WO2004046391A1 - Procédé et dispositif pour refroidir des lances de soufflage - Google Patents

Procédé et dispositif pour refroidir des lances de soufflage Download PDF

Info

Publication number
WO2004046391A1
WO2004046391A1 PCT/DE2003/003741 DE0303741W WO2004046391A1 WO 2004046391 A1 WO2004046391 A1 WO 2004046391A1 DE 0303741 W DE0303741 W DE 0303741W WO 2004046391 A1 WO2004046391 A1 WO 2004046391A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
lance
cooling medium
jacket
vessel
Prior art date
Application number
PCT/DE2003/003741
Other languages
German (de)
English (en)
Inventor
Arno Luven
Andrzej Sakowicz
Werner Kircher
Revold Adamov
Original Assignee
Vai Fuchs Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vai Fuchs Gmbh filed Critical Vai Fuchs Gmbh
Priority to DE50302627T priority Critical patent/DE50302627D1/de
Priority to EP03779686A priority patent/EP1560937B1/fr
Priority to BRPI0316215-0A priority patent/BR0316215B1/pt
Priority to AU2003287860A priority patent/AU2003287860A1/en
Publication of WO2004046391A1 publication Critical patent/WO2004046391A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C5/462Means for handling, e.g. adjusting, changing, coupling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/168Introducing a fluid jet or current into the charge through a lance
    • F27D2003/169Construction of the lance, e.g. lances for injecting particles

Definitions

  • the invention relates to a method for cooling blowing lances for treating liquid metal melts located in metallurgical vessels, in particular steel, possibly exposed to vacuum in RH vessels, and / or for heating metal melts (optionally under vacuum) by means of a lifting device in the inside of the vessel can be led in and out and has at least one inner guide tube for guiding gases, in particular oxygen, with a head-end lance mouth for inflating the gas onto the molten metal and has a cooling jacket extending over its length for carrying out a cooling medium, which as double-walled jacket tube having an inner and an outer cooling channel is formed with a deflection tube in the region of the head end, the metallurgical vessel being connected to a vacuum pump for lowering the pressure.
  • a lifting device in the inside of the vessel can be led in and out and has at least one inner guide tube for guiding gases, in particular oxygen, with a head-end lance mouth for inflating the gas onto the molten metal and has a cooling jacket extending over its length for carrying
  • the invention further relates to a device for carrying out the aforementioned method, with a metallurgical vessel into which a blowing lance can be inserted and removed by means of a lifting device, which has at least one inner guide tube with a head-end lance mouth and a cooling jacket which consists of a inner cooling duct and an outer cooling duct, which are connected via a deflection tube, and with a pump, by means of which the metallurgical vessel can be evacuated via a vacuum connection.
  • Blow lances of the aforementioned type are known in principle according to the prior art.
  • Water is regularly used as the cooling medium during the inflation of gases or solids onto the molten steel, which is flushed into the lance head in a large volume flow under pressure.
  • extremely high temperatures occur which lead to gradual wear and / or Crack formation on the lance head, due to which the wall thickness of the cooling chambers in the lance head becomes thinner until the walls soften, with the result that breakthroughs can occur.
  • Escaping water then evaporates, exceeds the suction power of the vacuum pump and leads to an explosive overpressure in the recipient.
  • DE 3543 836 C2 has proposed alternating with two in another method in which the blowing lance is immersed in the melt to use blowing lances that can be cooled with both cooling and cooling water.
  • the blowing lances only the blowing lance that is currently in the blowing position and immersed in the melt is cooled with cooling air, while the blowing lance that is just outside the melt is intensively cooled with cooling water.
  • the alternate use of two blowing lances is relatively complex.
  • Immersion tubes a siphon-like closure, which, because the introduction of pressure relief openings (expansion flaps) is not possible, may serve as the only pressure compensation openings.
  • pressure relief openings expansion flaps
  • a water ingress due to a defective oxygen lance in a RH vessel with subsequent expansion can result in an expansion pressure of approx. 14x10 5 Pa.
  • an explosion speed of 2 x 10 7 Pa / s and a pressure relief through the existing dip tubes large quantities of liquid steel would inevitably be thrown into the system environment.
  • the above object is achieved by the method according to claim 1.
  • the first measure is to use a gas as the cooling medium, which drastically reduces the amount of cooling medium released in the event of a lance defect. Calculations carried out show that in oxygen blowing processes under a pressure of 1 to 2x10 4 Pa in a RH vessel, a cooling steam flow of 1000 kg / h and in VCD operation under a pressure of 70 Pa to 4x10 3 Pa, a cooling steam flow of 360 kg / h h are sufficient. This small amount of steam compared to water cooling can be easily extracted from the vacuum pump in the event of a lance break or broken lance, without causing a dangerous one Expansion within the vessel occurs.
  • the ratio of the suction power of the (vacuum) pump to the amount of steam available is approx. 2: 1 to 6: 1, which effectively prevents pressure development with expansion through the immersion tubes.
  • Another measure according to the invention is that the suction power of the pump currently available regulates the flow rate of the gas used as the cooling medium. If the suction power of the pump drops or if it is low or low for other reasons, the cooling gas flow is minimized accordingly in order to create a sufficient ratio of the suction power of the pump to the amount of cooling gas to be extracted in the event of damage.
  • the pump suction power that is currently available additionally regulates the lance feed, the lance feed and the gas supply preferably being stopped immediately when there is a measured difference between the amount of gas supplied for lance cooling and the gas discharged.
  • the first measure serves to prevent further damage to the lance by a sharp increase in temperature when approaching the surface of the bath level.
  • the other measure means that only the amount of gas currently in the cooling jacket of the lance can flow out.
  • Superheated steam in particular steam overheated by 20 ° C. to 50 ° C., is preferably used as the cooling medium.
  • the cooling medium is introduced into the inner cooling channel and discharged via the outer cooling channel during the inflation of oxygen. This ensures that immediately after the greatest heat absorption of the superheated water vapor introduced as the cooling medium in the area of the outer cooling channel, the water vapor is led directly out of the lance. Furthermore, there is the advantage that the oxygen fed in via the inner guide tube is heated due to the amount of water vapor flowing along the inner guide tube and, in this respect, is blown onto the molten steel in the vessel in the already heated state. This results in a lower temperature loss of the liquid steel, a more intensive carbon reaction in the case of decarburization to be carried out by the oxygen blowing, a more intensive aluminum reaction in chemical heating and an improved oxygen efficiency and finally a lower oxygen consumption.
  • the water vapor is fed into the outer cooling duct of the cooling jacket and is discharged via the inner cooling duct after a head-end deflection. If the ambient temperature of the lance is lower compared to the oxygen blowing mode, this water vapor routing in the cooling jacket ensures that the water vapor first heats up the area of the outer cooling channel, so that the cooling of the water vapor and the associated condensate formation in the area of the cooling channels is avoided ,
  • the amount of the cooling medium to be introduced into the cooling jacket in particular water vapor, as a function of that measured on the outer jacket of the lance Temperature and / or the current lance position is regulated.
  • the lance is initially preheated without cooling in start-up mode, preferably by moving the lance into the already heated metallurgical vessel and only then switching on the steam cooling.
  • water vapor it is preferably supplied as a coolant under a pressure of at least 7 ⁇ 10 5 Pa at a temperature of 160 ° C. to 210 ° C.
  • the object is further achieved by the device according to claim 9 which, according to the invention, the flow rate of the cooling medium by means of a control unit for adjusting the flow rate of the gas used as the cooling medium as a function of the current lance position, the available suction power of the vacuum pump and the lance outside wall temperatures regulates, is marked.
  • the lance feed is preferably also set via the control unit.
  • sensors are connected to the blow lance head and on the blow lance jacket at longitudinally different distances, which are connected to the control unit.
  • the flow rate of the cooling medium can be increased or decreased via the control unit according to the measured temperatures.
  • a condensate separator is preferably provided, through which the cooling medium is guided before entering the cooling channel of the blowing lance.
  • the lance mouth is preferably designed as a Laval nozzle.
  • FIG. 1 is a schematic cross-sectional view of a blowing lance
  • Fig. 3 is a cross-sectional view of an RH vessel with the retracted
  • the lance 10 which is known in principle according to the prior art, has an inner guide tube 11 which ends at the head end in a nozzle 20, preferably a Laval nozzle, as a lance mouth 12.
  • a gas in particular oxygen, can be supplied via this guide tube 11.
  • the guide tube 11 is surrounded by a cooling jacket 13 with an outer tubular cooling jacket tube 13a, the interior of which is divided by an inserted deflection tube 14 into an inner cooling channel 15 surrounding the inner guide tube 11 and an outer cooling channel 16.
  • the deflection tube 14 does not reach in the head region of the lance 10 as far as the nozzle 20, so that here a deflection region 17 results as a connection between the inner cooling duct 15 and the outer cooling duct 16.
  • Each of the two cooling channels 15 and 16 is connected at the foot end of the lance to an associated opening 18, which is switched as an inlet or an outlet depending on the desired cooling medium flow direction.
  • the inner surface of the outer cooling jacket tube 13a facing the cooling channel 16 is formed with ribs 19 projecting radially into the cooling channel 16.
  • a cooling gas preferably overheated by 20 ° C. to 50 ° C., is supplied via the cooling channels 15 and 16 of the cooling jacket 13.
  • a cross connection can be provided with regard to the loading of the inner cooling channel 15 or the outer cooling channel 16 for the supply and removal of the water vapor.
  • the cooling steam is supplied via the opening 18 connected to the inner cooling duct 15, so that the water vapor flows long past the inner guide tube 11 to the deflection region 17 of the cooling jacket 13 and from here via the outer cooling duct 16, which is in contact with the reaction chamber of the vessel surrounding the lance via the tubular cooling jacket 13.
  • the outer cooling jacket 13 is exposed to a significantly lower amount of heat. In this case, the water vapor is first blown into the outer cooling channel 16. The water vapor is discharged via the inner cooling duct 15 and its outlet opening 18 on the head side. The same applies in the case of VCD operation.
  • start-up mode i. H. that in the case of a cold lance, the lance 10 is first moved into the vessel 200 without steam cooling in order to preheat the lance. Steam cooling is therefore only activated after the lance has been preheated.
  • the metallurgical vessel 200 with its dip tubes 21 is introduced into the metal melt 29 filled into a pan 23.
  • the treatment vessel 200 can be evacuated via a connecting piece 22 by means of a pump 30.
  • the lance drive 24 is also connected to a control unit 27.
  • An encoder 25 is provided to determine the current lance position.
  • temperature sensors are provided on the lance jacket at different longitudinal axial distances and at the lance mouth, of which only the temperature sensor 26 is shown in FIG. 3. The temperatures measured by this sensor and the other temperature sensors are also transmitted to the control unit 27.
  • the regulating unit 27 regulates the introduced amount of cooling gas via the regulator 28 as a function of the suction power of the pump 30 and the temperatures measured via the existing temperature sensors.
  • Flow measuring devices are not shown in detail, which determine the quantity of cooling steam that has been introduced and the quantity that has been exported, and send a signal to the control unit 27 in the event of any deviations that are an indication of existing leaks. In the event of a leak, the further introduction of cooling gas and the lance feed are stopped or the lance is moved out of the vessel 200.
  • FIG. 4 shows a lance inserted into the vessel 200.
  • the vessel interior temperature Tj is 1500 ° C in a specific application.
  • the temperatures T * -, T 2 , T 3 and T measured here on the lance within the first two minutes are shown in FIG. 8.
  • a temperature rise of up to 1060 ° C is measured on the top of the lance. If steam cooling is switched on after two minutes by letting in steam at a temperature of 160 ° C below 7x10 5 PA, the temperatures Ti and T 2 measured on the lance head drop to 260 and 215 ° C, respectively.
  • the amount of steam conveyed through the cooling channels 15 and 16 is then approx. 179 kg / h.
  • FIG. 5 shows the lance 10 in the oxygen blowing mode. Inside the vessel there is a pressure of 2x10 4 Pa and a temperature Tj of 1800 ° C. Through the guide tube 11 oxygen in an amount of z. B. 1000 N ⁇ fVh inflated. For lance cooling, water vapor is introduced at a pressure of 7x10 5 PA at a temperature of 160 ° C. The corresponding temperature profiles T * ⁇ , T 2 , T 3 , T and the steam outlet temperature are shown in Fig. 9.
  • FIG. 6 shows a lance introduced into the vessel 200 in a VCD process, ie without oxygen supply via the guide tube 11. The pressure set inside the vessel is between 70 Pa and 4x10 3 Pa.
  • the lance is cooled with water vapor (7x10 5 Pa, 160 ° C).
  • the internal vessel temperature Tj is 1200 ° C
  • the amount of steam conveyed through the cooling channels 15 and 16 is 360 kg / h.
  • the course of the temperatures Ti to T 4 and the steam outlet temperature T Da can be seen in FIG. 10.
  • the amount of steam delivered was 360 kg / h.
  • Figure 7 shows the lance in an upper parking position.
  • the vessel 200 is immersed in the metal melt with its immersion nozzles.
  • the measured lance temperatures rise within a short time from 20 ° C. to 160 ° C. or 200 ° C., although the water vapor flow rate let in is 1464 kg / h.
  • the direction of steam flow is preferably reversed with a corresponding valve circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Furnace Details (AREA)

Abstract

L'invention concerne un procédé permettant de refroidir des lances de soufflage qui, pour traiter des matières métalliques en fusion se trouvant dans des cuves métallurgiques, notamment un acier, éventuellement soumis au vide, situé dans des cuves RH et/ou pour chauffer des matières métalliques en fusion (éventuellement sous vide), peuvent être introduites à l'intérieur de la cuve et en être ressorties, au moyen d'un dispositif de levage. La lance de soufflage concernée comporte au moins un tube de guidage intérieur pour guider des gaz, notamment de l'oxygène, avec une embouchure côté tête, pour souffler du gaz sur la matière métallique en fusion, ainsi qu'une enveloppe réfrigérante s'étendant sur toute sa longueur, destinée à faire passer un milieu de refroidissement à travers. L'enveloppe réfrigérante se présente sous forme d'enveloppe tubulaire à paroi double, qui comporte un canal de refroidissement intérieur et un canal de refroidissement extérieur, avec un tube de dérivation situé dans la zone de tête. La cuve métallurgique est reliée à une pompe à vide, afin d'abaisser la pression. Selon l'invention, la puissance d'aspiration de la pompe, instantanément disponible, limite le débit maximal du gaz utilisé comme milieu de refroidissement.
PCT/DE2003/003741 2002-11-16 2003-11-12 Procédé et dispositif pour refroidir des lances de soufflage WO2004046391A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50302627T DE50302627D1 (de) 2002-11-16 2003-11-12 Verfahren und vorrichtung zur kühlung von blaslanzen
EP03779686A EP1560937B1 (fr) 2002-11-16 2003-11-12 Procede et dispositif pour refroidir des lances de soufflage
BRPI0316215-0A BR0316215B1 (pt) 2002-11-16 2003-11-12 processo e dispositivo para o resfriamento de lanças de sopro.
AU2003287860A AU2003287860A1 (en) 2002-11-16 2003-11-12 Method and device for cooling blowing lances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10253463.2 2002-11-16
DE10253463A DE10253463A1 (de) 2002-11-16 2002-11-16 Verfahren und Vorrichtung zur Kühlung von Blaslanzen

Publications (1)

Publication Number Publication Date
WO2004046391A1 true WO2004046391A1 (fr) 2004-06-03

Family

ID=32240102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003741 WO2004046391A1 (fr) 2002-11-16 2003-11-12 Procédé et dispositif pour refroidir des lances de soufflage

Country Status (10)

Country Link
EP (1) EP1560937B1 (fr)
KR (1) KR101024824B1 (fr)
CN (1) CN1320131C (fr)
AT (1) ATE319862T1 (fr)
AU (1) AU2003287860A1 (fr)
BR (1) BR0316215B1 (fr)
DE (2) DE10253463A1 (fr)
RU (1) RU2333254C2 (fr)
WO (1) WO2004046391A1 (fr)
ZA (1) ZA200503850B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085843A1 (fr) * 2010-01-13 2011-07-21 Siemens Vai Metals Technologies Gmbh Lance de soufflage à oxygène partiellement refroidie au gaz
WO2012159179A1 (fr) 2011-05-20 2012-11-29 Magnesita Refratários S/A Lance réfrigérée pour injection dans des cuves métallurgiques
US9038867B2 (en) 2011-05-11 2015-05-26 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
US9644246B2 (en) 2011-05-11 2017-05-09 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
EP3074741A4 (fr) * 2013-11-27 2017-07-26 Woojin Electro-Nite Inc. Dispositif de mesure de température en continu et appareil rh le comprenant
CN107779545A (zh) * 2017-10-25 2018-03-09 江阴市弘诺机械设备制造有限公司 一种炼钢电弧炉炉壁氧枪

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034007A1 (de) * 2006-07-22 2008-02-07 Messer Group Gmbh Verfahren und Vorrichtung zum Eintragen eines Mediums in einen thermischen Behandlungsraum
DE102008032523A1 (de) * 2008-07-10 2010-01-14 Sms Siemag Aktiengesellschaft Halterung für einen Injektor und Verfahren zu seinem Betrieb
CN102052851A (zh) * 2010-12-04 2011-05-11 金川集团有限公司 一种新型氧枪冷却方法
RU2503890C1 (ru) * 2012-06-04 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) Охлаждаемое вытяжное защитное вентиляционное устройство
KR20200110119A (ko) 2019-03-13 2020-09-23 심상룡 제강온도 자동측정 랜스 냉각장치
CN115989325A (zh) * 2020-09-08 2023-04-18 西门子股份公司 拉伐尔喷嘴及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543836A1 (de) * 1985-12-12 1987-06-19 Clemens Karl Heinz Zwillingsblaslanzenanlage fuer metallurgische behandlungen mit integrierter messlanzenanlage
EP0879896A1 (fr) * 1996-10-08 1998-11-25 POHANG IRON & STEEL CO., LTD. Appareil de fusion d'acier fondu destine a la production d'acier a tres faible teneur en carbone, et procede de fusion faisant appel a cet appareil
EP0947587A1 (fr) * 1998-03-09 1999-10-06 Volkwin Köster Lance pour injection de gaz et procédé pour son refroidissement
DE19948187A1 (de) * 1999-10-06 2001-05-10 Thyssenkrupp Stahl Ag Verfahren zur metallurgischen Behandlung einer Stahlschmelze in einem Konverter mit auf die Stahlschmelze aufgeblasenem Sauerstoff und Sauerstoffaufblaslanze

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9023716D0 (en) * 1990-10-31 1990-12-12 Whellock John G Metallurgical apparatus and methods
US5377960A (en) * 1993-03-01 1995-01-03 Berry Metal Company Oxygen/carbon blowing lance assembly
DE19755876C2 (de) * 1997-12-04 2000-02-24 Mannesmann Ag Blaslanze zum Behandeln von metallischen Schmelzen und Verfahren zum Einblasen von Gasen
CN2432219Y (zh) * 2000-06-09 2001-05-30 北京科技大学 多功能复吹单嘴精炼炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543836A1 (de) * 1985-12-12 1987-06-19 Clemens Karl Heinz Zwillingsblaslanzenanlage fuer metallurgische behandlungen mit integrierter messlanzenanlage
EP0879896A1 (fr) * 1996-10-08 1998-11-25 POHANG IRON & STEEL CO., LTD. Appareil de fusion d'acier fondu destine a la production d'acier a tres faible teneur en carbone, et procede de fusion faisant appel a cet appareil
EP0947587A1 (fr) * 1998-03-09 1999-10-06 Volkwin Köster Lance pour injection de gaz et procédé pour son refroidissement
DE19948187A1 (de) * 1999-10-06 2001-05-10 Thyssenkrupp Stahl Ag Verfahren zur metallurgischen Behandlung einer Stahlschmelze in einem Konverter mit auf die Stahlschmelze aufgeblasenem Sauerstoff und Sauerstoffaufblaslanze

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011085843A1 (fr) * 2010-01-13 2011-07-21 Siemens Vai Metals Technologies Gmbh Lance de soufflage à oxygène partiellement refroidie au gaz
US9038867B2 (en) 2011-05-11 2015-05-26 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
US9644246B2 (en) 2011-05-11 2017-05-09 Tyk America, Inc. Degasser snorkel with serpentine flow path cooling
WO2012159179A1 (fr) 2011-05-20 2012-11-29 Magnesita Refratários S/A Lance réfrigérée pour injection dans des cuves métallurgiques
EP3074741A4 (fr) * 2013-11-27 2017-07-26 Woojin Electro-Nite Inc. Dispositif de mesure de température en continu et appareil rh le comprenant
CN107779545A (zh) * 2017-10-25 2018-03-09 江阴市弘诺机械设备制造有限公司 一种炼钢电弧炉炉壁氧枪

Also Published As

Publication number Publication date
BR0316215B1 (pt) 2011-11-16
BR0316215A (pt) 2005-09-27
ZA200503850B (en) 2006-11-29
CN1320131C (zh) 2007-06-06
RU2333254C2 (ru) 2008-09-10
RU2005118555A (ru) 2006-01-20
CN1708591A (zh) 2005-12-14
DE50302627D1 (de) 2006-05-04
EP1560937B1 (fr) 2006-03-08
DE10253463A1 (de) 2004-06-03
AU2003287860A1 (en) 2004-06-15
EP1560937A1 (fr) 2005-08-10
ATE319862T1 (de) 2006-03-15
KR20050059336A (ko) 2005-06-17
KR101024824B1 (ko) 2011-03-31

Similar Documents

Publication Publication Date Title
EP1560937B1 (fr) Procede et dispositif pour refroidir des lances de soufflage
DE60004509T2 (de) Sterilisator mit vakuumunterstützter luftentfernung
EP0761345B1 (fr) Machine à couler sous pression à chambre chaude
EP0524368A1 (fr) Dispositif automatique de surveillance et de contrôle d'un four de traitement thermique sous vide
DE10156495C1 (de) Vorrichtung und Verfahren zum Kühlen eines Reaktordruckbehälters einer Siedewasser-Reaktoranlage
KR20160133544A (ko) 열교환기, 그 열교환기를 포함한 반응로 설비, 및 반응로의 온도를 제어하기 위한 방법
EP3727701A1 (fr) Centrifugeuse à température contrôlée
EP0761347A1 (fr) Procédé d'opération d'un inducteur et inducteur pour la mise en oeuvre du procédé
DE2629488A1 (de) Apparatur fuer kontinuierliche vulkanisierung von langgestreckten zu vulkanisierenden erzeugnissen
EP1140391B1 (fr) Procede et dispositif pour regler et/ou maintenir la temperature d'une masse en fusion, en particulier d'acier en fusion lors de la coulee en continu
EP2354259B1 (fr) Installation de dégazage continu sous vide dotée d'un brûleur d'allumage
DE102011075627B4 (de) Sekundärkühleinrichtung zum Kühlen eines Metallstrangs und Verfahren zum Betreiben der Sekundärkühleinrichtung
EP3305390A1 (fr) Evaporateur de type bain-marie et installation technique
DE4427844C1 (de) Tiefschachtreaktor
WO1999046412A1 (fr) Lance de soufflage a chambre de melange gaz-liquide et son procede de refroidissement par dilatation
DE19603317A1 (de) Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens
DE19508784C2 (de) Verfahren zur Durchführung der Reinigung eines Tiefschachtreaktors und Tiefschachtreaktor mit elektronischer Steuerung
DE2228462A1 (de) Vorrichtung und verfahren zur herstellung von niedriggekohlten, hochchromlegierten staehlen
DE102021000636A1 (de) Vorrichtung zum Entgasen von Metallschmelzen
DE1205572B (de) Vakuumgluehturm mit einer Glueh- und einer Kuehlstrecke zur kontinuierlichen Waerme-behandlung endloser Metallbaender
AT245176B (de) Verfahren und Vorrichtung zum Gießen von geschmolzenem Metall im Vakuum
DE2456761A1 (de) Einrichtung zum transport von schlacke bei einer kontinuierlich arbeitenden aufbereitungsanlage
DE19815274A1 (de) Kühlmittelleitung für Elektrolichtbogenöfen
AT405826B (de) Verfahren zur durchführung der reinigung eines tiefschachtreaktors und tiefschachtreaktor mit elektronischer steuerung
AT378140B (de) Diskontinuierliche stranggussanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A22243

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003779686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057008675

Country of ref document: KR

Ref document number: 200503850

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2005118555

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1157/KOLNP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020057008675

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003779686

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0316215

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2003779686

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP