らに、 グライ ンデイ ング処理は、 応 力集中を改善しても、 残留応力の変化が少ないので、 グラインディ ング処理による疲労強度の向上効果は少ない。
ショ ッ トピーユング処理は、 金属の表面に高速で鋼の粒子を衝突 させて金属表面を加工する方法であり、 この方法を用いることによ り、 表面硬さや圧縮残留応力の改善を図ることができる。
しかし、 ショ ッ ト ピーニング処理で残留応力を改善できる範囲は 、 表面からせいぜい 3 0 0 μ ΠΙほどの深さまでであり、 ショ ッ ト ピ —ニング処理によるき裂進展抑制効果は限定されたものとなる。 それ故、 ショ ッ トピーユング処理は、 き裂進展抑制効果の点で必 ずしも十分な方法ではなく、 また、 大きな機械と処理対象物を入れ るためのチャンパ一が必要となるので、 大型の対象物を処理するの は困難である。
また、 ショ ッ トピーニング処理は、 処理対象場所の選択性が低い ので、 処理を施したい切断面のみを処理することは不可能である。 即ち、 ショ ッ トピーユング処理は、 時には、 処理を施す必要のない 部位に処理痕を残し、 金属製品の外観を損ねるので、 意匠性を要求 される対象物には使用できない等の問題を抱えている。
〔発明の開示〕
上述したような問題を解消するために、 本発明者は鋭意開発を進 め、 その結果、 超音波衝撃処理によ り、 衝撃エネルギーを処理対象 金属の加工部に与えると、 金属表面近傍に塑性変形および圧縮残留 応力を付与するか、 または、 引張残留応力を緩和して、 耐疲労性能 を向上させ、 かつ、 一旦、 疲労き裂が入っても、 そのき裂の進展を 止めて、 無害化できることを見い出した。
本発明は、 上記知見に基づく ものであり、 その要旨は、 以下のと おりである。
( 1 ) 金属の切断面に超音波衝搫処理を施すことによ り、 切断面 に存在する小さなノ ツチを中心線平均粗さ R a ( J I S B 0 6 0 1 ) で Ι Ο μ πι以下に平滑化し、 かつ、 硬さ 4 0 0 Η ν以上の硬 化組織を除去し、 さ らに、 金属表面から発生した 2 0 0 /X m以下の 微細なき裂を、 塑性流動によ り圧着して元の長さの 5 0 %以下のき 裂にすることを特徴とする超音波衝撃処理による金属切断面の疲労 強度向上方法。
( 2 ) 金属の切断面に、 凹面を有するピンによ り超音波衝撃処理 を施すことによ り、 切断面に曲面部を形成して応力集中を緩和し、 かつ、 硬さ 4 0 0 H V以上の硬化組織を除去し、 さらに、 金属表面 から発生した 2 0 0 μ m以下の微細なき裂を、 塑性流動によ り圧着 して、 元の長さの 5 0 %以下のき裂にすることを特徴とする超音波 衝撃処理による金属切断面の疲労強度向上方法。
( 3 ) 前記金属の切断面が、 金属板を切断した切断面であること を特徴とする前記 ( 1 ) または ( 2 ) に記載の超音波衝撃処理によ る金属切断面の疲労強度向上方法。
( 4 ) 前記金属が、 引張強度 4 0 0 N/mm2 以上の鋼であるこ とを特徴とする前記 ( 1 ) 〜 ( 3 ) のいずれかに記載の超音波衝撃 処理による金属切断面の疲労強度向上方法。
( 5 ) 前記 ( 1 ) 〜 ( 3 ) のいずれかに記載の超音波衝撃処理に よる金属切断面の疲労強度向上方法を、 金属板の切断面に適用して 製造したことを特徴とする長寿命の金属製品。
( 6 ) 前記金属板が、 引張強度 4 0 0 NZmm2 以上の鋼板であ ることを特徴とする前記 ( 5 ) に記載の金属製品。
〔図面の簡単な説明〕
図 1 は、 金属板をガス切断した時の切断面の態様を示す図である 。 ( a ) は、 切断時の切断面の状態を示し、 ( b ) は、 切断後の切 断面の表面形状を示す。
図 2は、 金属板をシヤーリ ング切断した時の切断面の態様を示す 図である。 ( a ) は、 切断時の切断面の状態を示し、 ( b ) は、 切 断後の切断面の表面形状を示す。
図 3は、 金属板の切断面に超音波衝撃処理を施す態様を示す図で ある。 ( a ) は、 切断面と板厚方向の上下端部に超音波衝撃処理を 施す態様を示し、 ( b ) は、 切断面に、 凹面部を有する超音波振動 子で超音波衝擊処理を施す態様を示す。
図 4は、 切断面における切断ままの表面粗さ (Rao) と超音波衝 撃処理後の表面粗さ (Rau) の関係を示す図である。 ( a ) は、 金 属板をシャーリ ング切断した場合を示し、 ( b ) は、 金属板をガス 切断した場合を示す。
図 5は、 切断面における超音波衝撃処理前後の表面粗さ (Rao, Rau) を示す図である。 ( a ) は、 ガス切断後グラインダー処理し た場合を示し ( b ) は、 ノコ切断した場合を示す。
〔発明の実施の形態〕
以下、 本発明について図面に従って詳細に説明する。
図 1 に、 金属板 1をガス切断した時の切断面の態様を示す。 図 1 ( a ) は、 ガスパーナ一 2によ り、 金属板 1 を切断した時の切断面 の状態を示し、 図 1 ( b ) は、 切断後の切断面の表面形状を示す。 金属板 1 をガスバーナー 2で切断した場合、 ガス切断面 3は、 図 1 ( b ) に示すよ うに、 凹凸状の表面形状をなしている。 この時、 計測区間における凹凸の大きさは、 l O O / m以上にもなつている 図 2に、 金属板をシヤーリ ング切断した時の切断面の態様を示す 。 図 2 ( a ) は、 せん断機の刃 4で金属板 1 を切断した時の切断面 の状態を示し、 図 2 ( b ) は、 シャーリ ング切断後の切断面の表面 形状を示す。
金属板 1 を刃 4で切断した場合、 シャーリ ング切断面 (破断面) 5のパリ部 6や端部 (だれ部およびせん断面) 7 (図 2 ( b ) 、 参 照) において、 引張残留応力が大きくなる。 この場合、 凹凸の大き さは 1 3 0 μ mにも及んでいる。
金属板 1の切断面 3、 5に、 例えば、 振幅 2 0〜 6 0 μ m、 周波 数 1 9〜 6 0 k H z、 出力 0. 2〜 3 kWの超音波衝撃処理を施す ことによ り、 切断面に存在する小さなノ ッチを平滑化し、 かつ、 硬 化組織を除去し、 また、 金属板 1の切断面 (破断面) から発生した き裂を塑性流動によ り圧着して、 き裂の進展を止めて無害化するこ とができる。
なお、 き裂は、 表面から内部に侵入していて、 表面上の長さに加 え、 表面からの侵入深さも、 き裂の進展に影響を及ぼすが、 表面上 の長さと、 最も侵入した位置までの深さは略同じであるので、 き裂 の表面上の長さが短縮されていれば、 き裂の深さも短縮されている ことになる。 本発明では、 目視で観察できるき裂の表面上の長さを 、 き裂の進展を止めて無害化するための指標と して扱う。
図 3に、 切断面に超音波衝撃処理を施す態様を示す。 図 3 ( a ) に、 金属板 1の切断面と板厚方向の上下端部に、 超音波振動子 8で 超音波衝撃処理を施す態様を示し、 図 3 ( b ) に、 金属板 1 の切断 面に、 凹面部を有する超音波振動子 8で超音波衝撃処理を施す態様 を示す。
図に示すよ うに、 金属板の切断面に超音波衝撃処理を施すことに よ り、 上述したように、 応力集中を緩和し、 硬さ 4 0 0 H v以上の 硬化組織を除去し、 金属板の表面から発生した 2 0 0 z m以下の微 細なき裂を、 塑性流動によ り圧着して、 元の長さの 5 0 %以下の長 さのき裂とすることができる。
このとき、 圧着されたき裂の深さは、 元の深さの 5 0 %以下とな つている。 W 図 4 と図 5は、 各種切断方法で切断した切断面における長手方向 の表面粗さを示す。 図 4は、 金属板をシャーリ ング切断した切断面 、 および、 ガス切断した切断面における切断ままの表面粗さ (Rao ) と超音波衝撃処理後の表面粗さ (Rau) の関係を示す。 また、 図 5は、 ガス切断後グライ ンダー処理した切断面、 および、 ノ コ切断 した切断面における超音波衝擊処理前後の表面粗さを示す。
図に示すように、 ガス切断した後の切断面においては凹凸が大き いが、 その切断面に、 本発明の超音波衝擊処理を施すことによ り、 切断面に存在する小さなノ ツチを、 中心線平均粗さ R aで 1 0 μ m 以下まで平滑化できることが判る。
また、 金属板が鋼板の場合、 引張強度 4 0 O NZmm2 以上の鋼 板の切断面に超音波衝撃処理を施すことにより、 表面硬さ 4 0 0 H V以上の硬化組織を除去することができ、 かつ、 鋼板表面から発生 した 2 0 0 μ m以下の微細なき裂を塑性流動によ り圧着して、 元の 長さの 5 0 %以下のき裂のとすることができる。
即ち、 塑性流動による圧着で、 き裂を、 元の深さの 5 0 %以下の 深さのき裂とすることができる。
同様に、 鋼板の切断面に、 凹面部を有するピンを用いて超音波衝 撃処理を施すことによ り、 切断面における応力集中を緩和すること ができる。
〔実施例〕
以下、 本発明について実施例によって具体的に説明する。
幅 4 0 mm、 長さ 2 0 0 mm、 板厚 2. 6 mmの試験片について 、 切断法および切断面の処理法を変化させ、 その処理前後毎に、 切 断面の硬さ、 および、 粗さを計測し、 かつ、 切断面におけるき裂の 有無を計測した。 また、 いくつかの試験体については、 超音波衝撃処理を施すのに 先立って、 長さ 2 0 0 μ πιに切欠いた人工的なき裂と、 長さ 1 5 0 0 μ mに切欠いた人工的なき裂を入れた。 その上で、 疲労試験を実 施し、 超音波衝撃処理の効果を確認した。 その結果を表 1に示す。
表 1
Figure imgf000011_0001
注 1 ) 切断法 : Gはガス切断、 Sはシャー リ ング切断、 Pはブラ ズマ切断をいう
注 2 ) 処理法 : U Sは超音波衝撃処理、 凹凸は超音波振動子先端 形状、 G Rはグラインデイ ング処理、 S Pはショ ッ トピー ニング処理である。
表 1に示すように、 N o . 1〜 7は発明例であり、 N o . 8〜 1 は比較例である。 比較例 N 0. 8, 9および 1 4は切断面を処理 しなかった場合であり、 ガス切断、 シャーリ ング切断およびプラズ マ切断により、 切断面において疲労強度が劣化している。
また、 比較例 N o . 1 0, 1 1および 1 5においては、 切断後の グラインダー処理によ り、 疲労強度が劣化している。 さ らに、 比較 例 N o . 1 2および 1 6においては、 切断後のショ ッ ト ビーユング 処理により、 疲労強度の改善がみられるが、 十分な改善には至って いない。
これに対し、 発明例の N o . 1〜 7のいずれにおいても、 硬さが 4 0 H V以下であり、 中心線平均粗さ R aが 1 0 μ m以下であり、 かつ、 残留応力が低下し、 切断面に発生した 2 0 0 /x mの微細なき 裂の長さが、 元の長さの 5 0 %にまで短縮されて (N o . 3、 参照 ) 、 疲労強度の向上がなされている。
〔産業上の利用可能性〕
本発明によれば、 金属板の切断面の疲労強度を向上せしめ、 長寿 命の金属製品を製造することができる。 よって、 本発明は、 金属製 品を製造する技術と して、 利用可能性が大きいものである。

Claims

1. 金属の切断面に超音波衝撃処理を施すことにより、 切断面に 存在する小さなノ ツチを中心線平均粗さ R aで 1 0 μ m以下に平滑 化し、 かつ、 硬さ 4 0 0 H V以上の硬化組織を除去し、 さらに、 金 属表面から発生した 2 0 0 μ πι以下の微細なき裂を、 塑性流動によ 青
り圧着して元の長さの 5 0 %以下のき裂にすることを特徴とする超 音波衝撃処理による金属切断面の疲労強度向上方法。
2. 金属の切断面に、 凹面を有するピンによ り超音波衝撃処理を 施すことにより、 切断面に曲面部を形成して応力集中を緩和し、 か つ、 硬さ 4 0 0 Η ν以上の硬化組織を除去囲し、 さらに、 金属表面か ら発生した m以下の微細なき裂を、 塑性流動により圧着し て元の長さの 5 0 %以下のき裂にすることを特徴とする超音波衝撃 処理による金属切断面の疲労強度向上方法。
3. 前記金属の切断面が、 金属板を切断した切断面であることを 特徴とする請求の範囲 1 または 2に記載の超音波衝撃処理による金 属切断面の疲労強度向上方法。
4. 前記金属が、 引張強度 4 0 0 N/mm 2 以上の鋼であること を特徴とする請求の範囲 1〜 3のいずれか 1項に記載の超音波衝撃 処理による金属切断面の疲労強度向上方法。
' 5. 請求項 1〜 3のいずれか 1項に記載の超音波衝撃処理による 金属切断面の疲労強度向上方法を、 金属板の切断面に適用して製造 したことを特徴とする長寿命の金属製品。
6. 前記金属板が、 引張強度 4 0 0 N/mm2 以上の鋼板である ことを特徴とする請求の範囲 5に記載の長寿命の金属製品。
PCT/JP2003/014669 2002-11-18 2003-11-18 超音波衝撃処理による金属切断面の疲労強度向上方法および長寿命の金属製品 WO2004046396A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003280852A AU2003280852A1 (en) 2002-11-18 2003-11-18 Method of increasing fatigue strength of cut face of metal by ultrasonic shock treatment and long life metal product
JP2004553196A JP4235176B2 (ja) 2002-11-18 2003-11-18 超音波衝撃処理による金属切断面の疲労強度向上方法および長寿命の金属製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002333299 2002-11-18
JP2002-333299 2002-11-18

Publications (1)

Publication Number Publication Date
WO2004046396A1 true WO2004046396A1 (ja) 2004-06-03

Family

ID=32321690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014669 WO2004046396A1 (ja) 2002-11-18 2003-11-18 超音波衝撃処理による金属切断面の疲労強度向上方法および長寿命の金属製品

Country Status (3)

Country Link
JP (1) JP4235176B2 (ja)
AU (1) AU2003280852A1 (ja)
WO (1) WO2004046396A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069229A (ja) * 2005-09-06 2007-03-22 Nippon Steel Corp 疲労強度向上に優れた金属の衝撃塑性加工処理用工具及び方法
EP2465636A1 (de) * 2010-12-16 2012-06-20 MTU Aero Engines AG Verfahren und Vorrichtung zum Ausbilden eines Bereichs eines Bauteils mit einer vorbestimmten Kontur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479320A (en) * 1987-09-19 1989-03-24 Nippon Steel Corp Improvement of material quality of metal for welding austenitic stainless steel
JPH081514A (ja) * 1994-06-16 1996-01-09 Toshiba Corp 原子炉内構造物の表面処理方法
JPH09234585A (ja) * 1996-02-29 1997-09-09 Mitsubishi Heavy Ind Ltd 溶接残留応力の低減装置付き溶接装置
US6171415B1 (en) * 1998-09-03 2001-01-09 Uit, Llc Ultrasonic impact methods for treatment of welded structures
JP2003113418A (ja) * 2001-10-04 2003-04-18 Nippon Steel Corp 疲労寿命向上処理法およびそれによる長寿命金属材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479320A (en) * 1987-09-19 1989-03-24 Nippon Steel Corp Improvement of material quality of metal for welding austenitic stainless steel
JPH081514A (ja) * 1994-06-16 1996-01-09 Toshiba Corp 原子炉内構造物の表面処理方法
JPH09234585A (ja) * 1996-02-29 1997-09-09 Mitsubishi Heavy Ind Ltd 溶接残留応力の低減装置付き溶接装置
US6171415B1 (en) * 1998-09-03 2001-01-09 Uit, Llc Ultrasonic impact methods for treatment of welded structures
JP2003113418A (ja) * 2001-10-04 2003-04-18 Nippon Steel Corp 疲労寿命向上処理法およびそれによる長寿命金属材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069229A (ja) * 2005-09-06 2007-03-22 Nippon Steel Corp 疲労強度向上に優れた金属の衝撃塑性加工処理用工具及び方法
EP2465636A1 (de) * 2010-12-16 2012-06-20 MTU Aero Engines AG Verfahren und Vorrichtung zum Ausbilden eines Bereichs eines Bauteils mit einer vorbestimmten Kontur

Also Published As

Publication number Publication date
JPWO2004046396A1 (ja) 2006-03-16
JP4235176B2 (ja) 2009-03-11
AU2003280852A1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
EP3199648A1 (en) Method of improvement of toughness of heat affected zone at welded joint of steel plate
Pant et al. Studies towards development of laser peening technology for martensitic stainless steel and titanium alloys for steam turbine applications
EP2565282A2 (en) Laser shock peening of airfoils
CN105039652A (zh) 一种用于曲面的方形光斑激光冲击均匀强化方法
RU2354715C1 (ru) Способ упрочнения деталей из конструкционных материалов
JP2003113418A (ja) 疲労寿命向上処理法およびそれによる長寿命金属材
JPWO2009104798A1 (ja) 耐疲労特性に優れた溶接継手及びその製造方法
Bissey-Breton et al. Influence of machining on the microstructure, mechanical properties and corrosion behaviour of a low carbon martensitic stainless steel
KR100676333B1 (ko) 초음파 충격 처리에 의한 냉간 가공부의 강도 향상 방법 및파괴 인성 및 피로 강도가 높은 금속 제품
JP4261879B2 (ja) 疲労強度に優れた長寿命回転体の製造方法
WO2004046396A1 (ja) 超音波衝撃処理による金属切断面の疲労強度向上方法および長寿命の金属製品
RU2753636C1 (ru) Способ получения износостойкого покрытия
WO2004040022A1 (ja) 耐環境助長割れ性の優れた金属構造製品および、金属構造製品の環境助長割れ抵抗性向上方法
JP3793501B2 (ja) レールの補強及び補修工法
WO2004033144A1 (ja) 疲労強度に優れた回し溶接継手、回し溶接継手の製造方法、および、溶接構造物
JP2006167724A (ja) 超音波打撃装置を用いた加工方法および構造物
CN113661027A (zh) 钢铁材料的表面改性方法和钢铁结构物
JP2010142870A (ja) 超音波打撃処理を用いた加工方法
JP2020104143A (ja) 打ち抜き被加工材の打ち抜き加工方法および打ち抜き被加工材の打ち抜き加工型
Prażmowski et al. Influence of the microstructure near the interface on the fatigue life of explosively welded (carbon steel)/Zr clads
WO2004042093A1 (ja) 液体金属脆化抵抗性の優れた金属構造製品、鉄構製品およびそれらの製造方法
WO2006109873A1 (ja) 疲労き裂発生・進展抑止特性に優れた金属部材および異幅金属板部材およびその製造方法ならびにそれらを有する金属製構造物
JP2006021206A (ja) 溶接補修箇所を備えた鋳鋼品及び鋳鋼品の溶接補修方法
JP4015928B2 (ja) 金属製品の塗装密着性向上方法
AU2018369968A1 (en) Treatment method for a cutting piece, and associated equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004553196

Country of ref document: JP

122 Ep: pct application non-entry in european phase