WO2004031695A1 - Messsystem und verfahren zu dessen funktionsüberprüfung - Google Patents

Messsystem und verfahren zu dessen funktionsüberprüfung Download PDF

Info

Publication number
WO2004031695A1
WO2004031695A1 PCT/EP2003/009796 EP0309796W WO2004031695A1 WO 2004031695 A1 WO2004031695 A1 WO 2004031695A1 EP 0309796 W EP0309796 W EP 0309796W WO 2004031695 A1 WO2004031695 A1 WO 2004031695A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
measuring
measuring system
test
level
Prior art date
Application number
PCT/EP2003/009796
Other languages
English (en)
French (fr)
Inventor
Hermann Hofbauer
Erich Strasser
Original Assignee
Dr. Johannes Heidenhain Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr. Johannes Heidenhain Gmbh filed Critical Dr. Johannes Heidenhain Gmbh
Priority to EP03798889A priority Critical patent/EP1546659B1/de
Priority to US10/529,421 priority patent/US7295946B2/en
Priority to DE50307830T priority patent/DE50307830D1/de
Priority to JP2004540582A priority patent/JP4319986B2/ja
Publication of WO2004031695A1 publication Critical patent/WO2004031695A1/de
Priority to US11/825,238 priority patent/US7395178B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24457Failure detection
    • G01D5/24461Failure detection by redundancy or plausibility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses

Definitions

  • the invention relates to a measuring system, in particular a position measuring system, the function of which can be easily checked, according to claim 1. Furthermore, the invention comprises a method for checking the function according to claim 4.
  • position sensors In position measuring systems, position sensors generate electrical signals in a measuring device, which provide information about the position of objects moving relative to one another.
  • the invention relates in particular to measuring systems with measuring devices which generate both comparatively fine, incremental position information and relatively coarse position information. These two position data are particularly important for the control of electric drives for moving axes of a processing machine, such as a machine tool or a robot.
  • the fine incremental position information is used for exact position determination, for example of a tool of a machine tool.
  • the corresponding electric drives are often designed as rotary electric motors, for which rotary encoders are generally used to measure the angle of rotation.
  • the invention can also be used in connection with the operation of linear motors.
  • Encoders are known which enable an angle measurement on a rotatable shaft in incremental measuring steps, but also so-called absolute encoders, which are also referred to as code encoders. These allow an absolute angle determination within a single shaft revolution. If it is also necessary to record the number of shaft revolutions, so-called multiturn encoders are usually used. In such multitum rotary encoders, the absolute angular position is determined within one shaft revolution, ie between 0 ° and 360 °, via a code disk connected to the shaft, which is scanned, for example, with the aid of a suitable photoelectric scanning unit. A The absolute position of the driven shaft can therefore be measured over several revolutions.
  • processing machine is not limited to machine tools, but also encompasses machines for equipping electronic components or for processing semiconductor elements.
  • processing machine also includes automation machines, such as robots.
  • analog position signals were previously transmitted from the measuring device to the machine control, where they were then interpolated.
  • these interpolation processes are now increasingly being carried out in a suitable electronic circuit within the measuring device itself, so that the analog position signals are not passed on to the machine control. This reduces the wiring effort, which has a significant impact on the costs of a measuring system.
  • static bits are passed on from the measuring device to the machine control system via a parallel or serial interface.
  • static bits can, for example, be error bits which are normally at a certain level in normal operation and only draw attention to an error by changing the level in the (very rare) error case.
  • this type of transmission of error information is disadvantageous, particularly in the case of safety-relevant monitoring, because it cannot be ruled out that a defect always outputs a constant level of an error bit, i.e. this defect does not permit a level change even in the event of faults.
  • the invention is therefore based on the object of creating a measuring system which enables safe or reliable operation of processing machines, the outlay for signal transmission being comparatively low.
  • the invention creates a method for checking error information, by means of which the safety or the reliability of processing machines is significantly increased. This is solved by the method according to claim 4.
  • the invention is based on the idea that a malfunction can be triggered in the measuring device during test operation by activating a test potential, and it is then checked whether an error bit with a corresponding level arrives in the machine control system as a result of this malfunction.
  • monitoring electronics eg. B. a signal amplitude monitoring
  • Test potential can be understood as the voltage of a test potential source, or in the simplest case, the earth potential.
  • the circuit states for activating the test potential source are triggered, in particular automatically, by the machine control.
  • FIG. 1a shows a schematic representation of an embodiment of the measuring system according to the invention in normal operation
  • Figure 1b is a schematic representation of a training of the measuring system according to the invention.
  • Figure 2 shows a voltage curve with the test voltage
  • FIG. 3 is a schematic representation of another
  • FIG. 1 a shows a measuring system which comprises an encoder 1, a machine control 2 and a data transmission means 3.
  • the rotary encoder 1 has photo elements 1.1, 1.2, amplifiers 1.3, 1.4, evaluation electronics 1.5 and signal amplitude monitoring 1.6. There are branches with resistors 1.7, 1.8 on the lines between the amplifiers 1.3, 1.4 and the evaluation electronics 1.5. Above it are switching elements 1.9, 1.10 in the circuit of the rotary encoder 1, which are in electrical contact with a test potential source 1.11. The switching elements 1.9, 1.10 can assume two switching element states. In the first switching element state, the test potential source 1.11 is separated from the signal amplitude monitoring 1.6, in the second switching element state an electrical contact is made between the test potential source 1.11 and the signal amplitude monitoring 1.6.
  • the data transmission means 3 consists of an interface socket 3.1 on the rotary encoder 1, a multi-core cable 3.3 with plugs and an interface socket 3.1 on the machine control 2.
  • a wireless data transmission means 3 can also be provided.
  • Appropriate transmitter and receiver elements can then be arranged instead of the interface sockets 3.1, 3.2.
  • angular position of a wave to be measured light from an LED, not shown in the figures, is modulated and converted into photo currents by the photo elements 1.1, 1.2. These photocurrents are amplified with the aid of amplifiers 1.3, 1.4, so that analog position signals are then present which, according to FIG. 2, have a sinusoidal shape. These position signals are fed into the evaluation electronics 1.5, inter alia, to an interpolation process, so that the angular or position resolution of the measuring device 1 can be multiplied.
  • absolute digital position values are generated in the evaluation electronics 1.5, which are transferred as a data packet consisting of a large number of data bits, serially via the interfaces 3.1, 3.2 and the cable 3.3 to the machine control in a cycle time of 50 ⁇ s in the example shown.
  • the analog position signals are fed to a signal amplitude monitor 1.6.
  • this signal amplitude monitor 1.6 it is checked whether the amplitudes of the analog position signals lie within plausible limits. In normal operation, this criterion is met by the analog position signals, so that with the same data packet with which the absolute digital position values are also transmitted to the machine control 2, an error bit is transmitted, the level of which indicates the normal state or the undisturbed operation of the measuring system signaled.
  • This error bit is therefore usually at a constant level, in the The exemplary embodiment provided is transmitted every 50 ⁇ s from the measuring device 1 to the machine control 2 and is therefore referred to as a static error bit.
  • the level of the error bit is changed and the corresponding error bit is transmitted to the machine controller 2 with the next data packet.
  • the machine controller 2 triggers an emergency stop for the entire machine.
  • the level of the error bit cannot be changed, for example by a short circuit. Then, despite a fault, the same level of the error bit would always be passed on to the machine controller 2, so that the machine would not be switched off even in the event of a fault.
  • a test operation with a switching element state according to FIG. 1b is carried out for a short time.
  • the machine controller 2 now sends a signal to the measuring device.
  • the signal is transmitted in the form of a code word or mode command from the machine control 2 to the rotary encoder 1 via a data line of the cable 3.3.
  • the data line of the cable 3.3 is used both for the transmission for the mode commands of the machine control 2 to the rotary encoder 1 and for the transmission of data and signals, including the error bit, from the rotary encoder 1 to the machine control 2. It is thus how
  • the double arrow in FIGS. 1 a, 1 b and 3 also clarifies this in order to enable bidirectional data transmission between the machine control 2 and the rotary encoder 1.
  • the transmitted mode command is decoded in the rotary encoder 1, so that the test operation is triggered, which initially leads to the closing of the switching elements 1.9, 1.10.
  • the voltage U 0 of the test potential source 1.11 is now present at the signal amplitude monitoring 1.6.
  • the magnitude of the voltage U 0 results from the voltage profile of the corresponding analog position signal (corresponds to the axis of symmetry of the voltage profile of the analog position signal) according to FIG. 2.
  • the resistors 1.7, 1.8 a coupling of the voltage U 0 into the evaluation electronics 1.5 is largely avoided, as shown in FIG. 1b.
  • the signal amplitude monitoring 1.6 determines that the analog position signal is not of sufficient amplitude, and therefore outputs an error bit with a changed level.
  • the machine controller 2 is programmed so that during three cycle times, in this case 150 ⁇ s, after the voltage U 0 is switched on, no reaction (emergency stop) to the arrival of an error bit with a changed level is triggered.
  • a digital signal amplitude monitor 1.12 is additionally integrated in the evaluation electronics 1.5 according to FIG. This performs a plausibility check of the digitized position data in parallel to the signal amplitude monitoring 1.6.
  • an emergency stop is triggered as soon as an error bit with a changed level, regardless of whether it comes from the signal amplitude monitoring 1.6 or from the digital signal amplitude monitoring 1.12, reaches the machine control 2.
  • there is also an emergency stop when both the signal amplitude monitors 1.6 and the digital signal amplitude monitor 1.12 report an error due to an error bit with a changed level.
  • the machine controller 2 can be programmed so that it does not trigger an emergency stop with a changed level from the signal amplitude monitoring 1.6. Reach machine control 2 in test mode both from signal amplitude monitoring 1.6 and Also from the digital signal amplitude monitoring 1.12 error bits with a changed level, i.e. two error messages, an emergency stop is triggered. In this way it is possible that there is sufficient security even in test mode.
  • the invention is not restricted to measuring systems and methods in which position signals generated by photo elements 1.1, 1.2 are monitored. Rather, temperature signals, frequency-describing signals, or signals which provide information about the state of charge of batteries can also be taken into account with the invention.
  • the invention can be used with advantage in position measuring devices which, in addition to the position data, transmit additional measurement data from further sensors via a common interface or the common data transmission means 3 bidirectionally between the position measuring device, here the rotary encoder 1 and the machine control 2.
  • position measuring devices which, in addition to the position measurements in the rotary encoder 1, speed and / or acceleration measurements are often carried out, for example with a Ferraris sensor.
  • speed and / or acceleration measurements are often carried out, for example with a Ferraris sensor.
  • the functionality of the signal monitoring of these sensors can also be checked with the invention.
  • rotary encoder 1 in which temperature monitoring, for example for an electric motor, is integrated.
  • the functionality of the temperature signal monitoring can advantageously be checked with the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Small-Scale Networks (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Die Erfindung betrifft ein Messsystem, welches aus einem Messgerät (1), einem weiteren Gerät (2) und einem Datenübertragungsmittel (3) zum Übertragen von Datenbits zwischen dem Messgerät (1) und dem weiteren Gerät (2), besteht. Das Messgerät (1) weist dabei eine Signalüberwachungsschaltung (1.6) und ein Schaltelement (1.9, 1.10) auf. Das Schaltelement (1.9, 1.10) steht in elektrischem Kontakt zu einer Testpotenzialquelle (1.11), wobei in einem Schaltelementzustand die Testpotenzialquelle (1.11) in Kontakt mit der Signalüberwachungsschaltung (1.6) ist. Die Signalüberwachungsschaltung (1.6) ist darüber hinaus mit dem Datenübertragungsmittel (3) in Kontakt. Die Erfindung betrifft auch ein Verfahren bei dem in einem Prüfbetrieb durch Aufschalten eines Testpotenzials eine Funktionsüberprüfung des Messsystems vorgenommen wird.

Description

Messsystem und Verfahren zu dessen Funktionsüberprüfung
Die Erfindung betrifft ein Messsystem, insbesondere ein Positionsmesssystem, dessen Funktion einfach überprüft werden kann, gemäß dem Anspruch 1. Darüber hinaus umfasst die Erfindung ein Verfahren zur Funktionsüberprüfung gemäß dem Anspruch 4.
In Positionsmesssystemen erzeugen Positionssensoren in einem Messgerät elektrische Signale, welche Aufschluss über die Lage von relativ zueinander bewegten Objekten liefern. Die Erfindung betrifft insbesondere Messsysteme mit Messgeräten, welche sowohl vergleichsweise feine, inkrementale Lageinformationen als auch relativ grobe Positionsangaben erzeugen. Diese bei- den Positionsdaten sind insbesondere für die Steuerung von Elektroantrie- ben zu Bewegung von Achsen einer Bearbeitungsmaschine, wie etwa einer Werkzeugmaschine oder eines Roboters, von großer Bedeutung. In dieser Anwendung werden die feinen inkrementalen Lageinformationen zur exakten Positionsbestimmung, beispielsweise eines Werkzeuges einer Werk- zeugmaschine genutzt.
Häufig sind die entsprechenden Elektroantriebe als rotatorische Elektromotoren ausgestaltet, für die in der Regel Drehgeber zur Drehwinkelmessung eingesetzt werden. Die Erfindung kann aber auch im Zusammenhang mit dem Betrieb von Linearmotoren zum Einsatz kommen.
Es sind Drehgeber bekannt, die eine Winkelmessung an einer drehbaren Welle in inkrementalen Messschritten ermöglichen, aber auch sogenannte absolute Drehgeber, welche auch als Code-Drehgeber bezeichnet werden. Diese gestatten eine Absolutwinkel-Bestimmung innerhalb einer einzigen Wellenumdrehung. Ist zudem die Erfassung der Anzahl erfolgter Wellenum- drehungen nötig, so werden üblicherweise sogenannte Multiturn-Drehgeber eingesetzt. In derartigen Multitum-Drehgebem erfolgt die Bestimmung der absoluten Winkelposition innerhalb einer Wellenumdrehung, d.h. zwischen 0° und 360°, über eine mit der Welle verbundene Codescheibe, die etwa mit Hilfe einer geeigneten fotoelektrischen Abtasteinheit abgetastet wird. Eine Messung der Absolutposition der angetriebenen Welle ist somit auch über mehrere Umdrehungen hin möglich.
Die Signale dieser Messgeräte dienen oft zur Steuerung der Bearbeitungsmaschinen. Der Begriff Bearbeitungsmaschine ist nicht auf Werkzeugma- schinen eingegrenzt, sondern umfasst auch Maschinen zur Bestückung von Elektronikbauteilen oder zur Bearbeitung von Halbleiterelementen. Darüber hinaus fallen unter die Bezeichnung Bearbeitungsmaschine auch Automatisierungsmaschinen, wie etwa Roboter.
Bei herkömmlichen Positionsmesssystemen wurden bisher zusätzlich zu den digitalen Positionsdaten noch analoge Positionssignale vom Messgerät zur Maschinensteuerung übertragen, wo diese dann interpoliert wurden. Infolge der fortschreitenden Miniaturisierung der Elektronik, werden nun vermehrt diese Interpolationsprozesse in einer geeigneten elektronischen Schaltung innerhalb des Messgerätes selbst durchgeführt, so dass die analogen Posi- tionssignale nicht zur Maschinensteuerung weitergeleitet werden. Dies reduziert den Verkabelungsaufwand, der einen bedeutenden Einfluss auf die Kosten eines Messsystems hat.
Bei sicherheitsrelevanten Maschinenanwendungen wurde bisher allerdings in der Maschinensteuerung ein Vergleich der digitalen Positionsdaten mit den analogen Positionssignalen vorgenommen, um Fehler zu erkennen. Aufgrund der nunmehr in der Maschinensteuerung fehlenden analogen Positionssignale kann dieser Vergleich nicht mehr durchgeführt werden.
Aus diesem Grund werden nicht selten bei Messsystemen, bei denen aus den erläuterten Gründen keine analogen Positionssignale in die Maschinen- Steuerung gelangen, neben den aktuellen, oft absoluten, Positionsdaten sogenannte statische Bits über eine parallele oder serielle Schnittstelle vom Messgerät an die Maschinensteuerung weitergegeben. Diese statischen Bits können beispielsweise Fehlerbits sein, welche iιτr Normalbetrieb stets einen bestimmten Pegel aufweisen, und nur im (sehr seltenen) Fehlerfall durch die Änderung des Pegels auf einen Fehler aufmerksam machen. Es zeigte sich jedoch, dass gerade bei sicherheitsrelevanten Überwachungen diese Art der Übertragung von Fehlerinformationen nachteilig ist, weil nicht ausgeschlossen werden kann, dass durch einen Defekt stets ein konstanter Pegel eines Fehlerbits ausgegeben wird, also dieser Defekt auch bei Störungen eine Pegeländerung nicht zulässt.
In der DE 3829 815 C2 der Anmelderin wird eine Positionsmesseinrichtung gezeigt, bei der durch ein Aktivierungssignal eine Fehlerüberprüfung ausgelöst wird. Durch die dort beschriebene Erfindung kann aber die Funktionsfähigkeit der Überwachungselektronik selbst nicht überprüft werden. Darüber hinaus ist dort der Aufwand für die Signalübertragung vergleichsweise groß.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Messsystem zu schaffen, welches einen sicheren bzw. zuverlässigen Betrieb von Bearbeitungsmaschinen ermöglicht, wobei der Aufwand für die Signalübertragung ver- gleichsweise niedrig ist.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 gelöst.
Darüber hinaus wird durch die Erfindung ein Verfahren zur Überprüfung von Fehlerinformatiönen geschaffen, durch welches die Sicherheit bzw. die Zu- veriässigkeit von Bearbeitungsmaschinen signifikant erhöht wird. Dies wird durch das Verfahren gemäß dem Anspruch 4 gelöst.
Der Erfindung liegt der Gedanke zugrunde, dass im Messgerät während eines Prüfbetriebs gezielt eine Störung durch Aufschalten eines Testpotenzials auslösbar ist, und dann überprüft wird, ob durch diese Störung ein Feh- lerbit mit entsprechendem Pegel in der Maschinensteuerung eintrifft. Durch die Erfindung soll insbesondere die Funktionsfähigkeit einer Überwachungselektronik, z. B. einer Signalamplitudenüberwachung, überprüft werden. Unter Testpotenzial kann etwa die Spannung einer Testpotenzialquelle verstanden werden, oder im einfachsten Fall das Erdpotenzial. ln einer bevorzugten Ausgestaltung der Erfindung werden die Schaltungszu- stände zum Aufschalten der Testpotenzialquelle, insbesondere automatisch, von der Maschinensteuerung ausgelöst.
Vorteilhafte Ausbildungen der Erfindung entnimmt man den abhängigen An- Sprüchen.
Weitere Einzelheiten und Vorteile des erfindungsgemäßen Messsystems und des entsprechenden Verfahrens ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispieles anhand der beiliegenden Figuren.
Es zeigen die
Figur 1a eine schematische Darstellung einer Ausbildung des erfindungsgemäßen Messsystems im Normalbetrieb,
Figur 1b eine schematische Darstellung einer Ausbil- düng des erfindungsgemäßen Messsystem im
Prüfbetrieb,
Figur 2 einen Spannungsverlauf mit der Testspannung
Figur 3 eine schematische Darstellung einer weiteren
Ausbildung des erfindungsgemäßen Messsys- tems,
In der Figur 1a ist ein Messsystem gezeigt, welches einen Drehgeber 1, eine Maschinensteuerung 2 und ein Datenübertragungsmittel 3 umfasst.
Der Drehegeber 1 weist Fotoelemente 1.1, 1.2, Verstärker 1.3, 1.4, eine Auswerteelektronik 1.5 und eine Signalamplitudenüberwachung 1.6 auf. An den Leitungen zwischen den Verstärkern 1.3, 1.4 und der Auswerteelektronik 1.5 befinden sich Abzweigungen mit Widerständen 1.7, 1.8. Darüber befinden sich in der Schaltung des Drehgebers 1 Schaltelemente 1.9, 1.10, welche in elektrischem Kontakt zu einer Testpotenzialquelle 1.11 stehen. Die Schaltelemente 1.9, 1.10 können zwei Schaltelementzustände einnehmen. Im ersten Schaltelementzustand ist die Testpotenzialquelle 1.11 von der Signalamplitudenüberwachung 1.6 getrennt, im zweiten Schaltelementzustand ist ein elektrischer Kontakt zwischen der Testpotenzialquelle 1.11 und der Signalamplitudenüberwachung 1.6 hergestellt.
Das Datenübertragungsmittel 3 besteht aus einer Schnittstellenbuchse 3.1 am Drehgeber 1, einem mehradrigen Kabel 3.3 mit Steckern und einer Schnittstellenbuchse 3.1 an der Maschinensteuerung 2. Alternativ dazu kann auch ein drahtloses Datenübertragungsmittel 3 vorgesehen werden. Ent- sprechend können dann anstelle der Schnittstellenbuchsen 3.1, 3.2 geeignete Sender- und Empfängerelemente angeordnet werden.
Entsprechend der Winkellage einer zu messenden Welle, wird Licht einer in den Figuren nicht dargestellten LED moduliert und durch die Fotoelemente 1.1, 1.2 in Fotoströme umgewandelt. Diese Fotoströme werden mit Hilfe der Verstärker 1.3, 1.4 verstärkt, so dass dann analoge Positionssignale, welche gemäß der Figur 2 eine Sinusform aufweisen vorliegen. Diese Positionssignale werden in der Auswerteelektronik 1.5 unter anderem einem Interpolati- onsprozess zugeführt, so dass die Winkel- oder Positionsauflösung des Messgerätes 1 vervielfacht werden kann. Darüber hinaus werden in der Auswerteelektronik 1.5 absolute digitale Positionswerte generiert, die als Datenpaket, bestehend aus einer Vielzahl von Datenbits, seriell über die Schnittstellen 3.1, 3.2 und das Kabel 3.3 an die Maschinensteuerung in einer Taktzeit von 50 μs im gezeigten Beispiel übergeben werden.
Parallel dazu werden die analogen Positionssignale einer Signalamplituden- Überwachung 1.6 zugeführt. In dieser Signalamplitudenüberwachung 1.6 wird überprüft, ob die Amplituden der analogen Positionssignale innerhalb plausibler Grenzen liegen. Im Normalbetrieb wird dieses Kriterium von den analogen Positionssignalen erfüllt, so dass mit dem gleichen Datenpaket, mit dem auch die absoluten digitalen Positionswerte an die Maschinensteue- rung 2 übermittelt werden, ein Fehlerbit übermittelt wird, dessen Pegel den Normalzustand bzw. den ungestörten Betrieb des Messsystems signalisiert. Dieses Fehlerbit wird also üblicherweise mit gleichbleibenden Pegel, im vor- gestellten Ausführungsbeispiel alle 50 μs, vom Messgerät 1 zur Maschinensteuerung 2 übertragen und wird deshalb als statisches Fehlerbit bezeichnet.
Sobald die Amplituden der analogen Positionssignale außerhalb der plau- siblen Grenzen liegen, wird der Pegel des Fehlerbits verändert, und das entsprechende Fehlerbit an die Maschinesteuerung 2 mit dem nächsten Datenpaket übertragen. Als Reaktion wird von der Maschinensteuerung 2 ein Not- Aus für die gesamte Maschine ausgelöst.
Es kann aber auch der Fall eintreten, dass beispielsweise durch einen Kurz- schluss, der Pegel des Fehlerbits nicht veränderbar ist. Dann würde trotz einer Störung stets der gleiche Pegel des Fehlerbits an die Maschinensteuerung 2 weitergegeben, so dass auch bei einer Störung keine Abschaltung der Maschine erfolgen würde.
Um diese Gefahr zu vermeiden, wird kurzeitig ein Prüfbetrieb mit einem Schaltelementzustand, gemäß der Figur 1b, durchgeführt. Zu diesem Zweck wird nunmehr von der Maschinensteuerung 2 ein Signal an das Messgerät abgesetzt. Das Signal wird in Form eines Codewortes, oder Mode-Befehls von der Maschinensteuerung 2 über eine Datenleitung des Kabels 3.3 an den Drehgeber 1 übertragen. Die Datenleitung des Kabels 3.3 dient sowohl zur Übertragung für die Mode-Befehle der Maschinensteuerung 2 an den Drehgeber 1 als auch für die Übertragung von Daten und Signalen, einschließlich des Fehlerbits, aus dem Drehgeber 1 an die Maschinensteuerung 2. Es handelt sich also, wie es auch der Doppelpfeil in den Figuren 1a, 1b und 3 verdeutlicht, um eine bidirektionale Datenübertragung zwischen der Maschinensteuerung 2 und dem Drehgeber 1.
Der übertragene Mode-Befehl wird im Drehgeber 1 dekodiert, so dass der Prüfbetrieb ausgelöst wird, was zunächst zum Schließen der Schaltelemente 1.9, 1.10 führt. Dadurch liegt nun an der Signalamplitudenüberwachung 1.6 die Spannung U0 der Testpotenzialquelle 1.11 an. Die Höhe der Spannung U0 ergibt sich aus dem Spannungsverlauf des entsprechenden analogen Positionssignals (entspricht der Symmetrieachse des Spannungsverlaufes des analogen Positionssignals) gemäß der Figur 2. Durch die Widerstände 1.7, 1.8 wird, wie in der Figur 1b gezeigt, eine Einkopplung der Spannung U0 in die Auswerteelektronik 1.5 weitgehend vermieden. Die Signalamplitudenüberwachung 1.6 stellt also bei geschlossenem Schaltelement 1.9 fest, dass keine ausreichende Amplitude des analogen Positionssignals vorliegt, und gibt deshalb ein Fehlerbit mit einem geänderten Pegel aus. Die Maschinensteuerung 2 ist so programmiert, dass während drei Taktzeiten, in diesem Fall also 150 μs, nach dem Aufschalten der Spannung U0 keine Reaktion (Not-Aus) auf das Eintreffen eines Fehlerbits mit geändertem Pegel ausge- löst wird.
Sollte jedoch von der Maschinensteuerung 2 keine Pegeländerung des Fehlerbits festgestellt werden, obwohl die Spannung U0 aufgeschalten wurde, so wird eine entsprechende Fehlermeldung ausgegeben. Auf diese Weise ist insbesondere eine Überprüfung der Funktionsfähigkeit der Signal- amplitudenüberwachung 1.6 möglich.
In einer weiteren Ausgestaltung der Erfindung ist gemäß der Figur 3 in der Auswerteelektronik 1.5 zusätzlich eine digitale Signalamplitudenüberwachung 1.12 integriert. Diese führt parallel zur Signalamplitudenüberwachung 1.6 eine Plausibilitätskontrolle der digitalisierten Positionsdaten durch. Im Normalbetrieb wird ein Not-Aus ausgelöst, sobald ein Fehlerbit mit verändertem Pegel, unabhängig davon ob er von der Signalamplitudenüberwachung 1.6 oder von der digitalen Signalamplitudenüberwachung 1.12 herrührt, in die Maschinesteuerung 2 gelangt. Selbstverständlich erfolgt auch ein Not-Aus wenn sowohl die Signalamplitudenüberwachungen 1.6, als auch die digitale Signalamplitudenüberwachung 1.12 einen Fehler durch ein Fehlerbit mit verändertem Pegel meldet.
Wenn nun im Prüfbetrieb die Funktionsfähigkeit der Signalamplitudenüberwachung 1.6 durch Aufschalten des Testpotenzials U0 überprüft wird, kann die Maschinensteuerung 2 so programmiert sein, dass sie beim Eintreffen des Fehlerbits mit verändertem Pegel aus der Signalamplitudenüberwachung 1.6 keinen Not-Aus auslöst. Erreichen die Maschinensteuerung 2 aber im Prüfbetrieb sowohl von der Signalamplitudenüberwachung 1.6 als auch von der digitalen Signalamplitudenüberwachung 1.12 Fehlerbits mit verändertem Pegel, also quasi zwei Fehlermeldungen, so wird ein Not-Aus ausgelöst. Auf diese Weise ist es möglich, dass auch im Prüfbetrieb eine ausreichende Sicherheit gegeben ist.
Die Erfindung ist nicht auf Messsysteme und Verfahren eingeschränkt, bei denen von Fotoelementen 1.1, 1.2 generierte Positionssignale überwacht werden. Vielmehr können mit der Erfindung unter anderem auch Temperatursignale, frequenzbeschreibende Signale, oder Signale, welche Aufschluss über den Ladezustand von Batterien geben, berücksichtigt werden.
Insbesondere kann die Erfindung mit Vorteil bei Positionsmessgeräten eingesetzt werden, die neben den Positionsdaten zusätzliche Messdaten von weiteren Sensoren über eine gemeinsame Schnittstelle bzw. das gemeinsame Datenübertragungsmittel 3 bidirektional zwischen dem Positionsmessgerät, hier dem Drehgeber 1 und der Maschinensteuerung 2 übertragen. So werden beispielsweise häufig neben den Positionsmessungen im Drehgeber 1 auch Geschwindigkeits- und/oder Beschleunigungsmessungen, etwa mit einem Ferraris-Sensor durchgeführt. Auch die Funktionsfähigkeit der Signalüberwachung dieser Sensoren kann mit der Erfindung überprüft werden. Das gleiche gilt auch für Drehgeber 1, in die eine Temperaturüberwachung, etwa für einen Elektromotor integriert ist. Mit Vorteil kann auch hier die Funktionsfähigkeit der Temperatursignalüberwachung mit der Erfindung überprüft werden.

Claims

Patentansprüche
1. Messsystem, bestehend aus
- einem Messgerät (1),
- einem weiteren Gerät (2) und - einem Datenübertragungsmittel (3) zum Übertragen von Datenbits zwischen dem Messgerät (1 ) und dem weiteren Gerät (2), wobei das Messgerät (1)
- eine Signaluberwachungsschaltung (1.6)
- und ein Schaltelement (1.9, 1.10) aufweist, und das Schaltelement (1.9, 1.10) in elektrischem Kontakt zu einer Testpotenzialquelle (1.11) steht, und in einem Schaltelementzustand die Testpotenzialquelle (1.11) in Kontakt mit der Signaluberwachungsschaltung (1.6) ist, und die Signaluberwachungsschaltung (1.6) darüber hinaus mit dem Da- tenübertragungsmittel (3) in Kontakt ist.
2. Messsystem gemäß Anspruch 1 , wobei das Messgerät ein Positionsmessgerät, insbesondere ein Drehgeber oder ein Längenmessgerät ist.
3. Messsystem gemäß einem der vorhergehenden Ansprüche, wobei das weitere Gerät (2) eine Maschinensteuerung, insbesondere einer Bear- beitungsmaschine, ist.
4. Verfahren zur Funktionsüberprüfung eines Messsystems, wobei
- im Normalbetrieb des Messsystems zur Signalisierung eines ungestörten Betriebs eines Messgerätes (1) vom Messgerät (1) ein Bit mit gleichbleibendem Pegel über ein Datenübertra- gungsmittel (3) an ein weiteres Gerät (2) übertragen wird, und
- in einem Prüfbetrieb des Messsystems
- eine Signaluberwachungsschaltung (1.6) im Messgerät (1) mit einer Testpotenzialquelle (1.11) in elektrischen Kontakt gebracht wird, und - in dem weiteren Gerät (2) überprüft wird, ob der Prüfbetrieb eine Änderung des Pegels des Bits bezogen auf den Pegel des Normalbetriebs bewirkt.
5. Verfahren gemäß Anspruch 4, wobei im Normalbetrieb des Messsystems eine Änderung des Pegels des Bits eine Reaktion des weiteren Gerätes (2) auslöst, während im Prüfbetrieb die Änderung des Pegels des Bits keine Reaktion des weiteren Gerätes (2) auslöst.
6. Verfahren gemäß Anspruch 4 oder Anspruch 5, wobei die Testpotenzialquelle (1.11) mit der Signaluberwachungsschaltung (1.6) infolge eines Signals des weiteren Gerätes (2) in elektrischen Kontakt gebracht wird.
7. Verfahren gemäß Anspruch 4, Anspruch 5 oder Anspruch 6, wobei der Prüfbetrieb automatisch in definierten Zeitabständen zur Überprüfung der Funktionsfähigkeit des Messgerätes (1) ausgelöst wird.
8. Verfahren gemäß einem der Ansprüche 4 bis 7, wobei der Prüfbetrieb manuell zur Überprüfung der Funktionsfähigkeit des Messgerätes (1) ausgelöst wird.
9. Verfahren gemäß einem der Ansprüche 4 bis 8, wobei bei Erreichen bestimmter Maschinenzustände, wie etwa Werkzeug- oder Werkstückwechsel, der Prüfbetrieb automatisch zur Überprüfung der Funktionsfähigkeit des Messgerätes (1) ausgelöst wird.
PCT/EP2003/009796 2002-09-25 2003-09-04 Messsystem und verfahren zu dessen funktionsüberprüfung WO2004031695A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03798889A EP1546659B1 (de) 2002-09-25 2003-09-04 MESSSYSTEM UND VERFAHREN ZU DESSEN FUNKTIONS BERPRüFUNG
US10/529,421 US7295946B2 (en) 2002-09-25 2003-09-04 Measuring system and method for the functional monitoring thereof
DE50307830T DE50307830D1 (de) 2002-09-25 2003-09-04 MESSSYSTEM UND VERFAHREN ZU DESSEN FUNKTIONS BERPRüFUNG
JP2004540582A JP4319986B2 (ja) 2002-09-25 2003-09-04 測定システムとその動作状況の検査方法
US11/825,238 US7395178B2 (en) 2002-09-25 2007-07-05 Measuring system and method for the functional monitoring thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10244583A DE10244583A1 (de) 2002-09-25 2002-09-25 Messsystem und Verfahren zu dessen Funktionsüberprüfung
DE10244583.4 2002-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10529421 A-371-Of-International 2003-09-04
US11/825,238 Division US7395178B2 (en) 2002-09-25 2007-07-05 Measuring system and method for the functional monitoring thereof

Publications (1)

Publication Number Publication Date
WO2004031695A1 true WO2004031695A1 (de) 2004-04-15

Family

ID=31984046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/009796 WO2004031695A1 (de) 2002-09-25 2003-09-04 Messsystem und verfahren zu dessen funktionsüberprüfung

Country Status (8)

Country Link
US (2) US7295946B2 (de)
EP (1) EP1546659B1 (de)
JP (1) JP4319986B2 (de)
CN (1) CN1304821C (de)
AT (1) ATE368840T1 (de)
DE (2) DE10244583A1 (de)
ES (1) ES2289355T3 (de)
WO (1) WO2004031695A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087220A (ja) * 2005-09-22 2007-04-05 Toyo Electric Corp ロータリーエンコーダ用信号伝送装置
WO2007131820A1 (de) * 2006-05-17 2007-11-22 Siemens Aktiengesellschaft Betriebsverfahren für einen geber und eine mit dem geber kommunizierende steuereinrichtung
WO2010040601A2 (de) * 2008-10-09 2010-04-15 Dr. Johannes Heidenhain Gmbh Multiturn-drehgeber
WO2011095258A1 (de) * 2010-02-03 2011-08-11 Zf Friedrichshafen Ag Positionssteller

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006001925T5 (de) * 2005-07-19 2008-05-21 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Codierer, der eine Anomaliedetektionsvorrichtung und ein zugehöriges Steuersystem enthält
DE102006024630A1 (de) * 2006-05-26 2007-11-29 Zett-Mess-Technik Gmbh Höhenmeß- und Anreißgerät
DE102006041056C5 (de) * 2006-09-01 2015-02-19 Siemens Aktiengesellschaft Drehgeber zum Anschluss weiterer Sensoren sowie elektrische Maschine mit einem derartigen Drehgeber
JP4280278B2 (ja) * 2006-09-29 2009-06-17 ファナック株式会社 エンコーダ通信回路
DE102007020761B3 (de) * 2007-05-03 2008-11-20 Siemens Ag Messanordnung mit einer überwachten Messeinheit und einer Steuereinheit zur Steuerung einer Maschine
DE102007020760B4 (de) * 2007-05-03 2009-04-16 Siemens Ag Messanordnung mit einem Datenkanal zur Datenübertragung eines Messsignals und eines Kontrollsignals
DK2042837T3 (da) * 2007-09-26 2020-03-30 Kamstrup As Målerindretning til kommunikation på en kommunikationsledning
FI120992B (fi) * 2008-05-30 2010-05-31 Kone Corp Tahtikoneen liikkeen määritys
DE102011084784A1 (de) * 2011-10-19 2013-04-25 Robert Bosch Gmbh Verfahren zur Plausibilisierung von Sensorsignalen sowie Verfahren und Vorrichtung zur Ausgabe eines Auslösesignals
DE102012012870A1 (de) * 2012-06-28 2014-04-24 Hengstler Gmbh Mehrkanaliger Drehwinkelgeber
DE102013224375A1 (de) * 2013-11-28 2015-05-28 Dr. Johannes Heidenhain Gmbh Multiturn-Drehgeber
JP6862908B2 (ja) * 2017-02-27 2021-04-21 日産自動車株式会社 回転角度検出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631429A1 (de) * 1986-09-16 1988-03-24 Heidenhain Gmbh Dr Johannes Laengen- oder winkelmesssystem mit einer fehlererkennungseinrichtung
DE3829815A1 (de) * 1988-09-02 1990-03-22 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
EP0800059A1 (de) * 1996-04-06 1997-10-08 Dr. Johannes Heidenhain GmbH Verfahren zur Übertragung von Informationen in einer Positionsmesseinrichtung
EP0857949A1 (de) * 1997-02-07 1998-08-12 Eaton Corporation Diagnosesystem für einen Winkelgeber

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2878913B2 (ja) * 1992-09-14 1999-04-05 株式会社ミツトヨ 変位測定装置
DE19508834C2 (de) * 1995-03-11 1996-12-19 Heidenhain Gmbh Dr Johannes Positonsmeßsystem
JP3294737B2 (ja) 1994-10-13 2002-06-24 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 位置測定装置
DE19712622C5 (de) 1997-03-26 2010-07-15 Dr. Johannes Heidenhain Gmbh Anordnung und Verfahren zur automatischen Korrektur fehlerbehafteter Abtastsignale inkrementaler Positionsmeßeinrichtungen
US6480797B1 (en) * 1999-11-12 2002-11-12 Eaton Corporation Apparatus and method for calibration of transmission shifters
DE10050392A1 (de) * 2000-10-12 2002-04-18 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung und Verfahren zum Betrieb einer Positionsmesseinrichtung
US6754596B2 (en) * 2002-11-01 2004-06-22 Ascension Technology Corporation Method of measuring position and orientation with improved signal to noise ratio
DE10313518A1 (de) * 2003-03-25 2004-10-14 Hübner Elektromaschinen AG Positionsmessverfahren und Positionsmesssystem zur Signalperioden-Vervielfachung
US7412342B2 (en) * 2004-10-28 2008-08-12 Intel Corporation Low cost test for IC's or electrical modules using standard reconfigurable logic devices
US7801206B2 (en) * 2005-04-29 2010-09-21 Tektronix, Inc. Encoded serial data bit error detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631429A1 (de) * 1986-09-16 1988-03-24 Heidenhain Gmbh Dr Johannes Laengen- oder winkelmesssystem mit einer fehlererkennungseinrichtung
DE3829815A1 (de) * 1988-09-02 1990-03-22 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
EP0800059A1 (de) * 1996-04-06 1997-10-08 Dr. Johannes Heidenhain GmbH Verfahren zur Übertragung von Informationen in einer Positionsmesseinrichtung
EP0857949A1 (de) * 1997-02-07 1998-08-12 Eaton Corporation Diagnosesystem für einen Winkelgeber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087220A (ja) * 2005-09-22 2007-04-05 Toyo Electric Corp ロータリーエンコーダ用信号伝送装置
WO2007131820A1 (de) * 2006-05-17 2007-11-22 Siemens Aktiengesellschaft Betriebsverfahren für einen geber und eine mit dem geber kommunizierende steuereinrichtung
US8140299B2 (en) 2006-05-17 2012-03-20 Siemens Aktiengesellschaft Operating method for a sensor and a control facility communicating with the sensor
WO2010040601A2 (de) * 2008-10-09 2010-04-15 Dr. Johannes Heidenhain Gmbh Multiturn-drehgeber
WO2010040601A3 (de) * 2008-10-09 2010-06-10 Dr. Johannes Heidenhain Gmbh Multiturn-drehgeber
CN102165285A (zh) * 2008-10-09 2011-08-24 约翰尼斯海登海恩博士股份有限公司 多匝旋转编码器
US8825439B2 (en) 2008-10-09 2014-09-02 Dr. Johannes Heidenhain Gmbh Multiturn rotary encoder
WO2011095258A1 (de) * 2010-02-03 2011-08-11 Zf Friedrichshafen Ag Positionssteller

Also Published As

Publication number Publication date
DE10244583A1 (de) 2004-04-08
US7395178B2 (en) 2008-07-01
CN1623080A (zh) 2005-06-01
DE50307830D1 (de) 2007-09-13
US20070255523A1 (en) 2007-11-01
EP1546659B1 (de) 2007-08-01
US20050246123A1 (en) 2005-11-03
EP1546659A1 (de) 2005-06-29
CN1304821C (zh) 2007-03-14
ATE368840T1 (de) 2007-08-15
JP2006500688A (ja) 2006-01-05
US7295946B2 (en) 2007-11-13
ES2289355T3 (es) 2008-02-01
JP4319986B2 (ja) 2009-08-26

Similar Documents

Publication Publication Date Title
EP1546659B1 (de) MESSSYSTEM UND VERFAHREN ZU DESSEN FUNKTIONS BERPRüFUNG
EP2659233B1 (de) Sensorsystem zur umfeldüberwachung an einem mechanischen bauteil und verfahren zur ansteuerung und auswertung des sensorsystems
DE102006032974B4 (de) Elektrischer Antrieb mit einer elektrischen Maschine
EP1571425B1 (de) Magnetostriktiver Streckensensor
EP3455681B1 (de) Feldbusmodul und verfahren zum betreiben eines feldbussystems
EP2000866B1 (de) Überwachungseinrichtung zur Erkennung einer fehlerhaften Adressierung eines Slaves in einem Feldbus-System
DE102014202276A1 (de) Energieversorgung-Spannungsüberwachungsschaltung, Sensorschaltung für ein Fahrzeug und Servolenkungsvorrichtung
EP2109244A1 (de) Verfahren zur sicherheitsgerichteten Übertragung Sicherheitsschaltgerät und Kontrolleinheit
DE112006001925T5 (de) Codierer, der eine Anomaliedetektionsvorrichtung und ein zugehöriges Steuersystem enthält
EP2196292A2 (de) Industrieroboter und Verfahren zum Betreiben eines Industrieroboters
DE102013107904A1 (de) Messgerät mit einer umschaltbaren Mess- und Betriebselektronik zur Übermittlung eines Messsignals
EP2843447B1 (de) Lichtgitter
EP1091199B1 (de) Verfahren und eine Vorrichtung zur Funktionsüberprüfung eines Grenzschalters
EP3578295A1 (de) Positionsmesseinrichtung und verfahren zum betreiben einer positionsmesseinrichtung
EP1960852B1 (de) Überwachungseinrichtung für eine Antriebseinrichtung
EP1614990B1 (de) Positionsmesseinrichtung und Verfahren zur Positionsmessung
DE102011050007B4 (de) Stellungsregler
DE102007002414B4 (de) Vorrichtung zum Senden von Stellungsdetektorsignalen eines Mehrwellen-Motors
EP1058120B1 (de) Verfahren und Vorrichtung zur Drehzahl- und/oder Drehrichtungserfassung von Motoren
DE102008034318B4 (de) Anordnung zur Auswertung der Messwerte eines Messwertwandlers
EP3803360B1 (de) Überwachungsvorrichtung für ein messsystem von prozessgrössen insbesondere der flüssigkeitsanalyse
EP1890159B1 (de) Verfahren und Vorrichtung zum Erkennen einer Unterspannungsversorgung wenigstens eines Hallsensors
EP3421940B1 (de) Sensorschaltungsanordnung
EP3479468B1 (de) Verfahren und vorrichtung zum überprüfen einer mehrphasigen anschlussleitung und brückenschaltung für einen mehrphasigen elektromotor
EP2506437B1 (de) Wellenbrucherkennung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003798889

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038026503

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004540582

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10529421

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003798889

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003798889

Country of ref document: EP