JPH1062401A - Filler for liquid chromatography - Google Patents

Filler for liquid chromatography

Info

Publication number
JPH1062401A
JPH1062401A JP8167870A JP16787096A JPH1062401A JP H1062401 A JPH1062401 A JP H1062401A JP 8167870 A JP8167870 A JP 8167870A JP 16787096 A JP16787096 A JP 16787096A JP H1062401 A JPH1062401 A JP H1062401A
Authority
JP
Japan
Prior art keywords
pore diameter
porous material
liquid chromatography
filler
fsm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8167870A
Other languages
Japanese (ja)
Inventor
Yasutomo Goto
康友 後藤
Shinji Inagaki
伸二 稲垣
Yoshiaki Fukushima
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8167870A priority Critical patent/JPH1062401A/en
Publication of JPH1062401A publication Critical patent/JPH1062401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the separation capacity of a solute substance having a specific size to make the same effective at a time of the use of a solvent relatively high in polarity by using a silica porous material having a center pore diameter within a specific range as a filler. SOLUTION: A silica porous material has a center pore diameter of 1-10nm and 60% or more of the total pore vol. thereof is contained within a range of a center pore diameter of ±40% and the crystallinity thereof is high and the pores thereof are uniform. Therefore, this porous material is advantageous in the separation of large molecules near to a center pore diameter, molecules capable of entering pores and molecules incapable of entering pores. Because of a peculiar pore structure, this porous material is strong in the adsorbing force of org. matter as compared with a silica gel and effective in the separation of a solute at a time of the use of a solvent relatively high in polarity. This porous material can be adapted to liquid column chromatography, high performance liquid chromatography and thin-layer chromatography.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体に溶解した被
分離物質の分離に用いられる液体クロマトグラフ用充填
剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filler for liquid chromatography used for separating a substance to be separated dissolved in a liquid.

【0002】[0002]

【従来の技術】最近、医薬品などの機能性分子の分離の
ニーズが高くなっており、それらを効率的に分離するク
ロマトグラフ用充填剤の開発が求められている。現在、
液体クロマトグラフ用充填剤としては、シリカゲル、ア
ルミナ、珪藻土、ゼオライト等、様々なものが利用され
ている。同一溶媒を用いた場合においては、充填剤の表
面特性、細孔径の違いにより、溶質物質を分離する能力
に差が生じる。
2. Description of the Related Art Recently, there has been an increasing need for separating functional molecules such as pharmaceuticals, and there has been a demand for the development of a chromatographic packing material for efficiently separating them. Current,
Various fillers for liquid chromatography, such as silica gel, alumina, diatomaceous earth, and zeolite, have been used. When the same solvent is used, there is a difference in the ability to separate solute substances due to differences in the surface characteristics and pore diameter of the filler.

【0003】これまで用いられてきた通常の充填剤であ
るシリカゲルでは、細孔径がそれほど均一ではなく、そ
の細孔の大きさに近い物質同士の分離において、分離性
能が不十分であった。また、比較的極性の高い溶媒中で
の溶解物質においても、同様に分離性能が不十分であっ
た。
[0003] Silica gel, which has been used as a usual filler, has a pore size that is not so uniform, and the separation performance is insufficient when separating substances close to the pore size. In addition, separation performance was similarly insufficient even for a dissolved substance in a solvent having a relatively high polarity.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、特定サイズの溶質物質の分離能
が高く、比較的極性の高い溶媒の使用時に有効である液
体クロマトグラフ用充填剤を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has a high resolution for a solute substance of a specific size and is effective when a relatively polar solvent is used. It is intended to provide a filler.

【0005】[0005]

【課題を解決するための手段】本発明の液体クロマトグ
ラフ用充填剤は、中心細孔直径が1〜10nmの範囲内
にあり、該中心細孔直径の±40%の範囲内に全細孔容
積の60%以上が含まれるシリカ系多孔体であって、液
体クロマトグラフィの充填剤として使用することを特徴
とする。一方シリカ系多孔体は、X線回折パターンにお
いて、d値が1nm以上に相当する回折角(2θ)の位
置に、1本以上のピークを有するものであるのが望まし
い。
The filler for liquid chromatography of the present invention has a central pore diameter in a range of 1 to 10 nm, and a total pore diameter of ± 40% of the central pore diameter. A silica-based porous material containing 60% or more of the volume, and is characterized in that it is used as a filler for liquid chromatography. On the other hand, the silica-based porous body desirably has one or more peaks at a position of a diffraction angle (2θ) corresponding to a d value of 1 nm or more in the X-ray diffraction pattern.

【0006】液体クロマトグラフィとしては、カラムク
ロマトグラフィ、高性能液体クロマトグラフィ(HPL
C)、薄層クロマトグラフィ(TLC)等を挙げること
ができる。
As liquid chromatography, column chromatography, high performance liquid chromatography (HPL)
C) and thin layer chromatography (TLC).

【0007】[0007]

【発明の実施の形態】本発明の液体クロマトグラフ用充
填剤は、シリカ系多孔体で構成されている。このシリカ
系多孔体は、中心細孔直径が1〜10nmの範囲にあ
り、中心細孔直径の±40%の範囲内に全細孔容積の6
0%以上が含まれ、結晶性が高く、細孔が均一である。
そのため、中心細孔直径に近い大きい分子で、細孔の中
に入ることができる分子と、できない分子との分離に有
利である。また、特有な細孔構造のため、シリカゲルに
比べ、有機物に対する吸着力が強く、比較的極性の高い
溶媒の使用時の溶質の分離に有効である。
BEST MODE FOR CARRYING OUT THE INVENTION The filler for liquid chromatography of the present invention is composed of a silica-based porous material. This silica-based porous material has a center pore diameter in the range of 1 to 10 nm, and a total pore volume of 6% within a range of ± 40% of the center pore diameter.
It contains 0% or more, has high crystallinity, and has uniform pores.
Therefore, it is advantageous for separating large molecules close to the central pore diameter into molecules that can enter the pores and molecules that cannot. In addition, because of its unique pore structure, it has a stronger adsorptivity to organic substances than silica gel, and is effective in separating solutes when using a relatively polar solvent.

【0008】この細孔構造は、細孔直径が1〜10nm
の範囲で均一でかつ筒状の奥深い細孔のため高極性(高
溶出速度)の溶媒でも溶質をしっかり捕捉できる。細孔
表面のシラノール基が有機物に作用する。これはシリカ
ゲルも同様である。シリカ系多孔体としては、例えば、
層状シリケートに界面活性剤を作用させて合成したメソ
多孔体が利用できる。このメソ多孔体は、2〜12nm
の一定の周期で湾曲したシリケートが凸部で上下結合し
た構造をしており、そのシートの隙間には直径1〜10
nmのシリンダー状細孔が一定の周期で配列している。
This pore structure has a pore diameter of 1 to 10 nm.
Because of the uniform and cylindrical deep pores in the range, a solute can be firmly captured even with a highly polar (high elution rate) solvent. Silanol groups on the pore surface act on organic matter. The same applies to silica gel. As a silica-based porous body, for example,
Mesoporous materials synthesized by allowing a surfactant to act on a layered silicate can be used. This mesoporous material has a thickness of 2 to 12 nm.
Has a structure in which silicates that are curved at a constant period are vertically coupled by convex portions, and the gap between the sheets has a diameter of 1 to 10
The cylindrical pores of nm are arranged at regular intervals.

【0009】このメソ多孔体のX線回折パターンは、1
nm以上のd値を持つ位置に、最大強度を持つ回折ピー
クを含め、少なくとも1つ以上のピークが観察される。
また、その中にあるものは、六方構造を示す2〜4本の
回折ピークが見られ、その透過型電子顕微鏡写真には、
蜂の巣状の骨格が観察される。また、他の多孔体として
は、界面活性剤のミセル構造を鋳型として合成したメソ
ポーラスモリキュラーシーブ(MCM−41)がある。
このMCMはやはり直径1〜10nmのシリンダー状細
孔が規則的に配列した構造をして、蜂の巣状の断面を呈
するが、先の材料とは細孔壁内の構造が異なる。このM
CM−41のX線回折パターンは、1nm以上のd値を
持つ位置に、最大の強度を持つ回折ピークを含め、少な
くとも1つ以上のピークが観察される。
The X-ray diffraction pattern of this mesoporous material is 1
At least one peak including a diffraction peak having the maximum intensity is observed at a position having a d value of nm or more.
In addition, there are two to four diffraction peaks showing a hexagonal structure, and the transmission electron micrograph thereof shows
A honeycomb skeleton is observed. As another porous body, there is a mesoporous molecular sieve (MCM-41) synthesized using a micelle structure of a surfactant as a template.
This MCM also has a structure in which cylindrical pores having a diameter of 1 to 10 nm are regularly arranged and has a honeycomb-shaped cross section, but the structure inside the pore wall is different from that of the previous material. This M
In the X-ray diffraction pattern of CM-41, at least one peak including a diffraction peak having the maximum intensity is observed at a position having a d value of 1 nm or more.

【0010】従来の多孔体であるシリカ、たとえば、シ
リカゲルのX線回折パターンには、明瞭な回折ピークは
観察されていない。X線回折ピークはそのピーク角度に
相当するd値の周期構造が材料の中にあることを意味す
る。このことから、シリカゲルには、少なくともd=
0.15から12nm(0.7<2θ<60°に相当)
の周期構造をもたない。つまり非晶質であることを示し
ている。それに対し、本発明の多孔体は、1nm以上の
d値に、最強のピークを含む1つ以上のピークが存在
し、周期構造を有している。
[0010] No clear diffraction peak is observed in the X-ray diffraction pattern of conventional porous silica, for example, silica gel. An X-ray diffraction peak means that a periodic structure having a d value corresponding to the peak angle is present in the material. Therefore, at least d =
0.15 to 12 nm (corresponding to 0.7 <2θ <60 °)
Has no periodic structure. That is, it indicates that it is amorphous. On the other hand, the porous body of the present invention has one or more peaks including the strongest peak at a d value of 1 nm or more, and has a periodic structure.

【0011】具体的には、これらのピークは直径が1〜
10nmの細孔が2nm以上の間隔で規則的に配列した
構造を反映したものである。その結果、従来のシリカゲ
ルの構造が不規則であるため構造中にある細孔の径も不
均一であるのに対し、本発明の多孔体は、構造の規則生
を反映して細孔は均一であることになる。このシリカ系
多孔体の組成は、純粋なシリカの酸化物でもよいが、シ
リカにアルミニウム(Al)、チタニウム(Ti)、マ
グネシウム(Mg)、ジルコニウム(Zr)、ガリウム
(Ga)、ベリリウム(Be)、イットリウム(Y)、
ランタン(La)、錫(Sn)、鉛(Pb)、バナジウ
ム(V)、硼素(B)などが混ざったものでもよい。
[0011] Specifically, these peaks have a diameter of 1 to
This reflects a structure in which 10 nm pores are regularly arranged at intervals of 2 nm or more. As a result, the diameter of the pores in the structure is irregular due to the irregular structure of the conventional silica gel, whereas the porous body of the present invention has uniform pores reflecting the regularity of the structure. It will be. The composition of the silica-based porous body may be a pure silica oxide, but silica (aluminum (Al), titanium (Ti), magnesium (Mg), zirconium (Zr), gallium (Ga), beryllium (Be) , Yttrium (Y),
Lanthanum (La), tin (Sn), lead (Pb), vanadium (V), boron (B), or the like may be mixed.

【0012】次に、層状珪酸塩からメソ多孔体を合成す
る方法について述べる。層状珪酸塩としては、たとえば
カネマイト(NaHSi2 5 ・3H2 O)が好まし
い。また、他の層状珪酸塩としてはジ珪酸ナトリウム結
晶(Na2 Si25 )、マカタイト(Na2 Si4
9 ・5H2 O)、アイラアイト(Na2 Si8 17・X
2 O)、マカディアイト(Na2 Si1429・XH2
O)、ケニアイト(Na2 Si2041・XH2 O)など
が代表的であるが、これらに限らない。
Next, a method for synthesizing a mesoporous material from a layered silicate will be described. The layered silicate, e.g. kanemite (NaHSi 2 O 5 · 3H 2 O) is preferred. Other layered silicates include sodium disilicate crystals (Na 2 Si 2 O 5 ) and macatite (Na 2 Si 4 O).
9 · 5H 2 O), Airaaito (Na 2 Si 8 O 17 · X
H 2 O), Makadiaito (Na 2 Si 14 O 29 · XH 2
O), Kenyanite (Na 2 Si 20 O 41 .XH 2 O) and the like are typical, but not limited thereto.

【0013】界面活性剤としてはアルキルトリメチルア
ンモニウム、ジメチルジアルキルアンモニウム、アルキ
ルアンモニウム、ベンジルメチルアンモニウムの塩化
物、臭化物、沃化物が挙げられる。層状珪酸塩を、界面
活性剤を溶解した溶液に分散させる。溶媒としては、水
が好ましいが、水−アルコール混合溶媒やその他の溶媒
でもよい。界面活性剤水溶液の濃度は、0.05〜1モ
ルが好ましい。層状珪酸塩の添加量は、0.1モルの界
面活性剤水溶液1000mlに対し、たとえば、カネマ
イト5〜200gの割合が好ましい。この分散溶液を3
0〜150℃で加熱する。加熱時間は3時間以上が好ま
しい。加熱の際に、分散液を攪拌しても、しなくてもよ
い。また、溶液のpHは特に調節しなくても良いが、初
め10以上の高いpHで加熱した後、9以下まで下げて
さらに加熱することにより、結晶性および耐熱性の特に
高いメソ多孔体を得ることができる。分散液の加熱の
後、固形生成物を濾過して、回収する。この固形生成物
をきれいな水で繰り返し洗浄することにより、より耐熱
性の高いメソ多孔体を得ることができる。この固形生成
物を乾燥した後、550℃以上の高温で焼成、あるいは
塩酸/エタノール混合溶液で処理することにより、結晶
中に取り込まれた界面活性剤が除去され、メソ多孔体が
生成する。焼成する時は、空気、酸素、窒素などの雰囲
気で、1時間以上加熱するのが好ましい。
Examples of the surfactant include alkyl trimethyl ammonium, dimethyl dialkyl ammonium, alkyl ammonium, and benzyl methyl ammonium chloride, bromide, and iodide. The layered silicate is dispersed in a solution in which the surfactant is dissolved. The solvent is preferably water, but may be a water-alcohol mixed solvent or another solvent. The concentration of the surfactant aqueous solution is preferably 0.05 to 1 mol. The addition amount of the layered silicate is preferably, for example, 5 to 200 g of kanemite based on 1000 ml of a 0.1 mol aqueous surfactant solution. This dispersion is
Heat at 0-150 ° C. The heating time is preferably 3 hours or more. During the heating, the dispersion may or may not be stirred. Further, the pH of the solution does not need to be particularly adjusted, but after heating at a high pH of 10 or more at first, lowering it to 9 or less, and further heating, a mesoporous body with particularly high crystallinity and heat resistance is obtained. be able to. After heating the dispersion, the solid product is recovered by filtration. By repeatedly washing the solid product with clean water, a mesoporous body having higher heat resistance can be obtained. After drying the solid product, the solid product is calcined at a high temperature of 550 ° C. or higher, or treated with a mixed solution of hydrochloric acid / ethanol, thereby removing the surfactant incorporated in the crystal and forming a mesoporous material. When firing, it is preferable to heat for 1 hour or more in an atmosphere such as air, oxygen, or nitrogen.

【0014】この層状シリケートに界面活性剤を作用さ
せる合成法において、層状シリケートの代わりに、水ガ
ラス、粉末珪酸ソーダなどの非晶質の珪酸塩を用い、他
の合成条件は全く同じにして合成を行っても、本発明の
充填剤が得られる。細孔分布曲線は、細孔容積(V)を
細孔直径(D)で微分した値(dV/dD)を細孔直径
(D)に対しプロットした曲線をいう。細孔分布曲線
は、たとえば以下に示す気体吸着法により作成される。
この方法において最も良く用いられる気体は窒素であ
る。
In the synthesis method in which a surfactant is allowed to act on the layered silicate, an amorphous silicate such as water glass or powdered sodium silicate is used in place of the layered silicate, and the other synthesis conditions are exactly the same. Is carried out to obtain the filler of the present invention. The pore distribution curve refers to a curve in which a value (dV / dD) obtained by differentiating the pore volume (V) by the pore diameter (D) is plotted against the pore diameter (D). The pore distribution curve is created by, for example, a gas adsorption method described below.
The most commonly used gas in this method is nitrogen.

【0015】まず、充填剤に液体窒素温度(−196
℃)で窒素ガスを導入し、その吸収量を定量法あるいは
重量法で求める。すなわち、多孔体である充填剤に導入
する窒素ガスの圧力を徐々に増加させ、各平衡圧に対す
る窒素ガスの吸着量をプロットすることにより吸着等温
線を作成する。作成された吸着等温線から、たとえば、
Cranston-Inklay法、Pollimore-Heal法の計算法を用い
て、上記の細孔径分布を求めることができる。
First, a liquid nitrogen temperature (-196
° C), and the amount of absorption is determined by a quantitative method or a gravimetric method. That is, the pressure of the nitrogen gas introduced into the porous filler is gradually increased, and the adsorption amount of nitrogen gas is plotted with respect to each equilibrium pressure to create an adsorption isotherm. From the created adsorption isotherm, for example,
The above pore size distribution can be obtained by using the calculation methods of the Cranston-Inklay method and the Pollimore-Heal method.

【0016】この細孔径分布曲線における最大のピーク
を示す細孔直径の±40%の範囲に(たとえば全細孔分
布曲線における最大のピークが2.7nmとすると、細
孔直径が1.62〜3.78nmの範囲に)ある細孔の
容積の総計が、全細孔容積の60%以上を占めていると
いうことである。具体的には、細孔分布曲線の細孔直径
が1.62〜3.78nmの範囲の積分値が、曲線の全
積分値の60%以上を占めていることである。
In a range of ± 40% of the pore diameter showing the maximum peak in the pore diameter distribution curve (for example, when the maximum peak in the entire pore distribution curve is 2.7 nm, the pore diameter becomes 1.62 to 1.62 nm). That is, the total volume of a pore (in the range of 3.78 nm) accounts for more than 60% of the total pore volume. Specifically, the integral value of the pore distribution curve in the range of the pore diameter of 1.62 to 3.78 nm accounts for 60% or more of the total integral value of the curve.

【0017】細孔分布曲線における最大のピークを示す
細孔直径の±40%の細孔径範囲が全細孔容積の60%
未満の多孔体では、細孔径が不均一であり、細孔径の大
きさを有効に利用するのに好ましくない。
The pore diameter range of ± 40% of the pore diameter showing the maximum peak in the pore distribution curve is 60% of the total pore volume.
If the porous body has a pore size of less than 1, the pore diameter is not uniform, which is not preferable for effectively utilizing the pore diameter.

【0018】[0018]

【実施例】以下、実施例により具体的に説明する。 メソ多孔体の製造1(FSM/8,10,12,14,
16) 日本化学工業(株)製の粉末珪酸ソーダ(SiO2 /N
2 O=2.00)を700℃で6時間、空気中で焼成
し、ジ珪酸ソーダ(δ−Na2 Si2 5 )に結晶化さ
せた。この結晶50gを500mlの水に分散させ、3
時間攪拌した。その後、濾過により固形分を回収してカ
ネマイト結晶を得た。
The present invention will be specifically described below with reference to examples. Production of mesoporous body 1 (FSM / 8, 10, 12, 14,
16) Powdered sodium silicate (SiO 2 / N) manufactured by Nippon Chemical Industry Co., Ltd.
a 2 O = 2.00) was calcined in air at 700 ° C. for 6 hours to crystallize into sodium disilicate (δ-Na 2 Si 2 O 5 ). 50 g of these crystals are dispersed in 500 ml of water,
Stirred for hours. Thereafter, the solid content was recovered by filtration to obtain kanemite crystals.

【0019】乾燥重量で50gのカネマイトを0.1モ
ルのヘキサデシルトリメチルアンモニウムクロライド
(C1633N(CH3 3 Cl)水溶液1000mlに
分散させ、70℃で3時間攪拌しながら加熱した。加熱
初期のpHは12.3であった。その後、70℃で加熱
攪拌しながら、2Nの塩酸を添加して、分散液のpHを
8.5に下げた。その後、70℃で3時間加熱してから
室温まで放冷した。固形生成物を一旦濾過し、1000
mlのイオン交換水中に分散させ攪拌した。このイオン
交換水の濾過・分散攪拌を5回繰り返してから、60℃
で24時間乾燥した。この固形分試料を空気中で550
℃で6時間焼成することによりメソ多孔体を得た。
50 g of kanemite in a dry weight was dispersed in 1000 ml of a 0.1 mol aqueous solution of hexadecyltrimethylammonium chloride (C 16 H 33 N (CH 3 ) 3 Cl) and heated at 70 ° C. with stirring for 3 hours. The pH at the beginning of heating was 12.3. Thereafter, while heating and stirring at 70 ° C., 2N hydrochloric acid was added to lower the pH of the dispersion to 8.5. Thereafter, the mixture was heated at 70 ° C. for 3 hours and allowed to cool to room temperature. Once the solid product is filtered, 1000
The mixture was dispersed and stirred in ml of deionized water. After repeating the filtration / dispersion stirring of the ion-exchanged water 5 times,
For 24 hours. This solid content sample is 550 in air.
A mesoporous body was obtained by baking at 6 ° C. for 6 hours.

【0020】上記と同じ操作で、ヘキサデシルトリメチ
ルアンモニウムクロライドの代わりにアルキル(Cn
2n+1)鎖の長さ(n)が異なる4種類のアルキルトリメ
チルアンモニウム(Cn 2n+1(CH3 3 )のクロラ
イド(n=14)あるいはブロマイド(n=8,10,
12)を用いて、計5種のメソ多孔体を製造した。それ
ぞれ用いたアルキルトリメチルアンモニウムのアルキル
鎖長の長さの数字(n)を付け、FSM/8,FSM/
10,FSM/12,FSM/14,FSM/16と記
号を付けた。
In the same operation as above, alkyl (C n H) is used instead of hexadecyltrimethylammonium chloride.
2n + 1) the chain length (n) is four different alkyltrimethylammonium (C n H 2n + 1 ( CH 3) 3 chloride) (n = 14) or bromide (n = 8, 10,
Using 12), a total of five types of mesoporous materials were produced. The number (n) of the length of the alkyl chain of the alkyltrimethylammonium used is given, and FSM / 8, FSM /
10, FSM / 12, FSM / 14 and FSM / 16.

【0021】メソ多孔体の製造2(FSM/M05,1
0,20) 上記のメソ多孔体の製造方法において、0.1モルのヘ
キサデシルトリメチルアンモニウムクロライドに加え
て、メシチレン(C6 3 (CH3 3 )を添加したほ
かは、メソ多孔体の製造1と同じ条件でメソ多孔体の合
成をおこなった。メシチレンの添加量は0.05、0.
1および0.2モルの3条件で製造し、これらモル量の
小数点以下の数字を採用してそれぞれFSM/M05.
FSM/M10,FSM/M20と記号を付けた。
Production of mesoporous material 2 (FSM / M05,1)
0,20) In the above method for producing a mesoporous material, except that mesitylene (C 6 H 3 (CH 3 ) 3 ) was added in addition to 0.1 mol of hexadecyltrimethylammonium chloride. A mesoporous body was synthesized under the same conditions as in Production 1. The addition amount of mesitylene is 0.05, 0.
It was prepared under three conditions of 1 mol and 0.2 mol, and the numbers after the decimal point of these molar amounts were adopted to obtain FSM / M05.
The symbols FSM / M10 and FSM / M20 were given.

【0022】メソ多孔体の合成3 粉末珪酸ソーダ(SiO2 /Na2 O=2.00日本化
学工業株製)50gまたはそれを700℃で6時間空気
中焼成して得たδ−Na2 Si2 5 、50gを、0.
1モルのヘキサデシルトリメチルアンモニウムクロライ
ド水溶液1000mlに分散させ、70℃で3時間攪拌
しながら加熱した。その後、2Nの塩酸水溶液を滴下す
ることにより分散液のpHを8.5に調整した。それか
らさらに70℃で3時間攪拌してから、室温まで冷却し
た。固形生成物を濾過し、1000mlの脱イオン水に
分散させてから約5分攪拌して再び濾過をおこなった。
この分散と濾過の操作を5回繰り返した。生成物を乾燥
させたあと、550℃で6時間、空気中で焼成して、2
種類の粉末試料を得た。これらの試料は、順にFSM/
16P,FSM/16Dと記号を付けた。
Synthesis of mesoporous material 3 50 g of powdered sodium silicate (SiO 2 / Na 2 O = 2.00 manufactured by Nippon Chemical Industry Co., Ltd.) or δ-Na 2 Si obtained by calcining it in air at 700 ° C. for 6 hours 50 g of 2 O 5 , 0.
The mixture was dispersed in 1000 ml of a 1 mol aqueous solution of hexadecyltrimethylammonium chloride and heated at 70 ° C. for 3 hours with stirring. Thereafter, the pH of the dispersion was adjusted to 8.5 by dropwise addition of a 2N aqueous hydrochloric acid solution. Then, the mixture was further stirred at 70 ° C. for 3 hours, and then cooled to room temperature. The solid product was filtered, dispersed in 1000 ml of deionized water, stirred for about 5 minutes and filtered again.
This operation of dispersion and filtration was repeated five times. After the product has been dried, it is calcined in air at 550 ° C. for 6 hours to give 2
Different kinds of powder samples were obtained. These samples are in turn FSM /
16P, FSM / 16D.

【0023】なお、FSM/16Pは粉末珪酸ソーダに
直鎖界面活性剤を作用させて合成したものとして、FS
M/16Dはδ−Na2 Si2 5 を経由して合成した
ものとして名付けたものである。 メソ多孔体のX線回折 合成したメソ多孔体の粉末X線回折パターンを測定し
た。X線回折は理学RAD−B装置を用い、CuKαを
線源として2度(2θ)/分でスキャンした。スリット
幅は、1度−0.3mm−1度である。結果を図1と図
2に示す。
The FSM / 16P was prepared by reacting a powdered sodium silicate with a linear surfactant, and
M / 16D is named as synthesized via δ-Na 2 Si 2 O 5 . X-ray diffraction of mesoporous body The powder X-ray diffraction pattern of the synthesized mesoporous body was measured. The X-ray diffraction was scanned at 2 degrees (2θ) / min using CuKα as a radiation source using a Rigaku RAD-B apparatus. The slit width is 1 degree-0.3 mm-1 degree. The results are shown in FIGS.

【0024】図1と図2のX線回折パターンに見られる
ように、回折角度(2θ)が10度以下に数本のピーク
が観察された。ピークの回折角度をd値に変換した値を
表1に示した。FSM/12,FSM/14,FSM/
16,FSM/M05,FSM/16P,FSM/16
Dについては、d=1nm以上のd値を持つピークが3
〜4本観察された。これらのピークは六方構造に指数付
けされた。
As shown in the X-ray diffraction patterns of FIGS. 1 and 2, several peaks were observed when the diffraction angle (2θ) was 10 degrees or less. Table 1 shows the values obtained by converting the diffraction angles of the peaks into d values. FSM / 12, FSM / 14, FSM /
16, FSM / M05, FSM / 16P, FSM / 16
As for D, the peak having a d value of d = 1 nm or more is 3
44 were observed. These peaks were indexed into a hexagonal structure.

【0025】一方、FSM/8,FSM/10,FSM
/M10については、d=1nm以上のd値をもつピー
クガ1〜2本観察された。またFSM/M20について
は、この測定条件ではd=1nm以上のd値をもつピー
クは見られなかったが、スリット幅を0,5度−0.1
5mm−0.5度とした場合には、図3に示すようにd
=1nm以上の位置に1本のピークが観察された。これ
らのX線回折パターンの結果から、これらのメソ多孔体
は、規則的な周期構造をもっていることがわかる。
On the other hand, FSM / 8, FSM / 10, FSM
Regarding / M10, one or two peaks having a d value of d = 1 nm or more were observed. For FSM / M20, no peak having a d value of d = 1 nm or more was observed under these measurement conditions, but the slit width was set to 0.5 ° -0.1 °.
In the case of 5 mm-0.5 degrees, as shown in FIG.
= One peak was observed at a position of 1 nm or more. The results of these X-ray diffraction patterns show that these mesoporous materials have a regular periodic structure.

【0026】メソ多孔体の細孔分布曲線 メソ多孔体の細孔分布曲線を窒素吸着等温線から求め
た。窒素吸着等温線は以下のように測定した。装置は真
空ラインに圧力センサ(MKS,Baratron 127AA,レンジ100
0mmHg)およびコントロールバルブ(MKS,248A)2個が
接続されたものを用い、窒素ガスの真空ラインへの導入
およびサンプル管への導入が自動に行えるようになって
いる。
Pore distribution curve of mesoporous material A pore distribution curve of the mesoporous material was determined from a nitrogen adsorption isotherm. The nitrogen adsorption isotherm was measured as follows. The equipment is equipped with a pressure sensor (MKS, Baratron 127AA, range 100)
0 mmHg) and two control valves (MKS, 248A) are connected so that nitrogen gas can be automatically introduced into a vacuum line and into a sample tube.

【0027】メソ多孔体サンプル約40mgをガラス製
のサンプル管に入れ、真空ラインに接続した。サンプル
管を130℃で約1時間真空脱気した。到達真空度は1
-4mmHgであった。サンプル管を液体窒素に浸漬し、真
空ライン部に所定圧の窒素ガスを導入する。圧力が安定
した後、サンプル管のコントロールバルブを開き、圧力
が一定になった後、平衡圧を記録する。平衡圧が0〜7
60mmHgの範囲で16〜18点同じ操作を繰り返し
た。
About 40 mg of the mesoporous sample was placed in a glass sample tube and connected to a vacuum line. The sample tube was vacuum degassed at 130 ° C. for about 1 hour. Ultimate vacuum is 1
It was 0 -4 mmHg. The sample tube is immersed in liquid nitrogen, and a predetermined pressure of nitrogen gas is introduced into the vacuum line. After the pressure stabilizes, open the control valve on the sample tube and record the equilibrium pressure after the pressure has stabilized. Equilibrium pressure is 0-7
The same operation was repeated at 16 to 18 points in the range of 60 mmHg.

【0028】平衡までの時間は、圧力により変化する
が、20〜60分の範囲であった。この平衡圧と圧力変
化から求めた吸着量をプロットすることにより、上記の
各メソ多孔体の窒素吸着等温線を作成した。結果を図4
と図5に示した。この窒素吸着等温線から、Cranston-I
nklay 法により、細孔分布曲線を求めた。結果を図6と
図7に示す。細孔分布曲線における最大のピークを示す
細孔直径(中心細孔直径と呼ぶ)、および中心細孔直径
の±40%の細孔範囲に含まれる細孔容積の全細孔容積
の割合を表1に示した。これらのメソ多孔体は、中心直
径が1〜10nmの範囲にあり、かつ細孔分布曲線にお
ける最大のピークを示す細孔直径の±40%の細孔範囲
に全細孔容積の60%以上が含まれる。
The time to equilibrium varies with pressure, but was in the range of 20 to 60 minutes. By plotting the amount of adsorption determined from the equilibrium pressure and the pressure change, the nitrogen adsorption isotherm of each mesoporous material was prepared. Fig. 4 shows the results.
And FIG. From this nitrogen adsorption isotherm, Cranston-I
The pore distribution curve was determined by the nklay method. The results are shown in FIGS. The pore diameter showing the largest peak in the pore distribution curve (referred to as central pore diameter) and the ratio of the total pore volume to the pore volume included in a pore range of ± 40% of the central pore diameter are shown. 1 is shown. These mesoporous materials have a center diameter in the range of 1 to 10 nm and a pore range of ± 40% of the pore diameter showing the maximum peak in the pore distribution curve. included.

【0029】[0029]

【表1】 一方、比較サンプルであるシリカゲル(市販A:(TL
CプレートC60254のシリカゲル))の窒素吸着等温
線および細孔分布率を図8と図9に示した。中心細孔径
および±40%細孔率を表1に示した。シリカゲルは中
心細孔径が1〜10nmの範囲にあるが、±40%細孔
率が60%未満であった。
[Table 1] On the other hand, silica gel (commercially available A: (TL
The nitrogen adsorption isotherm and the pore distribution of the C plate C 60 F 254 silica gel) are shown in FIGS. 8 and 9. Table 1 shows the center pore diameter and the ± 40% porosity. The silica gel had a center pore diameter in the range of 1 to 10 nm, but had a ± 40% porosity of less than 60%.

【0030】TLC評価 (TLCプレートの作製)FSM/16を遊星ボールミ
ル(FRITSCH社製)を用い、回転数のレンジを5
として、15分間粉砕した。X線回折の結果から、粉砕
による構造の破壊は無いことが確認された。粉砕したF
SM/16を100メッシュの篩に通し、粒子径が15
0μm以下のFSM/16を採取した。採取したFSM
/16(35g)と、吸着剤の1%程度の蛍光指示薬F
254 (MERCK)0.35gをクロロホルム/メタノ
ール=2/1混合溶液110±20mlに均一に分散さ
せた。濃塩酸に浸漬させることにより洗浄したスライド
ガラス2枚を重ねて分散液に浸し、垂直方向に引き上
げ、引き上げた2枚のスライドガラスを剥がして、薄層
を上に向けて乾燥させることにより、TLCプレートを
作製した。
TLC Evaluation (Preparation of TLC Plate) Using a planetary ball mill (manufactured by FRITSCH) for FSM / 16, set the rotation speed range to 5
For 15 minutes. From the results of the X-ray diffraction, it was confirmed that there was no structural destruction due to the pulverization. Crushed F
SM / 16 is passed through a 100 mesh sieve and the particle size is 15
FSM / 16 of 0 μm or less was collected. FSM collected
/ 16 (35 g) and about 1% of the fluorescent indicator F of the adsorbent
254 (MERCK) 0.35 g was uniformly dispersed in 110 ± 20 ml of a mixed solution of chloroform / methanol = 2/1. Two glass slides washed by immersion in concentrated hydrochloric acid are superimposed, immersed in the dispersion liquid, pulled up in the vertical direction, the two glass slides are peeled off, and the thin layer is dried upward to obtain TLC. A plate was made.

【0031】比較例としては、市販品のシリカゲルのT
LCプレートC60254 (MERCK社製)を用い、市
販品Aとした。なお、クロマトグラフ用充填剤の粒子径
は、具体的には、重力による自然落下により溶媒を流す
カラムクロマトグラフ用充填剤の粒子径は63〜250
μmで、空気による加圧、あるいはポンプによる強制的
な送液で溶媒を流すカラムクロマトグラフ用充填剤で
は、40〜63μm、またはそれ以下である。また、T
LCでは63μm以下である。しかしながら、この実施
例においては150μm以下のものを用いた。
As a comparative example, a commercially available silica gel T
A commercial product A was obtained using an LC plate C 60 F 254 (manufactured by MERCK). In addition, the particle diameter of the filler for chromatography is, specifically, the particle diameter of the filler for column chromatography, in which the solvent flows by gravity by gravity, is 63 to 250.
In the case of a column chromatography filler in which a solvent is flowed by pressurization with air or forced pumping by a pump, the thickness is 40 to 63 μm or less. Also, T
In LC, it is 63 μm or less. However, in this example, the one having a thickness of 150 μm or less was used.

【0032】また、クロマトグラフ用充填剤の前処理は
この実施例では特別な処理を施さなかった。シリカ表面
の水酸基を化学修飾することにより、表面の状態や性質
を変化させ、分離性能を向上させることができる。 (TLC評価)TLCプレートの下端から1cmの所
に、約1%の展開物溶液(クロロホルム溶液)をキャピ
ラリーを用いて、スポットができるだけ少なくなるよう
に付け、充分乾燥させた。また、展開槽(たとえばビー
カーなど)に展開溶媒を5mm程度入れ、濾紙を器壁に
つけ、ふたをし、しばらく放置し、展開槽内を溶媒蒸気
で飽和させた。そして、展開槽中の展開溶媒に、プレー
トの下端を5mm程度漬けて展開をおこなった。展開
後、移動したスポットの検出は紫外線を照射することに
よりおこなった。スポットの位置から、展開溶媒に対す
る展開物のRf 値を求めた。Rf 値は図10において
In this embodiment, no special treatment was applied to the pretreatment of the chromatographic filler. By chemically modifying the hydroxyl groups on the silica surface, the state and properties of the surface can be changed, and the separation performance can be improved. (TLC Evaluation) About 1% of a developing solution (chloroform solution) was applied to a position 1 cm from the lower end of the TLC plate using a capillary so that the number of spots was as small as possible, and the plate was sufficiently dried. In addition, a developing solvent of about 5 mm was put in a developing tank (for example, a beaker), a filter paper was attached to a vessel wall, a lid was placed on the developing tank, and the developing tank was left for a while, and the inside of the developing tank was saturated with a solvent vapor. The lower end of the plate was immersed in a developing solvent in a developing tank by about 5 mm to perform the developing. After the development, the moved spot was detected by irradiating ultraviolet rays. From the position of the spot, the Rf value of the developed product with respect to the developing solvent was determined. The R f value in FIG.

【0033】[0033]

【数1】 で求められる値であり、各試料に対するこのRf 値の差
が大きいほど、充填剤の分離能が高いといえる。同一試
料について、1〜3回の実験をおこない、その平均値を
求めた。
(Equation 1) It can be said that the larger the difference of this R f value for each sample, the higher the separation ability of the filler. One to three experiments were performed on the same sample, and the average value was obtained.

【0034】(TLC評価結果)展開物としては、ベン
ゼン系の有機物である、アニリン、N−メチルアニリ
ン、N,N−ジメチルアニリン、フェノール、フタル酸
ジブチル、ナフチルレッドを用いた。展開溶媒として
は、クロロホルム、アセトンを用い、それぞれのRf
を求めた。その結果を図11、12に示す。展開物の大
きさは、細孔径の大きさに近いものではないが、展開液
がクロロホルムの場合は、市販品の方がRf 値の差が大
きく、分離性能がFSM/16よりよいものの、展開溶
媒が比較的極性の高いアセトンの場合には、FSM/1
6の方が、Rf 値差が大きく、分離性能が良い。また、
薄槽の均一性を上げることにより、FSM/16の分離
性能はさらに向上する。
(Results of TLC Evaluation) As a developed product, benzene-based organic substances such as aniline, N-methylaniline, N, N-dimethylaniline, phenol, dibutyl phthalate, and naphthyl red were used. Chloroform and acetone were used as developing solvents, and their R f values were determined. The results are shown in FIGS. Although the size of the developed product is not close to the size of the pore diameter, when the developing solution is chloroform, the difference in the R f value of the commercial product is larger and the separation performance is better than that of FSM / 16. When the developing solvent is acetone having a relatively high polarity, FSM / 1
No. 6 has a larger R f value difference and better separation performance. Also,
By increasing the uniformity of the thin tank, the separation performance of FSM / 16 is further improved.

【0035】[0035]

【発明の効果】本発明のシリカ系多孔体による充填剤は
結晶性が高く、細孔が均一である。このため、中心細孔
直径に近い大きな分子で細孔の中にいることができる分
子と、できない分子と分離に有利である。また、シリカ
ゲルに比べ、細孔直径が1〜10nmの範囲で均一で、
かつ筒状の奥深い細孔のため高極性の溶媒でも溶質(被
分離物質)をしっかり保持することができる。このため
溶質の分離に有効に作用する。その結果、液体クロマト
グラフ用の充填剤として高い分離能が期待できる。
The filler made of the porous silica material of the present invention has high crystallinity and uniform pores. For this reason, it is advantageous to separate molecules that can be in the pores from large molecules close to the central pore diameter and those that cannot. Also, compared to silica gel, the pore diameter is uniform in the range of 1 to 10 nm,
In addition, since the cylindrical deep pores, a solute (substance to be separated) can be firmly held even with a highly polar solvent. For this reason, it effectively acts on solute separation. As a result, high separation ability can be expected as a packing material for liquid chromatography.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で合成したメソ多孔体のX線回折パター
ンである。
FIG. 1 is an X-ray diffraction pattern of a mesoporous material synthesized in an example.

【図2】実施例で合成したメソ多孔体のX線回折パター
ンである。
FIG. 2 is an X-ray diffraction pattern of a mesoporous material synthesized in an example.

【図3】実施例のFSM/M20のスリット幅を変えて
測定したX線回折のパターンである。
FIG. 3 is an X-ray diffraction pattern measured by changing the slit width of the FSM / M20 of the example.

【図4】実施例のメソ多孔体の窒素吸着等温線のグラフ
である。
FIG. 4 is a graph of a nitrogen adsorption isotherm of a mesoporous material of an example.

【図5】実施例のメソ多孔体の窒素吸着等温線のグラフ
である。
FIG. 5 is a graph of a nitrogen adsorption isotherm of a mesoporous material of an example.

【図6】実施例の細孔分布曲線を示すグラフである。FIG. 6 is a graph showing a pore distribution curve of an example.

【図7】実施例のFSM/16D,FSM/16Pの細
孔分布率を示すグラフである。
FIG. 7 is a graph showing the pore distribution ratio of FSM / 16D and FSM / 16P in Examples.

【図8】市販品Aのシリカゲルの窒素吸着等温線を示す
グラフである。
FIG. 8 is a graph showing a nitrogen adsorption isotherm of silica gel of a commercial product A.

【図9】市販品Aのシリカゲルの細孔分布率を示すグラ
フである。
FIG. 9 is a graph showing a pore distribution ratio of silica gel of a commercial product A.

【図10】Rf 値の算出を説明する模式図である。FIG. 10 is a schematic diagram illustrating calculation of an R f value.

【図11】展開溶媒にクロロホルムを用いた場合のFS
M/C16実施例品と比較例の市販品AのRf 値を示す
棒グラフである。
FIG. 11: FS when chloroform is used as a developing solvent
It is a bar graph which shows the Rf value of M / C16 Example product and the commercial product A of a comparative example.

【図12】展開溶媒にアセトンを用いた場合のFSM/
C16実施例品と比較例の市販品AのRf 値を示す棒グ
ラフである。
FIG. 12 shows the results of FSM /
It is a bar graph which shows the Rf value of C16 Example product and the commercial product A of a comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】中心細孔直径が1〜10nmの範囲内にあ
り、該中心細孔直径の±40%の範囲内に全細孔容積の
60%以上が含まれるシリカ系多孔体であって、液体ク
ロマトグラフィの充填剤として使用することを特徴とす
る液体クロマトグラフ用充填剤。
1. A silica-based porous material having a central pore diameter in a range of 1 to 10 nm and containing ± 60% or more of the total pore volume in a range of ± 40% of the central pore diameter. A packing material for liquid chromatography, which is used as a packing material for liquid chromatography.
【請求項2】X線回折パターンにおいて、d値が1nm
以上に相当する回折角(2θ)の位置に、1本以上のピ
ークを有するシリカ系多孔体であって、液体クロマトグ
ラフィの充填剤として使用することを特徴とする液体ク
ロマトグラフ用充填剤。
2. An X-ray diffraction pattern having a d value of 1 nm
A filler for liquid chromatography, which is a silica-based porous material having one or more peaks at positions corresponding to the diffraction angle (2θ) corresponding to the above, and used as a filler for liquid chromatography.
【請求項3】前記液体クロマトグラフィは、カラムクロ
マトグラフィ、高性能液体クロマトグラフィ(HPL
C)、薄層クロマトグラフィ(TLC)である請求項1
または2のいずれかに記載の液体クロマトグラフ用充填
剤。
3. The liquid chromatography includes column chromatography, high performance liquid chromatography (HPL).
C), thin-layer chromatography (TLC).
Or the filler for liquid chromatography according to any one of 2.
JP8167870A 1996-06-10 1996-06-27 Filler for liquid chromatography Pending JPH1062401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8167870A JPH1062401A (en) 1996-06-10 1996-06-27 Filler for liquid chromatography

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-147412 1996-06-10
JP14741296 1996-06-10
JP8167870A JPH1062401A (en) 1996-06-10 1996-06-27 Filler for liquid chromatography

Publications (1)

Publication Number Publication Date
JPH1062401A true JPH1062401A (en) 1998-03-06

Family

ID=26477964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8167870A Pending JPH1062401A (en) 1996-06-10 1996-06-27 Filler for liquid chromatography

Country Status (1)

Country Link
JP (1) JPH1062401A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015198A1 (en) * 2003-08-06 2005-02-17 Nippon Telegraph And Telephone Corporation Molecule detection method using porous material, the porous material, and manufacturing method for the porous material
WO2005075954A1 (en) * 2004-02-06 2005-08-18 Nippon Telegraph And Telephone Corporation Benzene sensor and method for manufacturing same
JP2008508516A (en) * 2004-07-30 2008-03-21 ウオーターズ・インベストメンツ・リミテツド Porous inorganic / organic hybrid materials with ordered domains for chromatographic separation and methods for their preparation
US9089836B2 (en) 2001-08-09 2015-07-28 Waters Technologies Corporation Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
US9211524B2 (en) 2002-10-30 2015-12-15 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
JP2016200531A (en) * 2015-04-13 2016-12-01 株式会社Jvcケンウッド Analytic method
US9546257B2 (en) 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
US10092893B2 (en) 2010-07-26 2018-10-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
US10773186B2 (en) 2004-07-30 2020-09-15 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US11291974B2 (en) 2009-06-01 2022-04-05 Waters Technologies Corporation Hybrid inorganic/organic materials having novel surface modification; process for the preparation of inorganic/organic hybrid materials; and use of said particles for chromatographic separations
US11439977B2 (en) 2009-06-01 2022-09-13 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
US11642653B2 (en) 2016-03-06 2023-05-09 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9089836B2 (en) 2001-08-09 2015-07-28 Waters Technologies Corporation Porous inorganic/organic hybrid monolith materials for chromatographic separations and process for their preparation
US9211524B2 (en) 2002-10-30 2015-12-15 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
US9976008B2 (en) 2002-10-30 2018-05-22 Waters Technologies Corporation Porous inorganic/organic homogenous copolymeric hybrid materials for chromatographic separations and process for the preparation thereof
WO2005015198A1 (en) * 2003-08-06 2005-02-17 Nippon Telegraph And Telephone Corporation Molecule detection method using porous material, the porous material, and manufacturing method for the porous material
WO2005075954A1 (en) * 2004-02-06 2005-08-18 Nippon Telegraph And Telephone Corporation Benzene sensor and method for manufacturing same
US7682564B2 (en) 2004-02-06 2010-03-23 Nippon Telegraph And Telephone Corporation Benzene detecting element and preparation process of same
US10773186B2 (en) 2004-07-30 2020-09-15 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US9145481B2 (en) 2004-07-30 2015-09-29 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
US8658277B2 (en) 2004-07-30 2014-02-25 Waters Technologies Corporation Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation
JP2008508516A (en) * 2004-07-30 2008-03-21 ウオーターズ・インベストメンツ・リミテツド Porous inorganic / organic hybrid materials with ordered domains for chromatographic separation and methods for their preparation
US9546257B2 (en) 2007-01-12 2017-01-17 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
US11071969B1 (en) 2007-01-12 2021-07-27 Waters Technologies Corporation Porous carbon-heteroatom-silicon inorganic/organic materials for chromatographic separations and process for the preparation thereof
US11291974B2 (en) 2009-06-01 2022-04-05 Waters Technologies Corporation Hybrid inorganic/organic materials having novel surface modification; process for the preparation of inorganic/organic hybrid materials; and use of said particles for chromatographic separations
US11439977B2 (en) 2009-06-01 2022-09-13 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material
US10092893B2 (en) 2010-07-26 2018-10-09 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution; process for the preparation thereof; and use thereof for chromatographic separations
US11478775B2 (en) 2010-07-26 2022-10-25 Waters Technologies Corporation Superficially porous materials comprising a substantially nonporous hybrid core having narrow particle size distribution
JP2016200531A (en) * 2015-04-13 2016-12-01 株式会社Jvcケンウッド Analytic method
US11642653B2 (en) 2016-03-06 2023-05-09 Waters Technologies Corporation Hybrid material for chromatographic separations comprising a superficially porous core and a surrounding material

Similar Documents

Publication Publication Date Title
US7378076B2 (en) Process for production of macrostructures of a microporous material
Wang et al. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process
Inagaki et al. Adsorption isotherm of water vapor and its large hysteresis on highly ordered mesoporous silica
KR101800527B1 (en) Zeolites with hierarchical porosity
KR101800526B1 (en) Zeolites with hierarchical porosity
WO2016006564A1 (en) Zeolite membrane, production method therefor, and separation method using same
JP3922389B2 (en) Zeolite membrane production method and production apparatus, and zeolite tubular separation membrane obtained by this method
JPH1062401A (en) Filler for liquid chromatography
Kazemimoghadam et al. Dehydration of water/1-1-dimethylhydrazine mixtures by zeolite membranes
El Hanache et al. Surfactant-modified MFI-type nanozeolites: Super-adsorbents for nitrate removal from contaminated water
JP2009066462A (en) Method for preparing composite membrane
JPH09178292A (en) Adsorption heat pump
JP4751996B2 (en) Method for producing ZSM-5 type zeolite membrane
US5382558A (en) Heat resistant layered porous silica and process for producing the same
Mirajkar et al. Sorption properties of titanium silicate molecular sieves
JP2005074382A (en) Mixture separation membrane and mixture separation method
Santos et al. Development of micro–mesoporous composite material of the ZSM-12/MCM-41 type for the CO 2 adsorption
JP2002201020A (en) Zeolite seed crystal, and method for producing zeolite membrane using the seed crystal
JP3757041B2 (en) Vapor absorption / release material
JP2008521738A (en) Zeolite membrane and method for producing the same
CN106430234B (en) A kind of synthetic method of nanometer hierarchical pore ZSM-11 molecular sieves
JP7110792B2 (en) Method for producing silver ion-exchanged zeolite
JP5366189B2 (en) Method for producing zeolite material comprising zeolite or zeolite membrane
JP3400262B2 (en) Silica-based porous material and separation method using the same
WO2008033230A2 (en) A method of making porous crystalline materials