WO2004041398A2 - Porous inorganic/organic hybrid materials and preparation thereof - Google Patents

Porous inorganic/organic hybrid materials and preparation thereof Download PDF

Info

Publication number
WO2004041398A2
WO2004041398A2 PCT/US2003/034776 US0334776W WO2004041398A2 WO 2004041398 A2 WO2004041398 A2 WO 2004041398A2 US 0334776 W US0334776 W US 0334776W WO 2004041398 A2 WO2004041398 A2 WO 2004041398A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
surface modifier
organic
material according
inorganic
Prior art date
Application number
PCT/US2003/034776
Other languages
French (fr)
Other versions
WO2004041398A3 (en
Inventor
Zhiping Jiang
John E. O'gara
Raymond P. Fisk
Kevin D. Wyndham
Darryl W. Brousmiche
Original Assignee
Waters Investments Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waters Investments Limited filed Critical Waters Investments Limited
Priority to DE10393599T priority Critical patent/DE10393599T5/en
Priority to DE10393599.1A priority patent/DE10393599B4/en
Priority to JP2004550384A priority patent/JP2006504854A/en
Priority to GB0508751A priority patent/GB2414993B/en
Priority to AU2003285121A priority patent/AU2003285121A1/en
Publication of WO2004041398A2 publication Critical patent/WO2004041398A2/en
Publication of WO2004041398A3 publication Critical patent/WO2004041398A3/en
Priority to US11/119,111 priority patent/US20050230298A1/en
Priority to US12/433,221 priority patent/US8791220B2/en
Priority to US14/206,538 priority patent/US9211524B2/en
Priority to US14/967,647 priority patent/US9976008B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • C08F230/085Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/35Composite foams, i.e. continuous macromolecular foams containing discontinuous cellular particles or fragments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • Packing materials for liquid chromatography are generally classified into two types: organic materials, e.g., polydivinylbenzene, and inorganic materials, e.g., silica.
  • silica-based materials result in columns that do not show evidence of shrinking or swelling and are mechanically strong.
  • limited hydrolytic stability is a drawback with silica-based columns, because silica may be readily dissolved under alkaline conditions, generally pH>8.0, leading to the subsequent collapse of the chromatographic bed.
  • the bonded phase on a silica surface may be removed from the surface under acidic conditions, generally pH ⁇ 2.0, and eluted off the column by the mobile phase, causing loss of analyte retention.
  • organic materials are chemically stable against strongly alkaline and strongly acidic mobile phases, allowing flexibility in the choice of mobile phase pH.
  • organic chromatographic materials generally result in columns with low efficiency, leading to inadequate separation performance, particularly with low molecular- weight analytes.
  • organic chromatographic materials shrink and swell when the composition of the mobile phase is changed.
  • most organic chromatographic materials do not have the mechanical strength of typical chromatographic silica.
  • porous monolithic materials that which have a useful capacity as a separation material.
  • irregularly-shaped particles are generally more difficult to pack than spherical particles.
  • columns packed with irregularly-shaped particles generally exhibit poorer packed bed stability than spherical particles of the same size.
  • the template agents used in the synthesis of these materials are nonsurfactant optically active compounds, and the use of such compounds limits the range of porogen choices and increases their cost. The properties of these materials make them undesirable for use as LC packing materials.
  • the present invention provides a solution to the above-mentioned deficiencies.
  • the present invention relates to a novel material for chromatographic separations, processes for its preparation, and separations devices containing the chromatographic material.
  • the invention pertains to a porous inorganic/organic homogenous copolymeric hybrid material having at least about 10% carbon content by mass.
  • the invention relates to a porous inorganic/organic homogenous copolymeric hybrid material of spherical particles.
  • the invention relates to a porous inorganic/organic homogenous copolymeric hybrid monolith material.
  • the present invention provides porous inorganic/organic homogenous copolymeric hybrid materials of the formula:
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond;
  • B is an organosiloxane repeat unit which is bonded to one or more repeat units B or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
  • porous inorganic/organic homogenous copolymeric hybrid materials provided by the present invention include those materials of the formula:
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond;
  • B is an organosiloxane repeat unit which is bonded to one or more repeat units B, B* or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
  • B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization;
  • one aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material (either a monolith or particles) of the formula:
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin);
  • B is an organosiloxane repeat unit which is bonded to one or more repeat units B or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
  • C is an inorganic repeat unit which is bonded to one or more repeat units B or C via an inorganic bond; and 0.0003 ⁇ y/z ⁇ 500 and 0.002 ⁇ x/(y+z) ⁇ 210.
  • one skilled in the art will appreciate that such materials may have unreacted end groups, e.g., SiOH, Si(OH)2, or Si(OH)3, or unpolymerized olefins.
  • the present invention relates to a novel material for chromatographic separations, processes for its preparation, and separations devices containing the chromatographic material.
  • one aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the fonnula:
  • Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization.
  • a monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
  • Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization.
  • B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photo
  • Repeat unit C may be -Si ⁇ 2- and may be derived from an alkoxysilane, such as tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS).
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin);
  • B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond; and 0.002 ⁇ x/y ⁇ 210.
  • Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization.
  • a monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
  • Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization.
  • B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
  • Another aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin);
  • B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B or B* via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
  • B* is an organosiloxane repeat unit that does not have reactive (t.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization.
  • Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization.
  • a monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
  • Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization.
  • B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
  • the present invention pertains to a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
  • R is H, F, Cl, Br, I, lower alkyl (e.g., CH3 or CH2CH3);
  • R2 and R3 are each independently H, F, Cl, Br, I, alkane, substituted alkane, alkene, substituted alkene, aryl, substituted aryl, cyano, ether, substituted ether, embedded polar group;
  • the invention also relates to porous inorganic/organic homogenous copolymeric hybrid materials prepared, e.g., by the steps of copolymerizing an organic olefin monomer with an alkenyl-functionalized organosiloxane, and hydrolytic condensation of the product of the other step with a tetraalkoxysilane.
  • the copolymerizing and condensation steps may be performed substantially simultaneously or sequentially.
  • the material of the invention may be used as a liquid chromatography stationary phase; a sequestering reagent; a solid support for combinatorial chemistry; a solid support for oligosaccharide, polypeptide, or oligonucleotide synthesis; a solid support for a biological assay; a capillary biological assay device for mass spectrometry; a template for a controlled large pore polymer film; a capillary chromatography stationary phase; an electrokinetic pump packing material; a polymer additive; a catalyst; or a packing material for a microchip separation device.
  • monolith is intended to include a porous, three-dimensional material having a continuous interconnected pore structure in a single piece.
  • a monolith is prepared, for example, by casting precursors into a mold of a desired shape.
  • the term monolith is meant to be distinguished from a collection of individual particles packed into a bed formation, in which the end product comprises individual particles.
  • Such monolith materials are described in detail in international patent application number PCT/US02/25193 (attorney docket number WCZ-025CPPC), filed August 8, 2002, and U.S. provisional patent application number 60/311,445 (attorney docket number WCZ-025-1), filed August 9, 2001, both of which are incorporated herein by reference.
  • coalescing and “coalesced” are intended to describe a material in which several individual components have become coherent to result in one new component by an appropriate chemical or physical process, e.g., heating.
  • the term coalesced is meant to be distinguished from a collection of individual particles in close physical proximity, e.g., in a bed formation, in which the end product comprises individual particles.
  • porous inorganic/organic homogenous copolymeric hybrid material or “porous inorganic/organic homogenous copolymeric hybrid monolith material” includes materials comprising inorganic repeat units (e.g., comprising O-Si-O bonds between repeat units), organic repeat units (e.g., comprising C-C bonds between repeat units), and mixed organic-inorganic repeat units (e.g. , comprising both C-C and O-Si-O bonds between repeat units).
  • the term “porous” indicates that the microscopic structure of the material contains pores of a measurable volume, so that the materials can be used, for example, as solid supports in chromatography.
  • inorganic/organic copolymeric hybrid indicates that the material comprises a copolymer of organic, inorganic, and mixed organic/inorganic repeat units.
  • homogenous indicates that the structure of the material at the chemical level is substantially interconnected via chemical bonds, as opposed to the prior art materials that simply comprise mixtures of discrete organic and inorganic materials.
  • hybrid refers to a material having chemical bonds among inorganic and organic repeat units of a composite material thereby forming a matrix throughout the material itself, as opposed to a mixture of discrete chemical compounds.
  • POS Polyorganoalkoxysiloxane
  • PAS polyalkylalkoxysiloxane
  • protecting group means a protected functional group which may be intended to include chemical moieties that shield a functional group from chemical reaction or interaction such that upon later removal ("deprotection") of the protecting group, the functional group can be revealed and subjected to further chemistry.
  • a monomer used in the synthesis of the materials of the present invention may contain The term also includes a functional group which that does not interfere with the various polymerization and condensation reactions used in the synthesis of the materials of the invention, but which that may be converted after synthesis of the material into a functional group whichthat may itself be further derivatized.
  • an organic monomer reagent A may contain an aromatic nitro group which that would not interfere with the polymerization or condensation reactions. However, after these polymerization and condensation reactions have been carried out, the nitro group may be reduced to an amino group (e.g., an aniline), which itself may then be subjected to further derivatization by a variety of means known in the art.
  • the porous inorganic/organic homogenous copolymeric hybrid particles and monolith materials possess both organic groups and silanol groups which may additionally be substituted or derivatized with a surface modifier.
  • Surface modifiers include (typically) organic groups which impart a certain chromatographic functionality to a chromatographic stationary phase. Surface modifiers such as disclosed herein are attached to the base material, e.g., via derivatization or coating and later crosslinking, imparting the chemical character of the surface modifier to the base material.
  • the organic groups of the hybrid materials react to form an organic covalent bond with a surface modifier.
  • the modifiers may fo ⁇ n an organic covalent bond to the material's organic group via a number of mechanisms well known in organic and polymer chemistry including, but not limited to, nucleophilic, electrophilic, cycloaddition, free-radical, carbene, nitrene, and carbocation reactions.
  • Organic covalent bonds are defined to involve the formation of a covalent bond between the common elements of organic chemistry including, but not limited to, hydrogen, boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, and the halogens.
  • carbon-silicon and carbon-oxygen-silicon bonds are defined as organic covalent bonds, whereas silicon-oxygen-silicon bonds that are not defined as organic covalent bonds.
  • porous inorganic/organic homogenous copolymeric hybrid particles and monolith materials may be modified by an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations of the aforementioned surface modifiers.
  • R' may be, e.g., methyl, ethyl, propyl, isopropyl, butyl, t-butyl, sec-butyl, pentyl, isopentyl, hexyl or cyclohexyl; preferably, R' is methyl.
  • the organic groups may be similarly functionalized.
  • the functionalizing group R may include alkyl, aryl, cyano, amino, diol, nitro, cation or anion exchange groups, or embedded polar functionalities.
  • suitable R functionalizing groups include C r C 30 alkyl, including C C 20 , such as octyl (C 8 ), octadecyl (Cis), and triacontyl (C 30 ); alkaryl, e.g., C r C - ⁇ henyl; cyanoalkyl groups, e.g., cyanopropyl; diol groups, e.g., propyldiol; amino groups, e.g., aminopropyl; and alkyl or aryl groups with embedded polar functionalities, e.g., carbamate functionalities such as disclosed inU. S. Patent No. 5,374,755, the text of which is incorporated herein by reference.
  • Such groups include those of the general formula
  • R 3 is selected from the group consisting of hydrogen, alkyl, cyano and phenyl; and Z, R', a and b are defined as above.
  • the carbamate functionality has the general structure indicated below:
  • R 5 may be, e.g., cyanoalkyl, t-butyl, butyl, octyl, dodecyl, tetradecyl, octadecyl, or benzyl.
  • R 5 is octyl, dodecyl, or octadecyl.
  • the surface modifier may be an organotrihalosilane, such as octyltrichlorosilane or octadecyltrichlorosilane.
  • the surface modifier may be a halopolyorganosilane, such as octyldimethylchlorosilane or octadecyldimethylchlorosilane.
  • the surface modifier is octadecyltrimethoxysilane or octadecyltrichlorosilane.
  • the hybrid material's organic groups and silanol groups are both surface modified or derivatized.
  • the hybrid materials are surface modified by coating with a polymer.
  • aliphatic group includes organic compounds characterized by straight or branched chains, typically having between 1 and 22 carbon atoms. Aliphatic groups include alkyl groups, alkenyl groups and alkynyl groups. In complex structures, the chains may be branched or cross-linked. Alkyl groups include saturated hydrocarbons having one or more carbon atoms, including straight-chain alkyl groups and branched-chain alkyl groups. Such hydrocarbon moieties may be substituted on one or more carbons with, for example, a halogen, a hydroxyl, a thiol, an amino, an alkoxy, an alkylcarboxy, an alkylthio, or a nitro group.
  • lower aliphatic as used herein means an aliphatic group, as defined above (e.g., lower alkyl, lower alkenyl, lower alkynyl), but having from one to six carbon atoms.
  • Representative of such lower aliphatic groups, e.g., lower alkyl groups are methyl, ethyl, n-propyl, isopropyl, 2-chloropropyl, n-butyl, sec-butyl, 2-aminobutyl, isobutyl, tert-butyl, 3-thiopentyl, and the like.
  • alkylamino means an alkyl group, as defined above, having an amino group attached thereto. Suitable alkylamino groups include groups having 1 to about 12 carbon atoms, preferably from 1 to about 6 carbon atoms.
  • alkylthio refers to an alkyl group, as defined above, having a sulfhydryl group attached thereto.
  • Suitable alkylthio groups include groups having 1 to about 12 carbon atoms, preferably from 1 to about 6 carbon atoms.
  • alkylcarboxyl as used herein means an alkyl group, as defined above, having a carboxyl group attached thereto.
  • alkoxy as used herein means an alkyl group, as defined above, having an oxygen atom attached thereto.
  • Representative alkoxy groups include groups having 1 to about 12 carbon atoms, preferably 1 to about 6 carbon atoms, e.g., methoxy, ethoxy, propoxy, tert-butoxy and the like.
  • alkenyl and alkynyl refer to unsaturated aliphatic groups analogous to alkyls, but which contain at least one double or triple bond respectively. Suitable alkenyl and alkynyl groups include groups having 2 to about 12 carbon atoms, preferably from 1 to about 6 carbon atoms.
  • alicyclic group includes closed ring structures of three or more carbon atoms.
  • Alicyclic groups include cycloparaffins or naphthenes which are saturated cyclic hydrocarbons, cycloolefms which are unsaturated with two or more double bonds, and cycloacetylenes which have a triple bond. They do not include aromatic groups.
  • Examples of cycloparaffins include cyclopropane, cyclohexane, and cyclopentane.
  • cycloolefms include cyclopentadiene and cyclooctatetraene.
  • Alicyclic groups also include fused ring structures and substituted alicyclic groups such as alkyl substituted alicyclic groups.
  • such substituents may further comprise a lower alkyl, a lower alkenyl, a lower alkoxy, a lower alkylthio, a lower alkylamino, a lower alkylcarboxyl, a nitro, a hydroxyl, -CF 3 , -CN, or the like.
  • heterocyclic group includes closed ring structures in which one or more of the atoms in the ring is an element other than carbon, for example, nitrogen, sulfur, or oxygen.
  • Heterocyclic groups may be saturated or unsaturated and heterocyclic groups such as pyrrole and furan may have aromatic character. They include fused ring structures such as quinoline and isoquinoline. Other examples of heterocyclic groups include pyridine and purine.
  • Heterocyclic groups may also be substituted at one or more constituent atoms with, for example, a halogen, a lower alkyl, a lower alkenyl, a lower alkoxy, a lower alkylthio, a lower alkylamino, a lower alkylcarboxyl, a nitro, a hydroxyl, -CF 3 , -CN, or the like.
  • Suitable heteroaromatic and heteroalicyclic groups generally will have 1 to 3 separate or fused rings with 3 to about 8 members per ring and one or more N, O or S atoms, e.g., coumarinyl, quinolinyl, pyridyl, pyrazinyl, pyrimidyl, furyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, indolyl, benzofuranyl, benzothiazolyl, tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, morpholino and pyrrolidinyl.
  • N, O or S atoms e.g., coumarinyl, quinolinyl, pyridyl, pyrazinyl, pyrimidyl, furyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imi
  • aromatic group includes unsaturated cyclic hydrocarbons containing one or more rings.
  • Aromatic groups include 5- and 6-membered single-ring groups which may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like.
  • the aromatic ring may be substituted at one or more ring positions with, for example, a halogen, a lower alkyl, a lower alkenyl, a lower alkoxy, a lower alkylthio, a lower alkylamino, a lower alkylcarboxyl, a nitro, a hydroxyl, -CF 3 , -CN, or the like.
  • alkyl includes saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups.
  • a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone, e.g., C C 3 o for straight chain or C 3 -C 30 for branched chain.
  • a straight chain or branched chain alkyl has 20 or fewer carbon atoms in its backbone, e.g., - o for straight chain or C 3 -C 20 for branched chain, and more preferably 18 or fewer.
  • preferred cycloalkyls have from 4-10 carbon atoms in their ring structure, and more preferably have 4- 7 carbon atoms in the ring structure.
  • lower alkyl refers to alkyl groups having from 1 to 6 carbons in the chain, and to cycloalkyls having from 3 to 6 carbons in the ring structure.
  • alkyl (including “lower alkyl) as used throughout the specification and claims includes both “unsubstituted alkyls” and “substituted alkyls,” the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents may include, for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, aryla ino, diarylamino, and alkylarylamino), acylamino
  • Cycloalkyls may be further substituted, e.g., with the substituents described above.
  • An "aralkyl” moiety is an alkyl substituted with an aryl, e.g., having 1 to 3 separate or fused rings and from 6 to about 18 carbon ring atoms, e.g., phenylmethyl (benzyl).
  • aryl includes 5- and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, unsubstituted or substituted benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like.
  • Aryl groups also include polycyclic fused aromatic groups such as naphthyl, quinolyl, indolyl, and the like. The aromatic ring may be substituted at one or more ring positions with such substituents, e.g., as described above for alkyl groups.
  • Suitable aryl groups include unsubstituted and substituted phenyl groups.
  • aryloxy as used herein means an aryl group, as defined above, having an oxygen atom attached thereto.
  • aralkoxy as used herein means an aralkyl group, as defined above, having an oxygen atom attached thereto. Suitable aralkoxy groups have 1 to 3 separate or fused rings and from 6 to about 18 carbon ring atoms, e.g., O-benzyl.
  • amino refers to an unsubstituted or substituted moiety of the formula -NR a R b , in which Rj, and R b are each independently hydrogen, alkyl, aryl, or heterocyclyl, or R a and R b , taken together with the nitrogen atom to which they are attached, form a cyclic moiety having from 3 to 8 atoms in the ring.
  • amino includes cyclic amino moieties such as piperidinyl or pyrrolidinyl groups, unless otherwise stated.
  • amino-substituted amino group refers to an amino group in which at least one of R a and R b , is further substituted with an amino group.
  • Porous inorganic/organic homogenous copolymeric hybrid material of the invention may be made as described below and in the specific instances illustrated in the Examples.
  • Porous spherical particles of hybrid silica may, in one embodiment, be prepared by the steps of (a) hydrolytically condensing an alkenyl-functionalized organosilane with a tetraalkoxysilane, (b) copolymerizing the product of step (a) with an organic olefin monomer, and (c) further hydrolytically condensing the product of step (b) to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
  • steps (b) and (c) may be performed substantially simultaneously. Steps (a) and (b) may be performed in the same reaction vessel.
  • the materials of the invention may be prepared by the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosilane, and (b) hydrolytically condensing the product of step (a) with a tetraalkoxysilane in the presence of a non-optically active porogen to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material. Steps (a) and (b) may be performed in the same reaction vessel.
  • the materials may be prepared by the steps of substantially simultaneously copolymerizing an organic monomer with an alkenyl-functionalized organosilane and hydrolytically condensing said alkenyl-functionalized organosilane with a tetraalkoxysilane to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
  • the copolymerizing step of the foregoing methods may be free radical-initiated and the hydrolytically condensing step of the foregoing methods may by acid- or base-catalyzed.
  • the acid may be, e.g., hydrochloric acid, hydrobromic acid, hydrofluoric acid, hydroiodic acid, sulfuric acid, formic acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, or phosphoric acid.
  • the base in the case of base catalysis, may be ammonium hydroxide, hydroxide salts of the group I and group II metals, carbonate and hydrogencarbonate salts of the group I metals, or alkoxide salts of the group I and group II metals.
  • a free radical polymerization initiator may be added.
  • free radical polymerization initiator examples include 2,2'-azobis-[2-(imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobisisobutyronitrile, 4,4'- azobis(4-cyanovaleric acid), l,l'-azobis(cyclohexanecarbonitrile), 2,2'-azobis(2- propionamidine) dihydrochloride, 2,2'azobis(2,4-dimethylpentanenitrile), 2,2'-azobis(2- methylbutanenitrile), benzoyl peroxide, 2,2-bis(tert-butylperoxy)butane, l,l-bis(tert- butylperoxy)cyclohexane, 2,5-bis(tert-butylperoxy)butane,-2,5-dimethylhexane, 2,5-bis(tert-butylperoxy)-2,5-dimethyl-hexyne, bis(l)
  • the solvent used in the synthesis of the materials of the invention may be, e.g, water, methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, hexanol, cyclohexanol, hexafluoroisopropanol, cyclohexane, petroleum ethers, diethyl ether, dialkyl ethers, tetrahydrofuran, acetonitrile, ethyl acetate, pentane, hexane, heptane, benzene, toluene, xylene, N,N-dimethylformamide, dimethyl sulfoxide, l-methyl-2-pyrrolidinone, methylene chloride, chloroform, and combinations thereof, although those skilled in the art will readily appreciate that others may be used.
  • porogen In the synthesis of the materials of the invention, a porogen may be used.
  • suitable porogens include cyclohexanol, toluene, 2-ethylhexanoic acid, dibutylphthalate, 1- methyl-2-pyrrolidinone, 1-dodecanol, and Triton X-45.
  • organic olefin monomers of the invention include divinylbenzene, styrene, ethylene glycol dimethacrylate, l-vinyl-2-pyrrolidinone and tert-butylmethacrylate, acrylamide, methacrylamide, N,N'-(l,2-dihydroxyethylene)bisacrylamide, NN'- ethylenebisacrylamide, NN'-methylenebisacrylamide, butyl acrylate, ethyl acrylate, methyl acrylate, 2-(acryloxy)-2-hydroxypropyl methacrylate , 3-(acryloxy)-2-hydroxypropyl methacrylate, trimethylolpropane triacrylate, trimethylolpropane ethoxylate triacrylate, tris[(2-acryloyloxy)ethyl] isocyanurate, acrylonitrile, methacrylonitrile, itaconic acid, methacrylic acid, trimethylsilylmethacrylate, ⁇ -[
  • alkenyl-functionalized organosiloxane monomers include methacryloxypropyllximethoxysilane, methacryloxypropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, N-(3-acryloxy-2-hydroxypropyl)-3- aminopropyltriethoxysilane, (3 -acryloxypropyl)trimethoxysilane, O-(methacryloxyethyl)-N- (triethoxysilylpropyl)urethane, N-(3-methacryloxy-2-hydroxypropyl)-3- aminopropyltriethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropyltris(methoxyethoxy)silane,
  • each R is independently H or a C1-C10 alkyl group (preferably hydrogen, methyl, ethyl, or propyl) and wherein R' is independently H or a C1-C10 alkyl group (preferably hydrogen or methyl, ethyl, or propyl).
  • the R groups may be identical and selected from the group consisting of hydrogen, methyl, ethyl, or propyl.
  • tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane .
  • the methods of the invention may also comprise adding a surfactant or stabilizer.
  • Suitable examples of surfactants include Triton X-45, sodium dodecylsulfate, tris(hydroxymethyl)aminomethane, and any combination thereof. Still other examples of surfactants include Triton X100, Triton X305, TLS, Pluronic F-87, Pluronic P-105, Pluronic P-123, sodium dodecylsulfate (SDS), and Triton X-405. Examples of stabilizers include methocel and poly(vinyl alcohol).
  • the method of the invention may also include a step of endcapping free silanol groups according to methods which are readily known in the art.
  • the methods of the invention may also include a step of chemically modifying the organic olefin or alkenyl-functionalized organisiloxane prior to copolymerization. Additionally, the methods of the invention may also include a step of modifying surfaces of the hybrid particles by formation of an organic covalent bond between an organic group of the particle and a surface modifier. In this regard, the method may include a further step of by adding a surface modifier selected from the group consisting of an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations thereof, such as Z a (R') b Si-R, as described herein above. Likewise, the surface modifier may be a polymer coating, such as Sylgard®.
  • reagents include octyltrichlorosilane, octadecyltrichlorosilane, octyldimethylchlorosilane, and octadecyldimethylchlorosilane .
  • the surface organic groups of the hybrid silica are derivatized or modified in a subsequent step via formation of an organic covalent bond between the particle's organic group and the modifying reagent.
  • the surface silanol groups of the hybrid silica are derivatized into siloxane organic groups, such as by reacting with an organotrihalosilane, e.g., octadecyltrichlorosilane, or a halopolyorganosilane, e.g., octadecyldimethylchlorosilane.
  • an organotrihalosilane e.g., octadecyltrichlorosilane
  • a halopolyorganosilane e.g., octadecyldimethylchlorosilane.
  • the surface organic and silanol groups of the hybrid silica are both derivatized. The surface of the thus-prepared material is then covered by the organic groups, e.g., alkyl, embedded during the gelation and the organic groups added during the derivatization process or processes.
  • the pore structure of the as-prepared hybrid material is modified by hydrothermal treatment, which enlarges the openings of the pores as well as the pore diameters, as confirmed by nitrogen (N 2 ) sorption analysis.
  • the hydrothermal treatment is performed by preparing a slurry containing the as-prepared hybrid material and a solution of organic base in water, heating the slurry in an autoclave at an elevated temperature, e.g., about 143 to 168°C, for a period of about 6 to 28 h.
  • the pH of the slurry can be adjusted to be in the range of about 8.0 to 12.7 using tetraethylammonium hydroxide (TEAH) or TRIS and concentrated acetic acid.
  • TEAH tetraethylammonium hydroxide
  • TRIS concentrated acetic acid
  • the concentration of the slurry is in the range of about lg hybrid material per 5 to 10 mL of the base solution.
  • the thus-treated hybrid material is filtered, and washed with water until the pH of the filtrate reaches about 7, washed with acetone or methanol, then dried at about 100°C under reduced pressure for about 16 h.
  • the resultant hybrid materials show average pore diameters in the range of about 100-300 A.
  • the surface of the hydrothermally treated hybrid material may be modified in a similar fashion to that of the hybrid material that is not modified by hydrothermal treatment as described in the present invention.
  • the surface of the hydrothermally treated hybrid silica contains organic groups, which can be derivatized by reacting with a reagent that is reactive towards the hybrid materials' organic group.
  • a reagent that is reactive towards the hybrid materials' organic group For example, vinyl groups on the material can be reacted with a variety of olefin reactive reagents such as bromine (Br 2 ), hydrogen (H 2 ), free radicals, propagating polymer radical centers, dienes, and the like.
  • hydroxyl groups on the material can be reacted with a variety of alcohol reactive reagents such as isocyanates, carboxylic acids, carboxylic acid chlorides, and reactive organosilanes as described below. Reactions of this type are well known in the literature, see, e.g., March, J. "Advanced Organic Chemistry," 3 rd Edition, Wiley, New York, 1985; Odian, G. " The Principles of Polymerization,” 2" Edition, Wiley, New York, 1981; the texts of which
  • the surface of the hydrothermally treated hybrid silica also contains silanol groups, which can be derivatized by reacting with a reactive organosilane.
  • the surface derivatization of the hybrid silica is conducted according to standard methods, for example by reaction with octadecyltrichlorosilane or octadecyldimethylchlorosilane in an organic solvent under reflux conditions.
  • An organic solvent such as toluene is typically used for this reaction.
  • An organic base such as pyridine or imidazole is added to the reaction mixture to catalyze the reaction.
  • the product of this reaction is then washed with water, toluene and acetone and dried at about 80°C to 100°C under reduced pressure for about 16 h.
  • the resultant hybrid silica can be further reacted with a short-chain silane such as trimethylchlorosilane to endcap the remaining silanol groups, by using a similar procedure described above.
  • the surface of the hybrid silica materials may be surface modified with a surface modifier, e.g., Z a (R') b Si-R, as described herein above.
  • a surface modifier e.g., Z a (R') b Si-R, as described herein above.
  • the functionalizing group R may include alkyl, alkenyl, alkynyl, aryl, cyano, amino, diol, nitro, cation or anion exchange groups, or alkyl or aryl groups with embedded polar functionalities.
  • R functionalizing groups include C ⁇ -C 3 o alkyl, including C ⁇ -C 20 , such as octyl (C 8 ), octadecyl (C ⁇ 8 ), and triacontyl (C 30 ); alkaryl, e.g., C r C 4 - phenyl; cyanoalkyl groups, e.g., cyanopropyl; diol groups, e.g., propyldiol; amino groups, e.g., aminopropyl; and alkyl or aryl groups with embedded polar functionalities, e.g., carbamate functionalities such as disclosed in U. S. Patent No.
  • the surface modifier may be an organotrihalosilane, such as octyltrichlorosilane or octadecyltrichlorosilane.
  • the surface modifier may be a halopolyorganosilane, such as octyldimethylchlorosilane or octadecyldimethylchlorosilane.
  • R is octyl or octadecyl.
  • the surface of the hybrid silica materials may also be surface modified by coating with a polymer.
  • Polymer coatings are known in the literature and may be provided generally by polymerization or polycondensation of physisorbed monomers onto the surface without chemical bonding of the polymer layer to the support (type I), polymerization or polycondensation of physisorbed monomers onto the surface with chemical bonding of the polymer layer to the support (type II), immobilization of physisorbed prepolymers to the support (type III), and chemisorption of presynthesized polymers onto the surface of the support (type IN). See, e.g., Hanson et al.,J. Chromat.
  • porogen refers to a pore forming material, that is a chemical material dispersed in a material as it is formed that is subsequently removed to yield pores or voids in the material.
  • end capping a chemical reaction step in which a resin that has already been synthesized, but that may have residual unreacted groups (e.g., silanol groups in the case of a silicon-based inorganic resin) are passivated by reaction with a suitable reagent.
  • a suitable reagent such as hexamethyldisilazane.
  • a stabilizer describes reagents which inhibit the coalescence of droplets of organic monomer and POS or PAS polymers in an aqueous continuous phase. These can include but are not limited to finely divided insoluble organic or inorganic materials, electrolytes, and water-soluble polymers.
  • Typical stabilizers are methyl celluloses, gelatins, polyvinyl alcohols, salts of poly(methacrylic acid), and surfactants.
  • Surfactants also referred to as emulsif ⁇ ers or soaps
  • the instant invention relates to a porous inorganic/organic homogenous copolymeric hybrid material having at least about 10% carbon content by mass.
  • the materials of the invention are porous inorganic/organic homogenous copolymeric hybrid particles, particularly spherical particles.
  • the carbon content of the material may be from about 15% to about 90% carbon content by mass, from about 25% to about 75% carbon content by mass, from about 30% to about 45% carbon content by mass, from about 31% to about 40% carbon content by mass, from about 32% to about 40% carbon content by mass, or from about 33% to about 40% carbon content by mass.
  • the materials of the invention are in the form of particles, they have an average diameter of about 0.1 ⁇ m to about 30 to 60 ⁇ m, or about 2.0 ⁇ m to about 15 ⁇ m.
  • the particulate materials of the invention also have a large specific surface area, e.g., about 50-800 m 2 /g or 400-700 m ⁇ /g.
  • the materials of the invention also have defined pore volumes that may be engineered by choosing an appropriate porogen during synthesis (vide supra).
  • the materials of the invention may have specific pore volumes of about 0.25 to 2.5 crrH/g, about 0.4 to 2.0 cm-Vg, or 0.5 to 1.3 cm ⁇ /g.
  • the pore diameters of the material of the invention may be controlled during synthesis (vide supra).
  • the materials of the invention may have an average pore diameter of about 20 to 300 A, about 50 to 200 A, or about 75 to 125 A.
  • the materials of the invention are stable over a broad pH range.
  • the material may be hydrolytically stable at a pH of about 1 to about 13, about 4 to about 11, about 4 to about 10, about 5 to about 9, or about 6 to about 8.
  • an advantageous feature of the materials of the invention is their reduced swelling upon solvation with organic solvents than conventional organic LC resins. Therefore, in one embodiment, the material swells by less than about 25% (or 15% or 10% or even 5%) by volume upon solvation with an organic solvent, such as acetonitrile, methanol, ethers (such as diethyl ether), tetrahydrofuran, dichloromethane, chloroform, hexane, heptane, cyclohexane, ethyl acetate, benzene, or toluene.
  • an organic solvent such as acetonitrile, methanol, ethers (such as diethyl ether), tetrahydrofuran, dichloromethane, chloroform, hexane, heptane, cyclohexane, ethyl acetate, benzene, or toluene.
  • the materials of the invention may be surface modified by formation of an organic covalent chemical bond between an inorganic or organic group of the material and a surface modifier.
  • the surface modifier may be an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, or combinations thereof.
  • the surface modifier may have the formula Z a (R')bSi-R, as described herein above.
  • the surface modifier may be a polymer coating, such as Sylgard®.
  • the surface modifier may be octyltrichlorosilane, octadecyltrichlorosilane, octyldimethylchlorosilane, or octadecyldimethylchlorosilane.
  • the surface modifier is a combination of an organic group surface modifier and a silanol group surface modifier; a combination of an organic group surface modifier and a polymeric coating surface modifier; a combination of a silanol group surface modifier and a polymeric coating surface modifier; or a combination of an organic group surface modifier, a silanol group surface modifier, and a polymeric coating surface modifier.
  • the surface modifier may also be a silanol group surface modifier.
  • the invention also pertains to porous inorganic/organic homogenous copolymeric hybrid monolith materials.
  • the monoliths comprise coalesced porous inorganic/organic homogenous copolymeric hybrid particles having at least about 10% carbon content by mass, about 15% to about 90% carbon content by mass, about 25% to about 75% carbon content by mass, about 30% to about 45% carbon content by mass, about 31% to about 40% carbon content by mass, about 32% to about 40% carbon content by mass, about 30% to about 45% carbon content by mass, about 15 to about 35% carbon content by mass, or about 15 to about 20% carbon content by mass.
  • the inorganic portion of the hybrid monolith materials of the invention may be alumina, silica, titanium oxide, zirconium oxide, or ceramic materials.
  • the invention relates to aporous inorganic/organic homogenous copolymeric hybrid material of the formula:
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond
  • B is an organosiloxane repeat unit which is bonded to one or more repeat units B or C via an inorganic siloxane bond and which may be further 10 bonded to one or more repeat units A or B via an organic bond
  • C is an inorganic repeat unit which is bonded to one or more repeat units B or C via an inorganic bond
  • the relative values of x, y, and z may also be 0.003 ⁇ y/z ⁇ 50 and 0.02 ⁇ x/(y+z) ⁇ 21 or 0.03 ⁇ y/z ⁇ 5 and 0.2 ⁇ x/(y+z) ⁇ 2.1.
  • the invention relates to a porous inorganic/organic homogenous 15 copolymeric hybrid material of the formula:
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond
  • B is an organosiloxane repeat unit which is bonded 0 to one or more repeat units B or B* or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond
  • B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization
  • C is an inorganic repeat unit which is bonded to one or more repeat units B
  • Another aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
  • repeat units A and B may be random, block, or a combination of random and block;
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefm);
  • B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefm);
  • B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic
  • Another aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
  • A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin);
  • B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
  • B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) components and has a protected functional group that may be deprotected after polymerization, but added as a third repeat unit.
  • the relative stoichiometry of the A to (B+B*) components is the same as above, e.g., 0.002 ⁇ x/(y+y*) ⁇
  • Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization.
  • a monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
  • A may also be one of the following:
  • each R is independently H or a Cj-Ci o alkyl group (e.g, methyl, ethyl, or propyl); m is an integer of from 1 to about 20; n is an integer of from 0 to 10; and Q is hydrogen, N(C ⁇ - 6 alkyl) 3 , N(C ⁇ - 6 alkyl) 2 (C ⁇ - 6 alkylene-SO 3 ), or C(C ⁇ - 6 - ⁇ ydroxyalkyl) .
  • m is an integer of from 1 to about 20
  • n is an integer of from 0 to 10
  • Q is hydrogen, N(C ⁇ - 6 alkyl) 3 , N(C ⁇ - 6 alkyl) 2 (C ⁇ - 6 alkylene-SO 3 ), or C(C ⁇ - 6 - ⁇ ydroxyalkyl) .
  • Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization.
  • B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
  • B may also be one of the following:
  • Repeat unit C may be -Si ⁇ 2- and may be derived from an alkoxysilane, such as tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS).
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • A is a substituted ethylene group
  • B is a oxysilyl-substituted alkylene group
  • C is a oxysilyl group, for example the following:
  • the invention also relates to materials made by the novel methods of the present invention.
  • the invention pertains to a porous inorganic/organic homogenous copolymeric hybrid material prepared by the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosiloxane, and (b) hydrolytic condensation of the product of step (a) with a tetraalkoxysilane.
  • the invention pertains to a porous inorganic/organic copolymeric hybrid material prepared by the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosiloxane, and (b) hydrolytic condensation of the product of step (a) with a tetraalkoxysilane, said material having at least 15% carbon content by mass.
  • the materials of the invention may be used as a liquid chromatography stationary phase; a sequestering reagent; a solid support for combinatorial chemistry; a solid support for oligosaccharide, polypeptide, or oligonucleotide synthesis; a solid support for a biological assay; a capillary biological assay device for mass spectrometry; a template for a controlled large pore polymer film; a capillary chromatography stationary phase; an electrokinetic pump packing material; a polymer additive; a catalyst; or a packing material for a microchip separation device.
  • the materials of the invention are particularly suitable for use as a HPLC stationary phase or, in general, as a stationary phase in a separations device, such as chromatographic columns, thin layer plates, filtration membranes, sample cleanup devices, and microtiter plates.
  • the porous inorganic/organic homogenous copolymeric hybrid particles have a wide variety of end uses in the separation sciences, such as packing materials for chromatographic columns (wherein such columns may have improved stability to alkaline mobile phases and reduced peak tailing for basic analytes), thin layer chromatographic (TLC) plates, filtration membranes, microtiter plates, scavenger resins, solid phase organic synthesis supports (e.g., in automated peptide or oligonucleotide synthesizers), and the like having a stationary phase which includes porous inorganic/organic homogenous copolymeric hybrid particles.
  • the stationary phase may be introduced by packing, coating, impregnation, etc., depending on the requirements of the particular device.
  • the chromatographic device is a packed chromatographic column, such as commonly used in HPLC.
  • the present invention may be further illustrated by the following non-limiting examples describing the preparation of porous inorganic/organic hybrid materials, and their use.
  • One or more organoalkoxysilanes alone or in combination with a one or more alkoxysilanes were mixed with an alcohol (HPLC grade, J.T. Baker, Phillipsburgh, NJ) and 0.1 N hydrochloric acid (Aldrich Chemical,
  • Example le was made from 298 g of (3-methacryloxypropyl)trimethoxysilane and 221 g of octyltriethoxysilane.
  • Example lj was made from bis(trimethoxysilylpropyl)acrylamide and tetramethoxysilane.
  • the bis(trimethoxysilylpropyl)acrylamide was prepared separately from the reaction of 2 equivalents of bis(trimethoxysilylpropyl)amine (Gelest Inc., Tullytown, PA) and 1 equivalent of acryloyl chloride (Aldrich Chemical, Milwaukee, WI) in dry hexane (HPLC grade, J.T. Baker, Phillipsburgh, NJ).
  • a solution of poly(vinyl alcohol) (PVA; 87%-89% hydrolyzed; Ave M w 13,000- 23,000; Aldrich Chemical, Milwaukee, WI) in water was prepared by mixing and heating to 80 °C for 0.5 hours. Upon cooling, the PVA solution was combined with a solution comprising divinylbenzene (DVB; 80%; Dow Chemical, Midland, MI), a POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical), and or more of the following coporogens: 2-ethylhexanoic acid (2-EHA; Aldrich Chemical), toluene (HPLC grade, J.T.
  • PVB divinylbenzene
  • AIBN 2,2'-azobisisobutyronitrile
  • the particles were then dried at 100 °C at a reduced pressure for 16 hours.
  • Specific reagent amounts and reaction conditions are listed in Table 3.
  • the specific surface areas (SSA), specific pore volumes (SPN) and the average pore diameters (APD) of these materials were measured using the multi-point ⁇ 2 sorption method and are listed in Table 3 (Micromeritics ASAP 2400; Micromeritics Instruments Inc., Norcross, GA, or equivalent).
  • the specific surface area was calculated using the BET method, the specific pore volume was the single point value determined for P/Po > 0.98, and the average pore diameter was calculated from the desorption leg of the isotherm using the BJH method.
  • Triton® X-45 (Aq X-45; Fluka, Milwaukee, WI), Triton® X-100 (Aq X-100; Fluka, Milwaukee, WI), or Methocel E15 (M E15, Dow, Grove City, OH; aqueous solution prepared by preheating water to 90 °C before addition of M El 5 and cooling to 25 °C) in water and or ethanol was prepared by mixing and heating to 60 °C for 0.5-1.0 hours.
  • Triton® X-45 (Aq X-45; Fluka, Milwaukee, WI) in water and ethanol was prepared by mixing and heating to 60 °C for 0.5-1.0 hours.
  • a solution was prepared under a nitrogen purge at ambient temperature by mixing for 0.5 hours one or more organic monomers selected from the following; divinylbenzene (DVB; 80%; Dow Chemical, Midland, MI; washed 3X in 0.1 N NaOH, 3X in water, and then dried MgSO 4 from Aldrich Chemical), Styrene (STY, 96%; Aldrich Chemical; washed 3X in 0.1 N NaOH, 3X in water, and then dried MgS0 from Aldrich Chemical), tert-butyl methacrylate (TBM, 98%, Aldrich Chemical), ethylene glycol dimethacrylate (EGD, 98%, Aldrich Chemical), 1,4-Butanediol dimethacrylate (BDM, 95%, Aldrich Chemical),
  • NRP 99%, Aldrich Chemical
  • POS 99%, Aldrich Chemical
  • a POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical), cyclohexanol (CXL; Aldrich, Milwaukee, WI), and Triton® X-45 (Oil X-45; Fluka, Milwaukee, WI).
  • AIBN 2,2'-azobisisobutyronitrile
  • CXL cyclohexanol
  • CXL Aldrich, Milwaukee, WI
  • Triton® X-45 Olemulsified using a rotor/stator mixer (Model 100L, Charles Ross & Son Co., Hauppauge, NY) for 4 minutes under an argon flow.
  • a solution of 14.8 M ammonium hydroxide NH OH; J.T.
  • Reagent (g) (g) - ⁇ ) (mL) (g) (g) (g) (mL) (g) (m 2 /g) (cm 3 /g) (A)
  • Pyrex glass tubes (NWR, Bridgeport, ⁇ J) were derivatized using the following procedure: Treat the glass surface to 2.5 molar sodium hydroxide solution (Aldrich Chemical) for 16 hours at ambient room temperature, wash with copious amounts of water, treat the glass surface with concentrated hydrochloric acid (J.T. Baker) for 1 hour at ambient room temperature, wash with copious amounts of water, and then dry at 100 °C under reduced pressure. The glass surface was subsequently derivatized by treating for 16 hours at 50 °C with a mixture prepared from 19 g of pyridine (J.T.
  • the resultant monolithic materials were washed by Soxhlet extraction using methanol (HPLC grade, J.T. Baker) for 16 hours and then dried at 80-100 °C and reduced pressure.
  • SSA specific surface areas
  • SPN specific pore volumes
  • API average pore diameters
  • Triton® X-45 (Aq X-45; Fluka, Milwaukee, WI), Triton® X-100 (Aq X-100; Fluka, Milwaukee, WI), Triton® X-165 (Aq X-165; Sigma, St. Louis, MO), Triton® X-305 (Aq X-305; Sigma, St. Louis, MO), Triton® X-705 (Aq X-705; Sigma, St. Louis,
  • POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIB ⁇ ; 98%, Aldrich Chemical), and on or more of the following reagents: toluene (HPLC grade, J.T. Baker, Phillipsburgh, ⁇ J), cyclohexanol (CXL; Aldrich, Milwaukee, WI), and Triton® X-45 (Oil X- 45; Fluka, Milwaukee, WI).
  • toluene HPLC grade, J.T. Baker, Phillipsburgh, ⁇ J
  • CXL Aldrich, Milwaukee, WI
  • Triton® X-45 Ole X- 45; Fluka, Milwaukee, WI
  • 6b, 6c, and 6k 0.4-1.9 g of ammonium laurylsulfate (Aq ALS, Fluka, Milwaukee, WI, 30% solution by weight in water) was further added to the aqueous phase prior to combination with the oil solution.
  • Spherical, porous, hybrid inorganic/organic particles of Examples 3, 4, and 6 were mixed with either tris(hydroxymethyl)aminomethane (TRIS, Aldrich Chemical, Milwaukee, WI) or tetraethylammomum hydroxide (35 weight % in water, TEAH, Aldrich Chemical, Milwaukee, WI) in a solution comprised of one or more of the following; water, ethanol (HPLC grade, J.T. Baker, Phillipsburgh, NJ), and pyridine (J.T. Baker, Phillipsburgh, NJ), yielding a slurry. The resultant slurry was then enclosed in a stainless steel autoclave and heated to between 140 -165 °C for 20 hours.
  • TMS tris(hydroxymethyl)aminomethane
  • tetraethylammomum hydroxide 35 weight % in water, TEAH, Aldrich Chemical, Milwaukee, WI
  • a solution comprised of one or more of the following; water, ethanol (HPLC grade, J
  • the particles of hybrid silica prepared according to Examples 3r, 3v, and 3w were blended and then separated by particle size into ⁇ 3, ⁇ 5, and ⁇ 7 ⁇ m fractions.
  • a 5.0 g amount of 3 ⁇ m fraction was combined with 100 mL of concentrated sulfuric acid (EM Science, Gibbstown, NJ) and stirred at room temperature in a 1 L round-bottom flask. After stirring for 1 hour, the solution was slowly added to a stirred solution of 400 mL water, and the mixture was stirred for 10 minutes.
  • the modified hybrid silica particles were filtered and washed successively with water, methanol (J.T. Baker), and then dried at 80°C under reduced pressure for 16 hours.
  • the particles were analyzed as described in Examples 2 and 3 and shown to have the following properties: 30.3 %C, 607 m 2 /g specific surface area (SSA), 1.51 cc/g specific pore volume (SPV), and 113 A average pore diameter (APD).
  • the loading of sulfonic acid groups was determined to be 1.0 meq/gram as measured by titration with 0.1 N NaOH (Metrohm 716 DMS Titrino autotitrator with 6.0232.100 pH electrode; Metrohm, Hersau, Switzerland, or equivalent).
  • the particles of hybrid silica prepared according to Examples 3r, 3v, and 3w were blended and then separated by particle size into ⁇ 3, ⁇ 5, and ⁇ 7 ⁇ m fractions.
  • the surface of a 3 ⁇ m material fraction was modified with chlorodimethyloctadecylsilane (Aldrich Chemical, Milwaukee, WI) as follows: 5 x 10 "6 moles of silane per square meter of particle surface area and 1.6 equivalents (per mole silane) of imidazole (Aldrich Chemical, Milwaukee, WI) were added to a mixture of 15 g of hybrid silica particle in 100 mL of toluene (J.T. Baker) and the resultant mixture was refluxed for 20 hours.
  • the modified hybrid silica particles were filtered and washed successively with water, toluene, 1:1 v/v acetone/water, and acetone (all solvents from J.T. Baker), and then dried at 80 °C under reduced pressure for 16 hours.
  • the particles were analyzed as described in Examples 2 and 3 and shown to have the following properties: 40.2 %C, 333 m 2 /g specific surface area (SSA), 1.13 cc/g specific pore volume (SPV), and 118 A average pore diameter (APD).
  • the surface concentration of octadecylsilyl groups was determined to be 1.44 ⁇ mol/m 2 by the difference in particle %C before and after the surface modification as measured by elemental analysis.
  • the particles of hybrid silica prepared according to Example 3b and 3v were separated by particle size into ⁇ 3 ⁇ m fractions.
  • the 3 ⁇ m fractions were tested for mechanical strength in the following manner:
  • the material of interest was slurry packed using a downward slurry technique in a 3.9 x 10 mm cartridge at 500 psig to insure no crushing of particles occurs.
  • the column packing apparatus comprised a high-pressure liquid packing pump (Model No: 10-500FS100 SC Hydraulic Engineering Corp., Los Angeles, CA, or equivalent). After packing, the cartridge was taken off the packing chamber and any excess material was wiped off flush with the cartridge face. The packed cartridge was then reattached to the chamber, which was filled with methanol.
  • the cartridge was subjected to increasing pack pressures where the time to displace 20 mL of methanol was recorded at each 500 psig pressure increments from 500 psig to 9500 psig. Approximately 30 to 40 seconds were allowed at each pressure increment for the packed bed to stabilize at that pressure before the displacement time was measured. The time to displace 20 mL of methanol was then converted into flow rate (mL/min) by dividing the 20 mL displaced by the time (in seconds) and multiplying the result by 60.
  • the principle of the test is as follows: The packed material in the steel chromatographic cartridge (3.9 x 10 mm) is exposed to different pressures (500 - 9000 psig) of a methanol effluent. At high pressures the particle beds of weak materials can compact or crush, which results in a restriction of methanol flow. The closer the methanol flow remains to the linear trend predicted for an ideal particle, the greater the mechanical stability of the packed bed material. As a means to normalize differences in particle size and packing parameters, and make direct comparisons of the effect of pressure on the stability of the base materials, the methanol flow rates are normalized to the flow obtained for the respective columns at 1000 psig back pressure.
  • a solution was prepared using 5 mL of an acetic acid solution (J.T. Baker, Phillipsburgh, NJ), Pluronic F-38 (BASF Corporation, Mount Olive, NJ), 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical, Milwaukee, WI) and a water soluble monomer, including N- [tris(hydroxymethyl)methyl]acrylamide (THMMA, Aldrich Chemical, Milwaukee, WI), (3- acrylamidopropyl)trimethylammonium chloride (APTA, 75 wt.% solution in water, Aldrich Chemical, Milwaukee, WI), [3-(methacryloylamino)propyl]dimethyl(3- sulfopropyl)ammonium hydroxide inner salt (MAPDAHI, Aldrich Chemical) or polyethylene glycol dimethacrylate (PEGDMA, Aldrich Chemical).
  • acetic acid solution J.T. Baker, Phillipsburgh, NJ
  • Pluronic F-38 BASF Corporation, Mount Olive,
  • the monoliths were rinsed with water and then left for 24 hours in a 0.1 N ammonium hydroxide solution at 65 °C. After this treatment, the monoliths were washed with water, refluxed in methanol for 24 hours, and then dried for 16-24 hours at 85 °C under reduced pressure.
  • Specific reagent amounts and reaction conditions are listed in Table 9.
  • the specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 9 and were measured as described in Examples 2 and 3.
  • a solution of poly(vinyl alcohol) (PVA; 87%-89% hydrolyzed; Ave M w 13,000- 23,000; Aldrich Chemical, Milwaukee, WI) in 1000 mL water was prepared by mixing and heating to 80°C for 0.5 hours. Upon cooling, the PVA solution was combined with a solution comprising divinylbenzene (DVB; 80%; Dow Chemical, Midland, MI), N-vinyl pyrcolidinone (NVP, Aldrich Chemical, Milwaukee, WI), 3-(trimethoxysilyl)propyl methacrylate (MAPTMOS, Aldrich Chemical, Milwaukee, WI), 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical), and toluene (HPLC grade, J.T.
  • DVD divinylbenzene
  • NNP N-vinyl pyrcolidinone
  • MAPTMOS 3-(trimethoxysilyl)propyl methacrylate
  • AIBN 2,2'-azobisisobutyroni
  • Spherical, porous, hybrid inorganic/organic particles of Example 14 were mixed in either 1.0 or 2.5 M solutions of NaOH in water (Aldrich Chemical, Milwaukee, WI), yielding a suspension. The resultant suspension was then heated at 85-100 °C for 24-48 hours. After the reaction was cooled to room temperature the products were filtered and washed repeatedly using water and methanol (HPLC grade, J.T. Baker, Phillipsburgh, NJ), and then dried at 80°C under vacuum for 16 hours. This processing yielded free silanol groups, as evidenced by 29 Si CP-MAS NMR spectroscopy. Specific amounts and conditions are listed in Table 12 (mL base solution/gram hybrid particle, base concentration, reaction temperature, and reaction time). The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 12 and were measured as described in Examples 2 and 3.
  • SSA specific surface areas
  • SPV specific pore volumes
  • API average pore diameters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Silicon Polymers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

The present invention relates to porous inorganic/organic homogenous copolymeric hybrid material materials, including particulates and monoliths, methods for their manufacture, and uses thereof, e.g., as chromatographic separations materials.

Description

Express Mail Label No.: EV342589161US
POROUS INORGANIC/ORGANIC HOMOGENOUS COPOLYMERIC
HYBRID MATERIALS FOR CHROMATOGRAPHIC SEPARATIONS AND
PROCESS FOR THE PREPARATION THEREOF
Related Application This application claims the benefit of U.S. provisional patent application Ser. No.
60/422,580, filed October 30, 2002 (attorney docket no. WCZ-034-1), the entire contents of which are incorporated herein by this reference.
Background of The Invention Packing materials for liquid chromatography (LC) are generally classified into two types: organic materials, e.g., polydivinylbenzene, and inorganic materials, e.g., silica.
As stationary phases for HPLC, silica-based materials result in columns that do not show evidence of shrinking or swelling and are mechanically strong. However, limited hydrolytic stability is a drawback with silica-based columns, because silica may be readily dissolved under alkaline conditions, generally pH>8.0, leading to the subsequent collapse of the chromatographic bed. Additionally, the bonded phase on a silica surface may be removed from the surface under acidic conditions, generally pH<2.0, and eluted off the column by the mobile phase, causing loss of analyte retention.
On the other hand, many organic materials are chemically stable against strongly alkaline and strongly acidic mobile phases, allowing flexibility in the choice of mobile phase pH. However, organic chromatographic materials generally result in columns with low efficiency, leading to inadequate separation performance, particularly with low molecular- weight analytes. Furthermore, many organic chromatographic materials shrink and swell when the composition of the mobile phase is changed. In addition, most organic chromatographic materials do not have the mechanical strength of typical chromatographic silica.
In order to overcome the above-mentioned deficiencies while maintaining the beneficial properties of purely organic and purely inorganic materials, others have attempted to simply mix organic and inorganic materials. For example, others have previously attempted to produce such materials for optical sensors or gas separation membranes that are mixtures of organic polymers (e.g., poly(2-methyl-2-oxazoline), poly(N-vinylpyrrolidone), polystyrene, or poly(N,N-dimethylacrylamide) dispersed within silica. See, e.g., Chujo, Polymeric Materials: Science & Engineering, 84, 783 (2001); Tamaki, Polymer Bull, 39, 303 (1997); and Chujo, MRS Bull., 389 (May 2001). These materials, however, were not useful for any liquid based separation application because they are translucent and non- porous. As a result, these materials lack capacity as a separation material.
Still others have attempted to make materials that have inorganic and organic components covalently bound to each other. See, e.g., Feng, Q., J. Mater. Chem. 10, 2490-94 (2000), Feng, Q., Polym. Preprints 41, 515-16 (2000), Wei, Y., Adv. Mater. 12, 1448-50 (2000), Wei, Y. J. Polym. Set 18, 1-7 (2000). These materials, however, only contain very low amounts of organic material, i.e., less than 1% C, and as a result they function essentially as inorganic silica gels. Furthermore, these materials are non-porous until they are ground to irregular particles and then extracted to remove template porogen molecules. Accordingly, it is not possible to make porous monolithic materials that which have a useful capacity as a separation material. Also, irregularly-shaped particles are generally more difficult to pack than spherical particles. It is also known that columns packed with irregularly-shaped particles generally exhibit poorer packed bed stability than spherical particles of the same size. The template agents used in the synthesis of these materials are nonsurfactant optically active compounds, and the use of such compounds limits the range of porogen choices and increases their cost. The properties of these materials make them undesirable for use as LC packing materials.
Summary of The Invention
The present invention provides a solution to the above-mentioned deficiencies. In particular, the present invention relates to a novel material for chromatographic separations, processes for its preparation, and separations devices containing the chromatographic material. For example, the invention pertains to a porous inorganic/organic homogenous copolymeric hybrid material having at least about 10% carbon content by mass. Also, the invention relates to a porous inorganic/organic homogenous copolymeric hybrid material of spherical particles. Additionally, the invention relates to a porous inorganic/organic homogenous copolymeric hybrid monolith material. The present invention provides porous inorganic/organic homogenous copolymeric hybrid materials of the formula:
(A)x(B)y(C)z wherein the order of repeat units A, B, and C may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond;
B is an organosiloxane repeat unit which is bonded to one or more repeat units B or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
C is an inorganic repeat unit which is bonded to one or more repeat units B or C via an inorganic bond; and x,y are positive numbers and z is a non negative number, wherein when z = 0, then 0.002 < x/y < 210, and when z ≠ 0, then 0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210.
Certain other porous inorganic/organic homogenous copolymeric hybrid materials provided by the present invention include those materials of the formula:
(A)x(B)y(B*)y*(C)z wherein the order of repeat units A, B, B*, and C may be random, block, or a combination of random and block;
A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond;
B is an organosiloxane repeat unit which is bonded to one or more repeat units B, B* or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization;
C is an inorganic repeat unit which is bonded to one or more repeat units B or B* or C via an inorganic bond; and x,y are positive numbers and z is a non negative number, wherein when z = 0, then 0.002 < x/(y+y*) < 210, and when z ≠ 0, then
0.0003 < (y+y*)/z < 500 and 0.002 < x/(y+y*+z) < 210.
In particular, one aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material (either a monolith or particles) of the formula:
(A)x(B)y(C)z Formula I wherein the order of repeat units A, B, and C may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin); B is an organosiloxane repeat unit which is bonded to one or more repeat units B or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond; C is an inorganic repeat unit which is bonded to one or more repeat units B or C via an inorganic bond; and 0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210.
One skilled in the art will appreciate that such materials may have unreacted end groups, e.g., SiOH, Si(OH)2, or Si(OH)3, or unpolymerized olefins. Additionally, the present invention relates to a novel material for chromatographic separations, processes for its preparation, and separations devices containing the chromatographic material. In particular, one aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the fonnula:
(A)x(B)y(B*)y*(C)z Formula II wherein the order of repeat units A, B, B*, and C may be random, block, or a combination of random and block; and A, B, B*, C, x, y, and z are as defined above. The relative stoichiometry of the A to (B+B*) to C components is the same as above, e.g, 0.0003 < (y+y*)/z < 500 and 0.002 < x/(y+y*+z) < 210.
Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization. A monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms. Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization. B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
Repeat unit C may be -Siθ2- and may be derived from an alkoxysilane, such as tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS).
Another aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the formula: (A)x(B)y Formula III wherein the order of repeat units A and B may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin); B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond; and 0.002 < x/y < 210.
Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization. A monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization. B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
One skilled in the art will appreciate that such materials may have unreacted end groups, e.g., SiOR, Si(OR)2, or Si(OR)3, where R = H or - C5 alkane, or unpolymerized olefins.
Another aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
(A)x(B)y(B*)y* Formula IN wherein the order of repeat units A, B, and B* may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin); B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B or B* via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond; B* is an organosiloxane repeat unit that does not have reactive (t.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization. The relative stoichiometry of the A to (B+B*) components is the same as above, e.g., 0.002 < x/(y+y*) < 210. Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization. A monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization. B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
One skilled in the art will appreciate that such materials may have unxeacted end groups, e.g., SiOR, Si(OR)2, or Si(OR)3, where R = H or C\ - C5 alkane, or unpolymerized olefins.
By way of example, the present invention pertains to a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
Figure imgf000007_0001
where R is H, F, Cl, Br, I, lower alkyl (e.g., CH3 or CH2CH3); R2 and R3 are each independently H, F, Cl, Br, I, alkane, substituted alkane, alkene, substituted alkene, aryl, substituted aryl, cyano, ether, substituted ether, embedded polar group; R4 and R5 are each independently H, F, Cl, Br, I, alkane, substituted alkane, alkene, substituted alkene, aryl, substituted aryl, ether, substituted ether, cyano, amino, substituted amino, diol, nitro, sulfonic acid, cation or anion exchange groups, 0 < a < 2x, 0 < b < 4, and 0 < c < 4, provided that b + c < 4 when a = 1 ; 1 < d < 20, and 0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210. The invention also relates to porous inorganic/organic homogenous copolymeric hybrid materials prepared, e.g., by the steps of copolymerizing an organic olefin monomer with an alkenyl-functionalized organosiloxane, and hydrolytic condensation of the product of the other step with a tetraalkoxysilane. The copolymerizing and condensation steps may be performed substantially simultaneously or sequentially.
The material of the invention may be used as a liquid chromatography stationary phase; a sequestering reagent; a solid support for combinatorial chemistry; a solid support for oligosaccharide, polypeptide, or oligonucleotide synthesis; a solid support for a biological assay; a capillary biological assay device for mass spectrometry; a template for a controlled large pore polymer film; a capillary chromatography stationary phase; an electrokinetic pump packing material; a polymer additive; a catalyst; or a packing material for a microchip separation device.
Brief Description of the Drawings
Figure 1 is a plot of the mechanical strength results for two porous inorganic/organic homogenous copolymeric hybrid materials of the invention (Examples 3b and 3v; 3μm fractions), commercially available silica based (5 μm Symmetry® Cι8, Waters Corporation) and polymeric based (7 μm Ultrastyragel™ 106 A and 7 μm Ultrastyragel™ 104 A, Waters Corporation) materials wherein the figure legend is A = Symmetry® C18, B = 3 μm Example 3b, C = 3 μm Example 3v, D = 7 μm Ultrastyragel™ 10δ A, E = 7 μm Ultrastyragel™ 104 A.
Detailed Description of The Invention
The present invention will be more fully illustrated by reference to the definitions set forth below.
The term "monolith" is intended to include a porous, three-dimensional material having a continuous interconnected pore structure in a single piece. A monolith is prepared, for example, by casting precursors into a mold of a desired shape. The term monolith is meant to be distinguished from a collection of individual particles packed into a bed formation, in which the end product comprises individual particles. Such monolith materials are described in detail in international patent application number PCT/US02/25193 (attorney docket number WCZ-025CPPC), filed August 8, 2002, and U.S. provisional patent application number 60/311,445 (attorney docket number WCZ-025-1), filed August 9, 2001, both of which are incorporated herein by reference. The terms "coalescing" and "coalesced" are intended to describe a material in which several individual components have become coherent to result in one new component by an appropriate chemical or physical process, e.g., heating. The term coalesced is meant to be distinguished from a collection of individual particles in close physical proximity, e.g., in a bed formation, in which the end product comprises individual particles.
As used herein, the term "porous inorganic/organic homogenous copolymeric hybrid material" or "porous inorganic/organic homogenous copolymeric hybrid monolith material" includes materials comprising inorganic repeat units (e.g., comprising O-Si-O bonds between repeat units), organic repeat units (e.g., comprising C-C bonds between repeat units), and mixed organic-inorganic repeat units (e.g. , comprising both C-C and O-Si-O bonds between repeat units). The term "porous" indicates that the microscopic structure of the material contains pores of a measurable volume, so that the materials can be used, for example, as solid supports in chromatography. The tenn "inorganic/organic copolymeric hybrid" indicates that the material comprises a copolymer of organic, inorganic, and mixed organic/inorganic repeat units. The term "homogenous" indicates that the structure of the material at the chemical level is substantially interconnected via chemical bonds, as opposed to the prior art materials that simply comprise mixtures of discrete organic and inorganic materials. The term "hybrid" refers to a material having chemical bonds among inorganic and organic repeat units of a composite material thereby forming a matrix throughout the material itself, as opposed to a mixture of discrete chemical compounds.
Polyorganoalkoxysiloxane (POS) and polyalkylalkoxysiloxane (PAS) are large molecules, either linear or preferably three-dimensional networks, that are formed by the condensation of silanols, where the silanols are formed, e.g., by hydrolysis of halo- or alkoxy-substituted silanes. As used herein, the term "protecting group" means a protected functional group which may be intended to include chemical moieties that shield a functional group from chemical reaction or interaction such that upon later removal ("deprotection") of the protecting group, the functional group can be revealed and subjected to further chemistry. For example, a monomer used in the synthesis of the materials of the present invention may contain The term also includes a functional group which that does not interfere with the various polymerization and condensation reactions used in the synthesis of the materials of the invention, but which that may be converted after synthesis of the material into a functional group whichthat may itself be further derivatized. For example, an organic monomer reagent A may contain an aromatic nitro group which that would not interfere with the polymerization or condensation reactions. However, after these polymerization and condensation reactions have been carried out, the nitro group may be reduced to an amino group (e.g., an aniline), which itself may then be subjected to further derivatization by a variety of means known in the art. In this manner, additional functional groups may be incorporated into the material after the syntheses of the material itself. See generally, Greene, T.W. and Wuts, P.G.M. "Protective Groups in Organic Synthesis," Second Edition, Wiley, 1991. In some cases, preferable protecting groups strategies do not involve the use of heavy metals (e.g., transition metals) in the protection or deprotection step as these metals may be difficult to remove from the material completely.
The porous inorganic/organic homogenous copolymeric hybrid particles and monolith materials possess both organic groups and silanol groups which may additionally be substituted or derivatized with a surface modifier. "Surface modifiers" include (typically) organic groups which impart a certain chromatographic functionality to a chromatographic stationary phase. Surface modifiers such as disclosed herein are attached to the base material, e.g., via derivatization or coating and later crosslinking, imparting the chemical character of the surface modifier to the base material. In one embodiment, the organic groups of the hybrid materials react to form an organic covalent bond with a surface modifier. The modifiers may foπn an organic covalent bond to the material's organic group via a number of mechanisms well known in organic and polymer chemistry including, but not limited to, nucleophilic, electrophilic, cycloaddition, free-radical, carbene, nitrene, and carbocation reactions. Organic covalent bonds are defined to involve the formation of a covalent bond between the common elements of organic chemistry including, but not limited to, hydrogen, boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, and the halogens. In addition, carbon-silicon and carbon-oxygen-silicon bonds are defined as organic covalent bonds, whereas silicon-oxygen-silicon bonds that are not defined as organic covalent bonds. In general, the porous inorganic/organic homogenous copolymeric hybrid particles and monolith materials may be modified by an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations of the aforementioned surface modifiers.
For example, silanol groups are surface modified with compounds having the formula Za(R')bSi-R, where Z = Cl, Br, I, Ci - C5 alkoxy, dialkylamino, e.g., dimethylamino, or trifluoromethanesulfonate; a and b are each an integer from 0 to 3 provided that a + b = 3; R' is a Ci - C6 straight, cyclic or branched alkyl group, and R is a functionalizing group. R' may be, e.g., methyl, ethyl, propyl, isopropyl, butyl, t-butyl, sec-butyl, pentyl, isopentyl, hexyl or cyclohexyl; preferably, R' is methyl. In certain embodiments, the organic groups may be similarly functionalized.
The functionalizing group R may include alkyl, aryl, cyano, amino, diol, nitro, cation or anion exchange groups, or embedded polar functionalities. Examples of suitable R functionalizing groups include CrC30 alkyl, including C C20, such as octyl (C8), octadecyl (Cis), and triacontyl (C30); alkaryl, e.g., CrC -ρhenyl; cyanoalkyl groups, e.g., cyanopropyl; diol groups, e.g., propyldiol; amino groups, e.g., aminopropyl; and alkyl or aryl groups with embedded polar functionalities, e.g., carbamate functionalities such as disclosed inU. S. Patent No. 5,374,755, the text of which is incorporated herein by reference. Such groups include those of the general formula
Figure imgf000011_0001
wherein 1, m, o, r, and s are 0 or 1, n is 0, 1, 2 or 3 p is 0, 1, 2, 3 or 4 and q is an integer from 0 to 19; R3 is selected from the group consisting of hydrogen, alkyl, cyano and phenyl; and Z, R', a and b are defined as above. Preferably, the carbamate functionality has the general structure indicated below:
Figure imgf000011_0002
wherein R5 may be, e.g., cyanoalkyl, t-butyl, butyl, octyl, dodecyl, tetradecyl, octadecyl, or benzyl. Advantageously, R5 is octyl, dodecyl, or octadecyl.
In a preferred embodiment, the surface modifier may be an organotrihalosilane, such as octyltrichlorosilane or octadecyltrichlorosilane. In an additional preferred embodiment, the surface modifier may be a halopolyorganosilane, such as octyldimethylchlorosilane or octadecyldimethylchlorosilane. In certain embodiments the surface modifier is octadecyltrimethoxysilane or octadecyltrichlorosilane.
In another embodiment, the hybrid material's organic groups and silanol groups are both surface modified or derivatized. In another embodiment, the hybrid materials are surface modified by coating with a polymer.
The term "aliphatic group" includes organic compounds characterized by straight or branched chains, typically having between 1 and 22 carbon atoms. Aliphatic groups include alkyl groups, alkenyl groups and alkynyl groups. In complex structures, the chains may be branched or cross-linked. Alkyl groups include saturated hydrocarbons having one or more carbon atoms, including straight-chain alkyl groups and branched-chain alkyl groups. Such hydrocarbon moieties may be substituted on one or more carbons with, for example, a halogen, a hydroxyl, a thiol, an amino, an alkoxy, an alkylcarboxy, an alkylthio, or a nitro group. Unless the number of carbons is otherwise specified, "lower aliphatic" as used herein means an aliphatic group, as defined above (e.g., lower alkyl, lower alkenyl, lower alkynyl), but having from one to six carbon atoms. Representative of such lower aliphatic groups, e.g., lower alkyl groups, are methyl, ethyl, n-propyl, isopropyl, 2-chloropropyl, n-butyl, sec-butyl, 2-aminobutyl, isobutyl, tert-butyl, 3-thiopentyl, and the like. As used herein, the term "nitro" means -N02; the term "halogen" designates -F, -Cl, -Br or -I; the term "thiol" means SH; and the term "hydroxyl" means -OH. Thus, the term "alkylamino" as used herein means an alkyl group, as defined above, having an amino group attached thereto. Suitable alkylamino groups include groups having 1 to about 12 carbon atoms, preferably from 1 to about 6 carbon atoms. The term "alkylthio" refers to an alkyl group, as defined above, having a sulfhydryl group attached thereto. Suitable alkylthio groups include groups having 1 to about 12 carbon atoms, preferably from 1 to about 6 carbon atoms. The term "alkylcarboxyl" as used herein means an alkyl group, as defined above, having a carboxyl group attached thereto. The term "alkoxy" as used herein means an alkyl group, as defined above, having an oxygen atom attached thereto. Representative alkoxy groups include groups having 1 to about 12 carbon atoms, preferably 1 to about 6 carbon atoms, e.g., methoxy, ethoxy, propoxy, tert-butoxy and the like. The terms "alkenyl" and "alkynyl" refer to unsaturated aliphatic groups analogous to alkyls, but which contain at least one double or triple bond respectively. Suitable alkenyl and alkynyl groups include groups having 2 to about 12 carbon atoms, preferably from 1 to about 6 carbon atoms.
The term "alicyclic group" includes closed ring structures of three or more carbon atoms. Alicyclic groups include cycloparaffins or naphthenes which are saturated cyclic hydrocarbons, cycloolefms which are unsaturated with two or more double bonds, and cycloacetylenes which have a triple bond. They do not include aromatic groups. Examples of cycloparaffins include cyclopropane, cyclohexane, and cyclopentane. Examples of cycloolefms include cyclopentadiene and cyclooctatetraene. Alicyclic groups also include fused ring structures and substituted alicyclic groups such as alkyl substituted alicyclic groups. In the instance of the alicyclics such substituents may further comprise a lower alkyl, a lower alkenyl, a lower alkoxy, a lower alkylthio, a lower alkylamino, a lower alkylcarboxyl, a nitro, a hydroxyl, -CF3, -CN, or the like.
The term "heterocyclic group" includes closed ring structures in which one or more of the atoms in the ring is an element other than carbon, for example, nitrogen, sulfur, or oxygen. Heterocyclic groups may be saturated or unsaturated and heterocyclic groups such as pyrrole and furan may have aromatic character. They include fused ring structures such as quinoline and isoquinoline. Other examples of heterocyclic groups include pyridine and purine. Heterocyclic groups may also be substituted at one or more constituent atoms with, for example, a halogen, a lower alkyl, a lower alkenyl, a lower alkoxy, a lower alkylthio, a lower alkylamino, a lower alkylcarboxyl, a nitro, a hydroxyl, -CF3, -CN, or the like. Suitable heteroaromatic and heteroalicyclic groups generally will have 1 to 3 separate or fused rings with 3 to about 8 members per ring and one or more N, O or S atoms, e.g., coumarinyl, quinolinyl, pyridyl, pyrazinyl, pyrimidyl, furyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, indolyl, benzofuranyl, benzothiazolyl, tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, morpholino and pyrrolidinyl.
The term "aromatic group" includes unsaturated cyclic hydrocarbons containing one or more rings. Aromatic groups include 5- and 6-membered single-ring groups which may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like. The aromatic ring may be substituted at one or more ring positions with, for example, a halogen, a lower alkyl, a lower alkenyl, a lower alkoxy, a lower alkylthio, a lower alkylamino, a lower alkylcarboxyl, a nitro, a hydroxyl, -CF3, -CN, or the like.
The term "alkyl" includes saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In certain embodiments, a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone, e.g., C C3o for straight chain or C3-C30 for branched chain. In certain embodiments, a straight chain or branched chain alkyl has 20 or fewer carbon atoms in its backbone, e.g., - o for straight chain or C3-C20 for branched chain, and more preferably 18 or fewer. Likewise, preferred cycloalkyls have from 4-10 carbon atoms in their ring structure, and more preferably have 4- 7 carbon atoms in the ring structure. The term "lower alkyl" refers to alkyl groups having from 1 to 6 carbons in the chain, and to cycloalkyls having from 3 to 6 carbons in the ring structure.
Moreover, the term "alkyl" (including "lower alkyl") as used throughout the specification and claims includes both "unsubstituted alkyls" and "substituted alkyls," the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents may include, for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, aryla ino, diarylamino, and alkylarylamino), acylamino
(including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfate, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain may themselves be substituted, if appropriate. Cycloalkyls may be further substituted, e.g., with the substituents described above. An "aralkyl" moiety is an alkyl substituted with an aryl, e.g., having 1 to 3 separate or fused rings and from 6 to about 18 carbon ring atoms, e.g., phenylmethyl (benzyl).
The term "aryl" includes 5- and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, unsubstituted or substituted benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like. Aryl groups also include polycyclic fused aromatic groups such as naphthyl, quinolyl, indolyl, and the like. The aromatic ring may be substituted at one or more ring positions with such substituents, e.g., as described above for alkyl groups. Suitable aryl groups include unsubstituted and substituted phenyl groups. The term "aryloxy" as used herein means an aryl group, as defined above, having an oxygen atom attached thereto. The term "aralkoxy" as used herein means an aralkyl group, as defined above, having an oxygen atom attached thereto. Suitable aralkoxy groups have 1 to 3 separate or fused rings and from 6 to about 18 carbon ring atoms, e.g., O-benzyl.
The term "amino," as used herein, refers to an unsubstituted or substituted moiety of the formula -NRaRb, in which Rj, and Rb are each independently hydrogen, alkyl, aryl, or heterocyclyl, or Ra and Rb, taken together with the nitrogen atom to which they are attached, form a cyclic moiety having from 3 to 8 atoms in the ring. Thus, the term "amino" includes cyclic amino moieties such as piperidinyl or pyrrolidinyl groups, unless otherwise stated. An "amino-substituted amino group" refers to an amino group in which at least one of Ra and Rb, is further substituted with an amino group. Porous inorganic/organic homogenous copolymeric hybrid material of the invention may be made as described below and in the specific instances illustrated in the Examples. Porous spherical particles of hybrid silica may, in one embodiment, be prepared by the steps of (a) hydrolytically condensing an alkenyl-functionalized organosilane with a tetraalkoxysilane, (b) copolymerizing the product of step (a) with an organic olefin monomer, and (c) further hydrolytically condensing the product of step (b) to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material. In this embodiment, steps (b) and (c) may be performed substantially simultaneously. Steps (a) and (b) may be performed in the same reaction vessel.
Alternatively, the materials of the invention may be prepared by the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosilane, and (b) hydrolytically condensing the product of step (a) with a tetraalkoxysilane in the presence of a non-optically active porogen to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material. Steps (a) and (b) may be performed in the same reaction vessel.
Also, the materials may be prepared by the steps of substantially simultaneously copolymerizing an organic monomer with an alkenyl-functionalized organosilane and hydrolytically condensing said alkenyl-functionalized organosilane with a tetraalkoxysilane to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
The copolymerizing step of the foregoing methods may be free radical-initiated and the hydrolytically condensing step of the foregoing methods may by acid- or base-catalyzed. In the case of acid catalysis, the acid may be, e.g., hydrochloric acid, hydrobromic acid, hydrofluoric acid, hydroiodic acid, sulfuric acid, formic acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, or phosphoric acid. Likewise, in the case of base catalysis, the base may be ammonium hydroxide, hydroxide salts of the group I and group II metals, carbonate and hydrogencarbonate salts of the group I metals, or alkoxide salts of the group I and group II metals. In the case of free radical-mediated polymerizations, a free radical polymerization initiator may be added. Suitable examples of free radical polymerization initiator include 2,2'-azobis-[2-(imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobisisobutyronitrile, 4,4'- azobis(4-cyanovaleric acid), l,l'-azobis(cyclohexanecarbonitrile), 2,2'-azobis(2- propionamidine) dihydrochloride, 2,2'azobis(2,4-dimethylpentanenitrile), 2,2'-azobis(2- methylbutanenitrile), benzoyl peroxide, 2,2-bis(tert-butylperoxy)butane, l,l-bis(tert- butylperoxy)cyclohexane, 2,5-bis(tert-butylperoxy)butane,-2,5-dimethylhexane, 2,5-bis(tert- butylperoxy)-2,5-dimethyl-hexyne, bis(l -(tert-butylperoxy)- 1 -methyethyl)benzene, 1,1- bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, tert-butyl hydroperoxide, tert-butyl peracetate, tert-butyl peroxide, tert-butyl peroxybenzoate, tert-butylperoxy isopropyl carbonate, cumene peroxide, cyclohexanone hydroperoxide, dicumyl peroxide, lauroyl peroxide, 2,4-pentanedione peroxide, peracetic acid, and potassium persulfate. Additionally, the reaction may be heated following the addition of the free radical polymerization initiator.
The solvent used in the synthesis of the materials of the invention may be, e.g, water, methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, hexanol, cyclohexanol, hexafluoroisopropanol, cyclohexane, petroleum ethers, diethyl ether, dialkyl ethers, tetrahydrofuran, acetonitrile, ethyl acetate, pentane, hexane, heptane, benzene, toluene, xylene, N,N-dimethylformamide, dimethyl sulfoxide, l-methyl-2-pyrrolidinone, methylene chloride, chloroform, and combinations thereof, although those skilled in the art will readily appreciate that others may be used.
In the synthesis of the materials of the invention, a porogen may be used. Examples of suitable porogens include cyclohexanol, toluene, 2-ethylhexanoic acid, dibutylphthalate, 1- methyl-2-pyrrolidinone, 1-dodecanol, and Triton X-45. Some examples of organic olefin monomers of the invention include divinylbenzene, styrene, ethylene glycol dimethacrylate, l-vinyl-2-pyrrolidinone and tert-butylmethacrylate, acrylamide, methacrylamide, N,N'-(l,2-dihydroxyethylene)bisacrylamide, NN'- ethylenebisacrylamide, NN'-methylenebisacrylamide, butyl acrylate, ethyl acrylate, methyl acrylate, 2-(acryloxy)-2-hydroxypropyl methacrylate , 3-(acryloxy)-2-hydroxypropyl methacrylate, trimethylolpropane triacrylate, trimethylolpropane ethoxylate triacrylate, tris[(2-acryloyloxy)ethyl] isocyanurate, acrylonitrile, methacrylonitrile, itaconic acid, methacrylic acid, trimethylsilylmethacrylate, Ν-[tris(hydroxymethyl)methyl]acrylamide (THMMA) (3-acrylamidopropyl)trimethylammonium chloride (APT A), [3- (methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide inner salt (MAPDAHI),
Figure imgf000016_0001
Some examples of alkenyl-functionalized organosiloxane monomers include methacryloxypropyllximethoxysilane, methacryloxypropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, N-(3-acryloxy-2-hydroxypropyl)-3- aminopropyltriethoxysilane, (3 -acryloxypropyl)trimethoxysilane, O-(methacryloxyethyl)-N- (triethoxysilylpropyl)urethane, N-(3-methacryloxy-2-hydroxypropyl)-3- aminopropyltriethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropyltris(methoxyethoxy)silane,
Figure imgf000016_0002
Figure imgf000017_0001
wherein each R is independently H or a C1-C10 alkyl group (preferably hydrogen, methyl, ethyl, or propyl) and wherein R' is independently H or a C1-C10 alkyl group (preferably hydrogen or methyl, ethyl, or propyl). Also, the R groups may be identical and selected from the group consisting of hydrogen, methyl, ethyl, or propyl.
Some examples of tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane . The methods of the invention may also comprise adding a surfactant or stabilizer.
Suitable examples of surfactants include Triton X-45, sodium dodecylsulfate, tris(hydroxymethyl)aminomethane, and any combination thereof. Still other examples of surfactants include Triton X100, Triton X305, TLS, Pluronic F-87, Pluronic P-105, Pluronic P-123, sodium dodecylsulfate (SDS), and Triton X-405. Examples of stabilizers include methocel and poly(vinyl alcohol).
The method of the invention may also include a step of endcapping free silanol groups according to methods which are readily known in the art.
The methods of the invention may also include a step of chemically modifying the organic olefin or alkenyl-functionalized organisiloxane prior to copolymerization. Additionally, the methods of the invention may also include a step of modifying surfaces of the hybrid particles by formation of an organic covalent bond between an organic group of the particle and a surface modifier. In this regard, the method may include a further step of by adding a surface modifier selected from the group consisting of an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations thereof, such as Za(R')bSi-R, as described herein above. Likewise, the surface modifier may be a polymer coating, such as Sylgard®. Other examples of reagents include octyltrichlorosilane, octadecyltrichlorosilane, octyldimethylchlorosilane, and octadecyldimethylchlorosilane . In one embodiment of the invention, the surface organic groups of the hybrid silica are derivatized or modified in a subsequent step via formation of an organic covalent bond between the particle's organic group and the modifying reagent. Alternatively, the surface silanol groups of the hybrid silica are derivatized into siloxane organic groups, such as by reacting with an organotrihalosilane, e.g., octadecyltrichlorosilane, or a halopolyorganosilane, e.g., octadecyldimethylchlorosilane. Alternatively, the surface organic and silanol groups of the hybrid silica are both derivatized. The surface of the thus-prepared material is then covered by the organic groups, e.g., alkyl, embedded during the gelation and the organic groups added during the derivatization process or processes.
In one embodiment, the pore structure of the as-prepared hybrid material is modified by hydrothermal treatment, which enlarges the openings of the pores as well as the pore diameters, as confirmed by nitrogen (N2) sorption analysis. The hydrothermal treatment is performed by preparing a slurry containing the as-prepared hybrid material and a solution of organic base in water, heating the slurry in an autoclave at an elevated temperature, e.g., about 143 to 168°C, for a period of about 6 to 28 h. The pH of the slurry can be adjusted to be in the range of about 8.0 to 12.7 using tetraethylammonium hydroxide (TEAH) or TRIS and concentrated acetic acid. The concentration of the slurry is in the range of about lg hybrid material per 5 to 10 mL of the base solution. The thus-treated hybrid material is filtered, and washed with water until the pH of the filtrate reaches about 7, washed with acetone or methanol, then dried at about 100°C under reduced pressure for about 16 h. The resultant hybrid materials show average pore diameters in the range of about 100-300 A. The surface of the hydrothermally treated hybrid material may be modified in a similar fashion to that of the hybrid material that is not modified by hydrothermal treatment as described in the present invention.
Moreover, the surface of the hydrothermally treated hybrid silica contains organic groups, which can be derivatized by reacting with a reagent that is reactive towards the hybrid materials' organic group. For example, vinyl groups on the material can be reacted with a variety of olefin reactive reagents such as bromine (Br2), hydrogen (H2), free radicals, propagating polymer radical centers, dienes, and the like. In another example, hydroxyl groups on the material can be reacted with a variety of alcohol reactive reagents such as isocyanates, carboxylic acids, carboxylic acid chlorides, and reactive organosilanes as described below. Reactions of this type are well known in the literature, see, e.g., March, J. "Advanced Organic Chemistry," 3rd Edition, Wiley, New York, 1985; Odian, G. " The Principles of Polymerization," 2" Edition, Wiley, New York, 1981; the texts of which are incorporated herein by reference.
In addition, the surface of the hydrothermally treated hybrid silica also contains silanol groups, which can be derivatized by reacting with a reactive organosilane. The surface derivatization of the hybrid silica is conducted according to standard methods, for example by reaction with octadecyltrichlorosilane or octadecyldimethylchlorosilane in an organic solvent under reflux conditions. An organic solvent such as toluene is typically used for this reaction. An organic base such as pyridine or imidazole is added to the reaction mixture to catalyze the reaction. The product of this reaction is then washed with water, toluene and acetone and dried at about 80°C to 100°C under reduced pressure for about 16 h. The resultant hybrid silica can be further reacted with a short-chain silane such as trimethylchlorosilane to endcap the remaining silanol groups, by using a similar procedure described above.
More generally, the surface of the hybrid silica materials may be surface modified with a surface modifier, e.g., Za(R')bSi-R, as described herein above.
The functionalizing group R may include alkyl, alkenyl, alkynyl, aryl, cyano, amino, diol, nitro, cation or anion exchange groups, or alkyl or aryl groups with embedded polar functionalities. Examples of suitable R functionalizing groups include Cι-C3o alkyl, including Cι-C20, such as octyl (C8), octadecyl (Cι8), and triacontyl (C30); alkaryl, e.g., CrC4- phenyl; cyanoalkyl groups, e.g., cyanopropyl; diol groups, e.g., propyldiol; amino groups, e.g., aminopropyl; and alkyl or aryl groups with embedded polar functionalities, e.g., carbamate functionalities such as disclosed in U. S. Patent No. 5,374,755, the text of which is incorporated herein by reference, and as detailed hereinabove. In a preferred embodiment, the surface modifier may be an organotrihalosilane, such as octyltrichlorosilane or octadecyltrichlorosilane. In an additional preferred embodiment, the surface modifier may be a halopolyorganosilane, such as octyldimethylchlorosilane or octadecyldimethylchlorosilane. Advantageously, R is octyl or octadecyl.
The surface of the hybrid silica materials may also be surface modified by coating with a polymer. Polymer coatings are known in the literature and may be provided generally by polymerization or polycondensation of physisorbed monomers onto the surface without chemical bonding of the polymer layer to the support (type I), polymerization or polycondensation of physisorbed monomers onto the surface with chemical bonding of the polymer layer to the support (type II), immobilization of physisorbed prepolymers to the support (type III), and chemisorption of presynthesized polymers onto the surface of the support (type IN). See, e.g., Hanson et al.,J. Chromat. A656 (1993) 369-380, the text of which is incorporated herein by reference. As noted above, coating the hybrid material with a polymer may be used in conjunction with various surface modifications described in the invention. In a preferred embodiment, Sylgard® (Dow Corning, Midland, MI, USA) is used as the polymer.
The term "porogen" refers to a pore forming material, that is a chemical material dispersed in a material as it is formed that is subsequently removed to yield pores or voids in the material.
The term "end capping" a chemical reaction step in which a resin that has already been synthesized, but that may have residual unreacted groups (e.g., silanol groups in the case of a silicon-based inorganic resin) are passivated by reaction with a suitable reagent. For example, again in the case of silicon-based inorganic resins, such silanol groups may be methylated with a methylating reagent such as hexamethyldisilazane.
A stabilizer describes reagents which inhibit the coalescence of droplets of organic monomer and POS or PAS polymers in an aqueous continuous phase. These can include but are not limited to finely divided insoluble organic or inorganic materials, electrolytes, and water-soluble polymers. Typical stabilizers are methyl celluloses, gelatins, polyvinyl alcohols, salts of poly(methacrylic acid), and surfactants. Surfactants (also referred to as emulsifϊers or soaps) are molecules which have segments of opposite polarity and solubilizing tendency, e.g., both hydrophilic and hydrophobic segments.
The instant invention relates to a porous inorganic/organic homogenous copolymeric hybrid material having at least about 10% carbon content by mass. In preferred embodiments, the materials of the invention are porous inorganic/organic homogenous copolymeric hybrid particles, particularly spherical particles. The carbon content of the material may be from about 15% to about 90% carbon content by mass, from about 25% to about 75% carbon content by mass, from about 30% to about 45% carbon content by mass, from about 31% to about 40% carbon content by mass, from about 32% to about 40% carbon content by mass, or from about 33% to about 40% carbon content by mass.
In embodiments where the materials of the invention are in the form of particles, they have an average diameter of about 0.1 μm to about 30 to 60 μm, or about 2.0 μm to about 15 μm. The particulate materials of the invention also have a large specific surface area, e.g., about 50-800 m2/g or 400-700 m^/g. The materials of the invention also have defined pore volumes that may be engineered by choosing an appropriate porogen during synthesis (vide supra). By way of example, the materials of the invention may have specific pore volumes of about 0.25 to 2.5 crrH/g, about 0.4 to 2.0 cm-Vg, or 0.5 to 1.3 cm^/g. Likewise, the pore diameters of the material of the invention may be controlled during synthesis (vide supra). For example, the materials of the invention may have an average pore diameter of about 20 to 300 A, about 50 to 200 A, or about 75 to 125 A.
Because of their hybrid nature, the materials of the invention are stable over a broad pH range. Typically, the material may be hydrolytically stable at a pH of about 1 to about 13, about 4 to about 11, about 4 to about 10, about 5 to about 9, or about 6 to about 8.
An advantageous feature of the materials of the invention is their reduced swelling upon solvation with organic solvents than conventional organic LC resins. Therefore, in one embodiment, the material swells by less than about 25% (or 15% or 10% or even 5%) by volume upon solvation with an organic solvent, such as acetonitrile, methanol, ethers (such as diethyl ether), tetrahydrofuran, dichloromethane, chloroform, hexane, heptane, cyclohexane, ethyl acetate, benzene, or toluene. The materials of the invention, either particles or monoliths, may be surface modified by formation of an organic covalent chemical bond between an inorganic or organic group of the material and a surface modifier. The surface modifier may be an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, or combinations thereof. For example, the surface modifier may have the formula Za(R')bSi-R, as described herein above. Also, the surface modifier may be a polymer coating, such as Sylgard®. Likewise, the surface modifier may be octyltrichlorosilane, octadecyltrichlorosilane, octyldimethylchlorosilane, or octadecyldimethylchlorosilane. - Additionally, the surface modifier is a combination of an organic group surface modifier and a silanol group surface modifier; a combination of an organic group surface modifier and a polymeric coating surface modifier; a combination of a silanol group surface modifier and a polymeric coating surface modifier; or a combination of an organic group surface modifier, a silanol group surface modifier, and a polymeric coating surface modifier. The surface modifier may also be a silanol group surface modifier.
The invention also pertains to porous inorganic/organic homogenous copolymeric hybrid monolith materials. In preferred embodiments, the monoliths comprise coalesced porous inorganic/organic homogenous copolymeric hybrid particles having at least about 10% carbon content by mass, about 15% to about 90% carbon content by mass, about 25% to about 75% carbon content by mass, about 30% to about 45% carbon content by mass, about 31% to about 40% carbon content by mass, about 32% to about 40% carbon content by mass, about 30% to about 45% carbon content by mass, about 15 to about 35% carbon content by mass, or about 15 to about 20% carbon content by mass. The inorganic portion of the hybrid monolith materials of the invention may be alumina, silica, titanium oxide, zirconium oxide, or ceramic materials.
For example, the invention relates to aporous inorganic/organic homogenous copolymeric hybrid material of the formula:
5 (A)x(B)y(C)z Formula I wherein the order of repeat units A, B, and C may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond; B is an organosiloxane repeat unit which is bonded to one or more repeat units B or C via an inorganic siloxane bond and which may be further 10 bonded to one or more repeat units A or B via an organic bond; C is an inorganic repeat unit which is bonded to one or more repeat units B or C via an inorganic bond; and 0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210. The relative values of x, y, and z may also be 0.003 < y/z < 50 and 0.02 < x/(y+z) < 21 or 0.03 < y/z < 5 and 0.2 < x/(y+z) < 2.1.
Similarly, the invention relates to a porous inorganic/organic homogenous 15 copolymeric hybrid material of the formula:
(A)x(B)y(B*)y*(C)z Formula II wherein the order of repeat units A, B, B*, and C may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond; B is an organosiloxane repeat unit which is bonded 0 to one or more repeat units B or B* or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond, B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization; C is an inorganic repeat unit which is bonded to one or more repeat units B
25 or B* or C via an inorganic bond; and 0.0003 < (y+y*)/z < 500 and 0.002 < x/(y+y*+z) < 210.
Another aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
(A)x(B)y Formula III
30 wherein the order of repeat units A and B may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefm); B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic
35. bond; and 0.002 < x/y < 210. Another aspect of the invention is a porous inorganic/organic homogenous copolymeric hybrid material of the formula:
(A)x(B)y(B*)y* Formula IN wherein the order of repeat units A, B, and B* may be random, block, or a combination of random and block; A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond (e.g., a polymerized olefin); B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond; B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) components and has a protected functional group that may be deprotected after polymerization, but added as a third repeat unit. The relative stoichiometry of the A to (B+B*) components is the same as above, e.g., 0.002 < x/(y+y*) < 210.
Repeat unit A may be derived from a variety of organic monomer reagents possessing one or more polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated polymerization. A monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
A may also be one of the following:
Figure imgf000023_0001
Figure imgf000024_0001
wherein each R is independently H or a Cj-Ci o alkyl group (e.g, methyl, ethyl, or propyl); m is an integer of from 1 to about 20; n is an integer of from 0 to 10; and Q is hydrogen, N(Cι-6alkyl)3, N(Cι-6alkyl)2(Cι-6alkylene-SO3), or C(Cι-6-ιydroxyalkyl) .
Repeat unit B may be derived from several mixed organic-inorganic monomer reagents possessing two or more different polymerizable moieties, capable of undergoing polymerization, e.g., a free radical-mediated (organic) and hydrolytic (inorganic) polymerization. B monomers may be oligomerized or polymerized by a number of processes and mechanisms including, but not limited to, chain addition and step condensation processes, radical, anionic, cationic, ring-opening, group transfer, metathesis, and photochemical mechanisms.
B may also be one of the following:
Figure imgf000025_0001
Repeat unit C may be -Siθ2- and may be derived from an alkoxysilane, such as tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS).
In one embodiment, A is a substituted ethylene group, B is a oxysilyl-substituted alkylene group, and C is a oxysilyl group, for example the following:
Figure imgf000025_0002
In another example, the invention relates to a porous inorganic/organic homogenous copolymeric hybrid material of the invention may be represented by the following formula:
Figure imgf000026_0001
wherein Ri is H, F, Cl, Br, I, lower alkyl (e.g., CH3 or CH2CH3); R2 and R3 are each independently H, F, Cl, Br, I, alkane, substituted alkane, alkene, substituted alkene, aryl, substituted aryl, cyano, ether, substituted ether, embedded polar group; R4 and R5 are each independently H, F, Cl, Br, I, alkane, substituted alkane, alkene, substituted alkene, aryl, substituted aryl, ether, substituted ether, cyano, amino, substituted amino, diol, nitro, sulfonic acid, cation or anion exchange groups, 0 < a < 2x, 0 < b < 4, and 0 < c < 4, provided that b + c < 4 when a = 1; 1 < d < 20, and 0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210.
The invention also relates to materials made by the novel methods of the present invention. For example, the invention pertains to a porous inorganic/organic homogenous copolymeric hybrid material prepared by the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosiloxane, and (b) hydrolytic condensation of the product of step (a) with a tetraalkoxysilane. Likewise, the invention pertains to a porous inorganic/organic copolymeric hybrid material prepared by the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosiloxane, and (b) hydrolytic condensation of the product of step (a) with a tetraalkoxysilane, said material having at least 15% carbon content by mass.
The materials of the invention may be used as a liquid chromatography stationary phase; a sequestering reagent; a solid support for combinatorial chemistry; a solid support for oligosaccharide, polypeptide, or oligonucleotide synthesis; a solid support for a biological assay; a capillary biological assay device for mass spectrometry; a template for a controlled large pore polymer film; a capillary chromatography stationary phase; an electrokinetic pump packing material; a polymer additive; a catalyst; or a packing material for a microchip separation device. The materials of the invention are particularly suitable for use as a HPLC stationary phase or, in general, as a stationary phase in a separations device, such as chromatographic columns, thin layer plates, filtration membranes, sample cleanup devices, and microtiter plates.
The porous inorganic/organic homogenous copolymeric hybrid particles have a wide variety of end uses in the separation sciences, such as packing materials for chromatographic columns (wherein such columns may have improved stability to alkaline mobile phases and reduced peak tailing for basic analytes), thin layer chromatographic (TLC) plates, filtration membranes, microtiter plates, scavenger resins, solid phase organic synthesis supports (e.g., in automated peptide or oligonucleotide synthesizers), and the like having a stationary phase which includes porous inorganic/organic homogenous copolymeric hybrid particles. The stationary phase may be introduced by packing, coating, impregnation, etc., depending on the requirements of the particular device. In a particularly advantageous embodiment, the chromatographic device is a packed chromatographic column, such as commonly used in HPLC.
Examples
The present invention may be further illustrated by the following non-limiting examples describing the preparation of porous inorganic/organic hybrid materials, and their use.
EXAMPLE 1
One or more organoalkoxysilanes alone or in combination with a one or more alkoxysilanes (all from Gelest Inc., Tullytown, PA) were mixed with an alcohol (HPLC grade, J.T. Baker, Phillipsburgh, NJ) and 0.1 N hydrochloric acid (Aldrich Chemical,
Milwaukee, WI) in a flask. The resulting solution was agitated and refluxed for 16 hours in an atmosphere of argon or nitrogen. Alcohol was removed from the flask via distillation at atmospheric pressure. Residual alcohol and volatile species were removed by heating at 115- 140° C for 1-2 hours in a sweeping stream of argon or nitrogen or by heating at 125 °C under reduced pressure for 1-2 hours. The resulting polyorganoalkoxysiloxanes were colorless viscous liquids. The chemical formulas are listed in Table 1 for the organotrialkoxysilanes and alkoxysilanes used to make the product polyorganoalkoxysiloxanes (POS). Specific amounts are listed in Table 2 for the starting materials used to prepare these products. Example le was made from 298 g of (3-methacryloxypropyl)trimethoxysilane and 221 g of octyltriethoxysilane. Example lj was made from bis(trimethoxysilylpropyl)acrylamide and tetramethoxysilane. The bis(trimethoxysilylpropyl)acrylamide was prepared separately from the reaction of 2 equivalents of bis(trimethoxysilylpropyl)amine (Gelest Inc., Tullytown, PA) and 1 equivalent of acryloyl chloride (Aldrich Chemical, Milwaukee, WI) in dry hexane (HPLC grade, J.T. Baker, Phillipsburgh, NJ). The second equivalent of amine sequestered the HCl condensate of the amide formation, where the amine hydrochloride salt was removed from the amide solution by filtration. The product structure was confirmed by lR, 13C, and 29Si NMR spectroscopy. TABLE 1
Product Organoalkoxysilanes Alkoxysilane Alcohol
Chemical Formula Chemical Formula Chemical Formula
Figure imgf000028_0001
lb H2C=C(CH3)C02C3H6Si(OCH3)3 Si(OCH3)4 CH3OH lc,d H2C=C(CH3)C02C3H6Si(OCH3)3 Si(OCH2CH3)4 CH3CH2OH le H2C=C(CH3)C02C3H6Si(OCH3)3 and na CH3OH
C8H17Si(OCH2CH3)3 if.g H2C=CHC6H4(CH2)2Si(OCH3)3 Si(OCH2CH3)4 CH3CH2OH lh,i H2C=CHSi(OCH2CH3)3 Si(OCH2CH3)4 CH3CH2OH ij H2C=CHCON[C3H6Si(OCH3)3]2 Si(OCH2CH3)4 CH3CH2OH
TABLE 2
Product Organotrialkoxysilane Alkoxysilane 0. IN HCl Alcohol
(g) (g) (g) ( L) la 497 na 54 300 lb 497 61 68 300 lc 170 1428 170 347
Id 671 2250 304 788 le 298 and na 54 300
221 if 15 355 42 99 ig 20 156 19 47 lh 160 875 119 253 li 799 1750 297 736 ij 27 395 47.3 229
EXAMPLE 2
A solution of poly(vinyl alcohol) (PVA; 87%-89% hydrolyzed; Ave Mw 13,000- 23,000; Aldrich Chemical, Milwaukee, WI) in water was prepared by mixing and heating to 80 °C for 0.5 hours. Upon cooling, the PVA solution was combined with a solution comprising divinylbenzene (DVB; 80%; Dow Chemical, Midland, MI), a POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical), and or more of the following coporogens: 2-ethylhexanoic acid (2-EHA; Aldrich Chemical), toluene (HPLC grade, J.T. Baker, Phillipsburgh, NJ), cyclohexanol (CXL; Aldrich Chemical), l-methyl-2- pyrrolidinone (NMP; Aldrich Chemical). The two solutions were mixed initially using a mechanical stirrer with Teflon paddle and then emulsified by passing the mixture through a static mixer for 10 minutes under an argon flow. With continuous static mixing, the emulsification was heated to 70-80 °C in a period of 30 minutes. Thereafter, the emulsion was agitated mechanically at 70-80 °C for 16 hours. Upon cooling, the suspension of formed particles was filtered and then washed consecutively with copious amounts of water and then methanol. The particles were then dried at 100 °C at a reduced pressure for 16 hours. Specific reagent amounts and reaction conditions are listed in Table 3. The specific surface areas (SSA), specific pore volumes (SPN) and the average pore diameters (APD) of these materials were measured using the multi-point Ν2 sorption method and are listed in Table 3 (Micromeritics ASAP 2400; Micromeritics Instruments Inc., Norcross, GA, or equivalent). The specific surface area was calculated using the BET method, the specific pore volume was the single point value determined for P/Po > 0.98, and the average pore diameter was calculated from the desorption leg of the isotherm using the BJH method.
EXAMPLE 3
A solution of Triton® X-45 (Aq X-45; Fluka, Milwaukee, WI), Triton® X-100 (Aq X-100; Fluka, Milwaukee, WI), or Methocel E15 (M E15, Dow, Grove City, OH; aqueous solution prepared by preheating water to 90 °C before addition of M El 5 and cooling to 25 °C) in water and or ethanol was prepared by mixing and heating to 60 °C for 0.5-1.0 hours. In a separate flask, a solution was prepared under a nitrogen purge at ambient temperature by mixing for 0.5 hours divinylbenzene (DVB; 80%; Dow Chemical, Midland, MI; washed 3X in 0.1 N NaOH, 3X in water, and then dried MgSO4 from Aldrich Chemical), a POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical), and one or more of the following reagents: toluene (HPLC grade, J.T. Baker, Phillipsburgh, NJ), cyclohexanol (CXL; Aldrich, Milwaukee, WI), dibutylphthalate (DBP; Sigma; Milwaukee, WI), Triton® X-45 (Oil X-45; Fluka, Milwaukee, WI). For example 3f, 14 g of Pluronic® F-87 (F-87; BASF; Mount Olive, NJ), was further added to the aqueous phase prior to mixing. For examples 3k, 31, 3m, 3n, 3r, and 3v, 0.8 g (3k-3n) and 4.5 g (3r, 3v) of tris(hydroxymethyl)aminomethane lauryl sulfate (TDS; Fluka, Milwaukee, WI) was further added to the aqueous solution prior to combination with the oil solution. For examples 3p and 3q, 2.8 and 0.4 grams respectively of poly(vinyl alcohol) (PVA; 87%-89% hydrolyzed; Ave Mw 13,000-23,000; Aldrich Chemical) was further added to the aqueous solution prior to combination with the oil solution. The two solutions were combined and then emulsified using a rotor/stator mixer (Model 100L, Charles Ross & Son Co., Hauppauge, NY) for 4 minutes under an argon flow. Next, a solution of 14.8 M ammonium hydroxide (NH4OH; J.T. Baker, Phillipsburgh, NJ) was added to the emulsion over a minute, and the emulsification was continued for 20 minutes. For example 3m and 3aa, the mixture was emulsified first, then heated at 80 °C for 1 hour prior to ammonium hydroxide addition. Thereafter, the emulsion was agitated mechanically at 80 °C for 16-24 hours. Upon cooling, the suspension of formed particles was filtered and then washed consecutively with copious amounts of methanol, water and then methanol. The particles were then dried at 80 °C at a reduced pressure for 16 hours. Specific reagent amounts and reaction conditions are listed in Table 4. The specific surface areas (SSA), specific pore volumes (SPV) and the average pore diameters (APD) of these materials are listed in Table 4 and were measured as described in Example 2. The %C values of these materials were measured by combustion analysis (CE- 440 Elemental Analyzer; Exeter Analytical Inc., North Chelmsford, MA, or equivalent).
EXAMPLE 4
A solution of Triton® X-45 (Aq X-45; Fluka, Milwaukee, WI) in water and ethanol was prepared by mixing and heating to 60 °C for 0.5-1.0 hours. In a separate flask, a solution was prepared under a nitrogen purge at ambient temperature by mixing for 0.5 hours one or more organic monomers selected from the following; divinylbenzene (DVB; 80%; Dow Chemical, Midland, MI; washed 3X in 0.1 N NaOH, 3X in water, and then dried MgSO4 from Aldrich Chemical), Styrene (STY, 96%; Aldrich Chemical; washed 3X in 0.1 N NaOH, 3X in water, and then dried MgS0 from Aldrich Chemical), tert-butyl methacrylate (TBM, 98%, Aldrich Chemical), ethylene glycol dimethacrylate (EGD, 98%, Aldrich Chemical), 1,4-Butanediol dimethacrylate (BDM, 95%, Aldrich Chemical), l-vinyl-2-pyrrolidinone
(NVP, 99%, Aldrich Chemical), a POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical), cyclohexanol (CXL; Aldrich, Milwaukee, WI), and Triton® X-45 (Oil X-45; Fluka, Milwaukee, WI). The two solutions were combined and then emulsified using a rotor/stator mixer (Model 100L, Charles Ross & Son Co., Hauppauge, NY) for 4 minutes under an argon flow. Next, a solution of 14.8 M ammonium hydroxide (NH OH; J.T. Baker, Phillipsburgh, NJ) was added to the emulsion over a minute, and the emulsification was continued for 15 minutes. Thereafter, the emulsion was agitated mechanically at 80 °C for 16-24 hours. Upon cooling, the suspension of formed particles was filtered and then washed consecutively with copious amounts of methanol, water and then methanol. The particles were then dried at 80 °C at a reduced pressure for 16 hours. Specific reagent amounts and reaction conditions are listed in Table 5. The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 5 and were measured as described in Examples 2 and 3. TABLE 3
Product POS POS DVB A [BN Toluene 2-EHA CXL NMP Water PVA %C SSA SPV APD
Reagent (g) (g) -ε) (mL) (g) (g) (g) (mL) (g) (m2/g) (cm3/g) (A)
2a la 102 174 1.8 242 0 0 0 1500 20 74.0 622 0.60 45
2b la 138 138 1.8 242 0 0 0 1480 20 68.0 522 0.45 38
2c la 108 174 1.8 121 121 0 0 1500 20 — 506 0.57 50
2d la 75 75 0 182 0 0 1750 16 — 434 0.72 69
2e la 55 96 1 0 182 0 0 1750 16 — 566 0.96 82
2f lb 55 96 0 182 0 0 1750 16 72.3 585 1.12 95
2g lb 55 96 1 0 132 0 0 1750 16 73.6 552 0.79 71
2h lb 55 96 1 80 52 0 0 1750 16 72.2 510 0.57 51
2i lb 55 96 1 33 0 99 0 1750 16 — 545 0.41 37 w 2j lb 55 96 1 .2 83 0 0 83 1750 16 — 512 0.34 32 o 2k lb 60 90 1 .2 33 0 0 132 1750 16 3 3 535
Figure imgf000032_0001
TABLE S
Product POS POS Organic Monomer AIBN Coporogen Coporogen Oil Ethanol Water Aq X-45 %C SSA SPV APD
Reagent Monomer X-45
(g) (mL) (g) Type (mL) (mL) (mL) (g) (m2/g ) (cm3/g (A)
(g) )
4a lc 58 EGD 14 0.17 CXL 26 3.5 66 280 3.5 25.1 560 0.99 77
4b lc 58 BDM 14 0.15 CXL 26 3.5 66 280 3.5 25.8 528 0.93 78
4c lc 58 DVB/TBM 14/3 0.15 CXL 26 3.5 66 280 3.5 33.9 559 0.97 76
4d lc 58 DVB/NVP 12/3 0.15 CXL 26 3.5 66 280 3.5 33.5 428 0.84 74
4e lc 58 DVB/STY 7/7 0.15 CXL 26 3.5 66 280 3.5 26.9 544 0.90 70
4f lc 58 DVB/STY 3/11 0.15 CXL 26 3.5 66 280 3.5 27.1 514 0.91 72
4g lc 58 STY 14 0.15 CXL 26 3.5 66 280 3.5 20.2 530 0.94 71
S3
TABLE 6
Product POS POS DVB AIBN Coporogen Coporogen SSA SPV APD
Reagent Type
(g) (g) (g) (g) (m2/g ) (cm3/g) (A)
5a le 1.3 2.2 0.04 2-EHA 5.5 517 0.82 88
5b le 1.3 2.2 0.04 DDL 5.9 452 0.71 100
5c le 1.3 2.2 0.04 CXL 5.5 501 0.81 88
5d le 1.3 2.2 0.04 toluene/DDL 3.0/3.0 534 0.83 90
EXAMPLE 5
Pyrex glass tubes (NWR, Bridgeport, ΝJ) were derivatized using the following procedure: Treat the glass surface to 2.5 molar sodium hydroxide solution (Aldrich Chemical) for 16 hours at ambient room temperature, wash with copious amounts of water, treat the glass surface with concentrated hydrochloric acid (J.T. Baker) for 1 hour at ambient room temperature, wash with copious amounts of water, and then dry at 100 °C under reduced pressure. The glass surface was subsequently derivatized by treating for 16 hours at 50 °C with a mixture prepared from 19 g of pyridine (J.T. Baker), 12.5 g (3- methacryloxypropyl)trichlorosilane (Gelest Inc.), and 40 g of toluene (HPLC grade, J.T. Baker). The glass tubes were then washed with tetrahydrofuran (THF; J.T. Baker), water, and THF, and then dried at 100 °C and reduced pressure.
To the derivatized tubes were added a solution comprising divinylbenzene (DNB; 80%; Dow Chemical), a POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIBΝ; 98%, Aldrich Chemical), and on or more of the following coporogens: 2-ethylhexanoic acid (2-EHA; Aldrich Chemical), toluene (HPLC grade, J.T. Baker), cyclohexanol (CXL; Aldrich Chemical), 1-dodecanol (DDL; Aldrich Chemical). The filled tubes were subsequently heated for 20 hours at 75 °C. The resultant monolithic materials were washed by Soxhlet extraction using methanol (HPLC grade, J.T. Baker) for 16 hours and then dried at 80-100 °C and reduced pressure. The specific surface areas (SSA), specific pore volumes (SPN) and the average pore diameters (APD) of these materials are listed in Table 6 and were measured as described in Example 2.
EXAMPLE 6
A solution of Triton® X-45 (Aq X-45; Fluka, Milwaukee, WI), Triton® X-100 (Aq X-100; Fluka, Milwaukee, WI), Triton® X-165 (Aq X-165; Sigma, St. Louis, MO), Triton® X-305 (Aq X-305; Sigma, St. Louis, MO), Triton® X-705 (Aq X-705; Sigma, St. Louis,
MO), or ammonium laurylsulfate (Aq ALS, Fluka, Milwaukee, WI, 30% solution by weight in water) in water and or ethanol was prepared by mixing and heating to 60 °C for 0.5-1.0 hours. In a separate flask, a solution was prepared under a nitrogen purge at ambient temperature by mixing for 0.5 hours divinylbenzene (DNB; 80%; Dow Chemical, Midland, MI; washed 3X in 0.1 Ν ΝaOH, 3X in water, and then dried MgSO4 from Aldrich
Chemical), a POS selected from Example 1, 2,2'-azobisisobutyronitrile (AIBΝ; 98%, Aldrich Chemical), and on or more of the following reagents: toluene (HPLC grade, J.T. Baker, Phillipsburgh, ΝJ), cyclohexanol (CXL; Aldrich, Milwaukee, WI), and Triton® X-45 (Oil X- 45; Fluka, Milwaukee, WI). For example 6b, 6c, and 6k, 0.4-1.9 g of ammonium laurylsulfate (Aq ALS, Fluka, Milwaukee, WI, 30% solution by weight in water) was further added to the aqueous phase prior to combination with the oil solution. The two solutions were combined and then emulsified using a rotor/stator mixer (Model 100L, Charles Ross & Son Co., Hauppauge, NY) for 13-27 minutes under an argon flow. Next, a solution of 14.8 M ammonium hydroxide (NH OH; J.T. Baker, Phillipsburgh, NJ) was added to the emulsion over a minute, and the emulsification was continued for 20 minutes. Thereafter, the emulsion was agitated mechanically at 80 °C for 16-24 hours. Upon cooling, the suspension of formed particles was filtered and then washed consecutively with copious amounts of methanol, water and then methanol. The particles were then dried at 80 °C at a reduced pressure for 16 hours. Specific reagent amounts and reaction conditions are listed in Table 7. The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 7 and were measured as described in Examples 2 and 3.
EXAMPLE 7
Spherical, porous, hybrid inorganic/organic particles of Examples 3, 4, and 6 were mixed with either tris(hydroxymethyl)aminomethane (TRIS, Aldrich Chemical, Milwaukee, WI) or tetraethylammomum hydroxide (35 weight % in water, TEAH, Aldrich Chemical, Milwaukee, WI) in a solution comprised of one or more of the following; water, ethanol (HPLC grade, J.T. Baker, Phillipsburgh, NJ), and pyridine (J.T. Baker, Phillipsburgh, NJ), yielding a slurry. The resultant slurry was then enclosed in a stainless steel autoclave and heated to between 140 -165 °C for 20 hours. After the autoclave cooled to room temperature the product was filtered and washed repeatedly using water and methanol (HPLC grade, J.T. Baker, Phillipsburgh, NJ), and then dried at 80 °C under vacuum for 16 hours. Specific hydrothermal conditions are listed in Table 8 (mL of base solution gram of hybrid silica particle, concentration and pH of initial TRIS solution, reaction temperature). The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 8 and were measured as described in Examples 2 and 3.
Figure imgf000036_0001
TABLE8
Product Precursor Amount Ethanol Pyridine Base Cone. pH Temp. %C SSA SPV APD Loss in SSA
(mL/g) Composition Composition (Molarity) (°C) (m2/g) (cc/g) (A) (m /g) (%Volume) (%Volume)
7a 3i 5 0 10 TRIS 0.30 10.4 160 32.0 547 1.28 98 25
7b 3h 10 0 30 TRIS 0.30 10.3 160 33.0 548 0.99 80
7c 3h 10 0 10 TRIS 0.60 10.5 160 33.1 506 0.91 81 50
7d 3e 10 0 0 TEAH 0.10 12.7 165 35.0 469 1.09 97 161
7e 3e 10 20 0 TRIS 0.30 10.1 155 32.3 570 1.12 82 60
7f 3e 10 20 0 TEAH 0.10 12.7 155 34.5 525 1.12 90 105
7g 4e 10 0 0 TEAH 0.10 12.4 165 27.6 373 0.86 95 171
7h 4f 10 0 0 TEAH 0.10 12.4 165 27.3 339 0.85 103 175
7i 3a 10 0 0 TEAH 0.10 12.7 165 33.4 331 0.45 56 123
7j 3c 10 0 0 TEAH 0.10 12.7 165 28.6 397 0.76 81 160
7k 6f 10 0 0 TEAH 0.10 12.8 165 33.6 345 0.62 83 118
EXAMPLE 8
The particles of hybrid silica prepared according to Examples 3r, 3v, and 3w were blended and then separated by particle size into ~ 3, ~5, and ~7 μm fractions. A 5.0 g amount of 3 μm fraction was combined with 100 mL of concentrated sulfuric acid (EM Science, Gibbstown, NJ) and stirred at room temperature in a 1 L round-bottom flask. After stirring for 1 hour, the solution was slowly added to a stirred solution of 400 mL water, and the mixture was stirred for 10 minutes. The modified hybrid silica particles were filtered and washed successively with water, methanol (J.T. Baker), and then dried at 80°C under reduced pressure for 16 hours. The particles were analyzed as described in Examples 2 and 3 and shown to have the following properties: 30.3 %C, 607 m2/g specific surface area (SSA), 1.51 cc/g specific pore volume (SPV), and 113 A average pore diameter (APD). The loading of sulfonic acid groups was determined to be 1.0 meq/gram as measured by titration with 0.1 N NaOH (Metrohm 716 DMS Titrino autotitrator with 6.0232.100 pH electrode; Metrohm, Hersau, Switzerland, or equivalent).
EXAMPLE 9
The particles of hybrid silica prepared according to Examples 3r, 3v, and 3w were blended and then separated by particle size into ~ 3, ~5, and ~7 μm fractions. The surface of a 3 μm material fraction was modified with chlorodimethyloctadecylsilane (Aldrich Chemical, Milwaukee, WI) as follows: 5 x 10"6 moles of silane per square meter of particle surface area and 1.6 equivalents (per mole silane) of imidazole (Aldrich Chemical, Milwaukee, WI) were added to a mixture of 15 g of hybrid silica particle in 100 mL of toluene (J.T. Baker) and the resultant mixture was refluxed for 20 hours. The modified hybrid silica particles were filtered and washed successively with water, toluene, 1:1 v/v acetone/water, and acetone (all solvents from J.T. Baker), and then dried at 80 °C under reduced pressure for 16 hours. The particles were analyzed as described in Examples 2 and 3 and shown to have the following properties: 40.2 %C, 333 m2/g specific surface area (SSA), 1.13 cc/g specific pore volume (SPV), and 118 A average pore diameter (APD). The surface concentration of octadecylsilyl groups was determined to be 1.44 μmol/m2 by the difference in particle %C before and after the surface modification as measured by elemental analysis.
EXAMPLE 10
The particles of hybrid silica prepared according to Example 3b and 3v were separated by particle size into ~ 3 μm fractions. The 3 μm fractions were tested for mechanical strength in the following manner: The material of interest was slurry packed using a downward slurry technique in a 3.9 x 10 mm cartridge at 500 psig to insure no crushing of particles occurs. The column packing apparatus comprised a high-pressure liquid packing pump (Model No: 10-500FS100 SC Hydraulic Engineering Corp., Los Angeles, CA, or equivalent). After packing, the cartridge was taken off the packing chamber and any excess material was wiped off flush with the cartridge face. The packed cartridge was then reattached to the chamber, which was filled with methanol. The cartridge was subjected to increasing pack pressures where the time to displace 20 mL of methanol was recorded at each 500 psig pressure increments from 500 psig to 9500 psig. Approximately 30 to 40 seconds were allowed at each pressure increment for the packed bed to stabilize at that pressure before the displacement time was measured. The time to displace 20 mL of methanol was then converted into flow rate (mL/min) by dividing the 20 mL displaced by the time (in seconds) and multiplying the result by 60.
PACKING CONDITIONS
Slurry Solvent: Methanol
Restriction: 0.009"x60"
Slurry/Chamber Vol.: 50 mL Valve Actuation: Closed
Material Amount: 0.25 g Pump Stroke Rate: 180/min.
Pack Pressure: 500 psig Displacement: 55 mL
PACK PRESSURE at OPEN FLOW RATES
440mls/min 9000 psig
360mls/min 6000 psig
240mls/min 3000 psig
The principle of the test is as follows: The packed material in the steel chromatographic cartridge (3.9 x 10 mm) is exposed to different pressures (500 - 9000 psig) of a methanol effluent. At high pressures the particle beds of weak materials can compact or crush, which results in a restriction of methanol flow. The closer the methanol flow remains to the linear trend predicted for an ideal particle, the greater the mechanical stability of the packed bed material. As a means to normalize differences in particle size and packing parameters, and make direct comparisons of the effect of pressure on the stability of the base materials, the methanol flow rates are normalized to the flow obtained for the respective columns at 1000 psig back pressure.
A comparison of mechanical strength results is shown in Figure 1 for commercially available silica based (5 μm Symmetry® Cι8, Waters Corporation) and polymeric based (7 μm Ultrastyragel™ 106 A and 7 μm Ultrastyragel™ 104 A, Waters Corporation) materials and the two 3 μm fractions of Examples 3b and 3v. It is evident that the hybrid packing material 3b is mechanically stronger than the polymeric based materials and has comparable strength to the silica based material. EXAMPLE 11
A solution was prepared using 5 mL of an acetic acid solution (J.T. Baker, Phillipsburgh, NJ), Pluronic F-38 (BASF Corporation, Mount Olive, NJ), 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical, Milwaukee, WI) and a water soluble monomer, including N- [tris(hydroxymethyl)methyl]acrylamide (THMMA, Aldrich Chemical, Milwaukee, WI), (3- acrylamidopropyl)trimethylammonium chloride (APTA, 75 wt.% solution in water, Aldrich Chemical, Milwaukee, WI), [3-(methacryloylamino)propyl]dimethyl(3- sulfopropyl)ammonium hydroxide inner salt (MAPDAHI, Aldrich Chemical) or polyethylene glycol dimethacrylate (PEGDMA, Aldrich Chemical). This mixture was stirred for 2 hours at room temperature, and then sonicated for 5 minutes. A 2 mL aliquot of a 4: 1 v/v mixture of tetramethylorthosilicate (TMOS, Aldrich Chemical, Milwaukee, WI) and 3- (trimethoxysilyl)propylmethacrylate (MAPTMOS, Aldrich Chemical, Milwaukee, WI) was added to the solution, which was then stirred in an ice water bath for 1 hour, and for a further 1 hour at room temperature. The solution was transferred to a cylindrical glass container, and placed in a oven for 16-24 hours at 45 °C. Following removal from the cylindrical container, the monoliths were rinsed with water and then left for 24 hours in a 0.1 N ammonium hydroxide solution at 65 °C. After this treatment, the monoliths were washed with water, refluxed in methanol for 24 hours, and then dried for 16-24 hours at 85 °C under reduced pressure. Specific reagent amounts and reaction conditions are listed in Table 9. The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 9 and were measured as described in Examples 2 and 3.
TABLE 9
Product Monomer Monomer F-38 AIBN AcOH %C SSA SPV APD Amount (g) (mg) (Molarity) (m2/g ) (cm3/g) (A)
(g)
11a PEGDMA- Mn - -875 0.4987 0.2001 5.7 0.02 29.5 380 0.38 40 l ib PEGDMA- Mn - -875 0.7569 0.2001 6.5 0.02 23.2 260 0.33 47 l ie PEGDMA- Mn - -875 0.7557 0.3980 5.8 0.10 19.7 232 0.3 46 l id PEGDMA- Mn - -875 1.0099 0.3992 5.8 0.02 19.9 205 0.38 57 l ie PEGDMA- Mn - -875 0.5021 0.4019 5.1 0.01 16.3 494 0.7 60 l lf PEGDMA- Mn * -258 0.5052 0.2052 5.5 0.02 32.1 411 0.4 41
Hg PEGDMA- Mn - -258 0.5091 0.1985 5.5 0.01 27.3 505 0.5 43 l lh PEGDMA- Mn - -258 0.5132 0.4017 5.4 0.01 27.3 270 0.28 41
Hi MAPDAHI 0.5003 0.2026 5.2 0.02 16.3 539 0.63 48 π j MAPDAHI 0.5021 0.4007 5.4 0.02 15.1 542 0.66 49
I lk MAPDAHI 0.5006 0.6000 5.9 0.02 15.4 536 1.25 109
111 APTA 0.6661 0.4008 7.3 0.02 15.9 459 1.33 133
11m APTA 0.6533 0.4012 7.5 0.05 16.1 484 1.18 107 l ln THMMA 0.5368 0.4062 5.6 0.01 14.9 575 0.66 49 l lo THMMA 0.5311 0.4019 5.2 0.05 17.3 583 0.53 38
EXAMPLE 12
Monoliths synthesized in Example 11 were placed in a stainless steel autoclave and immersed in a solution of 0.3 N tris(hydroxymethyl)aminomethane (TRIS, Aldrich Chemical, Milwaukee, WI). The solution was then heated to 155 °C for 22 hours. After the autoclave cooled to room temperature the products were washed repeatedly using water and methanol (HPLC grade, J.T. Baker, Phillipsburgh, NJ), and then dried at 85 °C under reduced pressure. 0 The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 10 and were measured as described in Examples 2 and 3. TABLE 10
Product Precursor %C SSA SPV APD
(m2/g ) (cm3/g) (A)
12a 11a 28.3 145 0.28 60
12b lie 31.6 104 0.23 65
12c l ie 20.6 149 0.67 172
12d llf 29.9 75 0.13 47
12e Hg 27.3 76 0.21 70
EXAMPLE 13
Monoliths made by the formulation of Examples lie and llh were immersed in glass vials containing a) dichloromethane, b) diethyl ether, c) toluene, d) methanol, e) water (pH 10 - NaOH), f) water (pH 3 - HCl), g) acetonitrile, h) dimethylsulfoxide, i) hexanes or j) tetrahydrofuran for 24 hours. The diameter and length of each of the monoliths showed no dimensional changes in any of the solvents within experimental error as measured by electronic caliper (Model 62379-531, Control Company, Friendswood, TX or equivalent).
EXAMPLE 14
A solution of poly(vinyl alcohol) (PVA; 87%-89% hydrolyzed; Ave Mw 13,000- 23,000; Aldrich Chemical, Milwaukee, WI) in 1000 mL water was prepared by mixing and heating to 80°C for 0.5 hours. Upon cooling, the PVA solution was combined with a solution comprising divinylbenzene (DVB; 80%; Dow Chemical, Midland, MI), N-vinyl pyrcolidinone (NVP, Aldrich Chemical, Milwaukee, WI), 3-(trimethoxysilyl)propyl methacrylate (MAPTMOS, Aldrich Chemical, Milwaukee, WI), 2,2'-azobisisobutyronitrile (AIBN; 98%, Aldrich Chemical), and toluene (HPLC grade, J.T. Baker, Phillipsburgh, NJ). The two solutions were mixed initially using a mechanical stirrer with Teflon paddle and then emulsified by passing the mixture through a static mixer for 30 minutes under an argon flow. The emulsion was heated to 70 °C with mechanical agitation, and left to stir at this temperature for 16 hours. Upon cooling, the suspension of formed particles was filtered and then washed consecutively with copious amounts of hot water (80-100 °C) and then methanol. The particles were then dried at 85 °C at a reduced pressure for 16 hours. Specific reagent amounts and reaction conditions are listed in Table 11. The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 11 and were measured as described in Examples 2 and 3. TABLE 11
Product DVB AIBN Toluene NVP MAPTMOS PVA %C SSA SPV APD
(g) (g) (mL) (g) (g) (g) (m2/g ) (cm3/g) (A)
14a 175 1.9 243 77.3 39 20 79.8 622 0.81 64
14b 174 1.9 243 103 77 20 77.3 394 0.32 35
14c 175 1.9 244 103 39 20 80.0 642 0.81 60
EXAMPLE 15
Spherical, porous, hybrid inorganic/organic particles of Example 14 were mixed in either 1.0 or 2.5 M solutions of NaOH in water (Aldrich Chemical, Milwaukee, WI), yielding a suspension. The resultant suspension was then heated at 85-100 °C for 24-48 hours. After the reaction was cooled to room temperature the products were filtered and washed repeatedly using water and methanol (HPLC grade, J.T. Baker, Phillipsburgh, NJ), and then dried at 80°C under vacuum for 16 hours. This processing yielded free silanol groups, as evidenced by 29Si CP-MAS NMR spectroscopy. Specific amounts and conditions are listed in Table 12 (mL base solution/gram hybrid particle, base concentration, reaction temperature, and reaction time). The specific surface areas (SSA), specific pore volumes (SPV), the average pore diameters (APD) and the %C of these materials are listed in Table 12 and were measured as described in Examples 2 and 3.
TABLE 12
Product Precursor Base Base Time Temp. %C SSA SPV APD
Amount Cone. (h)
(°C) (m2/g ) (cm3/g) (A)
(mL/g) (Molarity)
15a 14a 2.5 1.0 24 85 79.8 675 0.86 65
15b 14b 2.5 1.0 24 85 76.6 536 0.40 35
15c 14c 2.5 1.0 24 85 79.0 700 0.90 63
Incorporation by Reference
The entire contents of all patents, published patent applications and other references cited herein are hereby expressly incorporated herein in their entireties by reference. Equivalents
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents were considered to be within the scope of this invention and are covered by the following claims. The contents of all references, issued patents, and published patent applications cited throughout this application are hereby incorporated by reference.

Claims

WHAT IS CLAIMED IS:
I . A porous inorganic/organic homogenous copolymeric hybrid material, wherein said material has at least about 10% carbon content by mass.
2. A porous inorganic/organic homogenous copolymeric hybrid material, wherein said material consists essentially of spherical particles.
3. The material according to claim 1, comprising porous inorganic/organic homogenous copolymeric hybrid particles.
4. The material according to claim 1, wherein said material has from about 15% to about 90% carbon content by mass.
5. The material according to claim 1, wherein said material has from about 25% to about 75% carbon content by mass.
6. The material according to claim 1 , wherein said material has from about 30% to about 45% carbon content by mass.
7. The material according to claim 1 , wherein said material has from about 31 % to about 40% carbon content by mass.
8. The material according to claim 1 , wherein said material has from about 32% to about 40% carbon content by mass.
9. The material according to claim 1, wherein said material has from about 33% to about 40% carbon content by mass.
10. The material according to claim 2, wherein said particles are approximately spherical.
I I . The material according the claim 10, wherein said particles have an average diameter of about 0.1 μm to about 60 μm.
12. The material according the claim 10, wherein said particles have an average diameter of about 2.0 μm to about 15 μm.
13. The material according to claim 1, wherein said material has a specific surface area of about 50-800 m2/g.
14. The material according to claim 1, wherein said material has a specific surface area of about 400-700 m2/g.
15. The material according to claim 1, wherein said material has specific pore volumes of about 0.2 to 2.5 cm3/g.
16. The material according to claim 1, wherein said material has specific pore volumes of about 0.4 to 2.0 cm3/g.
17. The material according to claim 1, wherein said material has specific pore volumes of about 0.5 to 1.3 cr Vg.
18. The material according to claim 1 , wherein said material has an average pore diameter ofabout 20 to 300 .
19. The material according to claim 1, wherein said material has an average pore diameter ofabout 50 to 200 A.
20. The material according to claim 1, wherein said material hasan average pore diameter ofabout 75 to l25 A.
21. The material according to claim 1, wherein said material is hydrolytically stable at a pH of about 1 to about 13.
22. The material according to claim 1 , wherein said material is hydrolytically stable at a pH of about 2 to about 11.
23. The material according to claim 1, wherein said material is hydrolytically stable at a pH of about 3 to about 10.
24. The material according to claim 1, wherein said material is hydrolytically stable at a pH of about 4 to about 9.
25. The material according to claim 1 , wherein said material is hydrolytically stable at a pH of about 5 to about 8.
26. The material according to claim 1 , wherein said material is surface modified by formation of a chemical bond between an inorganic or organic group of the material and a surface modifier.
27. The material according to claim 3, wherein said particles are surface modified by formation of a chemical bond between an inorganic or organic group of the particles and a surface modifier.
28. The material according to claim 26 or 27, wherein the surface modifier is selected from the group consisting of an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations thereof.
29. The material according to claim 1 , wherein said material is surface modified by a surface modifier selected from the group consisting of an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations thereof.
30. The material according to claim 26, 27, 28, or 29, wherein said surface modifier has the formula Za(R')bSi-R, where Z = Cl, Br, I, - C5 alkoxy, dialkylamino or trifluoromethanesulfonate; a and b are each an integer from 0 to 3 provided that a + b = 3; R' is a - C6 straight, cyclic or branched alkyl group, and R is a functionalizing group.
31. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is a polymer coating.
32. The material according to claim 31, wherein said polymer is Sylgard®.
33. The material according to claim 30, wherein R' is selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, t-butyl, sec-butyl, pentyl, isopentyl, hexyl and cyclohexyl.
34. The material according to claim 30, wherein the functionalizing group R is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cyano, amino, diol, nitro, ester, a cation or anion exchange group, and an alkyl or aryl group containing an embedded polar functionality.
35. The material according to claim 34, wherein said functionalizing group R is a - C30 alkyl group.
36. The material according to claim 34, wherein said functionalizing group R is a - C20 alkyl group.
37. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is selected from the group consisting of octyltrichlorosilane, octadecyltrichlorosilane, octyldimethylchlorosilane, and octadecyldimethylchlorosilane.
38. The material according to claim 37, wherein said surface modifier is octyltrichlorosilane or octadecyltrichlorosilane.
39. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is a combination of an organic group surface modifier and a silanol group surface modifier.
40. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is a combination of an organic group surface modifier and a polymeric coating surface modifier.
41. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is a combination of a silanol group surface modifier and a polymeric coating surface modifier.
42. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is a combination of an organic group surface modifier, a silanol group surface modifier, and a polymeric coating surface modifier.
43. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is a silanol group surface modifier.
44. A porous inorganic/organic homogenous copolymeric hybrid monolith material.
45. The material according to claim 44, comprising coalesced porous inorganic/organic homogenous copolymeric hybrid particles.
46. The material according to claim 44 or 45, wherein said material has at least about 10% carbon content by mass.
47. The material according to claim 44 or 45, wherein said material has from about 15% to about 90%) carbon content by mass.
48. The material according to claim 44 or 45, wherein said material has from about 25% to about 75% carbon content by mass.
49. The material according to claim 44 or 45, wherein said material has from about 30% to about 45% carbon content by mass.
50. The material according to claim 44 or 45, wherein said material has from about 31% to about 40% carbon content by mass.
51. The material according to claim 44 or 45, wherein said material has from about 32% to about 40%) carbon content by mass.
52. The material according to claim 44 or 45, wherein said inorganic portion of said hybrid monolith material is selected from the group consisting of alumina, silica, titanium oxide, zirconium oxide, ceramic materials, and combinations thereof.
53. The material according to claim 44 or 45, wherein said inorganic portion of said hybrid monolith material is silica.
54. The material according to claim 44 or 45, wherein said surface of saidmaterial has been surface modified by a surface modifier selected from the group consisting of an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations thereof.
55. The material according to claim 54, wherein the particles have been surface modified with a surface modifier having the formula Za(R')bSi-R, where Z = Cl, Br, I, d - C5 alkoxy, dialkylamino or trifluoromethanesulfonate; a and b are each an integer from 0 to 3 provided that a + b = 3; R' is a - C6 straight, cyclic or branched alkyl group, and R is a functionalizing group.
56. A porous inorganic/organic homogenous copolymeric hybrid material of the formula:
(A)x(B)y(C)z wherein the order of repeat units A, B, and C may be random, block, or a combination of random and block;
A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond; B is an organosiloxane repeat unit which is bonded to one or more repeat units B or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
C is an inorganic repeat unit which is bonded to one or more repeat units B or C via an inorganic bond; and x,y are positive numbers and z is a non negative number, wherein when z = 0, then 0.002 < x/y < 210, and when z ≠ 0, then
0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210.
57. A porous inorganic/organic homogenous copolymeric hybrid material of the formula:
(A)x(B)y(B*)y*(C)z wherein the order of repeat units A, B, B*, and C may be random, block, or a combination of random and block;
A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond;
Bis an organosiloxane repeat units which is bonded to one or more repeat units B or B* or C via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond;
B* is an organosiloxane repeat unit which is bonded to one or more repeat units B or B* or C via an inorganic siloxane bond, wherein B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization;
C is an inorganic repeat unit which is bonded to one or more repeat units B or B* or C via an inorganic bond; and x,y are positive numbers and z is a non negative number, wherein when z = 0, then 0.002 < x/(y+y*) < 210, and when z ≠ 0, then
0.0003 < (y+y*)/z < 500 and 0.002 < x/(y+y*+z) < 210.
58. The material according to claim 56, wherem B is bonded to one or more repeat units B or C via an inorganic siloxane bond and is bonded to one or more repeat units A or B via an organic bond.
59. The material according to any one of claims 56-58, wherein 0.003 < y/z < 50 and 0.02 < x/(y+z) < 21.
60. The material according to any one of claims 56-58, wherein 0.03 < y/z < 5 and 0.2 < x (y+z) < 2.1.
61. The material of any one of claims 56-58, wherem A is a substituted ethylene group, B is a oxysilyl-substituted alkylene group, and C is a oxysilyl group.
62. The material of any one of claims 56-58, wherein A is selected from the group consisting of
Figure imgf000050_0001
Figure imgf000050_0002
wherein each R is independently H or a Ci -Ci o alkyl group; ; m is an integer of from 1 to 20; n is an integer of from 0 to 10; and Q is hydrogen, N(Cι-6alkyl)3, N(Cι- 6alkyl)2(Cι-6alkylene-S03), or C(Cι-6hydroxyalkyl)3.
63. The material according to claim 62, wherein each R is independently hydrogen, methyl, ethyl, or propyl.
4. The material according to any one of claims 56-58, wherein B is selected from the group consisting of
Figure imgf000051_0001
65. The material according to any one of claims 56-58, wherein C is
Figure imgf000052_0001
66. A porous inorganic/organic homogenous copolymeric hybrid material of the formula:
Figure imgf000052_0002
wherein
Ri is H, F, Cl, Br, I, lower alkyl (e.g., CH or CH CH3);
R2 and R3 are each independently H, F, Cl, Br, I, alkane, substituted alkane, alkene, substituted alkene, aryl, substituted aryl, cyano, ether, substituted ether, embedded polar group; R4 and R5 are each independently H, F, Cl, Br, I, alkane, substituted alkane, alkene, substituted alkene, aryl, substituted aryl, ether, substituted ether, cyano, amino, substituted amino, diol, nitro, sulfonic acid, cation or anion exchange groups,
0 < a < 2x, 0 < b < 4, and 0 < c < 4, provided that b + c < 4 when a = 1; l < d < 20, 0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210.
67. The material according to claim 66, wherein 0.003 < y/z < 50 and 0.02 < x/(y+z) < 21.
68. The material according to claim 66, wherein 0.03 < y/z < 5 and 0.2 < x/(y+z) < 2.1.
69. The material according to any of the preceding claims, wherein said material comprises a liquid chromatography stationary phase; a sequestering reagent; a solid support for combinatorial chemistry; a solid support for oligosaccharide, polypeptide, or oligonucleotide synthesis; a solid support for a biological assay; a capillary biological assay device for mass spectrometry; a template for a controlled large pore polymer film; a capillary chromatography stationary phase; an electrokinetic pump packing material; a polymer additive; a catalyst; or a packing material for a microchip separation device.
70. The material according to claim 69, wherein said material comprise a HPLC stationary phase.
71. A separations device comprising a material according to any of claims 1 - 70.
72. The separations device according to claim 71, wherein said device is selected from the group consisting of chromatographic columns, thin layer plates, filtration membranes, sample cleanup devices, and microtiter plates.
73. A porous inorganic/organic homogenous copolymeric hybrid material prepared by the steps of
(a) hydrolytically condensing an alkenyl-functionalized organosilane with a tetraalkoxysilane,
(b) copolymerizing the product of step (a) with an organic olefin monomer, and
(c) further hydrolytically condensing the product of step (b) to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
74. A porous inorganic/organic copolymeric hybrid material prepared by the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosilane, and
(b) hydrolytically condensing the product of step (a) with a tetraalkoxysilane in the presence of a non-optically active porogen to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
75. The material according to claim 74, wherein said material having at least 15% carbon content by mass.
76. A method of preparing a porous inorganic/organic homogenous copolymeric hybrid material, comprising the steps of
(a) hydrolytically condensing an alkenyl-functionalized organosilane with a tetraalkoxysilane,
(b) copolymerizing the product of step (a) with an organic olefin monomer, and
(c) further hydrolytically condensing the product of step (b) to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
77. The method of claim 76, wherein said steps (b) and (c) are performed substantially simultaneously.
78. A method of preparing a porous inorganic/organic homogenous copolymeric hybrid material, comprising the steps of (a) copolymerizing an organic olefin monomer with an alkenyl-functionalized organosilane, and
(b) hydrolytically condensing the product of step (a) with a tetraalkoxysilane in the presence of a non-optically active porogen to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
79. A method of preparing a porous inorganic/organic homogenous copolymeric hybrid material, comprising substantially simultaneously copolymerizing an organic monomer with an alkenyl-functionalized organosilane and hydrolytically condensing said alkenyl-functionalized organosilane with a tetraalkoxysilane to thereby prepare a porous inorganic/organic homogenous copolymeric hybrid material.
80. The method according to any one of claims 76 - 79, wherein said copolymerizing step is free radical-initiated and wherein said hydrolytically condensing step is an acid- or base-catalyzed.
81. The method according to claim 80, wherein said hydrolytically condensing step is acid-catalyzed.
82. The method according to claims 80, wherein said hydrolytically condensing step is base-catalyzed.
83. The method according to claim 81, wherein said acid is selected from the group consisting of hydrochloric acid, hydrobromic acid, hydrofluoric acid, hydroiodic acid, sulfuric acid, formic acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, and phosphoric acid.
84. The method according to claim 82, wherein said base is selected from the group consisting of ammonium hydroxide, hydroxide salts of the group I and group II metals, carbonate and hydrogencarbonate salts of the group I metals, and alkoxide salts of the group I and group II metals.
85. The method according to claim 76 or 78, wherem said steps (a) and (b) are performed in the same reaction vessel.
86. The method according to any one of claims 76 or 78, wherein said steps (a) and (b) are performed in a solvent selected from the group consisting of water, methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, pentanol, hexanol, cyclohexanol, hexafluoroisopropanol, cyclohexane, petroleum ethers, diethyl ether, dialkyl ethers, tetrahydrofuran, acetonitrile, ethyl acetate, pentane, hexane, heptane, benzene, toluene, xylene, N,N-dimethylformamide, dimethyl sulfoxide, l-methyl-2- pyrrolidinone, methylene chloride, chloroform, and combinations thereof.
87. The method according to any one of claims 76 or 78, wherem either of said steps (a) and (b) further comprises addition of a porogen.
88. The method according to claim 87, wherein said porogen is selected from the group consisting of cyclohexanol, toluene, 2-ethylhexanoic acid, dibutylphthalate, 1-methyl- 2-pyπolidinone, 1-dodecanol, and Triton X-45.
89. The method according to claim 76 or 78, wherein said organic olefin monomer is selected from the group consisting of divinylbenzene, styrene, ethylene glycol dimethacrylate, l-vinyl-2-pyrrolidinone and tert-butylmethacrylate, acrylamide, methacrylamide, N,N'-(l,2-dihydroxyethylene)bisacrylamide, N,N'- ethylenebisacrylamide, N-N'-methylenebisacrylamide, butyl acrylate, ethyl acrylate, methyl acrylate, 2-(acryloxy)-2-hydroxypropyl methacrylate , 3-(acryloxy)-2- hydroxypropyl methacrylate, trimethylolpropane triacrylate, trimethylolpropane ethoxylate triacrylate, tris[(2-acryloyloxy)ethyl] isocyanurate, acrylonitrile, methacrylonitrile, itaconic acid, methacrylic acid, trimethylsilylmethacrylate, Ν- [tris(hydroxymethyl)methyl] acrylamide, (3 -acrylamidopropyl)trimethylammonium chloride, [3 -(methacryloylamino)propyl] dimethyl(3 -sulfopropyl)ammonium hydroxide inner salt,
Figure imgf000055_0001
90. The method according to claim 76 or 78, wherein said alkenyl-functionalized organosiloxane monomer is selected from the group consisting of methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, N-(3-acryloxy-2-hydroxypropyl)-3- aminopropyltriethoxysilane, (3-acryloxypropyl)trimethoxysilane, O- (methacryloxyethyl)-N-(triethoxysilylpropyl)urethane, N-(3-methacryloxy-2- hydroxypropyl)-3-aminopropyltriethoxysilane, methacryloxymethyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropyltris(methoxyethoxy)silane, 3-(N-styrylmethyl-2- aminoethylamino)propyltrimethoxysilane hydrochloride,
Figure imgf000056_0001
Figure imgf000056_0002
erem each R is independently H or a C1-C10 alkyl group and wherein R' is independently H or a Cl- C10 alkyl group.
91. The material according to claim 90, wherem each R is independently hydrogen, methyl, ethyl, or propyl.
92. The material according to claim 90, wherein all of the R groups are identical and selected from the group consisting of hydrogen, methyl, ethyl, or propyl.
93. The method according to claim 76 or 78, wherein said tetraalkoxysilane is selected from the group consisting of tetramethoxy silane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane.
94. The method of claim 93, wherem said tetraalkoxysilane is tetramethoxysilane or tetraethoxysilane.
95. The method according to claim 76 or 78, further comprising adding a free radical polymerization initiator.
96. The method according to claim 95, wherein said free radical polymerization initiator is selected from the group consisting of 2,2'-azobis-[2-(imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobisisobutyronitrile, 4,4 '-azobis(4-cyano valeric acid), 1,1'- azobis(cyclohexanecarbonitrile), 2,2 ' -azobis(2-propionamidine) dihydrochloride, 2,2'azobis(2,4-dimethylpentanenitrile), 2,2'-azobis(2-methylbutanenitrile), benzoyl peroxide, 2,2-bis(tert-butylperoxy)butane, l,l-bis(tert-butylperoxy)cyclohexane, 2,5- bis(tert-butylperoxy)butane,-2,5-dimethylhexane, 2,5-bis(tert-butylperoxy)-2,5- dimethyl-hexyne, bis(l -(tert-butylperoxy)- 1 -methyethyl)benzene, 1 , 1 -bis(tert- butylperoxy)-3,3,5-trimethylcyclohexane, tert-butyl hydroperoxide, tert-butyl peracetate, tert-butyl peroxide, tert-butyl peroxybenzoate, tert-butylperoxy isopropyl carbonate, cumene peroxide, cyclohexanone hydroperoxide, dicumyl peroxide, lauroyl peroxide, 2,4-pentanedione peroxide, peracetic acid, and potassium persulfate.
97. The method according to claim 95, further comprising heating following the addition of the free radical polymerization initiator.
98. The method according to claim 76 or 78, further comprising endcapping free silanol groups.
99. The method according to claim 76 or 78, wherein step (b) further comprises adding a surfactant or stabilizer.
100. The method according to claim 99, wherein said surfactant is Triton X-45, Triton X100, Triton X305, TLS, Pluronic F-87, Pluronic P-105, Pluronic P-123, sodium dodecylsulfate (SDS), or Triton X-405.
101. The method according to claim 99, wherein said stabilizer is methocel or poly(vinyl alcohol).
102. The method according to claim 76 or 78, further comprising chemically modifying said organic olefin or said alkenyl-functionalized organosiloxane prior to copolymerization.
103. The method according to claim 76 or 78, further comprising modifying surfaces of said hybrid materials by formation of an organic covalent bond between an organic group of the particle and a surface modifier.
104. The method according to claim 76 or 78, further comprising modifying surfaces of said porous hybrid materials obtained from step (b) by adding a surface modifier selected from the group consisting of an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations thereof.
105. The method according to claim 104, wherem said surface modifier has the formula Za(R')bSi-R, where Z = Cl, Br, I, C, - C5 alkoxy, dialkylamino or trifluoromethanesulfonate; a and b are each an integer from 0 to 3 provided that a + b = 3; R' is a Ci - C6 straight, cyclic or branched alkyl group, and R is a functionalizing group.
106. The method according to claim 104, wherein said surface modifier is a polymer coating.
107. The method according to claim 106, wherein said polymer is Sylgard®.
108. The material according to claim 105, wherein R' is selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, t-butyl, sec-butyl, pentyl, isopentyl, hexyl and cyclohexyl.
109. Themethod according to claim 105, wherein the functionalizing group R is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cyano, amino, diol, nitro, ester, a cation or anion exchange group, or an alkyl or aryl group containing an embedded polar functionality.
110. The method according to claim 109, wherein said functionalizing group R is a - C30 alkyl group.
111. The method according to claim 109, wherein said functionalizing group R is a - C20 alkyl group.
112. The method according to claim 104, wherein said surface modifier is selected from the group consisting of octyltrichlorosilane, octadecyltrichlorosilane, octyldimethylchlorosilane, and octadecyldimethylchlorosilane.
113. The method according to claim 112, wherein said surface modifier is octyltrichlorosilane or octadecyltrichlorosilane.
114. The method according to claim 104, wherein said surface modifier is a combination of an organic group surface modifier and a silanol group surface modifier.
115. The method according to claim 104, wherein said surface modifier is a combination of an organic group surface modifier and a polymeric coating surface modifier.
116. The method according to claim 104, wherein said surface modifier is combination of a silanol group surface modifier and a polymeric coating surface modifier.
117. The method according to claim 104, wherein said surface modifier is a combination of an organic group surface modifier, a silanol group surface modifier, and a polymeric coating surface modifier.
118. The method according to claim 104, wherein said surface modifier is a silanol group surface modifier.
119. The method of according to claim 104, wherem said surface modifier is an organic group surface modifier.
120. The porous inorganic/organic homogenous copolymeric hybrid material of claim 56, wherein z ≠ 0 and 0.0003 < y/z < 500 and 0.002 < x/(y+z) < 210.
121. The porous inorganic/organic homogenous copolymeric hybrid material of claim 57, wherein z ≠ 0 and 0.0003 < (y+y*)/z < 500 and 0.002 < x/ (y+y*+z) < 210.
122. The porous inorganic/organic homogenous copolymeric hybrid material of claim 56, wherein z = 0 and the hybrid material is of the formula:
(A)x(B)y wherem the order of repeat units A and B may be random, block, or a combination of random and block;
A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond;
B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond; and 0.002 < x/y < 210.
123. The porous inorganic/organic homogenous copolymeric hybrid material of claim 57, wherein z = 0 and the hybrid material is of the formula:
(A)x(B)y(B*)y* wherein the order of repeat units A, B, and B* may be random, block, or a combination of random and block;
A is an organic repeat unit which is covalently bonded to one or more repeat units A or B via an organic bond; B is an organosiloxane repeat unit which may or may not be bonded to one or more repeat units B or B* via an inorganic siloxane bond and which may be further bonded to one or more repeat units A or B via an organic bond
B* is an organosiloxane repeat unit that does not have reactive (i.e., polymerizable) organic components and may further have a protected functional group that may be deprotected after polymerization ; and 0.002 < x/(y+y*) 210.
124. The material according to claim 26, 27, 28, or 29, wherein said surface modifier is an organic group surface modifier.
125. The material according to claim 44 or 45, wherein said material is surface modified by a surface modifier selected from the group consisting of an organic group surface modifier, a silanol group surface modifier, a polymeric coating surface modifier, and combinations thereof.
126. The material according to claim 125, wherem said surface modifier has the formula Za(R')bSi-R, where Z = Cl, Br, I, C\ - C5 alkoxy, dialkylamino or trifluoromethanesulfonate; a and b are each an integer from 0 to 3 provided that a + b
= 3; R' is a Ci - C6 straight, cyclic or branched alkyl group, and R is a functionalizing group.
127. The material according to claim 125, wherein said surface modifier is a polymer coating.
128 The material according to claim 127, wherein said polymer is Sylgard®.
129. The material according to claim 126, wherein R' is selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl, t-butyl, sec-butyl, pentyl, isopentyl, hexyl and cyclohexyl.
130. The material according to claim 126, wherein the functionalizing group R is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, cyano, amino, diol, nitro, ester, a cation or anion exchange group, and an alkyl or aryl group containing an embedded polar functionality.
131. The material according to claim 130, wherein said functionalizing group R is a - C30 alkyl group.
132. The material according to claim 130, wherein said functionalizing group R is a - C20 alkyl group.
133. The material according to claim 125, wherein said surface modifier is selected from the group consisting of octyltrichlorosilane, octadecyltrichlorosilane, octyldimethylchlorosilane, and octadecyldimethylchlorosilane.
134. The material according to claim 133, wherein said surface modifier is octyltrichlorosilane or octadecyltrichlorosilane.
135. The material according to claim 125, wherein said surface modifier is a combination of an organic group surface modifier and a silanol group surface modifier.
136. The material according to claim 125, wherein said surface modifier is a combination of an organic group surface modifier and a polymeric coating surface modifier.
137. The material according to claim 125, wherein said surface modifier is a combination of a silanol group surface modifier and a polymeric coating surface modifier.
138. The material according to claim 125, wherein said surface modifier is a combination of an organic group surface modifier, a silanol group surface modifier, and a polymeric coating surface modifier.
139. The material according to claim 125, wherem said surface modifier is a silanol group surface modifier.
140. The material according to claim 125, wherein said surface modifier is an organic group surface modifier.
PCT/US2003/034776 2002-10-30 2003-10-30 Porous inorganic/organic hybrid materials and preparation thereof WO2004041398A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10393599T DE10393599T5 (en) 2002-10-30 2003-10-30 Porous inorganic / organic homogeneous hybrid copolymeric materials for chromatographic separations and methods for their preparation
DE10393599.1A DE10393599B4 (en) 2002-10-30 2003-10-30 Porous inorganic / organic homogeneous copolymeric hybrid materials for chromatographic separations and methods for their preparation
JP2004550384A JP2006504854A (en) 2002-10-30 2003-10-30 Porous inorganic / organic hybrid materials and their preparation
GB0508751A GB2414993B (en) 2002-10-30 2003-10-30 Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
AU2003285121A AU2003285121A1 (en) 2002-10-30 2003-10-30 Porous inorganic/organic hybrid materials and preparation thereof
US11/119,111 US20050230298A1 (en) 2002-10-30 2005-04-29 Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separation and process for the preparation thereof
US12/433,221 US8791220B2 (en) 2002-10-30 2009-04-30 Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separation and process for the preparation thereof
US14/206,538 US9211524B2 (en) 2002-10-30 2014-03-12 Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
US14/967,647 US9976008B2 (en) 2002-10-30 2015-12-14 Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42258002P 2002-10-30 2002-10-30
US60/422,580 2002-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/119,111 Continuation US20050230298A1 (en) 2002-10-30 2005-04-29 Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separation and process for the preparation thereof

Publications (2)

Publication Number Publication Date
WO2004041398A2 true WO2004041398A2 (en) 2004-05-21
WO2004041398A3 WO2004041398A3 (en) 2004-12-29

Family

ID=32312531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/034776 WO2004041398A2 (en) 2002-10-30 2003-10-30 Porous inorganic/organic hybrid materials and preparation thereof

Country Status (6)

Country Link
US (4) US20050230298A1 (en)
JP (1) JP2006504854A (en)
AU (1) AU2003285121A1 (en)
DE (2) DE10393599B4 (en)
GB (1) GB2414993B (en)
WO (1) WO2004041398A2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223473B2 (en) 1999-02-05 2007-05-29 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation
US7250214B2 (en) 2001-08-09 2007-07-31 Waters Investments Limited Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
CN100344591C (en) * 2004-10-28 2007-10-24 中国石油化工股份有限公司 Lower carbon number hydrocarbon alkylation reaction method
JP2008508516A (en) * 2004-07-30 2008-03-21 ウオーターズ・インベストメンツ・リミテツド Porous inorganic / organic hybrid materials with ordered domains for chromatographic separation and methods for their preparation
WO2008108738A1 (en) * 2007-03-08 2008-09-12 Agency For Science, Technology And Research Mesoporous polymer colloids
JP2008537570A (en) * 2005-04-05 2008-09-18 インスティテュート スペリオール テクニコ A process for producing monolithic xerogels and aerogels composed of silica / latex hybrids modified with alkoxysilane groups under subcritical conditions.
GB2419886B (en) * 2003-05-28 2008-12-17 Waters Investments Ltd Novel nanocomposites and their application as monolith columns
WO2013002909A1 (en) 2011-05-20 2013-01-03 Waters Technologies Corporation Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof
US8791220B2 (en) 2002-10-30 2014-07-29 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separation and process for the preparation thereof
US8952100B2 (en) 2008-11-11 2015-02-10 Styron Europe Gmbh Process to remove silanol from the preparation of a modified polymer
DE102014019372A1 (en) 2013-12-24 2015-06-25 Waters Technologies Corp. MATERIALS FOR A HYDROPHILIC INTERACTION CHROMATOGRAPHY AND METHOD FOR THE PREPARATION AND USE THEREOF FOR THE ANALYSIS OF GLYCOPROTEINS AND GLYCOPEPTIDES
US9248383B2 (en) 2008-04-08 2016-02-02 Waters Technologies Corporation Composite materials containing nanoparticles and their use in chromatography
CN106093169A (en) * 2016-07-11 2016-11-09 河南大学 Capillary tube open tubular column that a kind of sulfonic acid is modified and preparation method thereof
US9546257B2 (en) 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
WO2017155884A1 (en) 2016-03-06 2017-09-14 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
US10092893B2 (en) 2010-07-26 2018-10-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
US10150098B2 (en) 2009-08-04 2018-12-11 Waters Technologies Corporation High purity chromatographic materials comprising an ionizable modifier
US10159911B2 (en) 2009-08-04 2018-12-25 Waters Technologies Corporation High purity chromatographic materials comprising an ionizable modifier
CN109507321A (en) * 2018-11-28 2019-03-22 浙江博瑞电子科技有限公司 A kind of method of special impurities detection sensitivity in raising high-purity hydrogen chloride
US10773186B2 (en) 2004-07-30 2020-09-15 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
EP3964287A1 (en) 2009-06-01 2022-03-09 Waters Technologies Corporation Hybrid material for chromatographic separations
US11439977B2 (en) 2009-06-01 2022-09-13 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528167B2 (en) * 2001-01-31 2003-03-04 Waters Investments Limited Porous hybrid particles with organic groups removed from the surface
US7074491B2 (en) * 2003-11-04 2006-07-11 Dionex Corporation Polar silanes for binding to substrates and use of the bound substrates
JP2007523331A (en) * 2004-02-17 2007-08-16 ウオーターズ・インベストメンツ・リミテツド Porous hybrid monolithic material with organic groups removed from the surface
US20060078983A1 (en) * 2004-08-27 2006-04-13 Applera Corporation Polymer monolith substrate
DE102005019600A1 (en) * 2005-04-27 2006-11-09 Ivoclar Vivadent Ag Surface modified fillers
KR100840592B1 (en) 2006-05-15 2008-06-23 한국생산기술연구원 An Organic-Inorganic Hybrid Nanoporous Anion-Exchange Resins for the Treatment of Wastewater Contaminated by Perchlorate and the Method for Producing the Same
US8680311B2 (en) * 2006-11-07 2014-03-25 Waters Technologies Corporation Monolithic electrokinetic pump fabrication
US20080116137A1 (en) * 2006-11-22 2008-05-22 Leopold-Franzens-Universitat Innsbruck Monolithic organic copolymer
EP2150402A4 (en) * 2007-02-21 2013-07-10 Waters Technologies Corp Porous inorganic/organic hybrid particles having high organic content and enhanced pore geometry for chromatographic separations
US8258251B2 (en) * 2007-11-30 2012-09-04 The United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration Highly porous ceramic oxide aerogels having improved flexibility
US8314201B2 (en) 2007-11-30 2012-11-20 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Highly porous ceramic oxide aerogels having improved flexibility
CN101932525B (en) * 2008-02-01 2013-07-31 技迩科学有限公司 Method for silica monolith cladding and separation medium
EP2714225B1 (en) * 2011-06-03 2020-11-11 Waters Technologies Corporation Method of separation of lipid and biological molecular species using high purity chromatographic materials
US9200154B2 (en) * 2012-03-27 2015-12-01 Sekisui Plastics Co., Ltd. Porous resin particles, method of manufacturing the same, and use of the same
GB2553727B (en) 2012-05-15 2018-12-05 Waters Technologies Corp Chromatographic materials
US11628381B2 (en) 2012-09-17 2023-04-18 W.R. Grace & Co. Conn. Chromatography media and devices
ES2730737T3 (en) * 2012-09-17 2019-11-12 Grace W R & Co Functionalized particle support material and methods of manufacturing and using it
US9702856B2 (en) * 2012-10-03 2017-07-11 Waters Technologies Corporation System and method for rapid analysis of polymer additives
JP6109604B2 (en) * 2013-03-05 2017-04-05 嶋田 豊司 Octahydrobinaphthyl derivative
EP3936226A3 (en) 2013-06-11 2022-03-16 Waters Technologies Corporation Chromatographic columns and separation devices comprising a superficially porous material; and use thereof for supercritical fluid chromatography and other chromatography
CN103357393A (en) * 2013-08-05 2013-10-23 哈尔滨工业大学 Preparation method for titanium dioxide nanocrystal/carbon composite photocatalyst
US9518960B2 (en) * 2013-10-02 2016-12-13 Waters Technologies Corporation System and method for rapid analysis of polycyclic aromatic hydrocarbons
US11092574B2 (en) 2013-12-24 2021-08-17 Waters Technologies Corporation Materials for hydrophilic interaction chromatography and processes for preparation and use thereof for analysis of glycoproteins and glycopeptides
EP3094390B1 (en) 2014-01-16 2021-07-07 W.R. Grace & CO. - CONN. Affinity chromatography media and chromatography devices
JP6914189B2 (en) 2014-05-02 2021-08-04 ダブリュー・アール・グレース・アンド・カンパニー−コーンW R Grace & Co−Conn Functionalized Carrier Materials and Methods for Making and Using Functionalized Carrier Materials
US20160018365A1 (en) * 2014-06-13 2016-01-21 Masoud Agah Functionalized Metal Oxides As A Stationary Phase And A Surface Template For Micro Gas Chromatography Separation Columns
CN107921407B (en) 2015-06-05 2022-07-05 格雷斯公司 Biological treatment adsorption clarifying agent and preparation and use methods thereof
JP6651321B2 (en) * 2015-10-01 2020-02-19 株式会社日本触媒 Polymer fine particles
EP4443155A2 (en) 2016-07-28 2024-10-09 Waters Technologies Corporation Encapsulated pre-analytic workflows for flow-through devices, liquid chromatography and mass spectrometric analysis
CN107955093B (en) * 2017-12-13 2020-05-08 万华化学集团股份有限公司 Preparation method of high-specific-surface-area high-molecular adsorbent
WO2019126752A1 (en) * 2017-12-21 2019-06-27 Waters Technologies Corporation Solid phase extraction methods for enhanced removal of phospholipids from biological samples
WO2020072668A1 (en) 2018-10-02 2020-04-09 Waters Technologies Corporation Sorbents, devices, kits and methods useful for biological sample treatment
CN111229180B (en) * 2020-03-06 2021-05-25 北京化工大学 Adsorbent for storing nitrogen oxides and preparation method and application thereof
US11964874B2 (en) 2020-06-09 2024-04-23 Agilent Technologies, Inc. Etched non-porous particles and method of producing thereof
CN113522256B (en) * 2021-07-19 2022-06-21 中国科学院兰州化学物理研究所 Preparation and application of hydrogel @ silicon dioxide liquid chromatography filler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548051A (en) * 1992-09-16 1996-08-20 E. I Du Pont De Nemours And Company Single component inorganic/organic network materials and precursors thereof
US5650474A (en) * 1993-11-05 1997-07-22 Shin-Etsu Chemical Co., Ltd. Process for preparing organic functional group-containing organopolysiloxanes, organopolysiloxanes obtained by the process and novel mercapto group and alkoxy group-containing organopolysiloxanes and preparation thereof
US6248686B1 (en) * 1998-07-03 2001-06-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Organic/inorganic complex porous materials
US6277304B1 (en) * 1995-03-30 2001-08-21 Drexel University Process for producing electroactive inorganic organic hybrid materials
US6380266B1 (en) * 1997-06-13 2002-04-30 California Institute Of Technology Amorphous silica having discrete voids and spatially organized functionalities formed therein
US6686035B2 (en) * 1999-02-05 2004-02-03 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US555849A (en) * 1896-03-03 Apparatus for handling fence-wire
US3935299A (en) * 1972-05-11 1976-01-27 Andrei Vladimirovich Kiselev Process for preparation of wide-pore adsorbent for use in chromatography
DE2236862C2 (en) * 1972-07-27 1974-09-05 Istvan Prof. Dr. 6600 Saarbruecken Halasz Sorbents for chromatography
DE2357184A1 (en) 1973-11-16 1975-05-22 Merck Patent Gmbh PROCESS FOR THE PRODUCTION OF ORGANICALLY MODIFIED SILICON DIOXIDES
US4029583A (en) * 1975-02-28 1977-06-14 Purdue Research Foundation Chromatographic supports and methods and apparatus for preparing the same
CS179184B1 (en) * 1975-07-25 1977-10-31 Stanislav Vozka Method for preparation of precisely spherical particles of silica gel with controlled size and controled size pores.
DE2642032C2 (en) * 1976-09-18 1987-04-30 Rupprecht, Herbert, Prof. Dr., 8400 Regensburg Process for incorporating active ingredients into silicon dioxide-containing carrier materials and a silicon dioxide-containing preparation
FR2464967A1 (en) * 1979-09-07 1981-03-20 Rhone Poulenc Ind PREPARATION OF ANION EXCHANGE RESINS BY BROMATION OF VINYLAROMATIC POLYMERS
US4324689A (en) * 1980-02-26 1982-04-13 Shah Ramesh M High carbon content chromatographic packing and method for making same
US4334118A (en) 1981-06-01 1982-06-08 Chevron Research Solid phosphoric acid catalyzed olefin polymerization process
JPS58120525A (en) 1982-01-05 1983-07-18 Asahi Glass Co Ltd Manufacture of hollow silicate sphere
JPS5954619A (en) 1982-09-24 1984-03-29 Asahi Glass Co Ltd Preparation of granular silicate
US4724207A (en) * 1984-02-02 1988-02-09 Cuno Incorporated Modified siliceous chromatographic supports
JPS60257358A (en) 1984-06-05 1985-12-19 Daicel Chem Ind Ltd Packing material for separation
US5177128A (en) * 1985-07-10 1993-01-05 Sequa Chemicals, Inc. Paper coating composition
DE3616133A1 (en) * 1985-09-25 1987-11-19 Merck Patent Gmbh SPHERICAL SIO (DOWN ARROW) 2 (DOWN ARROW) PARTICLES
US5108595A (en) * 1985-11-01 1992-04-28 E. I. Du Pont De Nemours And Company Porous silica microspheres having silanol-enriched and silanized surfaces
GB8618322D0 (en) * 1986-07-28 1986-09-03 3I Res Expl Ltd Bonded chromotographic stationary phase
US4880851A (en) * 1987-02-26 1989-11-14 Tohru Yamamoto Aromatic composition and method for the production of the same
US5256386A (en) * 1987-06-29 1993-10-26 Eka Nobel Ab Method for preparation of silica particles
US4889632A (en) * 1987-12-10 1989-12-26 Ceskoslovenska Akademie Ved Macroporous polymeric membranes for the separation of polymers and a method of their application
JPH07120450B2 (en) 1987-12-29 1995-12-20 株式会社精工舎 Step-up control method of time recorder
EP0386926A3 (en) * 1989-03-02 1991-12-18 Supelco, Inc. Silica gel supports suitable for chromatographic separations
US5403908A (en) 1989-10-06 1995-04-04 Idemitsu Kosan Company, Limited Aryl styrene-based copolymer
US6022902A (en) * 1989-10-31 2000-02-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Porous article with surface functionality and method for preparing same
US4983369A (en) * 1989-11-22 1991-01-08 Allied-Signal Inc. Process for forming highly uniform silica spheres
US5068387A (en) * 1989-12-01 1991-11-26 Dow Corning Corporation Production of organofunctional alkoxysilanes
JP2874297B2 (en) * 1989-12-18 1999-03-24 東ソー株式会社 Packing material for reversed phase chromatography and method for producing the same
US5271833A (en) * 1990-03-22 1993-12-21 Regents Of The University Of Minnesota Polymer-coated carbon-clad inorganic oxide particles
JP2646150B2 (en) * 1990-08-27 1997-08-25 出光興産 株式会社 Water repellent silica sol and method for producing the same
JPH0617476B2 (en) 1990-09-04 1994-03-09 工業技術院長 Organic group-modified silica particles, method for producing the same, and resin composition containing the particles as filler
JP3026594B2 (en) 1990-11-20 2000-03-27 旭光学工業株式会社 Separation material and separator
US5071565A (en) * 1991-02-04 1991-12-10 Iowa State University Research Foundation, Inc. Modified resins for solid-phase extraction
US5840802A (en) * 1991-10-11 1998-11-24 General Electric Company Dual graft stage and thermally stabilized polyorganosiloxane/polyvinyl-based graft copolymers and thermoplastic compositions containing the same
DE69211010T2 (en) * 1991-10-21 1997-01-23 Cornell Res Foundation Inc Chromography column with macroporous polymer filling
US5734020A (en) * 1991-11-20 1998-03-31 Cpg, Inc. Production and use of magnetic porous inorganic materials
US5565142A (en) * 1992-04-01 1996-10-15 Deshpande; Ravindra Preparation of high porosity xerogels by chemical surface modification.
KR100229829B1 (en) * 1992-05-20 1999-11-15 미리암디. 메코너헤이 Process for making inorganic gels
JP3440486B2 (en) 1992-06-19 2003-08-25 旭硝子株式会社 Method for producing spherical silica
US5298833A (en) * 1992-06-22 1994-03-29 Copytele, Inc. Black electrophoretic particles for an electrophoretic image display
US5374755A (en) * 1992-07-17 1994-12-20 Millipore Corporation Liquid chromatography stationary phases with reduced silanol interactions
US5498678A (en) * 1992-12-21 1996-03-12 Rohm And Haas Company Suspension polymerization process for water-soluble monomers
US5624875A (en) * 1993-07-19 1997-04-29 Merck Patent Gesellschaft Mit Beschrankter Haftung Inorganic porous material and process for making same
US5425930A (en) * 1993-09-17 1995-06-20 Alliedsignal Inc. Process for forming large silica spheres by low temperature nucleation
JPH07120450A (en) 1993-10-22 1995-05-12 Sumika Bunseki Center:Kk Column for porous substance chromatography
JP3474007B2 (en) * 1993-11-05 2003-12-08 信越化学工業株式会社 Method for producing organofunctional organosiloxane containing organic functional groups
JP2893104B2 (en) 1994-03-14 1999-05-17 直弘 曽我 Method for producing inorganic porous body having organic functional groups bonded thereto
JP3088069B2 (en) * 1994-07-12 2000-09-18 株式会社日本触媒 Method for producing organic-inorganic composite particles
JP3697133B2 (en) * 1994-07-12 2005-09-21 株式会社日本触媒 Organic-inorganic composite particles, production method thereof, and use thereof
JP3697132B2 (en) * 1994-07-12 2005-09-21 株式会社日本触媒 Organic inorganic composite particles
US5728457A (en) * 1994-09-30 1998-03-17 Cornell Research Foundation, Inc. Porous polymeric material with gradients
US5670257A (en) * 1994-11-15 1997-09-23 Nippon Shokubai Co., Ltd. Organic-inorganic composite particles and production process therefor
JP3106071B2 (en) * 1994-11-18 2000-11-06 株式会社日本触媒 Spacer for liquid crystal display panel, method for manufacturing the same, and liquid crystal display panel
JP3502495B2 (en) * 1996-01-11 2004-03-02 株式会社日本触媒 Organic-inorganic composite particles, production method and use thereof
JP3045471B2 (en) * 1995-05-16 2000-05-29 株式会社日本触媒 Reactive organic-inorganic composite particles
US5637135A (en) * 1995-06-26 1997-06-10 Capillary Technology Corporation Chromatographic stationary phases and adsorbents from hybrid organic-inorganic sol-gels
US5667674A (en) * 1996-01-11 1997-09-16 Minnesota Mining And Manufacturing Company Adsorption medium and method of preparing same
JPH09194593A (en) * 1996-01-11 1997-07-29 Nippon Shokubai Co Ltd Organic-inorganic composite material particle its production and use thereof
JP3818689B2 (en) * 1996-01-16 2006-09-06 富士写真フイルム株式会社 Aqueous dispersion of core / shell composite particles having colloidal silica as the core and organic polymer as the shell, and method for producing the same
US5869152A (en) * 1996-03-01 1999-02-09 The Research Foundation Of State University Of New York Silica materials
JPH09278485A (en) 1996-04-11 1997-10-28 Tosoh Corp Alkali resistant spherical glass and its production
US5965202A (en) * 1996-05-02 1999-10-12 Lucent Technologies, Inc. Hybrid inorganic-organic composite for use as an interlayer dielectric
US6313219B1 (en) * 1996-05-02 2001-11-06 Lucent Technologies, Inc. Method for hybrid inorganic/organic composite materials
JPH1062401A (en) 1996-06-10 1998-03-06 Toyota Central Res & Dev Lab Inc Filler for liquid chromatography
US5853886A (en) * 1996-06-17 1998-12-29 Claytec, Inc. Hybrid nanocomposites comprising layered inorganic material and methods of preparation
AU7533696A (en) 1996-12-13 1998-06-18 Ciba-Geigy Ag New materials
WO1998029350A2 (en) * 1996-12-26 1998-07-09 Merck Patent Gmbh Inorganic porous material and process for making same
US5976479A (en) * 1996-12-30 1999-11-02 Uop Llc Hydrothermal process for preparing a unimodal large pore silica
US5935429A (en) 1997-01-03 1999-08-10 Bio-Rad Laboratories, Inc. Chromatography columns with continuous beds formed in situ from aqueous solutions
JP4291415B2 (en) * 1997-02-25 2009-07-08 バイエル・アクチエンゲゼルシヤフト Organic-inorganic hybrid material
JP3410634B2 (en) 1997-05-30 2003-05-26 株式会社豊田中央研究所 Spherical mesoporous body and method for producing the same
JP2002505006A (en) 1997-06-18 2002-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Use of monolithic adsorbents for separation by preparative chromatography
US6027643A (en) * 1997-09-04 2000-02-22 Dionex Corporation Ion chromatographic method and apparatus using a combined suppressor and eluent generator
DE19738913B4 (en) 1997-09-05 2004-03-18 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Block copolymer phases as a template for structured organic-inorganic hybrid materials
JPH11199351A (en) 1997-10-30 1999-07-27 Asahi Chem Ind Co Ltd Porous inorganic organic composite material and its production
US6136187A (en) * 1997-12-09 2000-10-24 The Board Of Trustees Of The Leland Stanford Junior University Separation column containing porous matrix and method of packing column
US6592764B1 (en) 1997-12-09 2003-07-15 The Regents Of The University Of California Block copolymer processing for mesostructured inorganic oxide materials
DE19756831A1 (en) * 1997-12-19 1999-07-01 Wacker Chemie Gmbh Silicon dioxide, which carries partially or completely silylated polysilicic acid chains on its surface
JPH11199671A (en) * 1998-01-13 1999-07-27 Ube Nitto Kasei Co Ltd Production of organic and inorganic composite particle
US6281257B1 (en) * 1998-04-27 2001-08-28 The Regents Of The University Of Michigan Porous composite materials
JP2000017102A (en) * 1998-07-03 2000-01-18 Toyota Central Res & Dev Lab Inc Porous material of organic/inorganic composite polymer and production of the same
JP3953649B2 (en) * 1998-07-17 2007-08-08 オリヱント化学工業株式会社 Organic-inorganic hybrid component gradient polymer material and method for producing the same
US6210570B1 (en) * 1998-08-21 2001-04-03 Agilent Technologies, Inc. Monolithic silica column
US6090477A (en) * 1998-09-11 2000-07-18 Ut-Battelle, Llc Gas storage carbon with enhanced thermal conductivity
US6238565B1 (en) * 1998-09-16 2001-05-29 Varian, Inc. Monolithic matrix for separating bio-organic molecules
DE19856000A1 (en) * 1998-12-04 2000-06-15 Bayer Ag Hybrid paint preparation
JP4163316B2 (en) * 1999-01-14 2008-10-08 株式会社日本触媒 Organic-inorganic composite particles, method for producing the same, and use thereof
AU2872100A (en) 1999-02-05 2000-08-25 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for its preparation
US6227304B1 (en) 1999-03-01 2001-05-08 Case Corporation Upper hitch link
JP4214203B2 (en) * 1999-05-18 2009-01-28 オリヱント化学工業株式会社 Organic-inorganic composite material and method for producing the same
US20060194919A1 (en) 1999-08-04 2006-08-31 Lichtenhan Joseph D Porosity control with polyhedral oligomeric silsesquioxanes
US6649083B1 (en) * 1999-08-12 2003-11-18 Board Of Trustees Of Michigan State University Combined porous organic and inorganic oxide materials prepared by non-ionic surfactant templating route
SE9903223L (en) 1999-09-09 2001-05-08 Ericsson Telefon Ab L M Method and apparatus of telecommunication systems
US6251280B1 (en) 1999-09-15 2001-06-26 University Of Tennessee Research Corporation Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors
US7211192B2 (en) * 2000-06-02 2007-05-01 The Regents Of The University Of California Hybrid organic-inorganic adsorbents
EP1197998A3 (en) 2000-10-10 2005-12-21 Shipley Company LLC Antireflective porogens
WO2002037506A1 (en) * 2000-11-06 2002-05-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid electrolyte
JP2002173534A (en) * 2000-11-29 2002-06-21 Chung-Shan Inst Of Science & Technology Ministry Of Natl Defence Method for producing polyimidazole-silica hybrid
US6528167B2 (en) * 2001-01-31 2003-03-04 Waters Investments Limited Porous hybrid particles with organic groups removed from the surface
US6713643B2 (en) 2001-05-24 2004-03-30 Board Of Trustees Of Michigan State University Ultrastable organofunctional microporous to mesoporous silica compositions
WO2003014450A1 (en) * 2001-08-09 2003-02-20 Waters Investments Limited Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
JP2003243522A (en) * 2002-02-20 2003-08-29 Mitsubishi Electric Corp Semiconductor device using resistor element
GB2414993B (en) 2002-10-30 2007-07-11 Waters Investments Ltd Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
JP2007523331A (en) 2004-02-17 2007-08-16 ウオーターズ・インベストメンツ・リミテツド Porous hybrid monolithic material with organic groups removed from the surface
US8658277B2 (en) 2004-07-30 2014-02-25 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US7439272B2 (en) 2004-12-20 2008-10-21 Varian, Inc. Ultraporous sol gel monoliths
WO2008085435A1 (en) 2007-01-12 2008-07-17 Waters Investments Limited Porous carbon-heteroatom-silicon hybrid inorganic/organic materials for chromatographic separations and process for the preparation thereof
EP2150402A4 (en) 2007-02-21 2013-07-10 Waters Technologies Corp Porous inorganic/organic hybrid particles having high organic content and enhanced pore geometry for chromatographic separations
US8685283B2 (en) 2008-08-29 2014-04-01 Agilent Technologies, Inc. Superficially porous metal oxide particles, methods for making them, and separation devices using them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548051A (en) * 1992-09-16 1996-08-20 E. I Du Pont De Nemours And Company Single component inorganic/organic network materials and precursors thereof
US5650474A (en) * 1993-11-05 1997-07-22 Shin-Etsu Chemical Co., Ltd. Process for preparing organic functional group-containing organopolysiloxanes, organopolysiloxanes obtained by the process and novel mercapto group and alkoxy group-containing organopolysiloxanes and preparation thereof
US6277304B1 (en) * 1995-03-30 2001-08-21 Drexel University Process for producing electroactive inorganic organic hybrid materials
US6380266B1 (en) * 1997-06-13 2002-04-30 California Institute Of Technology Amorphous silica having discrete voids and spatially organized functionalities formed therein
US6248686B1 (en) * 1998-07-03 2001-06-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Organic/inorganic complex porous materials
US6686035B2 (en) * 1999-02-05 2004-02-03 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223473B2 (en) 1999-02-05 2007-05-29 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation
US7919177B2 (en) 1999-02-05 2011-04-05 Waters Technologies Corporation Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation
US8404346B2 (en) 2001-08-09 2013-03-26 Waters Technologies Corporation Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
US7250214B2 (en) 2001-08-09 2007-07-31 Waters Investments Limited Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
US9089836B2 (en) 2001-08-09 2015-07-28 Waters Technologies Corporation Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
US9976008B2 (en) 2002-10-30 2018-05-22 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
US9211524B2 (en) 2002-10-30 2015-12-15 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
US8791220B2 (en) 2002-10-30 2014-07-29 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separation and process for the preparation thereof
GB2419886B (en) * 2003-05-28 2008-12-17 Waters Investments Ltd Novel nanocomposites and their application as monolith columns
US10773186B2 (en) 2004-07-30 2020-09-15 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
JP2008508516A (en) * 2004-07-30 2008-03-21 ウオーターズ・インベストメンツ・リミテツド Porous inorganic / organic hybrid materials with ordered domains for chromatographic separation and methods for their preparation
DE112005001838B4 (en) 2004-07-30 2018-11-29 Waters Technologies Corp. (N.D.Ges.D. Staates Delaware) Porous inorganic / organic hybrid materials with ordered domains for chromatographic separations, methods for their preparation, as well as separation device and chromatographic column
US8658277B2 (en) * 2004-07-30 2014-02-25 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
JP2015180883A (en) * 2004-07-30 2015-10-15 ウオーターズ・テクノロジーズ・コーポレイシヨン Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
JP2015111120A (en) * 2004-07-30 2015-06-18 ウオーターズ・テクノロジーズ・コーポレイシヨン Porous inorganic/organic hybrid material having discipline area for chromatographic separation, and preparation method thereof
US9145481B2 (en) 2004-07-30 2015-09-29 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
CN100344591C (en) * 2004-10-28 2007-10-24 中国石油化工股份有限公司 Lower carbon number hydrocarbon alkylation reaction method
JP2008537570A (en) * 2005-04-05 2008-09-18 インスティテュート スペリオール テクニコ A process for producing monolithic xerogels and aerogels composed of silica / latex hybrids modified with alkoxysilane groups under subcritical conditions.
US11071969B1 (en) 2007-01-12 2021-07-27 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
US9546257B2 (en) 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
US9006303B2 (en) 2007-03-08 2015-04-14 Agency For Science, Technology And Research Mesoporous polymer colloids
WO2008108738A1 (en) * 2007-03-08 2008-09-12 Agency For Science, Technology And Research Mesoporous polymer colloids
US11426707B2 (en) 2008-04-08 2022-08-30 Waters Technologies Corporation Composite materials containing nanoparticles and their use in chromatography
US9248383B2 (en) 2008-04-08 2016-02-02 Waters Technologies Corporation Composite materials containing nanoparticles and their use in chromatography
US8952100B2 (en) 2008-11-11 2015-02-10 Styron Europe Gmbh Process to remove silanol from the preparation of a modified polymer
US11439977B2 (en) 2009-06-01 2022-09-13 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
EP3964287A1 (en) 2009-06-01 2022-03-09 Waters Technologies Corporation Hybrid material for chromatographic separations
US11291974B2 (en) 2009-06-01 2022-04-05 Waters Technologies Corporation Hybrid inorganic/organic materials having novel surface modification; process for the preparation of inorganic/organic hybrid materials; and use of said particles for chromatographic separations
US10150098B2 (en) 2009-08-04 2018-12-11 Waters Technologies Corporation High purity chromatographic materials comprising an ionizable modifier
US10974167B2 (en) 2009-08-04 2021-04-13 Waters Technologies Corporation High purity chromatographic materials comprising an ionizable modifier
US10159911B2 (en) 2009-08-04 2018-12-25 Waters Technologies Corporation High purity chromatographic materials comprising an ionizable modifier
US10092893B2 (en) 2010-07-26 2018-10-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
US11478775B2 (en) 2010-07-26 2022-10-25 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution
WO2013002909A1 (en) 2011-05-20 2013-01-03 Waters Technologies Corporation Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof
EP3851189A1 (en) 2011-05-20 2021-07-21 Waters Technologies Corporation Porous materials for solid phase extraction and chromatography
DE102014019372A1 (en) 2013-12-24 2015-06-25 Waters Technologies Corp. MATERIALS FOR A HYDROPHILIC INTERACTION CHROMATOGRAPHY AND METHOD FOR THE PREPARATION AND USE THEREOF FOR THE ANALYSIS OF GLYCOPROTEINS AND GLYCOPEPTIDES
US11642653B2 (en) 2016-03-06 2023-05-09 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
WO2017155884A1 (en) 2016-03-06 2017-09-14 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
CN106093169A (en) * 2016-07-11 2016-11-09 河南大学 Capillary tube open tubular column that a kind of sulfonic acid is modified and preparation method thereof
CN109507321B (en) * 2018-11-28 2021-03-16 浙江博瑞电子科技有限公司 Method for improving detection sensitivity of special impurities in high-purity hydrogen chloride
CN109507321A (en) * 2018-11-28 2019-03-22 浙江博瑞电子科技有限公司 A kind of method of special impurities detection sensitivity in raising high-purity hydrogen chloride

Also Published As

Publication number Publication date
DE10393599B4 (en) 2022-01-05
US20160096943A1 (en) 2016-04-07
GB0508751D0 (en) 2005-06-08
GB2414993B (en) 2007-07-11
AU2003285121A1 (en) 2004-06-07
US9211524B2 (en) 2015-12-15
US8791220B2 (en) 2014-07-29
JP2006504854A (en) 2006-02-09
DE10393599T5 (en) 2005-10-27
WO2004041398A3 (en) 2004-12-29
US20090209722A1 (en) 2009-08-20
US9976008B2 (en) 2018-05-22
AU2003285121A8 (en) 2004-06-07
GB2414993A (en) 2005-12-14
US20140194283A1 (en) 2014-07-10
US20050230298A1 (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US9976008B2 (en) Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
US11071969B1 (en) Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
US10092859B2 (en) Nanocomposites and their application as monolith columns
US8404346B2 (en) Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
US7919177B2 (en) Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation
WO2000045951A1 (en) Porous inorganic/organic hybrid particles for chromatographic separations and process for its preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004550384

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 0508751

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20031030

WWE Wipo information: entry into national phase

Ref document number: 0508751.5

Country of ref document: GB

Ref document number: 11119111

Country of ref document: US

122 Ep: pct application non-entry in european phase