WO2004045228A1 - Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems - Google Patents
Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems Download PDFInfo
- Publication number
- WO2004045228A1 WO2004045228A1 PCT/US2002/036030 US0236030W WO2004045228A1 WO 2004045228 A1 WO2004045228 A1 WO 2004045228A1 US 0236030 W US0236030 W US 0236030W WO 2004045228 A1 WO2004045228 A1 WO 2004045228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subscriber
- carriers
- base station
- carrier
- band
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/38—TPC being performed in particular situations
- H04W52/42—TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/364—Delay profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0058—Allocation criteria
- H04L5/006—Quality of the received signal, e.g. BER, SNR, water filling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/16—Performing reselection for specific purposes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/242—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/283—Power depending on the position of the mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/16—Deriving transmission power values from another channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/248—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/52—TPC using AGC [Automatic Gain Control] circuits or amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/563—Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
Definitions
- the present invention relates to the field of multi-carrier communication systems; more particularly, the present invention relates to allocating carriers and performing power control in a multi-carrier system.
- multiple-access protocols e.g., time-division multiple access (TDMA), frequency- division multiple-access (FDMA), code-division multiple-access (CDMA)
- TDMA time-division multiple access
- FDMA frequency- division multiple-access
- CDMA code-division multiple-access
- OFDM orthogonal frequency-division multiplexing
- OFDMA orthogonal frequency-division multiplexing
- One of the biggest advantages of an OFDM modem is the ability to allocate power and rate optimally among narrowband sub-carriers.
- OFDMA allows for multi-access capability to serve increasing number of subscribers.
- OFDMA one or a cluster OFDM sub-carriers defines a "traffic channel", and different subscribers access to the base-station simultaneously by using different traffic channels.
- a "bad" traffic channel measured at the subscriber based on the omnidirectional sounding signal may very well be a "good” channel with proper spatial beamforming from the base-station.
- innovative information exchange mechanisms and channel assignment and loading protocols that account for the (spatial) channel conditions of all accessing subscribers, as well as their QoS requirements, are highly desirable.
- Such "spatial-channel-and-QoS-aware" allocation schemes can considerably increase the spectral efficiency and hence data throughput in a given bandwidth.
- distributed approaches, i.e., subscriber- initiated assignment are thus fundamentally sub-optimum.
- Linear Modulation Techniques such as Quadrature phase shift keying (QPSK), Quadrature Amplitude Modulation (QAM) and multi-carrier configurations provide good spectral efficiency, however the modulated RF signal resulting from these methods have a fluctuating envelope. This puts stringent and conflicting requirements on the power amplifier (PA) used for transmitting communications.
- PA power amplifier
- a fluctuating envelope of the modulating signal requires highly linear power amplification. But in order to achieve higher efficiency and improve uplink budget, power amplifiers have to operate close to compression and deliver maximum possible power. As a result, there is a trade off for power versus amount of nonlinear amplification a system can handle.
- IMD intermodulation distortion
- ACPR Adjacent Channel Leakage Power Ratio
- the ACPR is important to the FCC and wireless standards because of the coexistence with other users of the spectrum operating in adjacent and alternate channels.
- band or channel distortion affects the performance of the licensee's own spectrum, which, in turn, affects the transmitter signal-to-noise ratio (SNR) of other users in the same system.
- SNR transmitter signal-to-noise ratio
- RF link budget in a wireless communication system refers to balancing the available transmit power, antenna gain, propagation loss and determining maximum allowable distance at which received power meets a minimum detectable signal threshold.
- Base station design has relatively more degree of freedom than the Customer Equipment (CE). This results in the RF link budget being imbalanced in the uplink. This limitation is hard to overcome given the cost, size and battery life requirements of CE.
- the process comprises determining a location of a subscriber with respect to a base station, selecting carriers from a band of multiple carriers to allocate to the subscriber according to the location of the subscriber with respect to the base station, allocating selected carriers to the subscriber, and indicating to the subscriber whether or not to adjust transmit power above its normal transmit power range.
- Figure 1A illustrates a multi-carrier system.
- Figure IB illustrates spectral re-growth in a multi-carrier system.
- Figure IC illustrates power amplifier operating regions.
- Figure 2 is a flow diagram of one embodiment of a process for allocating carriers in a multi-carrier system.
- Figure 3 is a flow diagram of one embodiment of a process for a base station to allocate carriers in a multi-carrier system.
- Figure 4 is a flow diagram of one embodiment of a process by which a subscriber unit is allocated carriers in a multi-carrier system.
- Figure 5 illustrates an exemplary system having a base station and a subscriber unit.
- Figure 6 illustrates a system having a base station and multiple subscribers grouping based on constant path loss contours.
- Figure 7 illustrates an exemplary WCDMA modulation terminal power output for a 45 dBc ACLR.
- Figure 8 illustrates an exemplary WCDMA modulation terminal power output for a 33 dBc ACLR as defined by the 3GPP standard.
- Figure 9 illustrates an OFDM selective tone modulation terminal power output.
- Figure 10 illustrates NPR due to operating a Customer Equipment (CE) at an increased power level.
- Figure 11 is a block diagram of one embodiment of a customer equipment transmitter.
- Figure 12 is a block diagram of one embodiment of a base transmitter.
- a carrier allocation technique for use in multi-carrier systems selects carriers, or subcarriers, of a band to allocate to a subscriber or Customer Equipment (CE) for their use.
- the allocation is performed such that carriers closer to or at the center of the band are allocated to subscriber units and CEs further away from a base station and carriers closer to the edge of the band are allocated to those CEs and subscriber units closer to the base station.
- the technique described herein increases the transmitter radio frequency (RF) power available from a power amplifier (PA) of the CPE, CE, terminal, subscriber unit, portable device, or mobile by exploiting the multi-carrier nature of multiple carrier systems, such as, for example, an orthogonal frequency- division multiple access (OFDM) system.
- This technique may double or even quadruple the PA output power, resulting in balancing RF link design in a two-way communication system.
- this technique may be employed to control a PA device to operate at a higher power and simultaneously meet the Adjacent Channel Leakage Power (ACPR) emission requirements associated with a standard (to which the system is adhering).
- ACPR Adjacent Channel Leakage Power
- the technique described herein allows the transmit power to be driven up or down based on the position of the subscriber.
- the selective carrier method described herein results in 3 to 6 dB increased power, which can considerably improve RF link budget.
- Such a method of allocation can be used in a wireless system employing fixed, portable, mobile subscribers or a mixture of these types of subscribers.
- subscriber customer equipment
- subscriber unit will be used interchangeably.
- the present invention also relates to apparatus for performing the operations herein.
- This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer.
- a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
- ROMs read-only memories
- RAMs random access memories
- EPROMs electrically erasable programmable read-only memories
- EEPROMs electrically erasable programmable read-only memory
- magnetic or optical cards or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
- a machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer).
- a machine-readable medium includes read only memory ("ROM”); random access memory (“RAM”); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
- the selective carrier allocation technique disclosed is applicable to multi- carrier systems.
- Example of these include Orthogonal Frequency Division Multiple Access (OFDMA), multi-carrier CDMA, etc.
- OFDMA Orthogonal Frequency Division Multiple Access
- CDMA multi-carrier CDMA
- the selective carrier allocation will be described below with reference to an OFDM system.
- OFDMA is used for uplink communications to share the spectrum with co-users of the same sector.
- the subscriber or CE uses only a portion of the available carriers (or multi-tones) for any given transmission.
- the base station allocates these carriers to subscribers in a methodical way to avoid interfering, to the extent possibly, with other users in the same sector.
- the decision to select a set of carriers can be based on several criteria such as, for example, but not limited to, fading, signal-to-noise ratio (SNR) and interference.
- SNR signal-to-noise ratio
- Figure 1 A illustrates the spectrum of one embodiment of a multi-carrier system such as OFDM.
- a multi-carrier system such as OFDM.
- Non-linearities within the PA mixes or modulates these tones with each other to generate intermodulation distortion (IMD) products.
- IMD intermodulation distortion
- HVEDs is due to third order (2f x f) and fifth order (3f x 2f) mixing.
- the IMD generated by a wide band multiple tone signal causes the spectrum to spread energy
- Figure IB depicts the spectral re-growth phenomena.
- non-linearities in the PA are rich in third order products and are of most concern. These products are seen in the adjacent channels as ACLR power. The fifth and higher order products are spread out further from the main channel and their effect is not a determinant factor.
- the subscriber unit or CE uses only a limited number of tones, such as X' tones where X is a much smaller number compared to N.
- a CE or subscriber unit using a cluster of X tones will occupy (X/N) of the total channel bandwidth.
- spectral re- growth due to third and fifth order products is stronger and is very important. These determine the adjacent and alternate channel coupled powers.
- clusters around the center of the allocated channel are chosen for transmission, then it is possible for the main IMD products to fall within the channel bandwidth.
- CEs/subscriber units closer to the base station operate at lower power than the CEs/subscriber units farther away.
- Figure IC depicts the linear operation and IMD products generated as a function of operating power.
- CEs/subscriber units farther away from the base encounter larger path loss and they need to operate at a higher power. Operating at higher power produces a higher level of IMD products and causes spectral growth.
- These CEs/subscriber units can be allocated the clusters around the center of the operating channel, thereby reducing, and potentially minimizing, the spill over to adjacent channels while simultaneously achieving higher transmit power.
- Figure 2 illustrates one embodiment of a process for allocating carriers in a multi-carrier system.
- the process is performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, etc.), software (such as is run on a general purpose computer system or a dedicated machine), or a combination of both.
- processing logic may comprise hardware (e.g., circuitry, dedicated logic, etc.), software (such as is run on a general purpose computer system or a dedicated machine), or a combination of both.
- the process begins with processing logic of a base station comparing interference to adjacent channels (e.g., adjacent channel leakage power) with the output power of a subscriber unit in a multi-carrier system as a function of distance of the subscriber unit from the base station (processing block 201). Then the processing logic of the base station selectively allocates one or more carriers to the subscriber unit based on results of the comparison (processing block 202). In one embodiment, one or more subscribers closer to the base station are allocated carriers closer to the band edges of the operating channel and one or more subscribers farther from the base station are allocated carriers around the center of the operating channel. Referring to Fig IB, the CE occupies main channel bandwidth of [(X/N)*3.84] Mhz for uplink transmission.
- adjacent channels e.g., adjacent channel leakage power
- Third order IMD products generated by this channel will occupy [(X/N)*3.84]Mhz on the upper and lower sides of the main channel.
- fifth order IMD products will occupy another [(X N)*3.84]Mhz on either side of the third order products.
- twice the main channel bandwidth on each side of the main channel will be occupied by significant components of IMD. Therefore, the clusters falling within ⁇ ./2[3.84 - (4*main channel bandwidth)] ⁇ from the center of the band can benefit due to this carrier allocation method.
- the carriers being allocated are orthogonal frequency- division multiple access (OFDMA) carriers.
- the OFDMA carriers may be allocated in clusters.
- each carrier may be a spreading code and the multi-carrier system comprises a multi-carrier code-division multiple-access (MC-
- the multi-carrier system is a wireless communication system.
- the multi-carrier system is a cable system.
- Figure 3 illustrates one embodiment of a process performed by a base station for allocating carriers of a band in a multi-carrier system.
- the process is performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, etc.), software (such as is run on a general purpose computer system or a dedicated machine), or a combination of both.
- processing logic may comprise hardware (e.g., circuitry, dedicated logic, etc.), software (such as is run on a general purpose computer system or a dedicated machine), or a combination of both.
- processing logic receiving a communication indicating that a subscriber intends to transmit (processing block
- the communication is a random access intention to transmit sent by the subscriber and is received by a base.
- processing logic of the base calculates the transmit power requirements for the subscriber unit and determines whether the subscriber is near or far (processing block 302). In one embodiment, the processing logic calculates the time delay and path loss associated with the subscriber and uses this information to calculate the transmit power requirements.
- transmit power is based on the path loss, and the time delay provides additional information on the distance of the customer equipment.
- processing logic uses additional factors such as, for example, SINR, in calculating the transmit power requirements
- processing logic allocates carriers to the subscriber (processing block 303).
- each carrier is identified by a tone number or a group of carriers are identified by a cluster number in a multi- carrier system.
- the base instructs the customer equipment to use a particular set of carriers identified by their number.
- the processing logic in the base station allocates carriers near the center of the band (it is to allocate) to subscriber units far away from the base station and carriers near the edges of the band to subscriber units closer to the base station.
- the processing logic may attempt to allocate more carriers closer the edges of band in order to save carriers for currently non-present subscriber units that will enter the coverage area of the base station in the future or present subscriber units that will move from a location close to the base station to one farther away from the base station.
- processing logic in the base station assigns a priority code to each subscriber unit based on the location of the subscriber unit in relation to the base station (e.g., whether the subscriber unit is far away from or near to the base station).
- a priority code is assigned based on the transmit power requirement, which, in turn, is based on the path loss.
- the location of the CE determines the path loss.
- the farther away the CE from the base the path loss is more, but not always. For example, there could be a nearby CE (to the base) but behind a tall building or hill, causing an RF shadow. In such a case, this CE will have large path loss.
- the subscriber farthest from the base station is allocated priority code #1, followed by the next farthest subscriber with priority code #2, and so on.
- Processing logic in the base station may also send a command to a subscriber unit to cause the subscriber unit to use either a normal or extended power control range of "z dB" above the normal range depending on priority and carrier allocation (processing block 304). In other words, the base station sends commands to the subscriber to indicate whether to raise or lower its transmit power. This is closed loop power control to tune the transmit power of the subscriber.
- processing logic in the base station also adjusts power control setting for the subscriber in a closed loop power control setting and continuously monitors received power from subscribers (processing block 305). For example, if the channel characteristics change, the path loss changes and the base has to update the transmit power of the CE.
- Figure 4 illustrates one embodiment of a process performed by a subscriber unit in a multi-carrier system.
- the process is performed by processing logic that may comprise hardware (e.g., circuitry, dedicated logic, etc.), software (such as is run on a general purpose computer system or a dedicated machine), or a combination of both.
- processing logic may comprise hardware (e.g., circuitry, dedicated logic, etc.), software (such as is run on a general purpose computer system or a dedicated machine), or a combination of both.
- processing logic in the subscriber unit sends a communication to a base station to indicate that it intends to transmit (processing block 401).
- the processing logic sends a random access intention to transmit.
- Processing logic in the subscriber unit receives an indication of an allocation of carriers based on the location of the subscriber unit with respect to a base station
- the indication comes from the base station on the control channel.
- processing logic in the subscriber unit also receives a command from the base station to use either a normal or extended power control range (processing block 403).
- whether the base station indicates to the subscriber unit to use the normal or extended power control range is based on assigned priority and carrier allocation. These command indicate to the subscriber unit that it is to drive up or reduce its transmit power, and whether it is one or the other depends on the position of the subscriber relative to the base station.
- Figure 5 is a block diagram of one embodiment of a typical system.
- a base 510 is shown communicably coupled to a subscriber unit 520.
- Base station 510 includes a power control unit 511 coupled to a carrier allocator 512.
- Carrier allocator 512 allocates carriers of a band to subscriber units, such as subscriber unit 520, in the system, and power control unit 511.
- carrier allocator 512 includes a priority code look up table (LUT) 513.
- the farthest subscriber(s) may not be active in the system.
- carrier allocator 512 decides the spectral priority based on the information gathered from the access requests sent by subscriber units.
- Carrier allocator 512 assigns priorities to each subscriber based on location with respect to base station 510 and then allocates carriers to each subscriber. Carrier allocator 512 allocates carriers at or near the center of the band to the subscribers farthest away from base station and allocates carriers closer to or at the edge of the band to subscribers closest to base station 510. In one embodiment, carrier allocator
- carrier allocator 512 attempts to allocate sub-carriers at the edges of the band to the nearest subscribers and make room for potential subscribers located farther way from base station 510.
- carrier allocator 512 classifies subscribers into priority groups rather than assigning them individual priorities. In a cell-based system, carrier allocator 512 identifies subscribers near the center of the sector form one group and have a certain priority code. If constant path loss contours are imagined, subscribers falling between certain path losses or between these contours form a group and are assigned a certain priority.
- Carrier allocator 512 also continuously monitors the allocation of the carriers used by various subscribers in the system and dynamically reallocates the carriers to subscribers. For example, in a mobile system, both the mobile unit(s) and base station continuously monitor the path loss and may perform reallocation and adaptive power control to extend the range. If the subscriber has moved closer to the base station, then carrier allocator 512 changes the priority codes and deallocates the sub-carriers near the center for other potential subscribers. Similarly, when a subscriber moves away from base station 510, then carrier allocator changes the priority codes and allocates the sub-carriers near the center of the band depending on availability.
- sub-carrier allocator 512 The priority determined by sub-carrier allocator 512 is communicated to subscriber unit 520 by power control unit 511.
- sub-carrier allocator 512 transmits information about the specific carriers available for the subscriber, the priority code on these carriers, and the power control range (normal or extended). This communication indicates to the subscribers to use a certain power control range based on their priority and carrier allocation.
- Power control unit 511 transmits information about the specific carriers available for the subscriber, the priority code on these carriers, and the power control range (normal or extended). This communication indicates to the subscribers to use a certain power control range based on their priority and carrier allocation.
- power control unit 511 indicates to subscriber unit 520 the transmit power level it is to use.
- power control unit 511 indicates to subscriber unit 520 to extend power control range if subscriber unit 520 is allocated carriers at center of the spectrum. That is, power control unit 511 sends out power control commands to the subscribers in order for the received power at base station 510 to be at the desired level.
- power control unit 511 is responsible for closed loop power control.
- Subscriber unit 520 includes a power control unit 521.
- Power control unit 521 Power control unit
- power control unit 521 adjusts the transmit power from subscriber unit 520 to keep the received power at base station 510 at a predetermined level desired by base station 510.
- power control unit 521 is responsible for closed loop power control.
- power control unit 521 processes power control commands received from the base station and determines the allocated power control range for subscriber unit 520.
- power control unit 521 includes a normal power control range (i to j) and an extended power control range (m to n) and power control unit 521 tells subscriber unit 520 to extend the power control range if the subscriber is allocated sub-carriers at the center of the spectrum.
- the power control unit signals the gain control circuit of the transmitter of the subscriber unit to extend the power control range.
- subscriber unit 520 is responsive to a code received from the base station which indicates the power control range to use. Subscriber unit 520 may include a look up table (LUT) that stores power control ranges and/or transmit powers associated with each code received from the base station, and uses the code as an index into the LUT to determine what power control range and/or transmit power is being requested.
- LUT look up table
- the system maintains its ACLR, however by allocating carriers near or at the center of the band, the subscriber gets an increase of power (e.g., 3-6 db). That is, in a system with subscribers typically transmitting at 17 dbm with a 3 kilometer range, a subscriber allocated carriers at the cneter may be able to transmit 18 or 19 dbm, thereby allowing it to extend its range potentially to 4 km.
- an increase of power e.g., 3-6 db
- FIG 11 is a block diagram of one embodiment of a customer equipment transmitter.
- an upconverter 1101 mixes a signal to be transmitted with a signal from a local oscillator 1102 to create an upconverted signal.
- the upconverted signal is filtered by filter 1103.
- the filtered signal output from filter 1103 are input to a variable gain amplifier 1104, which amplifies the filtered signal.
- the amplified signal output from variable gain amplifier 1104 is mixed with a signal from a local oscillator 1106 using upconverter 1105.
- the upconverted signal output from upconverter 1105 is filtered by filter 1107 and input to variable gain amplifier 1108.
- Variable gain amplifier 1108 amplifies the signal output from filter 1107 based on a control signal.
- Variable gain amplifier 1108 and the control signal is controlled by DSP engine 1109 which executes a power control algorithm 1121 with the use of priority code and power control range look-up table (LUT) 1122.
- Both the power control algorithm 1121 and priority code and power control range LUT 1122 are stored in external memory.
- memory 1120 is also coupled to DSP engine 1109. In one embodiment, when power is turned off power control algorithm
- DSP engine 1109 is also coupled to external memory 1120 so that it can download code to the internal memory of DSP engine 1109.
- the output of DSP engine 1109 is control signal that is input to FPGA/ASIC llll, which buffers the output data from DSP engine 1109 and formats it so that the data is readable by digital-to-analog (D/A) converter 1110.
- D/A digital-to-analog
- the output of ASIC 1111 is coupled to an input of D/A converter 1110 which converts the control signal from digital-to-analog.
- the analog signal is input to variable gain amplifier 1108 to control the gain that is applied to output of filter 1107.
- the amplified signal output from output variable gain amplifier 1108 is input to a power amplifier 1130.
- the output of power amplifier 1130 is coupled to a duplexer or transmit switch 1131.
- the output duplexer/TR switch 1131 is coupled to antenna 1140 for transmission therefrom.
- FIG 12 is a block diagram of one embodiment of a base transmitter.
- DSP engine 1209 performs power control and subcarrier allocation using power control algorithm 1221 in conjunction with a priority code and power control range look-up table 1222 (stored in memory), and subcarrier allocator 1240, respectively.
- memory 1220 is also coupled to DSP engine 1209.
- the output of DSP engine 1209 is power control information that is embedded into a transmit message as control bits.
- the transmit message is input to FPGA/ASIC 1211, which buffers the output data from DSP engine 1209 and formats it so that the data is readable by D/A converter 1210.
- ASIC 1211 The output of ASIC 1211 is input to modem and D/A converter 1210 which modulates the signal and converts the signal from digital to analog.
- the analog signal is input to upconverter 1201.
- Upconverter 1201 mixes the signal from converter 1210 with a signal from a local oscillator 1202 to create an upconverted signal.
- the upconverted signal is filtered to filter 1203.
- the filter signals output to a variable gain amplifier 1204 which amplifies the signal.
- the amplified signal is output from variable gain amplifier 1204 and mix with a signal from a local oscillator 1206 using upconverter 1205.
- the upconverted signal output from upconverter 1205 is filtered by 1207.
- Variable gain amplifier 1208 amplifies the signal output from filter 1207.
- the amplified signal output from variable gain amplifier 1208 is input to a power amplifier 1230.
- the output of power amplifier 1230 is coupled to a duplexer or transmit switch 1231.
- the output duplexer/TR switch 1231 is coupled to antenna 1240 for transmission therefrom.
- Figure 6 illustrates an exemplary system having a base station, with its coverage area, and multiple subscribers.
- the coverage range of the base station is divided into distance groups 1 to 4. Although not limited as such, there are 5 subscribers A, B, C, D and E sending random access intention to transmit. These subscribers are located physically as depicted in Figure 6.
- Grouping is based on path loss in this case.
- Table 1 summarizes the group attributes and transmit power requirements of each subscriber unit.
- the allocation process to allocate carriers to subscriber A is as follows. First, subscriber A sends a random access intention to transmit to the base station.
- the base station receives the request and calculates time delay and path loss for subscriber A.
- the base station determines that subscriber A belongs to distance group-4.
- the base station also determines that subscriber A needs to transmit with spectral priority code-1.
- the base station commands to use an extended power control range and allocates carriers in the center of the spectrum.
- the base station and subscriber A adjust power control settings in a closed loop power control mode and continuously monitor. In the case of the base station, the base station continuously monitors the signals received from subscribers (and calculates the time delay and path loss).
- subscribers may or may not be allocated carriers that are closer to the edge or to the center of the band in comparison to a subscriber that is adjacent to them.
- subscriber E could be allocated carriers closest to the edges of a band, followed by carriers allocated to subscriber D being the next closest, followed by carriers allocated to subscriber C, and so on, until subscriber A, which would be allocated carriers closest to the center of the band (in comparison to subscribers B-E).
- one or more subscribers may be allocated carriers closer to the edge of the band or closer to the center of the band than carriers allocated to a subscriber who is closer to or further from the base station, respectively.
- subscriber D is allocated carriers closer to the edge of the band than those allocated to subscriber E.
- Figure 7 is a spectral plot for ACLR of 45dBc for a system having a hardware platform designed for a 1800MHZ TDD wireless communication system.
- the 45dBc amount is selected because if a system is designed to coexist with ANSI-
- ACLR of 45dBc has to be met, and ACLR for a PCS CDMA system is defined in ANSI-95 to be 45dBc in a RBW of 30KHz.
- the output power capability of the terminal is about +17dbM.
- Figure 9 shows the capability of terminal operating with the use of the carrier allocation described herein is +23dBm for ACLR of 33dBc.
- One of the evolving standards, 3GPP defines the ACLR to be 33dBc for CEs.
- Power control algorithms ensure that power received at the base station from all CEs or subscribers arrive at the same level. This means that the signal peak to average ratio received at the base is near zero. It is assumed in this example that a cluster of carriers is allocated at the center of the channel to the farthest user and this user meets the transmit signal quality and SNR requirements for the base receiver to demodulate. If the minimum detectable signal at the receiver is -92dBm for an SNR of 10 dB, then the receive noise floor is set at -102dBm.
- the farthest CE operates at a TX SNR of 12 dB or better and power control algorithm sets the system such that this signal from the CE arrives at -92dBm to the base, then the IMD products generated by this CE are buried in the RX noise floor. All the other channels see only the receive noise floor. The receiver thermal noise floor is inherent to all communication system. Hence, the overall performance of the system has not been degraded.
- a cluster at the center of the channel can be allocated. This way the IMD products and spectral re-growth generated by the farthest user does not cause spill over to the adjacent channel.
- Figure 9 shows that the terminal is capable of transmitting at output power level of +25 dBm while maintaining ACLR of 45dBc. This is an improvement of nearly 8 dB compared to situation described above in Figure 7. As mentioned above, the PA efficiency is better when it operates closer to its saturated power. Thus, it improves the battery life at no cost to hardware implementation. Resulting inter modulation products for the in band channel are measured to be 14 dB. This distortion product power level is lower than the receiver SNR requirement of 12 dB requirement for the up link in other systems.
- hi band Noise Power Ratio typically characterizes distortion for multi- carrier system.
- Figure 10 is a measurement of NPR when the CE is operated at a power level of +23 dBm. NPR is about 22 dB, thereby indicating the distortion levels will be buried well below the thermal noise floor of the base station receiver.
- Table 2 below summarizes the performance improvements achieved by the selective carrier allocation method described herein. Table 2 Performance Comparison
- a carrier allocation method and apparatus are described which potentially maximizes the subscriber unit or customer equipment CE transmitter power. In one embodiment, improvements from 3dB to 6 dB can be achieved using the methodology described herein to allocate OFDM tones to subscriber units or CEs.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Radio Relay Systems (AREA)
- Radio Transmission System (AREA)
Abstract
Description
Claims
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2506205A CA2506205C (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
AT02808132T ATE554558T1 (en) | 2002-11-07 | 2002-11-07 | METHOD AND DEVICE FOR ADAPTIVE CARRIER ALLOCATION AND POWER CONTROL IN MULTI CARRIER COMMUNICATION SYSTEMS |
JP2004551367A JP2006506014A (en) | 2002-11-07 | 2002-11-07 | Adaptive carrier allocation and power control method and apparatus in multi-carrier communication system |
KR1020057008131A KR101062630B1 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication system |
EP08105483A EP2026472A1 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
US10/534,200 US8005479B2 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
PCT/US2002/036030 WO2004045228A1 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
AU2002364698A AU2002364698A1 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
CN028301188A CN1732698B (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
EP02808132A EP1559281B1 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
CN2010102678213A CN101951675B (en) | 2002-11-07 | 2002-11-07 | Method and device for adaptive carrier allocation and power control in multi-carrier communication system |
US13/186,221 US20110312367A1 (en) | 2002-11-07 | 2011-07-19 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2002/036030 WO2004045228A1 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/186,221 Continuation US20110312367A1 (en) | 2002-11-07 | 2011-07-19 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004045228A1 true WO2004045228A1 (en) | 2004-05-27 |
Family
ID=32311647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/036030 WO2004045228A1 (en) | 2002-11-07 | 2002-11-07 | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
Country Status (9)
Country | Link |
---|---|
US (2) | US8005479B2 (en) |
EP (2) | EP2026472A1 (en) |
JP (1) | JP2006506014A (en) |
KR (1) | KR101062630B1 (en) |
CN (2) | CN101951675B (en) |
AT (1) | ATE554558T1 (en) |
AU (1) | AU2002364698A1 (en) |
CA (1) | CA2506205C (en) |
WO (1) | WO2004045228A1 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007035045A2 (en) | 2005-09-21 | 2007-03-29 | Lg Electronics Inc. | Establishing additional reverse link carriers in multi-carrier wireless system |
WO2007037816A2 (en) | 2005-09-14 | 2007-04-05 | Navini Networks, Inc. | Method for optimizing up-link transmission power for a wireless terminal |
WO2007043782A1 (en) * | 2005-10-07 | 2007-04-19 | Samsung Electronics Co., Ltd. | Multi-carrier wireless network using flexible fractional frequency reuse |
EP1798884A1 (en) * | 2004-10-07 | 2007-06-20 | Sharp Kabushiki Kaisha | Base station device, radio communication system and radio transmission method |
WO2007076684A1 (en) * | 2005-12-31 | 2007-07-12 | Huawei Technologies Co., Ltd. | An access method and device of interleaved orthogonal frequency division multiple access |
EP1850525A1 (en) * | 2006-04-25 | 2007-10-31 | Samsung Electronics Co., Ltd. | Orthogonalizing signals transmitted from a base station in an OFDMA system |
JP2008507215A (en) * | 2004-07-16 | 2008-03-06 | クゥアルコム・インコーポレイテッド | Rate prediction in partially reused systems. |
JPWO2006092856A1 (en) * | 2005-03-02 | 2008-08-07 | 富士通株式会社 | Multi-carrier communication method and base station and mobile station used therefor |
EP1982434A2 (en) * | 2006-01-23 | 2008-10-22 | Motorola, Inc. | Power control in schedulable wireless communication terminal |
EP2175585A1 (en) * | 2008-10-13 | 2010-04-14 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Cellular mobile telecommunication systems |
US7782900B2 (en) * | 2006-05-01 | 2010-08-24 | Alcatel-Lucent Usa Inc. | Method for increasing spectrum efficiency in an OFDM based multi-bandwidth wireless system |
US7848784B2 (en) | 2006-11-30 | 2010-12-07 | Samsung Electronics Co., Ltd. | Apparatus for saving power by using location information and method thereof |
WO2010151849A3 (en) * | 2009-06-26 | 2011-03-10 | Qualcomm Incorporated | Method and apparatus for interference reduction in wireless systems |
WO2011139667A1 (en) * | 2010-04-26 | 2011-11-10 | Qualcomm Incorporated | Ranging and distance based wi-fi spectrum selection |
US8320396B2 (en) * | 2006-07-21 | 2012-11-27 | Adaptix, Inc. | Subcarrier group based power control for OFDMA systems |
US8477642B2 (en) | 2010-04-21 | 2013-07-02 | Qualcomm Incorporated | Ranging and distance based spectrum selection in cognitive radio |
CN105611619A (en) * | 2016-01-11 | 2016-05-25 | 中国电子科技集团公司第十研究所 | Multi-carrier power self-adaptive control circuit module |
US9565655B2 (en) | 2011-04-13 | 2017-02-07 | Google Technology Holdings LLC | Method and apparatus to detect the transmission bandwidth configuration of a channel in connection with reducing interference between channels in wireless communication systems |
US9622190B2 (en) | 2006-07-25 | 2017-04-11 | Google Technology Holdings LLC | Spectrum emission level variation in schedulable wireless communication terminal |
US11317355B2 (en) | 2017-05-15 | 2022-04-26 | Futurewei Technologies, Inc. | System and method for wireless power control |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6947748B2 (en) | 2000-12-15 | 2005-09-20 | Adaptix, Inc. | OFDMA with adaptive subcarrier-cluster configuration and selective loading |
US20050227763A1 (en) * | 2004-03-31 | 2005-10-13 | Microsoft Corporation | Game controller power management |
US7215661B2 (en) * | 2003-02-24 | 2007-05-08 | Autocell Laboratories, Inc. | Method for associating access points with stations in a wireless network |
US20050207441A1 (en) * | 2004-03-22 | 2005-09-22 | Onggosanusi Eko N | Packet transmission scheduling in a multi-carrier communications system |
KR100640474B1 (en) * | 2004-07-10 | 2006-10-30 | 삼성전자주식회사 | Resource allocation technique for downlink transmission of multicarrier-based cdma communication system |
US7573851B2 (en) | 2004-12-07 | 2009-08-11 | Adaptix, Inc. | Method and system for switching antenna and channel assignments in broadband wireless networks |
KR100612045B1 (en) * | 2004-12-08 | 2006-08-14 | 한국전자통신연구원 | Method for controlling base station to suppress inter-cell interference |
US20060142051A1 (en) * | 2004-12-28 | 2006-06-29 | Nokia Corporation | Method and apparatus to optimize the utilization of the carriers in a flexible multi-carrier system |
US20060203724A1 (en) * | 2005-03-08 | 2006-09-14 | Donna Ghosh | Multi-carrier, multi-flow, reverse link medium access control for a communication system |
US7433703B2 (en) * | 2005-06-16 | 2008-10-07 | Lucent Technologies Inc. | Method for allocating resources in a wireless communication system |
US9955438B2 (en) * | 2005-09-27 | 2018-04-24 | Qualcomm Incorporated | Method and apparatus for carrier allocation and management in multi-carrier communication systems |
US8412249B2 (en) * | 2005-12-20 | 2013-04-02 | Alcatel Lucent | Resource allocation based on interference mitigation in a wireless communication system |
JP4823756B2 (en) * | 2006-04-27 | 2011-11-24 | 京セラ株式会社 | Mobile communication system, base station apparatus, and frequency allocation method for mobile communication system |
KR100976298B1 (en) * | 2006-05-26 | 2010-08-16 | 미쓰비시덴키 가부시키가이샤 | Scheduling method and communication apparatus |
CN101558575B (en) * | 2006-09-14 | 2013-06-26 | 高通股份有限公司 | Power allocation in a wireless communication system |
US8681713B2 (en) * | 2006-09-20 | 2014-03-25 | Nec Corporation | Carrier assignment method for cellular system, cellular system, base station, and mobile station |
US8825065B2 (en) * | 2007-01-19 | 2014-09-02 | Wi-Lan, Inc. | Transmit power dependent reduced emissions from a wireless transceiver |
US8290447B2 (en) * | 2007-01-19 | 2012-10-16 | Wi-Lan Inc. | Wireless transceiver with reduced transmit emissions |
US8995567B2 (en) | 2007-07-31 | 2015-03-31 | Broadcom Corporation | Method and system for power supply adjustment and polar modulation in a MIMO system |
US20090060063A1 (en) * | 2007-08-31 | 2009-03-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and Apparatus for Robust Control Signaling Distribution in OFDM Systems |
CN101150837B (en) * | 2007-10-23 | 2012-01-11 | 中兴通讯股份有限公司 | Identification method and device for multi-carrier base station site |
CN102752841B (en) * | 2007-12-27 | 2016-09-14 | 华为技术有限公司 | A kind of strengthen the method for wireless coverage, equipment and communication system |
MX2010006095A (en) * | 2008-01-11 | 2010-07-01 | Ericsson Telefon Ab L M | Methods and devices for random access power control in a communications network. |
JP5169689B2 (en) * | 2008-02-14 | 2013-03-27 | 富士通株式会社 | Communication device |
WO2009131352A2 (en) * | 2008-04-24 | 2009-10-29 | Electronics And Telecommunications Research Institute | Method to generate power control information and method of power control for uplink |
US8280387B2 (en) * | 2008-05-22 | 2012-10-02 | Ntt Docomo, Inc. | Femtocell channel assignment and power control for improved femtocell coverage and efficient cell search |
US8626162B2 (en) * | 2008-06-06 | 2014-01-07 | Qualcomm Incorporated | Registration and access control in femto cell deployments |
US8462765B2 (en) * | 2008-08-20 | 2013-06-11 | Qualcomm Incorporated | Method and apparatus to perform ranging operations for wireless stations |
KR101199572B1 (en) * | 2008-09-05 | 2012-11-12 | 삼성전자주식회사 | Apparatus and method for transmitting data and apparatus and method for receiving data of multi-carrier communication system |
CN101925130A (en) * | 2009-06-16 | 2010-12-22 | 中兴通讯股份有限公司 | Transmission method of multi-carrier wave configuration information and secondary carrier wave allocation method |
CN101932087A (en) * | 2009-06-19 | 2010-12-29 | 大唐移动通信设备有限公司 | Method, device and system for reporting power headroom |
KR101477365B1 (en) * | 2009-10-28 | 2014-12-29 | 엔이씨 유럽 리미티드 | A method for operating an energy management system in a wireless radio network |
CN102098784B (en) | 2009-12-14 | 2014-06-04 | 华为技术有限公司 | Resource allocation method and equipment |
US9319253B2 (en) | 2011-11-17 | 2016-04-19 | University Of South Florida (A Florida Non-Profit Corporation) | Edge windowing of OFDM based systems |
CN109905837B (en) * | 2012-01-24 | 2021-10-29 | 索尼公司 | Communication control device, transmission power allocation method, and program |
WO2013146830A1 (en) * | 2012-03-27 | 2013-10-03 | Necカシオモバイルコミュニケーションズ株式会社 | Mobile communication terminal, channel management method, and program |
US9253735B2 (en) * | 2012-10-02 | 2016-02-02 | Qualcomm Incorporated | Determining maximum power reduction (MPR) for multi-cluster wireless transmissions |
CN103200682B (en) * | 2013-03-05 | 2015-12-02 | 西安交通大学 | A kind of based on the cross-layer resource allocation method in limited queue situation |
US20170055266A1 (en) * | 2013-06-11 | 2017-02-23 | Empire Technology Development Llc | Smooth transition between predictive and mobile-assisted spectral allocation |
US11129185B2 (en) | 2015-12-09 | 2021-09-21 | Qualcomm Incorporated | Macro and micro discontinuous transmission |
US10524206B2 (en) * | 2015-12-09 | 2019-12-31 | Qualcomm Incorporated | Macro and micro discontinuous reception |
US11190226B2 (en) * | 2018-01-12 | 2021-11-30 | Lenovo (Singapore) Pte. Ltd. | Method and apparatus for adjusting for higher order intermodulation products co-located with lower order intermodulation products |
US10477560B1 (en) | 2018-09-26 | 2019-11-12 | Verizon Patent And Licensing Inc. | Systems and methods for performing carrier aggregation across regions with diverse licensed carriers |
US10652897B1 (en) * | 2018-10-05 | 2020-05-12 | Sprint Spectrum L.P. | Assigning carriers to radio ports of a split radio head |
US11963215B2 (en) | 2021-10-27 | 2024-04-16 | Hewlett Packard Enterprise Development Lp | Resource unit assignment for selective fading |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0629922A (en) * | 1992-07-10 | 1994-02-04 | Matsushita Electric Ind Co Ltd | Mobile communication method and its equipment |
US5734967A (en) * | 1994-02-17 | 1998-03-31 | Motorola, Inc. | Method and apparatus for reducing self interference in a communication system |
US5887245A (en) * | 1992-09-04 | 1999-03-23 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for regulating transmission power |
US6061568A (en) * | 1996-10-01 | 2000-05-09 | Ericsson Inc. | Method and apparatus for mitigating intermodulation effects in multiple-signal transmission systems |
US6226320B1 (en) * | 1995-05-08 | 2001-05-01 | Nokia Telecommunications Oy | Method and equipment for multirate coding and detection in a multiple access mobile communication system |
US6366195B1 (en) * | 1998-03-13 | 2002-04-02 | Wireless Online, Inc. | Power control in two-way paging systems |
US6477158B2 (en) * | 1998-03-16 | 2002-11-05 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for assigning codes |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07105157B2 (en) | 1987-09-10 | 1995-11-13 | 日本電気株式会社 | Redundant memory cell use decision circuit |
US5265119A (en) * | 1989-11-07 | 1993-11-23 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
WO1992000590A1 (en) | 1990-06-27 | 1992-01-09 | Mos Electronics Corporation | Random access cache memory |
US5515378A (en) * | 1991-12-12 | 1996-05-07 | Arraycomm, Inc. | Spatial division multiple access wireless communication systems |
FR2701178A1 (en) * | 1993-02-03 | 1994-08-05 | Philips Electronique Lab | Spread spectrum communication system with multiple users. |
US5479447A (en) * | 1993-05-03 | 1995-12-26 | The Board Of Trustees Of The Leland Stanford, Junior University | Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines |
US5491837A (en) * | 1994-03-07 | 1996-02-13 | Ericsson Inc. | Method and system for channel allocation using power control and mobile-assisted handover measurements |
JP3316100B2 (en) | 1995-03-16 | 2002-08-19 | 株式会社日立国際電気 | Communications system |
US5726978A (en) * | 1995-06-22 | 1998-03-10 | Telefonaktiebolaget L M Ericsson Publ. | Adaptive channel allocation in a frequency division multiplexed system |
US6512481B1 (en) | 1996-10-10 | 2003-01-28 | Teratech Corporation | Communication system using geographic position data |
US5886988A (en) | 1996-10-23 | 1999-03-23 | Arraycomm, Inc. | Channel assignment and call admission control for spatial division multiple access communication systems |
US6175550B1 (en) | 1997-04-01 | 2001-01-16 | Lucent Technologies, Inc. | Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof |
IT1295808B1 (en) | 1997-11-04 | 1999-05-27 | Cselt Centro Studi Lab Telecom | PROCEDURE FOR THE ASSIGNMENT OF CHANNELS IN A COMMUNICATION SYSTEM BETWEEN MOBILE VEHICLES WITH MULTIPLE ACCESS TO DIVISION OF |
EP0929202A1 (en) | 1998-01-06 | 1999-07-14 | Lucent Technologies Inc. | Uplink channel allocation for a mobile cellular network |
DE19800953C1 (en) | 1998-01-13 | 1999-07-29 | Siemens Ag | Resource allocation in radio interface of radio communications system |
JP3125776B2 (en) | 1998-03-27 | 2001-01-22 | 日本電気株式会社 | Transmission power control method and base station apparatus in cellular system |
FR2777407B1 (en) | 1998-04-10 | 2000-06-30 | Wavecom Sa | CELLULAR DOWNLINK CELLULAR RADIOTELEPHONY SIGNAL, METHOD, SYSTEM, MOBILE, AND BASE STATION THEREFOR |
JP3541674B2 (en) | 1998-04-24 | 2004-07-14 | 日本ビクター株式会社 | Multicarrier signal generation method and transmission device |
US6529488B1 (en) * | 1998-08-18 | 2003-03-04 | Motorola, Inc. | Multiple frequency allocation radio frequency device and method |
US6611506B1 (en) * | 1999-01-21 | 2003-08-26 | Lucent Technologies Inc. | Enhanced channel allocation among multiple carriers in a spread spectrum communications system |
US6334047B1 (en) * | 1999-04-09 | 2001-12-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive power control in a mobile radio communications system |
US6850506B1 (en) * | 1999-10-07 | 2005-02-01 | Qualcomm Incorporated | Forward-link scheduling in a wireless communication system |
US6584330B1 (en) * | 2000-07-18 | 2003-06-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Adaptive power management for a node of a cellular telecommunications network |
KR101325382B1 (en) * | 2000-07-26 | 2013-11-08 | 인터디지탈 테크날러지 코포레이션 | Fast adaptive power control for a variable multirate communications system |
JP2002077084A (en) * | 2000-09-04 | 2002-03-15 | Matsushita Electric Ind Co Ltd | Signal distribution system, transmitter, receiver, medium and information assembly |
US6947748B2 (en) | 2000-12-15 | 2005-09-20 | Adaptix, Inc. | OFDMA with adaptive subcarrier-cluster configuration and selective loading |
US6760587B2 (en) * | 2001-02-23 | 2004-07-06 | Qualcomm Incorporated | Forward-link scheduling in a wireless communication system during soft and softer handoff |
US6751444B1 (en) * | 2001-07-02 | 2004-06-15 | Broadstorm Telecommunications, Inc. | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems |
JP2002232936A (en) | 2001-08-09 | 2002-08-16 | Hitachi Ltd | Position calculation method, position calculation device and its program |
AU2002332038A1 (en) * | 2001-10-09 | 2003-04-22 | Interdigital Technology Corporation | Pathloss aided closed loop power control |
US6748235B1 (en) * | 2002-11-12 | 2004-06-08 | Interdigital Technology Corporation | Power control during a transmission pause |
-
2002
- 2002-11-07 WO PCT/US2002/036030 patent/WO2004045228A1/en active Application Filing
- 2002-11-07 CA CA2506205A patent/CA2506205C/en not_active Expired - Fee Related
- 2002-11-07 CN CN2010102678213A patent/CN101951675B/en not_active Expired - Fee Related
- 2002-11-07 AT AT02808132T patent/ATE554558T1/en active
- 2002-11-07 KR KR1020057008131A patent/KR101062630B1/en not_active IP Right Cessation
- 2002-11-07 CN CN028301188A patent/CN1732698B/en not_active Expired - Fee Related
- 2002-11-07 JP JP2004551367A patent/JP2006506014A/en active Pending
- 2002-11-07 EP EP08105483A patent/EP2026472A1/en not_active Withdrawn
- 2002-11-07 EP EP02808132A patent/EP1559281B1/en not_active Expired - Lifetime
- 2002-11-07 AU AU2002364698A patent/AU2002364698A1/en not_active Abandoned
- 2002-11-07 US US10/534,200 patent/US8005479B2/en not_active Expired - Fee Related
-
2011
- 2011-07-19 US US13/186,221 patent/US20110312367A1/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0629922A (en) * | 1992-07-10 | 1994-02-04 | Matsushita Electric Ind Co Ltd | Mobile communication method and its equipment |
US5887245A (en) * | 1992-09-04 | 1999-03-23 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for regulating transmission power |
US5734967A (en) * | 1994-02-17 | 1998-03-31 | Motorola, Inc. | Method and apparatus for reducing self interference in a communication system |
US6226320B1 (en) * | 1995-05-08 | 2001-05-01 | Nokia Telecommunications Oy | Method and equipment for multirate coding and detection in a multiple access mobile communication system |
US6061568A (en) * | 1996-10-01 | 2000-05-09 | Ericsson Inc. | Method and apparatus for mitigating intermodulation effects in multiple-signal transmission systems |
US6366195B1 (en) * | 1998-03-13 | 2002-04-02 | Wireless Online, Inc. | Power control in two-way paging systems |
US6477158B2 (en) * | 1998-03-16 | 2002-11-05 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for assigning codes |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9294218B2 (en) | 2004-07-16 | 2016-03-22 | Qualcomm Incorporated | Rate prediction in fractional reuse systems |
JP2008507215A (en) * | 2004-07-16 | 2008-03-06 | クゥアルコム・インコーポレイテッド | Rate prediction in partially reused systems. |
EP1798884A4 (en) * | 2004-10-07 | 2012-12-19 | Sharp Kk | Base station device, radio communication system and radio transmission method |
EP1798884A1 (en) * | 2004-10-07 | 2007-06-20 | Sharp Kabushiki Kaisha | Base station device, radio communication system and radio transmission method |
JPWO2006092856A1 (en) * | 2005-03-02 | 2008-08-07 | 富士通株式会社 | Multi-carrier communication method and base station and mobile station used therefor |
EP1925098A2 (en) * | 2005-09-14 | 2008-05-28 | Navini Networks, Inc. | Method for optimizing up-link transmission power for a wireless terminal in a multi-carrier system |
WO2007037816A2 (en) | 2005-09-14 | 2007-04-05 | Navini Networks, Inc. | Method for optimizing up-link transmission power for a wireless terminal |
EP1925098A4 (en) * | 2005-09-14 | 2013-04-24 | Cisco Tech Inc | Method for optimizing up-link transmission power for a wireless terminal in a multi-carrier system |
US9814024B2 (en) | 2005-09-21 | 2017-11-07 | Lg Electronics Inc. | Establishing additional reverse link carriers in multi-carrier wireless systems |
WO2007035045A3 (en) * | 2005-09-21 | 2008-03-27 | Lg Electronics Inc | Establishing additional reverse link carriers in multi-carrier wireless system |
WO2007035045A2 (en) | 2005-09-21 | 2007-03-29 | Lg Electronics Inc. | Establishing additional reverse link carriers in multi-carrier wireless system |
EP3065474A1 (en) | 2005-09-21 | 2016-09-07 | LG Electronics Inc. | Method and apparatus for controlling transmission power of forward link carriers in multi-carrier wireless system |
US10159065B2 (en) | 2005-09-21 | 2018-12-18 | Lg Electronics Inc. | Establishing additional reverse link carriers in multi-carrier wireless systems |
US8462739B2 (en) | 2005-09-21 | 2013-06-11 | Lg Electronics Inc. | Method and apparatus for transmitting control information in a multi-carrier wireless communication system |
US7953048B2 (en) | 2005-09-21 | 2011-05-31 | Lg Electronics Inc. | Establishing additional reverse link carriers in multi-carrier wireless systems |
EP2445274A1 (en) | 2005-09-21 | 2012-04-25 | LG Electronics Inc. | Method and apparatus for controlling transmission power of reverse link carriers in multi-carrier wireless system |
US8184600B2 (en) | 2005-09-21 | 2012-05-22 | Lg Electronics Inc. | Establishing additional reverse link carriers in multi-carrier wireless systems |
KR101289588B1 (en) | 2005-10-07 | 2013-07-24 | 삼성전자주식회사 | Multi-carrier wireless network using flexible fractional frequency reuse |
US7835750B2 (en) | 2005-10-07 | 2010-11-16 | Samsung Electronics Co., Ltd. | Multi-carrier wireless network using flexible fractional frequency reuse |
WO2007043782A1 (en) * | 2005-10-07 | 2007-04-19 | Samsung Electronics Co., Ltd. | Multi-carrier wireless network using flexible fractional frequency reuse |
WO2007076684A1 (en) * | 2005-12-31 | 2007-07-12 | Huawei Technologies Co., Ltd. | An access method and device of interleaved orthogonal frequency division multiple access |
CN102665266A (en) * | 2006-01-23 | 2012-09-12 | 摩托罗拉移动公司 | Power control in schedulable wireless communication terminal |
US8478328B2 (en) | 2006-01-23 | 2013-07-02 | Motorola Mobility Llc | Power control in schedulable wireless communication terminal |
EP1982434A2 (en) * | 2006-01-23 | 2008-10-22 | Motorola, Inc. | Power control in schedulable wireless communication terminal |
EP1982434A4 (en) * | 2006-01-23 | 2012-08-29 | Power control in schedulable wireless communication terminal | |
US8463314B2 (en) | 2006-01-23 | 2013-06-11 | Motorola Mobility Llc | Power control in schedulable wireless communication terminal |
EP1850525A1 (en) * | 2006-04-25 | 2007-10-31 | Samsung Electronics Co., Ltd. | Orthogonalizing signals transmitted from a base station in an OFDMA system |
US7782900B2 (en) * | 2006-05-01 | 2010-08-24 | Alcatel-Lucent Usa Inc. | Method for increasing spectrum efficiency in an OFDM based multi-bandwidth wireless system |
US8718081B2 (en) | 2006-07-21 | 2014-05-06 | Adaptix Inc. | Subcarrier group based power control for OFDMA systems |
US8320396B2 (en) * | 2006-07-21 | 2012-11-27 | Adaptix, Inc. | Subcarrier group based power control for OFDMA systems |
US9622190B2 (en) | 2006-07-25 | 2017-04-11 | Google Technology Holdings LLC | Spectrum emission level variation in schedulable wireless communication terminal |
US7848784B2 (en) | 2006-11-30 | 2010-12-07 | Samsung Electronics Co., Ltd. | Apparatus for saving power by using location information and method thereof |
WO2010044664A1 (en) * | 2008-10-13 | 2010-04-22 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Cellular mobile telecommunication systems |
EP2175585A1 (en) * | 2008-10-13 | 2010-04-14 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Cellular mobile telecommunication systems |
WO2010151849A3 (en) * | 2009-06-26 | 2011-03-10 | Qualcomm Incorporated | Method and apparatus for interference reduction in wireless systems |
US9509543B2 (en) | 2009-06-26 | 2016-11-29 | Qualcomm Incorporated | Method and apparatus that facilitates interference reduction in wireless systems |
US8477642B2 (en) | 2010-04-21 | 2013-07-02 | Qualcomm Incorporated | Ranging and distance based spectrum selection in cognitive radio |
US8792326B2 (en) | 2010-04-26 | 2014-07-29 | Qualcomm Incorporated | Ranging and distance based wireless link spectrum selection |
WO2011139667A1 (en) * | 2010-04-26 | 2011-11-10 | Qualcomm Incorporated | Ranging and distance based wi-fi spectrum selection |
US9565655B2 (en) | 2011-04-13 | 2017-02-07 | Google Technology Holdings LLC | Method and apparatus to detect the transmission bandwidth configuration of a channel in connection with reducing interference between channels in wireless communication systems |
CN105611619A (en) * | 2016-01-11 | 2016-05-25 | 中国电子科技集团公司第十研究所 | Multi-carrier power self-adaptive control circuit module |
CN105611619B (en) * | 2016-01-11 | 2018-10-23 | 中国电子科技集团公司第十研究所 | Multi-carrier power adaptation control circuit module |
US11317355B2 (en) | 2017-05-15 | 2022-04-26 | Futurewei Technologies, Inc. | System and method for wireless power control |
US11924772B2 (en) | 2017-05-15 | 2024-03-05 | Futurewei Technologies, Inc. | System and method for wireless power control |
Also Published As
Publication number | Publication date |
---|---|
KR20060055433A (en) | 2006-05-23 |
US20110312367A1 (en) | 2011-12-22 |
CN101951675B (en) | 2012-06-06 |
CN101951675A (en) | 2011-01-19 |
CN1732698A (en) | 2006-02-08 |
AU2002364698A1 (en) | 2004-06-03 |
JP2006506014A (en) | 2006-02-16 |
EP2026472A1 (en) | 2009-02-18 |
CN1732698B (en) | 2012-10-31 |
CA2506205C (en) | 2013-03-12 |
CA2506205A1 (en) | 2004-05-27 |
KR101062630B1 (en) | 2011-09-07 |
EP1559281A1 (en) | 2005-08-03 |
EP1559281B1 (en) | 2012-04-18 |
EP1559281A4 (en) | 2007-05-30 |
US20060154684A1 (en) | 2006-07-13 |
ATE554558T1 (en) | 2012-05-15 |
US8005479B2 (en) | 2011-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2506205C (en) | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems | |
US6751444B1 (en) | Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems | |
JP4657289B2 (en) | Apparatus and method for controlling transmission power in a communication system using orthogonal frequency division multiple access | |
US11818060B2 (en) | Scheduling data transmissions between a mobile terminal and a base station in a wireless communications network using component carriers | |
EP2378682B1 (en) | Peak-to-average power ratio management for multi-carrier modulation in wireless communication systems | |
KR100754673B1 (en) | Apparatus and method for providing dynamic hybrid multiple access in a communication system | |
CN101455045B (en) | Method for scheduling user equipment in wireless communication network and a base station | |
JP4885971B2 (en) | Base station equipment | |
US8406712B2 (en) | Extended range voice over IP WiMAX device | |
CN101496305A (en) | Spectrum emission level variation in schedulable wireless communication terminal | |
CN105309016A (en) | Maximum output power configuration with ue preference in carrier aggregation | |
US20060251041A1 (en) | Radio resource allocation in telecommunication system | |
WO2008089183A1 (en) | Transmit power dependent reduced emissions from a wireless transceiver | |
KR20060044335A (en) | System and method for operation safety channel in a orthogonal frequency division multiple access system | |
KR20060038131A (en) | Method for uplink scheduling in a communication system using frequency hopping ??orthogonal frequency division multiple access scheme | |
KR20080013428A (en) | The effective channel management method using customer premise equipment receiving performance in wireless regional area network system of multiple frequency assignments | |
JP5462068B2 (en) | Adaptive carrier allocation and power control method and apparatus in multi-carrier communication system | |
JP2013070405A (en) | Power control method, subscriber unit, and nontemporary computer readable storage medium stored with instructions to operate subscriber unit, in multi-carrier communication system | |
EP2075938B1 (en) | Communication system, its base station, and communication method | |
Njiraine et al. | Carrier Aggregation in the Scheduling Schemes for LTE Advanced Systems | |
Hamouda et al. | Dynamic spectrum access in heterogeneous networks: HSDPA and WiMAX | |
JP2013192233A (en) | Device for multi-carrier communication system, and communication method between base station and subscriber | |
CN118074878A (en) | Switch control method of network control repeater on different component carriers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2506205 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1884/DELNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057008131 Country of ref document: KR Ref document number: 2004551367 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 168458 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002808132 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20028301188 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002808132 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006154684 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10534200 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057008131 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 10534200 Country of ref document: US |