WO2004032313A1 - Surface shape measuring apparatus and single-shaft driver for use therein - Google Patents

Surface shape measuring apparatus and single-shaft driver for use therein Download PDF

Info

Publication number
WO2004032313A1
WO2004032313A1 PCT/JP2003/012775 JP0312775W WO2004032313A1 WO 2004032313 A1 WO2004032313 A1 WO 2004032313A1 JP 0312775 W JP0312775 W JP 0312775W WO 2004032313 A1 WO2004032313 A1 WO 2004032313A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
weight
moving
linear motor
fixed
Prior art date
Application number
PCT/JP2003/012775
Other languages
French (fr)
Japanese (ja)
Inventor
Masafumi Ishii
Original Assignee
Tokyo Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002292634A external-priority patent/JP2004125699A/en
Priority claimed from JP2002292632A external-priority patent/JP2004129440A/en
Priority claimed from JP2002292633A external-priority patent/JP2004129441A/en
Application filed by Tokyo Seimitsu Co., Ltd. filed Critical Tokyo Seimitsu Co., Ltd.
Priority to AU2003268773A priority Critical patent/AU2003268773A1/en
Publication of WO2004032313A1 publication Critical patent/WO2004032313A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a surface shape measuring device and a one-axis driving device used for the device, and more particularly to a surface shape measuring device using a linear motor for a driving unit and a one-axis driving device used for the device.
  • surface roughness measuring devices Conventionally, surface roughness measuring devices, contour shape measuring devices, roundness measuring devices, three-dimensional coordinate measuring devices, and the like have been known as surface shape measuring devices.
  • the relative movement between the stylus and the object to be measured is generally a linear motion in a surface roughness measuring device, a contour shape measuring device, a three-dimensional coordinate measuring device, and the like. In general, a circular motion occurs. In addition, the movement of the stylus in the Z axis (movement in the vertical direction) is generally linear even in a roundness measuring device.
  • such linear motion is driven by a combination of a motor, a gear and a screw, or a combination of a motor, a pulley and a wire.
  • the surface roughness measuring device, the contour shape measuring device, and the roundness measuring device perform linear driving by a combination of a gear, a screw, and a sliding guide surface (or a static pressure) having high straightness accuracy.
  • the contact type detector While being supported by the bearing surface, the contact type detector moves linearly and measures the surface roughness, contour shape, roundness, etc. of the measured object.
  • linear drive is performed by a combination of motor, pulley and wire.
  • the contact type detector moves linearly and measures the shape and dimensions of the measured object.
  • the linear drive of the surface roughness measuring device and the contour shape measuring device is in the X-axis direction
  • the linear drive of the roundness measuring device is in the R-axis and Z-axis directions
  • the linear drive of the three-dimensional coordinate measuring device is the X-axis.
  • Y-axis and Z-axis directions are common.
  • the conventional linear drive mechanism in the above surface profile measuring device has the following problems, and improvements have been demanded.
  • the surface roughness measuring device, the contour shape measuring device, the roundness measuring device, and the three-dimensional coordinate measuring device have a problem that the moving speed of the detector is slow and cannot be moved at high speed.
  • the surface roughness measuring device, the contour shape measuring device, and the roundness measuring device have a problem that the vibration during high-speed movement is large.
  • the surface roughness measuring device and the contour shape measuring device have a problem that the structure is complicated and that a high-precision pitch between gears is required.
  • the three-dimensional coordinate measuring device has a problem that it cannot move at high acceleration because it uses wires.
  • a conventional technique related to a single-axis drive device will be described.
  • a one-axis driving device also referred to as a linear motion device
  • This single-axis drive device is often configured to be driven by various motors (for example, a stepping motor, a linear motor, etc.).
  • FIG. 10 is a perspective view showing an example of a single-axis driving device.
  • the one-axis drive device 301 slides in the one-axis direction (the direction of the arrow in the figure) on the fixed table 302 and the sliding surfaces 303, 303 against the fixed table 302. It has a movable table 304 that is freely supported, and a motor drive mechanism 304.
  • the screw member 303 of the motor drive mechanism 300 is rotatably fixed to the fixed table 302 via bearings 307, 307, and the screw member A nut member (not shown) that meshes with 303 is fixed to the moving table 304.
  • a linear motor having a configuration that does not rotate can be applied.
  • a linear motor having a stator, which is a rod-shaped magnet, and a movable member, which is an annular member that is fitted to the stator has a coil member, and can move linearly along the stator.
  • Motors have features such as low cogging and low speed unevenness, and are becoming available on the market (for example, GM CHILLSTONE, product name: Shaft Motor-1).
  • FIG. 11 a cross section of such a linear motor 311 is schematically shown.
  • a mover 314, which is an annular member having a coil member, is fitted to a stator 314, which is a rod-shaped magnet in which N poles and S poles are alternately arranged in a linear manner.
  • the mover 3 14 moves along the stator 3 1 2 according to Fleming's left-hand rule.
  • a current is supplied to the coil members of the movers 314 from a drive circuit (not shown).
  • the conventional technology related to the single-axis drive has the following problems and needs to be improved.
  • the above-mentioned conventional linear motor is applied to a single-axis drive device and the drive thrust is used in a state where the drive thrust is easily affected by the weight of the mover, it is difficult to suppress fluctuations in the drive thrust . .
  • FIGS. 11, 12, 13 (a) and 13 (b) are conceptual diagrams illustrating this phenomenon.
  • the operation principle of the linear motor 311 is as described above.
  • FIG. 12 shows a state where the linear motors 3 1 1 are arranged horizontally
  • FIGS. 13 (a) and 13 (b) show a state where the linear motor 311 is arranged with an inclination angle of 0 with respect to the horizontal.
  • a component force M g sin 0 due to the weight of the movable element 314 is applied in the direction of linear movement along the stator 3 12.
  • a component force Mg cos 0 due to the weight of the movable element 3 14 is applied perpendicularly to the direction of linear movement along the stator 312.
  • the moving element 314 moves (falls) to the right due to its own weight. In order to suppress this and maintain the movable element 314 at the current position, it is necessary to energize the movable element 314 and apply a leftward driving force to balance the gravity. However, if the state where the movable element 314 is energized is maintained, heat is generated in the movable element 314, and this heat generation causes a dimensional error of the entire device.
  • the fixed table and the movable table are usually made of a metal material. This is due to the ease of adding metal materials, high rigidity and high durability.
  • the fixed table and the movable table around the linear motor were made of magnetic metal, The magnetic force of the near motor is affected by the surrounding magnetic material, and as a result, the driving force of the linear motor tends to fluctuate.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a surface shape measuring device having a driving mechanism capable of overcoming the above-mentioned conventional problems.
  • the present invention also provides a linear motor that reduces the influence of the weight of the linear motor on the drive thrust due to its own weight, reduces dimensional accuracy errors due to heat generation, etc., and reduces the influence of the components of the single-axis drive device on the drive thrust.
  • Another object of the present invention is to provide a one-axis driving device using the same. Disclosure of the invention
  • the present invention provides a surface shape measuring device for measuring a surface shape of an object to be measured, which is a rod-shaped magnet in which a detection unit, and N poles and S poles are alternately arranged.
  • a moving member having a coil member, a coil member, and fitted to the stator, the movable member being movable along the stator. And a linear shape moving relative to the surface. .
  • linear motor having a stator that is a rod-shaped magnet and a mover that is an annular member fitted to the stator. Therefore, this type of linear motor features special features such as maintenance-free, no wear, low vibration drive, large speed range, high rigidity, simple structure, and backlash. There are no advantageous effects such as lack of access.
  • the surface shape measuring device is a surface roughness measuring device, a contour shape measuring device, a roundness measuring device, a three-dimensional coordinate measuring device, and the like, and a detecting unit is relatively moved along a surface of an object to be measured.
  • a device that measures the surface shape of an object to be measured by moving it and also includes a device that measures not only the outer surface of an object but also, for example, the inner peripheral surface of a cylindrical object.
  • the detection unit is a contact-type detection unit that performs measurement while bringing a stylus (probe) into contact with the surface of an object to be measured, but is not limited thereto.
  • it also includes a laser type detection unit.
  • the present invention has a stator which is a bar-shaped magnet in which N poles and S poles are alternately arranged, and has a coil member fitted to the stator and moves along the stator.
  • a single-axis drive device using a linear motor having a mover that is an annular member capable of: and wherein a balance weight is disposed so as to be balanced with the mover. provide.
  • the “balance weight” is “a weight added to remove the unbalance of the rotating body in grinding or the like.” Or “the weight of the spindle head of the cross rail or boring machine of the portal machine tool. It is understood by those skilled in the art that the weight is used to balance with. However, in this specification, the latter is used in the meaning of the latter.
  • the balance when the moving member has its own weight or another constituent member is attached to the moving member, the balance can be achieved by the balance weight having substantially the same weight as the total weight thereof. Therefore, the influence of the weight of the mover due to its own weight and the like is small, the driving thrust does not easily fluctuate, and dimensional accuracy errors due to heat generation and the like hardly occur.
  • the weight of the balance weight is substantially the same as the weight of the mover.
  • the balance can be achieved by the balance weight having substantially the same weight as the weight of the moving element. Therefore, the driving thrust is hardly affected by the weight of the moving element, and a dimensional accuracy error hardly occurs.
  • the weight of the balance weight is within 20% of the weight of the moving element. If the slider is used without attaching other components, or if the slider is used with other components attached, if the weight of the balance weight is within such a range, the weight of the slider will be its own weight. Fluctuations in driving thrust due to factors such as these are often within the allowable range, and dimensional accuracy errors are unlikely to occur.
  • the balance weight may be connected to the movable element by a winding motion transmitting member via a winding motion transmitting supporting member provided near one end or both ends of the linear motor. Is preferred. In this way, if the balance weight is connected to the moving element by the wrapping motion transmitting member via the wrapping motion transmitting support member, the balance can be easily obtained.
  • the “winding motion transmitting member” is a mechanical element in wrapping transmission in mechanics, and generally corresponds to a belt, a chain, a wire, and the like.
  • the “winding motion transmission support member” is also a mechanical element in the wrapping transmission, and generally corresponds to a pulley, a belt wheel, a sprocket, and the like.
  • the present invention provides a fixed table, a moving table supported slidably in one axis direction with respect to the fixed table, and a bar-shaped magnet in which N poles and S poles are alternately arranged.
  • a linear motor that is fitted to the stator has a coil member, and is a movable member that is an annular member that can move along the stator.
  • One of the stator and the moving element is fixed to the fixed table, and the other of the stator and the moving element is fixed to the moving table, and at least a portion of the fixed table and the moving table around the linear motor.
  • the present invention provides a one-axis drive device, characterized in that the shaft is made of a non-magnetic material.
  • the portion around the linear motor is made of a non-magnetic material, the magnetic force of the linear motor is hardly affected by the surrounding magnetic material (metal material, etc.). Is hard to fluctuate.
  • the present invention provides a fixed table, a moving table supported slidably in one axis direction with respect to the fixed table, and a bar-shaped magnet in which N poles and S poles are alternately arranged.
  • a linear motor that is fitted to the stator has a coil member, and is a movable member that is an annular member that can move along the stator.
  • One of the fixed element and the movable element is fixed to the fixed table; the other of the fixed element and the movable element is fixed to the movable table; a sliding surface between the fixed table and the movable table;
  • the axis of the stator of the linear motor is disposed in substantially the same plane, and the sliding surface of the fixed table and the moving table and the linear motor are separated by a predetermined distance.
  • the sliding surfaces of the fixed table and the movable table and the linear motor are separated by a predetermined distance. Therefore, the magnetic force of the linear motor is less affected by the surrounding magnetic materials (metal materials, etc.), and as a result, the driving thrust of the linear motor is less likely to fluctuate.
  • the sliding surface between the fixed table and the movable table and the axis of the stator of the linear motor are arranged in substantially the same plane. Therefore, it is not easily affected by rolling and pitching. Further, even if there is a slight influence of the bowing, this can be reduced by setting the length of the sliding surface between the fixed table and the movable tape to a predetermined length.
  • FIG. 1 is a perspective view showing an entire surface roughness measuring device according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of the surface roughness measuring device shown in FIG. 3 (a) and 3 (b) are cross-sectional views showing details of the driving unit;
  • Figure 4 is a perspective view showing the overall configuration around the linear motor
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4;
  • Figure 6 is an enlarged sectional view of the main part of the linear motor
  • FIG. 7 is a perspective view showing the entirety of the roundness measuring apparatus according to the embodiment.
  • Figure 8 is a conceptual diagram illustrating the measurement location of the DUT
  • Figure 9 is a schematic cross section of the stand
  • FIG. 10 is a perspective view showing an example of a conventional one-axis driving device
  • Figure 11 is a sectional view showing the outline of a conventional linear motor
  • Fig. 12 is a conceptual diagram illustrating a problem in the conventional linear motor
  • Figs. 13 (a) and 13 (b) are conceptual diagrams illustrating a problem in the conventional linear motor
  • FIG. 14 is a cross-sectional view of an embodiment of the single-axis drive device according to the present invention.
  • FIG. 15 is a perspective view showing an outline of a linear motor used in the one-axis drive device
  • FIG. 16 is a cross-sectional view of still another embodiment of the one-axis drive device according to the present invention
  • FIG. 17 is a perspective view of still another embodiment of the single-axis drive device according to the present invention.
  • FIG. 1 is a perspective view showing the entire surface roughness measuring device 10 according to the embodiment
  • FIG. 2 is a block diagram showing the configuration of the surface roughness measuring device 10 shown in FIG.
  • the surface roughness measuring device 10 includes a measuring unit (data output means) 112, a data processing device 114, an input device (for example, a keyboard and a mouse: measuring area designating means, setting means) 116, and a monitor 118.
  • the measuring section 112 has a pickup 122 for measuring the surface roughness of the work W shown in FIG. 2 placed on a measuring table 120.
  • the pickup 122 is supported by a holder 124A of a driving section 124.
  • the pickup 122 has a stylus 126 at its tip, and the displacement of the stylus 126 is converted into a voltage by a differential transformer (not shown) built in the drive unit 124. Then, this voltage value is AZD-converted by the AZD converter and output to the CPU (measurement data acquisition means, calculation means, control means, comparison means) 128 of the data processing unit 114. Thus, the CPU 128 obtains measurement data indicating the surface roughness of the work W. As shown in FIG. 1, the drive unit 124 is attached to a column 130 erected on the measuring table 120. Then, in accordance with an instruction from the CPU 128 in FIG.
  • a motor (not shown) for up / down (Z direction) movement is driven, so that the entire drive unit 124 is moved up / down along the column 130.
  • a linear motor (to be described later) for left / right (X direction) movement is driven, so that the holder 1 is moved.
  • the drive unit 124 can also be operated by a joystick 132 mounted on the front of the measurement table 120.
  • the data processing device 114 includes an auxiliary storage device 1 such as a hard disk or an EEPROM which is an electrically erasable and writable read-only memory.
  • auxiliary storage device 1 such as a hard disk or an EEPROM which is an electrically erasable and writable read-only memory.
  • FIG. 3A is a left sectional view showing details of the driving section 124
  • FIG. 3B is a front sectional view thereof.
  • FIG. 4 is a perspective view showing the entire configuration around the linear motor 12 arranged in the drive unit 124
  • FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4, and
  • FIG. Main part expansion It is sectional drawing.
  • the overall configuration around the linear motor 12 arranged in the drive section 124 consists of a linear motor 12 mainly composed of a stator 14 and a mover 16 and a base 18 (see FIG. 4 are not shown), fixing brackets 20 and 20 for fixing both ends of the stator 14 to the base 18, a cable carrier 22 for supplying power to the slider 16, and a slider 16.
  • Encoders 24 and encoder scales 26 that detect the position in one axis direction of the actuator, and limit sensors 28 and 28 that are installed near both ends of the stator 14 and detect the end limit of the slider 16
  • pulleys 34, 3 4 as winding motion supporting members provided near both ends of the stator 14
  • a base 18 Pulley shafts 36, 36 fixed to the shaft and rotatably supporting the pulley 34, and the mover 16 via the pulley 34
  • a wire 32 which is a wrapping motion transmitting member for connecting the balance weight 30 to the balance weight 30.
  • the linear motor 12 is a so-called shaft type linear motor.
  • the linear motor 12 includes a stator 14 which is a straight rod-shaped shaft member on which a magnet for the field is formed, and a movable member 16 which is an annular member having a coil member as a main part. It is configured by fitting.
  • the stator 14 is made of a machinable and magnetizable material, for example, a Fe—Cr—Co metal, and has a circular cross section. Further, the stator 14 is magnetized so as to have a magnetic flux distribution of a uniform pitch, preferably a substantially rectangular shape, along the longitudinal direction. As a result, the stator 14 has a driving magnetized portion in which the N pole and the S pole are alternately arranged with the same magnetic pole width P along the longitudinal direction, and this is formed with the field magnet. Has become.
  • the magnetic pole width P can be, for example, 3 O mm.
  • the coil member 40 of the mover 16 is composed of three coils of U-phase, V-phase, and W-phase. It consists of two sets of coil groups (the first set of coil groups and the second set of coil groups).
  • the first set of coil group includes coils Ul, VI, and W1, and is arranged in the longitudinal direction of the stator 14 in this order.
  • the second group of coils includes coils U2, V2, and W2, and is arranged in this order in the longitudinal direction of the stator 14. Each of these coils is formed to be 1/3 of the pole width P.
  • the coil member 40 is built in a hollow portion of the hollow rectangular parallelepiped movable element frame 42, and is integrally supported on the inner peripheral surface of the movable element frame 42.
  • Bearing portions 44, 44 fitted on the stator 14 and slidable on the stator 14 are provided on both left and right end portions of the slider frame 42 of the slider 16. By the action of the bearings 44, 44, the moving member 16 can move smoothly along the stator 14.
  • the interaction between the magnetic flux of the stator 14 and the current flowing through the coil member 40 of the mover 16 causes the mover 16 to move linearly along the stator 14 according to Fleming's left-hand rule.
  • a current is supplied to the coil member 40 of the mover 16 from the drive circuit (not shown) via the cape bearer 22.
  • a linear motor 12 for example, a shaft motor manufactured by GMC HILL STONE can be used.
  • balance weight 30 shown in FIGS. 4 and 5 it is preferable to select a weight that balances the total weight of the mover 16 and the holder 124A (including the pickup 122).
  • the weight of the balance weight 30 can be increased or decreased depending on the weight of the pickup 122 attached to the holder 124A.
  • connection between the mover 16 and the balance weight 30 is formed by an endless ring by a wire 32, and the wire 32 is wound around pulleys 34, 34 and supported. Good.
  • the balance weight 30 is moved to the moving element 16 and the holder 124A (pickup). (Including 1 2 2) so as to be in proportion to the total weight, it is possible to deal with the problem that occurs in the linear motor 12 having this configuration as described above.
  • the features of the linear motor 12 are that maintenance is unnecessary, there is no wear part, low vibration driving is possible, the speed range can be widened, and high Advantageous effects such as rigidity, simple structure, and no backlash can be obtained.
  • the embodiment of the present invention has been made in view of such circumstances, and the driving thrust hardly fluctuates due to the weight of the movable element 16 of the linear motor 12 and the like, and the dimensional accuracy due to heat generation and the like. It is an object of the present invention to provide a surface shape measuring apparatus using a linear motor 12 which does not easily cause a degree error. That is, the balance weight 30 is arranged so as to be balanced with the weight of the movable element 16 and the like.
  • the weight of the movable member 16 and the balance having substantially the same weight as the other components (the pickup 122 and the holder 124 A in this example) attached to the movable member 16 are provided.
  • Balance is better than weight 30. Therefore, the influence of the weight of the mover 16 due to its own weight and the like is small, the driving thrust does not easily fluctuate, and dimensional accuracy errors due to heat generation and the like are less likely to occur.
  • the weight of the balance weight 30 be substantially the same as the total value of the weight of the moving element 16 and the weights of other components. As described above, the balance is achieved by the balance weight 30 having substantially the same weight as the own weight of the movable element 16 and the like. Therefore, The influence of the weight of the mover 16 is smaller, the driving thrust is less likely to fluctuate, and dimensional accuracy errors due to heat generation are less likely to occur.
  • the weight of the balance weight 30 is within a range of 20% of the total value of the weight of the moving element 16 and the weight of the other components. If the weight of the balance weight 30 is within such a range, the fluctuation of the driving thrust due to the weight of the movable member 16 or the like often becomes an allowable range, and a dimensional accuracy error hardly occurs.
  • the balance weight 30 is provided with a winding motion transmitting support member (in this example, a pulley shaft 3) provided near one end or both ends of the linear motor 12.
  • the movable member 16 is connected to the moving member 16 by a winding motion transmitting member (in this example, a pulley 34) via the member 6).
  • a winding motion transmitting member in this example, a pulley 34
  • the balance weight 30 is connected to the moving element 16 by the winding motion transmitting member via the winding motion transmitting supporting member, the balance can be easily obtained.
  • FIG. 7 is an overall configuration diagram of the roundness measuring device.
  • the roundness measuring device 210 is provided with a Z-direction moving device 2 14 provided on the upper right side of the device body 2 12 and the device body 2 12, and an X-direction moving device supported by the Z-direction moving device 2 14.
  • 2 16 The X-direction moving means 2 16
  • the detector holder 2 22 supported on the left end of the X-axis and rotatable around the X axis.
  • the detector 224 which is movably supported, the work table 218, which is provided substantially on the upper center of the main body 212, and the operation panel 220, which is provided on the upper left side of the main body 212, It is composed. Note that a probe P is provided at the tip of the detector 222.
  • FIG. 8 is a conceptual diagram for explaining the measurement location of the DUT W.
  • the probe P of the detector 222 is pressed against the inner and outer peripheral portions of the cylindrical DUT W at the upper left. 2 shows a state in which the probe P of the detector 222 is pressed against the conical portion, the outer surface of the cylinder, the upper surface of the flange portion, and the lower surface of the flange portion of the DUT W at the lower right.
  • the detector 224 and the probe P are configured to be automatically positioned so as to be able to cope with various measurements (coaxiality, cylindricity, etc.) in each of these states.
  • the Z-direction moving means 2 14 is provided on a right upper surface of the apparatus main body 2 12 and includes a stand 230 provided with a Z-direction table and a measurement stage 2 32 which moves up and down along the Z-direction table. Composed of combinations.
  • the vertical movement (movement in the Z direction) of the measurement stage 2 3 2 can be performed manually (eg, button operation, joystick operation, etc.), and the shape, dimensions, and measurement type (coaxiality, cylinder) of the DUT W , Etc.) can be input to the operation panel 220 to automatically execute the operation.
  • the X direction moving means 2 16 is supported by the Z direction moving means 2 14, and is provided so as to penetrate the measuring stage 2 32 and the measuring stage 2 32, and is provided in the left and right direction with respect to the measuring stage 2 32. It is composed of a horizontal arm 2 3 4 that can move in the (X direction).
  • the horizontal movement (horizontal movement) of the horizontal arm 2 3 4 can be performed manually (eg, button operation, joystick operation, etc.), and the shape, dimensions, and measurement type of the DUT W (coaxiality, cylindricity, etc.). By inputting the same into the operation panel 220, it is possible to automatically execute the operation.
  • the work table 2 18 is provided on the substantially central upper surface of the apparatus main body 2 12, is formed in a disk shape, and can be driven to rotate. The number of revolutions may be changed stepwise, or may be changed steplessly. It should be noted that it is also possible to make it possible to perform the ringing adjustment / tilting adjustment as needed, and it is also possible to add an automatic eccentricity correction function and an automatic inclination correction function.
  • the operation panel 220 is provided on the upper left side of the apparatus main body 212 so that measurement information (including shape information of the workpiece W) can be input, various operations of the apparatus, and output of measurement results and the like can be performed. Is configured.
  • a personal computer is used for the operation panel 220 shown in the figure, and input work is mainly performed by a keyboard, and output is performed by a display (liquid crystal panel) and a printer.
  • Various controls of the roundness measuring device 210 are performed by the CPU built in the operation panel 220.
  • a dedicated panel can be used instead of using a personal computer for the operation panel 220.
  • the force that presses the sensor may be a detector 224 that is fixed to a single unit (for example, 70 mN), or the shape, dimensions, and measurement type (coaxiality, cylinder It may be configured to be variable (for example, 30 to 10 OmN) according to the degree, etc.
  • FIG. 9 is a schematic sectional view (right sectional view) of the stand 230 and illustrates the configuration of the Z-direction moving means 214.
  • the balance weight 30 is connected to pulleys 34 and 34 provided near both ends of the linear motor 12.
  • the pulleys 34 and 34 are provided near the upper end of the linear motor 12.
  • a structure is employed in which a wire 32 is wound around the wire to balance the mover 16 and the balance weight 30.
  • the linear motor 12 is disposed vertically in front of the inside of the stand 230 (to the left in FIG. 9). Further, a Z-direction table 231, which supports an X-direction moving means 2 16 (indicated by an image line in the figure), is fixed to the moving element 16.
  • the balance weight 30, which is a weight balanced with the total weight of the slider 16 and the X-direction moving means 2 16, is penetrated by the vertically arranged shaft 31, and can be moved up and down. It is connected to the mover 16 by a wire 32 via pulleys 34 and 34 provided near the upper end.
  • the balance weight 30 is connected to the winding motion transmitting member (the wire 3) via a winding motion transmitting supporting member (pulley 34) provided near both ends or one end of the linear motor 12. 2), it is connected to the mover 16.
  • the balance weight 30 is arranged so as to be balanced with the mover 16. If so, various configurations can be adopted.
  • the balance weight 30 and the mover 16 are balanced via a manometer (communication pipe).
  • a vertically movable lid material that covers the mercury heads (upper ends) in the manometers at both ends is provided, and the weights of the balance weight 30 and the moving element 16 can be received by the lid materials at both ends.
  • FIG. 14 is a cross-sectional view of another embodiment of the one-axis drive device according to the present invention
  • FIG. 15 is a perspective view showing an outline of a linear motor 4 12 used in the one-axis drive device.
  • the enlarged cross-sectional view of the essential part of Linamo 4/12 is the same as that of Fig. 6 described above.
  • the 1-axis drive device 4 10 can move the fixed table 4 3 0, the moving table 4 32, the fixed table 4 3 0, and the moving table 4 3 2 slidably in one axis direction.
  • the linear motion guides 4 3 4 and 4 3 4 to be connected (the above members are not shown in FIG.
  • the linear motor 4 12 mainly composed of the stator 4 14 and the mover 4 16 , Stator 4 1 4 Fixing brackets 4 2 0, 4 2 0 to fix both ends of the stator to the fixing table 4 3 0, Cable carrier 4 2 2 for supplying power to the slider 4 16, and the slider 4 1 6 Encoder 4 2 4 and encoder scale 4 2 6 for detecting the position in one axis direction, and limit sensor 4 2 provided near the both ends of stator 4 14 to detect the end limit of mover 4 16 8, 4 2 8;
  • the moving element 4 16 of the linear motor 4 1 2 is fixed to the moving table 4 32, the encoder 4 24 is fixed to the moving table 4 32, and the encoder scale 4 2 6 is fixed to the fixed table 4. It is fixed to 30.
  • the linear guide 4 3 4 has a long rail-shaped fixed portion 4 3 4 A and a moving portion 4 3 4 B, and the moving portion 4 3 4 B is in one axial direction with respect to the fixed portion 4 3 4 A.
  • a mechanism such as a rolling guide (by a pole or a roller), a sliding guide, or the like can be employed.
  • Examples of such a linear motion guide 4 3 4 include products manufactured by THK Name: LM guide can be used. Note that a configuration may be employed in which the moving table 432 is directly supported on the fixed table 4330 so as to be slidable in one axial direction without using the linear guide 434.
  • the fixed table 430 and the moving table 432 at least the portion around the linear motor 412 must be made of a non-magnetic material.
  • all parts of the fixed table 4300 and the movable table 432 are made of a non-magnetic material.
  • Various ceramics can be preferably used as such a non-magnetic material.
  • various resin materials, especially engineering plastics and the like can be preferably used.
  • Other non-magnetic materials can also be used.
  • the outline of the single-axis driving device 410 is not shown, the overall configuration is substantially the same as that of the conventional single-axis driving device 1 shown in FIG. Only the point where mechanism 5 was replaced by Linamo-E 4 1 2.
  • the portions around the linear motor 412 are made of a non-magnetic material.
  • the magnetic force of the night is hardly affected by the surrounding materials, and as a result, the driving thrust of the linear motor 4 12 is hard to fluctuate.
  • FIG. 16 is a cross-sectional view of still another embodiment of the single-axis drive device according to the present invention
  • FIG. 17 is a perspective view of the same. Note that the same or similar members as those of the other embodiments (FIGS. 14 and 15) are denoted by the same reference numerals and description thereof will be omitted.
  • the present embodiment is different from the other embodiments in the position where the linear motors 4 and 12 are provided. That is, in other embodiments, the linear motor 4 12 is disposed between the linear motion guides 4 3 4 and 4 3 4 in parallel with the linear motion guides 4 3 4 and 4 3 4. In the configuration, the linear motor 4 1 2 is positioned at a predetermined distance from the linear motion guides 4 3 4 and 4 3 4.
  • the moving element 4 16 is fixed to the moving table 4 32, but in the present embodiment, the moving element 4 16 extends horizontally from the moving table 4 32. It is fixed to the connecting plate 436. It is preferable that the length of the connecting plate 436 (in one axis driving direction) be as short as possible so that the moving element 416 can be fixed.
  • the portion of the fixed table 4300 facing the linear motor 412 is cut away except for the portion to which the fixing brackets 420 and 420 are fixed.
  • the sliding surface between the fixed table 4330 and the moving table 432 and the axis of the stator 414 of the linear motor 412 are arranged in substantially the same plane. I have. Therefore, it is not easily affected by rolling and pitching. In addition, even if there is some influence of the swing, this can be reduced if the length of the sliding surface between the fixed table 430 and the movable table 432 is a predetermined length.
  • the present invention is not limited to the example of the embodiment, and various modes can be adopted.
  • a configuration in which two linear motion guides 434 are provided is adopted, but a configuration in which only one linear guide is provided may be employed.
  • linear drive is performed by a linear motor having a stator that is a bar-shaped magnet and a movable member that is an annular member fitted to the stator. Therefore, the characteristics of this type of linear motor are that maintenance is unnecessary, there are no wear parts, low vibration driving is possible, a large speed range is available, high rigidity, and the structure is simple. Advantageous effects such as no backlash, etc. can be obtained.

Abstract

An apparatus for measuring the surface shape of an object comprising a detecting section, a stator, i.e. a rod-like magnet having N poles and S poles arranged alternately, and a mover, i.e., an annular member having a coil member and being fitted to the stator to be movably along it, is further provided with a linear motor for moving the detecting section relatively along the surface of the object. Features of this type of linear motor, i.e. maintenance-free, no wearing part, low oscillation driving, wide speed range, high rigidity, simple structure, no backlash, and the like, can thereby be advantageously attained.

Description

明 細 書 表面形状測定装置及び該装置に使用される 1軸駆動装置 技術分野  Description Surface profile measuring device and one-axis driving device used in the device
本発明は、 表面形状測定装置及び該装置に使用される 1軸駆動装置に係り、 特に、 駆動部にリニァモー夕を使用した表面形状測定装置及び該装置に使用される 1軸駆動 装置に関する。 背景技術  The present invention relates to a surface shape measuring device and a one-axis driving device used for the device, and more particularly to a surface shape measuring device using a linear motor for a driving unit and a one-axis driving device used for the device. Background art
従来より、 表面形状測定装置としては、 表面粗さ測定装置、 輪郭形状測定装置、 .真 円度測定装置、 三次元座標測定装置等が知られている。  Conventionally, surface roughness measuring devices, contour shape measuring devices, roundness measuring devices, three-dimensional coordinate measuring devices, and the like have been known as surface shape measuring devices.
これらの表面形状測定装置の多くは、 接触式の触針 (プローブ) を被測定物の表面 に接触させながら、 触針と被測定物とを相対移動させ、 これにより被測定物の表面形 状を測定している。  Many of these surface profile measuring devices move the stylus and the DUT relative to each other while the contact-type stylus (probe) is in contact with the surface of the DUT, thereby obtaining the surface shape of the DUT. Is measured.
この触針と被測定物との相対移動は、 表面粗さ測定装置、 輪郭形状測定装置、 三次 元座標測定装置等においては直線運動となるのが一般的であり、 真円度測定装置にお いては円弧運動となるのが一般的である。また、触針の Z軸移動(鉛直方向移動)は、 真円度測定装置においても直線運動となるのが一般的である。  The relative movement between the stylus and the object to be measured is generally a linear motion in a surface roughness measuring device, a contour shape measuring device, a three-dimensional coordinate measuring device, and the like. In general, a circular motion occurs. In addition, the movement of the stylus in the Z axis (movement in the vertical direction) is generally linear even in a roundness measuring device.
このような直線運動の駆動は、モータ、歯車及びねじの組み合わせ、又は、モ一夕、 プーリ及びワイヤの組み合わせによる構成が一般的である (たとえば、 特開 2 0 0 0 In general, such linear motion is driven by a combination of a motor, a gear and a screw, or a combination of a motor, a pulley and a wire.
- 1 3 9 3 1 7号参照) 。 -See 139 3 17).
すなわち、 表面粗さ測定装置、 輪郭形状測定装置、 真円度測定装置においては、 モ 一夕、 歯車及びねじの組み合わせによる直線駆動を行うとともに、 高い真直度精度を 有するすべりガイド面 (又は静圧軸受面) で支持されながら、 接触式の検出器が直線 移動して、 被測定物の表面粗さ、 輪郭形状、 真円度等の測定を行う。 また、 三次元座 標測定装置においては、 モー夕、 プーリ及びワイヤの組み合わせによる直線駆動を行 うとともに、 高い真直度精度を有する静圧軸受面で支持されながら、 接触式の検出器 が直線移動して、 被測定物の形状及び寸法の測定を行う。 That is, the surface roughness measuring device, the contour shape measuring device, and the roundness measuring device perform linear driving by a combination of a gear, a screw, and a sliding guide surface (or a static pressure) having high straightness accuracy. While being supported by the bearing surface, the contact type detector moves linearly and measures the surface roughness, contour shape, roundness, etc. of the measured object. In the three-dimensional coordinate measuring device, linear drive is performed by a combination of motor, pulley and wire. At the same time, while being supported by the hydrostatic bearing surface with high straightness accuracy, the contact type detector moves linearly and measures the shape and dimensions of the measured object.
この場合、 表面粗さ測定装置及び輪郭形状測定装置の直線駆動は X軸方向が、 真円 度測定装置の直線駆動は R軸及び Z軸方向が、三次元座標測定装置の直線駆動は X軸、 Y軸及び Z軸方向が一般的である。  In this case, the linear drive of the surface roughness measuring device and the contour shape measuring device is in the X-axis direction, the linear drive of the roundness measuring device is in the R-axis and Z-axis directions, and the linear drive of the three-dimensional coordinate measuring device is the X-axis. , Y-axis and Z-axis directions are common.
上記表面形状測定装置における従来の直線駆動機構は、 以下に述べるような問題点 を有し、 改善が求められていた。 すなわち、 表面粗さ測定装置、 輪郭形状測定装置、 真円度測定装置、 三次元座標測定装置は、 検出器の移動速度が遅く、 高速移動ができ ないという問題点を有している。  The conventional linear drive mechanism in the above surface profile measuring device has the following problems, and improvements have been demanded. In other words, the surface roughness measuring device, the contour shape measuring device, the roundness measuring device, and the three-dimensional coordinate measuring device have a problem that the moving speed of the detector is slow and cannot be moved at high speed.
また、 表面粗さ測定装置、 輪郭形状測定装置、 真円度測定装置は、 高速移動時の振 動が大きいという問題点を有している。 また、 表面粗さ測定装置、 輪郭形状測定装置 は、 構造が複雑であり、 また、 高精度の歯車間ピッチ寸法が要求されるという問題点 を有している。 また、 三次元座標測定装置は、 ワイヤを使用するため、 高加速度移動 ができないという問題点を有している。  Further, the surface roughness measuring device, the contour shape measuring device, and the roundness measuring device have a problem that the vibration during high-speed movement is large. In addition, the surface roughness measuring device and the contour shape measuring device have a problem that the structure is complicated and that a high-precision pitch between gears is required. In addition, the three-dimensional coordinate measuring device has a problem that it cannot move at high acceleration because it uses wires.
次に、 1軸駆動装置に関する従来の技術について説明する。 従来より、 固定テープ ルと、 この固定テーブルに対し 1軸方向に摺動自在に支持され、 この方向に駆動され る移動テーブルとで構成される 1軸駆動装置 (直動装置とも称呼される) が知られて いる。 この 1軸駆動装置は、 各種のモータ (たとえば、 ステッピングモータ、 リニア モータ等) により駆動される構成のものが多い。  Next, a conventional technique related to a single-axis drive device will be described. Conventionally, a one-axis driving device (also referred to as a linear motion device) comprising a fixed table and a moving table which is slidably supported in one axis direction with respect to the fixed table and driven in this direction. It has been known. This single-axis drive device is often configured to be driven by various motors (for example, a stepping motor, a linear motor, etc.).
図 1 0は、 1軸駆動装置の一例を示す斜視図である。 同図において、 1軸駆動装置 3 0 1は、 固定テーブル 3 0 2と、 固定テーブル 3 0 2に対し摺動面 3 0 3、 3 0 3 で 1軸方向 (図の矢印方向) に摺動自在に支持されている移動テ一ブル 3 0 4と、 モ 一夕駆動機構 3 0 5と、 を有している。  FIG. 10 is a perspective view showing an example of a single-axis driving device. In the same figure, the one-axis drive device 301 slides in the one-axis direction (the direction of the arrow in the figure) on the fixed table 302 and the sliding surfaces 303, 303 against the fixed table 302. It has a movable table 304 that is freely supported, and a motor drive mechanism 304.
1軸駆動装置 3 0 1において、 モータ駆動機構 3 0 5のねじ部材 3 0 6は軸受 3 0 7、 3 0 7を介して固定テーブル 3 0 2に回動自在に固定されており、 ねじ部材 3 0 6と歯合する図示しないナツト部材は移動テーブル 3 0 4に固定されている。  In the single-axis drive device 301, the screw member 303 of the motor drive mechanism 300 is rotatably fixed to the fixed table 302 via bearings 307, 307, and the screw member A nut member (not shown) that meshes with 303 is fixed to the moving table 304.
そして、 モータ駆動機構 3 0 5のうち、 固定テーブル 3 0 2に固定されたモー夕 3 0 8を駆動することにより、 ナツト部材と一体となった移動テーブル 3 0 4は、 図の 矢印方向に前後移動する。 And, of the motor drive mechanism 3 05, the motor 3 fixed to the fixed table 302 By driving 08, the moving table 304 integrated with the nut member moves back and forth in the direction of the arrow in the figure.
このような 1軸駆動装置に使用されるモータとしては、 図示のものとは異なり、 回 動しない構成のリニアモー夕も適用できる。 このリニアモータのうちでも、 棒状磁石 である固定子と、 固定子に嵌装されるとともに、 コイル部材を有し、 固定子に沿って 直線移動が可能な環状部材である移動子とを有するリニアモータは、 コギングが少な レ 速度ムラが少ない、 等の特徴を持っており、 市場に出回りつつある (たとえば、 GM C H I L L S T O N E社製、 商品名:シャフトモータ一) 。  As a motor used in such a one-axis drive device, a linear motor having a configuration that does not rotate, unlike the one shown in the figure, can be applied. Among these linear motors, a linear motor having a stator, which is a rod-shaped magnet, and a movable member, which is an annular member that is fitted to the stator, has a coil member, and can move linearly along the stator. Motors have features such as low cogging and low speed unevenness, and are becoming available on the market (for example, GM CHILLSTONE, product name: Shaft Motor-1).
図 1 1において、 このようなリニアモータ 3 1 1の断面が略示されている。 N極と S極とが交互に直線状に配列されてなる棒状磁石である固定子 3 1 2に、 コイル部材 を有する環状部材である移動子 3 1 4が嵌装されている。 そして、 固定子 3 1 2の磁 束と移動子 3 1 4のコイル部材に流される電流との相互作用により、 フレミングの左 手の法則によって、 移動子 3 1 4は固定子 3 1 2に沿って直線移動する。 なお、 移動 子 3 1 4のコイル部材には図示しない駆動回路より電流が供給される。  In FIG. 11, a cross section of such a linear motor 311 is schematically shown. A mover 314, which is an annular member having a coil member, is fitted to a stator 314, which is a rod-shaped magnet in which N poles and S poles are alternately arranged in a linear manner. Then, due to the interaction between the magnetic flux of the stator 3 12 and the current flowing through the coil member of the mover 3 14, the mover 3 14 moves along the stator 3 1 2 according to Fleming's left-hand rule. To move linearly. A current is supplied to the coil members of the movers 314 from a drive circuit (not shown).
このようなリニアモータの改良技術として、 安定的に精度良く作動できるとする構 成のものが提案されている (たとえば、 特開平 8— 3 3 1 8 3 4号及び特開平 1 1一 As an improvement technology of such a linear motor, a configuration having a structure capable of operating stably and with high accuracy has been proposed (for example, Japanese Patent Application Laid-Open Nos. H08-313184 and H11-111).
1 5 0 9 7 3号参照) 。 (See No. 150973).
しかしながら、 1軸駆動装置に関する従来の技術については、 以下に述べるような 問題点を有し、 改善が求められていた。 すなわち、 1軸駆動装置に上記従来のリニア モータを適用し、 駆動推力が移動子の自重の影響を受け易い状態で使用した場合、 駆 動推力の変動を抑制しにくいという問題が指摘されている。 .  However, the conventional technology related to the single-axis drive has the following problems and needs to be improved. In other words, it has been pointed out that if the above-mentioned conventional linear motor is applied to a single-axis drive device and the drive thrust is used in a state where the drive thrust is easily affected by the weight of the mover, it is difficult to suppress fluctuations in the drive thrust . .
図 1 1、 1 2、 1 3 ( a ) 及び 1 3 ( b ) は、 この現象を説明する概念図である。 図 1 1において、 リニアモータ 3 1 1の動作原理については、 既に説明した通りであ る。  FIGS. 11, 12, 13 (a) and 13 (b) are conceptual diagrams illustrating this phenomenon. In FIG. 11, the operation principle of the linear motor 311 is as described above.
このリニアモータ 3 1 1において、 固定子 3 1 2と移動子 3 1 4との間に摩擦が存 在するとすれば、 通電による駆動をしない状態で図 1 2、 1 3 ( a ) 及び 1 3 ( b ) に示されるようになる。図 1 2は、リニアモータ 3 1 1が水平に配された状態を示し、 図 1 3 (a) 及び 1 3 (b) は、 リニアモ一夕 3 1 1が水平に対して傾斜角 0をもつ て配された状態を示す。 In this linear motor 311, if there is friction between the stator 312 and the mover 314, if there is no drive by energization, Figs. 12, 13 (a) and 13 (b). FIG. 12 shows a state where the linear motors 3 1 1 are arranged horizontally, FIGS. 13 (a) and 13 (b) show a state where the linear motor 311 is arranged with an inclination angle of 0 with respect to the horizontal.
図 1 2において、 移動子 3 14に通電しない状態では固定子 3 1 2と移動子 3 14 との相対運動はない。 また、 移動子 3 14を右又は左に動かすには、 移動子 3 1 4の 自重 Mgによる摩擦力に打ち勝つべく、 駆動力 F = Mgを要する (ここで、 は固 定子 3 1 2と移動子 3 14との間の動摩擦係数、 Mは移動子 3 14の質量、 gは重力 加速度) 。  In FIG. 12, there is no relative movement between the stator 3 12 and the mover 314 when the mover 314 is not energized. In order to move the slider 314 to the right or left, a driving force F = Mg is required to overcome the frictional force of the slider 314 due to its own weight Mg. The coefficient of kinetic friction between 3 and 14; M is the mass of the mover 3 14; g is the gravitational acceleration).
一方、 図 1 3 (a) 及び 1 3 (b) においては、 移動子 3 14の自重による分力 M g s i n 0が固定子 3 1 2に沿った直線移動方向にかかる。 また、 移動子 3 1 4の自 重による分力 Mg c o s 0が固定子 312に沿った直線移動方向に対し垂直にかかる。 この状態で、 図 1 3 (a) に示されるように移動子 3 14の自重による分力及び摩 擦力に打ち勝って移動子 3 14を左方に動かすには、 駆動力 F=Mg s i η θ + Μ g c o s 0を要する。 一方、 図 1 3 (b) に示されるように移動子 3 14を右方に動 かすには、 駆動力 F =— Mg s i n θ + lg c o s 0を要する。 このように、 従来 のこの種のリニアモータは、 移動子 3 14の自重により、 移動方向が変わると駆動に 必要な推力が変動する。  On the other hand, in FIGS. 13 (a) and 13 (b), a component force M g sin 0 due to the weight of the movable element 314 is applied in the direction of linear movement along the stator 3 12. In addition, a component force Mg cos 0 due to the weight of the movable element 3 14 is applied perpendicularly to the direction of linear movement along the stator 312. In this state, as shown in FIG. 13 (a), to move the movable element 314 to the left by overcoming the component force and frictional force due to its own weight, the driving force F = Mg si η It takes θ + Μ gcos 0. On the other hand, to move the mover 314 to the right as shown in FIG. 13 (b), a driving force F = —Mg sin θ + lg cos 0 is required. As described above, in this type of conventional linear motor, the thrust required for driving varies when the moving direction changes due to the weight of the movable element 314.
また、 図 1 3 (a) 及び 1 3 (b) のような状態で傾斜角気が大きいと、 移動子 3 14が自重により右方に移動 (落下) する。 これを抑制し、 移動子 3 14を現状位置 に維持するためには、 移動子 3 1 4に通電し、 左方向きの駆動力を与えて重力と釣り 合わせる必要がある。 ところが、 移動子 3 14に通電した状態を維持すると、 移動子 3 14に発熱を生じ、 この発熱により装置全体の寸法誤差を引き起こすという問題を ち生じる。  If the inclination angle is large in the state as shown in FIGS. 13 (a) and 13 (b), the moving element 314 moves (falls) to the right due to its own weight. In order to suppress this and maintain the movable element 314 at the current position, it is necessary to energize the movable element 314 and apply a leftward driving force to balance the gravity. However, if the state where the movable element 314 is energized is maintained, heat is generated in the movable element 314, and this heat generation causes a dimensional error of the entire device.
また、 1軸駆動装置に上記従来のリニアモー夕を適用した場合、 このリニアモータ の駆動推力が変動し易いといった問題点がある。すなわち、 1軸駆動装置は、通常は、 固定テーブル及び移動テーブルが金属材料で構成されている。 これは、 金属材料の加 ェのし易さ、 高剛性、 高耐久性等の理由による。 ところが、 固定テーブル及び移動テ 一ブルのリニアモー夕周辺の部分が磁性材料である金属材料で構成されていると、 リ ニァモータの磁力が周辺の磁性材料の影響を受け、 その結果、 リニアモータの駆動推 力が変動し易い。 In addition, when the above-described conventional linear motor is applied to a one-axis driving device, there is a problem that the driving thrust of the linear motor is easily changed. That is, in the single-axis drive device, the fixed table and the movable table are usually made of a metal material. This is due to the ease of adding metal materials, high rigidity and high durability. However, if the fixed table and the movable table around the linear motor were made of magnetic metal, The magnetic force of the near motor is affected by the surrounding magnetic material, and as a result, the driving force of the linear motor tends to fluctuate.
本発明は、 このような事情に鑑みてなされたもので、 上記従来の各問題点を克服で きる駆動機構を有する表面形状測定装置を提供することを目的とする。また本発明は、 リニアモータの移動子の自重による駆動推力への影響を小さくし、 発熱等による寸法 精度誤差を小さくし、 1軸駆動装置の構成部材による駆動推力への影響を小さくした リニァモー夕を使用した 1軸駆動装置を提供することをも目的とする。 発明の開示  The present invention has been made in view of such circumstances, and an object of the present invention is to provide a surface shape measuring device having a driving mechanism capable of overcoming the above-mentioned conventional problems. The present invention also provides a linear motor that reduces the influence of the weight of the linear motor on the drive thrust due to its own weight, reduces dimensional accuracy errors due to heat generation, etc., and reduces the influence of the components of the single-axis drive device on the drive thrust. Another object of the present invention is to provide a one-axis driving device using the same. Disclosure of the invention
前記目的を達成するために、 本発明は、 被測定物の表面形状の測定を行う表面形状 測定装置において、 検出部と、 N極と S極とが交互に配列されてなる棒状磁石である 固定子と、 コイル部材を有し、 前記固定子に嵌装され、 前記固定子に沿って移動が可 能な環状部材で.ある移動子と、 を含み、 前記検出部を前記被測定物の表面に沿って相 対移動させるリニァモー夕と、 を有することを特徴とする表面形状測定装置を提供す る。 .  In order to achieve the above object, the present invention provides a surface shape measuring device for measuring a surface shape of an object to be measured, which is a rod-shaped magnet in which a detection unit, and N poles and S poles are alternately arranged. A moving member having a coil member, a coil member, and fitted to the stator, the movable member being movable along the stator. And a linear shape moving relative to the surface. .
本発明によれば、 棒状磁石である固定子と、 固定子に嵌装される環状部材である移 動子とを有するリニアモータにより駆動がなされる。 したがって、 この種のリニアモ 一夕の特徵とする、 メンテナンスが不用である、 磨耗部分がない、 低振動駆動が可能 である、 速度範囲を大きくとれる、 高剛性である、 構造が簡単である、 バックラッシ ュがない、 等の有利な効果が得られる。  According to the present invention, driving is performed by a linear motor having a stator that is a rod-shaped magnet and a mover that is an annular member fitted to the stator. Therefore, this type of linear motor features special features such as maintenance-free, no wear, low vibration drive, large speed range, high rigidity, simple structure, and backlash. There are no advantageous effects such as lack of access.
なお、 表面形状測定装置とは、 表面粗さ測定装置、 輪郭形状測定装置、 真円度測定 装置、 三次元座標測定装置等で代表される、 被測定物の表面に沿って検出部を相対移 動させることにより、 この被測定物の表面形状の測定を行う装置を指し、 物体の外表 面のみならず、 たとえば、 円筒物の内周面等の測定を行う装置をも含むものである。 また、 検出部とは、 一般的には触針 (プローブ) を被測定物の表面接触させながら 測定する接触式の検出部が採用されるが、 これに限られず、 非接触式の検出部、 たと えば、 レ一ザ方式の検出部等も含むものである。 また、 本発明は、 N極と S極とが交互に配列されてなる棒状磁石である固定子と、 前記固定子に嵌装されるとともに、 コイル部材を有し、 前記固定子に沿って移動が可 能な環状部材である移動子と、 を有するリニァモータを使用した 1軸駆動装置であつ て、 バランスウェイトが前記移動子と釣り合うように配されていることを特徴とする 1軸駆動装置を提供する。 The surface shape measuring device is a surface roughness measuring device, a contour shape measuring device, a roundness measuring device, a three-dimensional coordinate measuring device, and the like, and a detecting unit is relatively moved along a surface of an object to be measured. A device that measures the surface shape of an object to be measured by moving it, and also includes a device that measures not only the outer surface of an object but also, for example, the inner peripheral surface of a cylindrical object. In general, the detection unit is a contact-type detection unit that performs measurement while bringing a stylus (probe) into contact with the surface of an object to be measured, but is not limited thereto. For example, it also includes a laser type detection unit. Further, the present invention has a stator which is a bar-shaped magnet in which N poles and S poles are alternately arranged, and has a coil member fitted to the stator and moves along the stator. A single-axis drive device using a linear motor having a mover that is an annular member capable of: and wherein a balance weight is disposed so as to be balanced with the mover. provide.
ここで、 「バランスウェイト」 とは、 「研削加工等において回転体の不釣合いを取 り除くために付加するおもり。 」 又は 「門型工作機械のクロスレールや中ぐり盤の主 軸頭の自重と釣り合わせるのに用いるおもり。 」 と当業者に理解されているが、 本明 細書においては、 上記のうち、 後者の意味で使用する。  Here, the “balance weight” is “a weight added to remove the unbalance of the rotating body in grinding or the like.” Or “the weight of the spindle head of the cross rail or boring machine of the portal machine tool. It is understood by those skilled in the art that the weight is used to balance with. However, in this specification, the latter is used in the meaning of the latter.
本発明によれば、 移動子の自重又は移動子に他の構成部材が取り付けられている場 合にはこれらの合計重量と略同一重量のバランスウェイトにより釣り合いがとれる。 したがって、 移動子の自重等による影響は小さく、 駆動推力が変動しにくく、 また、 発熱等による寸法精度誤差が生じにくい。  According to the present invention, when the moving member has its own weight or another constituent member is attached to the moving member, the balance can be achieved by the balance weight having substantially the same weight as the total weight thereof. Therefore, the influence of the weight of the mover due to its own weight and the like is small, the driving thrust does not easily fluctuate, and dimensional accuracy errors due to heat generation and the like hardly occur.
本発明において、 前記バランスウェイトの重量が前記移動子の重量と略同一である ことが好ましい。 移動子に他の構成部材を取り付けずに使用した場合、 このように移 動子の自重と略同一重量のバランスウェイトにより釣り合いがとれる。 したがって、 駆動推力が移動子の自重による影響を受けにくく、また、寸法精度誤差が生じにくい。 また、 本発明において、 前記バランスウェイトの重量が前記移動子の重量に対し士 2 0 %の範囲内であることが好ましい。 移動子に他の構成部材を取り付ずに使用した 場合、 又は、 移動子に他の構成部材を取り付けて使用した場合、 パランスウェイトの 重量がこのような範囲内であれば、 移動子の自重等による駆動推力の変動は許容範囲 となることが多く、 また、 寸法精度誤差も生じにくレ^  In the present invention, it is preferable that the weight of the balance weight is substantially the same as the weight of the mover. When the moving element is used without attaching other components, the balance can be achieved by the balance weight having substantially the same weight as the weight of the moving element. Therefore, the driving thrust is hardly affected by the weight of the moving element, and a dimensional accuracy error hardly occurs. Further, in the present invention, it is preferable that the weight of the balance weight is within 20% of the weight of the moving element. If the slider is used without attaching other components, or if the slider is used with other components attached, if the weight of the balance weight is within such a range, the weight of the slider will be its own weight. Fluctuations in driving thrust due to factors such as these are often within the allowable range, and dimensional accuracy errors are unlikely to occur.
また、 本発明において、 前記バランスウェイトは、 リニアモータの一端部又は両端 部の近傍に設けられる巻き掛け運動伝達支持部材を介して巻き掛け運動伝達部材によ り前記移動子と連結されていることが好ましい。 このように、 バランスウェイトが、 巻き掛け運動伝達支持部材を介して巻き掛け運動伝達部材により移動子と連結されて いれば、 容易に釣り合いがとれるからである。 なお、 「巻き掛け運動伝達部材」 とは、 機構学での巻き掛け伝達における機械要素 で、 一般的には、 ベルト、 チェーン、 ワイヤ等が該当する。 また、 「巻き掛け運動伝 達支持部材」 とは、 同じく巻き掛け伝達における機械要素で、 一般的には、 プーリ、 ベルト車、 スプロケット等が該当する。 In the present invention, the balance weight may be connected to the movable element by a winding motion transmitting member via a winding motion transmitting supporting member provided near one end or both ends of the linear motor. Is preferred. In this way, if the balance weight is connected to the moving element by the wrapping motion transmitting member via the wrapping motion transmitting support member, the balance can be easily obtained. The “winding motion transmitting member” is a mechanical element in wrapping transmission in mechanics, and generally corresponds to a belt, a chain, a wire, and the like. The "winding motion transmission support member" is also a mechanical element in the wrapping transmission, and generally corresponds to a pulley, a belt wheel, a sprocket, and the like.
また、 本発明は、 固定テーブルと、 該固定テーブルに対し 1軸方向に摺動自在に支 持されてなる移動テーブルと、 N極と S極とが交互に配列されてなる棒状磁石である 固定子と、 前記固定子に嵌装されるとともに、 コイル部材を有し、 前記固定子に沿つ て移動が可能な環状部材である移動子と、 を有するリニアモ一夕と、 を有し、 前記固 定子及び前記移動子の一方が前記固定テーブルに固定され、 前記固定子及び前記移動 子の他方が前記移動テーブルに固定され、 前記固定テーブル及び前記移動テーブルの うち、 少なくとも前記リニアモー夕周辺の部分が非磁性材料で構成されていることを 特徴とする 1軸駆動装置を提供する。  Further, the present invention provides a fixed table, a moving table supported slidably in one axis direction with respect to the fixed table, and a bar-shaped magnet in which N poles and S poles are alternately arranged. A linear motor that is fitted to the stator, has a coil member, and is a movable member that is an annular member that can move along the stator. One of the stator and the moving element is fixed to the fixed table, and the other of the stator and the moving element is fixed to the moving table, and at least a portion of the fixed table and the moving table around the linear motor. The present invention provides a one-axis drive device, characterized in that the shaft is made of a non-magnetic material.
本発明によれば、 リニアモータ周辺の部分が非磁性材料で構成されているので、 リ ニァモータの磁力が周辺の磁性材料 (金属材料等) の影響を受けにくく、 その結果、 リニアモータの駆動推力が変動しにくい。  According to the present invention, since the portion around the linear motor is made of a non-magnetic material, the magnetic force of the linear motor is hardly affected by the surrounding magnetic material (metal material, etc.). Is hard to fluctuate.
また、 本発明は、 固定テーブルと、 該固定テーブルに対し 1軸方向に摺動自在に支 持されてなる移動テーブルと、 N極と S極とが交互に配列されてなる棒状磁石である 固定子と、 前記固定子に嵌装されるとともに、 コイル部材を有し、 前記固定子に沿つ て移動が可能な環状部材である移動子と、 を有するリニアモータと、 を有し、 前記固 '定子及び前記移動子の一方が前記固定テーブルに固定され、 前記固定子及び前記移動 子の他方が前記移動テーブルに固定され、 前記固定テーブルと前記移動テ一ブルとの 摺動面と、 前記リニアモータの前記固定子の軸心とが略同一平面内に配され、 前記固 定テ一ブル及び前記移動テーブルの前記摺動面と前記リニアモータとが所定距離隔置 されていることを特徴とする 1軸駆動装置を提供する。  Further, the present invention provides a fixed table, a moving table supported slidably in one axis direction with respect to the fixed table, and a bar-shaped magnet in which N poles and S poles are alternately arranged. A linear motor that is fitted to the stator, has a coil member, and is a movable member that is an annular member that can move along the stator. One of the fixed element and the movable element is fixed to the fixed table; the other of the fixed element and the movable element is fixed to the movable table; a sliding surface between the fixed table and the movable table; The axis of the stator of the linear motor is disposed in substantially the same plane, and the sliding surface of the fixed table and the moving table and the linear motor are separated by a predetermined distance. Provide a one-axis drive
本発明によれば、 固定テーブル及び移動テーブルの摺動面とリニアモータとが所定 距離隔置されている。 したがって、 リニアモータの磁力が周辺の磁性材料 (金属材料 等)の影響を受けにくく、その結果、 リニアモータの駆動推力が変動しにくレ^また、 固定テーブルと移動テーブルとの摺動面と、 リニアモータの固定子の軸心とが略同一 平面内に配されている。 したがって、 ローリングやピッチングの影響は受けにくい。 また、 ョ一イングの影響を多少受けることがあっても、 固定テーブルと移動テ一プル との摺動面長さを所定長とれば、 これを軽減できる。 図面の簡単な説明 According to the present invention, the sliding surfaces of the fixed table and the movable table and the linear motor are separated by a predetermined distance. Therefore, the magnetic force of the linear motor is less affected by the surrounding magnetic materials (metal materials, etc.), and as a result, the driving thrust of the linear motor is less likely to fluctuate. The sliding surface between the fixed table and the movable table and the axis of the stator of the linear motor are arranged in substantially the same plane. Therefore, it is not easily affected by rolling and pitching. Further, even if there is a slight influence of the bowing, this can be reduced by setting the length of the sliding surface between the fixed table and the movable tape to a predetermined length. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の一実施の形態による表面粗さ測定装置の全体を示す斜視図であり; 図 2は、 図 1に示した表面粗さ測定装置の構成を示すブロック図であり ; 図 3 ( a ) 及び 3 ( b ) は、 駆動部の詳細を示す断面図であり ;  FIG. 1 is a perspective view showing an entire surface roughness measuring device according to an embodiment of the present invention; FIG. 2 is a block diagram showing a configuration of the surface roughness measuring device shown in FIG. 3 (a) and 3 (b) are cross-sectional views showing details of the driving unit;
図 4は、 リニアモータの周辺の全体構成を示す斜視図であり ;  Figure 4 is a perspective view showing the overall configuration around the linear motor;
図 5は、 図 4の 5— 5線断面図であり ;  FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4;
図 6は、 リニアモータの要部拡大断面図であり ;  Figure 6 is an enlarged sectional view of the main part of the linear motor;
図 7は、 実施の形態の真円度測定装置の全体を示す斜視図であり ;  FIG. 7 is a perspective view showing the entirety of the roundness measuring apparatus according to the embodiment;
図 8は、 被測定物の測定箇所を説明する概念図であり ;  Figure 8 is a conceptual diagram illustrating the measurement location of the DUT;
図 9は、 スタンドの概略断面図であり ;  Figure 9 is a schematic cross section of the stand;
図 1 0は、 従来の 1軸駆動装置の一例を示す斜視図であり ;  FIG. 10 is a perspective view showing an example of a conventional one-axis driving device;
図 1 1は、 従来のリニアモータの概要を示す断面図であり ;  Figure 11 is a sectional view showing the outline of a conventional linear motor;
図 1 2は、 従来のリニアモータにおける問題点を説明する概念図であり ; 図 1 3 ( a ) 及び 1 3 (b ) は、 従来のリニアモータにおける問題点を説明する概 念図であり ;  Fig. 12 is a conceptual diagram illustrating a problem in the conventional linear motor; Figs. 13 (a) and 13 (b) are conceptual diagrams illustrating a problem in the conventional linear motor;
図 1 4は、 本発明に係る 1軸駆動装置の実施態様の断面図であり ;  FIG. 14 is a cross-sectional view of an embodiment of the single-axis drive device according to the present invention;
図 1 5は、 1軸駆動装置に使用されるリニアモータの概要を示す斜視図であり ; 図 1 6は、 本発明に係る 1軸駆動装置の更に他の実施態様の断面図であり ; 図 1 7は、 本発明に係る 1軸駆動装置の更に他の実施態様の斜視図である。 発明を実施するための最良の形態  FIG. 15 is a perspective view showing an outline of a linear motor used in the one-axis drive device; FIG. 16 is a cross-sectional view of still another embodiment of the one-axis drive device according to the present invention; FIG. 17 is a perspective view of still another embodiment of the single-axis drive device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面に従って、 本発明に係る表面形状測定装置の一例である表面粗さ測 定装置の好ましい実施の形態について詳説する。 図 1は、 実施の形態の表面粗さ測定 装置 10の全体を示す斜視図であり、 図 2は、 図 1に示した表面粗さ測定装置 10の 構成を示すブロック図である。 Hereinafter, according to the attached drawings, a surface roughness measuring device which is an example of a surface shape measuring device according to the present invention will be described. A preferred embodiment of the fixing device will be described in detail. FIG. 1 is a perspective view showing the entire surface roughness measuring device 10 according to the embodiment, and FIG. 2 is a block diagram showing the configuration of the surface roughness measuring device 10 shown in FIG.
表面粗さ測定装置 10は、 測定部 (データ出力手段) 112、 データ処理装置 11 4、 入力装置 (例えばキーボード、 マウス:測定領域指定手段、 設定手段) 116、 及びモニタ 118から構成される。 測定部 112は、 測定台 120上に載置された図 2のワーク Wの表面粗さを測定するピックアップ 122を有し、 このピックアップ 1 22は駆動部 124のホルダ 124 Aに支持されている。  The surface roughness measuring device 10 includes a measuring unit (data output means) 112, a data processing device 114, an input device (for example, a keyboard and a mouse: measuring area designating means, setting means) 116, and a monitor 118. The measuring section 112 has a pickup 122 for measuring the surface roughness of the work W shown in FIG. 2 placed on a measuring table 120. The pickup 122 is supported by a holder 124A of a driving section 124.
ピックアップ 122は、 先端に触針 126を有し、 この触針 126の変位量が駆動 部 124に内蔵された差動トランス (不図示) によって電圧に変換される。 そして、 この電圧値は AZD変換器によって AZD変換され、 デ一夕処理装置 114の CPU (測定データ取得手段、 算出手段、 制御手段、 比較手段) 128に出力される。 これ により、 CPU128によってワーク Wの表面粗さを示す測定データが取得される。 図 1に示されるように、 駆動部 124は測定台 120に立設されたコラム 130に 取り付けられている。 そして、 図 2の CPU 128からの指示に従って、 上下 (Z方 向) 移動用のモータ (不図示) が駆動されることにより、 駆動部 124全体がコラム 130に沿って上下に移動される。また、 CPU128からの指示に従って、左右(X 方向) 移動用のリニアモータ (説明は後述する) が駆動されることにより、 ホルダ 1 The pickup 122 has a stylus 126 at its tip, and the displacement of the stylus 126 is converted into a voltage by a differential transformer (not shown) built in the drive unit 124. Then, this voltage value is AZD-converted by the AZD converter and output to the CPU (measurement data acquisition means, calculation means, control means, comparison means) 128 of the data processing unit 114. Thus, the CPU 128 obtains measurement data indicating the surface roughness of the work W. As shown in FIG. 1, the drive unit 124 is attached to a column 130 erected on the measuring table 120. Then, in accordance with an instruction from the CPU 128 in FIG. 2, a motor (not shown) for up / down (Z direction) movement is driven, so that the entire drive unit 124 is moved up / down along the column 130. In addition, according to an instruction from the CPU 128, a linear motor (to be described later) for left / right (X direction) movement is driven, so that the holder 1 is moved.
24 Aが左右に移動される。 なお、 測定台 120の前面に装着されたジョイステイツ ク 132によって、 駆動部 124を操作することもできる。 24 A is moved left and right. The drive unit 124 can also be operated by a joystick 132 mounted on the front of the measurement table 120.
また、 図 2に示されるように、 データ処理装置 114には、 ハードディスク又は電 気的消去書き込み可能な読み出し専用メモリである EEP R OM等の補助記憶装置 1 As shown in FIG. 2, the data processing device 114 includes an auxiliary storage device 1 such as a hard disk or an EEPROM which is an electrically erasable and writable read-only memory.
34が内蔵される。 34 are built in.
次に、 本発明の特徴部分である駆動部 124の詳細について説明する。 図 3 (a) は駆動部 124の詳細を示す左側断面図であり、 図 3 (b) はその正断面図である。 図 4は、 駆動部 124内に配されるリニアモー夕 12周辺の全体構成を示す斜視図で あり、 図 5は、 図 4の 5— 5線断面図であり、 図 6は、 リニアモータ 12の要部拡大 断面図である。 Next, details of the drive unit 124, which is a characteristic part of the present invention, will be described. FIG. 3A is a left sectional view showing details of the driving section 124, and FIG. 3B is a front sectional view thereof. FIG. 4 is a perspective view showing the entire configuration around the linear motor 12 arranged in the drive unit 124, FIG. 5 is a cross-sectional view taken along line 5-5 in FIG. 4, and FIG. Main part expansion It is sectional drawing.
駆動部 1 2 4内に配されるリニアモー夕 1 2周辺の全体構成は、 固定子 1 4及び移 動子 1 6を主体としてなるリニアモータ 1 2と、 各部材を固定するベース 1 8 (図 4 では図示を略す) と、 固定子 1 4の両端部をベース 1 8に固定する固定金具 2 0、 2 0と、 移動子 1 6に給電を行うケーブルベア 2 2と、 移举子 1 6の 1軸方向位置を検 出するエンコーダ 2 4及びエンコーダスケール 2 6と、 固定子 1 4の両端部近傍に設 けられ、 移動子 1 6のエンドリミットを検知するリミットセンサ 2 8、 2 8と、 移動 子 1 6の自重等との釣り合いをとるバランスウェイト 3 0と、 固定子 1 4の両端部近 傍に設けられる巻き掛け運動伝達支持部材であるプーリ 3 4、 3 4と、 ベース 1 8に 固定されプーリ 3 4を回動自在に軸支するプーリ軸 3 6、 3 6と、 プーリ 3 4を介し て移動子 1 6とバランスウェイト 3 0とを連結する巻き掛け運動伝達部材であるワイ ャ 3 2と、 より構成される。  The overall configuration around the linear motor 12 arranged in the drive section 124 consists of a linear motor 12 mainly composed of a stator 14 and a mover 16 and a base 18 (see FIG. 4 are not shown), fixing brackets 20 and 20 for fixing both ends of the stator 14 to the base 18, a cable carrier 22 for supplying power to the slider 16, and a slider 16. Encoders 24 and encoder scales 26 that detect the position in one axis direction of the actuator, and limit sensors 28 and 28 that are installed near both ends of the stator 14 and detect the end limit of the slider 16 A balance weight 30 for balancing the weight of the moving element 16 with its own weight, etc .; pulleys 34, 3 4 as winding motion supporting members provided near both ends of the stator 14; and a base 18 Pulley shafts 36, 36 fixed to the shaft and rotatably supporting the pulley 34, and the mover 16 via the pulley 34 And a wire 32 which is a wrapping motion transmitting member for connecting the balance weight 30 to the balance weight 30.
図 5に示されるように、ベース 1 8には所定幅のスリット 1 8 Aが形成されており、 このスリット 1 8 Aを貫通して移動子 1 6とホルダ 1 2 4 Aとが連結されている。 し たがって、 リニアモータ 1 2が駆動されると、 ホルダ 1 2 4 Aが左右に移動される。 次に、 図 6等によりリニアモー夕 1 2の詳細について説明する。 リニアモー夕 1 2 は、 いわゆるシャフト型のリニアモータである。 リニアモ一夕 1 2は、 界磁用のマグ ネッ卜が形成されている直線棒状のシャフト部材である固定子 1 4と、 コイル部材を 主要部として有する環状部材である移動子 1 6がこれに嵌装されることにより構成さ れている。  As shown in FIG. 5, a slit 18 A having a predetermined width is formed in the base 18, and the moving element 16 and the holder 124 A are connected to each other through the slit 18 A. I have. Therefore, when the linear motor 12 is driven, the holder 124A moves left and right. Next, details of the linear motor 12 will be described with reference to FIG. The linear motor 12 is a so-called shaft type linear motor. The linear motor 12 includes a stator 14 which is a straight rod-shaped shaft member on which a magnet for the field is formed, and a movable member 16 which is an annular member having a coil member as a main part. It is configured by fitting.
固定子 1 4は、 機械加工が可能で、 着磁可能な材料、 たとえば、 F e— C r— C o 系金属よりなり、 断面が円形に形成されている。 また、 固定子 1 4は、 その長手方向 に沿って等ピッチの、 好ましくは略矩形の磁束分布となるように着磁されている。 こ れにより、 固定子 1 4には、 その長手方向に沿って N極と S極とが同じ磁極幅 Pで交 互に並んだ駆動用着磁部が形成されており、 これが界磁マグネットとなっている。 こ の磁極幅 Pは、 たとえば 3 O mmとすることができる。  The stator 14 is made of a machinable and magnetizable material, for example, a Fe—Cr—Co metal, and has a circular cross section. Further, the stator 14 is magnetized so as to have a magnetic flux distribution of a uniform pitch, preferably a substantially rectangular shape, along the longitudinal direction. As a result, the stator 14 has a driving magnetized portion in which the N pole and the S pole are alternately arranged with the same magnetic pole width P along the longitudinal direction, and this is formed with the field magnet. Has become. The magnetic pole width P can be, for example, 3 O mm.
移動子 1 6のコイル部材 4 0は、 U相、 V相、 W相の 3つのコイルを 1組とするコ ィル群の 2組 (第 1組のコイル群及び第 2組のコイル群) よりなる。 第 1組のコイル 群は、 コイル Ul、 VI、 W1からなり、 この順に固定子 14の長手方向に配置され ている。 第 2組のコイル群は、 コイル U2、 V2、 W2からなり、 この順に固定子 1 4の長手方向に配置されている。 これらのコイルは、 いずれも磁極幅 Pの 1/3の幅 に形成されている。 The coil member 40 of the mover 16 is composed of three coils of U-phase, V-phase, and W-phase. It consists of two sets of coil groups (the first set of coil groups and the second set of coil groups). The first set of coil group includes coils Ul, VI, and W1, and is arranged in the longitudinal direction of the stator 14 in this order. The second group of coils includes coils U2, V2, and W2, and is arranged in this order in the longitudinal direction of the stator 14. Each of these coils is formed to be 1/3 of the pole width P.
移動子 16のコイル部材 40を構成するこれら各コイルは、 その外周面を接着剤に よってコ一ティングするようにして固着され一体化されている。 そして、 コイル部材 40は、 中空直方体状の移動子フレーム 42の中空部分に内蔵されており、 かつ、 移 動子フレーム 42の内周面に一体化して支持されている。  These coils constituting the coil member 40 of the mover 16 are fixed and integrated such that their outer peripheral surfaces are coated with an adhesive. The coil member 40 is built in a hollow portion of the hollow rectangular parallelepiped movable element frame 42, and is integrally supported on the inner peripheral surface of the movable element frame 42.
移動子 16の移動子フレーム 42の左右両端部分には、 固定子 14に嵌装され、 固 定子 14に摺動可能な軸受け部 44、 44が設けられている。 この軸受け部 44、 4 4の作用により、 移動子 16は固定子 14に沿って滑らかに移動できる。  Bearing portions 44, 44 fitted on the stator 14 and slidable on the stator 14 are provided on both left and right end portions of the slider frame 42 of the slider 16. By the action of the bearings 44, 44, the moving member 16 can move smoothly along the stator 14.
そして、 固定子 14の磁束と移動子 16のコイル部材 40に流される電流との相互 作用により、 フレミングの左手の法則によって、 移動子 16は固定子 14に沿って直 線移動する。 なお、 移動子 16のコイル部材 40には駆動回路 (不図示) よりケープ ルベア 22を介して電流が供給される。  The interaction between the magnetic flux of the stator 14 and the current flowing through the coil member 40 of the mover 16 causes the mover 16 to move linearly along the stator 14 according to Fleming's left-hand rule. A current is supplied to the coil member 40 of the mover 16 from the drive circuit (not shown) via the cape bearer 22.
このようなリニアモータ 12としては、 たとえば、 GMC HI LL STONE社 製、 商品名:シャフトモーターが使用できる。  As such a linear motor 12, for example, a shaft motor manufactured by GMC HILL STONE can be used.
図 4、 図 5に示されるバランスウェイト 30としては、 移動子 16及びホルダ 12 4A (ピックアップ 122も含む) を合計した重量と釣り合うような重量のものを選 択することが好ましい。  As the balance weight 30 shown in FIGS. 4 and 5, it is preferable to select a weight that balances the total weight of the mover 16 and the holder 124A (including the pickup 122).
また、 ホルダ 124Aに取り付けるピックアップ 122の重量によって、 バランス ウェイト 30の重量を増減できるような構成を採用することもできる。  Further, it is also possible to adopt a configuration in which the weight of the balance weight 30 can be increased or decreased depending on the weight of the pickup 122 attached to the holder 124A.
移動子 16とバランスウェイト 30との連結は、 図 4、 図 5に示されるように、 ヮ ィャ 32により無端環状に構成し、 このワイヤ 32をプーリ 34、 34に巻き掛けて ' 支持すればよい。  As shown in FIGS. 4 and 5, the connection between the mover 16 and the balance weight 30 is formed by an endless ring by a wire 32, and the wire 32 is wound around pulleys 34, 34 and supported. Good.
このようにバランスウェイト 30を移動子 16及びホルダ 124A (ピックアップ 1 2 2も含む)を合計した重量と釣り合うように配することにより、既述したような、 本構成のリニアモータ 1 2に生じる問題点に対処することが可能となる。 Thus, the balance weight 30 is moved to the moving element 16 and the holder 124A (pickup). (Including 1 2 2) so as to be in proportion to the total weight, it is possible to deal with the problem that occurs in the linear motor 12 having this configuration as described above.
その他、 駆動部 1 2 4内の他の構成 (ベース 1 8、 固定金具 2 0、 ケーブルベア 2 2、 エンコーダ 2 4、 エンコーダスケール 2 6、 ミットセンサ 2 8 ) については、 いずれも公知のものであることより、 その説明は省略する。  In addition, the other components in the drive unit 124 (base 18, fixing bracket 20, cable carrier 22, encoder 24, encoder scale 26, encoder sensor 28) are all known. Therefore, the description is omitted.
以上の構成の表面粗さ測定装置によれば、 リニアモ一夕 1 2の特徴とする、 メンテ ナンスが不用である、 磨耗部分がない、 低振動駆動が可能である、 速度範囲を大きく とれる、 高剛性である、 構造が簡単である、 バックラッシュがない、 等の有利な効果 が得られる。  According to the surface roughness measuring device having the above configuration, the features of the linear motor 12 are that maintenance is unnecessary, there is no wear part, low vibration driving is possible, the speed range can be widened, and high Advantageous effects such as rigidity, simple structure, and no backlash can be obtained.
次に、 既述した、 使用状態によっては本構成のリニアモータ 1 2に生じる問題点に 対処した構成について説明する。 すなわち、 本構成のリニアモータ 1 2を適用し、 駆 動推力が移動子 1 6の自重により変動する状態で使用した場合、 この駆動推力の変動 を抑制しにくいという問題が懸念されており、これについて、図 1 1、 1 2、 1 3 ( a ) 及び 1 3 ( b ) により説明済みである。  Next, a description will be given of a configuration that addresses the problem described above, which occurs in the linear motor 12 having this configuration depending on the use state. In other words, when the linear motor 12 of this configuration is applied and used in a state where the driving thrust fluctuates due to the weight of the moving element 16, there is a concern that it is difficult to suppress the fluctuation of the driving thrust. Has been described with reference to FIGS. 11, 12, 13 (a) and 13 (b).
本発明の実施態様は、 このような事情にも鑑みてなされたもので、 駆動推力がリニ ァモ一夕 1 2の移動子 1 6等の自重により変動しにくく、 また、 発熱等による寸法精 度誤差を生じにくいリニァモータ 1 2を使用した表面形状測定装置を提供するもので ある。 すなわち、 バランスウェイト 3 0が移動子 1 6等の重量と釣り合うように配さ れている。  The embodiment of the present invention has been made in view of such circumstances, and the driving thrust hardly fluctuates due to the weight of the movable element 16 of the linear motor 12 and the like, and the dimensional accuracy due to heat generation and the like. It is an object of the present invention to provide a surface shape measuring apparatus using a linear motor 12 which does not easily cause a degree error. That is, the balance weight 30 is arranged so as to be balanced with the weight of the movable element 16 and the like.
このような構成によれば、 移動子 1 6の自重及び移動子 1 6に取り付けられている 他の構成部材 (本例ではピックアップ 1 2 2、 ホルダ 1 2 4 A) と略同一重量のバラ ンスウェイト 3 0より釣り合いがとれる。 したがって、 移動子 1 6の自重等による影 響は小さく、 駆動推力が変動しにくく、 また、 発熱等による寸法精度誤差が生じにく い。  According to such a configuration, the weight of the movable member 16 and the balance having substantially the same weight as the other components (the pickup 122 and the holder 124 A in this example) attached to the movable member 16 are provided. Balance is better than weight 30. Therefore, the influence of the weight of the mover 16 due to its own weight and the like is small, the driving thrust does not easily fluctuate, and dimensional accuracy errors due to heat generation and the like are less likely to occur.
このような構成において、 パランスウェイト 3 0の重量が移動子 1 6の重量及び他 の構成部材の重量との合計値と略同一であることが好ましい。 このように移動子 1 6 等の自重と略同一重量のバランスウェイト 3 0により釣り合いがとれる。したがって、 移動子 1 6の自重等による影響はより小さく、 駆動推力がより変動しにくく、 また、 発熱等による寸法精度誤差がより生じにくい。 In such a configuration, it is preferable that the weight of the balance weight 30 be substantially the same as the total value of the weight of the moving element 16 and the weights of other components. As described above, the balance is achieved by the balance weight 30 having substantially the same weight as the own weight of the movable element 16 and the like. Therefore, The influence of the weight of the mover 16 is smaller, the driving thrust is less likely to fluctuate, and dimensional accuracy errors due to heat generation are less likely to occur.
また、 このような構成において、 バランスウェイト 3 0の重量が移動子 1 6の重量' 及び他の構成部材の重量との合計値に対し土 2 0 %の範囲内であることが好ましい。 バランスウェイト 3 0の重量がこのような範囲内であれば、 移動子 1 6の自重等によ る駆動推力の変動は許容範囲となることが多く、 また、 寸法精度誤差も生じにくい。 また、このような構成において、本実施の態様のように、バランスウェイト 3 0は、 リニアモータ 1 2の一端部又は両端部の近傍に設けられる巻き掛け運動伝達支持部材 (本例ではプーリ軸 3 6 ) を介して巻き掛け運動伝達部材 (本例ではプーリ 3 4 ) に より移動子 1 6と連結されていることが好ましい。 このように、 バランスウェイト 3 0が、 巻き掛け運動伝達支持部材を介して巻き掛け運動伝達部材により移動子 1 6と 連結されていれば、 容易に釣り合いがとれるからである。  In such a configuration, it is preferable that the weight of the balance weight 30 is within a range of 20% of the total value of the weight of the moving element 16 and the weight of the other components. If the weight of the balance weight 30 is within such a range, the fluctuation of the driving thrust due to the weight of the movable member 16 or the like often becomes an allowable range, and a dimensional accuracy error hardly occurs. In such a configuration, as in the present embodiment, the balance weight 30 is provided with a winding motion transmitting support member (in this example, a pulley shaft 3) provided near one end or both ends of the linear motor 12. It is preferable that the movable member 16 is connected to the moving member 16 by a winding motion transmitting member (in this example, a pulley 34) via the member 6). In this way, if the balance weight 30 is connected to the moving element 16 by the winding motion transmitting member via the winding motion transmitting supporting member, the balance can be easily obtained.
次に、 添付図面に従って、 本発明に係る表面形状測定装置の他の一例である真円度 測定装置の好ましい実施の形態について詳説する。 図 7は、 真円度測定装置の全体構 成図である。 真円度測定装置 2 1 0は、 装置本体 2 1 2、 装置本体 2 1 2の右側上面 に設けられる Z方向移動手段 2 1 4、 Z方向移動手段 2 1 4に支持される X方向移動 手段 2 1 6、 X方向移動手段 2 1 6の左端部に支持されるとともに、 X軸を中心に回 動自在となっている検出器ホルダ 2 2 2、 検出器ホルダ 2 2 2の先端部に回動自在に 支持される検出器 2 2 4、 装置本体 2 1 2の略中央上面に設けられるワークテーブル 2 1 8、 及び、 装置本体 2 1 2の左側上面に設けられる操作パネル 2 2 0とで構成さ れる。 なお、 検出器 2 2 4の先端にはプローブ Pが設けられている。  Next, a preferred embodiment of a roundness measuring device as another example of the surface shape measuring device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 7 is an overall configuration diagram of the roundness measuring device. The roundness measuring device 210 is provided with a Z-direction moving device 2 14 provided on the upper right side of the device body 2 12 and the device body 2 12, and an X-direction moving device supported by the Z-direction moving device 2 14. 2 16 The X-direction moving means 2 16 The detector holder 2 22 supported on the left end of the X-axis and rotatable around the X axis. The detector 224, which is movably supported, the work table 218, which is provided substantially on the upper center of the main body 212, and the operation panel 220, which is provided on the upper left side of the main body 212, It is composed. Note that a probe P is provided at the tip of the detector 222.
図 8は、 被測定物 Wの測定箇所を説明する概念図であり、 左上の円筒状被測定物 W の内周部及び外周部に検出器 2 2 4のプロ一プ Pが押し当てられている状態、 及び、 右下の被測定物 Wの円錐部、 円柱外面、 フランジ部上面及びフランジ部下面に検出器 2 2 4のプローブ Pが押し当てられている状態をそれぞれ示している。  FIG. 8 is a conceptual diagram for explaining the measurement location of the DUT W. The probe P of the detector 222 is pressed against the inner and outer peripheral portions of the cylindrical DUT W at the upper left. 2 shows a state in which the probe P of the detector 222 is pressed against the conical portion, the outer surface of the cylinder, the upper surface of the flange portion, and the lower surface of the flange portion of the DUT W at the lower right.
このような各状態での各種の測定 (同軸度、 円筒度、 等) に対応できるように、 検 出器 2 2 4及びプローブ Pが自動的に位置決めできるように構成されている。 以下、 各構成部分の概略について説明する。 Z方向移動手段 2 1 4は、 装置本体 2 1 2の右側上面に設けられ、 Z方向テーブルを備えるスタンド 2 3 0と、 Z方向テ一 ブルに沿って上下動する測定ステージ 2 3 2との組み合わせで構成される。 測定ステ —ジ 2 3 2の上下動 (Z方向移動) は手動 (たとえば、 ボタン操作、 ジョイステイツ ク操作等) でも行なえるし、 被測定物 Wの形状、 寸法、 測定種別 (同軸度、 円筒度、 等) 等を操作パネル 2 2 0に入力することにより自動で行なえる方式にもできる。 The detector 224 and the probe P are configured to be automatically positioned so as to be able to cope with various measurements (coaxiality, cylindricity, etc.) in each of these states. Hereinafter, the outline of each component will be described. The Z-direction moving means 2 14 is provided on a right upper surface of the apparatus main body 2 12 and includes a stand 230 provided with a Z-direction table and a measurement stage 2 32 which moves up and down along the Z-direction table. Composed of combinations. The vertical movement (movement in the Z direction) of the measurement stage 2 3 2 can be performed manually (eg, button operation, joystick operation, etc.), and the shape, dimensions, and measurement type (coaxiality, cylinder) of the DUT W , Etc.) can be input to the operation panel 220 to automatically execute the operation.
X方向移動手段 2 1 6は、 Z方向移動手段 2 1 4に支持されており、 測定ステージ 2 3 2と、 測定ステージ 2 3 2を貫通して設けられ、 測定ステージ 2 3 2に対し左右 方向 (X方向) に移動可能な水平腕 2 3 4との組み合わせで構成される。 水平腕 2 3 4の左右移動 (X方向移動) は手動 (たとえば、 ポタン操作、 ジョイスティック操作 等) でも行なえるし、 被測定物 Wの形状、 寸法、 測定種別 (同軸度、 円筒度、 等) 等 を操作パネル 2 2 0に入力することにより自動で行なえる方式にもできる。  The X direction moving means 2 16 is supported by the Z direction moving means 2 14, and is provided so as to penetrate the measuring stage 2 32 and the measuring stage 2 32, and is provided in the left and right direction with respect to the measuring stage 2 32. It is composed of a horizontal arm 2 3 4 that can move in the (X direction). The horizontal movement (horizontal movement) of the horizontal arm 2 3 4 can be performed manually (eg, button operation, joystick operation, etc.), and the shape, dimensions, and measurement type of the DUT W (coaxiality, cylindricity, etc.). By inputting the same into the operation panel 220, it is possible to automatically execute the operation.
ワークテーブル 2 1 8は、 装置本体 2 1 2の略中央上面に設けられており、 円盤状 に形成され、 回転駆動できるようになつている。 回転数は段階的に変更できるように してもよく、 無段階で可変とする構成としてもよい。 なお、 必要に応じてセン夕リン グ調整ゃチルチング調整ができるようにしてもよく、 また、 自動偏心補正機能、 自動 傾斜補正機能を付与することもできる。 The work table 2 18 is provided on the substantially central upper surface of the apparatus main body 2 12, is formed in a disk shape, and can be driven to rotate. The number of revolutions may be changed stepwise, or may be changed steplessly. It should be noted that it is also possible to make it possible to perform the ringing adjustment / tilting adjustment as needed, and it is also possible to add an automatic eccentricity correction function and an automatic inclination correction function.
操作パネル 2 2 0は、 装置本体 2 1 2の左側上面に設けられており、 測定情報 (被 測定物 Wの形状情報も含む) の入力、 装置の各種操作及び測定結果等の出力ができる ように構成されている。 図示の操作パネル 2 2 0にはパソコンが使用されており、 入 力作業は主にキーボードより行い、 出力はディスプレ (液晶パネル) 及びプリンタに より行なわれる。 なお、 操作パネル 2 2 0に内蔵の C P Uにより真円度測定装置 2 1 0の各種制御が行われる。低価格機種では、操作パネル 2 2 0にパソコンを使用せず、 装置専用のパネルを採用することもできる。  The operation panel 220 is provided on the upper left side of the apparatus main body 212 so that measurement information (including shape information of the workpiece W) can be input, various operations of the apparatus, and output of measurement results and the like can be performed. Is configured. A personal computer is used for the operation panel 220 shown in the figure, and input work is mainly performed by a keyboard, and output is performed by a display (liquid crystal panel) and a printer. Various controls of the roundness measuring device 210 are performed by the CPU built in the operation panel 220. For low-priced models, a dedicated panel can be used instead of using a personal computer for the operation panel 220.
検出器 2 2 4としては、 変位検出に差動トランスを使用し、 かつ、 プローブ Pを被 測定物 Wに押圧する方式のレバー式プローブタイプのものが採用されている。 なお、 これ以外の各種方式のものの採用を排除するものではない。 プローブ Pを被測定物 W に押圧する力、 いわゆる測定力は、 単一に固定 (たとえば 7 0 mN) とする検出器 2 2 4であってもよいし、 被測定物 Wの形状、 寸法、 測定種別 (同軸度、 円筒度、 等) 等に応じて可変 (たとえば 3 0〜1 0 O mN) とする構成であってもよい。 As the detector 222, a lever-type probe type that uses a differential transformer for displacement detection and presses the probe P against the workpiece W is used. The adoption of other various methods is not excluded. Probe P to DUT The force that presses the sensor, the so-called measuring force, may be a detector 224 that is fixed to a single unit (for example, 70 mN), or the shape, dimensions, and measurement type (coaxiality, cylinder It may be configured to be variable (for example, 30 to 10 OmN) according to the degree, etc.
図 9は、 スタンド 2 3 0の概略断面図 (右側断面図) であり、 Z方向移動手段 2 1 4の構成を説明するものである。 実施形態の表面粗さ測定装置 1 0の例 (図 1〜図 6 参照) では、 バランスウェイト 3 0が、 リニアモー夕 1 2の両端部の近傍に設けられ るプーリ 3 4、 3 4を介してワイヤ 3 2により移動子 1 6と連結される構成が採用さ れているが、 本実施形態の例では、 プ一リ 3 4、 3 4をリニアモータ 1 2の上端部の 近傍に設け、 これにワイヤ 3 2を巻き掛けて、 移動子 1 6等とバランスウェイト 3 0 との釣り合いを取る構成が採用されている。  FIG. 9 is a schematic sectional view (right sectional view) of the stand 230 and illustrates the configuration of the Z-direction moving means 214. In the example of the surface roughness measuring device 10 of the embodiment (see FIGS. 1 to 6), the balance weight 30 is connected to pulleys 34 and 34 provided near both ends of the linear motor 12. Although a configuration in which the movable element 16 is connected to the movable element 16 by the wire 32 is adopted, in the example of this embodiment, the pulleys 34 and 34 are provided near the upper end of the linear motor 12. A structure is employed in which a wire 32 is wound around the wire to balance the mover 16 and the balance weight 30.
すなわち、 スタンド 2 3 0の内部前方 (図 9では、 左方) には、 リニアモータ 1 2 が鉛直に配設されている。 そして、 移動子 1 6には X方向移動手段 2 1 6 (図では想 像線で表示) を支持する Z方向テーブル 2 3 1が固着されている。 移動子 1 6及び X 方向移動手段 2 1 6の合計重量と釣り合う重量のバランスウェイト 3 0は、 鉛直に配 設された軸 3 1に貫通され上下移動が可能な状態で、 リニアモー夕 1 2の上端部の近 傍に設けられるプーリ 3 4、 3 4を介してワイヤ 3 2により移動子 1 6と連結されて いる。  That is, the linear motor 12 is disposed vertically in front of the inside of the stand 230 (to the left in FIG. 9). Further, a Z-direction table 231, which supports an X-direction moving means 2 16 (indicated by an image line in the figure), is fixed to the moving element 16. The balance weight 30, which is a weight balanced with the total weight of the slider 16 and the X-direction moving means 2 16, is penetrated by the vertically arranged shaft 31, and can be moved up and down. It is connected to the mover 16 by a wire 32 via pulleys 34 and 34 provided near the upper end.
このような構成によれば、 移動子 1 6の自重及び移動子 1 6に取り付けられている 他の構成部材 (本例では Z方向テーブル 2 3 1及び X方向移動手段 2 1 6 ) の合計重 量と略同一重量のバランスウェイト 3 0により釣り合いがとれる。 したがって、 移動 子 1 6の自重等による影響は小さく、 駆動推力が変動しにくく、 また、 発熱等による 寸法精度誤差が生じにくい。  According to such a configuration, the own weight of the slider 16 and the total weight of the other components (the Z-direction table 2 31 and the X-direction moving means 2 16) attached to the slider 16 in this example. A balance weight 30 of approximately the same weight as the quantity balances. Therefore, the influence of the weight of the movable member 16 is small, the driving thrust is hardly fluctuated, and a dimensional accuracy error due to heat generation is hardly generated.
以上、 本発明に係る表面形状測定装置の実施形態の各例について説明したが、 本発 明は上記実施形態の例に限定されるものではなく、各種の態様が採り得る。たとえば、 実施形態の例では、 バランスウェイト 3 0が、 リニァモータ 1 2の両端部又は一端部 の近傍に設けられる巻き掛け運動伝達支持部材 (プーリ 3 4 ) を介して巻き掛け運動 伝達部材 (ワイヤ 3 2 ) により移動子 1 6と連結される構成が採用されているが、 巻 き ナ運動伝達支持部材 (プーリ 3 4 ) と巻き掛け運動伝達部材 (ワイヤ 3 2 ) との 組み合わせ以外の構成でも、 パランスウェイ卜 3 0が移動子 1 6と釣り合うように配 されている構成であれば、 各種構成が採用できる。 As described above, each example of the embodiment of the surface shape measuring device according to the present invention has been described. However, the present invention is not limited to the example of the above-described embodiment, and various modes can be adopted. For example, in the example of the embodiment, the balance weight 30 is connected to the winding motion transmitting member (the wire 3) via a winding motion transmitting supporting member (pulley 34) provided near both ends or one end of the linear motor 12. 2), it is connected to the mover 16. In a configuration other than the combination of the motion transmitting support member (pulley 34) and the wrapping motion transmitting member (wire 32), the balance weight 30 is arranged so as to be balanced with the mover 16. If so, various configurations can be adopted.
たとえば、 リニアモータ 1 2を使用して鉛直方向の動作をさせる場合に、 マノメー 夕 (連通管) を介してバランスウェイト 3 0と移動子 1 6との釣り合いを取る構成で ある。 この場合、 たとえば、 両端のマノメータ内の水銀のヘッド (上端) を塞ぐ上下 移動可能な蓋材を設け、 この両端の蓋材でバランスウェイト 3 0と移動子 1 6のそれ ぞれの自重を受ければよい。  For example, in the case of operating in the vertical direction using the linear motor 12, the balance weight 30 and the mover 16 are balanced via a manometer (communication pipe). In this case, for example, a vertically movable lid material that covers the mercury heads (upper ends) in the manometers at both ends is provided, and the weights of the balance weight 30 and the moving element 16 can be received by the lid materials at both ends. Just fine.
次に、 リニアモー夕の異なる実施形態の例について説明する。  Next, examples of different embodiments of the linear mode will be described.
図 1 4は、 本発明に係る 1軸駆動装置の他の実施形態の断面図であり、 図 1 5は、 1軸駆動装置に使用されるリニアモータ 4 1 2の概要を示す斜視図である。 なお、 リ 二ァモ一夕 4 1 2の要部拡大断面図については、 既述の図 6と同様である。  FIG. 14 is a cross-sectional view of another embodiment of the one-axis drive device according to the present invention, and FIG. 15 is a perspective view showing an outline of a linear motor 4 12 used in the one-axis drive device. . Note that the enlarged cross-sectional view of the essential part of Linamo 4/12 is the same as that of Fig. 6 described above.
1軸駆動装置 4 1 0は、 固定テ一ブル 4 3 0と、 移動テーブル 4 3 2と、 固定テー プル 4 3 0と移動テーブル 4 3 2とを 1軸方向に摺動自在に移動可能に連結する直動 ガイド 4 3 4、 4 3 4と (以上の部材は、 図 1 5では図示を略す) 、 固定子 4 1 4及 ぴ移動子 4 1 6を主体としてなるリニアモータ 4 1 2と、 固定子 4 1 4の両端部を固 定テーブル 4 3 0に固定する固定金具 4 2 0、 4 2 0と、 移動子 4 1 6に給電を行う ケーブルベア 4 2 2と、 移動子 4 1 6の 1軸方向位置を検出するエンコーダ 4 2 4及 びエンコーダスケール 4 2 6と、 固定子 4 1 4の両端部近傍に設けられ、 移動子 4 1 6のエンドリミットを検知するリミットセンサ 4 2 8、 4 2 8と、 より構成される。 なお、 リニアモータ 4 1 2の移動子 4 1 6は移動テーブル 4 3 2に固着され、 ェン コーダ 4 2 4は移動テーブル 4 3 2に固着され、 エンコーダスケール 4 2 6は固定テ 一ブル 4 3 0に固着されている。  The 1-axis drive device 4 10 can move the fixed table 4 3 0, the moving table 4 32, the fixed table 4 3 0, and the moving table 4 3 2 slidably in one axis direction. The linear motion guides 4 3 4 and 4 3 4 to be connected (the above members are not shown in FIG. 15), the linear motor 4 12 mainly composed of the stator 4 14 and the mover 4 16 , Stator 4 1 4 Fixing brackets 4 2 0, 4 2 0 to fix both ends of the stator to the fixing table 4 3 0, Cable carrier 4 2 2 for supplying power to the slider 4 16, and the slider 4 1 6 Encoder 4 2 4 and encoder scale 4 2 6 for detecting the position in one axis direction, and limit sensor 4 2 provided near the both ends of stator 4 14 to detect the end limit of mover 4 16 8, 4 2 8; The moving element 4 16 of the linear motor 4 1 2 is fixed to the moving table 4 32, the encoder 4 24 is fixed to the moving table 4 32, and the encoder scale 4 2 6 is fixed to the fixed table 4. It is fixed to 30.
直動ガイド 4 3 4は、長尺のレール状の固定部 4 3 4 Aと移動部 4 3 4 Bとを有し、 移動部 4 3 4 Bは固定部 4 3 4 Aに対し 1軸方向に摺動自在に支持されている。 この ような摺動機構には、 ころがり案内 (ポール、 コロ等による) 、 すべり案内等の機構 が採用できる。 このような直動ガイド 4 3 4としては、 たとえば、 T HK社製、 商品 名: L Mガイドが使用できる。 なお、 直動ガイド 4 3 4を使用せず、 固定テーブル 4 3 0に直接移動テーブル 4 3 2を、 1軸方向に摺動自在に支持する構成を採用しても よい。 The linear guide 4 3 4 has a long rail-shaped fixed portion 4 3 4 A and a moving portion 4 3 4 B, and the moving portion 4 3 4 B is in one axial direction with respect to the fixed portion 4 3 4 A. Slidably supported by For such a sliding mechanism, a mechanism such as a rolling guide (by a pole or a roller), a sliding guide, or the like can be employed. Examples of such a linear motion guide 4 3 4 include products manufactured by THK Name: LM guide can be used. Note that a configuration may be employed in which the moving table 432 is directly supported on the fixed table 4330 so as to be slidable in one axial direction without using the linear guide 434.
ここで、 固定テーブル 4 3 0及び移動テーブル 4 3 2のうち、 少なくともリニアモ 一夕 4 1 2周辺の部分が非磁性材料で構成されている必要がある。 なお、 本実施態様 では、 固定テーブル 4 3 0及び移動テーブル 4 3 2の全ての部分を非磁性材料で構成 してある。このような非磁性材料としては、各種セラミックスが好ましく使用できる。 また、 縦弾性係数等が所定の値以上であれば、 各種樹脂材料、 特にエンジニアリング プラスチック等が好ましく使用できる。 その他、 これ以外の各非磁性材料も使用でき る。  Here, of the fixed table 430 and the moving table 432, at least the portion around the linear motor 412 must be made of a non-magnetic material. In the present embodiment, all parts of the fixed table 4300 and the movable table 432 are made of a non-magnetic material. Various ceramics can be preferably used as such a non-magnetic material. In addition, if the longitudinal elastic modulus and the like are equal to or more than a predetermined value, various resin materials, especially engineering plastics and the like can be preferably used. Other non-magnetic materials can also be used.
リニアモ一タ 4 1 2の詳細については、 図 6により説明済みであることより、 詳細 な説明は省略する。 また、 1軸駆動装置 4 1 0の他の構成 (固定金具 4 2 0、 ケープ ルベア 4 2 2、 エンコーダ 4 2 4、 エンコーダスケール 4 2 6、 リミットセンサ 4 2 8 ) については、 いずれも公知のものであることより、 その説明は省略する。  Since the details of the linear motor 4 12 have already been described with reference to FIG. 6, the detailed description is omitted. Other configurations of the 1-axis drive device 410 (fixing bracket 420, cape bearer 42, encoder 42, encoder scale 42, limit sensor 42) are all known. Therefore, the description is omitted.
なお、 1軸駆動装置 4 1 0の概要は図示しなかったが、 全体構成は図 1 0に示され る従来例の 1軸駆動装置 1と略同様であり、 相違点は、 モ一タ駆動機構 5がリニァモ —夕 4 1 2に置き換わった点のみである。  Although the outline of the single-axis driving device 410 is not shown, the overall configuration is substantially the same as that of the conventional single-axis driving device 1 shown in FIG. Only the point where mechanism 5 was replaced by Linamo-E 4 1 2.
以上の構成の 1軸駆動装置 4 1 0によれば、 リニアモー夕 4 1 2周辺の部分 (固定 テーブル 4 3 0及び移動テーブル 4 3 2 ) が非磁性材料で構成されているので、 リニ ァモ一夕の磁力が周辺の材料の影響を受けにくく、 その結果、 リニアモータ 4 1 2の 駆動推力が変動しにくい。  According to the one-axis drive device 410 having the above-described configuration, the portions around the linear motor 412 (the fixed table 430 and the movable table 432) are made of a non-magnetic material. The magnetic force of the night is hardly affected by the surrounding materials, and as a result, the driving thrust of the linear motor 4 12 is hard to fluctuate.
上記の構成の 1軸駆動装置 4 1 0の用途としては、 たとえば、 表面粗さ測定装置、 輪郭形状測定装置、 真円度測定装置、 三次元座標測定装置等の駆動部への使用が挙げ られる。 このような用途に使用した場合、 リニアモータ 4 1 2の特徴とする、 メンテ ナンスが不用である、 磨耗部分がない、 低振動駆動が可能である、 速度範囲を大きく とれる、 高剛性である、 構造が簡単である、 バックラッシュがない、 等の有利な効果 が得られる。 次に、 添付図面に従って本発明に係る 1軸駆動装置の好ましい更に他の実施の形態 について詳説する。 図 1 6は、 本発明に係る 1軸駆動装置の更に他の実施形態の断面 図であり、 図 1 7は、 同じく斜視図である。 なお、 他の実施形態 (図 1 4、 図 1 5 ) と同一、 類似の部材については、 同様の符号を附し、 その説明を省略する。 Applications of the single-axis drive device 410 of the above configuration include, for example, use in drive units such as a surface roughness measurement device, a contour shape measurement device, a roundness measurement device, and a three-dimensional coordinate measurement device. . When used in such applications, the characteristics of the linear motor 4 12, maintenance is unnecessary, there is no wear part, low vibration drive is possible, the speed range can be widened, high rigidity, Advantageous effects such as simple structure and no backlash can be obtained. Next, still another preferred embodiment of the uniaxial drive device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 16 is a cross-sectional view of still another embodiment of the single-axis drive device according to the present invention, and FIG. 17 is a perspective view of the same. Note that the same or similar members as those of the other embodiments (FIGS. 14 and 15) are denoted by the same reference numerals and description thereof will be omitted.
本実施形態の他の実施形態との相違点は、 リニアモー夕 4 1 2の配設位置にある。 すなわち、 他の実施形態では、 直動ガイド 4 3 4、 4 3 4の間に、 この直動ガイド 4 3 4、 4 3 4と平行にリニアモータ 4 1 2が配されていたが、 この実施形態では、 リ ニァモータ 4 1 2は直動ガイド 4 3 4、 4 3 4と所定距離離れた位置に直動ガイド 4 The present embodiment is different from the other embodiments in the position where the linear motors 4 and 12 are provided. That is, in other embodiments, the linear motor 4 12 is disposed between the linear motion guides 4 3 4 and 4 3 4 in parallel with the linear motion guides 4 3 4 and 4 3 4. In the configuration, the linear motor 4 1 2 is positioned at a predetermined distance from the linear motion guides 4 3 4 and 4 3 4.
3 4、 4 3 4と平行に配されている。 It is arranged in parallel with 3 4 and 4 3 4.
そして、 他の実施形態では、 移動子 4 1 6は移動テーブル 4 3 2に固着されていた が、 本実施形態では、 移動子 4 1 6は移動テーブル 4 3 2から水平方向に延設される 連結板 4 3 6に固着されている。 この連結板 4 3 6の長さ (1軸駆動方向) は、 移動 子 4 1 6を固着できるだけの極力短い長さとするのが好ましい。  In the other embodiments, the moving element 4 16 is fixed to the moving table 4 32, but in the present embodiment, the moving element 4 16 extends horizontally from the moving table 4 32. It is fixed to the connecting plate 436. It is preferable that the length of the connecting plate 436 (in one axis driving direction) be as short as possible so that the moving element 416 can be fixed.
また、 リニアモータ 4 1 2に相対する固定テーブル 4 3 0の部分は、 固定金具 4 2 0、 4 2 0を固着する部分を残して切り欠かれている。  In addition, the portion of the fixed table 4300 facing the linear motor 412 is cut away except for the portion to which the fixing brackets 420 and 420 are fixed.
以上の構成の 1軸駆動装置 4 1 1によれば、 固定テーブル 4 3 0及び移動テーブル According to the single-axis drive device 4 1 1 having the above configuration, the fixed table 4 30 and the movable table
4 3 2が磁性材料 (金属材料等) で形成されていても、 リニアモー夕 4 1 2の周辺部 分には磁性材料が殆ど存在せず、 リニアモータの磁力が周辺の材料の影響を受けにく く、 その結果、 リニアモー夕 4 1 2の駆動推力が変動しにくい。 なお、 連結板 4 3 6 が磁性材料 (金属材料等) で形成されていても、 その面積を最小限度に抑えれば、 リ 二ァモ一夕の磁力がこの影響を受けにくい。 Even if 4 32 is made of a magnetic material (metal material, etc.), there is almost no magnetic material around the linear motor 4 12 and the magnetic force of the linear motor is affected by the surrounding materials. As a result, the driving thrust of the linear motor 4 12 hardly fluctuates. Even if the connecting plate 436 is made of a magnetic material (such as a metal material), the magnetic force of the linear motor is hardly affected by this if the area is minimized.
また、 既述したように、 固定テーブル 4 3 0と移動テーブル 4 3 2との摺動面と、 リニアモータ 4 1 2の固定子 4 1 4の軸心とが略同一平面内に配されている。 したが つて、 ローリングやピッチングの影響は受けにくい。 また、 ョ一イングの影響を多少 受けることがあっても、 固定テーブル 4 3 0と移動テーブル 4 3 2との摺動面長さを 所定長とれば、 これを軽減できる。  Also, as described above, the sliding surface between the fixed table 4330 and the moving table 432 and the axis of the stator 414 of the linear motor 412 are arranged in substantially the same plane. I have. Therefore, it is not easily affected by rolling and pitching. In addition, even if there is some influence of the swing, this can be reduced if the length of the sliding surface between the fixed table 430 and the movable table 432 is a predetermined length.
以上、 本発明に係る 1軸駆動装置の実施形態の例について説明したが、 本発明は上 W The example of the embodiment of the single-axis drive device according to the present invention has been described above. W
19  19
記実施形態の例に限定されるものではなく、 各種の態様が採り得る。 たとえば、 実施 形態では直動ガイド 4 3 4を 2個設ける構成を採用したが、 1個のみ設ける構成であ つてもよい。 The present invention is not limited to the example of the embodiment, and various modes can be adopted. For example, in the embodiment, a configuration in which two linear motion guides 434 are provided is adopted, but a configuration in which only one linear guide is provided may be employed.
また、 既述したように、 直動ガイド 4 3 4を設けずに、 固定テーブル 4 3 0に直接 移動テーブル 4 3 2を、 1軸方向に摺動自在に支持する構成を採用してもよい。 産業上の利用可能性  Further, as described above, a configuration may be employed in which the moving table 432 is directly supported on the fixed table 4330 so as to be slidable in one axial direction without providing the linear guide 434. . Industrial applicability
以上説明したように、 本発明によれば、 棒状磁石である固定子と、 固定子に嵌装さ れる環状部材である移動子とを有するリニアモー夕により直線駆動がなされる。 した がって、 この種のリニアモータの特徴とする、 メンテナンスが不用である、 磨耗部分 がない、 低振動駆動が可能である、 速度範囲を大きくとれる、 高剛性である、 構造が 簡単である、 バックラッシュがない、 等の有利な効果が得られる。  As described above, according to the present invention, linear drive is performed by a linear motor having a stator that is a bar-shaped magnet and a movable member that is an annular member fitted to the stator. Therefore, the characteristics of this type of linear motor are that maintenance is unnecessary, there are no wear parts, low vibration driving is possible, a large speed range is available, high rigidity, and the structure is simple. Advantageous effects such as no backlash, etc. can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被測定物の表面形状の測定を行う表面形状測定装置において、 1. In a surface profile measuring device that measures the surface profile of the DUT,
検出部と、  A detection unit;
N極と S極とが交互に配列されてなる棒状磁石である固定子と、コィル部材を有し、 前記固定子に嵌装され、 前記固定子に沿って移動が可能な環状部材である移動子と、 を含み、 前記検出部を前記被測定物の表面に沿って相対移動させるリニァモータと、 を有することを特徴とする表面形状測定装置。  A moving member that has a stator that is a bar-shaped magnet in which N poles and S poles are alternately arranged, and a coil member, is an annular member that is fitted to the stator and that can move along the stator. And a linear motor that relatively moves the detector along the surface of the device under test.
2 . 前記移動子の重量及び前記移動子と一体に移動する構成部材の重量の合計値と略 同一重量であるバランスウェイ卜が釣り合うように配されている請求項 1に記載の表 面形状測定装置。  2. The surface shape measurement according to claim 1, wherein a balance weight having substantially the same weight as a total value of a weight of the movable element and a weight of a component moving integrally with the movable element is arranged. apparatus.
3 . 前記移動子の重量及び前記移動子と一体に移動する構成部材の重量の合計値に対 し ± 2 0 %の範囲内の重量であるバランスウェイトが釣り合うように配されている請 求項 1に記載の表面形状測定装置。  3. A claim in which a balance weight, which is a weight within ± 20% of a total value of a weight of the movable element and a weight of a component moving integrally with the movable element, is arranged to be balanced. 2. The surface shape measuring device according to 1.
4 . 前記移動子の重量及び前記移動子と一体に移動する構成部材の重量の合計値と略 同一重量であるバランスウェイトが釣り合うように配されており、 4. The balance weight, which is substantially the same as the sum of the weight of the mover and the weight of the component moving integrally with the mover, is arranged so as to be balanced,
前記バランスウェイトは、 前記リニアモータの少なくとも一端部の近傍に設けられ る巻き掛け運動伝達支持部材を介して巻き掛け運動伝達部材により前記移動子及び前 記移動子と一体に移動する前記構成部材の少なくとも一方と連結されている請求項 1 に記載の表面形状測定装置。  The balance weight is a component of the component that moves integrally with the moving element and the moving element by a winding motion transmitting member via a winding motion transmitting supporting member provided near at least one end of the linear motor. The surface shape measuring device according to claim 1, which is connected to at least one of the surfaces.
5 . 前記移動子の重量及び前記移動子と一体に移動する構成部材の重量の合計値と土 2 0 %の範囲内の重量であるバランスウェイ卜が釣り合うように配されており、 前記バランスウェイトは、 前記リニアモータの少なくとも一端部の近傍に設けられ る巻き掛け運動伝達支持部材を介して巻き掛け運動伝達部材により前記移動子及び前 記移動子と一体に移動する前記構成部材の少なくとも一方と連結されている請求項 1 に記載の表面形状測定装置。  5. The balance weight, which is a weight within the range of 20%, is balanced with the sum of the weight of the mover and the weight of the component moving integrally with the mover, and the balance weight is provided. And at least one of the components moved integrally with the moving element and the moving element by the wrapping motion transmitting member via a wrapping motion transmitting supporting member provided near at least one end of the linear motor. The surface profile measuring device according to claim 1, which is connected.
6 . 被測定物の表面に沿って検出部を相対移動させることにより該被測定物の表面形 状の測定を行う表面形状測定装置において、 6. Move the detector relative to the surface of the object to measure the surface shape of the object. In a surface shape measurement device that performs shape measurement,
固定テ一ブルと、  Fixed table,
該固定テーブルに対し 1軸方向に摺動自在に支持されてなる移動テ一ブルと、 前記検出部の相対移動を行う 1軸駆動装置であって、 N極と S極とが交互に配列さ れてなる棒状磁石である固定子と、 前記固定子に嵌装されるとともに、 コイル部材を 有し、 前記固定子に沿って移動が可能な環状部材である移動子と、 を有するリニアモ 一夕を含み、 前記固定子及び前記移動子の一方が前記固定テーブルに固定され、 前記 固定子及び前記移動子の他方が前記移動テーブルに固定されてなる 1軸駆動装置と、 を有し、  A moving table supported slidably in one axis direction with respect to the fixed table, and a one-axis driving device for performing relative movement of the detection unit, wherein N poles and S poles are alternately arranged. A linear motor comprising: a stator, which is a bar-shaped magnet; and a movable member, which is an annular member that is fitted to the stator and has a coil member and that can move along the stator. A one-axis driving device, wherein one of the stator and the mover is fixed to the fixed table, and the other of the stator and the mover is fixed to the movable table.
前記固定テーブル及び前記移動テ一ブルのうち、 少なくとも前記リニアモータ周辺 の部分が非磁性材料で構成されていることを特徴とする表面形状測定装置。  A surface shape measuring device, wherein at least a portion around the linear motor of the fixed table and the movable table is made of a non-magnetic material.
7 . 被測定物の表面に沿って検出部を相対移動させることにより該被測定物の表面形 状の測定を行う表面形状測定装置において、  7. In a surface shape measuring device for measuring the surface shape of the measured object by relatively moving the detecting section along the surface of the measured object,
固定テーブルと、  A fixed table,
該固定テーブルに対し 1軸方向に摺動自在に支持されてなる移動テーブルと、 前記検出部の相対移動を行う 1軸駆動装置であって、 N極と S極とが交互に配列さ れてなる棒状磁石である固定子と、 前記固定子に嵌装されるとともに、 コイル部材を 有し、 前記固定子に沿って移動が可能な環状部材である移動子と、 を有するリニアモ 一夕を含み、 前記固定子及び前記移動子の一方が前記固定テーブルに固定され、 前記 固定子及び前記移動子の他方が前記移動テーブルに固定されてなる 1軸駆動装置と、 を有し、  A moving table supported slidably in one axis direction with respect to the fixed table, and a one-axis driving device for performing relative movement of the detection unit, wherein N poles and S poles are alternately arranged. A linear motor having a stator, which is a bar-shaped magnet, and a movable member, which is an annular member that is fitted to the stator and has a coil member and that can move along the stator. A one-axis driving device in which one of the stator and the mover is fixed to the fixed table, and the other of the stator and the mover is fixed to the movable table.
前記固定テーブルと前記移動テーブルとの摺動面と、 前記リニアモー夕の前記固定 子の軸心とが略同一平面内に配され、 前記固定テーブル及び前記移動テーブルの前記 摺動面と前記リ二ァモ一夕とが所定距離隔置されていることを特徴とする表面形状測 定装置。  A sliding surface between the fixed table and the moving table and an axis of the stator of the linear motor are disposed in substantially the same plane, and the sliding surface of the fixed table and the moving table and the linear A surface shape measuring device characterized by being spaced a certain distance from an amo.
8 . N極と S極とが交互に配列されてなる棒状磁石である固定子と、 前記固定子に嵌 装されるとともに、 コイル部材を有し、 前記固定子に沿って移動が可能な環状部材で ある移動子と、 を有するリニァモー夕を使用した 1軸駆動装置であって、 バランスウェイ卜が前記移動子と釣り合うように配されていることを特徴とする 1 軸駆動装置。 8. A stator that is a bar-shaped magnet in which N poles and S poles are alternately arranged, and an annular shape that has a coil member that is fitted to the stator and that can move along the stator. With the member What is claimed is: 1. A one-axis drive device using a linear motion device having a certain moving element, and wherein a balance weight is arranged to be balanced with the moving element.
9 . 前記バランスウェイトの重量が前記移動子の重量と略同一である請求項 8に記載 の 1軸駆動装置。  9. The uniaxial drive device according to claim 8, wherein the weight of the balance weight is substantially the same as the weight of the mover.
1 0 . 前記バランスウェイトの重量が前記移動子の重量に対し ± 2 0 %の範囲内であ る請求項 8に記載の 1軸駆動装置。  10. The uniaxial drive device according to claim 8, wherein the weight of the balance weight is within a range of ± 20% with respect to the weight of the mover.
1 1 . 固定テーブルと、  1 1. Fixed table and
該固定テーブルに対し 1軸方向に摺動自在に支持されてなる移動テーブルと、 N極と S極とが交互に配列されてなる棒状磁石である固定子と、 前記固定子に嵌装 されるとともに、 コイル部材を有し、 前記固定子に沿って移動が可能な環状部材であ る移動子と、 を有するリニアモータと、 を有し、  A moving table that is slidably supported in one axial direction with respect to the fixed table, a stator that is a bar-shaped magnet in which N poles and S poles are alternately arranged, and fitted to the stator. A linear motor having a coil member, an annular member movable along the stator, and a linear motor having:
前記固定子及び前記移動子の一方が前記固定テーブルに固定され、 前記固定子及び 前記移動子の他方が前記移動テーブルに固定され、 前記固定テーブル及び前記移動テ 一ブルのうち、 少なくとも前記リニアモータ周辺の部分が非磁性材料で構成されてい ることを特徴とする 1軸駆動装置。  One of the stator and the moving element is fixed to the fixed table, the other of the stator and the moving element is fixed to the moving table, and at least the linear motor among the fixed table and the moving table A one-axis drive device, wherein a peripheral portion is made of a non-magnetic material.
1 2 . 固定テ一ブルと、  1 2. Fixed table and
該固定テーブルに対し 1軸方向に摺動自在に支持されてなる移動テーブルと、 N極と S極とが交互に配列されてなる棒状磁石である固定子と、 前記固定子に嵌装 されるとともに、 コイル部材を有し、 前記固定子に沿って移動が可能な環状部材であ る移動子と、 を有するリニアモータと、 を有し、  A moving table that is slidably supported in one axial direction with respect to the fixed table, a stator that is a bar-shaped magnet in which N poles and S poles are alternately arranged, and fitted to the stator. A linear motor having a coil member, an annular member movable along the stator, and a linear motor having:
前記固定子及び前記移動子の一方が前記固定テーブルに固定され、 前記固定子及び 前記移動子の他方が前記移動テーブルに固定され、 前記固定テーブルと前記移動テー ブルとの摺動面と、前記リニアモータの前記固定子の軸心とが略同一平面内に配され、 前記固定テーブル及び前記移動テ一ブルの前記摺動面と前記リニァモータとが所定距 離隔置されていることを特徴とする 1軸駆動装置。  One of the stator and the moving element is fixed to the fixed table, the other of the stator and the moving element is fixed to the moving table, and a sliding surface between the fixed table and the moving table; The linear motor and the axis of the stator are arranged in substantially the same plane, and the sliding surfaces of the fixed table and the movable table and the linear motor are separated by a predetermined distance. One-axis drive.
PCT/JP2003/012775 2002-10-04 2003-10-06 Surface shape measuring apparatus and single-shaft driver for use therein WO2004032313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003268773A AU2003268773A1 (en) 2002-10-04 2003-10-06 Surface shape measuring apparatus and single-shaft driver for use therein

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-292633 2002-10-04
JP2002-292634 2002-10-04
JP2002292634A JP2004125699A (en) 2002-10-04 2002-10-04 Surface form measuring device
JP2002-292632 2002-10-04
JP2002292632A JP2004129440A (en) 2002-10-04 2002-10-04 Single-shaft driver
JP2002292633A JP2004129441A (en) 2002-10-04 2002-10-04 Single-shaft driver

Publications (1)

Publication Number Publication Date
WO2004032313A1 true WO2004032313A1 (en) 2004-04-15

Family

ID=32074154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012775 WO2004032313A1 (en) 2002-10-04 2003-10-06 Surface shape measuring apparatus and single-shaft driver for use therein

Country Status (2)

Country Link
AU (1) AU2003268773A1 (en)
WO (1) WO2004032313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155899A (en) * 2011-03-07 2011-08-17 江苏通达动力科技股份有限公司 Method for detecting rhombus degree of cast-aluminum rotor of high-voltage motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644093Y2 (en) * 1986-01-10 1994-11-14 東芝機械株式会社 Stage drive
JPH0875433A (en) * 1994-09-05 1996-03-22 Tokyo Seimitsu Co Ltd Surface form measuring device
JPH11220866A (en) * 1998-01-30 1999-08-10 Minolta Co Ltd Shaft-type linear motor and its driving method
JP3063308B2 (en) * 1991-10-04 2000-07-12 キヤノン株式会社 Image heating device
JP2001190088A (en) * 1999-12-28 2001-07-10 Nikon Corp Motor, stage, aligner, device, driving method of motor and stage, exposure method, and manufacturing method of device
JP2002283174A (en) * 2001-03-26 2002-10-03 Fanuc Ltd Linear drive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644093Y2 (en) * 1986-01-10 1994-11-14 東芝機械株式会社 Stage drive
JP3063308B2 (en) * 1991-10-04 2000-07-12 キヤノン株式会社 Image heating device
JPH0875433A (en) * 1994-09-05 1996-03-22 Tokyo Seimitsu Co Ltd Surface form measuring device
JPH11220866A (en) * 1998-01-30 1999-08-10 Minolta Co Ltd Shaft-type linear motor and its driving method
JP2001190088A (en) * 1999-12-28 2001-07-10 Nikon Corp Motor, stage, aligner, device, driving method of motor and stage, exposure method, and manufacturing method of device
JP2002283174A (en) * 2001-03-26 2002-10-03 Fanuc Ltd Linear drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155899A (en) * 2011-03-07 2011-08-17 江苏通达动力科技股份有限公司 Method for detecting rhombus degree of cast-aluminum rotor of high-voltage motor

Also Published As

Publication number Publication date
AU2003268773A1 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
JP4113991B2 (en) Surface shape measuring device using single-axis drive
JP3075981B2 (en) Shape measuring device
CN100453970C (en) Method of error compensation in a coordinate measuring machine with an articulating probe head
JP5639934B2 (en) Surface texture measuring machine
EP2977715B1 (en) Probe holder for measuring system
US7456538B2 (en) Reaction balanced rotary drive mechanism
US7528561B2 (en) Linear drive apparatus
JP5052198B2 (en) Method for measuring vibration state at work stage of workpiece and / or tool
JPH08247756A (en) Measurement error compensating device of three-dimensional measuring machine
WO2004032313A1 (en) Surface shape measuring apparatus and single-shaft driver for use therein
JP6458334B1 (en) Linear drive mechanism and shape measuring machine
JP5172265B2 (en) DRIVE DEVICE, PROCESSING MACHINE AND MEASURING MACHINE USING THE SAME
JP2004125699A (en) Surface form measuring device
JP4909562B2 (en) Surface texture measuring device
JP3126259U (en) measuring device
JP2004129441A (en) Single-shaft driver
JP7223223B2 (en) linear drive mechanism
US20040189234A1 (en) Uniaxial drive unit
JP2002084781A (en) Linear motor inspection device
JP2020071031A (en) Linear motor drive device and surface shape measuring device
RU2171966C2 (en) Method of contact-free measurement of axial clearance in pivots of electrical measurement instruments and gear for its implementation
JP2004129440A (en) Single-shaft driver
JP2020071032A (en) Linear motor drive device and surface shape measuring device
JP2020106387A (en) Shape measuring device
JP2004340577A (en) Z-axis guiding device of surface form measuring apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase