WO2004036160A1 - Spectrometre haute resolution - Google Patents

Spectrometre haute resolution Download PDF

Info

Publication number
WO2004036160A1
WO2004036160A1 PCT/DE2003/003361 DE0303361W WO2004036160A1 WO 2004036160 A1 WO2004036160 A1 WO 2004036160A1 DE 0303361 W DE0303361 W DE 0303361W WO 2004036160 A1 WO2004036160 A1 WO 2004036160A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrangement
slit
resolution spectrometer
width
slits
Prior art date
Application number
PCT/DE2003/003361
Other languages
German (de)
English (en)
Inventor
Andreas Wuttig
Rainer Riesenberg
Christian Schachtzabel
Stefan Winter
Original Assignee
Institut für Physikalische Hochtechnologie e.V.
Analytik Jena Ag Analysenmessgeräte Und Laboreinrichtungen
Templatec-Softwareentwicklung Christian Schachtzabel Gbr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut für Physikalische Hochtechnologie e.V., Analytik Jena Ag Analysenmessgeräte Und Laboreinrichtungen, Templatec-Softwareentwicklung Christian Schachtzabel Gbr filed Critical Institut für Physikalische Hochtechnologie e.V.
Priority to EP03773503A priority Critical patent/EP1549921A1/fr
Publication of WO2004036160A1 publication Critical patent/WO2004036160A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment

Definitions

  • the invention relates to a high-resolution spectrometer according to the preamble of the claims. It is used in particular in array spectrometers.
  • the resolution of array spectrometers is given by the number of spectral measuring points, which is generally equal to the number of pixels of linear detector arrays.
  • the quotient of the spectral measuring range and spectral resolution is proportional to the number of spectral measuring points required or the number of pixels.
  • the number of pixels in commercial arrays is far too small for high-resolution spectroscopy. This applies e.g. also for high-resolution Raman spectrometers in the UV-VIS spectral range.
  • the object of the present invention is to generate a large number of spectral measuring points simultaneously with a very compact arrangement.
  • a spectrometer arrangement based on an array spectrometer is to be created which combines the highest spectral resolution with a large spectral measuring range, is at the same time compact and uses well-known detector arrays can.
  • the slit arrangement can be designed such that at least two slits are offset one above the other in their longitudinal direction and mutually offset in their width direction, so that the spectra images generated on the detector arrangement are offset by non-integer multiples (or fractions) of the center distance between two adjacent detector elements.
  • the gap arrangement comprises a gap which preferably extends in the longitudinal direction over the entire effective detector array; in the width direction, the spectra images generated by the slit are also offset by non-integer multiples of the center distance of two adjacent detectors due to a rotation of the slit arrangement and detector arrangement relative to one another with respect to a normal position.
  • the rotation can be done by rotating (inclined) the gap or its image or the detector arrangement or both.
  • This design of the slit arrangement and the detector arrangement makes it possible to simultaneously scan the spectral intensity distribution present on the slit arrangement at more wavelengths than would be the case if there were no displacement or displacement by an integer multiple of the center distance between two adjacent detectors.
  • different measuring points which contain subpixel information, arise in the imaging of the slit arrangement and dispersion of the light.
  • the two-dimensional detector array ensures the simultaneous output of the sub-pixel information generated by the columns.
  • the gap length or height should be at least equal to the pixel height; it is generally favorable if it is a multiple of the pixel height.
  • the dispersing optical element can be designed as a concave grating, a Cerney-Turner arrangement (flat grating with two imaging elements), a prism or a Fresnel optic.
  • the detector arrangement can be a CCD (Charge Couppled Device), a photodiode matrix or a matrix of thermal detectors or the like.
  • the detector arrangement (the detector array) can advantageously be tilted or fixed about an axis which is directed parallel to the width direction of the detector array.
  • FIG. 2 shows a first exemplary embodiment according to the invention with a plurality of columns arranged in the longitudinal direction
  • FIG. 1 An arrangement shown schematically in FIG. 1 has a primary or secondary light source 10 which emits light 11, the spectral distribution of which is to be examined.
  • the light 11 enters a spectrometer 13 through a slit arrangement (slit array) 12, is dispersed by a grating 14 and the slit arrangement 12 is dispersed and imaged on a detector array 15 which is arranged so as to be fixed about an axis X-X which is parallel to the detector array 15 and is arranged at right angles to the gap 12 or its image in the array plane.
  • measurement signals 16 are emitted from the detector array 15 to camera electronics 17, which in turn transmit image data 18 to an evaluation device (PC) 19.
  • Control information comes in the opposite direction from the evaluation device 19 to the camera electronics 17 or detector arrangement 15
  • Evaluation device 19 evaluates the information and data, displays it as a high-resolution spectrum 20 and stores it if necessary.
  • a slit arrangement 12 or 12a with ten individual slits 121 lying one above the other in the longitudinal direction allows the light 11 from a light source, not shown, to pass in the direction of a grating 14 at 200 lines per mm.
  • the individual gaps 121 of the gap arrangement 12 each have a width of 10 ⁇ m and a height of 175 ⁇ m.
  • the distance between two adjacent gaps 121 in the longitudinal direction is 25 ⁇ m and their lateral offset is 7 ⁇ m.
  • ten light bundles 111 are formed which impinge on the grating 14, which generates ten spectra 211 offset one above the other in an imaging plane 21 oriented at right angles to the drawing plane of FIG. 2 and thus images the individual column 121 spectrally decomposed.
  • the slit images of a wavelength in the imaging plane are denoted by 121 '.
  • the imaging plane 21 there is a detector array (CCD) 15 with pixels 151 with a size of 25 ⁇ m • 25 ⁇ m and a resolution of 1024 • 256 pixels.
  • pixels of the detector array 15 which are lying one above the other are not interconnected to form larger pixels, as is customary, but the pixel groups of the detector array affected by the mutually offset spectra 211 are treated separately and by one special algorithm in the evaluation device 19 combined to a spectrum 20 of higher resolution.
  • the distance between the so-called support points in the spectrum is also reduced, namely from 0.83 nm / pixel in a conventional spectrometer to 0.083 nm / pixel in the spectrometer according to the invention.
  • the affected pixel rows 151 of each individual column 121 are interconnected in terms of hardware; this results in a higher signal-to-noise ratio because this is usually the dominant one Readout noise occurs only once per vertical pixel column and single column.
  • a measurement with the slit array 121 according to the invention results in the spectrum of FIG. 3b.
  • a group of two peaks 221, 222 at 312 nm is almost completely resolved.
  • they generally have to be at least two pixels apart, in the case of the conventional arrangement approximately 1.7 nm apart.
  • two peaks with a distance of 0.6 nm were almost completely separated.
  • FIG. 4 again shows a slit arrangement 12 or 12a, a dispersive imaging element 14 and an imaging plane 21, which represent the monochromator of a spectrometer 13 (FIG. 1).
  • the slit arrangement 12 has an oblique slit 122 which is imaged spectrally broken down into the imaging plane 21 with the aid of the element 14.
  • the inclined slit 122 has a width of 10 ⁇ m, a height of approximately 80 pixel lines and is inclined by approximately 2-3 degrees, or its image 122 'is opposite pixels to a detector arrangement 15 or 15a located in the imaging plane 21 the amount mentioned in parallelogram form distorted.
  • FIG. 2 it would also be possible to use a vertical gap and to rotate the detector arrangement 15, which is designed, for example, as a photodiode matrix, in its plane.
  • the spectra 212 of the individual pixel lines are separated and combined to form a spectrum of higher resolution.
  • read-out noise occurs for each detector pixel 151 in the inclined gap of FIG. 4 because all detector lines must be read out individually. Otherwise, what has been said about FIG. 2 applies at least analogously.
  • FIGS. 5a and 5b analogously to FIGS. 3a and 3b, the resolution of a known spectrometer is compared with the resolution of the spectrometer according to the invention with an inclined slit.
  • a peak 23 in a range of approximately 1.1 nm, which is identified with the spectrometer according to the invention as a peak 23 'of 0.3 nm width (FIG. 5b).
  • the resolution of the individual intensity peak at 435.5 nm is also improved by the factor ⁇ 3.7 by reducing the half width from approximately 1.1 nm to approximately 0.3 nm.
  • FIGS. 2 and 4 Each exemplary embodiment according to FIGS. 2 and 4 enables measurement and high resolution over the entire gas emission spectrum, as has been used in part in FIGS. 3 and 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

La présente invention concerne un spectromètre compact haute résolution ayant un domaine de mesure spectral important et permettant de réaliser une mesure complète en une seule étape. Le spectromètre comprend un dispositif de décomposition comprenant des fentes individuelles, un élément de représentation qui réalise une dispersion dans le sens de la largeur des fentes, et un dispositif de détection bidimensionnel constitué de détecteurs individuels sur lequel le dispositif de décomposition réalise la représentation par décomposition en fonction des longueurs d'onde dans le sens de la largeur, ledit dispositif de détection se trouvant dans le plan de représentation parallèlement à la largeur et à la longueur des fentes. Les fentes sont disposées et conçues de sorte que les images spectrales qu'elles produisent sont décalées dans le sens de la largeur d'un multiple non entier de la distance de centre à centre de deux détecteurs voisins. Les fentes peuvent pour cela se présenter sous la forme de fentes individuelles décalées les unes par rapport aux autres ou sous la forme de fentes inclinées.
PCT/DE2003/003361 2002-10-10 2003-10-08 Spectrometre haute resolution WO2004036160A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03773503A EP1549921A1 (fr) 2002-10-10 2003-10-08 Spectrometre haute resolution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002147742 DE10247742B4 (de) 2002-10-10 2002-10-10 Hochauflösendes Spektrometer
DE10247742.6 2002-10-10

Publications (1)

Publication Number Publication Date
WO2004036160A1 true WO2004036160A1 (fr) 2004-04-29

Family

ID=32038609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003361 WO2004036160A1 (fr) 2002-10-10 2003-10-08 Spectrometre haute resolution

Country Status (3)

Country Link
EP (1) EP1549921A1 (fr)
DE (1) DE10247742B4 (fr)
WO (1) WO2004036160A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928167A1 (fr) * 2006-12-02 2008-06-04 Jena-Optronik GmbH Procédé de mesure du rayonnement électromagnétique dans les instruments de l'aéronautique et l'aérospatiale
CN101943602A (zh) * 2010-07-28 2011-01-12 中国科学院长春光学精密机械与物理研究所 一种宽幅成像光谱仪视场分束器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403372C1 (de) * 1984-02-01 1985-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Mehrkanal-Prozeß-Spektrometer
EP0628796A1 (fr) * 1993-06-09 1994-12-14 Hewlett-Packard GmbH Composant optique ajustable
EP0647838A1 (fr) * 1993-10-01 1995-04-12 Unicam Limited Spectrophotomètre
DE19815080C1 (de) * 1998-04-06 1999-09-09 Inst Physikalische Hochtech Ev Anordnung zur Erhöhung der spektralen Ortsauflösung eines Spektrometers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3403372C1 (de) * 1984-02-01 1985-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Mehrkanal-Prozeß-Spektrometer
EP0628796A1 (fr) * 1993-06-09 1994-12-14 Hewlett-Packard GmbH Composant optique ajustable
EP0647838A1 (fr) * 1993-10-01 1995-04-12 Unicam Limited Spectrophotomètre
DE19815080C1 (de) * 1998-04-06 1999-09-09 Inst Physikalische Hochtech Ev Anordnung zur Erhöhung der spektralen Ortsauflösung eines Spektrometers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIESENBERG R ET AL: "Optical MEMS for high-end microspectrometers", MEMS/MOEMS TECHNOLOGIES AND APPLICATIONS, SHANGHAI, CHINA, 17-18 OCT. 2002, vol. 4928, Proceedings of the SPIE - The International Society for Optical Engineering, 2002, SPIE-Int. Soc. Opt. Eng, USA, pages 6 - 14, XP002271247, ISSN: 0277-786X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1928167A1 (fr) * 2006-12-02 2008-06-04 Jena-Optronik GmbH Procédé de mesure du rayonnement électromagnétique dans les instruments de l'aéronautique et l'aérospatiale
CN101943602A (zh) * 2010-07-28 2011-01-12 中国科学院长春光学精密机械与物理研究所 一种宽幅成像光谱仪视场分束器
CN101943602B (zh) * 2010-07-28 2013-07-03 中国科学院长春光学精密机械与物理研究所 一种宽幅成像光谱仪视场分束器

Also Published As

Publication number Publication date
DE10247742A1 (de) 2004-04-22
DE10247742B4 (de) 2009-10-01
EP1549921A1 (fr) 2005-07-06

Similar Documents

Publication Publication Date Title
EP1754032B1 (fr) Spectrometre-echelle a mise en valeur amelioree du detecteur par l'utilisation de deux ensembles spectrometres
EP3891465B1 (fr) Dispositif de mesure optique
DE102009003413B4 (de) Echelle-Spektrometeranordnung mit interner Vordispersion
EP2156154A1 (fr) Spectromètre doté de capteurs solides et de multiplicateurs d'électrons secondaires
DE102009059280A1 (de) Spektrometeranordnung
DE19961908C2 (de) Hochauflösendes Littrow-Spektrometer und Verfahren zur quasi-simultanen Bestimmung einer Wellenlänge und eines Linienprofils
DE4039070A1 (de) Vielkanalspektrometer
WO1992021948A1 (fr) Polychromateur a echelle
DE10159234A1 (de) Vorrichtung zur Untersuchung von Dokumenten
EP2195624B1 (fr) Spectromètre
DE10247742B4 (de) Hochauflösendes Spektrometer
WO2011063939A1 (fr) Capteur d'images, dispositif de génération d'images ainsi que spectroscope pour la spectroscopie à résolution spatiale
DE102015109340A1 (de) Spektrometer und Analysevorrichtung
DE10011462C2 (de) Optisches Spektrometer mit Astigmatismuskompensation
DE10347862B4 (de) Hochauflösendes Spektrometer
DE102016008884B4 (de) Spektroskopievorrichtung und -verfahren
WO2004044536A1 (fr) Ensemble spectrometre a haute sensibilite comprenant un reseau de fentes d'entree et un reseau de capteurs
DE19815080C1 (de) Anordnung zur Erhöhung der spektralen Ortsauflösung eines Spektrometers
DE10137428A1 (de) Vorrichtung zur Messung eines Spektrums
DE19814660C1 (de) Gitterspektrometer und Verfahren zur Messung spektraler Intensitäten von weißem Licht
DE102006006277A1 (de) Laser-Scanning-Mikroskop mit spektral auflösender Strahlungsdetektion
DE102013112376A1 (de) Spetroskopiesystem
DE112014007078B4 (de) Gitterspektrometer mit verbesserter auflösung
DE102006015375A1 (de) Vorrichtung zur Messung einer Spektralverteilung eines mit einer Druckeinrichtung hergestellten Druckerzeugnisses
WO2018059827A2 (fr) Système de détection optique, procédé d'ajustement de la résolution spectrale d'un système de détection optique et procédé de mesure spectrale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003773503

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003773503

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 2003773503

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003773503

Country of ref document: EP