JPH07120450A - Column for porous substance chromatography - Google Patents

Column for porous substance chromatography

Info

Publication number
JPH07120450A
JPH07120450A JP5264779A JP26477993A JPH07120450A JP H07120450 A JPH07120450 A JP H07120450A JP 5264779 A JP5264779 A JP 5264779A JP 26477993 A JP26477993 A JP 26477993A JP H07120450 A JPH07120450 A JP H07120450A
Authority
JP
Japan
Prior art keywords
porous
column
pores
separation
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5264779A
Other languages
Japanese (ja)
Inventor
Takafumi Oi
尚文 大井
Yonezo Matsumoto
米藏 松本
Hiroshi Nagasawa
浩 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOEI SHOJI KK
SUMIKA BUNSEKI CENTER KK
Original Assignee
GOEI SHOJI KK
SUMIKA BUNSEKI CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOEI SHOJI KK, SUMIKA BUNSEKI CENTER KK filed Critical GOEI SHOJI KK
Priority to JP5264779A priority Critical patent/JPH07120450A/en
Publication of JPH07120450A publication Critical patent/JPH07120450A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • G01N30/6065Construction of the column body with varying cross section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N2030/524Physical parameters structural properties
    • G01N2030/528Monolithic sorbent material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To simplify separation mode, guarantee reproducibility and accelerate a chromatographic separation process by using a porous columnar body having a narrow hole penetrating from the top thereof to the bottom as the column. CONSTITUTION:A fine hole having a circular or nearly circular cross section perpendicular to the axial direction is formed from the top of a porous columnar body to the bottom having a maximum diameter between 1mm and 50cm with height between 1mm and 10m and a cross section nearly equal to a circle, and this columnar body is used as the column. The maximum diameter of the hole is more preferably between 40Angstrom and 100000Angstrom . Also, the material of the body is not specifically limited, so far as the diameter of the hole is controllable, but an inorganic porous body such as porous ceramic and porous glass, for example, solid porous glass is preferable. When this type of column is used, a separation process takes place in such a structure that a mobility phase passes in a porous body having a uniform diameter, namely a single-bore porous body. Thus, separation mode is simplified and enough reproducibility is guaranteed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多孔質体クロマトグラフ
ィー用カラムに関する。
FIELD OF THE INVENTION The present invention relates to a column for porous material chromatography.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】クロ
マトグラフィーは固定相を通して展開剤を移動させるこ
とにより試料を固定相中で移動させ、固定相への分別的
な補集および脱離を連続的に繰り返して試料を分離する
操作である。固定相は固体吸着媒の粒子を充填したカラ
ムに保持されている。固定相は固体または液体である
が、試料が固定相に補集される機構は、分配、吸着およ
びイオン交換や、分子のサイズによるものなどに大別さ
れる。
BACKGROUND OF THE INVENTION Chromatography moves a sample in a stationary phase by moving a developing agent through the stationary phase to continuously effect fractional collection and desorption on the stationary phase. This is an operation of repeatedly separating the sample. The stationary phase is held in a column packed with particles of solid adsorbent. The stationary phase is solid or liquid, but the mechanism by which the sample is collected in the stationary phase is roughly classified into partitioning, adsorption and ion exchange, and molecular size.

【0003】固定相は、通常、充填粒子自体であるか、
粒子を担体として、分析試料に適した分離剤をコーティ
ング、または分析試料に適した化学的修飾剤を粒子に化
学的に結合させることによって保持されている。従っ
て、充填剤は、充填粒子そのもの、または固定相を担持
する粒子も含む。
The stationary phase is usually the packed particles themselves, or
It is held by using the particles as a carrier, coating a separating agent suitable for an analytical sample, or chemically binding a chemical modifier suitable for an analytical sample to the particles. Therefore, the filler includes the packed particles themselves or particles carrying a stationary phase.

【0004】クロマトグラフィー系は試料の分析に広く
用いられているが、実際の使用上の欠点として、充填カ
ラムを使用する場合は、再現性の問題が挙げられる。す
なわち、充填カラムは再現性が保証されないために、実
験室間、あるいは同一実験室でも必ずしも同一の結果が
得られるとは限らず、保持時間による試料の同定など
は、相対的な結果に頼らざるを得なかった。
Chromatographic systems are widely used for the analysis of samples, but a drawback in practical use is the problem of reproducibility when using packed columns. That is, since the packed column does not guarantee reproducibility, the same results may not always be obtained between laboratories or even in the same laboratory, and identification of samples by retention time etc. must rely on relative results. Didn't get

【0005】カラムの再現性を阻害する要因としては、
充填剤粒子内部構造の再現性に問題があると言われてお
り、本発明者らは特に保持時間に付いて細孔径の制御性
に優れた多孔質ガラス粒子の充填剤を用い細孔径の制御
により管理することを提案してきた。また、カラムの再
現性にとっては、カラム充填因子によるものも大きく、
充填方法によっては、充填剤が本来持っている分離機能
を充分発揮させていない場合もあると思われる。
Factors that hinder the reproducibility of the column include
It is said that there is a problem in the reproducibility of the internal structure of the filler particles, and the inventors of the present invention used a filler of porous glass particles excellent in controllability of the pore diameter particularly regarding the retention time to control the pore diameter. Has been proposed to manage by. In addition, the column packing factor greatly contributes to the reproducibility of the column.
Depending on the filling method, it may be that the separating function originally possessed by the packing material is not sufficiently exerted.

【0006】例えば、粒子間細孔は充填時に決定される
ので、充填時のわずかな違いにより、その構造は変化す
る。また、その際、粒子同士がぶつかり合うため、充填
剤が破壊される現象もしばしば見られ、そのため表面の
改質層が剥がれ、異常吸着を発生させることもある。ま
た、充填には非常に手間がかかり、トラブルも多く、均
一に充填されないなどの不良品が多発するため製品歩留
りが悪く、検査の費用を含めコストの上昇を招いてい
る。
For example, since the interparticle pores are determined at the time of filling, the structure changes due to a slight difference at the time of filling. Further, at that time, since the particles collide with each other, the phenomenon in which the filler is destroyed is often seen, and thus the modified layer on the surface is peeled off, which may cause abnormal adsorption. Further, the filling is very time-consuming, there are many troubles, and defective products such as uneven filling frequently occur, so that the product yield is low and the cost including the inspection cost is increased.

【0007】従来のクロマトグラフィー用カラムの構造
は大別して次の3種類に分類される。すなわち、 1)表面多孔性または全多孔性のシリカゲルまたは樹脂
製充填剤をガラス、プラスチックまたはステンレス鋼製
の円筒状の容器に充填した構造(図2(1))、 2)無孔性球状のシリカゲルまたは樹脂製充填剤を充填
した構造(図2(2))、 3)多孔性の樹脂製充填剤を容器内で結合させた構造
(図2(3))(パーフュージョンクロマトグラフィー用カ
ラム)である。
The structures of conventional chromatography columns are roughly classified into the following three types. That is, 1) a structure in which a silica gel or resin filler having surface porosity or total porosity is filled in a cylindrical container made of glass, plastic or stainless steel (Fig. 2 (1)), 2) non-porous spherical Structure filled with silica gel or resin filler (Fig. 2 (2)), 3) Structure in which porous resin filler is bonded in a container
(FIG. 2 (3)) (column for perfusion chromatography).

【0008】例えば、シリカゲル粒子でカラムを充填し
た場合、細孔をもつシリカゲル粒子では、粒子間細孔と
粒子内細孔の二重構造(ダブルポア)をとる。この場
合、充填粒子の細孔内の試料の向流的な吸着および分配
による試料の分離と分子サイズによる分離が同時に起こ
り、単純な吸着・分配による分離とはならない(ダブル
ポアによる分離)(図2(1))。また、無孔性の充填
剤をつめた場合はシングルポアであるが、粒子による包
囲状態により、図2(2)に示すように形成される空間
の形状の大きさが様々に変化し、相変わらず分離モード
が複雑になる。また、無孔性カラムは粒子が小さいため
特に充填は難しい。このようなカラムの持つ充填因子を
排除し、安定的な分離を得るには、粒子を充填する方法
によらない新しい発想のカラムが望ましい。
For example, when the column is filled with silica gel particles, the silica gel particles having pores have a double structure (double pore) of interparticle pores and intraparticle pores. In this case, the separation of the sample by countercurrent adsorption and distribution of the sample in the pores of the packed particles and the separation by the molecular size occur simultaneously, and the separation by simple adsorption / distribution does not occur (separation by double pores) (Fig. 2). (1)). In addition, when the non-porous filler is packed, it has a single pore, but the size of the space formed as shown in FIG. Separation mode becomes complicated. Also, non-porous columns are particularly difficult to pack due to their small particles. In order to eliminate the packing factor possessed by such a column and obtain a stable separation, it is desirable to use a column of a new concept that does not depend on the method of packing particles.

【0009】パフュージョンクロマトグラフィーでは容
器内で充填粒子を結合させる構造のため、再現性に問題
があること、また、分子サイズによる分離が同時に生じ
るため、単純な吸着・分配による分離とはならない(ダ
ブルポアによる分離)(図2(3))。すなわち、この
場合も充填剤の有する機能が十分発揮されず、分離モー
ドが単純ではない。そこで、このような従来使用されて
いるクロマトグラフィー用カラムの有する欠点をもたな
いカラムの開発・研究が行われた。
[0009] In perfusion chromatography, because of the structure in which packed particles are bound in a container, there is a problem in reproducibility, and since separation by molecular size occurs at the same time, separation by simple adsorption / distribution does not take place ( Separation by double pores) (Fig. 2 (3)). That is, also in this case, the function of the filler is not sufficiently exerted, and the separation mode is not simple. Therefore, a column has been developed and studied that does not have the drawbacks of the conventional chromatography column.

【0010】[0010]

【課題を解決するための手段】本発明者らは、多孔質材
料の開発を進め、例えば、多孔質ガラスの持っている広
い範囲での細孔径の制御性を利用し、Åの単位のオーダ
ーからμの単位のオーダーの細孔を持つ多孔質ガラスを
用いて、新規構造のカラムを作成し各種化合物のクロマ
トグラフィー分析を試みた結果、クロマト分離機能を有
することを知った。すなわち、本発明のクロマトグラフ
ィー用カラムは、従来の充填構造を有するものでなく、
均一な径を有する多孔体、シングルポアの多孔体の中を
移動相が通過する構造中で分離が行われるものである
(図2(4))。
[Means for Solving the Problems] The inventors of the present invention have proceeded with the development of a porous material, for example, by utilizing the controllability of the pore diameter in a wide range that porous glass has, and the order of Å unit. As a result of attempting chromatographic analysis of various compounds by creating a column having a new structure using porous glass having pores of the order of μ to μ, it was found that it has a chromatographic separation function. That is, the chromatography column of the present invention does not have a conventional packing structure,
Separation is performed in a structure in which the mobile phase passes through a porous body having a uniform diameter or a single-pore porous body (FIG. 2 (4)).

【0011】[0011]

【発明の構成】本発明は細孔を有する多孔質柱状体であ
って、細孔が柱状体の上面から下面まで貫通している構
造を有するクロマトグラフィー用カラムである。
The present invention is a chromatography column having a porous columnar body having pores, the pores penetrating from the upper surface to the lower surface of the columnar body.

【0012】細孔の軸方向に垂直な断面は円形または円
形に近いものが好ましい。細孔の断面が円形に近いと
は、長径と短径が異なる楕円形などが含まれる。細孔の
最大径は、20〜1000000Åであってもよく、好
ましくは、30〜500000Å、より好ましくは、4
0〜100000Åである。
The cross section perpendicular to the axial direction of the pores is preferably circular or nearly circular. The cross section of the pores close to a circle includes an ellipse having different major and minor axes. The maximum diameter of the pores may be 20 to 1000000Å, preferably 30 to 500000Å, more preferably 4
It is 0 to 100,000Å.

【0013】柱状体の高さ(長さ)は特に制限はない
が、1mm位から10mであってもよい。柱状体の断面
はほぼ円形に近いのが望ましい。柱状体の最大径は特に
制限されないが、1mmから50cmであってもよい。
多孔質柱状体は、上記で定義された細孔が、上面から下
面まで貫通しており、屈曲しながら、および/または連
通していてもよい。すなわち、充填カラムの構造を移動
相が通過する細孔の構造から考えた場合、固形ODS化
多孔質ガラスの場合、滑らかな内面を持つ円筒状の細孔
が集合・分散を繰り返しながらジャングルジムの様に絡
み合っていると見なせる。
The height (length) of the columnar body is not particularly limited, but may be 1 mm to 10 m. It is desirable that the cross-section of the columnar body be nearly circular. The maximum diameter of the columnar body is not particularly limited, but may be 1 mm to 50 cm.
In the porous columnar body, the pores defined above penetrate from the upper surface to the lower surface and may be bent and / or communicated. That is, when considering the structure of the packed column from the structure of pores through which the mobile phase passes, in the case of solid ODS-made porous glass, cylindrical pores having a smooth inner surface repeatedly aggregate and disperse to form jungle gyms. Can be regarded as intertwined.

【0014】多孔質体の材質は、細孔の径を上記の大き
さに制御し得る材質であれば、特に制限されないが、多
孔質セラミック、多孔質ガラスなどの無機質の多孔体、
例えば、固形多孔質ガラスが望ましい。多孔質ガラスの
例としては、組成がNaO−B23−SiO2系のもの
が挙げられ、Al23、ZrO2、ZnO2、TiO2
SnO2、CaO、MgO2など種々の酸化物を添加した
ガラスを用いて製造する場合もある。多孔質ガラスは、
例えば、けい砂、硼酸、ソーダ灰およびアルミナを混合
し、1200〜1400℃に熔融する。これを800〜
1100℃にて成形後、未分相硼けいガラスを得、熱処
理によりSiO2相とB23−Na2O相に分相させ、酸
処理によって、SiO2骨格を残した多孔質体を製造す
る。細孔径は、用途によって、熱処理時の条件を変化さ
せることにより10〜1000000Åの細孔分布の均
一なものが用途に応じて製造可能である。
The material of the porous body is not particularly limited as long as it can control the diameter of the pores to the above-mentioned size, but it is an inorganic porous body such as porous ceramics or porous glass.
For example, solid porous glass is desirable. Examples of the porous glass include those having a composition of NaO—B 2 O 3 —SiO 2 system, such as Al 2 O 3 , ZrO 2 , ZnO 2 , TiO 2 ,
It may be manufactured using glass to which various oxides such as SnO 2 , CaO and MgO 2 are added. Porous glass,
For example, silica sand, boric acid, soda ash and alumina are mixed and melted at 1200 to 1400 ° C. 800 ~
After molding at 1100 ° C., to obtain a non-phase separation the boron silicate glass, is Bunsho the SiO 2 phase and B 2 O 3 -Na 2 O phase by heat treatment, acid treatment, the porous body left the SiO 2 skeleton To manufacture. With respect to the pore size, it is possible to manufacture a pore having a uniform pore distribution of 10 to 1,000,000 Å by changing the conditions during heat treatment depending on the application.

【0015】多孔質セラミックの例としては、アルミナ
シリケート質A(硬磁器粒子を焼結したもの)、けい砂
質、アルミナ質、アルミナシリケート質B(シャモット
粒子を焼結したもの)、多孔質ムライト質、けいそう土
質のものなどがある。多孔質セラミックは、例えば、一
定範囲の粒子径の陶磁器粒子(硬磁器粉砕物、シリカ、
アルミナ、シャモットなど)を適当な媒溶剤と焼結して
製造する。細孔径500μ程度から0.1μ程度または
それを越える範囲のもので、細孔分布の均一なものが、
用途に応じて製作可能である。
Examples of porous ceramics include alumina silicate A (hard porcelain particles sintered), silica sand, alumina, alumina silicate B (chamotte particles sintered), porous mullite. There are quality and diatomaceous soils. Porous ceramics are, for example, ceramic particles (hard porcelain crushed product, silica,
Alumina, chamotte, etc.) is sintered with a suitable solvent to produce it. Pore diameters in the range of about 500μ to about 0.1μ or more, with uniform pore distribution,
It can be manufactured according to the application.

【0016】本発明の多孔質体カラムは、液−液分配
系、液−固吸着系、気−液分配系、気−固吸着系および
液−固(液)イオン交換系のすべてのカラムクロマトグ
ラフィー系に適用することができる。すなわち、大気圧
下の液体クロマトグラフィー、高速液体クロマトグラフ
ィー、ガスクロマトグラフィー、超臨界クロマトグラフ
ィーなどに適用し得る。
The porous material column of the present invention is applicable to all column chromatography of liquid-liquid partition system, liquid-solid adsorption system, gas-liquid partition system, gas-solid adsorption system and liquid-solid (liquid) ion exchange system. It can be applied to a graph system. That is, it can be applied to liquid chromatography under atmospheric pressure, high performance liquid chromatography, gas chromatography, supercritical chromatography and the like.

【0017】本発明の多孔質カラムの細孔には、従来の
充填剤に用いられている分離試料に適したコーティング
剤および/または化学的修飾剤を適用して細孔の表面を
修飾・改質し得る。例えば、コーティング剤としては、
ポリエチレングリコール、シリコンオイルなどが挙げら
れる。化学的修飾剤としては、トリメチルクロロシラン
(TMS)、ジメチル−n−オクチルクロロシラン(O
CS)、ジメチル−n−オクタデシルクロロシラン(O
DS)などのアルキルクロロシラン、γ−アミノプロピ
ルトリエトキシシランなどアミノアルコキシシラン、そ
の他エポキシシランなど各種シラン処理剤が挙げられ
る。さらに、表面修飾剤の修飾基にタンパク質などの高
分子化合物または低分子化合物が結合していてもよい。
また、柱状体は変形させてU字状またはコイル状のカラ
ムとしてもよい。
To the pores of the porous column of the present invention, a coating agent and / or a chemical modifier suitable for the separation sample used in the conventional packing is applied to modify or modify the surface of the pores. Can be quality. For example, as a coating agent,
Examples thereof include polyethylene glycol and silicone oil. As a chemical modifier, trimethylchlorosilane (TMS), dimethyl-n-octylchlorosilane (O
CS), dimethyl-n-octadecylchlorosilane (O
Examples thereof include alkylchlorosilanes such as DS), aminoalkoxysilanes such as γ-aminopropyltriethoxysilane, and various silane treating agents such as epoxysilane. Furthermore, a high molecular compound such as a protein or a low molecular compound may be bound to the modifying group of the surface modifier.
Further, the columnar body may be deformed into a U-shaped or coil-shaped column.

【0018】[0018]

【実施例】本発明のクロマトグラフィー用カラムを実施
例により、具体的に説明するが、以下の記載は本発明を
制限するものではない。 実施例1 多孔質ガラスの製造法 SiO2 62.5、B23 27.3、Al23 3.
0、Na2O 7.2 各重量%を熔融し、直径約2mm
のロッドを540℃にて7時間処理し、ついで610℃
にて約32時間処理して分相させた。相分離物を90℃
にて1N硫酸(酸(ml)/ガラス(g)の比=17
0)を用いて2日間酸処理し、得られたガラスロッドを
熱蒸留水で洗浄し、乾燥後、デシケーター中で保存し
た。得られたガラスロッドの細孔容積は、0.6ml/
gであり、中心細孔直径500Åであった。粒子径分布
の測定は、水銀圧入法により測定した。得られた多孔質
ガラス材を機械加工により柱状体に成形した。
EXAMPLES The chromatographic column of the present invention will be specifically described by way of examples, but the following description does not limit the present invention. Example 1 Method for producing porous glass SiO 2 62.5, B 2 O 3 27.3, Al 2 O 3 3.
0, Na 2 O 7.2 wt% melted, diameter about 2 mm
Rod for 7 hours at 540 ° C, then 610 ° C
Was treated for about 32 hours for phase separation. 90 ° C of phase separated
At 1N sulfuric acid (acid (ml) / glass (g) ratio = 17)
The glass rod thus obtained was treated with acid for 2 days, washed with hot distilled water, dried and stored in a desiccator. The pore volume of the obtained glass rod is 0.6 ml /
and the central pore diameter was 500Å. The particle size distribution was measured by the mercury porosimetry method. The obtained porous glass material was formed into a columnar body by machining.

【0019】実施例2 直径4mm、長さ20mm、細孔直径2μの円柱状の多
孔質ガラスを作成しジメチル−n−オクタデシルクロロ
シラン(ODS)を用いて表面改質を行い、さらにTM
Sを用いてエンドキャッピングをおこなった。この多孔
質ガラス円柱をテフロンとステンレス鋼からなるリング
に固定した後、ステンレス鋼製のホルダーに装着して実
験に使用した。実験は市販の標準試料を用いて行った。 1)タンパク質分離 試料: リボヌクレアーゼ (1) チトクロームC (2) ラクトアルブミン (3) ミオグロブリン (4) 分離条件: カラム:ODS修飾多孔質ガラス(細孔直径2μ)
4.0mm×20mm 移動相:A アセトニトリル−水(20/80(v/v))
中0.1%TFA B アセトニトリル−水(90/10(v/v))中0.1%
TFA A/Bグラジエント 時間0分 → 15分 A 100% → B 100% 流速:4.0ml/分 検知器:UV(220nm) 得られたクロマトグラムを図3に示す。
Example 2 A cylindrical porous glass having a diameter of 4 mm, a length of 20 mm and a pore diameter of 2 μ was prepared and surface-modified with dimethyl-n-octadecylchlorosilane (ODS).
End capping was performed using S. After fixing this porous glass cylinder to a ring made of Teflon and stainless steel, it was mounted in a stainless steel holder and used for the experiment. The experiment was performed using a commercially available standard sample. 1) Protein separation Sample: Ribonuclease (1) Cytochrome C (2) Lactalbumin (3) Myoglobulin (4) Separation conditions: Column: ODS-modified porous glass (pore diameter 2μ)
4.0 mm x 20 mm Mobile phase: A Acetonitrile-water (20/80 (v / v))
0.1% in 0.1% TFA B acetonitrile-water (90/10 (v / v)).
TFA A / B gradient time 0 minutes → 15 minutes A 100% → B 100% Flow rate: 4.0 ml / min Detector: UV (220 nm) The obtained chromatogram is shown in FIG.

【0020】2)芳香族分離 試料: ナフタレン(5) クリセン(6) 分離条件: カラム:ODS修飾多孔質ガラス(細孔径2μ) 4.
0mm×20mm 移動相:アセトニトリル−水(30/70(v/v)) 流速:0.5ml/分 検出:UV(254nm) 得られたクロマトグラムを図4に示す。
2) Separation of aromatics Sample: Naphthalene (5) Chrysene (6) Separation conditions: Column: ODS-modified porous glass (pore size 2μ) 4.
0 mm × 20 mm Mobile phase: acetonitrile-water (30/70 (v / v)) Flow rate: 0.5 ml / min Detection: UV (254 nm) The obtained chromatogram is shown in FIG. 4.

【0021】[0021]

【発明の効果】本発明のクロマト用カラムは、従来の充
填構造を有するものでなく、均一な径を有する細孔を有
する多孔体、すなわち、シングルポアの多孔体の中を移
動相が通過する構造中で分離が行われるものであり、分
離モードが単純化され、充分な再現性を保証するもので
ある。さらに、分離機能を充分に保持しながら、クロマ
ト分離の迅速化を可能にする。充填操作が不必要である
ため、カラム充填の不便さおよび充填コストがかからな
い。さらに、従来の充填カラムでは不可能であったU字
状またはコイル状などのカラムの作製をも可能にするも
のである。
The chromatographic column of the present invention does not have the conventional packing structure, but the mobile phase passes through a porous body having pores having a uniform diameter, that is, a single-pore porous body. Separation is performed in the structure, the separation mode is simplified, and sufficient reproducibility is guaranteed. Furthermore, it enables rapid chromatographic separation while sufficiently retaining the separation function. Since the filling operation is unnecessary, the inconvenience of filling the column and the filling cost are eliminated. Furthermore, it also enables the production of U-shaped or coiled columns, which was impossible with conventional packed columns.

【図面の簡単な説明】[Brief description of drawings]

【図1】 カラムの軸方向の断面図であり、本発明のク
ロマトグラフィー用カラムの一例を模式的に示すもので
ある。
FIG. 1 is an axial cross-sectional view of a column, schematically showing an example of the chromatography column of the present invention.

【図2】 カラムの軸方向の断面図の一部であり、
(1)〜(3)は、従来のカラムについて、(4)は本
発明のカラムについて模式的に示したものである。
FIG. 2 is a part of an axial sectional view of a column,
(1) to (3) schematically show a conventional column, and (4) schematically shows a column of the present invention.

【図3】 クロマトグラムであり、本発明のクロマトグ
ラフィー用カラムによるタンパク質の分離結果を示す。
FIG. 3 is a chromatogram showing the results of protein separation by the chromatography column of the present invention.

【図4】 クロマトグラムであり、本発明のクロマトグ
ラフィー用カラムによる芳香族化合物の分離結果を示
す。
FIG. 4 is a chromatogram showing the results of aromatic compound separation by the chromatography column of the present invention.

【符号の説明】[Explanation of symbols]

1・・リボヌクレアーゼ、2・・チトクロームC、3・
・ラクトアルブミン、4・・ミオグロブリン、5・・ナ
フタレン、6・・クリセン
1 ... Ribonuclease, 2 ... Cytochrome C, 3 ...
・ Lactalbumin, 4 ・ ・ Myoglobulin, 5 ・ ・ Naphthalene, 6 ・ ・ Chrysene

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 細孔を有する多孔質柱状体であって、細
孔が柱状体の上面から下面まで貫通している構造を有す
るクロマトグラフィー用カラム。
1. A chromatography column having a porous columnar body having pores, the pores penetrating from the upper surface to the lower surface of the columnar body.
【請求項2】 細孔の軸方向に垂直な断面が円形または
円形に近いものである、請求項1記載のカラム。
2. The column according to claim 1, wherein the cross section of the pores perpendicular to the axial direction is circular or nearly circular.
【請求項3】 細孔の直径が20〜1,000,000Å
である、請求項1または2記載のカラム。
3. The diameter of the pores is 20 to 1,000,000Å
The column according to claim 1 or 2, wherein
【請求項4】 細孔が屈曲している、請求項1〜3記載
のカラム。
4. The column according to claim 1, wherein the pores are bent.
【請求項5】 細孔同志が相互に連通している、請求項
1〜4記載のカラム。
5. The column according to claim 1, wherein the pores are in communication with each other.
【請求項6】 多孔質体が細孔質ガラスまたは多孔質セ
ラミックである、請求項1〜5記載のカラム。
6. The column according to claim 1, wherein the porous body is a porous glass or a porous ceramic.
【請求項7】 高速液体クロマトグラフィーに用いられ
る、請求項1〜6記載のカラム。
7. The column according to claim 1, which is used in high performance liquid chromatography.
【請求項8】 細孔が表面修飾剤で修飾されている、請
求項1〜7記載のカラム。
8. The column according to claim 1, wherein the pores are modified with a surface modifier.
JP5264779A 1993-10-22 1993-10-22 Column for porous substance chromatography Pending JPH07120450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264779A JPH07120450A (en) 1993-10-22 1993-10-22 Column for porous substance chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264779A JPH07120450A (en) 1993-10-22 1993-10-22 Column for porous substance chromatography

Publications (1)

Publication Number Publication Date
JPH07120450A true JPH07120450A (en) 1995-05-12

Family

ID=17408079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264779A Pending JPH07120450A (en) 1993-10-22 1993-10-22 Column for porous substance chromatography

Country Status (1)

Country Link
JP (1) JPH07120450A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025268A1 (en) * 2000-09-25 2002-03-28 Gl Sciences Incorporated Method and device for collecting and concentrating specimen
JP2002098677A (en) * 2000-09-25 2002-04-05 Gl Sciences Inc Method and apparatus for introduction of sample to liquid chromatograph
JP2002350412A (en) * 2001-05-23 2002-12-04 Nobuo Tanaka Multidimensional high performance liquid chromatograph
WO2006126534A1 (en) * 2005-05-24 2006-11-30 Hellermanntyton Co., Ltd. Column and cartridge column using same
JP2007139651A (en) * 2005-11-21 2007-06-07 Pentax Corp Column
JP2007171115A (en) * 2005-12-26 2007-07-05 Hellermann Tyton Co Ltd Column and cartridge column
JP2007199074A (en) * 2005-05-24 2007-08-09 Hellermann Tyton Co Ltd Column and cartridge column using the same
WO2008020593A1 (en) * 2006-08-14 2008-02-21 Tokyo Electron Limited Column for chromatography and method for producing the same
JP2008215857A (en) * 2007-02-28 2008-09-18 Hitachi High-Technologies Corp Liquid chromatograph and separation column
JP2009053198A (en) * 2001-08-09 2009-03-12 Waters Investments Ltd Porous inorganic-organic hybrid monolithic matter for chromatographic separations and process for their preparation
JP2011174856A (en) * 2010-02-25 2011-09-08 Tokyo Electron Ltd Column for chromatography, method for producing same, and analysis device
US9145481B2 (en) 2004-07-30 2015-09-29 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US9546257B2 (en) 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
KR101699454B1 (en) * 2015-07-15 2017-01-24 홍익대학교 산학협력단 Device for separating harmful objects in air and Sensor system for sensing the separated harmful objects
US9976008B2 (en) 2002-10-30 2018-05-22 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
US10092893B2 (en) 2010-07-26 2018-10-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
US10773186B2 (en) 2004-07-30 2020-09-15 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US11291974B2 (en) 2009-06-01 2022-04-05 Waters Technologies Corporation Hybrid inorganic/organic materials having novel surface modification; process for the preparation of inorganic/organic hybrid materials; and use of said particles for chromatographic separations
US11439977B2 (en) 2009-06-01 2022-09-13 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
US11642653B2 (en) 2016-03-06 2023-05-09 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025268A1 (en) * 2000-09-25 2002-03-28 Gl Sciences Incorporated Method and device for collecting and concentrating specimen
JP2002098677A (en) * 2000-09-25 2002-04-05 Gl Sciences Inc Method and apparatus for introduction of sample to liquid chromatograph
JP2002350412A (en) * 2001-05-23 2002-12-04 Nobuo Tanaka Multidimensional high performance liquid chromatograph
US9089836B2 (en) 2001-08-09 2015-07-28 Waters Technologies Corporation Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
JP2009053198A (en) * 2001-08-09 2009-03-12 Waters Investments Ltd Porous inorganic-organic hybrid monolithic matter for chromatographic separations and process for their preparation
US8404346B2 (en) 2001-08-09 2013-03-26 Waters Technologies Corporation Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
US9976008B2 (en) 2002-10-30 2018-05-22 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
US10773186B2 (en) 2004-07-30 2020-09-15 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US9145481B2 (en) 2004-07-30 2015-09-29 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
WO2006126534A1 (en) * 2005-05-24 2006-11-30 Hellermanntyton Co., Ltd. Column and cartridge column using same
JP2007199074A (en) * 2005-05-24 2007-08-09 Hellermann Tyton Co Ltd Column and cartridge column using the same
JP2007199041A (en) * 2005-05-24 2007-08-09 Hellermann Tyton Co Ltd Cartridge column
JP4732868B2 (en) * 2005-11-21 2011-07-27 Hoya株式会社 column
JP2007139651A (en) * 2005-11-21 2007-06-07 Pentax Corp Column
JP2007171115A (en) * 2005-12-26 2007-07-05 Hellermann Tyton Co Ltd Column and cartridge column
JP4644115B2 (en) * 2005-12-26 2011-03-02 ヘラマンタイトン株式会社 Column and cartridge column
WO2008020593A1 (en) * 2006-08-14 2008-02-21 Tokyo Electron Limited Column for chromatography and method for producing the same
US9546257B2 (en) 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
US11071969B1 (en) 2007-01-12 2021-07-27 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
JP2008215857A (en) * 2007-02-28 2008-09-18 Hitachi High-Technologies Corp Liquid chromatograph and separation column
US11291974B2 (en) 2009-06-01 2022-04-05 Waters Technologies Corporation Hybrid inorganic/organic materials having novel surface modification; process for the preparation of inorganic/organic hybrid materials; and use of said particles for chromatographic separations
US11439977B2 (en) 2009-06-01 2022-09-13 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
JP2011174856A (en) * 2010-02-25 2011-09-08 Tokyo Electron Ltd Column for chromatography, method for producing same, and analysis device
US10092893B2 (en) 2010-07-26 2018-10-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
US11478775B2 (en) 2010-07-26 2022-10-25 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution
KR101699454B1 (en) * 2015-07-15 2017-01-24 홍익대학교 산학협력단 Device for separating harmful objects in air and Sensor system for sensing the separated harmful objects
US11642653B2 (en) 2016-03-06 2023-05-09 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material

Similar Documents

Publication Publication Date Title
JPH07120450A (en) Column for porous substance chromatography
Turiel et al. Molecularly imprinted polymers-based microextraction techniques
US7776615B2 (en) Method for solid-phase micro extraction and apparatus therefor
EP2161573B1 (en) Monolith adsorbent and method and apparatus for adsorbing samples with the same
EP1382963B1 (en) Method and instrument for extracting trace component in solid phase
US3505785A (en) Superficially porous supports for chromatography
áDe Stefanis Mesoporous M41S materials in capillary gas chromatography
US20090250349A1 (en) Tube Structure with Sol-Gel Zirconia Coating
US5084169A (en) Stationary magnetically stabilized fluidized bed for protein separation and purification
US5055194A (en) Support for high performance liquid chromatography in a magnetically stabilized fluidized bed
US20100112208A1 (en) Titania-Based Coating for Capillary Microextraction
Danielson et al. Synthesis and characterization of 2-. mu. m wide-pore silica microspheres as column packings for the reversed-phase liquid chromatography of peptides and proteins
IE46009B1 (en) Controlled surface porosity particles and a method for their production
HU196915B (en) Method and apparatus for separating one or more component being in solution by chromatography
JP2006509994A (en) Surface coated housing for sample preparation
EP0635300B1 (en) Column packings for liquid chromatography
US5110624A (en) Method for preparing magnetizable porous particles
CZ286859B6 (en) Stationary phase for chromatography
US20080015341A1 (en) New hydrophobic polymer comprising fluorine moieties
US5811665A (en) Large scale sorption-driven solid state chromatography
US20120024790A1 (en) Separation column with germania-based sol-gel stationary phase
JP4842449B2 (en) Porous material and column for chromatography
CN101715359A (en) Process for re-coating of a silica gel material
US5130027A (en) Stationary magnetically stabilized fluidized bed for protein separation and purification
Lubda et al. Monolithic HPLC silica columns