WO2004040747A1 - Kommutierungsverfahren einer brückenschaltung - Google Patents

Kommutierungsverfahren einer brückenschaltung Download PDF

Info

Publication number
WO2004040747A1
WO2004040747A1 PCT/EP2003/008242 EP0308242W WO2004040747A1 WO 2004040747 A1 WO2004040747 A1 WO 2004040747A1 EP 0308242 W EP0308242 W EP 0308242W WO 2004040747 A1 WO2004040747 A1 WO 2004040747A1
Authority
WO
WIPO (PCT)
Prior art keywords
commutation
switching
motor
current
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2003/008242
Other languages
English (en)
French (fr)
Inventor
Klaus Teuke
Martin Haaf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Werke GmbH and Co KG
Original Assignee
Ebm Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Werke GmbH and Co KG filed Critical Ebm Werke GmbH and Co KG
Priority to AU2003255293A priority Critical patent/AU2003255293A1/en
Publication of WO2004040747A1 publication Critical patent/WO2004040747A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/03Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
    • H02P7/04Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors by means of a H-bridge circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Definitions

  • the invention relates to a commutation method for an electric motor, in particular a collectorless DC motor, with a semiconductor bridge circuit, consisting of switching elements and, in each case, parallel freewheeling elements, the switching elements being actuated in pairs to open or close in alternating times so that the direction of a current flows through reverses a motor winding.
  • the invention is based on the object of finding a commutation method of the type mentioned at the outset in which an intermediate circuit capacity can be dispensed with or at least reduced.
  • This object is achieved in that before each commutation time, one of the switching elements which are switched through in pairs is opened a certain time earlier than the associated other switching element in such a way that the current via the switching element which is still switched on and one of the freewheeling elements is reduced during a decay process within the semiconductor bridge circuit ,
  • the method according to the invention eliminates the need for an intermediate circuit capacitance, because no voltage peaks occur due to the decay of the current flowing in a motor winding. Without an intermediate circuit capacity, a control circuit becomes significantly smaller, and the service life of the control circuit increases considerably extended because the DC link capacity has so far determined the service life. This also makes a control circuit much cheaper.
  • a switching duration of the one switching element corresponds to a percentage of 50% to 90%, in particular approximately 75%, of a sensor signal length of the collectorless DC motor, the sensor signal length corresponding to a time between two pole transitions.
  • the factor can advantageously be determined empirically by measurements in the development phase of the engine. Among other things, it depends on the inductance of the motor winding, the back emf depending on the speed, the operating voltage and the operating point. It is advantageous if the commutation times are measured during different phases. The factor is determined by empirical determination, which determines by how much the switching time must be shortened with respect to these commutation times. It should be noted here that the switch-off time must be set earlier during an acceleration or start-up phase. This considerably simplifies the control circuit.
  • the current flowing through the free-wheeling diode is reduced only to a residual value.
  • a capacitor is still required as an intermediate circuit capacitance, this can be dimensioned much smaller. Due to the smaller dimensions, a capacitor with a longer service life can be used at a reasonable cost.
  • Fig. 1 a first switching state of a known commutation process in which two switching elements are switched on
  • Fig. 2 a freewheeling current, which is based on the known
  • Fig. 6 a switching state after the compensation process
  • FIG. 1 shows the state before commutation, in which the semiconductor switching elements T1 and T4, which are designed as transistors, are switched on.
  • a current flows from a plus connection via the transistor T1, a winding W and the transistor T4 to a minus connection, where W represents the winding of a single-stranded collectorless DC motor.
  • a current flows in the winding W in a known manner, as illustrated in FIG. 2, at this time W. This is driven on by the inductance of the winding and flows back into the intermediate circuit via the freewheeling diodes D3 and D2.
  • the charge carriers are taken up in a known manner by the intermediate circuit capacitance C, an excessive rise in an intermediate circuit voltage being prevented by the capacitance or the capacitor C.
  • the transistors T2 and T3 are already switched on.
  • a current can flow through the winding W in the reverse direction only when the freewheeling current in the freewheeling diodes D2 and D3 has decayed to zero.
  • the intermediate circuit capacitor is no longer required due to the commutation method according to the invention.
  • transistors T1 and T4 are first switched on, as shown in FIG. 4. A current also flows from the plus connection via the transistor T1, the winding W and the transistor T4 to the minus connection.
  • one of the two transistors is switched off before the actual commutation time, as shown in FIG. 5, in this case the upper transistor T1.
  • the commutation time usually corresponds to the time at which a pole transition takes place.
  • the pole transition corresponds to a Hall signal change of a Hall signal sensor integrated in the DC motor in a known manner.
  • the current continues to flow through the inductance of the winding W, but through the transistor T4 which is still switched on and the freewheeling diode D3.
  • the current flowing in the winding W decays to zero.
  • FIG. 6 illustrates the switching state after the commutation time at which the remaining transistor T4 is switched off and the other transistor pair T2 and T3 is switched on. Because, as already explained, the current has already decayed at this point in time, switching in accordance with FIGS. 4 and 6 is possible without an intermediate circuit capacity. In this case, a suitable choice of the switch-off time must ensure under all circumstances that no current flows in the winding W at the time of commutation or a Hall signal change, because otherwise an inadmissible voltage increase would occur during commutation due to the missing DC link capacity. The corresponding decay of the current naturally also applies to the other current direction, the transistors T2 and T4 first being switched on.
  • the factor p is determined in such a way that the current is measured at the time of the Hall signal change, specifying an estimated factor p. As mentioned above, the current must have decayed at this point. If this is not the case, the factor p must be reduced, but it must be borne in mind that a too small p-factor leads to a loss of performance on the motor. If necessary, the p-factor must be increased accordingly.
  • FIG. 7 shows a Hall signal curve, the switching state of the transistors T1 to T4 and the current curve in the winding W.
  • T1 is switched off clearly before T4, so that a current curve A that decays to zero is set after switching off T1.
  • a certain time R preferably remains between the switching on of the next transistor T2 and the point in time at which the current in the winding W has reached zero. This time R serves as a safety reserve.
  • the current in the free-wheeling diode, for. B. D3, not to zero, but only to a portion of the original current.
  • an intermediate circuit capacitance C is required, but it can be dimensioned much smaller than in the prior art. Due to the smaller DC link capacitance C, there is still a certain amount of security against voltage peaks. Compared to known methods, space and costs are nevertheless saved.
  • the invention is not limited to the exemplary embodiments shown and described, but also encompasses all embodiments having the same effect in the sense of the invention. Furthermore, the invention has not yet been limited to the combination of features defined in claim 1, but can also be defined by any other combination of certain features of all the individual features disclosed overall. This means that in principle practically every individual feature of claim 1 can be omitted or replaced by at least one individual feature disclosed elsewhere in the application. In this respect, claim 1 is only to be understood as a first attempt at formulation for an invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Die Erfindung betrifft ein Kommutierungsverfahren für einen Elektromotor, insbesondere einen kollektorlosen Gleichstrommotor, mittels einer Halbleiterbrückenschaltung, bestehend aus Schaltelementen (T1 bis T4) und dazu jeweils parallelen Freilaufelementen (D1 bis D4). Die Schaltelemente (T1 bis T4) werden jeweils in Kommutierungszeitpunkten abwechselnd paarweise so zum Öffnen oder Schliessen angesteuert, dass sich die Richtung eines Stromes durch eine Motorwicklung (W) umkehrt. Vor jedem Kommutierungszeitpunkt wird jeweils eines der paarweise durchgeschalteten Schaltelemente (z.B. T1) derart um eine bestimmte. Zeit früher als das zugehörige andere Schaltelement (z.B. T4) geöffnet, dass der Strom (i) über das noch eingeschaltete Schaltelement (z.B. T4) und eines der Freilaufelemente (z.B. D3) während eines Abklingvorgangs innerhalb der Halbleiterbrückenschaltung abgebaut wird. Mit diesem Kommutierungsverfahren kann auf eine Zwischenkreiskapazität verzichtet werden oder sie kann reduziert werden.

Description

ebm Werke GmbH & Co. KG Bachmühle 2 74673 Mulfmgen
„Kommutierungsverfahren, insbesondere für einen kollektorlosen Gleichstrommotor"
Die Erfindung betrifft ein Kommutierungsverfahren für einen Elektromotor, insbesondere einen kollektorlosen Gleichstrommotor, mit einer Halbleiterbruckenschaltung, bestehend aus Schaltelementen und dazu jeweils parallelen Freilaufelementen, wobei die Schaltelemente jeweils in Kommutierungszeitpunkten abwechselnd paarweise so zum Öffnen oder Schließen angesteuert werden, dass sich die Richtung eines Stromes durch eine Motorwicklung umkehrt.
Bekannte Steuerungen für einsträngige, kollektorlose Gleichstrommotoren besitzen eine Zwischenkreiskapazitat. Diese ist notwendig, um Spannungsspitzen bei der Kommutierung zu verhindern. Diese Zwischenkreiskapazitat (Kondensator) verkürzt einerseits die Lebensdauer der Steuerschaltung und benötigt andererseits relativ viel Platz.
Der Erfindung liegt die Aufgabe zu Grunde, ein Kommutierungsverfahren der eingangs genannten Art zu finden, bei dem auf eine Zwischenkreiskapazitat verzichtet werden kann oder diese zumindest reduziert wird.
Diese Aufgabe wird dadurch gelöst, dass vor jedem Kommutierungszeitpunkt jeweils eines der paarweise durchgeschalteten Schaltelemente derart um eine bestimmte Zeit früher als das zugehörige andere Schaltelement geöffnet wird, dass der Strom über das noch eingeschaltete Schaltelement und eines der Freilaufelemente während eines Abklingvorgangs innerhalb der Halbleiterbruckenschaltung abgebaut wird.
Durch das erfindungsgemäße Verfahren ist keine Zwischenkreiskapazitat erforderlich, weil durch das Abklingen des in einer Motorwicklung fließenden Stromes keine Spannungsspitzen mehr entstehen. Ohne Zwischenkreiskapazitat wird eine Steuerschaltung wesentlich kleiner, wobei sich die Lebensdauer der Steuerschaltung erheblich verlängert, weil die Zwischenkreiskapazitat bisher die Lebensdauer bestimmt hat. Zudem wird dadurch eine Steuerschaltung wesentlich kostengünstiger.
In einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens ist vorgesehen, dass eine Schaltdauer des einen Schaltelementes einem Prozentsatz von 50 % bis 90 %, insbesondere etwa 75 %, einer Sensorsignallänge des kollektorlosen Gleichstrommotors entspricht, wobei die Sensorsignallänge einer Zeit zwischen zwei Polübergängen entspricht. Der Faktor kann in vorteilhafter Weise durch Messungen in der Entwicklungsphase des Motors empirisch ermittelt werden. Er ist unter anderem abhängig von der Induktivität der Motorwicklung, der Gegen-EMK in Abhängigkeit von der Drehzahl, der Betriebsspannung und dem Arbeitspunkt. Günstig ist es, wenn die Kommutierungszeiten während verschiedener Phasen gemessen werden. Durch empirische Ermittlung wird der Faktor bestimmt, der festlegt, um wieviel die Schaltdauer bezüglich dieser Kommutierungszeiten verkürzt werden muss. Zu beachten ist hierbei, dass während einer Beschleunigungs- bzw. Anlaufphase der Abschaltzeitpunkt früher gelegt werden muss. Hierdurch wird die Steuerschaltung wesentlich vereinfacht.
In einem weiteren Ausführungsbeispiel ist es auch vorteilhaft, wenn der durch die Freilaufdiode fließende Strom lediglich auf einen Restwert abgebaut wird. Zwar ist hierbei immer noch ein Kondensator als Zwischenkreiskapazitat erforderlich, dieser kann jedoch wesentlich kleiner dimensioniert werden. Durch die kleinere Dimensionierung kann unter einem vertretbaren Kostenaufwand ein Kondensator mit längerer Lebensdauer verwendet werden.
Weitere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen enthalten.
Die Erfindung sowie weitere Vorteile derselben werden an Hand der nachfolgenden Beschreibung und der Figuren erläutert. Dabei werden gleiche Teile stets mit denselben Bezugszeichen gekennzeichnet.
Es zeigen:
Fig. 1 bis 6 Schaltbilder einer Steuerschaltung, und zwar
Fig. 1 : einen ersten Schaltzustand eines bekannten Kommutierungsvorgangs, bei dem zwei Schaltelemente eingeschaltet sind, Fig. 2: einen Freilaufstrom, der sich nach dem bekannten
Kommutierungsvorgang einstellt,
Fig. 3: einen weiteren bekannten Schaltvorgang der anderen Schaltelemente,
Fig. 4: einen Schaltvorgang vor einem erfindungsgemäßen Abschalten nur eines Schaltelementes,
Fig. 5: einen erfindungsgemäßen Ausgleichsvorgang durch eine Freilaufdiode,
Fig. 6: einen Schaltzustand nach dem Ausgleichsvorgang und
Fig. 7: Diagramme eines Kommutierungsablaufs und eines Stromverlaufs in einer Motorwicklung.
Zunächst wird an Hand der Figuren 1 bis 3 ein bisher bekannter Kommutierungsvorgang erläutert, bei dem eine Zwischenkreiskapazitat unbedingt erforderlich ist.
Fig. 1 zeigt den Zustand vor einer Kommutierung, bei dem die als Transistoren ausgebildeten Halbleiterschaltelemente T1 und T4 eingeschaltet sind. Hierbei fließt ein Strom von einem Plus-Anschluss über den Transistor T1 , eine Wicklung W und den Transistor T4 zu einem Minus-Anschluss, wobei W die Wicklung eines einsträngigen kollektorlosen Gleichstrommotors darstellt.
Während der Kommutierung, d. h. Abschalten der Transistoren T1 und T4 und Einschalten der Transistoren T2 und T3, fließt, in bekannter Weise, wie Fig. 2 veranschaulicht, zu diesem Zeitpunkt noch ein Strom in der Wicklung W. Dieser wird durch die Induktivität der Wicklung weitergetrieben und fließt über die Freilaufdioden D3 und D2 in den Zwischenkreis zurück. Die Ladungsträger werden in bekannter Weise von der Zwischenkreiskapazitat C aufgenommen, wobei ein übermäßiges Ansteigen einer Zwischenkreisspannung durch die Kapazität bzw. den Kondensator C verhindert wird. Wie in Fig. 2 zu sehen ist, sind die Transistoren T2 und T3 bereits eingeschaltet. Wie die Fig. 3 veranschaulicht, kann durch die Wicklung W ein Strom erst in umgekehrter Richtung fließen, wenn der Freilaufstrom in den Freilaufdioden D2 und D3 auf Null abgeklungen ist.
Wie nun an Hand der Figuren 4 bis 6 gezeigt werden wird, ist durch das erfindungsgemäße Kommutierungsverfahren kein Zwischenkreiskondensator mehr erforderlich.
Wie bei Fig. 1 sind zunächst die Transistoren T1 und T4 eingeschaltet, wie Fig. 4 zeigt. Ein Strom fließt hierbei ebenfalls von dem Plus-Anschluss über den Transistor T1 , die Wicklung W und den Transistor T4 zu dem Minus-Anschluss.
Um jedoch zu verhindern, dass bei der Kommutierung eine unzulässige Spannungserhöhung eintritt, wird bereits vor dem eigentlichen Kommutierungszeitpunkt, wie in Fig. 5 dargestellt, einer der beiden Transistoren ausgeschaltet, in diesem Fall der obere Transistor T1. Der Kommutierungszeitpunkt entspricht in der Regel dem Zeitpunkt, an dem ein Polübergang stattfindet. Der Polübergang entspricht einem Hallsignalwechsel eines in dem Gleichstrommotor in bekannter Weise integrierten Hallsignalsensors. Der Strom fließt durch die Induktivität der Wicklung W weiter, jedoch durch den weiterhin eingeschalteten Transistor T4 und die Freilaufdiode D3. Hierbei klingt der in der Wicklung W fließende Strom bis auf Null ab.
Fig. 6 veranschaulicht den Schaltzustand nach dem Kommutierungszeitpunkt, bei dem der verbleibende Transistor T4 ausgeschaltet und das andere Transistorpaar T2 und T3 eingeschaltet ist. Weil der Strom, wie schon erläutert, zu diesem Zeitpunkt bereits abgeklungen ist, ist ein Schalten gemäß Fig. 4 und Fig. 6 ohne Zwischenkreiskapazitat möglich. Hierbei muss durch geeignete Wahl des Abschaltzeitpunktes unter allen Umständen sichergestellt werden, dass zum Zeitpunkt der Kommutierung bzw. eines Hallsignalwechsels, kein Strom in der Wicklung W fließt, weil sonst bei der Kommutierung auf Grund der fehlenden Zwischenkreiskapazitat eine unzulässige Spannungserhöhung eintreten würde. Das entsprechende Abklingen des Stromes gilt natürlich auch für die andere Stromrichtung, wobei zunächst die Transistoren T2 und T4 eingeschaltet sind.
Um die erforderliche Einschaltzeit des ersten Transistors T1 zu bestimmen , kann die Zeit tHaii zwischen zwei Polübergängen bzw. einem Hallsignalwechsel durch eine Versuchsanordnung mit Hilfe eines Controllers gemessen werden. Aus der gemessenen Zeit tHaιι und der Beziehung tein = p x tπaii kann die erforderliche Einschaltzeit des Transistors T1 ermittelt werden. Hierbei drückt der Faktor p das Verhältnis zwischen Einschaitzeit tein und der Hallsignallänge tπaii in Prozent aus. In dem dargestellten Beispiel beträgt p = 75 %. Vorteilhaft ist es, wenn der Faktor p etwa zwischen 50 % und 90 % liegt. Der Faktor p kann durch Messungen empirisch ermittelt werden. Die Ermittlung des Faktors p erfolgt derart, dass der Strom zum Zeitpunkt des Hallsignalwechsels unter Vorgabe eines geschätzten Faktors p gemessen wird. Wie bereits oben erwähnt, muss der Strom zu diesem Zeitpunkt abgeklungen sein. Ist dies nicht der Fall, so muss der Faktor p verkleinert werden, wobei aber beachtet werden muss, dass ein zu geringer p-Faktor zu Leistungseinbußen am Motor führt. Erforderlichenfalls ist der p-Faktor wieder entsprechend zu erhöhen.
Fig. 7 zeigt einen Hallsignalverlauf, den Schaltzustand der Transistoren T1 bis T4 sowie den Stromverlauf in der Wicklung W. Wie zu erkennen ist, wird T1 deutlich vor T4 abgeschaltet, so dass sich nach dem Abschalten von T1 ein zu Null abklingender Stromverlauf A einstellt. Zwischen dem Einschalten des nächsten Transistors T2 und dem Zeitpunkt, an dem der Strom in der Wicklung W Null erreicht hat, verbleibt vorzugsweise eine gewisse Zeit R. Diese Zeit R dient als Sicherheitsreserve.
In einer Variante der Erfindung ist vorgesehen, dass der Strom in der Freilaufdiode, z. B. D3, nicht auf Null, sondern nur auf einen Teil des ursprünglichen Stromes abklingt. Hierbei ist zwar eine Zwischenkreiskapazitat C erforderlich, die jedoch im Vergleich zum Stand der Technik viel kleiner dimensioniert werden darf. Durch die kleinere Zwischenkreiskapazitat C besteht immer noch eine gewisse Sicherheit vor Spannungsspitzen. Im Vergleich zu bekannten Verfahren werden dennoch Platz und Kosten eingespart.
Die Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt, sondern umfasst auch alle im Sinne der Erfindung gleichwirkenden Ausführungen. Femer ist die Erfindung bislang auch noch nicht auf die im Anspruch 1 definierte Merkmalskombination beschränkt, sondern kann auch durch jede beliebige andere Kombination von bestimmten Merkmalen aller insgesamt offenbarten Einzelmerkmalen definiert sein. Dies bedeutet, dass grundsätzlich praktisch jedes Einzelmerkmal des Anspruchs 1 weggelassen bzw. durch mindestens ein an anderer Stelle der Anmeldung offenbartes Einzelmerkmal ersetzt werden kann. Insofern ist der Anspruch 1 lediglich als ein erster Formulierungsversuch für eine Erfindung zu verstehen.

Claims

Patentansprüche:
1. Kommutierungsverfahren für einen Elektromotor, insbesondere einen kollektorlosen Gleichstrommotor, mit einer Halbleiterbruckenschaltung, bestehend aus Schaltelementen (T1 bis T4) und dazu jeweils parallelen Freilaufelementen (D1 bis D4), wobei die Schaltelemente (T1 bis T4) jeweils in Kommutierungszeitpunkten abwechselnd paarweise so zum Öffnen oder Schließen angesteuert werden, dass sich die Richtung eines Stromes durch eine Motorwicklung (W) umkehrt, dadurch gekennzeichnet, dass vor jedem Kommutierungszeitpunkt jeweils eines der paarweise durchgeschalteten Schaltelemente (T1) derart um eine bestimmte Zeit früher als das zugehörige andere Schaltelement (T4) geöffnet wird, dass der Strom über das noch eingeschaltete Schaltelement (T4) und eines der Freilaufelemente (D3) während eines Abklingvorgangs innerhalb der Halbleiterbruckenschaltung abgebaut wird.
2. Kommutierungsverfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Schaltdauer (tein) des einen Schaltelementes (T1) einem Prozentsatz von etwa 50 % bis 90 %, insbesondere etwa 75 %, einer Sensorsignallänge (thaii) eines kollektorlosen Gleichstrommotors entspricht, wobei die Sensorsignallänge (tπaii) einer Zeit zwischen zwei Polübergängen entspricht.
3. Kommutierungsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Strom auf Null abgebaut wird.
4. Kommutierungsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Strom nur auf einen bestimmten Restwert abgebaut wird.
5. Kommutierungsverfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass eine Hallsensorsignallänge (tHaii) durch eine Versuchsmessung ermittelt wird, und die erforderliche Zeit, in der das Schaltelement (T4) früher öffnen muss, durch eine empirische Ermittlung bestimmt wird.
6. Steuerungsschaltung, bestehend aus einer Halbleiterbruckenschaltung mit Schaltelementen (T1 bis T4) zum Schalten von mindestens einer Motorwicklung (W) eines Elektromotors und einer die Halbleiterbruckenschaltung steuernden Steuereinheit, dadurch gekennzeichnet, dass die Steuereinheit derart ausgebildet ist, dass die Schaltelemente (T1 bis T4) gemäß einem Kommutierungsverfahren nach einem der Ansprüche 1 bis 5 angesteuert werden.
7. Steuerungsschaltung nach Anspruch 6, gekennzeichnet durch vier als Transistoren ausgebildete Schaltelemente (T1 bis T4) und vier dazu jeweils parallele Freilaufdioden (D1 bis D4).
8. Steuerungsschaltung nach Anspruch 6 oder 7, gekennzeichnet durch eine Ausbildung zur Anwendung des Verfahrens nach Anspruch 3, wobei das Steuerungsgerät keine Zwischenkreiskapazitat besitzt.
9. Steuerungsschaltung nach Anspruch 6 oder 7, gekennzeichnet durch eine Ausbildung zur Anwendung des Verfahrens nach Anspruch 4, wobei die Steuerungsschaltung eine Zwischenkreiskapazitat (C) besitzt, die nur für eine Restzwischenkreisspannung dimensioniert ist.
10. Steuerungsschaltung nach einem der Ansprüche 6 bis 8, gekennzeichnet durch eine Anordnung auf einer in dem Elektromotor integrierten Leiterplatte.
11. Gleichstrommotor mit einer Steuerungsschaltung nach einem der Ansprüche 5 bis 9, gekennzeichnet durch eine Ausbildung als einsträngiger kollektorloser Gleichstrommotor.
PCT/EP2003/008242 2002-10-30 2003-07-25 Kommutierungsverfahren einer brückenschaltung Ceased WO2004040747A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003255293A AU2003255293A1 (en) 2002-10-30 2003-07-25 Commutation method for a bridge circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10250449.0 2002-10-30
DE10250449A DE10250449A1 (de) 2002-10-30 2002-10-30 Kommutierungsverfahren, insbesondere für einen kollektorlosen Gleichstrommotor

Publications (1)

Publication Number Publication Date
WO2004040747A1 true WO2004040747A1 (de) 2004-05-13

Family

ID=32114941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008242 Ceased WO2004040747A1 (de) 2002-10-30 2003-07-25 Kommutierungsverfahren einer brückenschaltung

Country Status (3)

Country Link
AU (1) AU2003255293A1 (de)
DE (1) DE10250449A1 (de)
WO (1) WO2004040747A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016333B4 (de) * 2005-04-09 2024-06-13 Minebea Mitsumi Inc. Verfahren und Steuersystem zur Kommutierung eines einsträngigen bürstenlosen Motors
DE102008036704B4 (de) 2008-08-07 2015-02-12 Ulrich Clauss Gleichstrom-Maschine mit elektronischer Kommutierung
DE102013223896A1 (de) 2013-11-22 2015-05-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schaltungsanordnung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365422A (en) * 1993-06-01 1994-11-15 Performance Controls, Inc. Pulse-width modulated circuit for applying current to a load
WO2002054576A1 (de) * 2000-12-28 2002-07-11 Papst-Motoren Gmbh & Co. Kg Elektronisch kommutierter gleichstrommotor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365422A (en) * 1993-06-01 1994-11-15 Performance Controls, Inc. Pulse-width modulated circuit for applying current to a load
WO2002054576A1 (de) * 2000-12-28 2002-07-11 Papst-Motoren Gmbh & Co. Kg Elektronisch kommutierter gleichstrommotor

Also Published As

Publication number Publication date
DE10250449A1 (de) 2004-05-19
AU2003255293A1 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
DE10326606B4 (de) Verfahren zur Kommutierung eines bürstenlosen Gleichstrommotors
EP2158673B1 (de) Verfahren zum betrieb eines einsträngigen elektronisch kommutierten motors an einer gleichspannungsquelle, und motor zur durchführung eines solchen verfahrens
DE4124240C2 (de) Verfahren zur Regelung des Motorstroms eines bürstenlosen Gleichstommotors
DE4009184C2 (de)
EP2116857A1 (de) Verfahren und Einrichtung zum Erfassen einer Strompolarität innerhalb eines getakteten Brückenzweiges
DE10156939B4 (de) Schaltungsanordnung zum Betreiben einer elektrischenMaschine
DE102005002327A1 (de) Elektronisch kommutierter Elektromotor und Verfahren zur Steuerung eines solchen
DE3305306A1 (de) Anordnung zur steuerung eines elektrischen schrittmotors
DE19704089A1 (de) Verfahren zur Steuerung eines Zerhacker(Chopper)-Treibers und Schaltungsanordnung zur Durchführung des Verfahrens
EP1531543A2 (de) Verfahren zur Stromversorgung eines mehrsträngigen, durch Pulsweitenmodulation gesteuerten Elektromotors
DE4201023C2 (de) Aussetzerfreie Bremsschaltung für Universalmotoren
DE69803885T2 (de) Steuerungsvorrichtung für elektrische motoren
EP2899879B1 (de) Verfahren zum Betrieb sowie Vorrichtung zur Ansteuerung einer rotierenden bürstenlosen elektrischen Maschine
DE102012208631A1 (de) Verfahren und Vorrichtung zum Betrieb eines bürstenlosen Motors
WO2017032787A1 (de) Verfahren zum ermitteln eines vorkommutierungswinkels einer elektrischen maschine
DE102014116689A1 (de) Vorrichtung und Verfahren zum Sichern einer Antriebssteuerung gegen Versorgungsspannungsausfälle
WO2004040747A1 (de) Kommutierungsverfahren einer brückenschaltung
DE4201005A1 (de) Aussetzerfreie getaktete bremsschaltung
DE69736761T2 (de) Regelvorrichtung für einen bürstenlosen Motor
DE10226152A1 (de) Schaltungsanordnung zum Betreiben eines Gleichstrommotors und Verstelleinrichtung mit einer solchen
DE102005016333B4 (de) Verfahren und Steuersystem zur Kommutierung eines einsträngigen bürstenlosen Motors
EP2504917B1 (de) Vorrichtung und verfahren zum messen eines motorstroms eines gleichstrommotors
DE102009002464A1 (de) Verfahren um Betrieb einer Steuerschaltung, insbesondere zur Anwendung in einem Kraftfahrzeug
DE19757168A1 (de) Reihenschlußmotor mit Kommutator
DE102017201480A1 (de) Verfahren zum Betrieb einer elektrischen Maschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP