WO2004042371A2 - Method for quick diagnosis of kidney diseases - Google Patents

Method for quick diagnosis of kidney diseases Download PDF

Info

Publication number
WO2004042371A2
WO2004042371A2 PCT/JP2003/014187 JP0314187W WO2004042371A2 WO 2004042371 A2 WO2004042371 A2 WO 2004042371A2 JP 0314187 W JP0314187 W JP 0314187W WO 2004042371 A2 WO2004042371 A2 WO 2004042371A2
Authority
WO
WIPO (PCT)
Prior art keywords
iga
nephropathy
scattering
scattering angle
subject
Prior art date
Application number
PCT/JP2003/014187
Other languages
French (fr)
Japanese (ja)
Other versions
WO2004042371A1 (en
Inventor
Kazuo Onuma
Hisashi Narimatsu
Hiroko Iwasaki
Tomomi Kubota
Original Assignee
Nat Inst Of Advanced Ind Scien
Amersham Biosciences Corp
Kazuo Onuma
Hisashi Narimatsu
Hiroko Iwasaki
Tomomi Kubota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Inst Of Advanced Ind Scien, Amersham Biosciences Corp, Kazuo Onuma, Hisashi Narimatsu, Hiroko Iwasaki, Tomomi Kubota filed Critical Nat Inst Of Advanced Ind Scien
Priority to JP2004549632A priority Critical patent/JPWO2004042371A1/en
Priority to AU2003277600A priority patent/AU2003277600A1/en
Publication of WO2004042371A1 publication Critical patent/WO2004042371A1/en
Publication of WO2004042371A2 publication Critical patent/WO2004042371A2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging

Definitions

  • the present invention evaluates the physical quantity of a IgA protein present in the blood of a nephropathy patient, particularly an IgA nephropathy patient, using a light scattering method, and compares the physical quantity with the IgA protein of a healthy subject.
  • the present invention relates to a system capable of nondestructively swift, painless and precise diagnosis of IgA nephropathy specific phenomena.
  • IgA nephropathy is a kidney disease caused by the selective deposition of IgA in the glomerular mesangial region of the kidney. According to statistical data from 2000, it is estimated that about half of all dialysis patients nationwide have 100,000 chronic nephritis, and half have IgA nephropathy. The only method of definitive diagnosis of this disease was to confirm that IgA was deposited in the mesangium region by fluorescent antibody staining by observing glomeruli by renal biopsy. Thus, the only diagnostic method for this disease was tissue observation by renal biopsy, which placed a heavy burden on patients. Therefore, the actual pathology has not been clarified.
  • Non-patent Documents 1 and 2 there are two examples of IgA light scattering measurement in which the shape of the IgA molecule itself is observed by neutron scattering and small-angle X-ray scattering or in which the size of the IgA monomer is measured.
  • the sample is not derived from humans, or from humans, it only deals with samples from healthy subjects, and has not studied the molecular interaction of IgA.
  • neutron scattering requires a large-scale facility and has very limited experimental opportunities, so general clinical diagnosis It cannot be easily applied to
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a system that can rapidly and painlessly diagnose IgA nephropathy. More specifically, the physical quantity of IgA protein present in a test sample such as blood of a nephropathy patient is evaluated using a light scattering method, and is compared with that of a healthy subject to determine IgA nephropathy. It is an object of the present invention to provide a system that can make a diagnosis quickly and painlessly.
  • the present inventors have conducted intensive research to solve the above-mentioned problems.
  • the present inventors collected blood from a healthy subject and a patient with IgA nephropathy, and crudely purified IgA using an affinity column. The obtained sample was analyzed using the light scattering method. We examined whether it was possible to determine whether or not IgA nephropathy could be detected by detecting differences in the size, distribution, and intermolecular interactions of IgA monomers and aggregates. A comparison of the decay rates in the second-order autocorrelation function showed that the decay time of the patient specimen was significantly faster.
  • the difference ranged from 2 to 50 times. From these facts, the present inventors have found that it is possible to diagnose IgA nephropathy by analyzing IgA in a sample derived from a subject using a light scattering method, and completed the present invention. Was.
  • the diagnostic method developed by the present inventors it is possible to easily and quickly diagnose IgA nephropathy simply by collecting blood without performing tissue biopsy of IgA nephropathy patients. Become.
  • the diagnostic method of the present invention can also be used to examine the progress of IgA nephropathy and to determine the risk of developing IgA nephropathy in the future.
  • the present invention relates to a method for rapid diagnosis of IgA nephropathy, more specifically,
  • a method for diagnosing nephropathy comprising the following steps (A) to (C):
  • (B) a step of evaluating one of the following physical quantities (a) to (f) based on the value measured in the step (A);
  • step (C) Step of comparing the physical quantity of step (B) with that of healthy human IgA protein
  • the diagnostic method according to (1) wherein the scattering is dynamic light scattering or static light scattering
  • the test sample is a blood sample, (1) to (3), Diagnostic methods
  • the present invention provides a method for diagnosing nephropathy using light scattering.
  • the light scattering method is a method for evaluating the diffusion coefficient, intermolecular interaction, molecular weight, structure, and the like of particles undergoing Brownian motion in a solution. Due to Brownian motion, the intensity of light scattered from particles changes with time. By measuring the time change of the scattered light intensity, the diffusion coefficient of the particles can be determined. Since the diffusion coefficient is inversely proportional to the particle size, the particle size is known, and the interparticle interaction can be determined by measuring the particle concentration dependence of the diffusion coefficient.
  • the present invention uses a light scattering method for IgA protein present in the blood of IgA nephropathy patients.
  • the present invention relates to a method for rapidly and painlessly diagnosing a phenomenon specific to IgA nephropathy by evaluating the above physical quantities using the above and comparing and examining the physical quantity with the case of a healthy subject's IgA protein.
  • the present invention is based on the inventor's finding that it is possible to detect the size of IgA molecules between IgA patients and healthy subjects, or differences in interactions between IgA molecules, by using a light scattering method.
  • the present invention relates to a method for diagnosing whether or not a subject has nephropathy based on the findings found by the present inventors.
  • the nephropathy diagnosed by the present invention usually refers to IgA nephropathy, but is not necessarily limited thereto. For example, it is also possible to diagnose diabetic nephropathy.
  • the light scattering method generally includes a dynamic light scattering method, a static light scattering method, a small-angle X-ray scattering method, a neutron scattering method, and the like.
  • the diagnostic method of the present invention can be carried out using any of these scattering methods.
  • the following autocorrelation function is defined for the time change of the scattered light intensity.
  • Equation 1 gdt) is a second-order autocorrelation function
  • I (Q, t) is the time
  • the scattering angle (scatter vector) is the scattered light intensity at Q
  • I (Q, 0) is the measurement start time.
  • I (Q) means the average value of the scattered light intensity during the entire measurement time.
  • ⁇ > Indicates ensemble average.
  • the quadratic autocorrelation function is related to the relaxation time of a particle, and Equation 2.
  • 3 is not always 1 and can take a value of 1 or less.
  • Figure 1 schematically shows examples of both.
  • Equation 3 has a relationship between the relaxation time and the diffusion coefficient and scattering angle of the particles.
  • the scattering angle is changed, determine the relaxation time at each of the Q value, 1 / Tet Q '2 when the plotted as both axes, if approximated by a straight line passing through the origin, the movement of being measured particles Can be concluded to be translational diffusion.
  • the translational diffusion coefficient obtained by the above process includes factors such as structuring of the hydration region around the particles due to the interaction between the particles. Therefore, if you want to find the true diffusion coefficient, perform the above measurement as a function of particle concentration to find the translational diffusion coefficient at infinite dilution. The following relationship holds between the translational diffusion coefficient and particle size (hydrodynamic radius: r) determined by such a procedure (Stokes-Einstein equation).
  • the diagnostic method of the present invention comprises the following steps: first, the absolute value, the time change, and the scattered light of the incident light applied to the IgA protein or the aggregated particles containing the IgA protein present in the test sample derived from the subject.
  • the scattering angle dependence is measured (step (A)).
  • the temperature at the time of measurement in this step for example, 25 can be suitably indicated, but it is not particularly limited to this temperature.
  • step (A) scattering of incident light applied to an aggregated particle containing IgA protein or IgA protein present in the test sample derived from the subject
  • the autocorrelation function based on temporal change
  • the scattering angle dependence of the autocorrelation function in the diagnostic methods of the c the present invention for performing IgA concentration dependence of the measurement of diffusion coefficients calculated from the autocorrelation function
  • the subject's nephropathy is significantly advanced, it is possible to diagnose nephropathy by measuring only the scattered light intensity in the above step (A).
  • the accuracy of diagnosis of nephropathy is improved.
  • the “incident light” for irradiating the IgA protein is not particularly limited in its kind and the like, but includes, for example, polarized (including quenched) and unpolarized ordinary light (eg, ultraviolet, visible, Infrared), X-rays, synchrotron radiation, neutrons and the like.
  • ordinary light can be suitably used.
  • the “scattering” in the present invention means that the scattering method based on Rayleigh scattering or Mie scattering includes dynamic static scattering, small angle scattering, single particle scattering, and scattering using evanescent waves. Considering the simplicity of use in the method and the speed of measurement, dynamic scattering or static scattering is preferred, and dynamic scattering is more preferred.
  • Examples of the test sample used in the diagnostic method of the present invention include a sample prepared from a body fluid, and it is usually a sample derived from blood or saliva, preferably from a blood of a subject. This is a prepared sample. In the present invention, it is desirable to prepare a sample derived from a healthy person as a control. At that time, preferably, the preparation is performed so that the IgA concentrations contained in the samples of the healthy subject and the subject are the same.
  • Preparation of a test sample from blood can be performed by any method as long as IgA can be purified.
  • the preparation can be performed by column chromatography, electrophoresis, or the like, which is a method generally performed by those skilled in the art.
  • the preparation is performed using a jackalin agarose column or an anti-IgA column in addition to the column. I do.
  • a method for preparing a test sample of the present invention will be described. It is not limited to.
  • the measurement in the above step (A) using the light scattering method in the present invention can be easily performed by those skilled in the art, usually using commercially available equipment.
  • DLS-700 (Otsuka Electronics Co., Ltd.) or the like can be used.
  • step (A) based on the value measured in step (A),
  • step (B) The physical quantity of any of (a) to (f) is evaluated (step (B)), and the physical quantity of step (B) is compared with the case of a healthy subject's IgA protein (step (C)).
  • (f) Dependence of diffusion coefficient and hydrodynamic radius calculated from (d) or (e) as a function of IgA protein concentration
  • the comparison with the case of a healthy subject's IgA protein in the above step (C) is performed by measuring a test sample of the subject by the light scattering method and also measuring a sample derived from a healthy subject as a control.
  • the physical quantity of any of the above (a) to (f) can be compared with the case of a healthy person. Alternatively, the physical quantity may be compared with any of the physical quantities (a) to (f) described above for a healthy person calculated in advance.
  • a smaller scattering angle is more susceptible to the influence of dust in the sample and stray light from the measurement container, and larger particles are more likely to be observed. Conversely, the higher the angle, the less the dust is affected, and the smaller the particles to be measured this time are more likely to be detected.
  • the scattering angle of the present invention those skilled in the art can appropriately select an optimum scattering angle based on the above findings. Normally, a scattering angle of 90 degrees is considered to have the least effect of dust and stray light.
  • the scattering angle in the present invention is usually in the range of 10 to 150 degrees, and is actually 20 to 90 degrees, and furthermore, the influence of dust in the sample is eliminated as much as possible, and the measurement is simple. For example, 90 degrees is preferable.
  • the scattered light intensity measured by the light scattering method on the test sample derived from the subject is compared with the scattered light intensity of a healthy person.
  • a sample judged to be healthy it is usually preferable to use a sample judged to be healthy as a control. That is, the scattered light intensity is compared with the scattered light intensity in a healthy person (comparison of the relative scattered light intensity).
  • a diagnosis of nephropathy can be made based on the value of the scattered light intensity in the subject when the scattered light intensity in a healthy person is set to “1”.
  • the scattering angle at which the effect of dust is considered to be the least is 90 degrees, as shown in FIG.
  • the relative scattered light intensity in the subject is usually 0.25 or less, preferably 0.2 or less, more preferably 0.15 or less
  • the subject is determined to have nephropathy.
  • the subject has nephropathy usually means that "the subject has nephropathy” from a physiological point of view.
  • a statistically averaged scattered light intensity is calculated for a sample group that can be definitely determined to be a healthy person from both physiological and main light scattering measurements. It is advisable to measure the scattered light intensities of samples from a sufficient number of patients and compare them.
  • nephropathy varies in severity from mild to severe. Usually, it is determined that the lower the value of the scattered light intensity, the more advanced the nephropathy (the higher the degree of the nephropathy) or the higher the risk of developing nephropathy in the future.
  • the diagnostic method of the present invention can be performed using a healthy subject who does not exhibit nephropathy as a subject. That is, when the method of the present invention is performed on such a subject and it is determined that the subject has nephropathy, the subject is likely to have nephropathy in the future (high). Conceivable.
  • the autocorrelation function can be calculated by the above equation 1 based on the scattered light intensity and the time change measured by the light scattering method for the test sample derived from the subject. This autocorrelation function is compared with the autocorrelation function of a healthy person.
  • a graph can be drawn around time (log) and autocorrelation function.
  • nephropathy can be determined based on the difference between the shapes of the graphs drawn for the healthy subject and the subject.
  • the scattering angle is 90 degrees
  • a graph as shown in FIG. 2 described later is drawn for a healthy person and an IgA patient.
  • the autocorrelation function at a scattering angle of 90 degrees has a clear difference in the graph drawn with the time (logarithm) and the autocorrelation function as axes. Therefore, when the graph drawn in the subject shows the shape of the graph in the IgA patient shown in FIG.
  • nephropathy that is, as described later, when the autocorrelation function rapidly attenuates with time, Is judged to be nephropathy.
  • the value of the autocorrelation function at time zero is the same for both the healthy subject and the subject.
  • the value of the autocorrelation function at time zero is 0.45 to 0.5
  • the value of the autocorrelation function at time 0.1 ms for the patient is about 1/1. 5 to 1/30. Therefore, to give an example, an autocorrelation function for the subject at a time of 0.1 millisecond is calculated, and the value is usually 0 to 0.1, preferably 0 to 0.05, more preferably 0 to 0.05.
  • ⁇ 0.01 the subject is determined to have nephropathy.
  • time shows the largest difference in the value of the autocorrelation function, and compare the values of the autocorrelation function for healthy subjects and subjects.
  • the lower the value of the autocorrelation function at a particular time eg, 0.1 ms
  • the more advanced the nephropathy the more advanced
  • the risk of developing nephropathy in the future Is determined to be high.
  • the value of the autocorrelation function at a time of 0.1 milliseconds falls below 0.2, it can be determined that there is a risk of onset in the future.
  • the relaxation time (T) is calculated by Equation 2 above, and the relationship between the relaxation time and the scattering angle is obtained.
  • the linearity and deviation of the relaxation time and scattering angle, and the calculated diffusion coefficient and hydrodynamic radius are used as the reference.
  • the relaxation time and scattering angle When a graph is drawn in this way, it usually shows a linear relationship as shown in Figure 3. From this relationship, the (translational) diffusion coefficient and hydrodynamic radius are calculated.
  • the relaxation time and the scattering angle show the relationship as depicted in Fig. 3, the diffusion coefficient of IgA in healthy subjects is 12-19 x lO- l2 mVs, and the corresponding hydrodynamic radius is It is determined to be about 13-20 nm.
  • the diffusion coefficient of IgA in patients is 30.5 to 35 x iO- 12 mVs, and the corresponding hydrodynamic radius is determined to be about 7 to 8 MI.
  • a diagnosis of nephropathy can be made for a subject based on the difference between the diffusion coefficient of IgA and the hydrodynamic radius between a healthy person and a patient.
  • each of the diffusion coefficient ⁇ beauty hydrodynamic radius of IgA in a subject usually 28. 8 ⁇ 35 10-
  • the relationship between the above diffusion coefficient and the hydrodynamic radius in the subject and the IgA protein concentration is determined. That is, the particle-particle interaction can be evaluated by determining the dependence of the diffusion coefficient on the IgA protein (particle) concentration as a function. For example, in a graph in which the particle concentration is plotted on the horizontal axis and the diffusion coefficient is plotted on the vertical axis, if the shape of the drawn line is “upward to the right”, it is determined that there is a repulsive interaction. On the other hand, if the shape of the line is “downward to the right”, it is determined that the line has attractive interaction (Fig. 5). The present inventors have revealed that the interaction between IgA molecules in healthy subjects and patients is different.
  • nephropathy can be made based on the difference in the interaction between IgA molecules. For example, nephropathy can be determined based on the difference between the shapes of the graphs drawn as described above for a healthy person and a subject.
  • Figure 1 is a schematic diagram of the correlation function.
  • the vertical axis represents the autocorrelation function gd, t), and the horizontal axis represents time (log).
  • Figure 2 shows a comparison of autocorrelation functions between healthy subjects and IgA patients (5 donors each). A is a healthy person and B is an IgA patient.
  • Figure 3 shows the relationship between the relaxation time and the scattering angle for the representative donations of healthy subjects and patients.
  • A is a healthy person and B is a patient.
  • FIG. 4 is a comparison diagram of the scattered light intensity of all samples at a scattering angle of 90 degrees.
  • the vertical axis represents the relative scattered light intensity, and the horizontal axis represents the sample number.
  • FIG. 5 is a diagram schematically showing the relationship between the particle concentration and the diffusion coefficient when an attractive or repulsive interaction is shown.
  • Figure 2A shows the second-order autocorrelation function of five healthy subjects at a scattering angle of 90 degrees. The point compared is the decay rate.
  • healthy subjects all five samples showed a slow decay and converged to 0 in about 1 ms.
  • the decay time of the patient sample was significantly faster than that of the healthy subject.
  • the correlation function converged to 0 in about 0.1 ms. Even at the slowest, for example, the value of the correlation function at a time of 0.1 millisecond was 50% smaller than that of a healthy person.
  • the patient sample was clearly different.
  • the correlation function could be analyzed for patient samples assuming that there are large and small particles in the solution, but the percentage of large particles was very small.
  • the relationship between the relaxation time and the scattering angle largely dissipated from the straight line.
  • small particles (fast mode) dominating in patient samples show very clear linearity in relation to relaxation time and scattering angle, with particle radii in the range of 7-8 ⁇ for all samples. Converged. From these results, the following significant differences were observed between the healthy sample and the patient sample.
  • FIG. 4 shows the relative scattered light intensities of all healthy subjects and patients at a scattering angle of 90 degrees.
  • FIG. 4 is a diagram in which the scattered light intensity of the first sample of a healthy person is standardized as 1. Obviously, the scattered light intensity was low in the patient sample. The difference from a healthy person was 2 to 50 times. Industrial potential
  • the present invention provides a method for diagnosing nephropathy using the light scattering method. According to this method, nephropathy can be precisely diagnosed simply and quickly and nondestructively by merely collecting blood without performing a tissue biopsy of a nephropathy patient. In addition, the diagnostic method of the present invention also enables the examination of the degree of nephropathy and the determination of the risk of developing nephropathy in the future.

Description

明細書  Specification
IgA腎症の迅速診断法 技術分野 Rapid diagnostic method for IgA nephropathy
本発明は、 腎症患者、 特に IgA腎症患者の血液中に存在する IgAタンパク質につ いて、 光散乱法を用いて物理量を評価し、 健常者の IgAタンパク質の場合と比較す ることにより、 IgA腎症特有の現象を非破壊的に迅速且つ無苦痛で精密診断できる システムに関する。 景技術  The present invention evaluates the physical quantity of a IgA protein present in the blood of a nephropathy patient, particularly an IgA nephropathy patient, using a light scattering method, and compares the physical quantity with the IgA protein of a healthy subject. The present invention relates to a system capable of nondestructively swift, painless and precise diagnosis of IgA nephropathy specific phenomena. Landscape technology
IgA腎症は腎臓糸球体メサンギゥム領域に IgAが選択的に沈着することによって 引き起こされる腎臓疾患である。 2000年の統計資料によると、 全国での人工透析 患者の約半数の 10万人が慢性腎炎であり、 さらにその半数が、 IgA腎症であると推 定されている。 本疾患の確定診断の方法は腎生検による糸球体の観察によりメサ ンギゥム領域に IgAが沈着していることを蛍光抗体染色で確認することが唯一の方 法であった。 このように、 本疾患の診断方法は、 腎生検による組識観察しか知ら れておらず、 患者にとって大きな負担となっていた。 そのため病理実態すら明確 になっていない。  IgA nephropathy is a kidney disease caused by the selective deposition of IgA in the glomerular mesangial region of the kidney. According to statistical data from 2000, it is estimated that about half of all dialysis patients nationwide have 100,000 chronic nephritis, and half have IgA nephropathy. The only method of definitive diagnosis of this disease was to confirm that IgA was deposited in the mesangium region by fluorescent antibody staining by observing glomeruli by renal biopsy. Thus, the only diagnostic method for this disease was tissue observation by renal biopsy, which placed a heavy burden on patients. Therefore, the actual pathology has not been clarified.
また、 IgAの光散乱の測定例は、 中性子散乱及び X線小角散乱により IgA分子自体 の形を見たもの、 あるいは IgA単量体のサイズを測定したものが二文献 (非特許文 献 1および 2参照) あるが、 サンプルがヒト由来ではない、 あるいはヒ卜由来で も健常者サンプルしか扱っておらず、 しかも IgAの分子間相互作用の検討を行って いない。 更に最も重要な、 健常者と患者の血液由来 IgA分子の各種物理量を比較検 討することによる IgA腎症診断の可能性に言及したものはない。 また、 中性子散乱 は大規模施設を必要とし実験機会も極めて限定されているため、 一般の臨床診断 に手軽に応用できるものではない。 In addition, there are two examples of IgA light scattering measurement in which the shape of the IgA molecule itself is observed by neutron scattering and small-angle X-ray scattering or in which the size of the IgA monomer is measured (Non-patent Documents 1 and 2). However, even though the sample is not derived from humans, or from humans, it only deals with samples from healthy subjects, and has not studied the molecular interaction of IgA. Furthermore, there is no mention of the most important possibility of diagnosing IgA nephropathy by comparing various physical quantities of IgA molecules derived from blood of healthy subjects and patients. In addition, neutron scattering requires a large-scale facility and has very limited experimental opportunities, so general clinical diagnosis It cannot be easily applied to
上記のように、 IgA腎症を迅速かつ無苦痛で診断できるシステムはこれまでのと ころ知られていなかった。  As described above, a system capable of rapidly and painlessly diagnosing IgA nephropathy has not been known so far.
〔非特許文献 1〕  (Non-patent document 1)
Gilmour, Sら著、 Smal 1-angle neutron scattering studies of the conformatio n of myeloma protein MOPC315 and its Fab fragment, and the interaction wi th a monovalent dinitrophenyl hapten. Proceedings of the Royal Society ofGilmour, S et al., Smal 1-angle neutron scattering studies of the conformation of myeloma protein MOPC315 and its Fab fragment, and the interaction with a monovalent dinitrophenyl hapten.Proceedings of the Royal Society of
London. Series B. Biological Sciences, Volume 211、 Issue 1185、 March 27、 1981年、 433- 453頁 London. Series B. Biological Sciences, Volume 211, Issue 1185, March 27, 1981, 433-453
〔非特許文献 2〕  (Non-patent document 2)
Boehm, M Kら著、 The Fab and Fc fragments of IgAl exhibit a different arra ngement from that in IgG: a study by X-ray and neutron solution scatterin g and homology model ing、 Journal of Molecular Biology, Volume 286, Issue Boehm, MK et al., The Fab and Fc fragments of IgAl exhibit a different arra ngement from that in IgG: a study by X-ray and neutron solution scattering g and homology modeling, Journal of Molecular Biology, Volume 286, Issue.
5、 March 12、 1999年、 1421-1447頁 発明の開示 5, March 12, 1999, pp. 1421-1447 Disclosure of the Invention
本発明は、 このような状況に鑑みてなされたものであり、 その目的は、 IgA腎症 を迅速かつ無苦痛で診断できるシステムを提供することにある。 より具体的には、 腎症患者の血液等の検査試料中に存在する IgAタンパク質について、 光散乱法を用 いて物理量を評価し、 健常者の IgAタンパク質の場合と比較を行い、 IgA腎症を迅 速かつ無苦痛で診断できるシステムを提供することにある。  The present invention has been made in view of such a situation, and an object of the present invention is to provide a system that can rapidly and painlessly diagnose IgA nephropathy. More specifically, the physical quantity of IgA protein present in a test sample such as blood of a nephropathy patient is evaluated using a light scattering method, and is compared with that of a healthy subject to determine IgA nephropathy. It is an object of the present invention to provide a system that can make a diagnosis quickly and painlessly.
本発明者らは、 上記課題を解決するため、 鋭意研究を行った。 まず本発明者ら は、 健常者および IgA腎症患者より血液を採取し、 親和性カラムを用いて IgAを粗 精製した。 得られた試料を光散乱法を用いて解析した。 IgA単量体および会合体の 大きさや分布、 分子間相互作用などの違いを検出することにより、 IgA腎症か否か を判定できるかどうかについて検討した。 二次自己相関関数における減衰速度の比較では、 患者検体は減衰時間が著しく 速かった。 また、 指数関数的減衰を仮定して、 二粒子成分分析を行い健常者サン プルと患者サンプルを比較した場合、 健常者検体では緩和時間と散乱角度の関係 が散逸する傾向にあり、 直線性が非常に悪く、 小さな粒子の半径は 13- 20nm程度と 判定されたが、 患者検体では、 小さな粒子に関して、 緩和時間と散乱角度の関係 が極めて良い直線関係を示し、 粒子半径は 7- 8nmに収束する結果になった。 さらに, 同一 IgA濃度の溶液を用いて、 IgA単量体あるいは IgA会合体がもたらす相対散乱光 強度に関して健常者と患者検体を比較した結果、 患者検体では散乱光強度が小さ く、 健常者との差は 2 - 50倍に及んだ。 これらのことから本発明者らは、 被検者由 来の試料における IgAを光散乱法を利用して解析することにより、 IgA腎症の診断 が可能であることを見出し、 本発明を完成させた。 The present inventors have conducted intensive research to solve the above-mentioned problems. First, the present inventors collected blood from a healthy subject and a patient with IgA nephropathy, and crudely purified IgA using an affinity column. The obtained sample was analyzed using the light scattering method. We examined whether it was possible to determine whether or not IgA nephropathy could be detected by detecting differences in the size, distribution, and intermolecular interactions of IgA monomers and aggregates. A comparison of the decay rates in the second-order autocorrelation function showed that the decay time of the patient specimen was significantly faster. In addition, when a two-particle component analysis is performed on the assumption of exponential decay and a sample of a healthy subject is compared with a patient sample, the relationship between the relaxation time and the scattering angle tends to be dissipated in the sample of a healthy subject, and the linearity is poor. Very bad, the radius of the small particles was determined to be about 13-20 nm, but in the patient sample, the relationship between the relaxation time and the scattering angle showed a very good linear relationship for the small particles, and the particle radius converged to 7-8 nm The result was. Furthermore, using a solution with the same IgA concentration, a comparison was made between a healthy subject and a patient sample with respect to the relative scattered light intensity produced by an IgA monomer or an IgA complex. The difference ranged from 2 to 50 times. From these facts, the present inventors have found that it is possible to diagnose IgA nephropathy by analyzing IgA in a sample derived from a subject using a light scattering method, and completed the present invention. Was.
本発明者らによって開発された診断法を用いることにより、 IgA腎症患者の組識 生検を行うことなく、 血液を採取するだけで、 簡便且つ迅速に IgA腎症を診断する ことが可能になる。 また、 本発明の診断法により、 IgA腎症の進行度検査や、 将来 的な IgA腎症発病への危険度判定も可能である。  By using the diagnostic method developed by the present inventors, it is possible to easily and quickly diagnose IgA nephropathy simply by collecting blood without performing tissue biopsy of IgA nephropathy patients. Become. In addition, the diagnostic method of the present invention can also be used to examine the progress of IgA nephropathy and to determine the risk of developing IgA nephropathy in the future.
本発明は、 IgA腎症の迅速診断方法に関し、 より具体的には、  The present invention relates to a method for rapid diagnosis of IgA nephropathy, more specifically,
〔1〕 以下の工程 (A) 〜 (C ) を含む、 腎症の診断方法、  [1] A method for diagnosing nephropathy, comprising the following steps (A) to (C):
(A) 被検者由来の検査試料に存在する IgAタンパク質、 または IgAタンパク 質を含む会合体粒子へ照射された入射光の散乱光について、 その絶対 値、 時間変化、 および散乱角度依存性を計測する工程、  (A) Measure the absolute value, time change, and scattering angle dependence of the scattered light of the incident light irradiated on the aggregated particles containing IgA protein or IgA protein present in the test sample derived from the subject Process,
(B ) 工程 (A) により計測された値を基に、 下記 (a ) 〜 (f ) のいずれ かの物理量を評価する工程、  (B) a step of evaluating one of the following physical quantities (a) to (f) based on the value measured in the step (A);
( a ) 任意の散乱角度における散乱光強度  (a) Scattered light intensity at any scattering angle
( b ) 任意の散乱角度における自己相関関数  (b) Autocorrelation function at any scattering angle
( c ) 前記 (a ) の解析に基づく分子量、 慣性半径、 フラクタル次元、 または粒子形状 ( d ) 前記 (b ) の解析に基づく拡散係数、 および流体力学的半径(c) Molecular weight, radius of gyration, fractal dimension, or particle shape based on the analysis in (a) above (d) Diffusion coefficient and hydrodynamic radius based on the analysis of (b) above
( e ) 緩和時間、 および散乱角度 (e) Relaxation time and scattering angle
( f ) 前記 (d ) または前記 (e ) より算出した拡散係数と流体力学的 半径の IgAタンパク質濃度を関数とした依存性  (f) Dependence of diffusion coefficient and hydrodynamic radius calculated from (d) or (e) as a function of IgA protein concentration
(C) 工程 (B ) の物理量を、 健常者の IgAタンパク質の場合と比較する工程 (C) Step of comparing the physical quantity of step (B) with that of healthy human IgA protein
〔2〕 入射光が偏光もしくは非偏光の通常光、 X線、 放射光、 または中性子で ある、 〔1〕 に記載の診断方法、 (2) The diagnostic method according to (1), wherein the incident light is polarized or unpolarized ordinary light, X-rays, synchrotron radiation, or neutrons.
〔3〕 散乱が動的光散乱または静的光散乱である、 〔1〕 に記載の診断方法、 〔4〕 検査試料が血液試料である、 〔1〕 〜 〔3〕 のいずれかに記載の診断方 法、  (3) the diagnostic method according to (1), wherein the scattering is dynamic light scattering or static light scattering, (4) the test sample is a blood sample, (1) to (3), Diagnostic methods,
〔5〕 腎症が IgA腎症である、 〔1〕 〜 〔4〕 のいずれかに記載の診断方法、 を 提供するものである。  [5] The diagnostic method according to any one of [1] to [4], wherein the nephropathy is IgA nephropathy.
本発明は、 光散乱法を利用した腎症の診断方法を提供する。 一般に光散乱法と は、 溶液中でブラウン運動している粒子の拡散係数、 分子間相互作用、 分子量、 構造等を評価するための方法である。 ブラウン運動により粒子からの散乱光強度 は、 時間と共に変化する。 この散乱光強度の時間変化を測定することにより、 粒 子の拡散係数が判明する。 拡散係数と粒子のサイズは反比例することから、 粒子 サイズが分かり、 さらに、 拡散係数の粒子濃度依存性を測定することにより、 粒 子間相互作用を求めることができる。 より詳しくは、 溶液中でブラウン運動して いる粒子に照射された光 (入射光) の散乱光について、 その絶対値、 時間変化、 散乱角度依存性を計測することにより、 対象粒子の分子量、 (並進及び回転) 拡 散係数、 流体力学的半径、 慣性半径、 フラクタル次元、 粒子形状の物理量を評価 する手法を言う。 さらに、 光散乱法によって、 散乱光強度の時間変化を、 粒子の 濃度の関数として測定することにより、 粒子間相互作用を評価することが可能で ある。  The present invention provides a method for diagnosing nephropathy using light scattering. In general, the light scattering method is a method for evaluating the diffusion coefficient, intermolecular interaction, molecular weight, structure, and the like of particles undergoing Brownian motion in a solution. Due to Brownian motion, the intensity of light scattered from particles changes with time. By measuring the time change of the scattered light intensity, the diffusion coefficient of the particles can be determined. Since the diffusion coefficient is inversely proportional to the particle size, the particle size is known, and the interparticle interaction can be determined by measuring the particle concentration dependence of the diffusion coefficient. More specifically, by measuring the absolute value, time change, and scattering angle dependence of the scattered light of the light (incident light) applied to the particles moving in Brownian motion in the solution, the molecular weight of the target particle, ( (Translation and rotation) A method to evaluate the diffusion coefficient, hydrodynamic radius, radius of inertia, fractal dimension, and physical quantity of particle shape. Furthermore, it is possible to evaluate the interaction between particles by measuring the time change of the scattered light intensity with the light scattering method as a function of the concentration of the particles.
本発明は IgA腎症患者の血液中に存在する IgAタンパク質について、 光散乱法を 用いて上記物理量を評価し、 健常者の IgAタンパク質の場合と比較検討することに より、 IgA腎症特有の現象を迅速且つ無苦痛で診断できる方法に関する。 本発明は 即ち、 光散乱法を用いることによって、 IgA患者と健常者との間の IgA分子のサイ ズ、 もしくは IgA分子間の相互作用の相違を検出することが可能であるという、 発 明者らによって見出された知見を基に、 被検者について腎症か否かの診断を行う 方法に関する。 The present invention uses a light scattering method for IgA protein present in the blood of IgA nephropathy patients. The present invention relates to a method for rapidly and painlessly diagnosing a phenomenon specific to IgA nephropathy by evaluating the above physical quantities using the above and comparing and examining the physical quantity with the case of a healthy subject's IgA protein. The present invention is based on the inventor's finding that it is possible to detect the size of IgA molecules between IgA patients and healthy subjects, or differences in interactions between IgA molecules, by using a light scattering method. The present invention relates to a method for diagnosing whether or not a subject has nephropathy based on the findings found by the present inventors.
本発明によって診断される腎症とは、 通常、 IgA腎症を指すが、 必ずしもこれに 限定されず、 例えば、 糖尿病由来の腎症の診断を行うことも可能である。  The nephropathy diagnosed by the present invention usually refers to IgA nephropathy, but is not necessarily limited thereto. For example, it is also possible to diagnose diabetic nephropathy.
光散乱法としては、 一般的に、 動的光散乱法、 静的光散乱法、 X線小角散乱法、 中性子散乱法等を挙げることができる。 本発明においては、 これらいずれの散乱 法を用いても本発明の診断方法を実施することができる。  The light scattering method generally includes a dynamic light scattering method, a static light scattering method, a small-angle X-ray scattering method, a neutron scattering method, and the like. In the present invention, the diagnostic method of the present invention can be carried out using any of these scattering methods.
以下に最も普遍的に使用される動的光散乱法 (Dynamic Light Scattering, 別 名 Quasi- elastic Light Scattering) に関して、 その測定原理の説明を行う。  The measurement principle of the most commonly used dynamic light scattering method (Dynamic Light Scattering, also known as Quasi-elastic Light Scattering) is described below.
散乱光強度を Iとした場合、 散乱光強度の時間変化に関して以下の自己相関関数 を定義する。  Assuming that the scattered light intensity is I, the following autocorrelation function is defined for the time change of the scattered light intensity.
g2 (a, t) - l = <I (q, t) I (Q, 0)> / <I (Q) >2 (数式 1 ) g 2 (a, t)-l = <I (q, t) I (Q, 0)> / <I (Q)> 2 (Equation 1)
数式 1において、 g d t)は二次自己相関関数であり、 I (Q, t)は時間し 散乱角 度 (正確には散乱ベクトル) Qにおける散乱光強度、 I (Q, 0)は測定開始時間におけ る散乱角度 Qでの散乱光強度を、 I (Q)は全測定時間内における散乱光強度の平均値 を意味する。 <>内はアンサンブル平均を表す。 二次自己相関関数は粒子の緩和 時間て、 と数式 2の関係がある。  In Equation 1, gdt) is a second-order autocorrelation function, I (Q, t) is the time, and the scattering angle (scatter vector) is the scattered light intensity at Q, and I (Q, 0) is the measurement start time. I (Q) means the average value of the scattered light intensity during the entire measurement time. <> Indicates ensemble average. The quadratic autocorrelation function is related to the relaxation time of a particle, and Equation 2.
g2 (Q, t) — 1= [∑a„xexp卜(1/て n xt) 0)]2 (n=l、 2、 3、 · · ·) (数式 2) g 2 (Q, t) — 1 = [∑a „xexp (1 / te n xt) 0 )] 2 (n = l, 2, 3, · · ·) (Equation 2)
最も単純な系は、 粒子間相互作用が弱く粒子形態の異方性がない、 単分散 (平 均粒径が 1種類) の系で n=l、 /3 =1となる。 ポリマーのように粒子間相互作用が顕 著になるような系では、 3は必ずしも 1とはならず、 1以下の値も取りうる。 一 方、 溶液中に平均サイズの異なる粒子群が存在した場合、 二次自己相関関数は 各々の粒子の緩和時間を足し併せたものとなる。 すなわち、 n=l、 2、 · · ·であ る。 粒子が大きくゆっくりと動く場合には、 緩和時間も長くなり、 逆に小さな粒 子で激しくブラウン運動しているような場合には、 緩和時間は短くなる。 図 1に 両者の例を模式的に示す。 The simplest system is a monodisperse (one average particle size) system with weak interaction between particles and no anisotropy of particle morphology, where n = 1 and / 3 = 1. In a system such as a polymer in which the interaction between particles becomes remarkable, 3 is not always 1 and can take a value of 1 or less. one On the other hand, when particles with different average sizes exist in the solution, the quadratic autocorrelation function is the sum of the relaxation times of each particle. That is, n = l, 2,. If the particles are large and move slowly, the relaxation time will be long. Conversely, if the particles are violently Browning with small particles, the relaxation time will be short. Figure 1 schematically shows examples of both.
実際の測定では溶液中にどのような粒子群が存在するかを仮定し、 二次自己相 関関数を解析して、 散乱角度 Qにおける各粒子の緩和時間を求める。 緩和時間と粒 子の拡散係数、 散乱角度の間には数式 3の関係がある。  In the actual measurement, we assume what kind of particles exist in the solution and analyze the quadratic self-correlation function to find the relaxation time of each particle at the scattering angle Q. Equation 3 has a relationship between the relaxation time and the diffusion coefficient and scattering angle of the particles.
1 /て = Q 2 X D (数式 3 ) 1 / T = Q 2 XD (Equation 3)
ここで、 散乱角度を変化させ、 それぞれの Q値で緩和時間を求め、 1/てと Q'2を両 軸としてプロットしたとき、 原点を通過する直線で近似できれば、 測定している 粒子の運動は、 並進拡散であると結論できる。 一方、 上記プロセスにより求めら れた並進拡散係数は、 粒子間の相互作用による粒子周囲の水和領域の構造化等の ファクターを含む。 従って真の拡散係数を求めたい塲合は、 上記測定を、 粒子濃 度を関数として行い、 無限希釈時の並進拡散係数を求める。 このような手順で求 められた並進拡散係数と粒子のサイズ (流体力学的半径: rと呼ぶ) には以下の関 係が成り立つ (Stokes-Einsteinの式) 。 Here, the scattering angle is changed, determine the relaxation time at each of the Q value, 1 / Tet Q '2 when the plotted as both axes, if approximated by a straight line passing through the origin, the movement of being measured particles Can be concluded to be translational diffusion. On the other hand, the translational diffusion coefficient obtained by the above process includes factors such as structuring of the hydration region around the particles due to the interaction between the particles. Therefore, if you want to find the true diffusion coefficient, perform the above measurement as a function of particle concentration to find the translational diffusion coefficient at infinite dilution. The following relationship holds between the translational diffusion coefficient and particle size (hydrodynamic radius: r) determined by such a procedure (Stokes-Einstein equation).
r = k T/ 6 π 7? D (数式 4 )  r = k T / 6 π 7? D (Equation 4)
kはボルツマン(Bol tzman)定数、 Tは溶液の絶対温度、 /?は溶媒の粘性である。 本発明の診断方法は、 まず、 被検者由来の検査試料に存在する IgAタンパク質、 または IgAタンパク質を含む会合体粒子へ照射された入射光の散乱光について、 そ の絶対値、 時間変化、 および散乱角度依存性を計測する (工程 (A) ) 。 本工程 の計測時の温度としては、 例えば、 25でを好適に示すことができるが、 特にこの 温度に限定されるものではない。 k is the Boltzman constant, T is the absolute temperature of the solution, and /? is the viscosity of the solvent. The diagnostic method of the present invention comprises the following steps: first, the absolute value, the time change, and the scattered light of the incident light applied to the IgA protein or the aggregated particles containing the IgA protein present in the test sample derived from the subject. The scattering angle dependence is measured (step (A)). As the temperature at the time of measurement in this step, for example, 25 can be suitably indicated, but it is not particularly limited to this temperature.
上記工程 (A) の好ましい態様においては、 被検者由来の検査試料に存在する I gAタンパク質、 または IgAタンパク質を含む会合体粒子へ照射された入射光の散乱 光について、 その絶対値、 時間変化に基づく自己相関関数、 自己相関関数の散乱 角度依存性、 自己相関関数から算出される拡散係数の IgA濃度依存性の計測を行う c 本発明の診断方法においては、 例えば、 被検者の腎症が著しく進行している場 合には、 上記工程 (A) において散乱光強度のみを測定することによって、 腎症 の診断を行うことも可能である。 通常、 上記工程 (A) において散乱光の 「絶対 値」 、 「時間変化」 、 「散乱角度依存性」 の全てを測定することにより、 腎症診 断の確度が向上することから、 本発明の方法においては、 これらについて全てを 測定することが好ましい。 In a preferred embodiment of the above step (A), scattering of incident light applied to an aggregated particle containing IgA protein or IgA protein present in the test sample derived from the subject For light, its absolute value, the autocorrelation function based on temporal change, the scattering angle dependence of the autocorrelation function, in the diagnostic methods of the c the present invention for performing IgA concentration dependence of the measurement of diffusion coefficients calculated from the autocorrelation function For example, when the subject's nephropathy is significantly advanced, it is possible to diagnose nephropathy by measuring only the scattered light intensity in the above step (A). In general, by measuring all of the “absolute value”, “time change”, and “scattering angle dependency” of the scattered light in the above step (A), the accuracy of diagnosis of nephropathy is improved. In the method, it is preferable to measure all of them.
本発明において IgAタンパク質へ照射する上記 「入射光」 としては、 その種類等、 特に制限されるものではないが、 例えば、 偏光 (消光も含む) および非偏光の通 常光 (例えば、 紫外、 可視、 赤外) 、 X線、 放射光、 中性子等を挙げることがで きる。 本発明においては、 通常光を好適に利用することができる。  In the present invention, the “incident light” for irradiating the IgA protein is not particularly limited in its kind and the like, but includes, for example, polarized (including quenched) and unpolarized ordinary light (eg, ultraviolet, visible, Infrared), X-rays, synchrotron radiation, neutrons and the like. In the present invention, ordinary light can be suitably used.
また、 本発明における 「散乱」 は、 レイリー散乱またはミ一散乱を基本とする 散乱方式は動的 静的散乱、 小角散乱、 単一粒子散乱、 エバネッセント波を利用 した散乱が含まれるが、 一般施設での利用における簡易性や測定の迅速度を考慮 すると、 好ましくは動的散乱または静的散乱、 更に好ましくは動的散乱である。 本発明の診断方法へ供する検査試料としては、 例えば、 体液から調製された試 料を挙げることができるが、 通常、 血液もしくは唾液由来の試料であり、 好まし くは、 被検者の血液から調製された試料である。 また、 本発明においては、 対照 として健常者由来の試料を調製することが望ましい。 その際好ましくは、 健常者 および被検者の試料中に含まれる IgA濃度が同一となるように調製を行う。  The “scattering” in the present invention means that the scattering method based on Rayleigh scattering or Mie scattering includes dynamic static scattering, small angle scattering, single particle scattering, and scattering using evanescent waves. Considering the simplicity of use in the method and the speed of measurement, dynamic scattering or static scattering is preferred, and dynamic scattering is more preferred. Examples of the test sample used in the diagnostic method of the present invention include a sample prepared from a body fluid, and it is usually a sample derived from blood or saliva, preferably from a blood of a subject. This is a prepared sample. In the present invention, it is desirable to prepare a sample derived from a healthy person as a control. At that time, preferably, the preparation is performed so that the IgA concentrations contained in the samples of the healthy subject and the subject are the same.
血液からの検査試料の調製は、 IgAを精製可能な方法であれば任意の方法によつ て行うことができる。 例えば、 当業者において一般的に行われる方法であるカラ ムクロマトグラフィー、 電気泳動等により調製を行うことができるが、 好ましく はジャッカリンァガロースカラムもしくは該カラムに加えて抗 IgAカラムを用いて 調製を行う。 以下に本発明の被検試料の調製方法の一例を示すが、 この方法に特 に制限されるものではない。 Preparation of a test sample from blood can be performed by any method as long as IgA can be purified. For example, the preparation can be performed by column chromatography, electrophoresis, or the like, which is a method generally performed by those skilled in the art. Preferably, the preparation is performed using a jackalin agarose column or an anti-IgA column in addition to the column. I do. Hereinafter, an example of a method for preparing a test sample of the present invention will be described. It is not limited to.
100 m Tris-HCl, \% NaN3 (J一バッファー)で平衡化したジャッカリンァガロ ースカラム(カラムボリユーム(CV) =2fflL)に血清(あるいは血漿) 3〜5 mLをァプラ ィする。 10 CVの J一バッファーで素通り画分を溶出後、 0.8 Mのガラク 1 ^一スを含 む J—バッファ一で溶出する。 溶出画分をジャッカリン精製 IgAとする。 得られた 画分を分子量カット 10kの限外濾過装置で濃縮、 脱塩し、 50 mM トリス塩酸緩衝液 pH7.4で平衡化(3回の脱塩処理)する。 試料のタンパク質濃度はローリ一法で行う < 被検試料の調製において使用される試薬 ·器具類は、 特に上記のものに限定され ず、 例えば、 平衡化バッファ一は、 中性付近で数 H ^〜数百 mMのものであれば任意 のバッファーを使用することができる。 Apply 3-5 mL of serum (or plasma) to a Jackalin agarose column (column volume (CV) = 2fflL) equilibrated with 100 m Tris-HCl, \% NaN 3 (J-buffer). After eluting the flow-through fraction with 10 CV J-buffer, elute with J-buffer containing 0.8 M galactose. The eluted fraction is designated as jackalin-purified IgA. The obtained fraction is concentrated and desalted with an ultrafiltration apparatus with a molecular weight cut of 10k, and equilibrated with 50 mM Tris-HCl buffer (pH 3) (three times of desalting). The protein concentration of the sample is determined by the Lowry method <The reagents and instruments used in the preparation of the test sample are not particularly limited to those described above. Any buffer can be used as long as it has a concentration of up to several hundred mM.
また被検試料の調製の際は必要に応じて、 ダスト除去のために、 フィルタリン グを行うことが好ましい。  When preparing a test sample, it is preferable to perform filtering, as necessary, to remove dust.
本発明における光散乱法を利用した上記工程 (A) における計測は、 当業者に おいては、 通常、 市販の機器を用いて簡便に行うことができる。 例えば、 DLS-700 (大塚電子株式会社) 等を使用することができる。  The measurement in the above step (A) using the light scattering method in the present invention can be easily performed by those skilled in the art, usually using commercially available equipment. For example, DLS-700 (Otsuka Electronics Co., Ltd.) or the like can be used.
本方法においては、 次いで、 工程 (A) により計測された値を基に、 下記  In this method, then, based on the value measured in step (A),
(a) 〜 (f) のいずれかの物理量を評価し (工程 (B) ) 、 工程 (B) の物理 量を、 健常者の IgAタンパク質の場合と比較する (工程 (C) ) 。  The physical quantity of any of (a) to (f) is evaluated (step (B)), and the physical quantity of step (B) is compared with the case of a healthy subject's IgA protein (step (C)).
(a) 任意の散乱角度における散乱光強度  (a) Scattered light intensity at any scattering angle
(b) 任意の散乱角度における自己相関関数  (b) Autocorrelation function at any scattering angle
(c) 前記 (a) の解析に基づく分子量、 慣性半径、 フラクタル次元、 また は粒子形状  (c) Molecular weight, radius of gyration, fractal dimension, or particle shape based on the analysis in (a) above
(d) 前記 (b) の解析に基づく拡散係数、 および流体力学的半径  (d) Diffusion coefficient and hydrodynamic radius based on the analysis of (b) above
(e) 緩和時間、 および散乱角度  (e) Relaxation time and scattering angle
(f ) 前記 (d) または前記 (e) より算出した拡散係数と流体力学的半径 の I gAタンパク質濃度を関数とした依存性 上記工程 (C ) における、 健常者の IgAタンパク質の場合との比較は、 被検者の 検査試料を光散乱法によって測定する際に、 対照として健常者由来の試料も併せ て測定することにより、 上記 (a ) 〜 (f ) のいずれかの物理量について健常者 の場合と比較を行うことができる。 あるいは、 予め算出された健常者の場合の上 記 (a ) 〜 ( f ) のいずれかの物理量と比較を行ってもよい。 (f) Dependence of diffusion coefficient and hydrodynamic radius calculated from (d) or (e) as a function of IgA protein concentration The comparison with the case of a healthy subject's IgA protein in the above step (C) is performed by measuring a test sample of the subject by the light scattering method and also measuring a sample derived from a healthy subject as a control. The physical quantity of any of the above (a) to (f) can be compared with the case of a healthy person. Alternatively, the physical quantity may be compared with any of the physical quantities (a) to (f) described above for a healthy person calculated in advance.
一般に小さな散乱角度ほど試料中のダス卜の影響や測定容器からの迷光の影響 を受けやすく、 且つ大きな粒子が観察されやすい。 逆に高角度での測定ほどダス 卜の影響は少なく、 且つ今回の測定対象である小さな粒子が検出されやすい。 本 発明の散乱角度は、 当業者においては、 上記の知見を基に最適な散乱角度を適宜 選択することが可能である。 通常、 散乱角度 9 0度が最もダストおよび迷光の影 響が小さいとされる。 本発明における散乱角度は、 通常、 1 0〜 1 5 0度の範囲 であり、 実際的には 2 0〜9 0度であり、 さらに試料中のダストの影響を可能な 限り除き、 且つ簡便測定を行いたい場合は、 例えば 9 0度がよい。  In general, a smaller scattering angle is more susceptible to the influence of dust in the sample and stray light from the measurement container, and larger particles are more likely to be observed. Conversely, the higher the angle, the less the dust is affected, and the smaller the particles to be measured this time are more likely to be detected. As for the scattering angle of the present invention, those skilled in the art can appropriately select an optimum scattering angle based on the above findings. Normally, a scattering angle of 90 degrees is considered to have the least effect of dust and stray light. The scattering angle in the present invention is usually in the range of 10 to 150 degrees, and is actually 20 to 90 degrees, and furthermore, the influence of dust in the sample is eliminated as much as possible, and the measurement is simple. For example, 90 degrees is preferable.
上記 (a ) においては、 被検者由来の検査試料について光散乱法によって測定 された散乱光強度を、 健常者の場合の散乱光強度と比較する。 被検者における散 乱光強度の絶対値を基に、 腎症の診断を行うことが可能であるが、 通常は、 健常 者と判断される試料を対照として行うことが好ましい。 即ち、 健常者における散 乱光強度に対して相対的に散乱光強度の比較 (相対散乱光強度の比較) を行う。 例えば、 健常者における散乱光強度を 「1」 とした際の、 被検者における散乱光 強度の値を基に、 腎症の診断を行うことができる。  In (a) above, the scattered light intensity measured by the light scattering method on the test sample derived from the subject is compared with the scattered light intensity of a healthy person. Although it is possible to make a diagnosis of nephropathy based on the absolute value of the scattered light intensity in the subject, it is usually preferable to use a sample judged to be healthy as a control. That is, the scattered light intensity is compared with the scattered light intensity in a healthy person (comparison of the relative scattered light intensity). For example, a diagnosis of nephropathy can be made based on the value of the scattered light intensity in the subject when the scattered light intensity in a healthy person is set to “1”.
一例を示せば、 ダス卜の影響が最も少ないと考えられる散乱角度が 90度である 場合には、 後述の実施例の図 4で示すように、 健常者と IgA腎症患者との間で明ら かな相対散乱光強度の相違が見られる。 被検者における相対散乱光強度が、 通常、 0. 25以下、 好ましくは 0. 2以下、 より好ましくは、 0. 15以下である場合に、 被検者 は腎症であるものと判定される。 本発明において 「被検者が腎症である」 とは、 通常、 生理学的見地から見て 「被検者が腎症に罹患している」 ことを意味する。 上記の比較において、 より好ましくは、 値を確定させるために、 生理学的およ び本光散乱測定両者から確実に健常者と断定できるサンプル群について、 統計的 に散乱光強度の平均を算出した後、 十分な数の患者由来のサンプルについて散乱 光強度の測定を行い、 比較するのがよい。 As an example, when the scattering angle at which the effect of dust is considered to be the least is 90 degrees, as shown in FIG. There is a slight difference in relative scattered light intensity. When the relative scattered light intensity in the subject is usually 0.25 or less, preferably 0.2 or less, more preferably 0.15 or less, the subject is determined to have nephropathy. . In the present invention, "the subject has nephropathy" usually means that "the subject has nephropathy" from a physiological point of view. In the above comparison, more preferably, in order to determine the value, a statistically averaged scattered light intensity is calculated for a sample group that can be definitely determined to be a healthy person from both physiological and main light scattering measurements. It is advisable to measure the scattered light intensities of samples from a sufficient number of patients and compare them.
また、 腎症であっても疾病の進行度が軽いものから重症のものまで様々である。 通常、 散乱光強度の値が低いほど、 腎症が進んでいる (進行度が高い) 、 あるい は将来的な腎症発病の危険性が高いものと判定される。  Even nephropathy varies in severity from mild to severe. Usually, it is determined that the lower the value of the scattered light intensity, the more advanced the nephropathy (the higher the degree of the nephropathy) or the higher the risk of developing nephropathy in the future.
また、 生理学的に健常者である場合であっても、 腎症の予備軍であることも考 えられる。 本発明の一つの態様においては、 腎症の症状を呈さない健常者を被検 者として本発明の診断方法を実施することができる。 即ち、 このような被検者に ついて本発明の方法を実施して、 腎症であるものと判定される場合には、 被検者 が将来腎症になる可能性がある (高い) ものと考えられる。  In addition, even if they are physiologically healthy, they may be a reserve arm for nephropathy. In one embodiment of the present invention, the diagnostic method of the present invention can be performed using a healthy subject who does not exhibit nephropathy as a subject. That is, when the method of the present invention is performed on such a subject and it is determined that the subject has nephropathy, the subject is likely to have nephropathy in the future (high). Conceivable.
上記 (b ) においては、 被検者由来の検査試料について光散乱法によって測定 された散乱光強度および時間変化を基に、 上記の数式 1により、 自己相関関数を 算出することができる。 この自己相関関数について、 健常者の場合の自己相関関 数と比較する。  In the above (b), the autocorrelation function can be calculated by the above equation 1 based on the scattered light intensity and the time change measured by the light scattering method for the test sample derived from the subject. This autocorrelation function is compared with the autocorrelation function of a healthy person.
任意の散乱角度において、 時間 (対数) および自己相関関数を軸とするグラフ を描画することができる。 本発明においては、 健常者および被検者について描画 されたグラフの形状の相違に基づいて、 腎症の判定を行うことができる。 一例を 示せば、 散乱角度が 90度である場合には、 健常者および IgA患者については後述の 図 2で示すようなグラフが描画される。 散乱角度が 90度における自己相関関数は、 図 2に示すように、 時間 (対数) および自己相関関数を軸として描かれるグラフ において、 明らかな相違が見られる。 従って、 被検者において描画されたグラフ が、 図 2で示す IgA患者におけるグラフの形状を示す場合、 即ち後述のように、 自 己相関関数が時間と共に急激に減衰するような場合、 被検者は腎症であるものと 判定される。 定量的には自己相関関数の減衰速度に着目して腎症の判定を行うことが可能で ある。 例えば、 図 2において、 健常者では緩やかな減衰を示す。 これに対して患 者では減衰時間が健常者と比べて著しく速い。 従って、 被検者について、 健常者 と比較した際に速い減衰速度を示す場合には、 被検者は腎症である、 あるいは腎 症を発症する可能性があるものと判定することができる。 At any scattering angle, a graph can be drawn around time (log) and autocorrelation function. In the present invention, nephropathy can be determined based on the difference between the shapes of the graphs drawn for the healthy subject and the subject. As an example, when the scattering angle is 90 degrees, a graph as shown in FIG. 2 described later is drawn for a healthy person and an IgA patient. As shown in Fig. 2, the autocorrelation function at a scattering angle of 90 degrees has a clear difference in the graph drawn with the time (logarithm) and the autocorrelation function as axes. Therefore, when the graph drawn in the subject shows the shape of the graph in the IgA patient shown in FIG. 2, that is, as described later, when the autocorrelation function rapidly attenuates with time, Is judged to be nephropathy. Quantitatively, it is possible to determine nephropathy by focusing on the decay rate of the autocorrelation function. For example, in FIG. 2, a healthy person shows a slow decay. In contrast, the decay time is significantly faster in patients than in healthy individuals. Therefore, if the subject shows a faster decay rate as compared to a healthy subject, it can be determined that the subject has nephropathy or is likely to develop nephropathy.
また、 ある特定の 「時間」 における自己相関関数の値を比較することによって も、 腎症の判定を行うことが可能である。 本発明においては、 通常、 被検者およ び健常者由来の試料における I gA濃度は上述のように同一となるようにし、 且つ測 定時において容器からの迷光等のアーティファクトを可能な限り除去するように 調整されることから、 時間ゼロにおける自己相関関数の値は、 健常者および被検 者ともに同一となる。  It is also possible to determine nephropathy by comparing the values of the autocorrelation function at a specific “time”. In the present invention, usually, the IgA concentration in the sample derived from the subject and the healthy subject is made the same as described above, and artifacts such as stray light from the container are removed as much as possible during the measurement. Thus, the value of the autocorrelation function at time zero is the same for both the healthy subject and the subject.
例えば、 時間ゼロにおける自己相関関数の値が、 0. 45〜0. 5であった場合、 患者 についての時間 0. 1ミリ秒における自己相関関数の値は、 健常者の場合と比較して 約 1/1. 5〜1/30である。 従って、 一例を示せば、 被検者についての時間 0. 1ミリ秒 における自己相関関数を算出し、 その値が、 通常 0〜0. 1、 好ましくは 0〜0. 05、 よ り好ましくは 0〜0. 01である場合に、 被検者は腎症であるものと判定される。 当業 者においては、 自己相関関数の値について最も差異を示す 「時間」 を適宜選択し て、 健常者および被検者について自己相関関数の値の比較を行うことができる。 また、 通常、 ある特定の時間 (例えば、 0. 1ミリ秒) における自己相関関数の値 が低いほど、 腎症が進んでいる (進行度が高い) 、 あるいは将来的な腎症発病の 危険性が高いものと判定される。 例えば、 時間 0. 1ミリ秒における自己相関関数値 が 0. 2を下回った場合、 将来的に発症の危険性があるものと判定することができる 上記 (d ) 、 ( e ) においては、 被検者における上記の自己相関関数を基に、 上記の数式 2によって緩和時間 (て) を算出し、 緩和時間と散乱角度との関係を 求める。 その際、 緩和時間と散乱角度の直線性、 偏差、 および算出された拡散係 数と流体力学的半径の値を基準とする。 例えば、 緩和時間および散乱角度を軸と してグラフを描画すると、 通常、 図 3のような直線関係を示す。 この関係から (並進) 拡散係数および流体力学的半径が算出される。 一例を示せば、 緩和時間 と散乱角度が図 3で描かれるような関係を示す場合、 健常者における IgAの拡散係 数は 12〜19 x lO—l2 mVsで、 対応する流体力学的半径は、 13〜20 nm程度であると判 定される。 また、 患者における IgAの拡散係数は 30. 5〜35 x iO—12 mVsで、 これに対 応する流体力学的半径は、 7〜8 MI程度であるものと判定される。 このように健常 者と患者における IgAの拡散係数及び流体力学的半径の相違に基づいて、 被検者に ついて腎症の診断を行うことができる。 例えば、 被検者における IgAの拡散係数及 び流体力学的半径がそれぞれ、 通常 28. 8〜35 10-|2 1112/5 及び?〜 8. 5 nm、 好まし くは 30. 5〜35 X 10— l2 m2/s 及び?〜 8 nm、 より好ましくは 32. 6〜35 x 10— 12 m2/s 及び 7〜7. 5 nmである場合に、 被検者は腎症であるものと判定される。 For example, if the value of the autocorrelation function at time zero is 0.45 to 0.5, the value of the autocorrelation function at time 0.1 ms for the patient is about 1/1. 5 to 1/30. Therefore, to give an example, an autocorrelation function for the subject at a time of 0.1 millisecond is calculated, and the value is usually 0 to 0.1, preferably 0 to 0.05, more preferably 0 to 0.05. When で 0.01, the subject is determined to have nephropathy. Those skilled in the art can appropriately select “time” that shows the largest difference in the value of the autocorrelation function, and compare the values of the autocorrelation function for healthy subjects and subjects. Also, the lower the value of the autocorrelation function at a particular time (eg, 0.1 ms), the more advanced the nephropathy (the more advanced), or the risk of developing nephropathy in the future Is determined to be high. For example, if the value of the autocorrelation function at a time of 0.1 milliseconds falls below 0.2, it can be determined that there is a risk of onset in the future. In the above (d) and (e), Based on the autocorrelation function of the examiner, the relaxation time (T) is calculated by Equation 2 above, and the relationship between the relaxation time and the scattering angle is obtained. At that time, the linearity and deviation of the relaxation time and scattering angle, and the calculated diffusion coefficient and hydrodynamic radius are used as the reference. For example, the relaxation time and scattering angle When a graph is drawn in this way, it usually shows a linear relationship as shown in Figure 3. From this relationship, the (translational) diffusion coefficient and hydrodynamic radius are calculated. As an example, if the relaxation time and the scattering angle show the relationship as depicted in Fig. 3, the diffusion coefficient of IgA in healthy subjects is 12-19 x lO- l2 mVs, and the corresponding hydrodynamic radius is It is determined to be about 13-20 nm. The diffusion coefficient of IgA in patients is 30.5 to 35 x iO- 12 mVs, and the corresponding hydrodynamic radius is determined to be about 7 to 8 MI. Thus, a diagnosis of nephropathy can be made for a subject based on the difference between the diffusion coefficient of IgA and the hydrodynamic radius between a healthy person and a patient. For example, each of the diffusion coefficient及beauty hydrodynamic radius of IgA in a subject, usually 28. 8~35 10- |? 2 111 2 /5 and ~ 8. 5 nm, rather preferably is from 30.5 to 35 X 10- l2 m 2 / s and? ~ 8 nm, more preferably in the case of 32. 6~35 x 10- 12 m 2 / s and 7 to 7. 5 nm, the subject is a nephropathy Is determined.
上記 (f ) においては、 被検者における上記の拡散係数および流体力学的半径 について IgAタンパク質濃度との関係を求める。 即ち、 拡散係数の IgAタンパク質 (粒子) 濃度を関数とした依存性を求めることにより、 粒子間相互作用を評価す ることができる。 例えば、 粒子濃度を横軸に、 拡散係数を縦軸としたグラフにお いて、 描画した線の形状が 「右上がり」 である場合、 斥力相互作用を有するもの と判定される。 一方、 線の形状が 「右下がり」 である場合には、 引力相互作用を 有するものと判定される (図 5 ) 。 本発明者らによって、 健常者と患者における I gA分子間の相互作用は異なることが明らかとなった。 従って、 IgA分子間相互作用 の相違に基づいて、 腎症の診断を行うことができる。 例えば、 健常者および被検 者について上記のように描画されたグラフの形状の相違に基づいて、 腎症の判定 を行うことができる。 図面の簡単な説明  In the above (f), the relationship between the above diffusion coefficient and the hydrodynamic radius in the subject and the IgA protein concentration is determined. That is, the particle-particle interaction can be evaluated by determining the dependence of the diffusion coefficient on the IgA protein (particle) concentration as a function. For example, in a graph in which the particle concentration is plotted on the horizontal axis and the diffusion coefficient is plotted on the vertical axis, if the shape of the drawn line is “upward to the right”, it is determined that there is a repulsive interaction. On the other hand, if the shape of the line is “downward to the right”, it is determined that the line has attractive interaction (Fig. 5). The present inventors have revealed that the interaction between IgA molecules in healthy subjects and patients is different. Therefore, a diagnosis of nephropathy can be made based on the difference in the interaction between IgA molecules. For example, nephropathy can be determined based on the difference between the shapes of the graphs drawn as described above for a healthy person and a subject. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 相関関数の模式図である。 縦軸は自己相関関数 g d, t)、 横軸は時間 (対数) を表わす。 図 2は、 健常者および IgA患者 (各 5献体) の自己相関関数比較の図である。 Aが 健常者、 Bが IgA患者である。 Figure 1 is a schematic diagram of the correlation function. The vertical axis represents the autocorrelation function gd, t), and the horizontal axis represents time (log). Figure 2 shows a comparison of autocorrelation functions between healthy subjects and IgA patients (5 donors each). A is a healthy person and B is an IgA patient.
図 3は、 健常者および患者の代表献体、 各 1に対する緩和時間と散乱角度の関 係図である。 Aが健常者、 Bが患者である。  Figure 3 shows the relationship between the relaxation time and the scattering angle for the representative donations of healthy subjects and patients. A is a healthy person and B is a patient.
図 4は、 散乱角度 90度における全検体の散乱光強度比較図である。 縦軸は相対 散乱光強度、 横軸はサンプルナンバーを表わす。  FIG. 4 is a comparison diagram of the scattered light intensity of all samples at a scattering angle of 90 degrees. The vertical axis represents the relative scattered light intensity, and the horizontal axis represents the sample number.
図 5は、 引力または斥力相互作用を示す場合の、 粒子濃度と拡散係数との関係 を模式的に示す図である。 発明を実施するための最良の形態  FIG. 5 is a diagram schematically showing the relationship between the particle concentration and the diffusion coefficient when an attractive or repulsive interaction is shown. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により具体的に説明するが、 本発明はこれら実施例に制 限されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[実施例 1 ] [Example 1]
健常者及び IgA腎症患者、 各 5検体の血液に対して、 光散乱法を用いて物理量を 評価し、 比較検討を行った。 すべての検体で、 測定溶液中の IgAタンパク質の濃度 が等しくなるように調整した。  Physical quantities were evaluated using light scattering method for healthy subjects and IgA nephropathy patients, and blood samples from each of the five samples were compared and compared. All samples were adjusted so that the concentration of IgA protein in the measurement solution was equal.
図 2 Aは健常者 5検体の散乱角度 90度における二次自己相関関数である。 比較し た点は減衰速度である。 健常者では、 5検体とも緩やかな減衰を示し、 約 1ミリ秒 で 0に収束した。 5検体中 4検体はほとんど同一であつたが、 残り 1検体は他の 4者 に比べて若干速く減衰が見られた。 これに対して患者検体では減衰時間が健常者 に比べて著しく速かった。 最も速いものでは約 0. 1ミリ秒で相関関数が 0に収束し た。 最も遅いものでも、 例えば時間 0. 1ミリ秒の相関関数の値を健常者と比較して みると、 50 %小さかった。  Figure 2A shows the second-order autocorrelation function of five healthy subjects at a scattering angle of 90 degrees. The point compared is the decay rate. In healthy subjects, all five samples showed a slow decay and converged to 0 in about 1 ms. Four of the five specimens were almost identical, but the remaining one showed a slightly faster decay than the other four. In contrast, the decay time of the patient sample was significantly faster than that of the healthy subject. In the fastest one, the correlation function converged to 0 in about 0.1 ms. Even at the slowest, for example, the value of the correlation function at a time of 0.1 millisecond was 50% smaller than that of a healthy person.
現実には生理学的に健常者と判定されても IgA腎症の予備軍が存在し、 一方 IgA 腎症であっても疾病の進行度は軽いものから重症のものまで様々である。 この視 点で図 2を見ると、 健常者のうち、 相関関数の減少が速い検体は、 将来 になる 可能性があると考えられる。 患者検体中の差は、 IgA腎症の進行度に対応している と解釈できる。 [実施例 2 ] 緩和時間と散乱角度の比較 In reality, there is a reserve arm of IgA nephropathy even if it is physiologically determined to be healthy. On the other hand, the disease progression of IgA nephropathy varies from mild to severe. This look Looking at Fig. 2 in this regard, it is thought that among healthy subjects, a sample whose correlation function decreases rapidly may be in the future. Differences in patient samples can be interpreted as corresponding to the stage of IgA nephropathy. [Example 2] Comparison of relaxation time and scattering angle
健常者及び患者各代表 1検体について、 緩和時間と散乱角度の関係を求めた (図 3 ) 。 前述のように、 この関係から (並進) 拡散係数及び粒子半径を算出し た。  The relationship between the relaxation time and the scattering angle was determined for a representative sample of healthy subjects and patients (Fig. 3). As described above, the (translational) diffusion coefficient and particle radius were calculated from this relationship.
まず、 健常者では溶液中には大きな粒子と小さな粒子の二種類が存在するとし て相関関数を解析するのが適当と判断された。 ただし、 両粒子とも緩和時間と散 乱角度の関係は散逸する傾向があり、 あまりはっきりとした直線関係を示さなか つた。 この傾向はすべての健常者サンプルに共通であった。 ここで、 大きな粒子 は I gA以外の不純物の可能性も否定できないため、 以後詳細な検討は行わなかった, 小さな粒子 (図 3中ファーストモード: f as t modeと書かれたもの) の半径は約 13η mであるが、 検体によってかなり分布に広がりがあり、 今回の測定結果では 13-20n m程度と判定された。  First of all, it was judged that it was appropriate to analyze the correlation function on the assumption that there are two types of large particles and small particles in the solution for healthy subjects. However, for both particles, the relationship between the relaxation time and the scattering angle tended to dissipate, and did not show a very clear linear relationship. This tendency was common to all healthy subjects. Here, since the possibility of impurities other than IgA cannot be denied for the large particles, detailed investigation was not performed hereafter. The radius of the small particles (written as fast mode in FIG. 3) is Although it is about 13ηm, the distribution is considerably wide depending on the sample, and it was determined to be about 13-20nm in this measurement result.
一方、 患者サンプルは明らかに様相が異なった。 患者サンプルでも溶液中には 大きな粒子と小さな粒子があるとして相関関数を解析できるが、 大きな粒子の割 合は極めて少なかった。 この結果、 大きな粒子に関しては緩和時間と散乱角度の 関係が直線から大きく散逸した。 一方、 患者サンプルで支配的になる小さな粒子 (ファーストモード: fas t mode) は、 緩和時間と散乱角度の関係に関して極めて 明確な直線性を示し、 粒子半径はすべてのサンプルで 7- 8ηιηの範囲に収束した。 こ れらの結果から、 健常者サンプルと患者サンプルでは、 以下の大きな相違が認め られた。  On the other hand, the patient sample was clearly different. The correlation function could be analyzed for patient samples assuming that there are large and small particles in the solution, but the percentage of large particles was very small. As a result, for large particles, the relationship between the relaxation time and the scattering angle largely dissipated from the straight line. On the other hand, small particles (fast mode) dominating in patient samples show very clear linearity in relation to relaxation time and scattering angle, with particle radii in the range of 7-8ηιη for all samples. Converged. From these results, the following significant differences were observed between the healthy sample and the patient sample.
1 ) 二種類の粒子が溶液中に存在し、 指数関数的減衰を示すとして相関関数を解 祈した場合、 健常者検体では緩和時間と散乱角度の関係が散逸する傾向にあり、 直線性が非常に悪かった。 この場合小さな粒子の半径は 13-20nm程度と判定された 一方、 患者検体では、 小さな粒子に関して、 緩和時間と散乱角度の関係が極めて 良い直線関係を示し、 粒子半径は 7-8nmに収束した。 この値は IgAタンパク質の単 量体に相当していると思われる。 1) When two types of particles are present in the solution and the correlation function is deduced as exhibiting exponential decay, the relationship between relaxation time and scattering angle tends to dissipate in healthy subjects, The linearity was very poor. In this case, the radius of the small particles was determined to be about 13-20 nm, while in the patient sample, the relationship between the relaxation time and the scattering angle showed a very good linear relationship for the small particles, and the particle radius converged to 7-8 nm. This value seems to correspond to the monomer of IgA protein.
2 ) ファーストモードに相当する粒子径の相違から、 健常者被検体と患者検体と では同一散乱角度における散乱光強度の差が明確に現れた。  2) From the difference in particle size corresponding to the first mode, the difference in the scattered light intensity at the same scattering angle between the healthy subject and the patient sample clearly appeared.
[実施例 3 ] 相対散乱光強度の比較 [Example 3] Comparison of relative scattered light intensity
図 4に散乱角度 90度における健常者、 患者全サンプルの相対散乱光強度を示し た。 健常者の 1番検体の散乱光強度を 1として規格化した図である。 明らかに患者 検体では散乱光強度が小さかった。 健常者との差は 2-50倍に及んだ。 産業上の利用の可能性  Fig. 4 shows the relative scattered light intensities of all healthy subjects and patients at a scattering angle of 90 degrees. FIG. 4 is a diagram in which the scattered light intensity of the first sample of a healthy person is standardized as 1. Obviously, the scattered light intensity was low in the patient sample. The difference from a healthy person was 2 to 50 times. Industrial potential
本発明により光散乱法を用いた腎症の診断方法が提供された。 本方法により、 腎症患者の組識生検を行うことなく、 血液を採取するだけで、 簡便且つ迅速に、 加えて非破壊的に腎症を精密診断することができる。 また、 本発明の診断法によ り、 腎症の進行度検査や、 将来的な腎症発病への危険度判定も可能である。  The present invention provides a method for diagnosing nephropathy using the light scattering method. According to this method, nephropathy can be precisely diagnosed simply and quickly and nondestructively by merely collecting blood without performing a tissue biopsy of a nephropathy patient. In addition, the diagnostic method of the present invention also enables the examination of the degree of nephropathy and the determination of the risk of developing nephropathy in the future.

Claims

請求の範囲 The scope of the claims
1. 以下の工程 (A) 〜 (C) を含む、 腎症の診断方法。 1. A method for diagnosing nephropathy, comprising the following steps (A) to (C).
(A) 被検者由来の検査試料に存在する IgAタンパク質、 または IgAタンパク 質を含む会合体粒子へ照射された入射光の散乱光について、 その絶対 値、 時間変化、 および散乱角度依存性を計測する工程、  (A) Measure the absolute value, time change, and scattering angle dependence of the scattered light of the incident light irradiated on the aggregated particles containing IgA protein or IgA protein present in the test sample derived from the subject Process,
(B) 工程 (A) により計測された値を基に、 下記 (a) 〜 (O のいずれ かの物理量を評価する工程、  (B) a step of evaluating any of the following (a) to (O) based on the value measured in the step (A),
(a) 任意の散乱角度における散乱光強度  (a) Scattered light intensity at any scattering angle
(b) 任意の散乱角度における自己相関関数  (b) Autocorrelation function at any scattering angle
(c) 前記 (a) の解析に基づく分子量、 慣性半径、 フラクタル次元、 または粒子形状  (c) Molecular weight, radius of gyration, fractal dimension, or particle shape based on the analysis in (a) above
(d) 前記 (b) の解析に基づく拡散係数、 および流体力学的半径 (d) Diffusion coefficient and hydrodynamic radius based on the analysis of (b) above
(e) 緩和時間、 および散乱角度 (e) Relaxation time and scattering angle
(f ) 前記 (d) または前記 (e) より算出した拡散係数と流体力学的 半径の IgAタンパク質濃度を関数とした依存性  (f) Dependency of diffusion coefficient and hydrodynamic radius calculated from (d) or (e) as a function of IgA protein concentration
(C) 工程 (B) の物理量を、 健常者の IgAタンパク質の場合と比較する工程 (C) Step of comparing the physical quantity of step (B) with the case of healthy human IgA protein
2. 入射光が偏光もしくは非偏光の通常光、 X線、 放射光、 または中性子であ る、 請求項 1に記載の診断方法。 2. The diagnostic method according to claim 1, wherein the incident light is polarized or unpolarized ordinary light, X-rays, synchrotron radiation, or neutrons.
3. 散乱が動的光散乱または静的光散乱である、 請求項 1に記載の診断方法。3. The diagnostic method according to claim 1, wherein the scattering is dynamic light scattering or static light scattering.
4. 検査試料が血液試料である、 請求項 1〜3のいずれかに記載の診断方法。4. The diagnostic method according to claim 1, wherein the test sample is a blood sample.
5. 腎症が IgA腎症である、 請求項 1〜4のいずれかに記載の診断方法。 5. The diagnostic method according to any one of claims 1 to 4, wherein the nephropathy is IgA nephropathy.
PCT/JP2003/014187 2002-11-08 2003-11-07 Method for quick diagnosis of kidney diseases WO2004042371A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004549632A JPWO2004042371A1 (en) 2002-11-08 2003-11-07 Rapid diagnosis of IgA nephropathy
AU2003277600A AU2003277600A1 (en) 2002-11-08 2003-11-07 Method for quick diagnosis of kidney diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002325198 2002-11-08
JP2002-325198 2002-11-08

Publications (2)

Publication Number Publication Date
WO2004042371A1 WO2004042371A1 (en) 2004-05-21
WO2004042371A2 true WO2004042371A2 (en) 2004-05-21

Family

ID=32310463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014187 WO2004042371A2 (en) 2002-11-08 2003-11-07 Method for quick diagnosis of kidney diseases

Country Status (3)

Country Link
JP (1) JPWO2004042371A1 (en)
AU (1) AU2003277600A1 (en)
WO (1) WO2004042371A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205145A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Dynamic light scattering measuring method and dynamic light scattering measuring device employing low coherence light source
JP2013246127A (en) * 2012-05-29 2013-12-09 Juntendo Iga nephropathy diagnostic method
JP2017129547A (en) * 2016-01-22 2017-07-27 株式会社堀場製作所 Particle analyzing device, particle analyzing method and particle analyzing program
EP2488853B1 (en) * 2009-10-16 2019-10-30 Canadian Blood Services Dual analyzer system for biological fluid
WO2022168554A1 (en) * 2021-02-02 2022-08-11 富士フイルム株式会社 Photometric device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2488853B1 (en) * 2009-10-16 2019-10-30 Canadian Blood Services Dual analyzer system for biological fluid
JP2013205145A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Dynamic light scattering measuring method and dynamic light scattering measuring device employing low coherence light source
JP2013246127A (en) * 2012-05-29 2013-12-09 Juntendo Iga nephropathy diagnostic method
JP2017129547A (en) * 2016-01-22 2017-07-27 株式会社堀場製作所 Particle analyzing device, particle analyzing method and particle analyzing program
US10520431B2 (en) 2016-01-22 2019-12-31 Horiba, Ltd. Particle analyzer, particle analysis method, and particle analysis program
WO2022168554A1 (en) * 2021-02-02 2022-08-11 富士フイルム株式会社 Photometric device

Also Published As

Publication number Publication date
JPWO2004042371A1 (en) 2006-03-16
AU2003277600A1 (en) 2004-06-07
AU2003277600A8 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
JP3195935B2 (en) Plasma analyzer
Tsoumakidou et al. Induced sputum in the investigation of airway inflammation of COPD
Ronchi et al. Do sputum eosinophils and ECP relate to the severity of asthma?
US6423270B1 (en) Flow cytometric characterization of amyloid fibrils
US8163151B2 (en) Assays for detection of Von Willebrand factor (vWF) multimers and for degradation of vWF by agents such as Adamts13 and related methods
Tran et al. Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy & eight-parameter equivalent circuit
WO1991002974A1 (en) Methods and apparatus for quantifying tissue damage
Mattley et al. Light scattering and absorption model for the quantitative interpretation of human blood platelet spectral data
Maltsev et al. Optics of white blood cells: optical models, simulations, and experiments
Bettin et al. Removal of platelets from blood plasma to improve the quality of extracellular vesicle research
Gear Preaggregation reactions of platelets
WO2002004947A2 (en) Spectrophotometric system and method for the identification and characterization of a particle in a bodily fluid
Lima‐Oliveira et al. The impact of fist clenching and its maintenance during venipuncture on routine hematology testing
WO2004042371A2 (en) Method for quick diagnosis of kidney diseases
JP4958272B2 (en) Serum or plasma viscosity measuring method and apparatus based on diffusion coefficient change of Brownian motion of albumin molecule
Beck et al. Hyperviscosity syndrome in paraproteinemia: managed by plasma exchange; monitored by serum tests
WO2012026850A1 (en) Method for the rapid determination of blood atherogenicity
RU2213976C2 (en) Method for evaluating aggregation properties of blood platelets
Manda-Handzlik et al. UriSed—Preliminary reference intervals and optimal method for urine sediment analysis in newborns and infants
Zsóri et al. Preanalytical factors affecting the mean platelet volume: a review
Zhang et al. Establishing reference intervals of aspartate aminotransferase-to-platelet ratio index for apparently healthy elderly
Terajima et al. Evaluation study for reference intervals of urine sediments using UF-1000i in medical checkup population
Miswan et al. An overview: Segmentation method for blood cell disorders
Kowalska-Kępczyńska et al. The application of new immune cell activation markers in the diagnosis of various disease states
Qabulio et al. Diagnostic accuracy of cartilage oligomeric matrix protein (COMP), for cartilage damage in rheumatoid arthritis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004549632

Country of ref document: JP

122 Ep: pct application non-entry in european phase