WO2004031548A1 - Pm continuous regeneration device for diesel engine, and method of producing the same - Google Patents

Pm continuous regeneration device for diesel engine, and method of producing the same Download PDF

Info

Publication number
WO2004031548A1
WO2004031548A1 PCT/JP2003/012476 JP0312476W WO2004031548A1 WO 2004031548 A1 WO2004031548 A1 WO 2004031548A1 JP 0312476 W JP0312476 W JP 0312476W WO 2004031548 A1 WO2004031548 A1 WO 2004031548A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
exhaust
diesel engine
predetermined time
intake flow
Prior art date
Application number
PCT/JP2003/012476
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Yamamori
Original Assignee
Tokudaiji Institute Of Automotive Culture Inc.
Depro Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32063681&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004031548(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tokudaiji Institute Of Automotive Culture Inc., Depro Corporation filed Critical Tokudaiji Institute Of Automotive Culture Inc.
Priority to AU2003266704A priority Critical patent/AU2003266704A1/en
Publication of WO2004031548A1 publication Critical patent/WO2004031548A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0246Variable control of the exhaust valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0273Multiple actuations of a valve within an engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0222Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/12Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
    • F02M31/13Combustion air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method of activating a catalyst used for the purpose of reducing pollutants from a diesel engine (hereinafter referred to as “DE”). Relates to a PM oxidation method capable of effectively oxidizing (hereinafter referred to as “PM”).
  • DE diesel engine
  • PM PM oxidation method capable of effectively oxidizing
  • the yearly stricter DE emission limit values will be PM and hydrocarbon (HC) and carbon dioxide (CO) oxidized by carbon dioxide (CO 2 ) and water (H 2 0), NOx must be dissociated into nitrogen (N 2 ) and oxygen (0 2 ) to be rendered harmless and then discharged.
  • HC hydrocarbon
  • CO carbon dioxide
  • H 2 0 water
  • NOx must be dissociated into nitrogen (N 2 ) and oxygen (0 2 ) to be rendered harmless and then discharged.
  • the continuously regenerating DPF includes a catalyst supporting DPF, a combination of DOC and DPF, and a combination of DOC and catalyst supporting DPF.
  • Stage continuous regeneration type DPF to provide a DeNOX catalyst research and development has been advanced with regard selective catalytic reduction method also dissociates the last remaining NO X (S CR).
  • S CR last remaining NO X
  • the combination of the SCR and the CRT is known as Johnson Matthey's S-CRT.
  • the combustion of PM in the above continuous regeneration type DPF is said to be 350 ° C. or higher for the catalyst supported type DPF, and 250 ° C. to 450 ° C. for the DOC.
  • the exhaust temperature at the idle time of a normal DE is 70 ° C to 100 ° C, and at a traveling speed of 80 km / hr or less of a vehicle driven by DE, the DE load corresponding to the traveling resistance generated
  • the degree of exhaust does not reach 260 ° C (250 ° C + ⁇ ), and soot collected in the continuous regenerative DPF accumulates in the filter without being oxidized, and the filter is clogged. There was a problem that it became impossible to drive soon.
  • EGR exhaust gas recirculation
  • the means a) to d) are combined.
  • Japanese Patent Application No. 20 0 1-1 2 9 8 3 3 has an auxiliary catalyst with a small heat capacity installed close to the engine, and uses the main catalyst at high output of the engine and auxiliary catalyst at low output.
  • an auxiliary catalyst with a small heat capacity at engine start is used. By using the catalyst, it is possible to raise the temperature in a short time to activate the catalyst.
  • the PM oxidation method in diesel engine according to the present invention is a PM oxidation method in which exhaust gas discharged from a diesel engine is oxidized through PM (particulate matter) in exhaust gas through an exhaust gas purification device.
  • An intake throttle valve is provided in the intake passage of the diesel engine to increase the exhaust temperature of the exhaust gas flowing from the diesel engine into the exhaust gas purification apparatus, and the intake throttle valve is periodically opened. It is characterized by supplying fresh air to a diesel engine.
  • the exhaust valve is opened near the bottom dead center of the intake stroke of the DE to raise the exhaust temperature of the exhaust gas flowing from the DE (diesel engine) into the exhaust purification device.
  • the exhaust gas may be backflowed into the cylinder of the DE where the exhaust gas is depressurized to perform exhaust gas recirculation. That is, the above ESC can be used to raise the exhaust gas temperature.
  • the above-mentioned exhaust purification system includes DOC and DPF, DOC and DPF with catalyst. It can be any one continuous regeneration DPF selected from catalyst-loaded DPFs.
  • the exhaust gas purification apparatus is composed of mD PF (main exhaust gas purification apparatus) and t DPF (auxiliary exhaust gas purification apparatus), and the exhaust port of DE and mDP F are in the main exhaust pipe.
  • the auxiliary exhaust pipe is connected with both ends connected to the main exhaust pipe, and the auxiliary exhaust pipe is connected with ⁇ DP F.
  • the main exhaust is connected.
  • the switching valve provided on the pipe, the total flow rate of exhaust gas from the DE is sent to the ⁇ DPF through the auxiliary exhaust pipe, and switching is performed when the flow rate of exhaust gas increases at high load of DE.
  • the valve may be opened.
  • Japanese Patent Application Nos. 200 1-2 8 8 3 3 3 and Japanese Patent Application Nos. 200 2-0 9 14 1 4 4 4 the auxiliary catalyst with a small heat capacity is placed close to the engine in addition to the main catalyst. It is a method.
  • This mD PF (main DPF) can be any one of continuous regeneration DP F selected from DOC and DP F, DOC and catalyst supported DPF, and catalyst supported DPF, and ⁇ DP F (micro DP F) can be any one continuous regeneration DPF selected from DOC and DPF, DOC and catalyst-supported DP F, and catalyst-supported DP F.
  • DE can be multi-cylinder, and cylinder reduction operation can be performed in a multi-cylinder DE.
  • the PM oxidizer in the diesel engine oxidizes particulate matter (PM) contained in the exhaust of the diesel engine deposited in the diesel particulate filter.
  • a PM oxidizer of a diesel engine for purifying exhaust gas an intake flow control valve for adjusting an intake flow rate of the diesel engine, a first timer for measuring an elapse of a first predetermined time, and a second predetermined time A second timer for measuring the elapsed time, and a control finger 4 for increasing the intake flow rate to the intake flow control valve after the first predetermined time measured by the first timer has elapsed, and the second timer Measured second predetermined time
  • the control apparatus may further comprise: control means for outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve after a lapse of time.
  • the PM oxidizer of the diesel engine opens the exhaust pulp near the end of the intake stroke of the engine and returns the exhaust to the cylinder before combustion.
  • An exhaust cam an intake flow control valve for adjusting an intake flow rate of a diesel engine, a first timer for measuring an elapsed time of a first predetermined time, and a second timer for measuring an elapsed time of a second predetermined time
  • a control command to increase the intake flow rate is output to the intake flow control valve, and after the second predetermined time measured by the second timer has elapsed.
  • control means for outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve.
  • the PM oxidizer in the diesel engine according to the present invention is two types of DPFs that capture and treat particulate matter contained in exhaust gas of a diesel engine, and the diesel engine Switching valve that switches the flow path of the exhaust to the main DPF that processes a large amount of exhaust discharged when the load is high, and the micro DPF that processes a small amount of exhaust discharged when the diesel engine has a low load;
  • An intake flow control valve for adjusting the intake flow rate of the first timer, a first timer for measuring the lapse of a first predetermined time, and a second timer for measuring the lapse of a second predetermined time;
  • the control command for the switching valve and the intake flow control valve is output according to the amount and engine speed, and after the first predetermined time measured by the first timer has elapsed.
  • the PM oxidizer in the diesel engine according to the present invention comprises an EGR means for controlling the amount of exhaust recirculation when recirculating the exhaust to the intake side, and an intake flow rate of the diesel engine.
  • a first timer for measuring the lapse of a first predetermined time
  • a second timer for measuring the lapse of a second predetermined time
  • a first predetermined time measured by the first timer After a lapse of time, a control command to increase the intake flow rate is outputted to the intake flow rate control valve, and after the second predetermined time measured by the second timer elapses, the intake flow rate is returned to the original intake flow rate to the intake flow rate control valve.
  • control means for outputting a control command.
  • the PM oxidizer in the diesel engine comprises an intake flow control valve for adjusting an intake flow rate of the diesel engine, and a first for measuring an elapsed time of a first predetermined time.
  • a control command to increase the intake flow rate is output to the intake flow rate control valve, and the second timer measures the second
  • the control means is provided with a control means for outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve after a predetermined time has elapsed.
  • the PM oxidizer in the diesel engine opens the exhaust valve near the end of the intake stroke of the engine and returns the exhaust to the cylinder before combustion.
  • An exhaust cam an intake flow control valve for adjusting an intake flow rate of a diesel engine, a first timer for measuring an elapsed time of a first predetermined time, and a second timer for measuring an elapsed time of a second predetermined time
  • a differential pressure sensor for detecting a pressure difference before and after the DPF, and after a lapse of a first predetermined time measured by the first timer, the pressure difference detected by the differential pressure sensor being equal to or greater than a predetermined threshold.
  • a control command to increase the intake flow rate is output to the intake flow rate control valve, and the intake flow rate is output to the intake flow rate control valve after a second predetermined time measured by the second timer. Characterized by comprising a control means for outputting a control command for returning the amount.
  • the PM oxidation device measures the lapse of a third predetermined time in addition to a first timer that measures the lapse of a first predetermined time and a second timer that measures the lapse of a second predetermined time.
  • a fourth timer for measuring the lapse of a fourth predetermined time, and after the lapse of the first predetermined time measured by the first timer, the differential pressure sensor
  • the intake flow control valve Control means for outputting a control command for increasing the intake flow rate, and outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow control valve after the fourth predetermined time measured by the fourth timer.
  • Fig. 1 is a schematic view of a cylinder of DE used in the PM oxidation method of the present invention, wherein (a) shows the vicinity of the bottom dead center before the piston bottom dead center, and (b) shows the bottom death of the piston. It is a figure which shows the vicinity of the bottom dead center after point.
  • FIG. 2 shows an embodiment of the PM oxidation method of the present invention in which the auxiliary exhaust gas purification device ( ⁇ D P F) is used.
  • Fig. 3 is a schematic view of the auxiliary exhaust purification device (DPF).
  • FIG. 4 shows a graph of the test results in Test 1 and shows the case where "fresh air spike” was not performed.
  • FIG. 5 shows a graph of the test results in Test 2 and shows the case where “fresh air spike” is performed.
  • FIG. 6 shows a graph of the test results in Test 3 and shows the results of testing at various “new air spike” timings.
  • FIG. 7 is a diagram showing an overall configuration of an exhaust gas purification apparatus for a diesel engine according to the present invention.
  • FIG. 8 is a cross-sectional view of a combustion chamber portion of a diesel engine equipped with an internal EGR mechanism that returns the exhaust gas directly to the cylinder before combustion.
  • FIG. 9 is a diagram showing the relationship between the position of biston and the lift amount of the intake valve and the lift amount of the exhaust valve.
  • FIG. 10 is a diagram showing an I T P control map used for an exhaust gas purification apparatus of a diesel engine according to the present invention.
  • FIG. 11 is a signal processing block diagram of control means according to the present invention.
  • FIG. 12 is a timing chart showing the new air spike method according to the present invention.
  • FIG. 13 is a timing chart showing another fresh air spike method according to the present invention.
  • FIG. 14 is a timing chart showing another fresh air spike method according to the present invention.
  • FIG. 15 is a diagram showing the relationship between the calculated pressure difference A P c around D P F and the allowable pressure difference P t at that time.
  • FIG. 1 shows a schematic view of a cylinder of DE used in the PM oxidation method of the present invention.
  • (A) shows the vicinity of the bottom dead center before the piston bottom dead center
  • (b) shows the vicinity of the bottom dead center after the piston bottom dead center.
  • Both (a) and (b) are the intake strokes.
  • the intake air flow is throttled by the intake air throttle 24 in the intake air passage so that the fuel flow approaches 1 as much as possible, and the air intake valve 52 is opened to introduce air into the cylinder 58. Insert (indicated by A in the figure).
  • the intake throttle 24 can be throttle pulp
  • the intake valve 52 is an intake valve of a cylinder head
  • the exhaust valve 54 is an exhaust valve of the cylinder head.
  • FIG. 2 shows an example of the case of using ⁇ D P F in the method of oxidizing PM of the present invention.
  • the engine has four cylinders.
  • the air that has passed through the intake throttle 24 is fed into the cylinder 5 8 of the DE 10 and burns with the injected fuel in the cylinder 5 8 (not depicted in FIG. 2) in the DE 10.
  • the burned exhaust gas is sent to the DPF 30 through the exhaust manifold 14 (the exhaust port of the multi-cylinder engine) and through the auxiliary exhaust pipe 7 provided downstream of the exhaust manifold 14 (the exhaust port). . Details of ⁇ D P F 30 will be described later.
  • Exhaust gas purified by ⁇ D P F 30 passes through the auxiliary exhaust pipe 7, passes through the main exhaust pipe 9, and is further purified by mD P F 40 and discharged.
  • the switching valve 28 is closed so that all the exhaust gas is sent to the DP F 30. Since ⁇ D P F 30 has a smaller capacity than m D P F 40, the temperature rise is quick, and it has the effect of preventing the exhaust gas from being cooled while passing through the main exhaust pipe 9.
  • the switching valve 2 8 is opened and the exhaust gas passed through the exhaust manifold 1 4 passes through the auxiliary exhaust pipe 7 and the main exhaust pipe 9 and purified with both the ⁇ DPF 30 and the mD PF 40 It is done.
  • FIG. 3 is a schematic view of DPF 30.
  • mD PF 4 0 also has large capacity but basically the same structure. It is a continuous regenerative DPF in which DO C and catalyst-loaded DPF are arranged.
  • i DPF 30 can be made only of catalyst-supported DPF, and it is also possible to use DOC and DPF side by side.
  • the engine is 4 HF 1 (one elf), displacement 4, 3 3 4 cc, supercharged, maximum output 1 3 5Z 3 20 0 (NetPS / rpm), maximum torque 3 2, 0/1 7 0 0 (Net kg-m / rpm) N- row type machine injection, the one of the Heisei 1st year regulation was used.
  • the cylinder is constructed as shown in FIG.
  • the fuel is low sulfurized light oil (34 P pra), and the operation start conditions are: APP (Accelerator Pedal Position: 6% of accelerator opening), ITP (Intake Throttle Position: Opening ratio of intake throttle 24): 2
  • APP Accelerator Pedal Position: 6% of accelerator opening
  • ITP Intake Throttle Position: Opening ratio of intake throttle 24
  • the engine speed was 988 rpm with 3%. The test was started when the temperature of the exhaust manifold 14 reached 240 ° C.
  • a 4-cylinder DE exhaust purification system was used, equipped with ⁇ D P F 3 0 (auxiliary exhaust gas purification system) and mD P F 4 0 (main exhaust gas purification system) shown in Fig. 2.
  • ⁇ D P F 3 0 auxiliary exhaust gas purification system
  • mD P F 4 0 main exhaust gas purification system
  • Fig. 3 At D P F 30 is a combination of D 65 C with a diameter of 65 mm and a length of 30 mm, and medium-supported D P F with a diameter of 65 mm and a length of 100 mm. All exhaust gases flow into the auxiliary purification system.
  • the time to double the gas flow by setting APP to 12% exists for less than 5 minutes.
  • the capacity of mD P F 4 0 main exhaust gas purification device
  • the graph of the test result in Test 1 is shown in FIG.
  • the vertical axis represents the temperature (° C) of the exhaust gas flowing into / i DPF 3 0 and the exhaust pressure (k Pa), and the horizontal axis T / JP2003 / 012476
  • the thin, thick line is the DP F 30 inlet temperature, and the thin, thin line is the ⁇ D P F 30 inlet pressure.
  • the thick, thin line is the ⁇ D P F 30 outlet temperature, and the thick, thick line shows the pressure at the DP F 3 0 outlet.
  • D P F the auxiliary exhaust gas purification device
  • test 1 The system is the same as test 1, and test 1 and operation start with the exception that the fresh air spike (intake throttle 24 was opened fully) with an exhaust second stage cam lift set to 1.5 mm to 1 ⁇ O mm was performed.
  • the conditions are the same.
  • Test 2 the fresh air supply was tested in 4 types of 1 minute, 30 seconds, 15 seconds, and 5 seconds for the opening of the air intake throttle 24 for the air intake throttle 24 of 9 minutes and 30 seconds.
  • a graph of the test results in Test 2 is shown in FIG. During operation, I TP is changed as shown in the graph.
  • the vertical axis is the temperature (° C.) of the exhaust gas flowing into the ⁇ DPF 30 and the exhaust pressure (k Pa), and the horizontal axis is the elapsed time (seconds).
  • the "new air spike" of about 5 seconds makes ⁇ DP F 3 0 It is calculated that the interior can be filled with sufficient exhaust gas about 160 times residual oxygen.
  • I TP could be set to 2.3%, the inlet and outlet temperatures of DPF 30 are rising.
  • Test 3 When the time of “new air spike” and its timing were changed In Test 3, the operation start conditions are the same as in Test 2, and the time and timing of “new air spike” were changed. The system continues the same as Test 1, and continues the intake throttle 24 for 30 minutes and shortens the “new air spike” to 1 second, but the PM oxidation capacity of the DPF 30 does not decrease, and the difference It can be understood that the pressure does not show a large rise.
  • FIG. I T P A graph of the test results in Test 3 is shown in FIG. I T P is changed during operation as shown in the graph.
  • the weight of P M accumulated inside D P F 30 was 0.4 g.
  • the “new air spike” only opens the intake throttle 24 fully, and since there is no change in generated output torque, there is no adverse effect on driving. If you dare to point out, the inspiratory noise rises, but there is no driver who notices it with a spike of one second in a few minutes.
  • FIG. 7 is a view showing the overall configuration of an exhaust gas purification apparatus for a diesel engine according to the present invention.
  • the exhaust purification system of a diesel engine there are a diesel engine 10 for which exhaust gas is to be purified, an intake manifold 12 for introducing fresh air to each cylinder of the diesel engine, and
  • the control means 20 detects the amount of depression of the exhaust manifold 14 through which the exhaust gas discharged from each cylinder passes and the accelerator pedal for the driver to input information to control the output of the diesel engine.
  • An acceleration position sensor 16 that transmits to the engine, and a rotation sensor that reads the rotation angle of the crank shaft of the diesel engine and outputs a rotation angle signal (including the pulse of the engine rotation speed signal) to the control unit 20 And eight are provided.
  • the depression amount of the accelerator pedal is transmitted to a fuel injection device (not shown), which makes it possible to control the output of the engine.
  • an intake air temperature sensor 22 for measuring the intake temperature of the engine and an intake air throttle for adjusting the amount of fresh air taken into the cylinder by throttling the engine intake.
  • 2 4 intake flow rate adjustment Control valve (including the function of a joint valve) and exhaust throttle 26 that performs control to increase exhaust gas volume returned to the cylinder by increasing exhaust pressure by throttling the engine exhaust, and switching valve that switches the exhaust flow path 2 8 And are provided.
  • mD PF 40 is effective in capturing PM contained in a large amount of exhaust emitted when the diesel engine is heavily loaded. It is a large DPF that oxidizes in a controlled manner.
  • ⁇ D P F 30 is a small D P F that collects and effectively oxidizes soot contained in a small amount of exhaust gas emitted at low load of a diesel engine.
  • the switching valve 28 has a function of switching the flow path of exhaust gas between mD P F 40 and / i DP F 30.
  • the exhaust gas purification system of the diesel engine // Exhaust temperature sensor 32 for measuring the temperature of exhaust flowing into DP F 30; main exhaust pipe 34; An exhaust gas temperature sensor 42 for measuring the temperature of the exhaust gas flowing into the m DPF 40 is provided.
  • the switching valve 28 is provided between the exhaust gas manifold 14 of the diesel engine 10 and the mD PF 40, and the ⁇ DPF 30 is closer to the switching valve 28 than the mD PF 40. It is provided in the position.
  • the switching valve 28 may have a gap (mechanism) in the switching valve 28 for flowing a small amount of exhaust gas to the ⁇ DPF 30 side even when the exhaust gas flow path is switched to the mDPF 40 side.
  • a bypass channel (mechanism) may be provided so that exhaust gas always flows to 30.
  • an adiabst screen may be provided to control the flow rate of a small amount of exhaust gas flowing to the ⁇ D P F 30.
  • the intake flow control valve such as the intake throttle 24 is equipped with a valve actuator for throttling the intake, and the intake throttle valve is set to an arbitrary opening degree based on the control information output from the control means 20. It is possible.
  • the actuator is provided with a function of adjusting the intake flow rate of the diesel engine by setting the opening degree specified based on the control command output from the control means 20, and the electric power source is electricity.
  • a control valve for negative pressure air may be controlled based on a control command output from the control means 20, and a negative pressure type actuator using the negative pressure air as a power source may be used.
  • a control valve for negative pressure air may be controlled based on a control command output from the control means 20 to use a negative pressure type actuator with the negative pressure air as a power source.
  • the intake throttle 24 may be provided with an IT opening sensor for detecting the throttle opening of the intake, and an opening signal for feedback of the IT opening may be output to the control stage 20.
  • the present invention shows the installation position etc. of the intake throttle 24 in FIG. It is not limited as such, and may be provided independently in the branch to each cylinder in the intake manifold 12.
  • the flow rate of the exhaust gas to be recirculated is adjusted when the exhaust gas obtained from the exhaust manifold 14 is cooled and recirculated to the intake manifold 12 or the like.
  • An external EGR valve 44 is provided.
  • the external EGR valve 44 can appropriately set the opening / closing timing and the opening degree of the control means 20 based on parameters such as the accelerator depression amount and the engine speed.
  • the exhaust gas to be recirculated is acquired from the exhaust manifold 14.
  • the present invention is limited to the example of acquiring the exhaust gas from the exhaust manifold 14. Instead of getting the exhaust gas cleaned from the rear of m DPF 40 and actively reducing the temperature of the exhaust, return it to the front of intake manifold 12 or intake throttle 24 via the EGR cooler. Let's configure it.
  • the engine coolant may be used as the refrigerant of the EGR cooler, or the traveling wind of the vehicle may be used.
  • internal EGR with a special exhaust cam is used to recirculate high temperature exhaust directly to the combustion chamber before combustion, especially in low rotational speed and low load operating areas where exhaust temperature is particularly low.
  • a mechanism is used to supply high temperature exhaust gas to the cylinder before combustion.
  • the exhaust throttle 26 may be provided downstream of the i DP F 30 (exhaust throttle 26 B), or upstream (exhaust throttle 26 C) of the mD PF 40 or downstream (exhaust throttle 26 D) It is also good. Further, the exhaust gas passing through the ⁇ DPF 30 may be released directly to the atmosphere without passing through the mD PF 40.
  • a continuous regeneration type exhaust purification apparatus As a continuous regeneration type exhaust gas purification apparatus, a continuous regeneration type exhaust purification apparatus is constituted by the diesel oxidation catalyst D OC in the front stage and the PM collection filter 1 in the rear stage, or as a single PM collection filter with a catalyst support type. It is common to use.
  • an air pump 46 that outputs the positive pressure or negative pressure air by obtaining the rotational force of the diesel engine crankshaft, and the positive pressure or negative pressure air output by the air pump 46
  • An air tank 48 is provided to save
  • the negative pressure air stored here is generally used by the master pack to assist the braking force when braking a small vehicle.
  • the stored positive pressure air is used for generating braking force in medium and large vehicles, and for air panels in suspension systems.
  • the exhaust purification system of the diesel engine 10 also includes a differential pressure sensor 33 for measuring the pressure difference between the inlet and the outlet of the DPF 30 (a pressure difference around the DPF 30), and an mD PF
  • a differential pressure sensor 43 is provided to measure the pressure difference between the inlet and outlet of the 40 (pressure difference around the mD PF 40).
  • Ru The control means 20 reads a pressure difference around the ⁇ DPF 30 or m DPF 40 detected by the differential pressure sensor 33 or the differential pressure sensor 43 via an A-D converter or the like to obtain a predetermined pressure difference.
  • control command may be output to increase the intake flow rate.
  • the control means 20 is outputting a control command for increasing the intake flow rate to the intake flow control valve such as the intake throttle 24 etc.
  • the pressure difference around the ⁇ DPF 30 or m DPF 4 0 is predetermined If it is judged that the pressure difference is below the pressure difference of PM, the PM deposited on ⁇ DPF 30 or m DPF 40 burns and is converted to CO 2 and it is judged that the amount of PM deposited decreases.
  • the high temperature exhaust gas fed into the combustion chamber before combustion is adjusted by using the EGR pulp 44.
  • FIGS. High temperature exhaust gas may be supplied to the cylinder before combustion by an EGR mechanism (internal EGR system) using a special exhaust cam shown in 9.
  • FIG. 8 is a cross-sectional view of a combustion chamber portion of a diesel engine equipped with an EGR mechanism that directly returns exhaust gas to a cylinder before combustion.
  • a cylinder head 50 having an intake valve 52, an exhaust valve 54 and an injection nozzle 62 and forming a combustion chamber in the combustion chamber portion of the diesel engine, Biston 60 which receives combustion pressure and transmits torque to the crankshaft, and a cylinder 58 which is a sliding surface of piston 60 are provided.
  • the exhaust cam 56 which defines the exhaust timing and lift amount of the exhaust valve 54, is the first cam peak that opens the exhaust valve 54 to perform the normal exhaust process, and the exhaust near the end of the intake process. Two cam peaks are provided with a second cam peak which opens the valve 54 slightly.
  • the exhaust pulp 54 is opened in the normal post-combustion exhaust process, and the post-combustion exhaust gas is discharged to the exhaust manifold. Near the end, it is possible to provide an exhaust pulp 54 with a function to open an appropriate amount again and return the exhaust to the cylinder (or combustion chamber) before combustion.
  • FIG. 9 is a diagram showing the relationship between the position of piston 60 and the lift amount of intake valve 52 and the lift amount of exhaust valve 54.
  • the exhaust valve 54 starts to open before combustion of the piston 60 reaches the bottom dead center, and exhaust of combustion gas is started. As the crankshaft rotates approximately half turn and Bison 6 0 approaches the top dead center, it starts to open the intake valve near the end of the exhaust process 2003/012476
  • k specific heat ratio of gas (in the case of air 1.
  • Diesel engine compression ratio, 2. 2 0 8 Therefore, if the high temperature exhaust after combustion is mixed into the air before compression and the temperature of the gas before compression rises by 10 ° C., the temperature after compression rises by 2 2.8 ° C. In this case, combined with the fact that there is less excess air, the temperature of the exhaust after combustion also rises, which makes it easier to continuously regenerate PM (including soot, soot, etc.) collected in the DPF soot. . In addition, even when passing the exhaust gas through the current NOx reduction catalyst, control for maintaining the exhaust gas temperature in a wide range of operating conditions is essential to make the catalyst function effectively.
  • PM occurs in a large amount exceeding the DPF's renewable capacity, In addition, PM deposits and causes a rapid increase in exhaust pressure, which significantly deteriorates fuel efficiency. In addition, if the exhaust temperature rises due to fluctuations in operating conditions, a large amount of deposited PM may start combustion in a chain, leading to damage to the DPF.
  • the intake throttle 24 is provided, and in a region where the exhaust temperature tends to be low as in low load operation, the exhaust manifold 14 directly below
  • the exhaust manifold 14 By flowing the exhaust gas through the ⁇ DPF 3 0 provided in, it is possible to maintain the exhaust temperature in a wider load range and reduce the amount of soot emissions.
  • fuel efficiency and fuel output can be maintained by using m DPF 40 mainly to ensure exhaust efficiency similar to that of a conventional diesel engine. It is possible to
  • the intake throttle 2 4 Generally, there is a region where the exhaust gas temperature does not reach a predetermined temperature even if In this case, by throttling the intake throttle 24 and throttling the exhaust throttle 26, it is possible to increase the exhaust pressure and increase the amount of exhaust returned to the cylinder to secure the exhaust temperature. Also, in this way, it is possible to perform a process of continuously regenerating PM contained in exhaust gas in a wider operating area.
  • FIG. 10 is a view showing an I-TP control map used for an exhaust gas purification apparatus of a diesel engine according to the present invention.
  • the ITP map shown in the figure is stored in storage means such as a memory provided in the control means 20.
  • the control means 20 receives the accelerator pedal depression amount (APP) input from the accelerator position sensor 16 and
  • the I / P map recorded in the recording means is referred to based on the engine speed (Ne) input from the rotation sensor 18 and the intake throttle 24 (I TP open and exhaust throttle 2 6 And information to control the switching valve 28.
  • the recording means for recording the TP map may be provided inside the control means 20, or provided separately outside the control means 20 for control It may be communicably connected to the means 20.
  • the switching valve 28 and the like are controlled so that a small amount of exhaust gas also flows to the ⁇ DPF 30 instead of flowing all exhaust gas only to the mD PF 40. It may be configured. Even when using mD PF 40, it is possible to maintain the temperature of DP F 30 at a predetermined temperature by continuing to flow a small amount of exhaust gas to ⁇ DPF 30, reducing the load depending on the operating conditions. Even when switching the flow of exhaust, Immediately after switching, ⁇ DPF 3 0 can process PM continuously. Therefore, it is possible to continuously regenerate PM even when the driving situation changes suddenly.
  • the control means 20 becomes ITP. Referring to the control map, output control information to throttle the intake throttle 2 4 to 30%.
  • the intake throttle 24 throttles the intake path to 30% with a shirt or butterfly pulp or the like to reduce the flow rate of intake. Then, the amount of air taken into the cylinder of the intake process decreases, so the pressure in the cylinder ⁇ ⁇ ⁇ decreases near the end of the intake process, and the amount of exhaust gas flowing back into the cylinder increases. Then, since the temperature of the gas before compression rises, the temperature of the exhaust after compression and combustion rises, and it becomes possible to maintain the temperature of the exhaust flowing into m DPF 40 at a temperature that allows continuous regeneration of PM. .
  • control means 20 refers to the ITP control map, Outputs control information that throttles the intake throttle 24 to approximately 10%.
  • the intake throttle 24 squeezes the intake path to about 10% based on the control information acquired from the control means 20 to further reduce the flow rate of the intake. Then, the amount of air taken into the cylinder of the intake process further decreases, so the pressure in the cylinder further decreases near the end of the intake process, and the amount of exhaust gas flowing back into the cylinder increases. Then, since the temperature of the gas before compression rises, the temperature of the exhaust after compression and combustion rises, and it becomes possible to maintain the temperature of the exhaust flowing into m D P F 40 at a temperature at which PM can be continuously regenerated.
  • the control information of the throttle amount of the intake throttle 24 outputted by the control means 20 may be linearly interpolated between the ITP 100% line and the ITP 30% line shown in the figure. To make the curve capture interval more than a quadratic curve, Pad control may be performed.
  • control means 20 refers to the ITP control map.
  • the control valve 28 is controlled to output a control signal so as to flow the exhaust gas to the ⁇ DPF 30 and also to output control information for opening the intake throttle 24 to 100%.
  • the exhaust temperature decreases because the intake throttle 24 is opened, but the DPF passing through the exhaust is switched from the large m DPF 40 to the small m / z DPF 30 provided directly under the exhaust manifold. Since the exhaust resistance increases and the engine exhaust pressure becomes higher than in m DPF 40, the exhaust backflow increases and the exhaust temperature rises. The temperature of the exhaust flowing into ⁇ DPF 30 continuously regenerates the air It is possible temperature. In addition, since the flow rate of the exhaust gas is small in the operating state where the load is low, even small D PF can be sufficiently processed, and since the intake air is not throttled, it is possible to prevent the deterioration of the fuel efficiency and the reduction of the output.
  • the capacity (size) of ⁇ D P F 30 at the design stage it should be determined according to the exhaust temperature characteristics of the diesel engine that processes the exhaust and the exhaust flow.
  • the capacity (size) of m D P F 40, the length of the exhaust pipe up to each D P F, the mounting position of the switching valve 28, etc. are appropriately determined depending on the type of vehicle and engine configuration.
  • control means 20 refers to the ITP control map. Outputs control information to throttle the intake throttle 2 4 to approximately 5%. Further, control information for narrowing the exhaust throttle 26 to a predetermined opening degree is also output.
  • the intake throttle 24 throttles the intake path to about 5% based on the control information acquired from the control means 20 to reduce the flow rate of the intake.
  • the exhaust throttle 2 6 is also narrowed to a predetermined opening degree, the exhaust pressure in the exhaust manifold 14 is maintained or the exhaust pressure rises. Then, the amount of air taken into the cylinder of the intake process further decreases, so the amount of exhaust gas flowing back into the cylinder increases. Since the temperature of the gas before compression further rises, the temperature of the exhaust after compression and combustion rises, and it becomes possible to maintain the temperature of the exhaust flowing into the DPF 30 at a temperature that allows continuous regeneration of PM.
  • the throttle amount of the exhaust throttle 26 may also be controlled in accordance with the depression amount of the accelerator pedal or the engine speed.
  • the ITP control map shows that if the engine speed is lower than the predetermined speed and the accelerator pedal depression amount is smaller than the predetermined depression amount, the exhaust throttle 26 is narrowed.
  • the control means 20 inputs the depression amount of the accelerator pedal and the engine speed, refers to the ITP control map, and outputs the information for controlling the exhaust throttle 26. Good.
  • the IT control map has an area for performing control for throttling the intake as the engine speed decreases and the accelerator pedal depression amount decreases.
  • the ITP control map has an area for performing control to switch the exhaust gas from m DPF 4 0 to At DPF 3 0 as the engine speed decreases and the accelerator pedal depression amount decreases. ing.
  • the IT control map has an area for performing control for throttling the exhaust as the engine speed decreases and the accelerator pedal depression amount decreases.
  • the control means 20 also controls the intake throttle 24, the exhaust throttle 26 or the exhaust throttle 26 based on the exhaust temperature input from the exhaust temperature sensor 32 that measures the temperature of the exhaust flowing into the ⁇ DPF 30 or m DPF 40.
  • Information for controlling the switching valve 28 may be output to control the exhaust temperature within a predetermined temperature range.
  • the control means 20 may perform a process of shifting the ITP control map according to the exhaust temperature, or control information output to the intake throttle 24, the exhaust throttle 26 or the switching valve 28. Process to add or multiply predetermined coefficients. It may be connected.
  • control information for throttling the intake throttle 24 and control information for throttling the exhaust throttle 2 6 etc. are output when the exhaust temperature is low, but the switching valve according to the operating condition of the diesel engine 10 Control information for switching the 8 to the DPF 30 may be output.
  • an intake temperature sensor 22 for measuring the intake temperature of the diesel engine is provided in the intake manifold 12 or the like, and the control means 20 controls the intake temperature input from the intake temperature sensor 22 Information for controlling the intake throttle 24, the exhaust throttle 26, or the switching valve 28 may be output based on this.
  • the control means 20 may perform processing to shift the ITP control map according to the intake temperature, or to the control information output to the intake throttle 24, the exhaust throttle 26 or the switching valve 28. A process of adding or multiplying predetermined coefficients may be performed.
  • control means 20 inputs the exhaust gas temperature or the intake air temperature to control the exhaust gas temperature, so that even if the temperature of the exhaust gas changes due to the deviation from the stable use condition, the predetermined exhaust gas is produced. It is possible to maintain the temperature.
  • the control means 20 may also output an instruction to open the intake throttle 24 when an instruction to operate the exhaust brake is input from the exhaust brake switch. This is to prevent the exhaust pressure from rising even if the exhaust brake is operated while the intake is throttled, because the amount of air taken in is small, so that the effectiveness of the exhaust brake is prevented from decreasing.
  • FIG. 11 shows a signal processing block diagram of the control means 20 according to the present invention.
  • the information transmitting and receiving unit of the control means 20 includes an antenna 26 used as a wireless communication means, an operating condition of the diesel engine, a pressure difference before and after the DPF, a temperature in the DPF, etc.
  • transmitting and receiving means 265 for converting data into a predetermined format.
  • control means 20 has the operating condition and traffic information of the diesel engine.
  • a display unit 2 72 for displaying information such as images and characters, and a display interface 2 7 3 for outputting an image signal for display to the display unit 2 7 2 based on an instruction from the information processing unit.
  • the driver etc. input means such as operation button
  • An input interface 2 7 1 which reads various commands input via 2 0 7 and transmits them to an information processing means to be described later, or outputs a display command to notification means such as an LED based on an instruction from the information processing means Is provided.
  • an acceleration signal such as a voltage or current output from the accelerator position sensor 16, the intake air temperature sensor 22, the differential pressure sensor 33, or the difference is input to the control means 20, and information processing is performed.
  • An A-D converter 260 is provided which converts the digital data into readable digital data and outputs the digital data.
  • various information such as the signal of the operation status of the switching valve 28 is input to the control means 20 according to the number of revolutions of the diesel engine, and data which can be read by the information processing means 280 is obtained.
  • IZO 2 7 6 is provided to convert.
  • IZO 2 76 controls various control devices such as intake throttle 24, intake flow control valve 25, exhaust throttle 26 and switching valve 2 8 based on the command from information processing means 280. It is possible to output control commands to
  • control means 20 includes an information processing means (CPU) 280 for performing overall control of the control means 20, a processing program executed by the information processing means 280, various constants, and communication networks. Records various information such as address, attribute information, URL (Uniform Resource Locators), identification information specific to the driver or vehicle, gateway information, DNS (Domain Name System) etc. when connecting with other communication devices that exist.
  • a power render clock with a memory 2 8 1 consisting of a ROM, a RAM that will be a working area when the information processing means 2 280 executes processing, and a timer function that keeps time and measures time. Two hundred and ninety are provided.
  • the switching valve 28 obtains the control command output from the information processing means 280 through an interface such as I / O 2 76, etc., based on the control command output from the control means 20.
  • the exhaust path of the diesel engine can be switched to ⁇ DPF 30 or m DPF 40.
  • the intake flow control valve such as the intake throttle 24 etc. is a control means by acquiring the control command output from the information processing means 280 through the interface of IZ 0 2 7 6 etc. It is possible to adjust the intake flow rate of the diesel engine based on the control command output from the engine.
  • the force rendering clock 290 starts measurement of a predetermined time based on the instruction of the information processing means 280, and outputs the elapsed time of the measured predetermined time to the information processing means 280. It has a timer function. In addition, it is possible to set multiple timers simultaneously.
  • the differential pressure sensor 33, 34 detects a pressure difference around the ⁇ DPF 30 or m DPF 40, and the information of the detected pressure difference is converted into an A-D converter 2 60 etc. in the control means 20. It is possible to transmit to the information processing means 280 via the interface.
  • the control means 20 including the information processing means 280 has a pressure difference detected after the first predetermined time measured by the first timer has elapsed and detected by the pressure difference sensor 33 or the pressure difference sensor 43. If it is equal to or greater than the predetermined threshold value, a control command to increase the intake flow rate is output to the intake flow rate control valve such as the intake throttle 2 4 and the intake throttle is detected after the second predetermined time measured by the second timer It is possible to output a control command to restore the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve such as 2 4.
  • control means 20 including the information processing means 2 8 0 is used to control the intake flow control valve such as the intake throttle 24 after the first predetermined time measured by the first timer has elapsed.
  • a control command to increase the intake flow rate is output, and a control command to return the intake flow rate to the original intake flow rate is output to the intake flow control valve such as the intake throttle 24 after the second predetermined time measured by the second timer has elapsed.
  • the control means 20 including the information processing means 280 outputs a control command of the intake flow rate control valve such as the switching valve 28 and the intake throttle 24 according to the depression amount of the accelerator pedal and the engine speed.
  • a control command for increasing the intake flow rate is output to the intake flow control valve after the first predetermined time measured by the first timer has elapsed, and the second predetermined time measured by the second timer has elapsed It is possible to output a control command for returning the intake flow rate back to the original intake flow rate to the intake flow control valve later.
  • control means 20 including the information processing means 280 outputs a control command of the intake flow rate control valve such as the switching valve 28 and the intake throttle 24 according to the depression amount of the accelerator pedal and the engine speed.
  • the control command for increasing the intake flow rate is output to the intake flow control valve such as 4th, and the intake flow rate is originally set to the intake flow control valve such as the intake throttle 24 after the second predetermined time measured by the second timer. It is possible to output a control command to return to the intake flow rate.
  • control means 20 including the information processing means 280 is after a first predetermined time measured by the first timer and before a second predetermined time measured by the second timer. And a control command to increase the intake flow rate to the intake flow control valve such as the intake throttle 24 after the third predetermined time period measured by the third timer has elapsed, and the fourth timer measures the fourth It is possible to output a control command for returning the intake flow rate to the original intake flow rate to the intake flow control valve such as the intake throttle 24 after a predetermined time has elapsed.
  • control means 20 including the information processing means 280 is a pressure difference which is detected after the first predetermined time period measured by the first timer has elapsed and which is detected by the differential pressure sensor 33 or the differential pressure sensor 43. If is greater than or equal to a predetermined threshold, and Before the second predetermined time measured by the timer, the control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 after the third predetermined time measured by the third timer. It is possible to output a control command to return the intake flow rate to the original intake flow rate to the intake flow control valve such as the intake throttle 24 after the fourth predetermined time measured by the fourth timer has elapsed.
  • the combustion of PM in the continuous regeneration type D P F is said to be 350 ° C. or more for the catalyst-supporting D P F and 250 ° C. to 45 ° C. for the D O C.
  • the exhaust temperature during normal speed driving of a normal diesel engine is 70 ° C to 1000. Since it is C, it does not reach an exhaust temperature (about 260 ° C. or more) at which PM can be oxidized by DPF. Therefore, the internal EGR and external EGR are provided to raise the exhaust temperature at low load, and the intake throttle 24 is further narrowed to supply a large amount of exhaust into the cylinder before combustion, thereby reducing the exhaust temperature at low load. I try to raise it.
  • control is performed to open the intake throttle 24 for a short time based on a predetermined time interval or the like, and intermittently absorb more oxygen than the amount of oxygen necessary for combustion of the diesel engine.
  • the addition of the flow rate of fresh air supplied to the diesel engine intermittently as described above is referred to as fresh air spike in the present invention.
  • FIG. 12 is a timing chart showing a fresh air spike method according to the present invention.
  • the calendar clock 2 90 (including the function of the first timer 1 T 1) periodically (with a predetermined interval) based on the instruction of the information processing means 2 80.
  • the elapsed time of the first predetermined time (t 1) is measured.
  • Means 280 instructs calendar clock 2 90 (including the function of second timer T 2) to start the measurement of the second predetermined time (t 2), and the first timer measured by the first timer.
  • a control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 or the like.
  • the information processing means 280 outputs an instruction to reset the first predetermined time (t 1) to the force rendering clock 2 90 (first timer), and the measurement of the first predetermined time is newly started again. To indicate.
  • the calendar clock 290 (including the function of the second timer) measures the elapse of the second predetermined time (t 2) based on the instruction of the information processing means 280.
  • Information that the information processing means 2 80 has measured that the force rendering clock 29 0 (second timer) has elapsed the second predetermined time (t 2) is sent via the bus 2 9 9 (If the second predetermined time measured by the second timer has elapsed), the intake flow rate is adjusted to the original intake flow rate for the intake flow control valve such as the intake throttle 24 (before the start of the new air spike) Output a control command to restore the original intake flow rate of Then, the information processing means 280 outputs a command to reset the second predetermined time (t 2) to the calendar clock 2 90 (second timer), and the measurement of the next second predetermined time is performed. Prepare for.
  • the intake flow control valve such as the intake throttle 24 adjusts the intake flow rate of the diesel engine based on the control command acquired from the information processing means 280.
  • the intake air is throttled using an intake throttle 24 or the like to maintain the exhaust temperature at a low load at a predetermined temperature or higher.
  • the intake flow control valve such as the intake throttle 24 to open for a short time based on a predetermined time interval etc., it sucks more oxygen than the amount of oxygen necessary for the combustion of the diesel engine intermittently. Is possible. This makes it possible to accelerate the various reactions of oxidation of PM (carbon) deposited in DPF to convert PM into carbon dioxide and release it to the atmosphere.
  • the intake throttle 24 It is effective to squeeze the intake throttle 24 in order to suppress the decrease of the exhaust temperature and maintain the high temperature when the engine load is low.
  • the engine together with the intake throttle 24 throttling
  • the exhaust temperature can be maintained even higher by opening a small amount of the exhaust valve 54 at the timing near the bottom dead center of the intake stroke and by making the exhaust flow backflow and recirculate (also called internal EGR). At this time, although the temperature of the exhaust gas flowing into the DPF rises, the DPF is filled with oxygen further decreased by the recirculation.
  • the exhaust flow is processed into the mD PF 40, which processes a large amount of exhaust discharged at high load, and the ⁇ DPF 30, which processes a small amount of exhaust discharged at low load of the diesel engine.
  • the switching valve 28 is used to switch the path, as shown in Fig. 10
  • throttle the ITP to about 10%. Area exists. If this mD PF 40 is used while the intake flow rate is being restricted, PM may be deposited in the m DPF 40 as in the case where the DPF 30 is used.
  • the control means 20 After the first predetermined time measured by the first timer, a control command for expanding the intake flow rate is output to the intake flow control valve such as the intake throttle 24 and the second predetermined time measured by the second timer.
  • a control command for expanding the intake flow rate is output to the intake flow control valve such as the intake throttle 24 and the second predetermined time measured by the second timer.
  • the first predetermined time measured by the first timer is more preferably 9 minutes and 30 seconds to 30 minutes, but from the experience, even if it is 3 minutes to 30 minutes, the present invention It is possible to achieve the purpose.
  • the second predetermined time measured by the second timer is preferably 1 second to 60 seconds, but empirically, the present invention of the present invention can be performed even if it is 0.5 seconds to 120 seconds. It is possible to achieve the purpose.
  • FIG. 13 is a timing chart showing another fresh air spike method according to the present invention.
  • the first timer T l, the second timer ⁇ 2, the third timer 1 ⁇ 3, and the fourth timer ⁇ 4 states (H i or L ⁇ power and diesel engine
  • the figure shows how the intake flow rate of H changes according to the time of day.
  • the information processing means 280 starts the measurement of the third predetermined time with the start of the measurement of the second predetermined time as well as the function of the calendar clock 2 90 (the third timer T3). To include). Then, the information processing means 280 has acquired, via the bus 2 9 9, information that the calendar clock 2 9 0 (third timer) has measured the passage of the third predetermined time (t 3). In this case, the information processing means 2 8 0 instructs the calendar clock 2 9 0 (including the function of the fourth timer T 4) to start the measurement of the fourth predetermined time (t 4), and A control command to increase the intake flow rate is output to the intake flow rate adjustment valve such as the intake throttle 24 or the like. Then, the information processing means 280 outputs a command to reset the third predetermined time (t 3) to the calendar clock 2 90 (third timer), and a new third predetermined time is again set. Instruct to start measurement.
  • the information processing means 2 8 0 acquires the information that the calendar clock 2 9 0 (the fourth timer) has measured the lapse of the fourth predetermined time (t 4) through the bus 2 9 9 9
  • the intake flow rate is set to the original intake flow rate (the original intake flow rate before the start of the new air spike start) for the intake flow control valve such as the intake throttle 24 Output control command to return to).
  • the information processing means 280 outputs a command to reset the fourth predetermined time (t 4) to the calendar clock 2 90 (fourth timer), and the next measurement of the fourth predetermined time is performed. Prepare for.
  • the control means 20 receives the third predetermined time after the first predetermined time measured by the first timer and before the second predetermined time measured by the second timer. After the lapse of the third predetermined time which has been measured, a control command for increasing the intake flow rate is outputted to the intake flow control valve such as the intake throttle 24 etc. After the fourth predetermined time which the fourth timer measures, the intake throttle 2 4 Intake flow such as 12476
  • FIG. 14 is a timing chart showing another fresh air spike method according to the present invention.
  • control means 20 is after the lapse of a predetermined interval (after the first predetermined time t 1) and the differential pressure before and after the DPF may be a predetermined threshold (a constant number). If it is determined that the variable Pt is equal to or greater than the variable Pt, a control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 etc., and the diesel engine is intermittently An example is shown in which control is performed to increase the intake flow rate of the engine.
  • ⁇ shown in the figure is a value based on the pressure difference of the exhaust gas around D P F 30 or m D P F 40 detected by the differential pressure sensor 33 or the differential pressure sensor 43. Also, P shown in the same figure is a threshold for judging that PM has been deposited on / x D P F 30 or m D P F 40 based on ⁇ P.
  • the threshold P t is the opening degree of the intake flow control valve such as the intake throttle 24 or the engine speed, the displacement of the diesel engine, the volumetric efficiency of the diesel engine, the fuel supply amount, the exhaust density, the exhaust gas constant, It may be a variable that varies based on the pressure loss coefficient of the DPF, the effective cross section of the DPF, the exhaust temperature, etc., or may be set as a constant under predetermined conditions. Details of the method of calculating this Pt will be described later.
  • the information processing means 2 8 0 accesses the A-D converter 2 6 0 or IZO 2 7 6 at predetermined sampling time intervals, and differential pressure sensors 3 3, 4 3 etc. It is possible to monitor the pressure difference detected by the sensor and the condition of various sensors.
  • the calendar clock 2 90 (including the function of the first timer) measures the lapse of the first predetermined time (t 1) based on the instruction of the information processing means 2 8 0.
  • the control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 and the like.
  • the information processing means 280 outputs a command to reset the calendar clock 2 90 (the first timer) and the logical sum (T l AND P u) of the flags of T 1 and P u, and the new first The start of measurement of the predetermined time of
  • the calendar clock 29 0 (including the function of the second timer) measures the elapse of the second predetermined time (t 2) based on the instruction of the information processing means 280.
  • the information processing means 280 at time t 13 indicates that the calendar clock 2 90 (second timer) has measured the elapse of the second predetermined time (t 2) through the path 2 9 9 If acquired (after the second predetermined time measured by the second timer has elapsed), the intake flow rate is adjusted to the original intake flow rate for the intake flow control valve such as the intake throttle 24 etc. Control finger to return to the intake flow rate) Output the command. Then, the information processing means 280 outputs a command to reset the second predetermined time (t 2) to the calendar clock 290 (second timer), and for the next measurement of the second predetermined time. Prepare.
  • the control command for increasing the intake flow rate is output to the intake flow control valve such as the intake throttle 24.
  • the information processing means 280 outputs a command to reset the logical sum (T l AND P u) of the force rendering clock 2 90 (the first timer) and the flags of T 1 and P u, The start of measurement of the predetermined time of 1 is instructed.
  • the calendar clock 2 90 (including the function of the second timer) measures the elapse of the second predetermined time (t 2) based on the instruction of the information processing means 280. Ru.
  • the information processing means 2 80 has a bus 2 9 9 as information that the calendar clock 2 9 0 (second timer) has measured the lapse of the second predetermined time (t 2).
  • the intake flow rate is adjusted to the original intake flow rate to the intake flow control valve such as the intake throttle 24 (before the start of the new air spike)
  • the information processing means 280 outputs a command to reset the second predetermined time (t 2) to the calendar clock 2 90 (second timer), and measures the next second predetermined time.
  • the intake throttle 24 etc. is throttled to maintain the exhaust temperature at low load above the specified temperature
  • the control of opening the intake flow control valve such as the intake throttle 24 etc. for a short time is performed intermittently, only when PM deposits in the DPF. It is possible to inhale more oxygen than the amount of oxygen necessary for the combustion of the fuel, and promote various reactions of oxidation of PM (carbon) deposited in the DPF, convert PM into carbon dioxide and release it to the atmosphere. It will be possible.
  • the differential pressure of exhaust before and after DPF is monitored, and the amount of oxygen necessary for the combustion of diesel engine is increased only when the differential pressure of exhaust before and after DPF is equal to or greater than a predetermined threshold. Since oxygen was inhaled, frequent fresh air spikes were prohibited to prevent the exhaust temperature from decreasing due to an increase in fresh air intake, and keep the DPF reaction temperature low while suppressing the generation of NOx. It becomes possible to oxidize PM effectively.
  • the third timer as shown in FIG. 13 is used. It is possible to control the intake flow control valve using the timer and the fourth timer.
  • the exhaust flow path is switched between m DPF 40, which processes a large amount of exhaust gas discharged when the diesel engine is heavily loaded, and ⁇ DPF 30, which processes a small amount of exhaust gas discharged when the diesel engine is lightly loaded.
  • m DPF 40 which processes a large amount of exhaust gas discharged when the diesel engine is heavily loaded
  • ⁇ DPF 30 which processes a small amount of exhaust gas discharged when the diesel engine is lightly loaded.
  • timer for measuring a predetermined time an example of a timer that counts the count is shown, but the timer that can be used in the present invention is not limited to the timer of the above-mentioned type, Other electrical timers may be used, such as measuring the amount of charge reduction, or it is possible to achieve the object of the present invention by using a mechanical timer using a dashpot or the like.
  • Equation 2 The relationship between the pressure difference ⁇ P c between the exhaust gas and the exhaust gas flow rate before and after D P F is generally recognized as the relationship shown in the following (Equation 2).
  • the mass flow rate G of the gas can be schematically represented by the following (Equation 5).
  • the fuel injection flow rate can be neglected in the first place compared to the amount of intake air. If this can not be ignored, Gf can be added to G in (Eq. 5) with the fuel injection flow rate as G f (kg / s).
  • the above 7 v and / 0 in are values calculated based on the temperature and pressure of the in-take mar-hold.
  • the engine operating condition at that time can be obtained.
  • the calculated pressure difference ⁇ Pc before and after DPF can be calculated. Then, by comparing the threshold value Pt based on the calculated value ⁇ Pc of the pressure difference with the pressure difference ⁇ P before and after the actually detected DPF, the condition for performing the fresh air spike (limit of PM deposition) is determined. It becomes possible to judge.
  • FIG. 15 is a diagram showing the relationship between the pressure difference calculated value ⁇ Pc before and after D P F and the allowable pressure difference P t at that time.
  • the calculated value of the pressure difference before and after the initial DPF of the exhaust gas purification system It is indicated by a solid line, and the allowable pressure differential pressure P t at the limit of PM deposition is indicated by a broken line.
  • PM deposits inside the DPF, and if it deposits further, rapid combustion occurs at the time of regeneration, and the pressure difference threshold at the limit that may cause PM carrier to burn out. It becomes possible to set as an allowable pressure difference Pt.
  • ⁇ P 0 a value of AP c calculated by substituting a predetermined exhaust gas density p ex, an exhaust gas mass flow rate G and a constant into equation 8) in a predetermined operating condition of a diesel engine Pressure difference before and after DPF actually detected
  • ⁇ P is smaller than the allowable pressure difference Pt, it is determined that the normal operation range is established, and the control of the fresh air spike is not performed and the normal operation is maintained. If the detected pressure difference ⁇ ⁇ before and after D P F is a pressure difference greater than or equal to the allowable pressure difference P t, control of the fresh air spike is performed on the condition that the first predetermined time has elapsed.
  • the conditions for determining whether or not to perform the fresh air spike are as follows.
  • the threshold value of the allowable pressure difference P t can be determined according to the square of the mass flow rate G of the exhaust of the diesel engine. Also, the threshold value of the allowable pressure difference Pt can be determined according to the value obtained by dividing the square of the mass flow rate G of the exhaust of the diesel engine by the density of the exhaust; 0 ex.
  • Industrial Applicability relates to a PM oxidizer in a diesel engine, which purifies exhaust gas by oxidizing particulate matter (PM) contained in exhaust gas of diesel engine deposited in a diesel particulate filter.
  • An intake flow control valve for adjusting the intake flow rate of the diesel engine; A first timer for measuring the passage of a first predetermined time, a second timer for measuring the passage of a second predetermined time, and the intake flow rate after the first predetermined time measured by the first timer has elapsed A control command to increase the intake flow rate is output to the control valve, and a control command to return the intake flow rate to the original intake flow rate is output to the intake flow control valve after the second predetermined time measured by the second timer has elapsed. And control means for
  • the new flow rate is intermittently increased to temporarily supply an excess amount of oxygen and nitrogen oxides to the DPF, it is possible to suppress the generation of NOx and maintain the reaction temperature of the DPF. It is possible to oxidize PM. And, it is possible to prevent the problem that PM accumulates excessively in DPF.
  • the first timer can be used even in the case where the existing diesel engine exhaust gas purification system is used and there is a defect that PM is gradually accumulated in the DPF.
  • the control command for increasing the intake flow rate is output to the intake flow rate control valve after the first predetermined time measured by the timer, and the intake flow rate is originally output to the intake flow rate control valve after the second predetermined time measured by the second timer.
  • an exhaust cam having an exhaust valve timing for returning exhaust to a cylinder before combustion, an intake flow control valve for adjusting an intake flow rate, a first timer, And a control means for outputting a control command to the intake flow control valve after an elapse of a predetermined time measured by each of the first timer and the second timer.
  • an EGR means for controlling an exhaust gas recirculation amount, an intake flow rate control valve for adjusting an intake flow rate, a first timer, a second timer, and After the predetermined time measured by each of the second timer and the second timer has elapsed. And control means for outputting a control command.
  • the flow rate of fresh air is momentarily increased to temporarily Since excess oxygen and nitrogen oxides are supplied to the DPF, PM can be effectively oxidized while suppressing the generation of NOx and maintaining the reaction temperature of the DPF. And, it becomes possible to prevent the problem that PM accumulates excessively in DPF.
  • the present invention relates to a PM oxidation apparatus in a diesel engine, comprising: a switching valve that switches an exhaust flow path between a main DPF and a micro DPF; an intake flow control valve that controls an intake flow; a first timer; The timer, The control valve of the switching valve and the intake flow control valve is output according to the depression amount of the accelerator pedal and the engine speed, and the above-mentioned after the predetermined time measured by each of the first timer and the second timer elapses. And a control means for outputting a control command to the intake flow control valve.
  • the flow rate of fresh air is intermittently increased to temporarily increase the ⁇ DPF or Since oxygen and nitrogen oxides are supplied in excess to the m DPF, it is possible to effectively oxidize PM while suppressing the generation of NO x and maintaining the reaction temperature of the DPF. And, it becomes possible to prevent the problem of excessive accumulation of PM in / z DP F or m DP F.
  • an intake flow control valve for adjusting an intake flow rate, a first timer, a second timer, and a differential pressure sensor for detecting a pressure difference before and after the DPF.
  • the intake flow rate is adjusted to the intake flow rate adjustment valve.
  • the differential pressure of exhaust before and after DPF is monitored, and the amount of oxygen necessary for the combustion of diesel engine is exceeded only when the differential pressure of exhaust before and after DPF is equal to or greater than a predetermined threshold. Since a large amount of oxygen was inhaled, frequent fresh air spikes were prohibited to prevent the exhaust temperature from decreasing due to an increase in the amount of fresh air intake, and maintain the reaction temperature of the DPF while suppressing the generation of NOx. It is possible to effectively oxidize PM.

Abstract

In conventional automobile diesel engines, efforts have been made to reduce harmful substances contained in exhaust gases mainly by improving combustion in the engine itself; however, it has been very difficult to satisfy the exhaust restrictions in force on and after 2005. Accordingly, the invention provides a PM oxidation method for oxidizing particulate matter contained in exhaust gases discharged from a diesel engine (10) by passing the exhaust gases through an exhaust cleaning device, the method being characterized by providing an intake throttle (24) in the intake passageway of the diesel engine (10) to increase the temperature of the exhaust gases flowing from the diesel engine (10) into the exhaust cleaning device, and periodically opening the intake throttle (24) to supply fresh gas to the diesel engine (10). According to the invention, it becomes possible to significantly increase the NO and residual oxygen in the exhaust gases flowing into a μDPF (30) or the like and to effectively oxidize the particulate matter during a low load on the diesel engine and also during idling.

Description

明細書  Specification
ディーゼルエンジンにおける PM連続再生装置並びにその方法 技術分野 PM continuous regeneration apparatus for diesel engine and method thereof
本発明は、 ディーゼルエンジン (以下 「DE」) からの汚染物質低減 の目的で使用する触媒の活性化方法に関し、 アイ ドリング時等のェンジ ンの低負荷時においてもパティキュレート 'マター (本発明においては 「PM」 と称するものとする) を効果的に酸化することができる PM酸 化方法に関する。 背景技術  The present invention relates to a method of activating a catalyst used for the purpose of reducing pollutants from a diesel engine (hereinafter referred to as “DE”). Relates to a PM oxidation method capable of effectively oxidizing (hereinafter referred to as “PM”). Background art
年を追って厳しくなる DEの排出物規制値は 2 0 0 5年以降ではガ ソリンエンジンと同様に触媒によって PM、 炭化水素 (HC) 及ぴー酸 化炭素 (CO) を酸化して二酸化炭素 (C02) 及び水 (H20) とし、 NOxを解離して窒素 (N2) と酸素 (02) とし無害化してから排出せ ざるを得ない。 The yearly stricter DE emission limit values will be PM and hydrocarbon (HC) and carbon dioxide (CO) oxidized by carbon dioxide (CO 2 ) and water (H 2 0), NOx must be dissociated into nitrogen (N 2 ) and oxygen (0 2 ) to be rendered harmless and then discharged.
従来自動車用 DEは、主にエンジン自体の燃焼改善によって排気中に 含まれる有害物質の低減に努められてきたが、 200 5年以降の排気規 制値に適合させることは非常に困難であると考えられている。  In the past, DE for vehicles has been trying to reduce harmful substances contained in the exhaust gas mainly by combustion improvement of the engine itself, but it is very difficult to meet the emission control values after 2005. It is considered.
そこで最近は、 前段のディーゼル用酸化触媒 (本発明においては 「D oc」) と後段のディーゼル ·パティキュレート 'フィルター (本発明 においては 「D P F」) とによって構成される連続再生式 D P F (Continuously Regenerative Diesel Particulate Filter) に関する 研究開発が進められている。前段の DO Cで HCは C02及び H20に変 ィ匕し、 COは C02に変化する。 さらに NO X中の一酸化窒素 (NO) を二酸化窒素 (N02) に変化させる。 後段の D P Fでは前段で生成さ れた N02で PM中の煤成分を燃焼させ、 C02として排出する。 この連 続再生式 D P Fは Johnson Matthey社によって発明された C R Tとして 知られている。 又、 フィルター機能のみを有する構造体 D P F上に各種 の酸化触媒を担持させた一体型の DP F (触媒担持型 DP F) の研究開 発も進められている。本発明ではフィルター機能のみを有する D P Fを 単に DPFとし、触媒を担持した DP Fを触媒担持型 DP Fとする。又、 本発明において連続再生式 D P Fとは、 触媒担持型 DP F、 DOCと D P Fとの組合せ、 DOCと触媒担持型 D P Fとの組合せを含むものとす る。 Therefore, recently, a continuously regenerating DPF (Continuously Regenerative) composed of a diesel oxidation catalyst for the former stage ("D oc" in the present invention) and a diesel particulate 'filter (for the present invention "DPF") Research and development on the Diesel Particulate Filter is underway. In front of the DO C HC is variable I spoon into C0 2 and H 2 0, CO changes to C0 2. Furthermore, nitrogen monoxide (NO) in NO x is changed to nitrogen dioxide (N 0 2 ). In N0 2 generated in the previous stage in a subsequent stage of the DPF by burning the soot component in PM, discharged as C0 2. This continuously regenerating DPF is known as a CRT invented by Johnson Matthey. In addition, various structures on the DPF, which have only a filter function Research and development of integrated DPF (catalyst-supported DPF) with supported oxidation catalyst is also in progress. In the present invention, the DPF having only the filter function is simply referred to as the DPF, and the DPF supporting the catalyst is referred to as the DPF supporting the catalyst. Further, in the present invention, the continuously regenerating DPF includes a catalyst supporting DPF, a combination of DOC and DPF, and a combination of DOC and catalyst supporting DPF.
連続再生式 D P Fの後段に DeNOX触媒を設け、 最後に残った NO Xについても解離する選択触媒還元方法 (S CR) に関しても研究開発 が進められている。 この S C Rと上記 C R Tとを組合せた装置は Johnson Matthey社の S CRTとして知られている。 Stage continuous regeneration type DPF to provide a DeNOX catalyst, research and development has been advanced with regard selective catalytic reduction method also dissociates the last remaining NO X (S CR). The combination of the SCR and the CRT is known as Johnson Matthey's S-CRT.
上記の連続再生式 D P Fにおける P Mの燃焼は、触媒担持型 D P Fで は 3 5 0°C以上、 DOCでは 25 0°C〜4 5 0°Cと云われている。 通常 の D Eのアイ ドル時における排気温度は 70°C〜 1 00°Cであり、 D E によって駆動される車両の 80 km/hr以下の走行速度においては、発生 する走行抵抗に対応する DEの負荷が低く排気度は 260 °C ( 2 50 °C + α) に達せず、 連続再生式 D P Fに捕集された ΡΜは酸化されること なくフィルター内に蓄積してフィルターが目詰まりしてしまい、やがて 運転不可能になるという問題があった。  The combustion of PM in the above continuous regeneration type DPF is said to be 350 ° C. or higher for the catalyst supported type DPF, and 250 ° C. to 450 ° C. for the DOC. The exhaust temperature at the idle time of a normal DE is 70 ° C to 100 ° C, and at a traveling speed of 80 km / hr or less of a vehicle driven by DE, the DE load corresponding to the traveling resistance generated The degree of exhaust does not reach 260 ° C (250 ° C + α), and soot collected in the continuous regenerative DPF accumulates in the filter without being oxidized, and the filter is clogged. There was a problem that it became impossible to drive soon.
アイ ドル時及び低負荷時に連続再生式 D P F入口の排気温度を 2 6 0°C以上にして上記の問題を解決するために特許文献 1では、通常の D Eのアイ ドル時の排気温度が低い理由は空気過剰率 (以下 「え」) が 1 0〜 1 2と高いことが原因であることに着目し、 DEのシリンダ内空気 量を減少させ、 λを 1に近づけるための手段を設けている。具体的には、 a) 吸気絞り  In order to solve the above problems by setting the exhaust gas temperature at the inlet of the continuous regeneration type DPF at idle time and low load to more than 260 ° C., in Patent Document 1, the reason is that the exhaust temperature at normal idle idle is low. Is focused on the fact that the excess air ratio (hereinafter referred to as “E”) is as high as 10 to 12 and there is a means to reduce the amount of air in the cylinder of the DE and bring λ closer to 1 . Specifically: a) Intake throttle
ガソリンエンジンと同様に吸気系にスロッ トルバルブを設置して吸 入空気量を絞ることにより可能な限り λを 1に近づけ排気温度を高め る。  As with a gasoline engine, install a throttle valve in the intake system and throttle the intake air amount to make λ as close as possible to 1 and raise the exhaust temperature.
b) 排気 2段カム (以下 「E S C」)  b) Exhaust two-stage cam (hereinafter "ESC")
吸気を絞りつつ吸気行程を行なわせて上記の吸気絞りの効果を得ると ともに吸気行程の下死点付近において E S Cにより排気バルブを開弁 させ、 大気圧である高温の排気が減圧されているシリンダ内に逆流して 温度の高くなった混合ガスを断熱圧縮して排ガス温度を高める。 When the intake stroke is performed while squeezing the intake to obtain the effect of the above-described intake throttle The exhaust valve is opened by the ESC near the bottom dead center of the intake stroke, and the high temperature exhaust gas is backflowed into the decompressed cylinder to adiabatically compress the mixed gas whose temperature has become high, and the exhaust gas temperature Raise.
これは一種の排気再循環 (EGR) で高温の排気はシリンダ内空気と 混合して圧縮行程直前の空気温度を更に高め、上死点付近にて噴射され た燃料の燃焼を促進するばかりカ この高温の E G Rには排出された直 後においては燃焼を促進するラジカルが含まれていて圧縮行程の上死 点に至るまでラジカルの効果は消滅しないと考えられる。  This is a kind of exhaust gas recirculation (EGR), and the high temperature exhaust mixes with the air in the cylinder to further raise the air temperature just before the compression stroke and promote combustion of the injected fuel near the top dead center. It is considered that the high temperature EGR contains radicals promoting combustion immediately after being discharged, and the effect of the radicals does not disappear until the top dead center of the compression stroke is reached.
c) 減筒 c) Reduced cylinder
6気筒エンジンを 3気筒に減らす等を行なうことにより、 1気筒当た りの燃料供給量が増えるので排気温度が上昇する。  By reducing the number of six-cylinder engines to three, etc., the amount of fuel supplied per cylinder increases, so the exhaust temperature rises.
d) 排気絞り d) Exhaust throttle
ディーゼルエンジンの排気系に絞り弁を設置し、 当該絞り弁を絞るこ とによって、 背圧が高くなり、 筒内外の圧力差が多くなり、 筒内に還流 する高温の EGRガス量は増大する。 このことによって圧縮初めの筒内 ガス温度が上昇するので、 圧縮終わり温度も上昇し、 同一燃料噴射量で も、 排ガス温度は排気絞り弁を絞る前よりも高くなる。 このことによつ て、 白煙の排出量が減少すると共に、 高温の排ガス温度によって D P F 入口温度も高まり、 PMの酸化に効果がある。  By installing a throttling valve in the exhaust system of a diesel engine and throttling the throttling valve, the back pressure increases, the pressure difference between the inside and outside of the cylinder increases, and the amount of high temperature EGR gas recirculating into the cylinder increases. As a result, the in-cylinder gas temperature at the beginning of compression rises, so the compression end temperature also rises, and even with the same fuel injection amount, the exhaust gas temperature becomes higher than before throttling the exhaust throttle valve. As a result, white smoke emissions are reduced, and the high exhaust gas temperature also raises the D P F inlet temperature, which is effective in PM oxidation.
の a) 〜d) の手段を,袓合せたものである。 The means a) to d) are combined.
又特願 20 0 1 - 1 2 9 83 3号は、 主触媒の他に熱容量の小さな補 助触媒をエンジンに近接して設置し、 エンジンの高出力時には主触媒を 用い、 低出力時には補助触媒を用いるようにすることで、 長い配管によ る冷却を避けるとともに触媒をエンジンに近接して設置したことによ るエンジンの比出力の低下を避け、 さらにエンジン始動時に熱容量の小 さな補助触媒を用いることで短時間に高温化して触媒を活性化するこ とを可能としたものである。  In addition to the main catalyst, Japanese Patent Application No. 20 0 1-1 2 9 8 3 3 has an auxiliary catalyst with a small heat capacity installed close to the engine, and uses the main catalyst at high output of the engine and auxiliary catalyst at low output. In order to avoid cooling due to long piping and to avoid a decrease in specific power of the engine due to the catalyst being placed close to the engine, an auxiliary catalyst with a small heat capacity at engine start is used. By using the catalyst, it is possible to raise the temperature in a short time to activate the catalyst.
さらに特願 200 2— 0 94 1 74号は、 主触媒の他に熱容量の小さ な補助触媒を設けるとともに吸気絞り、 E S C、 減筒、 排気絞りを行な うことができるようにしたものである。 Furthermore, in Japanese Patent Application No. 200 2-0 94 1 74, in addition to the main catalyst, an auxiliary catalyst with a small heat capacity is provided, and intake throttling, ESC, cylinder reduction and exhaust throttling are performed. To make it possible to
特開 200 1— 3 3 6 440号公報、特願 2 00 1— 1 2 98 3 3号、 特願 20 0 2— 0 9 4 1 74号に記載の D Eの低負荷時高排気温度維 持装置においては、 長時間低負荷状態等の不利な条件だと、 触媒の再生 能力よりも触媒内部に蓄積される PMの量が上回る状態が続き、最終的 にエンジンが失火するという問題があった。  Japanese Patent Application Laid-Open No. 200 1-36 440, Japanese Patent Application No. 2 00 1 2 98 3 3 and Japanese Patent Application No. 20 0 2 0 0 4 1 74 Maintaining low exhaust temperature and high exhaust temperature of DE In the equipment, under adverse conditions such as a low load condition for a long time, the amount of PM accumulated inside the catalyst continues to exceed the regeneration capacity of the catalyst, resulting in the problem that the engine eventually misfires. .
特に 3. 0リツター過給エンジンでは、 特許文献 1に記載の DEの低 負荷時高排気温度維持装置等は、有効な排気ガス上昇と PMの酸化に成 功したが、不利な条件を持つエンジンでは P Mの酸化を確実には行なえ なかった。 尚、 この試験結果については後述する。  In particular, for a 3.0 liter supercharged engine, the low load and high exhaust temperature maintenance device of DE described in Patent Document 1 succeeded in effective exhaust gas rise and PM oxidation, but an engine with disadvantageous conditions. However, PM oxidation could not be performed reliably. The test results will be described later.
そこで本発明は、 上記従来の状況に鑑み、 低負荷時及びアイ ドリング 時等の PM酸化に不利な条件が長時間続いても PMを酸化することが できる PM酸化方法を提供することを目的とする。 発明の開示  Therefore, in view of the above-mentioned conventional situation, it is an object of the present invention to provide a PM oxidation method capable of oxidizing PM even if a condition disadvantageous to PM oxidation such as at low load and idling is continued for a long time. Do. Disclosure of the invention
上記課題を解決するため、本発明に係るディ一ゼルェンジンにおける PM酸化方法は、 ディーゼルエンジンから排出される排気ガスを、 排気 浄化装置を通して排気ガス中の PM (パティキュレートマター) を酸化 させる PM酸化方法であって、前記ディーゼルエンジンの吸気通路に吸 気絞り弁を設けて前記ディーゼルエンジンから前記排気浄化装置に流 入する排気ガスの排気温度を高め、前記吸気絞り弁を定期的に開放して 前記ディーゼルエンジンに新気を供給することを特徴とする。  In order to solve the above problems, the PM oxidation method in diesel engine according to the present invention is a PM oxidation method in which exhaust gas discharged from a diesel engine is oxidized through PM (particulate matter) in exhaust gas through an exhaust gas purification device. An intake throttle valve is provided in the intake passage of the diesel engine to increase the exhaust temperature of the exhaust gas flowing from the diesel engine into the exhaust gas purification apparatus, and the intake throttle valve is periodically opened. It is characterized by supplying fresh air to a diesel engine.
上記 PM連続再生方法において、 DE (ディーゼルエンジン) から排 気浄化装置に流入する排気ガスの排気温度を高めるため、 DEの吸気行 程の下死点付近において排気バルブを開弁することにより、 高温の排気 が減圧されている D Eのシリンダ内に逆流して排気再循環を行なうよ うにする場合がある。 つまり排気ガス温度を上昇させるために上記 E S Cを用いることができる。  In the above PM continuous regeneration method, the exhaust valve is opened near the bottom dead center of the intake stroke of the DE to raise the exhaust temperature of the exhaust gas flowing from the DE (diesel engine) into the exhaust purification device. The exhaust gas may be backflowed into the cylinder of the DE where the exhaust gas is depressurized to perform exhaust gas recirculation. That is, the above ESC can be used to raise the exhaust gas temperature.
上記の排気浄化装置は、 DOCと D P F、 DOCと触媒担持型 D P F、 触媒担持型 D P Fから選択されるいずれか 1の連続再生式 D P Fにす ることができる。 The above-mentioned exhaust purification system includes DOC and DPF, DOC and DPF with catalyst. It can be any one continuous regeneration DPF selected from catalyst-loaded DPFs.
又、 上記 PM連続再生方法において、 排気浄化装置は mD P F (主排 気浄化装置) と t D P F (補助排気浄化装置) とで構成され、 DEの排 気ポートと mDP Fとは主排気管によつて接続され、補助排気管が主排 気管に両端部を接続して設けられ、補助排気管には μ DP Fが接続して 設けられ、 DEの低負荷時における小排気流量時には、 主排気管に設け られた切替弁を閉弁することにより DEからの排気ガスの全流量が補 助排気管を通って μ D P Fに送られるようにし、 DEの高負荷時におけ る排気流量の増大時には切替弁を開弁するようにする場合がある。 これ は、 特願 200 1— 1 2 9 8 3 3号ゃ特願 200 2— 0 94 1 74号の ように、 主触媒の他に熱容量の小さな捕助触媒をエンジンに近接して設 置した方法である。  Also, in the above PM continuous regeneration method, the exhaust gas purification apparatus is composed of mD PF (main exhaust gas purification apparatus) and t DPF (auxiliary exhaust gas purification apparatus), and the exhaust port of DE and mDP F are in the main exhaust pipe. The auxiliary exhaust pipe is connected with both ends connected to the main exhaust pipe, and the auxiliary exhaust pipe is connected with μ DP F. When the small exhaust flow rate at low load of DE, the main exhaust is connected. By closing the switching valve provided on the pipe, the total flow rate of exhaust gas from the DE is sent to the μ DPF through the auxiliary exhaust pipe, and switching is performed when the flow rate of exhaust gas increases at high load of DE. The valve may be opened. As shown in Japanese Patent Application Nos. 200 1-2 8 8 3 3 3 and Japanese Patent Application Nos. 200 2-0 9 14 1 4 4, the auxiliary catalyst with a small heat capacity is placed close to the engine in addition to the main catalyst. It is a method.
この mD P F (メイン D P F) は、 DOCと DP F、 DOCと触媒担 持型 D P F、触媒担持型 D P Fから選択されるいずれか 1の連続再生式 DP Fとすることができ、 ^DP F (マイクロ DP F) は、 DOCと D P F、 DOCと触媒担持型 DP F、 触媒担持型 DP Fから選択されるい ずれか 1の連続再生式 D P Fとすることができる。  This mD PF (main DPF) can be any one of continuous regeneration DP F selected from DOC and DP F, DOC and catalyst supported DPF, and catalyst supported DPF, and ^ DP F (micro DP F) can be any one continuous regeneration DPF selected from DOC and DPF, DOC and catalyst-supported DP F, and catalyst-supported DP F.
本発明の PM連続再生方法において D Eは多気筒とすることができ、 多気筒 DEにおいて減筒運転を行なうことができる。  In the PM continuous regeneration method of the present invention, DE can be multi-cylinder, and cylinder reduction operation can be performed in a multi-cylinder DE.
また上記課題を解決するため、本発明に係るディーゼルエンジンにお ける PM酸化装置は、 ディーゼル .パティキュレート ·フィルタ内に堆 積したディーゼルエンジンの排気に含まれるパティキュレートマター (PM) を酸化させて排気を浄化する、 ディーゼルエンジンにおける P M酸化装置において、ディーゼルエンジンの吸気流量を調節する吸気流 量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、 第 2 の所定時間の経過を計測する第 2のタイマーと、前記第 1のタイマーが 計測した第 1の所定時間経過後に前記吸気流量調節弁に吸気流量を增 大する制御指 4を出力し、前記第 2のタイマーが計測した第 2の所定時 間経過後に前記吸気流量調節弁に吸気流量を本来の吸気流量に戻す制 御指令を出力する制御手段とを備えたことを特徴とする。 Further, in order to solve the above problems, the PM oxidizer in the diesel engine according to the present invention oxidizes particulate matter (PM) contained in the exhaust of the diesel engine deposited in the diesel particulate filter. In a PM oxidizer of a diesel engine for purifying exhaust gas, an intake flow control valve for adjusting an intake flow rate of the diesel engine, a first timer for measuring an elapse of a first predetermined time, and a second predetermined time A second timer for measuring the elapsed time, and a control finger 4 for increasing the intake flow rate to the intake flow control valve after the first predetermined time measured by the first timer has elapsed, and the second timer Measured second predetermined time The control apparatus may further comprise: control means for outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve after a lapse of time.
また上記課題を解決するため、本発明に係るディーゼルェンジンにお ける P M酸化装置は、 エンジンの吸気行程終了付近にて排気パルプを開 けて排気を燃焼前のシリンダ内に戻す排気バルブタイミングを有する 排気カムと、ディーゼルエンジンの吸気流量を調節する吸気流量調節弁 と、 第 1の所定時間の経過を計測する第 1のタイマーと、 第 2の所定時 間の経過を計測する第 2のタイマーと、前記第 1のタイマーが計測した 第 1の所定時間経過後に前記吸気流量調節弁に吸気流量を増大する制 御指令を出力し、前記第 2のタイマーが計測した第 2の所定時間経過後 に前記吸気流量調節弁に吸気流量を本来の吸気流量に戻す制御指令を 出力する制御手段とを備えたことを特徴とする。  In order to solve the above problems, the PM oxidizer of the diesel engine according to the present invention opens the exhaust pulp near the end of the intake stroke of the engine and returns the exhaust to the cylinder before combustion. An exhaust cam, an intake flow control valve for adjusting an intake flow rate of a diesel engine, a first timer for measuring an elapsed time of a first predetermined time, and a second timer for measuring an elapsed time of a second predetermined time After the first predetermined time measured by the first timer has elapsed, a control command to increase the intake flow rate is output to the intake flow control valve, and after the second predetermined time measured by the second timer has elapsed. And control means for outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve.
また上記課題を解決するため、本発明に係るディーゼルェンジンにお ける P M酸化装置は、ディーゼルエンジンの排気に含まれるパティキュ レートマターを捕集して処理する 2種類の D P Fであって、 ディーゼル エンジンの高負荷時に排出される多量の排気を処理するメイン D P F と、 ディーゼルエンジンの低負荷時に排出される少量の排気を処理する マイクロ D P Fとに排気の流路を切り替える切替弁と、 ディーゼルェン ジンの吸気流量を調節する吸気流量調節弁と、第 1の所定時間の経過を 計測する第 1のタイマーと、第 2の所定時間の経過を計測する第 2のタ イマ一と、 アクセルペダルの踏み込み量及ぴエンジン回転数に応じて切 替弁及び吸気流量調節弁の制御指令を出力するとともに、前記第 1のタ イマ一が計測した第 1の所定時間経過後に前記吸気流量調節弁に吸気 流量を増大する制御指令を出力し、前記第 2のタイマーが計測した第 2 の所定時間経過後に前記吸気流量調節弁に吸気流量を本来の吸気流量 に戻す制御指令を出力する制御手段とを備えたことを特徴とする。 また上記課題を解決するため、本発明に係るディーゼルェンジンにお ける P M酸化装置は、排気を吸気側に再循環する際の排気の再循環量を 制御する E G R手段と、 ディーゼルエンジンの吸気流量を調節する吸気 流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、 第. 2の所定時間の経過を計測する第 2のタイマーと、前記第 1のタイマー が計測した第 1の所定時間経過後に前記吸気流量調節弁に吸気流量を 増大する制御指令を出力し、 前記第 2のタイマーが計測した第 2の所定 時間経過後に前記吸気流量調節弁に吸気流量を本来の吸気流量に戻す 制御指令を出力する制御手段とを備えたことを特徴とする。 Further, in order to solve the above problems, the PM oxidizer in the diesel engine according to the present invention is two types of DPFs that capture and treat particulate matter contained in exhaust gas of a diesel engine, and the diesel engine Switching valve that switches the flow path of the exhaust to the main DPF that processes a large amount of exhaust discharged when the load is high, and the micro DPF that processes a small amount of exhaust discharged when the diesel engine has a low load; An intake flow control valve for adjusting the intake flow rate of the first timer, a first timer for measuring the lapse of a first predetermined time, and a second timer for measuring the lapse of a second predetermined time; The control command for the switching valve and the intake flow control valve is output according to the amount and engine speed, and after the first predetermined time measured by the first timer has elapsed. The control command to increase the intake flow rate is output to the intake flow rate control valve, and the control command to return the intake flow rate to the original intake flow rate is sent to the intake flow rate control valve after the second predetermined time measured by the second timer. And a control means for outputting. Further, in order to solve the above problems, the PM oxidizer in the diesel engine according to the present invention comprises an EGR means for controlling the amount of exhaust recirculation when recirculating the exhaust to the intake side, and an intake flow rate of the diesel engine. Intake to adjust the A flow control valve, a first timer for measuring the lapse of a first predetermined time, a second timer for measuring the lapse of a second predetermined time, and a first predetermined time measured by the first timer After a lapse of time, a control command to increase the intake flow rate is outputted to the intake flow rate control valve, and after the second predetermined time measured by the second timer elapses, the intake flow rate is returned to the original intake flow rate to the intake flow rate control valve. And control means for outputting a control command.
また上記課題を解決するため、本発明に係るディーゼルエンジンにお ける P M酸化装置は、ディーゼルエンジンの吸気流量を調節する吸気流 量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、 第 2 の所定時間の経過を計測する第 2のタイマーと、前記 D P F前後の圧力 差を検出する差圧センサと、前記第 1のタイマーが計測した第 1の所定 時間経過後であって且つ前記差圧センサが検出した圧力差が所定の閾 値以上である場合には、前記吸気流量調節弁に吸気流量を増大する制御 指令を出力し、前記第 2のタイマーが計測した第 2の所定時間経過後に 前記吸気流量調節弁に吸気流量を本来の吸気流量に戻す制御指令を出 力する制御手段とを備えたことを特徴とする。  Further, in order to solve the above problems, the PM oxidizer in the diesel engine according to the present invention comprises an intake flow control valve for adjusting an intake flow rate of the diesel engine, and a first for measuring an elapsed time of a first predetermined time. A timer, a second timer that measures the passage of a second predetermined time, a differential pressure sensor that detects a pressure difference before and after the DPF, and a first predetermined time measured by the first timer. If the pressure difference detected by the differential pressure sensor is greater than or equal to a predetermined threshold value, a control command to increase the intake flow rate is output to the intake flow rate control valve, and the second timer measures the second The control means is provided with a control means for outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve after a predetermined time has elapsed.
また上記課題を解決するため、本発明に係るディ一ゼルェンジンにお ける P M酸化装置は、エンジンの吸気行程終了付近にて排気バルブを開 けて排気を燃焼前のシリンダ内に戻す排気パルプタイミングを有する 排気カムと、 ディーゼルエンジンの吸気流量を調節する吸気流量調節弁 と、 第 1の所定時間の経過を計測する第 1のタイマーと、 第 2の所定時 間の経過を計測する第 2のタイマーと、前記 D P F前後の圧力差を検出 する差圧センサと、前記第 1のタイマーが計測した第 1の所定時間経過 後であって且つ前記差圧センサが検出した圧力差が所定の閾値以上で ある場合には、前記吸気流量調節弁に吸気流量を増大する制御指令を出 力し、前記第 2のタイマーが計測した第 2の所定時間経過後に前記吸気 流量調節弁に吸気流量を本来の吸気流量に戻す制御指令を出力する制 御手段とを備えたことを特徴とする。  Further, in order to solve the above problems, the PM oxidizer in the diesel engine according to the present invention opens the exhaust valve near the end of the intake stroke of the engine and returns the exhaust to the cylinder before combustion. An exhaust cam, an intake flow control valve for adjusting an intake flow rate of a diesel engine, a first timer for measuring an elapsed time of a first predetermined time, and a second timer for measuring an elapsed time of a second predetermined time And a differential pressure sensor for detecting a pressure difference before and after the DPF, and after a lapse of a first predetermined time measured by the first timer, the pressure difference detected by the differential pressure sensor being equal to or greater than a predetermined threshold. In some cases, a control command to increase the intake flow rate is output to the intake flow rate control valve, and the intake flow rate is output to the intake flow rate control valve after a second predetermined time measured by the second timer. Characterized by comprising a control means for outputting a control command for returning the amount.
また上記課題を解決するため、本発明に係るディ一ゼルェンジンにお ける P M酸化装置は、第 1の所定時間の経過を計測する第 1のタイマー 及ぴ第 2の所定時間の経過を計測する第 2のタイマ一に加え、第 3の所 定時間の経過を計測する第 3のタイマーと、第 4の所定時間の経過を計 測する第 4のタイマーとを備え、前記第 1のタイマーが計測した第 1の 所定時間経過後であって且つ前記差圧センサが検出した圧力差が所定 の閾値以上である場合且つ前記第 2のタイマーが計測した第 2の所定 時間経過前に、前記第 3のタイマーが計測した第 3の所定時間経過後に 前記吸気流量調節弁に吸気流量を増大する制御指令を出力し、前記第 4 のタイマーが計測した第 4の所定時間経過後に前記吸気流量調節弁に 吸気流量を本来の吸気流量に戻す制御指令を出力する制御手段とを備 えたことを特徴とする。 図面の簡単な説明 Further, in order to solve the above-mentioned problems, it is preferable to The PM oxidation device measures the lapse of a third predetermined time in addition to a first timer that measures the lapse of a first predetermined time and a second timer that measures the lapse of a second predetermined time. And a fourth timer for measuring the lapse of a fourth predetermined time, and after the lapse of the first predetermined time measured by the first timer, the differential pressure sensor When the detected pressure difference is equal to or greater than a predetermined threshold value, and before the elapse of a third predetermined time measured by the third timer before the second predetermined time measured by the second timer, the intake flow control valve Control means for outputting a control command for increasing the intake flow rate, and outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow control valve after the fourth predetermined time measured by the fourth timer. It is characterized by Brief description of the drawings
図 1は、本発明の P M酸化方法において用いる D Eのシリンダ模式図で あって、 (a) はピス トン下死点前の下死点付近を示しており、 (b) はピ ス トン下死点後の下死点付近を示す図である。 Fig. 1 is a schematic view of a cylinder of DE used in the PM oxidation method of the present invention, wherein (a) shows the vicinity of the bottom dead center before the piston bottom dead center, and (b) shows the bottom death of the piston. It is a figure which shows the vicinity of the bottom dead center after point.
図 2は、 本発明の P M酸化方法において補助排気浄化装置 (^ D P F ) を用いた場合の実施例である。 FIG. 2 shows an embodiment of the PM oxidation method of the present invention in which the auxiliary exhaust gas purification device (^ D P F) is used.
図 3は、 補助排気浄化装置 ( D P F ) の模式図である。 Fig. 3 is a schematic view of the auxiliary exhaust purification device (DPF).
図 4は、 試験 1における試験結果のグラフを示しており、 「新気スパイ ク」 を行なわなかった場合を示す図である。 FIG. 4 shows a graph of the test results in Test 1 and shows the case where "fresh air spike" was not performed.
図 5は、 試験 2における試験結果のグラフを示しており、 「新気スパイ ク」 を行なった場合を示す図である。 FIG. 5 shows a graph of the test results in Test 2 and shows the case where “fresh air spike” is performed.
図 6は、 試験 3における試験結果のグラフを示しており、 種々の 「新気 スパイク」 のタイミングで試験した結果を示す図である。 FIG. 6 shows a graph of the test results in Test 3 and shows the results of testing at various “new air spike” timings.
図 7は、本発明に係るディーゼルエンジンの排気浄化装置の全体構成を 示す図である。 FIG. 7 is a diagram showing an overall configuration of an exhaust gas purification apparatus for a diesel engine according to the present invention.
図 8は、燃焼前のシリンダに排気を直接戻す内部 E G R機構を備えたデ ィ一ゼルェンジンの燃焼室部分の断面図である。 図 9は、 ビス トンの位置と吸気バルブのリフ ト量及び排気バルブのリフ ト量との関係を示す図である。 FIG. 8 is a cross-sectional view of a combustion chamber portion of a diesel engine equipped with an internal EGR mechanism that returns the exhaust gas directly to the cylinder before combustion. FIG. 9 is a diagram showing the relationship between the position of biston and the lift amount of the intake valve and the lift amount of the exhaust valve.
図 1 0は、本発明に係るディーゼルエンジンの排気浄化装置に用いる I T P制御マップを示す図である。 FIG. 10 is a diagram showing an I T P control map used for an exhaust gas purification apparatus of a diesel engine according to the present invention.
図 1 1は、 本発明に係る制御手段の信号処理系プロック図である。 FIG. 11 is a signal processing block diagram of control means according to the present invention.
図 1 2は、本発明に係る新気スパイク方法を示すタイミングチヤ一トで める。 FIG. 12 is a timing chart showing the new air spike method according to the present invention.
図 1 3は、本発明に係る他の新気スパイク方法を示すタイミングチヤ一 トである。 FIG. 13 is a timing chart showing another fresh air spike method according to the present invention.
図 1 4は、本発明に係る他の新気スパイク方法を示すタイミングチヤ一 トである。 FIG. 14 is a timing chart showing another fresh air spike method according to the present invention.
図 1 5は、 D P F前後の圧力差計算値 A P c と、 そのときの許容圧力差 P tとの関係を示す図である。 発明を実施するための最良の形態 FIG. 15 is a diagram showing the relationship between the calculated pressure difference A P c around D P F and the allowable pressure difference P t at that time. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について図面を用いて説明する。  Hereinafter, embodiments of the present invention will be described using the drawings.
図 1は本発明の P M酸化方法において用いる D Eのシリンダの模式 図を示している。 (a) はピス トン下死点前の下死点付近を示しており、 (b) はピス トン下死点後の下死点付近を示している。 (a) と (b) はい ずれも吸気行程である。 (a) に示されるように吸気通路にある吸気絞り 2 4によって流入空気量を絞り、 可能な限りえが 1に近づくようにし、 吸気バルブ 5 2を開弁してシリンダ 5 8内に空気を入れる (図中 Aで示 される)。 そして、 (b) に示されるようにピス トン 6 0下死点付近にお いて吸気バルブ 5 2を閉弁するとともに排気パルプ 5 4を開弁するこ とで一度排気通路に排気された排気ガスの一部がシリンダ 5 8内に逆 流(図中 Bで示される)して排気ガスの温度を高めることができる。尚、 吸気絞り 2 4はスロットルパルプとすることができ、吸気バルブ 5 2は シリンダ一へッドの吸気弁であり、排気バルブ 5 4はシリンダ一へッド の排気弁である。 本発明において、 吸気絞り 24を定期的に開放して前記 DE 1 0に新 気を供給すること (本発明においては 「新気スパイク」 とする場合があ る) は、 流入空気量を絞るために設けられている吸気絞り 24を定期的 に開放することによって行われるが、 そのタイミングは吸気絞り 24の 絞り 9分 3 0秒につき吸気絞り 24の開放を 6 0秒以下とすれば十分 の効果を得ることができ、 さらには絞り 9分 3 0秒につき開放を 3 0秒 以下、 絞り 9分 3 0秒につき開放 1 5秒以下、 絞り 9分 30秒につき開 放 5秒以下、 絞り 3 0分につき開放 6 0秒、 絞り 30分につき開放 1秒 でも十分の効果を得ることができる。 FIG. 1 shows a schematic view of a cylinder of DE used in the PM oxidation method of the present invention. (A) shows the vicinity of the bottom dead center before the piston bottom dead center, and (b) shows the vicinity of the bottom dead center after the piston bottom dead center. Both (a) and (b) are the intake strokes. As shown in (a), the intake air flow is throttled by the intake air throttle 24 in the intake air passage so that the fuel flow approaches 1 as much as possible, and the air intake valve 52 is opened to introduce air into the cylinder 58. Insert (indicated by A in the figure). Then, as shown in (b), by closing the intake valve 52 and opening the exhaust pulp 54 near the piston 60 bottom dead center, the exhaust gas once exhausted to the exhaust passage A portion of the gas can reverse flow into the cylinder 58 (indicated by B in the figure) to raise the temperature of the exhaust gas. The intake throttle 24 can be throttle pulp, the intake valve 52 is an intake valve of a cylinder head, and the exhaust valve 54 is an exhaust valve of the cylinder head. In the present invention, to periodically open the intake throttle 24 and supply fresh air to the DE 10 (in the present invention, it may be referred to as “new air spike”) is to reduce the amount of inflowing air. This is done by periodically opening the intake throttle 24 provided in the unit, but it is sufficient to set the opening of the intake throttle 24 to 60 seconds or less every 30 minutes after the intake throttle 24 has been opened for 9 minutes. Further, the aperture is opened for less than 30 seconds every 30 minutes, 9 seconds for less than 15 seconds, 9 seconds for less than 5 seconds, aperture less than 3 seconds Sufficient effects can be obtained with 60 seconds per minute and 1 second per 30 minutes.
図 2は本発明の PMの酸化方法において μ D P Fを用いた場合の実 施例である。 エンジンは 4気筒としている。 先ず切替弁 28が閉じてい る状態における空気 (排気ガス) の流れについて説明する。 吸気絞り 2 4を通過した空気は DE 1 0のシリンダ 5 8内に送られ、 DE 1 0内の シリンダ 5 8 (図 2には描かれていない) 内で噴射された燃料と燃焼す る。 燃焼した排気ガスは排気マユホールド 1 4集合部 (多気筒エンジン における排気ポート) を通り、 排気マ-ホールド 1 4集合部よりも下流 に設けられた補助排気管 7を通り D P F 3 0に送られる。 μ D P F 3 0の詳細については後述する。 μ D P F 3 0によって浄化された排気ガ スは補助排気管 7を通り主排気管 9を通って mD P F 40によってさ らに浄化されて排出される。 このように、 DE 1 0がアイ ドリング中や 低負荷持においては、切替弁 28を閉じて// DP F 30にすベての排気 ガスが送られるようにする。 μ D P F 3 0は mD P F 40に比して容量 が小さいので温度上昇が早く、 又、 主排気管 9を通る間に排気ガスが冷 却されてしまうことを防ぐ効果がある。 DE高負荷時には切替弁 2 8を 開放して排気マ二ホールド 1 4を通った排気ガスは、補助排気管 7及び 主排気管 9を通って μ D P F 3 0及び mD P F 4 0の両方で浄化され る。  FIG. 2 shows an example of the case of using μ D P F in the method of oxidizing PM of the present invention. The engine has four cylinders. First, the flow of air (exhaust gas) in the state where the switching valve 28 is closed will be described. The air that has passed through the intake throttle 24 is fed into the cylinder 5 8 of the DE 10 and burns with the injected fuel in the cylinder 5 8 (not depicted in FIG. 2) in the DE 10. The burned exhaust gas is sent to the DPF 30 through the exhaust manifold 14 (the exhaust port of the multi-cylinder engine) and through the auxiliary exhaust pipe 7 provided downstream of the exhaust manifold 14 (the exhaust port). . Details of μ D P F 30 will be described later. Exhaust gas purified by μ D P F 30 passes through the auxiliary exhaust pipe 7, passes through the main exhaust pipe 9, and is further purified by mD P F 40 and discharged. As described above, when the DE 10 is idling or at low load, the switching valve 28 is closed so that all the exhaust gas is sent to the DP F 30. Since μ D P F 30 has a smaller capacity than m D P F 40, the temperature rise is quick, and it has the effect of preventing the exhaust gas from being cooled while passing through the main exhaust pipe 9. At high load on DE, the switching valve 2 8 is opened and the exhaust gas passed through the exhaust manifold 1 4 passes through the auxiliary exhaust pipe 7 and the main exhaust pipe 9 and purified with both the μ DPF 30 and the mD PF 40 It is done.
尚、 本実施例では 4気筒としたが、 6気筒その他の多気筒にしてもよ く、 単気筒にしてもよい。 又、 /x DP F 3 0を設けずに mD PF 40の みとしてもよいが、 この場合には勿論切替弁 2 8、 補助排気管 7は必要 ではない。 さらに AZ D P F 3 0と mD P F 4 0とを備えている場合、 上 記切替弁 2 8の他に、補助排気管 7の D P F 3 0よりも上流に別の切 替弁を設けて、 D E高負荷時には ^ D P F 3 0には排気ガスが通らず、 mD P F 4 0のみに排気ガスが送られるようにすることも可能である。 図 3は D P F 3 0の模式図である。 mD P F 4 0も容量は大きいが 基本的に構造は同じである。 DO Cと触媒担持型 D P Fが並べられてい る連続再生式 D P Fである。 尚、 本発明の; i D P F 3 0は触媒担持型 D P Fのみとすることも可能であり、 DO Cと D P Fとを並べて使用する ことも可能である。 Although four cylinders are used in this embodiment, six cylinders or other multiple cylinders may be used, or single cylinders may be used. Also, for mD PF 40 without / x DP F 3 0 Of course, in this case, the switching valve 28 and the auxiliary exhaust pipe 7 are not necessary. If it is equipped with AZ DPF 30 and mD PF 40 further, in addition to the switching valve 28 mentioned above, another switching valve will be installed upstream of DPF 30 of the auxiliary exhaust pipe 7 to increase the DE height. It is also possible that exhaust gas does not pass through ^ DPF 30 at the time of loading, and exhaust gas is sent only to mD PF 40. FIG. 3 is a schematic view of DPF 30. mD PF 4 0 also has large capacity but basically the same structure. It is a continuous regenerative DPF in which DO C and catalyst-loaded DPF are arranged. In the present invention, i DPF 30 can be made only of catalyst-supported DPF, and it is also possible to use DOC and DPF side by side.
(試験 1 ) 「新気スパイク」 なしの場合  (Test 1) Without "new air spike"
エンジンは 4 HF 1 (い.す 、エルフ) であり、 排気量 4 , 3 3 4cc、 無過給、 最高出力 1 3 5Z320 0 (NetPS/rpm)、 最大トルク 3 2, 0/ 1 7 0 0 (Net kg - m/rpm) N 列型機械噴射、 平成元年度規制のも のを使用した。 シリンダは図 1に示されるような構造である。 The engine is 4 HF 1 (one elf), displacement 4, 3 3 4 cc, supercharged, maximum output 1 3 5Z 3 20 0 (NetPS / rpm), maximum torque 3 2, 0/1 7 0 0 (Net kg-m / rpm) N- row type machine injection, the one of the Heisei 1st year regulation was used. The cylinder is constructed as shown in FIG.
燃料は低硫化軽油 ( 3 4Ppra) であり、 運転開始条件は、 A P P (Accelerator Pedal Position:アクセル開度) を 6 %、 I T P (Intake Throttle Position:吸気絞り 2 4の開弁率) は 2. 3 %とし、 ェンジ ン回転数は 9 8 8rpmとした。 排気マエホールド 1 4集合部の温度 2 8 0°C達成時に試験を開始した。 The fuel is low sulfurized light oil (34 P pra), and the operation start conditions are: APP (Accelerator Pedal Position: 6% of accelerator opening), ITP (Intake Throttle Position: Opening ratio of intake throttle 24): 2 The engine speed was 988 rpm with 3%. The test was started when the temperature of the exhaust manifold 14 reached 240 ° C.
図 2に示される μ D P F 3 0 (補助排気浄化装置)と mD P F 4 0 (主 排気浄化装置) を設けた 4気筒 DEの排気浄化装置を用いた。 At D P F 3 0は、 直径 6 5 mm、 長さ 3 0 mmの DO Cと、 直径 6 5 mm、 長さ 1 0 0 mmの媒担持型 D P Fを図 3のよ うに組合せた。補助浄化装置に全排気ガ スが流入するようになっている。 尚、 試験中に AP Pを 1 2%に設定し てガス流量を倍増させた時間が 5分弱ほど存在する。 又、 mD P F 4 0 (主排気浄化装置) の容量は 5 1 0 Occである。  A 4-cylinder DE exhaust purification system was used, equipped with μ D P F 3 0 (auxiliary exhaust gas purification system) and mD P F 4 0 (main exhaust gas purification system) shown in Fig. 2. As shown in Fig. 3, At D P F 30 is a combination of D 65 C with a diameter of 65 mm and a length of 30 mm, and medium-supported D P F with a diameter of 65 mm and a length of 100 mm. All exhaust gases flow into the auxiliary purification system. During the test, the time to double the gas flow by setting APP to 12% exists for less than 5 minutes. Also, the capacity of mD P F 4 0 (main exhaust gas purification device) is 5 10 0 Occ.
試験 1における試験結果のグラフを図 4に示す。 縦軸は /i D P F 3 0 に流入する排気ガスの温度 (°C)、 排気圧 (k P a ) であり、 横軸は経 T/JP2003/012476 The graph of the test result in Test 1 is shown in FIG. The vertical axis represents the temperature (° C) of the exhaust gas flowing into / i DPF 3 0 and the exhaust pressure (k Pa), and the horizontal axis T / JP2003 / 012476
12 過時間 (秒) である。 薄く太い線が DP F 3 0入口温度であり、 薄く 細い線が μ D P F 3 0入口圧力である。 濃く細い線が μ D P F 30出口 温度であり、 濃く太い線が DP F 3 0出口の圧力を示している。 以下 のグラフも同様である。 尚、 グラフ中では補助排気浄化装置を D P F と称しており、 以下のグラフにおいても同様である。 12 Overtime (seconds). The thin, thick line is the DP F 30 inlet temperature, and the thin, thin line is the μ D P F 30 inlet pressure. The thick, thin line is the μ D P F 30 outlet temperature, and the thick, thick line shows the pressure at the DP F 3 0 outlet. The same is true for the graphs below. In the graph, the auxiliary exhaust gas purification device is referred to as D P F, and the same applies to the following graphs.
グラフからわかるように試験 1では、 w D P F 30に 28 0°C程度の 排気ガスを供給した際、 PMを酸化してはいる (μ DP F入口く温度く AiDP F出口) ものの、 μ D P F入口と出口の差圧は上昇を続け、 1 5 0 k P a (= 1 5, 2 9 6 mmAq) の時点でエンジンは失火した。 これは PMの酸化能力よりも μ D P F内部に蓄積される ΡΜの量が上回るこ とが原因である。 尚、 D P F 30の重量は 5. 5 g増加していた。  As can be seen from the graph, in test 1, when exhaust gas of about 280 ° C is supplied to DPF 30, PM is oxidized (μ DP F inlet temperature Ai DP F outlet), but μ DPF inlet The differential pressure at the outlet continued to rise, and the engine misfired at 1 50 k Pa (= 15, 2 96 mm Aq). This is due to the fact that the amount of soot accumulated inside the μ D P F is greater than the oxidation capacity of PM. Incidentally, the weight of D P F 30 was increased by 5.5 g.
(試験 2) 「新気スパイク」 を行なった場合  (Test 2) When "new air spike" was performed
装置は試験 1と同じで、 排気 2段目カムリフトを 1. 5 mmから 1 · Ommにして新気スパイク (吸気絞り 24を全開に開放した) を行なった ことを除いては試験 1と運転開始条件は同じである。 試験 2では新気の 供給は吸気絞り 24の絞り 9分 3 0秒に対する吸気絞り 24の開放を 1分、 30秒、 1 5秒、 5秒の 4種類で試験した。 試験 2における試験 結果のグラフを図 5に示す。 運転中はグラフに示すように I TPを変化 させている。  The system is the same as test 1, and test 1 and operation start with the exception that the fresh air spike (intake throttle 24 was opened fully) with an exhaust second stage cam lift set to 1.5 mm to 1 · O mm was performed. The conditions are the same. In Test 2, the fresh air supply was tested in 4 types of 1 minute, 30 seconds, 15 seconds, and 5 seconds for the opening of the air intake throttle 24 for the air intake throttle 24 of 9 minutes and 30 seconds. A graph of the test results in Test 2 is shown in FIG. During operation, I TP is changed as shown in the graph.
縦軸は μ D P F 3 0に流入する排気ガスの温度 (°C)、 排気圧 (k P a) であり、 横軸は経過時間 (秒) である。. 1 00 Orpmの際に、 試供 エンジンは約 1Z8秒で 4気筒全てが掃気される (混合気の完全入れ替 え) ことを考えると、 約 5秒間の 「新気スパイク」 によって ^DP F 3 0内部は約 1 6 0回酸素残留が十分な排気ガスで満たされ得る計算と なる。 I TPが 2. 3 %に設定できた部分においては、 DPF 30の 入口及ぴ出口温度は上昇している。 ^ D P F 30の入口及び出口の差圧 上昇も試験 1に比して明瞭に低下しており、 「新気スパイク」 毎に低下 (DP Fの再生) していることがわかる。 1万 2000秒 ( 3時間 1 5 分) の試験後の差圧上昇は約 8. 3 k P aであり、 D P F 30内部に 蓄積した P Mの重量は 4 . 2 gであった。 The vertical axis is the temperature (° C.) of the exhaust gas flowing into the μ DPF 30 and the exhaust pressure (k Pa), and the horizontal axis is the elapsed time (seconds). Considering that all four cylinders are scavenged in about 1 Z 8 seconds (the complete change of mixture) at 1 00 O rpm, the "new air spike" of about 5 seconds makes ^ DP F 3 0 It is calculated that the interior can be filled with sufficient exhaust gas about 160 times residual oxygen. In the part where I TP could be set to 2.3%, the inlet and outlet temperatures of DPF 30 are rising. ^ The increase in differential pressure at the inlet and outlet of DPF 30 is also clearly reduced compared to Test 1, and it can be seen that the “new air spike” decreases (regeneration of DFP). The differential pressure rise after the test for 12,000 seconds (3 hours and 15 minutes) is about 8.3 kP a, and the inside of the DPF 30 The weight of accumulated PM was 4.2 g.
(試験 3 ) 「新気スパイク」 の時間及びそのタイミングを変更した場合 試験 3では、 運転開始条件は試験 2と同じで 「新気スパイク」 の時間 及ぴそのタイミングを変更したものである。 装置は試験 1と同じで吸気 絞り 2 4の絞りを 3 0分継続し、 「新気スパイク」 を 1秒と」 短縮して も、 D P F 3 0の P M酸化能力は低下せず、 又、 差圧も大きな上昇を 見せないことが理解できる。  (Test 3) When the time of “new air spike” and its timing were changed In Test 3, the operation start conditions are the same as in Test 2, and the time and timing of “new air spike” were changed. The system continues the same as Test 1, and continues the intake throttle 24 for 30 minutes and shortens the “new air spike” to 1 second, but the PM oxidation capacity of the DPF 30 does not decrease, and the difference It can be understood that the pressure does not show a large rise.
試験 3における試験結果のグラフを図 6に示す。 I T Pは運転中ダラ フに示すように変化させている。 D P F 3 0内部に蓄積した P Mの重 量は 0 . 4 gであった。 「新気スパイク」 は単に吸気絞り 2 4を全開する のみであり、 発生出力 · トルクには変化が生じないから運転に及ぼす悪 影響は一切ない。 あえて指摘するなら、 吸気音が上昇するが、 数分に 1 秒のスパイクではそれに気づく運転者は皆無である。  A graph of the test results in Test 3 is shown in FIG. I T P is changed during operation as shown in the graph. The weight of P M accumulated inside D P F 30 was 0.4 g. The “new air spike” only opens the intake throttle 24 fully, and since there is no change in generated output torque, there is no adverse effect on driving. If you dare to point out, the inspiratory noise rises, but there is no driver who notices it with a spike of one second in a few minutes.
図 7は、本発明に係るディーゼルエンジンの排気浄化装置の全体構成 を示す図である。  FIG. 7 is a view showing the overall configuration of an exhaust gas purification apparatus for a diesel engine according to the present invention.
同図に示すように、 ディーゼルエンジンの排気浄化システムには、 排 気を浄化する対象となるディーゼルエンジン 1 0と、 ディーゼルェンジ ンの各シリンダに新気を導入する吸気マ二ホールド 1 2と、各シリンダ から排出される燃焼後の排気を通す排気マ二ホールド 1 4と、運転手が ディーゼルエンジンの出力を制御する情報を入力するためのアクセル ペタルの踏み込み量を検出して制御手段 2 0等に伝達するアクセルポ ジションセンサ 1 6と、ディーゼルエンジンのクランクシャフ卜の回転 角などを読み取って制御手段 2 0に対して回転角信号(エンジンの回転 数信号のパルスを含む) を出力する回転センサ 1 8とが設けられている。 なお、 アクセルペダルの踏み込み量は、 図示しない燃料噴射装置に伝 達され、 エンジンの出力を制御することが可能となっている。  As shown in the figure, in the exhaust purification system of a diesel engine, there are a diesel engine 10 for which exhaust gas is to be purified, an intake manifold 12 for introducing fresh air to each cylinder of the diesel engine, and The control means 20 detects the amount of depression of the exhaust manifold 14 through which the exhaust gas discharged from each cylinder passes and the accelerator pedal for the driver to input information to control the output of the diesel engine. An acceleration position sensor 16 that transmits to the engine, and a rotation sensor that reads the rotation angle of the crank shaft of the diesel engine and outputs a rotation angle signal (including the pulse of the engine rotation speed signal) to the control unit 20 And eight are provided. The depression amount of the accelerator pedal is transmitted to a fuel injection device (not shown), which makes it possible to control the output of the engine.
またディ一ゼルェンジンの排気浄化システムには、 エンジンの吸気温 度を測定する吸気温度センサ 2 2と、エンジンの吸気を絞ることによつ てシリンダに吸入される新気の量を調節する吸気絞り 2 4 (吸気流量調 節弁の機能を含む) と、 エンジンの排気を絞ることによって排圧を高く してシリンダに戻す排気のガス量を増やす制御を行なう排気絞り 2 6 と、 排気の流路を切り替える切替弁 2 8とが設けられている。 In the exhaust gas purification system of diesel engine, an intake air temperature sensor 22 for measuring the intake temperature of the engine and an intake air throttle for adjusting the amount of fresh air taken into the cylinder by throttling the engine intake. 2 4 (Intake flow rate adjustment Control valve (including the function of a joint valve) and exhaust throttle 26 that performs control to increase exhaust gas volume returned to the cylinder by increasing exhaust pressure by throttling the engine exhaust, and switching valve that switches the exhaust flow path 2 8 And are provided.
ディーゼルエンジンの排気に含まれる PMを捕集して処理する 2種 類の D P Fのうちの mD P F 40は、 ディーゼルエンジンの高負荷時に 排出される多量の排気に含まれる PMを捕集して効果的に酸化する大 型の D P Fである。 一方の μ D P F 3 0は、 ディーゼルエンジンの低負 荷時に排出される少量の排気に含まれる ΡΜを捕集して効果的に酸化 する小型の D P Fである。 切替弁 28は、 mD P F 40と /i DP F 30 とに排気の流路切り替える機能を備えている。  Of the two types of DPFs that capture and process PM contained in the exhaust of diesel engines, mD PF 40 is effective in capturing PM contained in a large amount of exhaust emitted when the diesel engine is heavily loaded. It is a large DPF that oxidizes in a controlled manner. On the other hand, μ D P F 30 is a small D P F that collects and effectively oxidizes soot contained in a small amount of exhaust gas emitted at low load of a diesel engine. The switching valve 28 has a function of switching the flow path of exhaust gas between mD P F 40 and / i DP F 30.
また、 ディーゼルエンジンの排気浄化システムには、 // DP F 3 0に 流入する排気の温度を測定する排気温度センサ 3 2と、 メイン排気管 3 4と、 / DPF 30を通る排気の流路となるマイクロ排気管 36と、 m D P F 4 0に流入する排気の温度を測定する排気温度センサ 4 2とが 設けられている。  In addition, the exhaust gas purification system of the diesel engine: // Exhaust temperature sensor 32 for measuring the temperature of exhaust flowing into DP F 30; main exhaust pipe 34; An exhaust gas temperature sensor 42 for measuring the temperature of the exhaust gas flowing into the m DPF 40 is provided.
また同図に示すように、 切替弁 28は、 ディーゼルエンジン 1 0の排 気マ-ホールド 1 4と mD P F 40との間に設けられ、 μ D P F 30は mD P F 40よりも切替弁 28に近い位置に設けられている。 この切替 弁 28に、 mDPF 40側に排気の流路を切り替えている際にも μ D P F 30側に少量の排気を流すための隙間 (機構) を切替弁 28内に備え てもよいし、 D P F 3 0へ常に排気が流れるようにバイパス流路 (機 構) を備えるようにしてもよい。 また、 μ D P F 3 0に少量の排気を流 す際の流量を調節するアジヤストスクリユーを設けてもよい。  Also, as shown in the figure, the switching valve 28 is provided between the exhaust gas manifold 14 of the diesel engine 10 and the mD PF 40, and the μ DPF 30 is closer to the switching valve 28 than the mD PF 40. It is provided in the position. The switching valve 28 may have a gap (mechanism) in the switching valve 28 for flowing a small amount of exhaust gas to the μ DPF 30 side even when the exhaust gas flow path is switched to the mDPF 40 side. A bypass channel (mechanism) may be provided so that exhaust gas always flows to 30. In addition, an adiabst screen may be provided to control the flow rate of a small amount of exhaust gas flowing to the μ D P F 30.
吸気絞り 24等の吸気流量調節弁には、吸気を絞るための弁のァクチ ユエータが備えられており、制御手段 20から出力される制御情報に基 づいて吸気絞り弁を任意の開度に設定可能となっている。 このァクチュ エータは、制御手段 20から出力される制御指令に基づいて指定された 開度に設定してディーゼルエンジンの吸気流量を調節する機能を備え たものであって、動力源を電気とする電気式のァクチユエータであって もよいし、制御手段 2 0から出力される制御指令に基づいて負圧空気の 制御弁を制御してその負圧空気を動力源とする負圧式のァクチユエ一 タを用いるようにしてもよい。 また、 制御手段 2 0から出力される制御 指令に基づいて負圧空気の制御弁を制御してその負圧空気を動力源と する負圧式のァクチユエータを用いるようにしてもよい。 The intake flow control valve such as the intake throttle 24 is equipped with a valve actuator for throttling the intake, and the intake throttle valve is set to an arbitrary opening degree based on the control information output from the control means 20. It is possible. The actuator is provided with a function of adjusting the intake flow rate of the diesel engine by setting the opening degree specified based on the control command output from the control means 20, and the electric power source is electricity. Is an expression actuator Alternatively, a control valve for negative pressure air may be controlled based on a control command output from the control means 20, and a negative pressure type actuator using the negative pressure air as a power source may be used. Alternatively, a control valve for negative pressure air may be controlled based on a control command output from the control means 20 to use a negative pressure type actuator with the negative pressure air as a power source.
また吸気絞り 2 4に、 吸気の絞り弁開度を検出する I T P開度センサ を設け、 I T P開度フィードバック用の開度信号を制御 段 2 0に出力 するようにしてもよい。 また同図では、 吸気絞り 2 4を吸気マエホール ド 1 2の集合管路に 1つ設けた実施例で説明しているが、本発明は吸気 絞り 2 4の取付位置等を図 7に示したように限定するものではなく、 吸 気マ二ホールド 1 2内の各シリンダへの枝内に独立して設けるように してもよい。  In addition, the intake throttle 24 may be provided with an IT opening sensor for detecting the throttle opening of the intake, and an opening signal for feedback of the IT opening may be output to the control stage 20. Further, in the figure, although the embodiment in which one intake throttle 24 is provided in the manifold line of the intake manifold 12 is described, the present invention shows the installation position etc. of the intake throttle 24 in FIG. It is not limited as such, and may be provided independently in the branch to each cylinder in the intake manifold 12.
また図 7に示すディーゼルエンジンの排気浄化装置には、排気マユホ 一ルド 1 4等から取得した排気を冷却して吸気マ二ホールド 1 2等に 還流する際に、再循環させる排気の流量を調節する外部 E G Rバルブ 4 4が設けられている。 この外部 E G Rバルブ 4 4は、 アクセル踏み込み 量とエンジンの回転数等のパラメータに基づいて、制御手段 2 0が開閉 のタイミングゃ開度を適宜設定することが可能となっている。  Also, in the exhaust gas purification device for a diesel engine shown in FIG. 7, the flow rate of the exhaust gas to be recirculated is adjusted when the exhaust gas obtained from the exhaust manifold 14 is cooled and recirculated to the intake manifold 12 or the like. An external EGR valve 44 is provided. The external EGR valve 44 can appropriately set the opening / closing timing and the opening degree of the control means 20 based on parameters such as the accelerator depression amount and the engine speed.
なお、 図 7に示す外部 E G Rの例では、 排気マ二ホールド 1 4から再 循環する排気を取得しているが、本発明は排気マ-ホールド 1 4から排 気を取得する例に限定されるものではなく、 m D P F 4 0の後段から浄 ィ匕された排気を取得し、排気の温度を積極的に下げる E G Rクーラを介 して吸気マユホールド 1 2又は吸気絞り 2 4の前段に戻すように構成 してもよレ、。 E G Rクーラの冷媒は、エンジン冷却水を用いてもよいし、 車両の走行風を用いるものであってもよレ、。  In the example of the external EGR shown in FIG. 7, the exhaust gas to be recirculated is acquired from the exhaust manifold 14. However, the present invention is limited to the example of acquiring the exhaust gas from the exhaust manifold 14. Instead of getting the exhaust gas cleaned from the rear of m DPF 40 and actively reducing the temperature of the exhaust, return it to the front of intake manifold 12 or intake throttle 24 via the EGR cooler. Let's configure it. The engine coolant may be used as the refrigerant of the EGR cooler, or the traveling wind of the vehicle may be used.
更に本発明では、排気温度が特に低い低回転の運転領域及び低負荷の 運転領域において、高温の排気を燃焼前の燃焼室に直接再循環させるた めに、特殊な排気カムを用いた内部 E G R機構を用いて高温の排気を燃 焼前のシリンダに供給するようにしている。 排気絞り 2 6は、 i DP F 3 0の下流 (排気絞り 26 B) に設 ても よいし、 mD P F 40の上流 (排気絞り 2 6 C)、 又は下流 (排気絞り 26 D) に設けてもよい。 また、 μ D P F 3 0を経由した排気を、 mD P F 40を経由せずに直接大気に放出する構造としてもよい。 Furthermore, according to the present invention, internal EGR with a special exhaust cam is used to recirculate high temperature exhaust directly to the combustion chamber before combustion, especially in low rotational speed and low load operating areas where exhaust temperature is particularly low. A mechanism is used to supply high temperature exhaust gas to the cylinder before combustion. The exhaust throttle 26 may be provided downstream of the i DP F 30 (exhaust throttle 26 B), or upstream (exhaust throttle 26 C) of the mD PF 40 or downstream (exhaust throttle 26 D) It is also good. Further, the exhaust gas passing through the μ DPF 30 may be released directly to the atmosphere without passing through the mD PF 40.
なお、 多気筒の排気管が集合している場合であっても、 排気の脈動を 利用することによって排気効率を高める寸法に排気管を設定するのが 常であるが、 mD P F 40に流入する排気の温度を所定の温度以上に確 保するために μ D P F 3 0を排気ポートの近くに置く と排気干渉を生 じたり、 ボンビング損失が増大して排気効率が悪化するという不具合を 生じるので、 mD P F 40に到達する排気の温度が高い運転領域では、 なるべく mD P F 40を使用するのが望ましい。  Even when multi-cylinder exhaust pipes are gathered, it is usual to set the exhaust pipe to a size that enhances the exhaust efficiency by utilizing the pulsation of the exhaust gas, but it flows into the mD PF 40 Placing the μ DPF 30 close to the exhaust port to secure the exhaust temperature above the specified temperature may cause exhaust interference or increase the bombing loss, resulting in deterioration of the exhaust efficiency. In the operating region where the temperature of exhaust reaching mD PF 40 is high, it is desirable to use mD PF 40 as much as possible.
連続再生型排ガス浄化装置としては、前段のディーゼル用酸化触媒 D OCと後段の PM捕集フィルタ一とから構成するか、又は触媒担持型の 単独 PM捕集フィルターとした連続再生型排気浄化装置を用いるのが 一般的である。  As a continuous regeneration type exhaust gas purification apparatus, a continuous regeneration type exhaust purification apparatus is constituted by the diesel oxidation catalyst D OC in the front stage and the PM collection filter 1 in the rear stage, or as a single PM collection filter with a catalyst support type. It is common to use.
また、 ディーゼルエンジン 1 0には、 ディーゼルエンジンのクランク シャフトの回転力を得て、正圧又は負圧の空気を出力する空気ポンプ 4 6と、空気ポンプ 46が出力した正圧又は負圧の空気を貯蓄する空気タ ンク 48とが設けられている。 ここで貯蓄した負圧の空気は、 一般には 小型の車両を制動する際にマスターパックにて制動時の踏力を補助す るのに用いられる。 また、 貯蓄した正圧の空気は、 中大型車両では制動 力の発生用に用いられたり、懸 装置の空気パネに用いられたりするも のである。 本発明では、 貯蓄した正圧又は負圧の空気を用いて、 吸気流 量調節弁 (吸気絞り 24等)、 排気絞り 2 6、 切替弁 28、 EGRバル ブ 44等を動作させるための動力源に用いることも可能である。  Also, in the diesel engine 10, an air pump 46 that outputs the positive pressure or negative pressure air by obtaining the rotational force of the diesel engine crankshaft, and the positive pressure or negative pressure air output by the air pump 46 An air tank 48 is provided to save The negative pressure air stored here is generally used by the master pack to assist the braking force when braking a small vehicle. In addition, the stored positive pressure air is used for generating braking force in medium and large vehicles, and for air panels in suspension systems. In the present invention, a power source for operating the intake flow control valve (intake throttle 24 or the like), the exhaust throttle 26, the switching valve 28, the EGR valve 44 or the like using the stored positive pressure or negative pressure air. It is also possible to use
また、 ディーゼルエンジン 1 0の排気浄化装置には、 DPF 3 0の 入口部と出口部との間の圧力差 ( D P F 3 0前後の圧力差) を測定す る差圧センサ 3 3と、 mD P F 4 0の入口部と出口部との間の圧力差 (mD P F 40前後の圧力差) を測定する差圧センサ 4 3とを設けてあ る。 制御手段 2 0は、 差圧センサ 3 3又は差圧センサ 4 3が検出した μ D P F 3 0又は m D P F 4 0前後の圧力差を A— D変換器等を介して 読み取って、 所定の圧力差 (エンジンの回転数、 エンジン排気量、 体積 効率又は D P Fを流れる排気の体積流量や、 吸入空気の密度等に基づい て決定する変数であってもよい) 以上になっていると判断した場合には、 Ρ ΐν^^ μ D P F 3 0又は m D P F 4 0に堆積しつつあると判断して、 吸 気絞り 2 4等の吸気流量調節弁に対して吸気流量を増大する制御指令 を出力することが可能となっている。 このとき、 所定の時間経過後 (第 1の所定時間経過後) であって且つ差圧センサが検出した圧力差が所定 の閾値以上である場合には、 吸気絞り 2 4等の吸気流量調節弁に吸気流 量を増大する制御指令を出力するようにしてもよい。 The exhaust purification system of the diesel engine 10 also includes a differential pressure sensor 33 for measuring the pressure difference between the inlet and the outlet of the DPF 30 (a pressure difference around the DPF 30), and an mD PF A differential pressure sensor 43 is provided to measure the pressure difference between the inlet and outlet of the 40 (pressure difference around the mD PF 40). Ru. The control means 20 reads a pressure difference around the μ DPF 30 or m DPF 40 detected by the differential pressure sensor 33 or the differential pressure sensor 43 via an A-D converter or the like to obtain a predetermined pressure difference. (It may be a variable determined based on the engine speed, engine displacement, volumetric efficiency, volumetric flow of exhaust flowing through the DPF, density of the intake air, etc.)判断 ^ ^ ^ ^ μ DPF 30 or m DPF 40 It is judged that the control command to increase the intake flow rate to the intake flow control valve such as the intake throttle 24 etc. It is possible. At this time, if a predetermined time has elapsed (after a first predetermined time) and the pressure difference detected by the differential pressure sensor is equal to or greater than a predetermined threshold, the intake flow control valve such as the intake throttle 24 or the like. Control command may be output to increase the intake flow rate.
また、 制御手段 2 0は、 吸気絞り 2 4等の吸気流量調節弁に対して吸 気流量を增大する制御指令を出力中に、 μ D P F 3 0又は m D P F 4 0 前後の圧力差が所定の圧力差以下になっていると判断した場合には、 μ D P F 3 0又は m D P F 4 0に堆積していた P Mが燃焼して C O 2に変 化し、 P Mの堆積量が減少したと判断して、 吸気絞り 2 4等の吸気流量 調節弁に対して吸気流量を本来の吸気流量に戻す制御指令を出力する ことが可能となっている。 ' In addition, while the control means 20 is outputting a control command for increasing the intake flow rate to the intake flow control valve such as the intake throttle 24 etc., the pressure difference around the μ DPF 30 or m DPF 4 0 is predetermined If it is judged that the pressure difference is below the pressure difference of PM, the PM deposited on μ DPF 30 or m DPF 40 burns and is converted to CO 2 and it is judged that the amount of PM deposited decreases. Thus, it is possible to output a control command for returning the intake flow rate to the original intake flow rate to the intake flow control valve such as the intake throttle 24 and the like. '
このようにして、差圧センサ 3 3又は差圧センサ 4 3から入力した圧 力差に基づ.いて、 吸気絞り 2 4等の吸気流量調節弁を制御する情報を出 力するようにしたので、 D P F内に P Mが過剰に堆積した場合であって も、 その旨を早期に検出して P Mを適度に燃焼させ、 D P Fを連続再生 することが可能となる。  Thus, based on the pressure difference input from the differential pressure sensor 3 3 or the differential pressure sensor 4 3, information for controlling the intake flow control valve such as the intake throttle 24 is output. Even if PM is excessively deposited in the DPF, it is possible to detect this early and burn PM appropriately to continuously regenerate the DPF.
なお、 図 7に示す例では、 E G Rパルプ 4 4を用いることによって、 燃焼前の燃焼室に送り込む高温の排気を調節しているが、前述の E G R バルブ 4 4を用いる代わりに、 図 8及び図 9に示す特殊な排気カムを用 いた E G R機構 (内部 E G R方式) によって高温の排気を燃焼前のシリ ンダに供給するようにしてもよい。  In the example shown in FIG. 7, the high temperature exhaust gas fed into the combustion chamber before combustion is adjusted by using the EGR pulp 44. However, instead of using the EGR valve 44 described above, FIGS. High temperature exhaust gas may be supplied to the cylinder before combustion by an EGR mechanism (internal EGR system) using a special exhaust cam shown in 9.
また、 図 7に示すように、 ディーゼルエンジン 1 0の吸気経路に、 吸 気絞り 2 4をバイパスする吸気流量調節弁 2 5と、 吸気流量調節弁 2 5 を通過する吸気流量を調節する制御指令を出力する吸気スパイク制御 手段 2 1を独立して設けるようにしてもよい。 吸気流量調節弁 2 5と吸 気スパイク制御手段 2 1とその経路を独立して設けることによって、既 存の吸気絞り 2 4と制御手段 2 0を備えたディーゼルエンジンに対し ても、 本発明に係る排気浄化装置を容易に後付けして、 D P Fに堆積す る P Mを効果的に酸化させて D P Fを連続再生することが可能となる。 図 8は、燃焼前のシリンダに排気を直接戻す E G R機構を備えたディ ーゼルエンジンの燃焼室部分の断面図である。 Also, as shown in Figure 7, the intake path of the diesel engine 10 The intake flow control valve 25 for bypassing the air throttle 24 and the intake spike control means 21 for outputting a control command for adjusting the intake flow rate passing through the intake flow control valve 2 5 may be provided independently. . By providing the intake flow control valve 25 and the intake spike control means 21 and their paths independently, the present invention can be applied to a diesel engine provided with the existing intake throttle 24 and the control means 20. Such exhaust gas purification devices can be easily retrofitted to effectively oxidize the PM deposited on the DPF and continuously regenerate the DPF. FIG. 8 is a cross-sectional view of a combustion chamber portion of a diesel engine equipped with an EGR mechanism that directly returns exhaust gas to a cylinder before combustion.
同図に示すように、 ディーゼルエンジンの燃焼室部分には、 吸気バル プ 5 2、排気バルブ 5 4及び嘖射ノズル 6 2を備えるとともに燃焼室を 形成しているシリンダへッド 5 0と、燃焼圧力を受け止めてクランクシ ャフトに回転力を伝達するビストン 6 0と、 ピス トン 6 0の摺動面とな るシリンダ 5 8とが設けられている。  As shown in the figure, a cylinder head 50 having an intake valve 52, an exhaust valve 54 and an injection nozzle 62 and forming a combustion chamber in the combustion chamber portion of the diesel engine, Biston 60 which receives combustion pressure and transmits torque to the crankshaft, and a cylinder 58 which is a sliding surface of piston 60 are provided.
排気バルブ 5 4の排気タイミングとリフト量を定めている排気カム 5 6には、 通常の排気工程を行なうために排気バルブ 5 4を開く第 1の カム山と、 吸気工程の終了時期付近で排気バルブ 5 4を少し開く第 2の カム山との 2つのカム山が設けられている。  The exhaust cam 56, which defines the exhaust timing and lift amount of the exhaust valve 54, is the first cam peak that opens the exhaust valve 54 to perform the normal exhaust process, and the exhaust near the end of the intake process. Two cam peaks are provided with a second cam peak which opens the valve 54 slightly.
このように排気カム 5 6に 2つのカム山を形成することにより、通常 の燃焼後の排気工程で排気パルプ 5 4を開いて燃焼後の排気を排気マ 二ホールドに出す機能と、吸気工程の終了付近で再び排気パルプ 5 4を 適量開いて排気を燃焼前のシリンダー (又は燃焼室) 内に戻す機能とを 備えることが可能となっている。  In this way, by forming two cam peaks on the exhaust cam 56, the exhaust pulp 54 is opened in the normal post-combustion exhaust process, and the post-combustion exhaust gas is discharged to the exhaust manifold. Near the end, it is possible to provide an exhaust pulp 54 with a function to open an appropriate amount again and return the exhaust to the cylinder (or combustion chamber) before combustion.
図 9は、 ピス トン 6 0の位置と吸気バルブ 5 2のリフト量及び排気バ ルブ 5 4のリフト量との関係を示す図である。  FIG. 9 is a diagram showing the relationship between the position of piston 60 and the lift amount of intake valve 52 and the lift amount of exhaust valve 54.
通常のディーゼルエンジンの吸排気のタイミングと同様に、燃焼後ピ ス トン 6 0が下死点に到達する前から排気バルブ 5 4が開き始め、燃焼 ガスの排気を開始する。 クランクシャフトが約半回転してビストン 6 0 が上死点に近づくと、 その排気工程の終了付近で吸気バルブを開き始め 2003/012476 Similar to the intake and exhaust timing of a normal diesel engine, the exhaust valve 54 starts to open before combustion of the piston 60 reaches the bottom dead center, and exhaust of combustion gas is started. As the crankshaft rotates approximately half turn and Bison 6 0 approaches the top dead center, it starts to open the intake valve near the end of the exhaust process 2003/012476
て次の燃焼のための新気の導入を開始する。 Start introducing fresh air for the next combustion.
ピストンが再ぴ下死点に近づき、 吸気工程が終了する近傍では、 一般 のエンジンでもシリンダ 5 8内の圧力よりも排気マユホールド 1 4內 の圧力の方が高いので、 ここで再度排気バルブ 5 4を開いた場合には、 排気マユホールド 1 4から高温の排気がシリンダ内に逆流して、 吸入し た新気とともに排気がシリンダ内に充填される。  Near the end of the intake stroke when the piston approaches the bottom dead center again, the pressure in the exhaust manifold 14 is higher than the pressure in the cylinder 58 even in a general engine, so here again the exhaust valve 5 When 4 is opened, the high temperature exhaust gas flows back into the cylinder from the exhaust manifold 14. The exhaust gas is charged into the cylinder together with the fresh air taken in.
ビストンが下死点を通過した後から圧縮工程を開始する。 一般に圧縮 前のシリンダ内の気体の温度 T H 1及ぴ圧力 P 1と、圧縮工程終了後の 気体温度 T H 2及ぴ P 2との関係は以下の式で表される。 The compression process is started after Biston passes the bottom dead center. Generally, the relationship between the temperature T H 1 and pressure P 1 of the gas in the cylinder before compression and the gas temperature T H 2 and P 2 after completion of the compression step is expressed by the following equation.
Figure imgf000021_0001
Figure imgf000021_0001
k :気体の比熱比 (空気の場合 1 . k: specific heat ratio of gas (in the case of air 1.
ディーゼルエンジンの圧縮比を、
Figure imgf000021_0002
= 2 . 2 0 8となる。 したがって、 圧縮前の 空気に燃焼後の高温の排気を混入して、圧縮前の気体の温度が 1 0 °C上 昇した場合には、 圧縮後の温度は 2 2 . 0 8 °C上昇することになり、 過 剰空気が少ないこともあいまって燃焼後の排気温度も上昇するので、 D P F內に捕集した P M (スート、 煤などを含む) を連続再生しやすくす ることが可能となる。 また、 排気を現状の N O X還元触媒に通す場合に も、 触媒を有効に機能させるために、 広範囲な運転状況における排気温 度維持のための制御は必須である。
Diesel engine compression ratio,
Figure imgf000021_0002
= 2. 2 0 8 Therefore, if the high temperature exhaust after combustion is mixed into the air before compression and the temperature of the gas before compression rises by 10 ° C., the temperature after compression rises by 2 2.8 ° C. In this case, combined with the fact that there is less excess air, the temperature of the exhaust after combustion also rises, which makes it easier to continuously regenerate PM (including soot, soot, etc.) collected in the DPF soot. . In addition, even when passing the exhaust gas through the current NOx reduction catalyst, control for maintaining the exhaust gas temperature in a wide range of operating conditions is essential to make the catalyst function effectively.
ただ単に排気温度を上昇させるのであれば、排気カムの第 2のカム山 のリフトを高く、 又は動作角度を広く設定し、 シリンダ内に逆流する排 気の量を増大させて排気温度を高く設定することが可能である。  If simply raising the exhaust temperature, set the lift of the second cam peak of the exhaust cam high or set the operating angle wide, and increase the amount of exhaust gas flowing back into the cylinder to set the exhaust temperature high. It is possible.
ところが、 第 2のカム山による排気パルプ 5 4のリフトは、 エンジン 運転領域全域でリフトするため、高負荷時のように燃料供給量と比較し て空気量が少なくなる領域では、排圧が高くなるので排気の逆流も多く なり、 不完全燃焼となりやすく、 P M (スート、 煤、 スモーク等) が D P Fにおける再生可能量を超えて大量に発生することになる。  However, because the lift of exhaust pulp 54 by the second cam peak lifts over the entire engine operation area, the exhaust pressure is high in the area where the amount of air decreases compared to the amount of fuel supplied as in high load. As a result, the backflow of the exhaust gas also increases, which tends to result in incomplete combustion, and a large amount of PM (soot, soot, smoke, etc.) is generated beyond the amount that can be regenerated in the DPF.
P Mが D P Fの再生可能量を超えて大量に発生すると、 D P F内部に おいて P Mが堆積して排圧の急増を招き、燃費を大幅に悪化させること となる。 また、 運転状況の変動により排気温度が上昇した場合には、 堆 積している大量の P Mが連鎖的に燃焼を開始し、 D P Fを熔損に至らし める可能性もある。 If PM occurs in a large amount exceeding the DPF's renewable capacity, In addition, PM deposits and causes a rapid increase in exhaust pressure, which significantly deteriorates fuel efficiency. In addition, if the exhaust temperature rises due to fluctuations in operating conditions, a large amount of deposited PM may start combustion in a chain, leading to damage to the DPF.
また逆に、 第 2のカム山による排気バルブ 5 4のリフトを低く、 又は 動作角度を狭く設定すると、 シリンダ 5 8内への排気の逆流量が少なく なり、 低負荷時には排気温度が低くなるなど、 所定の排気温度を維持す ることが可能なエンジン運転領域が狭くなってしまう。  Conversely, if the lift of the exhaust valve 54 due to the second cam peak is set low or the operating angle is set narrow, the reverse flow rate of the exhaust into the cylinder 58 will be small, and the exhaust temperature will be low when the load is low, etc. However, the engine operating range where the predetermined exhaust temperature can be maintained is narrowed.
排気カムのカム山をずらしたり、排気パルプのリフト量を可変する技 術 (可変バルブタイミング機構など) も知られているが、 現在走行中の ディーゼルエンジン車両に対してレトロフイツ トの形で本願発明に係 るディーゼルエンジンの排気浄化装置を装着し、排出される P Mを減少 させようとする場合には、 固定のカム山を備えていた方が改造作業を行 なうにあたってのコストが安価となるので好都合である。  There are also known techniques (such as a variable valve timing mechanism) for shifting the cam height of the exhaust cam or changing the lift amount of the exhaust pulp, but the present invention in the form of a retrofit for a diesel engine vehicle currently traveling. If you install the exhaust purification system of the diesel engine concerned and try to reduce the PM that is discharged, it would be cheaper to do remodeling work if it had a fixed cam pile So convenient.
また一般に、 排気の量が少ない低負荷の運転領域では、 吸気絞り 2 4 及び排気絞り 2 6を制御しても十分に排気温度が上昇しない場合が多 レ、。 したがって、 排気効率を良くする目的等のため長く延ばした排気管 の先にのみ D P Fを設けると、排気が D P Fに到達するまでに排気のガ ス温度が低下してしまうので、排気に含まれる P Mを D P Fで連続再生 できないという不具合を生ずる。  Also, in general, in low load operation areas where the amount of exhaust is small, there are many cases where the exhaust temperature does not rise sufficiently even if the intake throttle 24 and the exhaust throttle 26 are controlled. Therefore, if the DPF is provided only at the end of the extended exhaust pipe for the purpose of improving the exhaust efficiency etc., the exhaust gas temperature will drop before the exhaust reaches the DPF, so PM contained in the exhaust will be included. There is a problem that continuous regeneration with DPF can not be performed.
そこで、 まずシリンダ内に逆流する排気の流量を細かく調節するため に吸気絞り 2 4を備え、低負荷運転時のように排気温度の低くなりがち な領域においては、排気マ二ホールド 1 4の直下に設けた μ D P F 3 0 に排気を流すようにして、 より広範囲な負荷範囲で排気温度を維持して Ρ Μの排出量を減少させることが可能となる。 一方の高負荷運転時のよ うに十分な排気温度が得られる領域では、 m D P F 4 0を主に用いるこ とによって従来のディーゼルエンジンと同様な排気効率を確保して、燃 費や出力を維持することが可能となっている。  Therefore, first, in order to finely adjust the flow rate of the exhaust gas flowing back into the cylinder, the intake throttle 24 is provided, and in a region where the exhaust temperature tends to be low as in low load operation, the exhaust manifold 14 directly below By flowing the exhaust gas through the μ DPF 3 0 provided in, it is possible to maintain the exhaust temperature in a wider load range and reduce the amount of soot emissions. In areas where sufficient exhaust temperature can be obtained, such as during high-load operation, fuel efficiency and fuel output can be maintained by using m DPF 40 mainly to ensure exhaust efficiency similar to that of a conventional diesel engine. It is possible to
また、 アイ ドリング時や低負荷低回転の運転領域では、 吸気絞り 2 4 を絞っても排気温度が所定の温度に到達しない領域が一般に存在する。 この場合には、 吸気絞り 24を絞ると同時に排気絞り 26を絞ることに よって排圧を高め、 シリンダに戻す排気の量を多く して排気温度を確保 することが可能となっている。 また、 このようにして、 より広い運転領 域で排気に含まれる PMを連続再生する処理を行なうことが可能とな つている。 In addition, during idling and in the low-load low-rotation operation area, the intake throttle 2 4 Generally, there is a region where the exhaust gas temperature does not reach a predetermined temperature even if In this case, by throttling the intake throttle 24 and throttling the exhaust throttle 26, it is possible to increase the exhaust pressure and increase the amount of exhaust returned to the cylinder to secure the exhaust temperature. Also, in this way, it is possible to perform a process of continuously regenerating PM contained in exhaust gas in a wider operating area.
図 1 0は、本発明に係るディーゼルエンジンの排気浄化装置に用いる I TP制御マップを示す図である。  FIG. 10 is a view showing an I-TP control map used for an exhaust gas purification apparatus of a diesel engine according to the present invention.
同図に示す I T Pマップは制御手段 2 0内に設けられたメモリ等の 記憶手段に記憶されており、 制御手段 20は、 アクセルポジションセン サ 1 6から入力したアクセルペダル踏み込み量 (AP P) と、 回転セン サ 1 8から入力したエンジンの回転数 (Ne) とに基づいて、 前記記録 手段に記録されている I丁 Pマップを参照し、 吸気絞り 24 ( I TP開 と、 排気絞り 2 6と、 切替弁 28とを制御する情報を出力する。 な お I TPマップを記録する記録手段は、制御手段 20の内部に設けても よいし、制御手段 20の外部に独立して設けて制御手段 20と通信可能 に接続してもよい。  The ITP map shown in the figure is stored in storage means such as a memory provided in the control means 20. The control means 20 receives the accelerator pedal depression amount (APP) input from the accelerator position sensor 16 and The I / P map recorded in the recording means is referred to based on the engine speed (Ne) input from the rotation sensor 18 and the intake throttle 24 (I TP open and exhaust throttle 2 6 And information to control the switching valve 28. Note: The recording means for recording the TP map may be provided inside the control means 20, or provided separately outside the control means 20 for control It may be communicably connected to the means 20.
同図に示すように、 たとえばエンジン回転数が 1 00 Orpmの場合で あって、運転手がアクセルペダルを 40 %踏み込んでいる中負荷の運転 状態では、 排気温度が所定の温度に上昇しているので、 制御手段 20は 吸気絞り 24に対して 1 00%の開度 ( I TP= 1 0 0%) となるよう に制御する情報を出力している。 また、 切替弁 28に対しては、 mDP F 40に排気を流すように制御信号を出力する。  As shown in the figure, for example, when the engine speed is 100 Orpm and the driver is depressing the accelerator pedal by 40%, the exhaust gas temperature rises to a predetermined temperature under a medium load operating condition. Therefore, the control means 20 outputs information for controlling the intake throttle 24 so that the opening degree is 100% (I TP = 100%). Further, a control signal is output to the switching valve 28 so as to flow the exhaust gas to the mDP F 40.
なお、 このように mD P F 40に排気を流している場合に、 全ての排 気を mD P F 40のみに流すのではなく、 μ D P F 3 0にも少量の排気 が流れるように切替弁 28等を構成してもよい。 mD PF 40使用時に も μ D P F 30に少量の排気を流し続けることによって、 DP F 30 の温度を所定の温度に維持することが可能となり、運転状況によって負 荷が減少し、 ^ D P F 3 0に排気の流れを切り替えた場合であっても、 切替直後から ^ D P F 3 0は P Mを連続処理することが可能となる。 し たがって、運転状況が急に変化した場合であっても P Mを連続再生する ことが可能となる。 In addition, when exhaust gas is flowing to the mD PF 40 in this way, the switching valve 28 and the like are controlled so that a small amount of exhaust gas also flows to the μ DPF 30 instead of flowing all exhaust gas only to the mD PF 40. It may be configured. Even when using mD PF 40, it is possible to maintain the temperature of DP F 30 at a predetermined temperature by continuing to flow a small amount of exhaust gas to μ DPF 30, reducing the load depending on the operating conditions. Even when switching the flow of exhaust, Immediately after switching, ^ DPF 3 0 can process PM continuously. Therefore, it is possible to continuously regenerate PM even when the driving situation changes suddenly.
前記のエンジン回転数が 1 0 0 O rpmの中負荷の運転状態であって、 運転手がアクセルペダルの踏み込み量を 4 0 %から 3 0 %まで戻した 場合には、 制御手段 2 0は I T P制御マップを参照して、 吸気絞り 2 4 を 3 0 %まで絞る制御情報を出力する。  If the above-mentioned engine speed is medium load operation condition of 1 0 0 O rpm and the driver returns the depression amount of the accelerator pedal from 4 0% to 3 0%, the control means 20 becomes ITP. Referring to the control map, output control information to throttle the intake throttle 2 4 to 30%.
すると吸気絞り 2 4は、制御手段 2 0から取得した制御情報に基づい て、 シャツタ又はバタフライパルプ等によって吸気経路を 3 0 %まで絞 り、 吸気の流量を減少させる。 すると吸気工程のシリンダに吸入される 空気量は減少するので、 吸入工程終了付近でシリンダ內の圧力が下がり、 シリンダ内に逆流する排気の量が増加する。すると圧縮前の気体温度が 上昇するので、 圧縮、 燃焼後の排気の温度が上昇し、 m D P F 4 0に流 入する排気の温度を P Mを連続再生可能な温度に維持することが可能 となる。  Then, based on the control information acquired from the control means 20, the intake throttle 24 throttles the intake path to 30% with a shirt or butterfly pulp or the like to reduce the flow rate of intake. Then, the amount of air taken into the cylinder of the intake process decreases, so the pressure in the cylinder 下 が り decreases near the end of the intake process, and the amount of exhaust gas flowing back into the cylinder increases. Then, since the temperature of the gas before compression rises, the temperature of the exhaust after compression and combustion rises, and it becomes possible to maintain the temperature of the exhaust flowing into m DPF 40 at a temperature that allows continuous regeneration of PM. .
エンジン回転数が 1 0 0 O rpmの運転状態で、 運転手がアクセルぺダ ルの踏み込み量を更に 2 5 %付近まで戻した場合には、 制御手段 2 0は I T P制御マップを参照して、 吸気絞り 2 4を約 1 0 %まで絞る制御情 報を出力する。  If the driver further returns the accelerator pedal depression amount to around 25% when the engine speed is 100 o rpm, the control means 20 refers to the ITP control map, Outputs control information that throttles the intake throttle 24 to approximately 10%.
すると吸気絞り 2 4は、制御手段 2 0から取得した制御情報に基づい て吸気経路を約 1 0 %まで絞り、 吸気の流量を更に減少させる。 すると 吸気工程のシリンダに吸入される空気量は更に減少するので、 吸入工程 終了付近でシリンダ内の圧力が更に下がり、 シリンダ内に逆流する排気 の量が増加する。 すると圧縮前の気体温度が上昇するので、 圧縮、 燃焼 後の排気の温度が上昇し、 m D P F 4 0に流入する排気の温度を P Mを 連続再生可能な温度に維持することが可能となる。  Then, the intake throttle 24 squeezes the intake path to about 10% based on the control information acquired from the control means 20 to further reduce the flow rate of the intake. Then, the amount of air taken into the cylinder of the intake process further decreases, so the pressure in the cylinder further decreases near the end of the intake process, and the amount of exhaust gas flowing back into the cylinder increases. Then, since the temperature of the gas before compression rises, the temperature of the exhaust after compression and combustion rises, and it becomes possible to maintain the temperature of the exhaust flowing into m D P F 40 at a temperature at which PM can be continuously regenerated.
なお、 制御手段 2 0が出力する吸気絞り 2 4の絞り量の制御情報は、 同図に示す I T P 1 0 0 %の線と I T P 3 0 %の線の間にて直線補間 を行なってもよいし、 二次曲線以上の曲線捕間を行なうようにして、 細 かい制御を行なうようにしてもよい。 The control information of the throttle amount of the intake throttle 24 outputted by the control means 20 may be linearly interpolated between the ITP 100% line and the ITP 30% line shown in the figure. To make the curve capture interval more than a quadratic curve, Pad control may be performed.
エンジン回転数が 1 0 0 O rpmの運転状態で、 運転手がアクセルぺダ ルの踏み込み量を更に 2 3 %付近まで戻した場合には、制御手段 2 0は I T P制御マップを参照して、切替弁 2 8を制御して排気を μ D P F 3 0に流すように制御信号を出力するとともに、吸気絞り 2 4を 1 0 0 % まで開く制御情報を出力する。  If the driver further returns the accelerator pedal depression amount to around 2 3% while the engine speed is 100 0 rpm, the control means 20 refers to the ITP control map. The control valve 28 is controlled to output a control signal so as to flow the exhaust gas to the μ DPF 30 and also to output control information for opening the intake throttle 24 to 100%.
この状態では、 吸気絞り 2 4を開くので排気温度は低下するが、 排気 を通す D P Fを大型の m D P F 4 0から小型で排気マ-ホールド直下 に設けた小型の/ z D P F 3 0に切り替えるので、排気抵抗が増大してェ ンジン排気圧力が m D P F 4 0の場合よりも高くなるので、排気の逆流 が増大して排気温度が上がり μ D P F 3 0に流れ込む排気の温度は Ρ Μを連続再生可能な温度となっている。 なお、 負荷が低い運転状態では 排気の流量が少ないので、小型の D P Fであっても十分処理可能である とともに、 吸気を絞らないので燃費の悪化や出力の低下を防止すること が可能となる。  In this state, the exhaust temperature decreases because the intake throttle 24 is opened, but the DPF passing through the exhaust is switched from the large m DPF 40 to the small m / z DPF 30 provided directly under the exhaust manifold. Since the exhaust resistance increases and the engine exhaust pressure becomes higher than in m DPF 40, the exhaust backflow increases and the exhaust temperature rises. The temperature of the exhaust flowing into μ DPF 30 continuously regenerates the air It is possible temperature. In addition, since the flow rate of the exhaust gas is small in the operating state where the load is low, even small D PF can be sufficiently processed, and since the intake air is not throttled, it is possible to prevent the deterioration of the fuel efficiency and the reduction of the output.
また、設計段階で μ D P F 3 0の容量(大きさ)を決定する場合には、 排気を処理するディーゼルエンジンの排気温度特性と排気の流暈に応 じて決定するとよい。 また、 m D P F 4 0の容量 (大きさ) や、 各 D P Fまでの排気管の長さ、 切替弁 2 8の取付位置なども、 対象となる車種 やエンジンの構成などによって適宜決定する。  In addition, when determining the capacity (size) of μ D P F 30 at the design stage, it should be determined according to the exhaust temperature characteristics of the diesel engine that processes the exhaust and the exhaust flow. In addition, the capacity (size) of m D P F 40, the length of the exhaust pipe up to each D P F, the mounting position of the switching valve 28, etc. are appropriately determined depending on the type of vehicle and engine configuration.
エンジン回転数が 1 0 0 O rpmの運転状態で、 運転手がアクセルぺダ ルの踏み込み量を更に 1 0 %付近まで戻した場合には、制御手段 2 0は I T P制御マップを参照して、 吸気絞り 2 4を約 5 %まで絞る制御情報 を出力する。 そして、 更に排気絞り 2 6に対しても所定の開度まで絞る 制御情報を出力する。  If the driver further returns the accelerator pedal depression amount to around 10% while the engine speed is 100 ° O rpm, the control means 20 refers to the ITP control map. Outputs control information to throttle the intake throttle 2 4 to approximately 5%. Further, control information for narrowing the exhaust throttle 26 to a predetermined opening degree is also output.
吸気絞り 2 4は、制御手段 2 0から取得した制御情報に基づいて吸気 経路を約 5 %まで絞り、 吸気の流量を減少させる。 また、 排気絞り 2 6 も所定の開度まで絞るので、排気マユホールド 1 4内の排圧が維持され るか、 又は排圧が上昇する。 すると吸気工程のシリンダに吸入される空気量は更に減少するので、 シリンダ内に逆流する排気の量が増加する。 そして圧縮前の気体温度が 更に上昇するので、 圧縮、 燃焼後の排気の温度が上昇し、 D P F 3 0 に流入する排気の温度を P Mを連続再生可能な温度に維持することが 可能となる。 The intake throttle 24 throttles the intake path to about 5% based on the control information acquired from the control means 20 to reduce the flow rate of the intake. In addition, since the exhaust throttle 2 6 is also narrowed to a predetermined opening degree, the exhaust pressure in the exhaust manifold 14 is maintained or the exhaust pressure rises. Then, the amount of air taken into the cylinder of the intake process further decreases, so the amount of exhaust gas flowing back into the cylinder increases. Since the temperature of the gas before compression further rises, the temperature of the exhaust after compression and combustion rises, and it becomes possible to maintain the temperature of the exhaust flowing into the DPF 30 at a temperature that allows continuous regeneration of PM.
このとき、 排気絞り 2 6の絞り量も、 アクセルペダルの踏み込み量又 はエンジンの回転数に応じて絞り量を制御するようにしてもよい。 その 場合には I T P制御マップに、 エンジンの回転数が所定の回転数よりも 低く、 かつ、 アクセルペダルの踏み込み量が所定の踏み込み量よりも少 ない場合に、 排気絞り 2 6を絞るように情報を入力しておき、 制御手段 2 0はアクセルペダルの踏み込み量とエンジンの回転数とを入力して 前記 I T P制御マップを参照し、排気絞り 2 6を制御する情報を出力す るようにしてもよい。  At this time, the throttle amount of the exhaust throttle 26 may also be controlled in accordance with the depression amount of the accelerator pedal or the engine speed. In this case, the ITP control map shows that if the engine speed is lower than the predetermined speed and the accelerator pedal depression amount is smaller than the predetermined depression amount, the exhaust throttle 26 is narrowed. The control means 20 inputs the depression amount of the accelerator pedal and the engine speed, refers to the ITP control map, and outputs the information for controlling the exhaust throttle 26. Good.
また同図に示すように I T P制御マップは、エンジンの回転数の減少 及ぴアクセルペダルの踏み込み量の減少に伴って、 吸気を絞る制御を行 なう領域を備えている。  Also, as shown in the figure, the IT control map has an area for performing control for throttling the intake as the engine speed decreases and the accelerator pedal depression amount decreases.
また同図に示すように I T P制御マップは、 エンジンの回転数の減少 及ぴアクセルペダルの踏み込み量の減少に伴って、排気を m D P F 4 0 から At D P F 3 0に切り替える制御を行なう領域を備えている。  Also, as shown in the figure, the ITP control map has an area for performing control to switch the exhaust gas from m DPF 4 0 to At DPF 3 0 as the engine speed decreases and the accelerator pedal depression amount decreases. ing.
また、 同図に示すように I T P制御マップは、 エンジンの回転数の減 少及びアクセルペダルの踏み込み量の減少に伴って、排気を絞る制御を 行なう領域を備えている。  Further, as shown in the figure, the IT control map has an area for performing control for throttling the exhaust as the engine speed decreases and the accelerator pedal depression amount decreases.
また制御手段 2 0は、 μ D P F 3 0又は m D P F 4 0に流入する排気 の温度を測定する排気温度センサ 3 2から入力した排気温度に基づい て、 吸気絞り 2 4、 排気絞り 2 6、 又は切替弁 2 8を制御する情報を出 力し、 排気温度を所定の温度範囲に制御するようにしてもよい。 この場 合に制御手段 2 0は、排気温度に応じて I T P制御マップをずらす処理 を行なってもよいし、 吸気絞り 2 4、 排気絞り 2 6、 又は切替弁 2 8に 出力する制御情報に対して所定の係数を加算又は乗算する処理を行な つてもよい。 The control means 20 also controls the intake throttle 24, the exhaust throttle 26 or the exhaust throttle 26 based on the exhaust temperature input from the exhaust temperature sensor 32 that measures the temperature of the exhaust flowing into the μ DPF 30 or m DPF 40. Information for controlling the switching valve 28 may be output to control the exhaust temperature within a predetermined temperature range. In this case, the control means 20 may perform a process of shifting the ITP control map according to the exhaust temperature, or control information output to the intake throttle 24, the exhaust throttle 26 or the switching valve 28. Process to add or multiply predetermined coefficients. It may be connected.
一般的な傾向としては、排気温度が低い場合には吸気絞り 2 4を絞る 制御情報、 排気絞り 2 6を絞る制御情報等を出力するが、 ディーゼルェ ンジン 1 0の運転状況に応じて切替弁 2 8を D P F 3 0側に切り替 える制御情報を出力するようにしてもよい。  As a general trend, control information for throttling the intake throttle 24 and control information for throttling the exhaust throttle 2 6 etc. are output when the exhaust temperature is low, but the switching valve according to the operating condition of the diesel engine 10 Control information for switching the 8 to the DPF 30 may be output.
また、 図 7に示すようにディーゼルエンジンの吸気温度を測定する吸 気温度センサ 2 2を吸気マ-ホールド 1 2等に備え、 制御手段2 0は、 吸気温度センサ 2 2から入力した吸気温度に基づいて、 吸気絞り 2 4、 排気絞り 2 6、又は切替弁 2 8を制御する情報を出力するようにしても よい。 この場合に制御手段 2 0は、 吸気温度に応じて I T P制御マップ をずらす処理を行なってもよいし、 吸気絞り 2 4、 排気絞り 2 6、 又は 切替弁 2 8に出力する制御情報に対して所定の係数を加算又は乗算す る処理を行なってもよい。 Also, as shown in FIG. 7, an intake temperature sensor 22 for measuring the intake temperature of the diesel engine is provided in the intake manifold 12 or the like, and the control means 20 controls the intake temperature input from the intake temperature sensor 22 Information for controlling the intake throttle 24, the exhaust throttle 26, or the switching valve 28 may be output based on this. In this case, the control means 20 may perform processing to shift the ITP control map according to the intake temperature, or to the control information output to the intake throttle 24, the exhaust throttle 26 or the switching valve 28. A process of adding or multiplying predetermined coefficients may be performed.
このように、制御手段 2 0が排気温度又は吸気温度を入力して排気温 度を制御することによって、安定した使用条件から逸脱して排気の温度 が変化した場合であっても、所定の排気温度を維持することが可能とな る。  As described above, the control means 20 inputs the exhaust gas temperature or the intake air temperature to control the exhaust gas temperature, so that even if the temperature of the exhaust gas changes due to the deviation from the stable use condition, the predetermined exhaust gas is produced. It is possible to maintain the temperature.
また制御手段 2 0は、排気ブレーキスィッチから排気ブレーキを働か せる指示を入力した場合には、 吸気絞り 2 4を開く指示を出力するよう にしてもよレ、。これは、吸気を絞ったまま排気ブレーキを作動させても、 吸気する空気量が少ないために排圧が上昇せず、排気ブレーキとしての 効き具合が低下することを防止するためである。  The control means 20 may also output an instruction to open the intake throttle 24 when an instruction to operate the exhaust brake is input from the exhaust brake switch. This is to prevent the exhaust pressure from rising even if the exhaust brake is operated while the intake is throttled, because the amount of air taken in is small, so that the effectiveness of the exhaust brake is prevented from decreasing.
図 1 1に、本発明に係る制御手段 2 0の信号処理系プロック図を示す。 同図によれば、 制御手段 2 0の情報送受信部には、 無線通信手段とし て用いるアンテナ 2 6 6と、ディ一ゼルエンジンの運転状況や D P F前 後の圧力差、 D P F内の温度等の各種情報を無線により送受信するため に所定の形式にデータを変換する送受信手段 2 6 5とが設けられてい る。  FIG. 11 shows a signal processing block diagram of the control means 20 according to the present invention. According to the figure, the information transmitting and receiving unit of the control means 20 includes an antenna 26 used as a wireless communication means, an operating condition of the diesel engine, a pressure difference before and after the DPF, a temperature in the DPF, etc. In order to wirelessly transmit and receive various information, there are provided transmitting and receiving means 265 for converting data into a predetermined format.
また、 制御手段 2 0には、 ディーゼルエンジンの運転状況や交通情報 などの画像や文字等の情報を表示する表示手段 2 7 2と、情報処理手段 の指令に基づいて表示手段 2 7 2に対して表示用の画像信号を出力す る表示ィンターフェース 2 7 3と、運転手等が操作ポタン等の入力手段Also, the control means 20 has the operating condition and traffic information of the diesel engine. A display unit 2 72 for displaying information such as images and characters, and a display interface 2 7 3 for outputting an image signal for display to the display unit 2 7 2 based on an instruction from the information processing unit. And the driver etc. input means such as operation button
2 7 0を介して入力した各種指令を読み取って後述する情報処理手段 に伝達したり、情報処理手段からの指示に基づいて L E D等の通知手段 に表示指令を出力する入カインターフェース 2 7 1 とが設けられてい る。 An input interface 2 7 1 which reads various commands input via 2 0 7 and transmits them to an information processing means to be described later, or outputs a display command to notification means such as an LED based on an instruction from the information processing means Is provided.
また、 制御手段 2 0には、 アクセルポジションセンサ 1 6や吸気温度 センサ 2 2、 差圧センサ 3 3、 4 3差等が出力する電圧や電流等のアナ 口グ信号を入力して、情報処理手段 2 8 0が読み取り可能なデジタルデ ータに変換して出力する A— D変換器 2 6 0が設けられている。  In addition, an acceleration signal such as a voltage or current output from the accelerator position sensor 16, the intake air temperature sensor 22, the differential pressure sensor 33, or the difference is input to the control means 20, and information processing is performed. An A-D converter 260 is provided which converts the digital data into readable digital data and outputs the digital data.
また、 制御手段 2 0には、 ディーゼルエンジンの回転数に応じたパル スゃ切替弁 2 8の動作状況の信号等の各種情報を入力して情報処理手 段 2 8 0が読み取り可能なデータに変換する I Z O 2 7 6が設けられ ている。 また、 I Z O 2 7 6は、 情報処理手段 2 8 0からの指令に基づ いて、 吸気絞り 2 4や吸気流量調節弁 2 5、 排気絞り 2 6、 切替弁 2 8 等の各種制御機器を制御するための制御指令を出力することが可能と なっている。  In addition, various information such as the signal of the operation status of the switching valve 28 is input to the control means 20 according to the number of revolutions of the diesel engine, and data which can be read by the information processing means 280 is obtained. IZO 2 7 6 is provided to convert. Also, IZO 2 76 controls various control devices such as intake throttle 24, intake flow control valve 25, exhaust throttle 26 and switching valve 2 8 based on the command from information processing means 280. It is possible to output control commands to
また、 制御手段 2 0には、 制御手段 2 0の全体の制御を行う情報処理 手段 (C P U ) 2 8 0と、 情報処理手段 2 8 0が実行する処理プロダラ ムゃ各種定数、通信ネットワーク上に存在する他の通信機器と通信接続 する際のア ドレス、 属性情報、 U R L (Uniform Resource Locators )、 運転手又は車両固有の識別情報、ゲートウェイ情報、 D N S (Domain Name System) 等の各種情報を記録する R O Mや、 情報処理手段 2 8 0が処理 を実行する際の作業領域となる R A M等から構成されるメモリ 2 8 1 と、 時刻を刻むとともに時間を計測するタイマーの機能を備えた力レン ダ時計 2 9 0とが設けられている。  Further, the control means 20 includes an information processing means (CPU) 280 for performing overall control of the control means 20, a processing program executed by the information processing means 280, various constants, and communication networks. Records various information such as address, attribute information, URL (Uniform Resource Locators), identification information specific to the driver or vehicle, gateway information, DNS (Domain Name System) etc. when connecting with other communication devices that exist. A power render clock with a memory 2 8 1 consisting of a ROM, a RAM that will be a working area when the information processing means 2 280 executes processing, and a timer function that keeps time and measures time. Two hundred and ninety are provided.
制御手段 2 0内の情報処理手段 2 8 0と、表示ィンターフヱース 2 7 Information processing means 2 80 in control means 2 0 and display interface 2 7
3、入カインターフェース 2 7 1、メモリ 2 8 1、 A— D変換器 2 6 0、 1 / 0 2 7 6、 カレンダ時計 2 9 0等を含む各周辺回路はバス 2 9 9で 接続されており、情報処理手段 2 8 0にて実行される処理プログラムに 基づいて、情報処理手段 2 8 0が各々の周辺回路を制御することが可能 となっている。 3, input interface 2 7 1, memory 2 8 1, A-D converter 2 6 0, The respective peripheral circuits including the 1/0 2 7 6 and the calendar clock 2 0 0 9 are connected by a bus 2 2 9 9 and the information processing means 2 is based on the processing program executed by the information processing means 2 8 0. It is possible for 80 to control each peripheral circuit.
前記切替弁 2 8は、情報処理手段 2 8 0が出力した制御指令を I / O 2 7 6等のィンターフェースを介して取得することによって、制御手段 2 0が出力する制御指令に基づいて、 ディーゼルエンジンの排気経路を μ D P F 3 0又は m D P F 4 0に切り替えることが可能となっている。 また、 吸気絞り 2 4等の吸気流量調節弁は、 情報処理手段 2 8 0が出 力した制御指令を I Z 0 2 7 6等のィンターフェースを介して取得す ることによって、 制御手段 2 0が出力する制御指令に基づいて、 ディー ゼルエンジンの吸気流量を調節することが可能となっている。  The switching valve 28 obtains the control command output from the information processing means 280 through an interface such as I / O 2 76, etc., based on the control command output from the control means 20. The exhaust path of the diesel engine can be switched to μ DPF 30 or m DPF 40. In addition, the intake flow control valve such as the intake throttle 24 etc. is a control means by acquiring the control command output from the information processing means 280 through the interface of IZ 0 2 7 6 etc. It is possible to adjust the intake flow rate of the diesel engine based on the control command output from the engine.
また、力レンダ時計 2 9 0は、情報処理手段 2 8 0の指示に基づいて、 所定の時間の計測を開始するとともに、 計測した所定の時間の経過を情 報処理手段 2 8 0に出力するタイマーの機能を備えている。 なお、 この タイマーは、 複数同時にセットすることが可能どなっている。  In addition, the force rendering clock 290 starts measurement of a predetermined time based on the instruction of the information processing means 280, and outputs the elapsed time of the measured predetermined time to the information processing means 280. It has a timer function. In addition, it is possible to set multiple timers simultaneously.
差圧センサ 3 3、 3 4は、 μ D P F 3 0又は m D P F 4 0前後の圧力 差を検出し、 その検出した圧力差の情報を制御手段 2 0内の A— D変換 器 2 6 0等のィンターフェースを介して情報処理手段 2 8 0に伝達す ることが可能となっている。  The differential pressure sensor 33, 34 detects a pressure difference around the μ DPF 30 or m DPF 40, and the information of the detected pressure difference is converted into an A-D converter 2 60 etc. in the control means 20. It is possible to transmit to the information processing means 280 via the interface.
情報処理手段 2 8 0を含む制御手段 2 0は、 第 1のタイマーが計測し た第 1の所定時間経過後であって且つ差圧センサ 3 3又は差圧センサ 4 3が検出した圧力差が所定の閾値以上である場合には、 吸気絞り 2 4 等の吸気流量調節弁に吸気流量を増大する制御指令を出力し、第 2のタ イマ一が計測した第 2の所定時間経過後に吸気絞り 2 4等の吸気流量 調節弁に吸気流量を本来の吸気流量に戻す制御指令を出力することが 可能となっている。  The control means 20 including the information processing means 280 has a pressure difference detected after the first predetermined time measured by the first timer has elapsed and detected by the pressure difference sensor 33 or the pressure difference sensor 43. If it is equal to or greater than the predetermined threshold value, a control command to increase the intake flow rate is output to the intake flow rate control valve such as the intake throttle 2 4 and the intake throttle is detected after the second predetermined time measured by the second timer It is possible to output a control command to restore the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve such as 2 4.
また、 情報処理手段 2 8 0を含む制御手段 2 0は、 第 1のタイマーが 計測した第 1の所定時間経過後に吸気絞り 2 4等の吸気流量調節弁に 吸気流量を増大する制御指令を出力し、 第 2のタイマーが計測した第 2 の所定時間経過後に吸気絞り 2 4等の吸気流量調節弁に吸気流量を本 来の吸気流量に戻す制御指令を出力することが可能となっている。 また、 情報処理手段 2 8 0を含む制御手段 2 0は、 アクセルペダルの 踏み込み量及びエンジン回転数に応じて切替弁 2 8及ぴ吸気絞り 2 4 等の吸気流量調節弁の制御指令を出力するとともに、前記第 1のタイマ 一が計測した第 1の所定時間経過後に前記吸気流量調節弁に吸気流量 を増大する制御指令を出力し、前記第 2のタイマーが計測した第 2の所 定時間経過後に前記吸気流量調節弁に吸気流量を本来の吸気流量に戻 す制御指令を出力することが可能となっている。 Further, the control means 20 including the information processing means 2 8 0 is used to control the intake flow control valve such as the intake throttle 24 after the first predetermined time measured by the first timer has elapsed. A control command to increase the intake flow rate is output, and a control command to return the intake flow rate to the original intake flow rate is output to the intake flow control valve such as the intake throttle 24 after the second predetermined time measured by the second timer has elapsed. It is possible to Further, the control means 20 including the information processing means 280 outputs a control command of the intake flow rate control valve such as the switching valve 28 and the intake throttle 24 according to the depression amount of the accelerator pedal and the engine speed. At the same time, a control command for increasing the intake flow rate is output to the intake flow control valve after the first predetermined time measured by the first timer has elapsed, and the second predetermined time measured by the second timer has elapsed It is possible to output a control command for returning the intake flow rate back to the original intake flow rate to the intake flow control valve later.
また、 情報処理手段 2 8 0を含む制御手段 2 0は、 アクセルペダルの 踏み込み量及びエンジン回転数に応じて切替弁 2 8及ぴ吸気絞り 2 4 等の吸気流量調節弁の制御指令を出力するとともに、 第 1のタイマーが 計測した第 1の所定時間経過後であって且つ差圧センサ 3 3又は差圧 センサ 4 3が検出した圧力差が所定の閾値以上である場合には吸気絞 り 2 4等の吸気流量調節弁に吸気流量を増大する制御指令を出力し、第 2のタイマーが計測した第 2の所定時間経過後に吸気絞り 2 4等の吸 気流量調節弁に吸気流量を本来の吸気流量に戻す制御指令を出力する ことが可能となっている。  Further, the control means 20 including the information processing means 280 outputs a control command of the intake flow rate control valve such as the switching valve 28 and the intake throttle 24 according to the depression amount of the accelerator pedal and the engine speed. In addition, if the pressure difference detected by the differential pressure sensor 33 or the differential pressure sensor 43 is equal to or greater than a predetermined threshold after the first predetermined time period measured by the first timer has elapsed, The control command for increasing the intake flow rate is output to the intake flow control valve such as 4th, and the intake flow rate is originally set to the intake flow control valve such as the intake throttle 24 after the second predetermined time measured by the second timer. It is possible to output a control command to return to the intake flow rate.
また、 情報処理手段 2 8 0を含む制御手段 2 0は、 第 1のタイマーが 計測した第 1の所定時間経過後であって、 且つ、 第 2のタイマーが計測 した第 2の所定時間経過前に、第 3のタイマーが計測した第 3の所定時 間経過後に吸気絞り 2 4等の吸気流量調節弁に吸気流量を増大する制 御指令を出力し、 第 4のタイマーが計測した第 4の所定時間経過後に吸 気絞り 2 4等の吸気流量調節弁に吸気流量を本来の吸気流量に戻す制 御指令を出力することが可能となっている。  Further, the control means 20 including the information processing means 280 is after a first predetermined time measured by the first timer and before a second predetermined time measured by the second timer. And a control command to increase the intake flow rate to the intake flow control valve such as the intake throttle 24 after the third predetermined time period measured by the third timer has elapsed, and the fourth timer measures the fourth It is possible to output a control command for returning the intake flow rate to the original intake flow rate to the intake flow control valve such as the intake throttle 24 after a predetermined time has elapsed.
また、 情報処理手段 2 8 0を含む制御手段 2 0は、 第 1のタイマーが 計測した第 1の所定時間経過後であって且つ差圧センサ 3 3又は差圧 センサ 4 3が検出した圧力差が所定の閾値以上である場合、 且つ、 第 2 のタイマーが計測した第 2の所定時間経過前に、 第 3のタイマーが計測 した第 3の所定時間経過後に吸気絞り 2 4等の吸気流量調節弁に吸気 流量を増大する制御指令を出力し、 第 4のタイマーが計測した第 4の所 定時間経過後に吸気絞り 2 4等の吸気流量調節弁に吸気流量を本来の 吸気流量に戻す制御指令を出力することが可能となっている。 Further, the control means 20 including the information processing means 280 is a pressure difference which is detected after the first predetermined time period measured by the first timer has elapsed and which is detected by the differential pressure sensor 33 or the differential pressure sensor 43. If is greater than or equal to a predetermined threshold, and Before the second predetermined time measured by the timer, the control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 after the third predetermined time measured by the third timer. It is possible to output a control command to return the intake flow rate to the original intake flow rate to the intake flow control valve such as the intake throttle 24 after the fourth predetermined time measured by the fourth timer has elapsed.
前述のように、 連続再生式 D P Fにおける P Mの燃焼は、 触媒担持型 D P Fでは 3 5 0 °C以上、 D O Cでは 2 5 0 °C〜 4 5 0 °Cといわれてい る。 通常のディーゼルエンジンのアイドル時ゃ定速走行時における排気 温度は 7 0 °C〜1 0 0。Cであるために、 D P Fにて P Mを酸化させるこ とが可能な排気温度 (約 2 6 0 °C以上) に達しない。 そこで、 内部 E G Rや外部 E G Rを設けて低負荷時における排気温度を高めるとともに、 更に吸気絞り 2 4を絞り、 多くの排気を燃焼前のシリンダ内に供給する ことによって、 低負荷時の排気温度を高めるようにしている。  As described above, the combustion of PM in the continuous regeneration type D P F is said to be 350 ° C. or more for the catalyst-supporting D P F and 250 ° C. to 45 ° C. for the D O C. The exhaust temperature during normal speed driving of a normal diesel engine is 70 ° C to 1000. Since it is C, it does not reach an exhaust temperature (about 260 ° C. or more) at which PM can be oxidized by DPF. Therefore, the internal EGR and external EGR are provided to raise the exhaust temperature at low load, and the intake throttle 24 is further narrowed to supply a large amount of exhaust into the cylinder before combustion, thereby reducing the exhaust temperature at low load. I try to raise it.
ところが、 車両の運転状況によっては、 図 4に示すように D P F入 口と出口の差圧は上昇を続け、 P Mが酸化されることなく D P F内に蓄 積してフィルターが目詰まりしてしまい、やがて運転不可能になる場合 がある。 また、 D P F内に多くの P Mが堆積した状態で、 車両の運転状 況が高負荷側に変化するなどして排気温度が急上昇すると、 D P F内に 蓄積した多量の P Mが急速に燃焼して D P F担体を損傷してしまう可 能性がある。  However, depending on the driving condition of the vehicle, as shown in Fig. 4, the differential pressure between the DPF inlet and outlet continues to increase, and PM is not accumulated in the DPF and is accumulated in the DPF to clog the filter. In some cases, it may become impossible to drive. In addition, when exhaust gas temperature rises rapidly due to a change in vehicle operating conditions to a high load side with a large amount of PM deposited in the DPF, a large amount of PM accumulated in the DPF is burned rapidly to cause the DPF to The carrier may be damaged.
そこで本発明では、所定の時間間隔等に基づいて吸気絞り 2 4を短時 間開く制御を行なって、 間欠的にディーゼルエンジンの燃焼に必要な酸 素量よりも多く酸素を吸入するようにしている。 このように間欠的にデ イーゼルエンジンに供給する新気の流量を增加することを、本発明では 新気スパイクと呼んでいる。  Therefore, in the present invention, control is performed to open the intake throttle 24 for a short time based on a predetermined time interval or the like, and intermittently absorb more oxygen than the amount of oxygen necessary for combustion of the diesel engine. There is. The addition of the flow rate of fresh air supplied to the diesel engine intermittently as described above is referred to as fresh air spike in the present invention.
ディーゼルエンジンの P M酸化装置内では、 P Mの燃焼に関わる反応 として、 下記のような複数の反応が進んでいる。  In the PM oxidizer of a diesel engine, the following reactions are progressing as reactions involved in PM combustion.
c + o 2→c o 2 c + o 2 → co 2
2 C + 0 2→ 2 C O 2 CO + 02→2 C O a 2 C + 0 2 → 2 CO 2 CO + 0 2 → 2 CO a
2NO + 02→2N02 2NO + 0 2 → 2N 0 2
2N02 + C→2NO + C02 2N 0 2 + C → 2 NO + C 0 2
新気スパイクによって間欠的にディーゼルエンジンの吸気流量を多 くすると、 その期間だけ排気中に含まれる酸素の量が增ぇるので、 これ らすべての反応がさらに促進される。  All these reactions are further promoted as the intake air flow rate of the diesel engine is intermittently increased by the fresh air spike, and the amount of oxygen contained in the exhaust gas is increased during that period.
これらの反応で発生した二酸化炭素はそのまま大気中に放出される。 図 1 2は、本発明に係る新気スパイク方法を示すタイミングチヤ一ト である。  The carbon dioxide generated by these reactions is released to the atmosphere as it is. FIG. 12 is a timing chart showing a fresh air spike method according to the present invention.
同図では、 第 1のタイマー T 1と及び第 2のタイマー T 2の状態 (H iであるか L oであるか) とディーゼルエンジンの吸気流量が、 時刻に よってどのように遷移するかを示している。  In the figure, how the state of the first timer T 1 and the second timer T 2 (H i or L o) and the intake flow rate of the diesel engine transit according to time It shows.
本発明では、 同図に示すように、 カレンダ時計 2 9 0 (第 1のタイマ 一 T 1の機能を含む) が情報処理手段 2 80の指示に基づいて定期的に (所定のインターパルで) 第 1の所定時間 (t 1) の経過を計測してい る。  In the present invention, as shown in the figure, the calendar clock 2 90 (including the function of the first timer 1 T 1) periodically (with a predetermined interval) based on the instruction of the information processing means 2 80. The elapsed time of the first predetermined time (t 1) is measured.
情報処理手段 28 0が、 カレンダ時計 290 (第 1のタイマー) が第 1の所定時間 (t 1) の経過を計測した旨の情報をバス 2 9 9を介して 取得した場合には、 情報処理手段 280はカレンダ時計 2 90 (第 2の タイマー T 2の機能を含む) に対して第 2の所定時間 (t 2) の計測開 始を指示するとともに、第 1のタイマーが計測した第 1の所定時間経過 後に吸気絞り 24等の吸気流量調節弁に対して吸気流量を増大する制 御指令を出力する。 そして情報処理手段 280は、 力レンダ時計 2 90 (第 1のタイマー) に対して第 1の所定時間 (t 1) をリセットする指 令を出力し、 再度新たに第 1の所定時間の計測開始を指示する。  When the information processing means 280 has acquired, via the bus 2 9 9, information that the calendar clock 290 (first timer) has measured the lapse of the first predetermined time (t 1), Means 280 instructs calendar clock 2 90 (including the function of second timer T 2) to start the measurement of the second predetermined time (t 2), and the first timer measured by the first timer. After a predetermined time has elapsed, a control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 or the like. Then, the information processing means 280 outputs an instruction to reset the first predetermined time (t 1) to the force rendering clock 2 90 (first timer), and the measurement of the first predetermined time is newly started again. To indicate.
次にカレンダ時計 290 (第 2のタイマーの機能を含む) は、 情報処 理手段 280の指示に基づいて第 2の所定時間 (t 2) の経過を計測す る。 情報処理手段 2 80が、 力レンダ時計 29 0 (第 2のタイマー) が 第 2の所定時間 (t 2) の経過を計測した旨の情報をバス 2 9 9を介し て取得した場合 (第 2のタイマーが計測した第 2の所定時間経過後) に は、 吸気絞り 2 4等の吸気流量調節弁に対して吸気流量を本来の吸気流 量 (新気スパイク開始前の元の吸気流量) に戻す制御指令を出力する。 そして情報処理手段 2 8 0は、 カレンダ時計 2 9 0 (第 2のタイマー) に対して第 2の所定時間 (t 2 ) をリセットする指令を出力し、 次回の 第 2の所定時間の計測のための準備を行なう。 Next, the calendar clock 290 (including the function of the second timer) measures the elapse of the second predetermined time (t 2) based on the instruction of the information processing means 280. Information that the information processing means 2 80 has measured that the force rendering clock 29 0 (second timer) has elapsed the second predetermined time (t 2) is sent via the bus 2 9 9 (If the second predetermined time measured by the second timer has elapsed), the intake flow rate is adjusted to the original intake flow rate for the intake flow control valve such as the intake throttle 24 (before the start of the new air spike) Output a control command to restore the original intake flow rate of Then, the information processing means 280 outputs a command to reset the second predetermined time (t 2) to the calendar clock 2 90 (second timer), and the measurement of the next second predetermined time is performed. Prepare for.
吸気絞り 2 4等の吸気流量調節弁は、情報処理手段 2 8 0から取得し た制御指令に基づいて、 ディーゼルエンジンの吸気流量を調節する。 本発明では、 D P F内に堆積した P Mを酸化させているディーゼルェ ンジンにおいて吸気絞り 2 4等を用いて吸気を絞って低負荷時の排気 温度を所定の温度以上に維持している場合に、所定の時間間隔等に基づ いて吸気絞り 2 4等の吸気流量調節弁を短時間開く制御を行うことに よって、 間欠的にディーゼルエンジンの燃焼に必要な酸素量よりも多く 酸素を吸入することが可能となる。 これによつて、 D P F内に堆積した P M (炭素) の酸化の諸反応を促進させて、 P Mを二酸化炭素に変換さ せて大気に放出させることが可能となる。  The intake flow control valve such as the intake throttle 24 adjusts the intake flow rate of the diesel engine based on the control command acquired from the information processing means 280. In the present invention, in a diesel engine that oxidizes PM accumulated in the DPF, the intake air is throttled using an intake throttle 24 or the like to maintain the exhaust temperature at a low load at a predetermined temperature or higher. By controlling the intake flow control valve such as the intake throttle 24 to open for a short time based on a predetermined time interval etc., it sucks more oxygen than the amount of oxygen necessary for the combustion of the diesel engine intermittently. Is possible. This makes it possible to accelerate the various reactions of oxidation of PM (carbon) deposited in DPF to convert PM into carbon dioxide and release it to the atmosphere.
また、 ディーゼルエンジン 1 0に内部 E G Rや外部 E G Rを設けて、 低負荷時における排気温度を高めるとともに吸気絞り 2 4を絞って低 負荷時の排気温度を高める制御を行なっている場合にも、 P M酸化の諸 反応が促進され、 D P F内に堆積した P M (炭素) は酸化されて大気に 放出される。  In addition, even if the internal EGR and external EGR are provided in the diesel engine 10 to increase the exhaust temperature at low load, and reduce the intake throttle 24 to increase the exhaust temperature at low load, PM Oxidation reactions are promoted, and PM (carbon) deposited in the DPF is oxidized and released to the atmosphere.
エンジン低負荷時において排気温度の低下を抑え高温度に維持する ために、 吸気絞り 2 4を絞ることが有効であるが、 この効果をさらに高 めるために、吸気絞り 2 4の絞りと共にエンジン吸気行程下死点付近の タイミングで排気弁 5 4を少量開き排気が逆流 ·再循環する (内部 E G Rとも言う) ことによって排気温度をさらに高く維持することができる。 このとき D P Fに流入する排気ガスの温度が高くなる反面、再循環によ つて酸素がいっそう減少した状態で D P F内が満たされることになる。 そのときに、 一定のインターパル経過後 (第 1の所定時間の経過後) に、 ごく短時間だけ吸気絞り 24を開放することによって、 排気の再循 環量が減少して新気の吸入量が増え、排気浄化装置内に堆積した PMの 周囲にごく短時間酸素量が増えることになる。 It is effective to squeeze the intake throttle 24 in order to suppress the decrease of the exhaust temperature and maintain the high temperature when the engine load is low. However, in order to further enhance this effect, the engine together with the intake throttle 24 throttling The exhaust temperature can be maintained even higher by opening a small amount of the exhaust valve 54 at the timing near the bottom dead center of the intake stroke and by making the exhaust flow backflow and recirculate (also called internal EGR). At this time, although the temperature of the exhaust gas flowing into the DPF rises, the DPF is filled with oxygen further decreased by the recirculation. At that time, after the passage of a certain interval (after the passage of the first predetermined time) By opening the intake throttle 24 for a very short time, the amount of exhaust gas recirculation decreases and the amount of fresh air intake increases, and the amount of oxygen around the PM accumulated in the exhaust purification system for a very short time It will increase.
短時間といえども、 D P F内部では PMに接触する酸素量が増えるの で、 PMの燃焼が一時的に急促進され、 火種が形成されて、 これが隣の PMを燃焼させるように延焼していく。 本発明によれば、 その効果が新 気導入が終った後もある程度持続し、 やがて PMが堆積してくるとまた 新しい新気が入り PMの酸化が促進されるという現象が繰り返される。 そして、 D P Fに捕捉され蓄積しつつある PMが燃焼して、 DP Fを連 続して再生するという機能が著しく促進される。  Even for a short time, since the amount of oxygen in contact with PM increases within the DPF, PM combustion is temporarily accelerated rapidly, and a fire species is formed, which spreads to burn the next PM. . According to the present invention, the effect is maintained to some extent even after the introduction of new air, and when PM is deposited, new new air is introduced again and the phenomenon that oxidation of PM is promoted is repeated. Then, the PM trapped and accumulated in DPF burns, and the function of continuously regenerating DPF is significantly promoted.
これによつて、 内部 EGRを用いた場合にも、 結果的に D PFに捕捉 され蓄積しつつある PMが燃焼して D P Fを連続して再生するという 機能が著しく促進されて、 D P F内に PMが過度に蓄積するということ を防ぐことができる。  As a result, even when internal EGR is used, the function of combustion of the PM trapped and accumulated in the DPF and the regeneration of the DPF continuously is consequently significantly promoted, and the PM in the DPF is Can prevent excessive accumulation of
同様に外部 EG Rを用いた場合にも、排気浄化装置に入る排ガスの酸 素濃度が減少し D P Fの再生を抑制する方向に働いている。 そこで一定 のインターバル経過後 (第 1の所定時間の経過後) に、 短時間だけ吸気 絞り 24を開放することによって、 その瞬間には EGRの効果自身は低 下するものの、 第 2の所定時間経過後には直ちに EG Rの機能は回復す る。 D P F内部では、 内部の酸素濃度が一時的に增すので、 DP Fに捕 捉され蓄積しつつある PMが燃焼して D P Fを連続して再生するとい う機能が著しく促進される。 このように D P Fが連続して再生されるの で、 D P F内に PMが過度に蓄積するということを防ぐことが可能とな る。  Similarly, when an external EGR is used, the oxygen concentration of the exhaust gas entering the exhaust gas purification device is reduced, which works to suppress the regeneration of DPF. Therefore, by opening the intake throttle 24 for a short time after a certain interval (after the first predetermined time), the effect of the EGR itself is reduced at that moment, but the second predetermined time has elapsed. The function of EGR will be restored soon afterward. Inside the DPF, the oxygen concentration inside is temporarily reduced, so the function of burning the PM trapped and accumulated in the DPF and continuously regenerating the DPF is significantly promoted. Since D PF is continuously regenerated in this manner, it is possible to prevent excessive accumulation of PM in D PF.
またディーゼルエンジンの排気浄化システムに、高負荷時に排出され る多量の排気を処理する mD P F 40と、ディーゼルエンジンの低負荷 時に排出される少量の排気を処理する μ D P F 3 0とに排気の流路を 切り替える切替弁 28を備えている場合にも、 図 1 0に示したとおり、 mD P F 40を使用しつつ I T P (吸気絞り 24) を 1 0 %程度まで絞 る領域が存在する。 この mD P F 40を使用しつつ吸気流量を制限して いる運転状態が続くと、 D P F 3 0を使用している場合と同様に、 m D P F 40内に PMが堆積してくる場合がある。 In the exhaust purification system of a diesel engine, the exhaust flow is processed into the mD PF 40, which processes a large amount of exhaust discharged at high load, and the μ DPF 30, which processes a small amount of exhaust discharged at low load of the diesel engine. Even when the switching valve 28 is used to switch the path, as shown in Fig. 10, while using the mD PF 40, throttle the ITP (intake throttle 24) to about 10%. Area exists. If this mD PF 40 is used while the intake flow rate is being restricted, PM may be deposited in the m DPF 40 as in the case where the DPF 30 is used.
このように、 アクセルペダルの踏み込み量及ぴエンジン回転数に応じ て切替弁 2 8及び吸気絞り 24等の吸気流量調節弁の制御指令を出力 する制御を行なっている場合にも、制御手段 20が第 1のタイマーが計 測した第 1の所定時間経過後に吸気絞り 24等の吸気流量調節弁に吸 気流量を增大する制御指令を出力し、第 2のタイマーが計測した第 2の 所定時間経過後に吸気絞り 24等の吸気流量調節弁に吸気流量を本来 の吸気流量に戻す制御指令を出力することによって、 ^ D P F S O又は mD P F 4 0に捕捉され蓄積しつつある PMが酸化 (燃焼) する。 した がって、 W D P F 30又は mD P F 40を連続して再生するという機能 が著しく促進されて、 μ D P F 3 0又は mD P F 40内に PMが過度に 蓄積するということを防ぐことが可能となる。  As described above, even when control is performed to output control commands for the intake flow control valve such as the switching valve 28 and the intake throttle 24 according to the depression amount of the accelerator pedal and the engine speed, the control means 20 After the first predetermined time measured by the first timer, a control command for expanding the intake flow rate is output to the intake flow control valve such as the intake throttle 24 and the second predetermined time measured by the second timer. By outputting a control command to return the intake flow rate to the original intake flow rate to the intake flow control valve such as the intake throttle 24 etc. after lapse of time, the PM trapped and accumulated in ^ DPFSO or mD PF 40 oxidizes (burns) . Therefore, the function of continuously regenerating the WDPF 30 or mD PF 40 is significantly promoted, and it is possible to prevent excessive accumulation of PM in the μ DPF 30 or mD PF 40. .
なお、 前述のように第 1のタイマーが計測する第 1の所定時間は、 9 分 3 0秒乃至 30分がより好ましいが、 経験上 3分乃至 3 0分の時間で あっても本発明の目的を達成することが可能である。  As described above, the first predetermined time measured by the first timer is more preferably 9 minutes and 30 seconds to 30 minutes, but from the experience, even if it is 3 minutes to 30 minutes, the present invention It is possible to achieve the purpose.
また、 前述のように第 2のタイマーが計測する第 2の所定時間は、 1 秒乃至 6 0秒がより好ましいが、 経験上 0. 5秒乃至 1 20秒の時間で あっても本発明の目的を達成することが可能である。  Further, as described above, the second predetermined time measured by the second timer is preferably 1 second to 60 seconds, but empirically, the present invention of the present invention can be performed even if it is 0.5 seconds to 120 seconds. It is possible to achieve the purpose.
図 1 3は、本発明に係る他の新気スパイク方法を示すタイミングチヤ ートである。  FIG. 13 is a timing chart showing another fresh air spike method according to the present invention.
同図では、 第 1のタイマー T l、 第 2のタイマー Τ 2、 第 3のタイマ 一 Τ 3、 及ぴ第 4のタイマー Τ 4の状態 (H iであるか L οである力 とディーゼルエンジンの吸気流量が、 時刻によってどのように遷移する かを示している。  In the figure, the first timer T l, the second timer Τ 2, the third timer 1 Τ 3, and the fourth timer Τ 4 states (H i or L 力 power and diesel engine The figure shows how the intake flow rate of H changes according to the time of day.
同図に示す第 1及び第 2の所定時間の設定方法と読み取り方法は図 1 2にて説明した方法と同一であるので省略し、第 3及ぴ第 4の所定時 間の設定方法と、第 4の所定時間に基づいて吸気絞り 24等の吸気流量 調節弁を動作させる方法について説明する。 Since the setting method and reading method of the first and second predetermined times shown in the figure are the same as the method described in FIG. 12, they are omitted, and the setting methods of the third and fourth predetermined times are omitted. The intake flow rate of the intake throttle 24, etc. based on the fourth predetermined time A method of operating the control valve will be described.
同図に示すように情報処理手段 2 8 0は、 第 2の所定時間の計測開始 とともに、 第 3の所定時間の計測開始をカレンダ時計 2 9 0 (第 3のタ イマ一 T 3の機能を含む)に指示する。そして、情報処理手段 2 8 0が、 カレンダ時計 2 9 0 (第 3のタイマー) が第 3の所定時間 (t 3 ) の経 過を計測した旨の情報をバス 2 9 9を介して取得した場合には、情報処 理手段 2 8 0はカレンダ時計 2 9 0 (第 4のタイマー T 4の機能を含 む) に対して第 4の所定時間 ( t 4 ) の計測開始を指示するとともに、 吸気絞り 2 4等の吸気流量調節弁に対して吸気流量を増大する制御指 令を出力する。 そして情報処理手段 2 8 0は、 カレンダ時計 2 9 0 (第 3のタイマー) に対して第 3の所定時間 (t 3 ) をリセッ トする指令を 出力し、 再度新たに第 3の所定時間の計測開始を指示する。  As shown in the figure, the information processing means 280 starts the measurement of the third predetermined time with the start of the measurement of the second predetermined time as well as the function of the calendar clock 2 90 (the third timer T3). To include). Then, the information processing means 280 has acquired, via the bus 2 9 9, information that the calendar clock 2 9 0 (third timer) has measured the passage of the third predetermined time (t 3). In this case, the information processing means 2 8 0 instructs the calendar clock 2 9 0 (including the function of the fourth timer T 4) to start the measurement of the fourth predetermined time (t 4), and A control command to increase the intake flow rate is output to the intake flow rate adjustment valve such as the intake throttle 24 or the like. Then, the information processing means 280 outputs a command to reset the third predetermined time (t 3) to the calendar clock 2 90 (third timer), and a new third predetermined time is again set. Instruct to start measurement.
情報処理手段 2 8 0が、 カレンダ時計 2 9 0 (第 4のタイマー) が第 4の所定時間 (t 4 ) の経過を計測した旨の情報をバス 2 9 9を介して 取得した場合 (第 4のタイマーが計測した第 4の所定時間 t 4経過後) には、 吸気絞り 2 4等の吸気流量調節弁に対して吸気流量を本来の吸気 流量(新気スパイク開始前の元の吸気流量)に戻す制御指令を出力する。 そして情報処理手段 2 8 0は、カレンダ時計 2 9 0 (第 4のタイマー) に対して第 4の所定時間 (t 4 ) をリセットする指令を出力し、 次回の 第 4の所定時間の計測のための準備を行なう。 そして、 再度カレンダ時 計 2 9 0 (第 3のタイマー) が第 3の所定時間 (t 3 ) の経過を計測し た旨の情報をバス 2 9 9を介して取得した場合には、情報処理手段 2 8 0は第 2のタイマーが計測した第 2の所定時間経過前の間で、 同様の吸 気絞り 2 4等の開閉動作を繰り返し行なう。  When the information processing means 2 8 0 acquires the information that the calendar clock 2 9 0 (the fourth timer) has measured the lapse of the fourth predetermined time (t 4) through the bus 2 9 9 In the fourth predetermined time period t4 after the timer 4 has measured, the intake flow rate is set to the original intake flow rate (the original intake flow rate before the start of the new air spike start) for the intake flow control valve such as the intake throttle 24 Output control command to return to). Then, the information processing means 280 outputs a command to reset the fourth predetermined time (t 4) to the calendar clock 2 90 (fourth timer), and the next measurement of the fourth predetermined time is performed. Prepare for. Then, when the information indicating that the calendar timer 2 9 0 (third timer) has measured the lapse of the third predetermined time (t 3) again is acquired via the bus 2 9 9, the information processing is performed. Means 2 8 0 repeatedly performs the same open / close operation of the intake throttle 24 and the like before the elapse of the second predetermined time measured by the second timer.
したがって制御手段 2 0は、 第 1のタイマーが計測した第 1の所定時 間経過後であって、 且つ、 第 2のタイマーが計測した第 2の所定時間経 過前に、第 3のタイマーが計測した第 3の所定時間経過後に吸気絞り 2 4等の吸気流量調節弁に吸気流量を增大する制御指令を出力し、第 4の タイマーが計測した第 4の所定時間経過後に吸気絞り 2 4等の吸気流 12476 Therefore, the control means 20 receives the third predetermined time after the first predetermined time measured by the first timer and before the second predetermined time measured by the second timer. After the lapse of the third predetermined time which has been measured, a control command for increasing the intake flow rate is outputted to the intake flow control valve such as the intake throttle 24 etc. After the fourth predetermined time which the fourth timer measures, the intake throttle 2 4 Intake flow such as 12476
35 量調節弁に吸気流量を本来の吸気流量に戻す制御指令を出力する。 35 Output a control command to return the intake flow rate to the original intake flow rate to the volume adjustment valve.
図 1 4は、本発明に係る他の新気スパイク方法を示すタイミングチヤ 一トである。  FIG. 14 is a timing chart showing another fresh air spike method according to the present invention.
同図では、 制御手段 2 0が、 所定のインダーバル経過後 (第 1の所定 時間 t 1経過後) であって、 且つ、 D P F前後の差圧が所定の閾値 (定 数であってもよいし、 変数 P tであってもよレ、) 以上であると判断した 場合には、 吸気絞り 2 4等の吸気流量調節弁に吸気流量を増大する制御 指令を出力して、 間欠的にディーゼルエンジンの吸気流量を多くする制 御を行なう実施例を示している。  In the same figure, the control means 20 is after the lapse of a predetermined interval (after the first predetermined time t 1) and the differential pressure before and after the DPF may be a predetermined threshold (a constant number). If it is determined that the variable Pt is equal to or greater than the variable Pt, a control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 etc., and the diesel engine is intermittently An example is shown in which control is performed to increase the intake flow rate of the engine.
同図に示す Δ Ρは、差圧センサ 3 3又は差圧センサ 4 3が検出した D P F 3 0又は m D P F 4 0前後の排気の圧力差に基づく値である。 ま た、 同図に示す P は、 /x D P F 3 0又は m D P F 4 0に P Mが堆積し てきたことを Δ Pに基づいて判断するための閾値である。 この閾値 P t は、 吸気絞り 2 4等の吸気流量調節弁の開度やエンジン回転数、 ディー ゼルエンジンの排気量、 ディーゼルエンジンの体積効率、 燃料供給量、 排気の密度、排気のガス定数、 D P Fの圧損係数、 D P Fの有効断面積、 排気温度等に基づいて変動する変数であってもよいし、所定の条件下で 定数として設定するようにしてもよい。 この P tの算出方法の詳細につ いては後述する。  ΔΡ shown in the figure is a value based on the pressure difference of the exhaust gas around D P F 30 or m D P F 40 detected by the differential pressure sensor 33 or the differential pressure sensor 43. Also, P shown in the same figure is a threshold for judging that PM has been deposited on / x D P F 30 or m D P F 40 based on ΔP. The threshold P t is the opening degree of the intake flow control valve such as the intake throttle 24 or the engine speed, the displacement of the diesel engine, the volumetric efficiency of the diesel engine, the fuel supply amount, the exhaust density, the exhaust gas constant, It may be a variable that varies based on the pressure loss coefficient of the DPF, the effective cross section of the DPF, the exhaust temperature, etc., or may be set as a constant under predetermined conditions. Details of the method of calculating this Pt will be described later.
同図に示す実施例で情報処理手段 2 8 0は、所定のサンプリング時間 間隔で A— D変換器 2 6 0や I Z O 2 7 6にアクセスしており、 差圧セ ンサ 3 3、 4 3等が検出する圧力差や、 各種センサの状態を監視するこ とが可能となっている。 情報処理手段 2 8 0は、 差圧センサ 3 3、 4 3 が検出した圧力差が所定の閾値 P t以上であると判断した場合には、 フ ラグ P uをセット (P u = lにセット) して、 その値を次のサンプリン グまでメモリ 2 8 1に保持する処理を行なうことが可能となっている。 カレンダ時計 2 9 0 (第 1のタイマーの機能を含む) は、 情報処理手 段 2 8 0の指示に基づいて第 1の所定時間 (t 1 ) の経過を計測してい る。 情報処理手段 2 8 0が時刻 t 1 1にて、 力レンダ時計 2 9 0 (第 1 2003/012476 In the embodiment shown in the figure, the information processing means 2 8 0 accesses the A-D converter 2 6 0 or IZO 2 7 6 at predetermined sampling time intervals, and differential pressure sensors 3 3, 4 3 etc. It is possible to monitor the pressure difference detected by the sensor and the condition of various sensors. The information processing means 2 8 0 sets the flag P u when it is determined that the pressure difference detected by the differential pressure sensors 3 3 and 4 3 is equal to or more than the predetermined threshold P t (set P u = 1 Then, it is possible to carry out processing to hold the value in the memory 2 8 1 until the next sampling. The calendar clock 2 90 (including the function of the first timer) measures the lapse of the first predetermined time (t 1) based on the instruction of the information processing means 2 8 0. Information processing means 2 8 0 at time t 1 1, power render clock 2 9 0 (first 2003/012476
36 のタイマー T l) が第 1の所定時間 (t 1) の経過を計測した旨の情報 をバス 2 9 9を介して取得した場合には、情報処理手段 280は T 1の フラグをセットする (T 1 = 1にセットしてメモリ 2 8 1に記録する) とともに、 P uのフラグをメモリ 28 1から読み出して T 1と P uのフ ラグの論理和 (T l AND P u) を演算する。 T 1と P uとの論理和 が 0 (T l AND P u = 0) である場合には、 DP F前後の排気の圧 力差が通常運転領域内であるので、新気スパイクを行なうための吸気絞 り 24等の吸気流量調節弁を開ける動作指令は出力せずに、本来の吸気 流量を維持する制御を行なう。 If the information indicating that the 36 timers T l) has measured the lapse of the first predetermined time (t 1) is acquired via the bus 2 9 9, the information processing means 280 sets the T 1 flag. At the same time (set T 1 = 1 and record in memory 2 8 1), read the flag of P u from memory 28 1 and calculate the logical sum (T l AND P u) of the flags of T 1 and P u Do. If the logical sum of T 1 and P u is 0 (T l AND P u = 0), the pressure difference between the exhaust before and after DP F is within the normal operation range, so fresh air spikes are performed. The control for maintaining the original intake flow rate is performed without outputting an operation command for opening the intake flow control valve such as the intake throttle 24 and the like.
次に情報処理手段 280が、 時亥 lj t 1 2でサンプリングを実施したと ころ、 差圧センサ 3 3、 4 3等が検出する圧力差が所定の閾値 P t以上 であると判断した場合には、 フラグ P uをセッ トする (P u= lにセッ トしてメモリ 2 8 1に記録する)。 そして、 情報処理手段 280は T 1 のフラグと P uのフラグをメモリ 28 1から読み出す処理を行なって、 T 1と P uのフラグの論理和 (T 1 AND P u) を演算する。 T 1と P uとの論理和が 1 (T 1 AND P u = 1 ) である場合には、 情報処 理手段 280はカレンダ時計 2 90 (第 2のタイマー) に対して第 2の 所定時間 ( t 2) の計測開始を指示するとともに、 吸気絞り 24等の吸 気流量調節弁に対して吸気流量を増大する制御指令を出力する。 そして 情報処理手段 28 0は、 カレンダ時計 2 90 (第 1のタイマー) と T 1 と P uのフラグの論理和 (T l AND P u) をリセットする指令を出 力し、 再度新たに第 1の所定時間の計測開始を指示する。  Next, when the information processing means 280 carries out sampling at a time 亥 1j t 1 2, it is determined that the pressure difference detected by the differential pressure sensors 3 3, 4 3 etc. is equal to or more than a predetermined threshold P t Sets the flag P u (set P u = l and record in memory 2 8 1). Then, the information processing means 280 reads out the flag of T 1 and the flag of P u from the memory 281 and calculates the logical sum (T 1 AND P u) of the flags of T 1 and P u. When the logical sum of T 1 and P u is 1 (T 1 AND P u = 1), the information processing means 280 makes a second predetermined time with respect to the calendar clock 2 90 (second timer). While instructing the start of measurement of (t 2), the control command to increase the intake flow rate is output to the intake flow control valve such as the intake throttle 24 and the like. Then, the information processing means 280 outputs a command to reset the calendar clock 2 90 (the first timer) and the logical sum (T l AND P u) of the flags of T 1 and P u, and the new first The start of measurement of the predetermined time of
次にカレンダ時計 29 0 (第 2のタイマーの機能を含む) は、 情報処 理手段 280の指示に基づいて第 2の所定時間 (t 2) の経過を計測す る。 時刻 t 1 3にて情報処理手段 28 0が、 カレンダ時計 2 90 (第 2 のタイマー) が第 2の所定時間 (t 2) の経過を計測した旨の情報をパ ス 2 9 9を介して取得した場合(第 2のタイマーが計測した第 2の所定 時間経過後) には、 吸気絞り 24等の吸気流量調節弁に対して吸気流量 を本来の吸気流量 (新気スパイク開始前の元の吸気流量) に戻す制御指 令を出力する。 そして情報処理手段 2 8 0は、 カレンダ時計 290 (第 2のタイマー) に対して第 2の所定時間 (t 2) をリセットする指令を 出力し、 次回の第 2の所定時間の計測のための準備を行なう。 Next, the calendar clock 29 0 (including the function of the second timer) measures the elapse of the second predetermined time (t 2) based on the instruction of the information processing means 280. The information processing means 280 at time t 13 indicates that the calendar clock 2 90 (second timer) has measured the elapse of the second predetermined time (t 2) through the path 2 9 9 If acquired (after the second predetermined time measured by the second timer has elapsed), the intake flow rate is adjusted to the original intake flow rate for the intake flow control valve such as the intake throttle 24 etc. Control finger to return to the intake flow rate) Output the command. Then, the information processing means 280 outputs a command to reset the second predetermined time (t 2) to the calendar clock 290 (second timer), and for the next measurement of the second predetermined time. Prepare.
次に情報処理手段 280が、 時刻 t 1 4でサンプリングを実施したと ころ、 差圧センサ 3 3、 4 3等が検出する圧力差が所定の閾値 P t以上 であると判断した場合には、 フラグ P uをセットする (P u = 1にセッ トしてメモリ 28 1に記録する)。 そして、 情報処理手段 2 8 0は T 1 のフラグと P uのフラグをメモリ 28 1から読み出す処理を行なって、 T 1と P uのフラグの論理和 (T 1 AND P u) を演算する。 時刻 t 1 4では、未だ第 1のタイマーが第 1の所定時間の経過を計測していな いので、 T 1のフラグは 0である。 したがって T 1と P uとの論理和は 0 (T 1 AND P u = 0) であるので、 新気スパイクを行なうための 吸気絞り 24等の吸気流量調節弁を開ける動作指令は出力せずに、本来 の吸気流量を維持する制御を行なう。  Next, when the information processing means 280 has performed sampling at time t 14, if it is determined that the pressure difference detected by the differential pressure sensors 3 3, 4 3 etc. is equal to or more than a predetermined threshold value Pt, Set the flag P u (set P u = 1 and store in memory 28 1). Then, the information processing means 280 reads out the flag of T 1 and the flag of P u from the memory 281 and calculates the logical sum (T 1 AND P u) of the flags of T 1 and P u. At time t14, the flag of T1 is 0 because the first timer has not yet measured the lapse of the first predetermined time. Therefore, since the logical sum of T 1 and P u is 0 (T 1 AND P u = 0), an operation command for opening the intake flow control valve such as the intake throttle 24 for performing fresh air spikes is not output. Perform control to maintain the original intake flow rate.
次に情報処理手段 280が時刻 t 1 5にて、 力レンダ時計 290 (第 1のタイマー) が第 1の所定時間 (t 1) の経過を計測した旨の情報を パス 2 99を介して取得した場合には、 情報処理手段 28 0は T 1のフ ラグをセットする (T 1 = 1にセットしてメモリ 2 8 1に記録する) と ともに、 P uのフラグをメモリ 28 1から読み出して T 1と P uのフラ グの論理和 (T 1 AND P u) を演算する。 T 1と P uとの論理和が 1 (T 1 AND P u = 1 ) である場合には、 情報処理手段 280は力 レンダ時計 2 90 (第 2のタイマー) に対して第 2の所定時間 (t 2) の計測開始を指示するとともに、 吸気絞り 24等の吸気流量調節弁に対 して吸気流量を増大する制御指令を出力する。 そして情報処理手段 28 0は、 力レンダ時計 2 9 0 (第 1のタイマー) と T 1と P uのフラグの 論理和 (T l AND P u) をリセットする指令を出力し、 再度新たに 第 1の所定時間の計測開始を指示する。  Next, the information processing means 280 obtains information at the time t 15 that the force rendering clock 290 (first timer) has measured the lapse of the first predetermined time (t 1) through the pass 2 99 In this case, the information processing means 280 sets the flag of T 1 (set it to T 1 = 1 and records it in the memory 2 8 1) and reads the flag of P u from the memory 28 1 Calculates the disjunction of the T 1 and P u flags (T 1 AND P u). When the logical sum of T 1 and P u is 1 (T 1 AND P u = 1), the information processing means 280 makes a second predetermined time with respect to the force render clock 2 90 (second timer). While instructing the start of measurement of (t 2), the control command for increasing the intake flow rate is output to the intake flow control valve such as the intake throttle 24. Then, the information processing means 280 outputs a command to reset the logical sum (T l AND P u) of the force rendering clock 2 90 (the first timer) and the flags of T 1 and P u, The start of measurement of the predetermined time of 1 is instructed.
次にカレンダ時計 2 9 0 (第 2のタイマーの機能を含む) は、 情報処 理手段 28 0の指示に基づいて第 2の所定時間 (t 2) の経過を計測す る。 時刻 t 1 6にて情報処理手段 2 8 0が、 カレンダ時計 2 9 0 (第 2 のタイマー) が第 2の所定時間 (t 2 ) の経過を計測した旨の情報をバ ス 2 9 9を介して取得した場合(第 2のタイマーが計測した第 2の所定 時間経過後) には、 吸気絞り 2 4等の吸気流量調節弁に対して吸気流量 を本来の吸気流量 (新気スパイク開始前の元の吸気流量) に戻す制御指 令を出力する。 そして情報処理手段 2 8 0は、 カレンダ時計 2 9 0 (第 2のタイマー) に対して第 2の所定時間 ( t 2 ) をリセッ トする指令を 出力し、 次回の第 2の所定時間の計測のための準備を行なう。 Next, the calendar clock 2 90 (including the function of the second timer) measures the elapse of the second predetermined time (t 2) based on the instruction of the information processing means 280. Ru. At time t 1 6, the information processing means 2 80 has a bus 2 9 9 as information that the calendar clock 2 9 0 (second timer) has measured the lapse of the second predetermined time (t 2). If it is acquired through the second predetermined time period measured by the second timer, the intake flow rate is adjusted to the original intake flow rate to the intake flow control valve such as the intake throttle 24 (before the start of the new air spike) Output a control command to restore the original intake flow rate of Then, the information processing means 280 outputs a command to reset the second predetermined time (t 2) to the calendar clock 2 90 (second timer), and measures the next second predetermined time. Prepare for the
このようにして、 D P F内に堆積した P Mを酸化させているディーゼ ルエンジンにおいて、 吸気絞り 2 4等を絞って低負荷時の排気温度を所 定の温度以上に維持している場合に、所定の時間間隔と D P F前後の排 気の差圧とに基づいて吸気絞り 2 4等の吸気流量調節弁を短時間開く 制御を行うことによって、 D P F内に P Mが堆積した場合のみ間欠的に ディーゼルエンジンの燃焼に必要な酸素量よりも多く酸素を吸入する ことが可能となり、 D P F内に堆積した P M (炭素) の酸化の諸反応を 促進させて、 P Mを二酸化炭素に変換させて大気に放出させることが可 能となる。  In this way, in the diesel engine that oxidizes the PM accumulated in the DPF, if the intake throttle 24 etc. is throttled to maintain the exhaust temperature at low load above the specified temperature, Based on the time interval between exhaust and the differential pressure of exhaust air before and after the DPF, the control of opening the intake flow control valve such as the intake throttle 24 etc. for a short time is performed intermittently, only when PM deposits in the DPF. It is possible to inhale more oxygen than the amount of oxygen necessary for the combustion of the fuel, and promote various reactions of oxidation of PM (carbon) deposited in the DPF, convert PM into carbon dioxide and release it to the atmosphere. It will be possible.
また本発明では、 D P F前後の排気の差圧を監視して、 D P F前後の 排気の差圧が所定の閾値以上になっている場合にのみディーゼルェン ジンの燃焼に必要な酸素量よりも多く酸素を吸入するようにしたので、 頻繁な新気スパイクを禁止して、新気吸入量の増大による排気温度の低 下を防止し、 N O Xの発生を低く押さえつつ D P Fの反応温度を維持し て効果的に P Mを酸化させることが可能となる。  Further, in the present invention, the differential pressure of exhaust before and after DPF is monitored, and the amount of oxygen necessary for the combustion of diesel engine is increased only when the differential pressure of exhaust before and after DPF is equal to or greater than a predetermined threshold. Since oxygen was inhaled, frequent fresh air spikes were prohibited to prevent the exhaust temperature from decreasing due to an increase in fresh air intake, and keep the DPF reaction temperature low while suppressing the generation of NOx. It becomes possible to oxidize PM effectively.
また、 内部 E G Rや外部 E G Rを設けて低負荷時における排気温度を 高めるとともに吸気絞り 2 4を絞り低負荷時の排気温度を高める制御 を行なっている場合にも、 P M酸化の諸反応が促進され、 D P F内に堆 積した P M (炭素) は酸化して大気に放出される。  In addition, various reactions of PM oxidation are promoted even when internal EGR and external EGR are provided to raise the exhaust temperature at low load and to increase the exhaust temperature at low load by reducing the intake throttle 24. The PM (carbon) deposited in the DPF is oxidized and released to the atmosphere.
D P F前後の排気の差圧を検出して、 この差圧に基づいて間欠的に新 気の流量を増大させる場合にも、 図 1 3に示したような第 3のタイマー と第 4のタイマーを用いた吸気流量調節弁の制御を行なうことが可能 である。 Even when the differential pressure of exhaust before and after the DPF is detected and the flow rate of fresh air is intermittently increased based on the differential pressure, the third timer as shown in FIG. 13 is used. It is possible to control the intake flow control valve using the timer and the fourth timer.
また、 ディーゼルエンジンの高負荷時に排出される多量の排気を処理 する m D P F 4 0と、ディーゼルエンジンの低負荷時に排出される少量 の排気を処理する μ D P F 3 0とに排気の流路を切り替える切替弁 2 8を備えている場合にも、 D P F前後の排気の差圧を検出して、 この差 圧に基づいて間欠的に新気の流量を増大させることが可能である。 この 場合にも、 頻繁な新気スパイクを禁止して、 新気吸入量の増大による排 気温度の低下を防止し、 N O Xの発生を低く押さえつつ/ D P F 3 0及 ぴ m D P F 4 0の反応温度を維持して効果的に P Mを酸化させること が可能となる。  In addition, the exhaust flow path is switched between m DPF 40, which processes a large amount of exhaust gas discharged when the diesel engine is heavily loaded, and μ DPF 30, which processes a small amount of exhaust gas discharged when the diesel engine is lightly loaded. Even when the switching valve 28 is provided, it is possible to detect the pressure difference between the exhaust gas before and after the DPF and intermittently increase the flow rate of fresh air based on this pressure difference. Also in this case, frequent fresh air spikes are prohibited to prevent the decrease in exhaust temperature due to the increase in the amount of fresh air inhaled, while suppressing the generation of NOx / DPF 30 and m DPF 40 reaction It is possible to maintain the temperature and oxidize PM effectively.
上記の説明では、 所定時間を計測するタイマーとして、 ク口ックを計 数するタイマーの例を示したが、 本発明で使用可能なタイマーは前記形 式のタイマーに限定されるものではなく、電荷の減少量を計測するなど 他の電気式のタイマーであってもよいし、 ダッシュポット等を用いたメ 力二カルなタイマーを用いても本発明の目的を達成することが可能で ある。  In the above description, as a timer for measuring a predetermined time, an example of a timer that counts the count is shown, but the timer that can be used in the present invention is not limited to the timer of the above-mentioned type, Other electrical timers may be used, such as measuring the amount of charge reduction, or it is possible to achieve the object of the present invention by using a mechanical timer using a dashpot or the like.
以下に、検出した D P F前後の圧力差 Δ Ρの閾値 P tを算出するため の圧力損失計算値 Δ P cの算出方法について説明する。  The method of calculating the pressure loss calculation value ΔP c for calculating the threshold P t of the pressure difference ΔΡ before and after the detected D P F will be described below.
D P F前後の排気の圧力差計算値 Δ P c と排気流量との関係は、 一般 に以下の (式 2 ) に示す関係があると認められる。  The relationship between the pressure difference ΔP c between the exhaust gas and the exhaust gas flow rate before and after D P F is generally recognized as the relationship shown in the following (Equation 2).
^ = -fexv2) …(式 2) ^ = -fexv 2 ) ... (Expression 2)
p ex 2  p ex 2
但し、  However,
Δ Ρ ο: D P F前後の排気の圧力差 (圧力損失) Δ Ρ ο D: Pressure difference (exhaust pressure) of exhaust gas around D P F
ex :排気の密度 (kg/m3) ex: Density of exhaust gas (kg / m 3 )
圧力損失係数  Pressure loss factor
V :排気の流速 (m/s) V: Exhaust flow velocity (m / s)
なお、 排気の密度; 0 exは、 以下の (式 3 ) にて表すことができる。 p ex = ... (式 3) Note that the density of exhaust gas; 0 ex can be expressed by the following (Expression 3). p ex = ... (Equation 3)
RXT  RXT
但し、 However,
P :排気の気体圧力 (絶対値) (kPa)  P: Gas pressure of exhaust (absolute value) (kPa)
R :排気のガス定数 287.03 (J/(kg · K)) R: Exhaust gas constant 287.03 (J / (kg · K))
T :排気の温度 (絶対値) (K) T: Exhaust temperature (absolute value) (K)
ここで、 排気の流速 V (m/s) は以下の (式 4 ) のように表せる。  Here, the flow velocity V (m / s) of the exhaust can be expressed as (Equation 4) below.
Q  Q
V =—  V =-
A  A
=— xi …(式 4)  =-Xi ... (Equation 4)
p ex A  p ex A
但し、 However,
Q :排気の体積流量 3/s) Q: Volumetric flow of exhaust 3 / s)
A : D P F内の有効断面積 (m3) A: Effective sectional area in the DPF (m 3 )
G :排気の質量流量 (kg/s)  G: Mass flow rate of exhaust (kg / s)
また、 気体の質量流量 Gは、 以下の (式 5 ) にて概略表すことができ る。 つまり、 ここでは、 燃料噴射流量は吸入空気量に較べて第一義的に は無視できるとした。 無視できない時には、 燃料噴射流量を G f (kg/s) とおいて、 (式 5 ) の Gに Gf を足せばよい。  Also, the mass flow rate G of the gas can be schematically represented by the following (Equation 5). In other words, the fuel injection flow rate can be neglected in the first place compared to the amount of intake air. If this can not be ignored, Gf can be added to G in (Eq. 5) with the fuel injection flow rate as G f (kg / s).
G=(NexVh)x vx χ1 0-3 …(式 5) 但し、 G = (NexVh) x vx χ 1 0-3 ... (Equation 5) However,
G 排気の質量流量 (kg/s)  Mass flow rate of exhaust gas (kg / s)
N e エンジンの回転数 (rpm)  N e Engine speed (rpm)
V h エンジンの総排気量 (L)  V h Total displacement of engine (L)
η ν 体積効率  η 体積 volumetric efficiency
in 吸入空気の密度 (kg/m3) in Density of intake air (kg / m 3 )
なお、 上記の 7 v、 /0 inは、 ィンテイクマ-ホールド部の温度、 圧力 を基に計算して求める値である。  The above 7 v and / 0 in are values calculated based on the temperature and pressure of the in-take mar-hold.
したがって、 (式 4 ) を (式 2 ) に代入すると、 以下に示す (式 6 ) が得られる。 Therefore, substituting (Expression 4) into (Expression 2), the following (Expression 6) Is obtained.
- (式 6)-(Expression 6)
Figure imgf000043_0001
Figure imgf000043_0001
次に上記 (式 6) を変形して APcを算出すると、  Next, transforming the above (equation 6) and calculating APc,
…(式 7)... (equation 7)
Figure imgf000043_0002
Figure imgf000043_0002
となる。  It becomes.
ここで、圧力損失係数 が質量流量 Gのあらゆる領域で一定であると おけるとすれば、 D P F内の有効断面積 Αを含む項は定数とおけるので. 上式 (式 7 ) は以下の (式 8 ) のように表すことができる。  Here, assuming that the pressure loss coefficient is constant in any region of mass flow rate G, the term including the effective cross-sectional area Α in the DPF can be a constant. 8) It can be expressed as
【 G  [G
APc— Const. X (式 8)  APc— Const. X (equation 8)
p ex  p ex
上記 (式 8 ) で算出した排気の圧力差計算値 APc と、 排気の質量流 量の自乗を密度で除算した G 2/ p exとをそれぞれ縦軸と横軸に表せば、 絞り要素系の抵抗特性が得られる。 If the pressure difference calculated value APc of the exhaust calculated by the above (Equation 8) and G 2 / p ex obtained by dividing the square of the mass flow rate of the exhaust by the density are respectively shown on the vertical axis and the horizontal axis, Resistance characteristics are obtained.
上記の (式 8 ) は温度や圧力の項を含んだ連続の式とも言えるもので ある。 ディーゼルエンジンの吸気系、 排気系など温度や圧力条件が変化 する場合であっても、 本特性上にプロットすれば、 絞り要素系の特性は 一義的に表現することが可能である。  The above (Eq. 8) can be said to be a continuous equation including the terms of temperature and pressure. Even if the temperature and pressure conditions change, such as the intake system and exhaust system of a diesel engine, the characteristics of the throttling element system can be uniquely expressed if plotted on this characteristic.
したがって、 吸気マ二ホールド 1 2内の空気の温度や圧力、 及び D P F入口温度や圧力、 D P F出口圧力を計測しておけば、 上記の計算式を 用いることによって、そのときのエンジンの運転状態における D P F前 後の圧力差の計算値 Δ Pcを算出することができる。 そして、 この圧力 差の計算値 Δ Pcに基づいた閾値 P tと、 実際に検出した D P F前後の 圧力差 Δ Pとを比較することによって、 新気スパイクを実施する条件 (PM堆積の限界) を判断することが可能となる。  Therefore, if the temperature and pressure of air in the intake manifold 12, and the DPF inlet temperature and pressure, and the DPF outlet pressure are measured, using the above-mentioned calculation formula, the engine operating condition at that time can be obtained. The calculated pressure difference ΔPc before and after DPF can be calculated. Then, by comparing the threshold value Pt based on the calculated value ΔPc of the pressure difference with the pressure difference ΔP before and after the actually detected DPF, the condition for performing the fresh air spike (limit of PM deposition) is determined. It becomes possible to judge.
図 1 5は、 D P F前後の圧力差計算値 Δ Pc と、 そのときの許容圧力 差 P tとの関係を示す図である。  FIG. 15 is a diagram showing the relationship between the pressure difference calculated value Δ Pc before and after D P F and the allowable pressure difference P t at that time.
同図では、排気浄化システムの初期の D P F前後の圧力差の計算値を 実線で表し、 P M堆積の限界の許容圧力差圧 P tを破線で表している。 本発明によれば同図に示すように、 D P F内部に P Mが堆積して、 これ 以上堆積すると再生時に急速な燃焼が起こり、 P M担体を焼損させてし まう可能性のある限界の圧力差閾値を許容圧力差 P t として設定する ことが可能となる。 In the figure, the calculated value of the pressure difference before and after the initial DPF of the exhaust gas purification system It is indicated by a solid line, and the allowable pressure differential pressure P t at the limit of PM deposition is indicated by a broken line. According to the present invention, as shown in the figure, PM deposits inside the DPF, and if it deposits further, rapid combustion occurs at the time of regeneration, and the pressure difference threshold at the limit that may cause PM carrier to burn out. It becomes possible to set as an allowable pressure difference Pt.
ディーゼルエンジンにおける所定の作動状態時の圧力差計算値 Δ P 0 (式 8に所定の排気の密度 p ex と排気の質量流量 Gと定数とを代入し て算出した A P cの値) に対して、 実際に検出した D P F前後の圧力差 For a pressure difference calculated value Δ P 0 (a value of AP c calculated by substituting a predetermined exhaust gas density p ex, an exhaust gas mass flow rate G and a constant into equation 8) in a predetermined operating condition of a diesel engine Pressure difference before and after DPF actually detected
△ Pが許容圧力差 P tよりも小さい場合には、通常運転領域であると判 断して、 新気スパイクの制御は行わず通常の運転を維持する。 また、 検 出した D P F前後の圧力差 Δ Ρが許容圧力差 P t以上の圧力差である 場合には、第 1の所定時間の経過を条件に新気スパイクの制御を行なう ようにする。 If ΔP is smaller than the allowable pressure difference Pt, it is determined that the normal operation range is established, and the control of the fresh air spike is not performed and the normal operation is maintained. If the detected pressure difference Δ 差 before and after D P F is a pressure difference greater than or equal to the allowable pressure difference P t, control of the fresh air spike is performed on the condition that the first predetermined time has elapsed.
実際に検出した圧力差 Δ Pと P tとに基づいて、新気スパイクを実施 するか否かを判断する条件は、 以下のようになる。  Based on the pressure differences Δ P and P t actually detected, the conditions for determining whether or not to perform the fresh air spike are as follows.
△ P < P tのとき :新気スパイク制御を実施せず  P When P <Pt: No new air spike control is performed
△ P≥ P tのとき :新気スパイク制御を実施する  P When P P P t: Perform fresh air spike control
図 1 5及ぴ上記の (式 8 ) に示すように、 許容圧力差 P tの閾値は、 ディーゼルエンジンの排気の質量流量 Gの二乗に応じて定めることが 可能である。 また、 許容圧力差 P tの閾値は、 ディーゼルエンジンの排 気の質量流量 Gの二乗を排気の密度; 0 ex で除算した値に応じて定める ことが可能である。 産業上の利用可能性 本発明は、 ディーゼル ·パティキュレート · フィルタ内に堆積したデ イーゼルエンジンの排気に含まれるパティキュレートマター (P M) を 酸化させて排気を浄化する、ディーゼルエンジンにおける P M酸化装置 において、 ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、 第 2の所定時間の 経過を計測する第 2のタイマーと、前記第 1のタイマーが計測した第 1 の所定時間経過後に前記吸気流量調節弁に吸気流量を増大する制御指 令を出力し、 前記第 2のタイマーが計測した第 2の所定時間経過後に前 記吸気流量調節弁に吸気流量を本来の吸気流量に戻す制御指令を出力 する制御手段とを備えた。 As shown in FIG. 15 and (Expression 8) above, the threshold value of the allowable pressure difference P t can be determined according to the square of the mass flow rate G of the exhaust of the diesel engine. Also, the threshold value of the allowable pressure difference Pt can be determined according to the value obtained by dividing the square of the mass flow rate G of the exhaust of the diesel engine by the density of the exhaust; 0 ex. Industrial Applicability The present invention relates to a PM oxidizer in a diesel engine, which purifies exhaust gas by oxidizing particulate matter (PM) contained in exhaust gas of diesel engine deposited in a diesel particulate filter. An intake flow control valve for adjusting the intake flow rate of the diesel engine; A first timer for measuring the passage of a first predetermined time, a second timer for measuring the passage of a second predetermined time, and the intake flow rate after the first predetermined time measured by the first timer has elapsed A control command to increase the intake flow rate is output to the control valve, and a control command to return the intake flow rate to the original intake flow rate is output to the intake flow control valve after the second predetermined time measured by the second timer has elapsed. And control means for
本発明によれば、 間欠的に新規の流量を増大させて一時的に D P Fに 酸素や窒素酸化物を過剰に供給するので、 N O Xの発生を低く押え且つ D P Fの反応温度を維持しつつ、効果的に P Mを酸化させることが可能 となる。 そして、 D P F内に過剰に P Mが蓄積するという不具合を防止 することが可能となる。  According to the present invention, since the new flow rate is intermittently increased to temporarily supply an excess amount of oxygen and nitrogen oxides to the DPF, it is possible to suppress the generation of NOx and maintain the reaction temperature of the DPF. It is possible to oxidize PM. And, it is possible to prevent the problem that PM accumulates excessively in DPF.
また本発明によれは、既存のディーゼルエンジンの排気浄化システム を用いている場合であって、 D P F内部に P Mが徐々に蓄積される不具 合が生じている場合であっても、第 1のタイマーが計測した第 1の所定 時間経過後に吸気流量調節弁に吸気流量を増大する制御指令を出力し、 第 2のタイマーが計測した第 2の所定時間経過後に吸気流量調節弁に 吸気流量を本来の吸気流量に戻す制御指令を出力する制御手段等を後 から付加することによって、 D P F内に堆積した P Mを効果的に酸化さ せて、排気を浄化するとともに D P Fを連続再生することが可能となる。 また本発明は、 ディーゼルエンジンにおける P M酸化装置において、 排気を燃焼前のシリンダ内に戻す排気バルブタイミングを有する排気 カムと、 吸気流量を調節する吸気流量調節弁と、 第 1のタイマーと、 第 2のタイマーと、第 1のタイマーと第 2のタイマーの各々が計測した所 定時間経過後に前記吸気流量調節弁に制御指令を出力する制御手段と を備えた。  Further, according to the present invention, the first timer can be used even in the case where the existing diesel engine exhaust gas purification system is used and there is a defect that PM is gradually accumulated in the DPF. The control command for increasing the intake flow rate is output to the intake flow rate control valve after the first predetermined time measured by the timer, and the intake flow rate is originally output to the intake flow rate control valve after the second predetermined time measured by the second timer. By subsequently adding control means or the like for outputting a control command for returning to the intake flow rate, it becomes possible to effectively oxidize PM deposited in the DPF to purify the exhaust and continuously regenerate the DPF. . According to the present invention, in the PM oxidizer of a diesel engine, an exhaust cam having an exhaust valve timing for returning exhaust to a cylinder before combustion, an intake flow control valve for adjusting an intake flow rate, a first timer, And a control means for outputting a control command to the intake flow control valve after an elapse of a predetermined time measured by each of the first timer and the second timer.
また本発明は、 ディーゼルエンジンにおける P M酸化装置において、 排気の再循環量を制御する E G R手段と、 吸気流量を調節する吸気流量 調節弁と、 第 1のタイマーと、 第 2のタイマーと、 第 1のタイマーと第 2のタイマーの各々が計測した所定時間経過後に前記吸気流量調節弁 に制御指令を出力する制御手段とを備えた。 According to the present invention, in the PM oxidizer in a diesel engine, an EGR means for controlling an exhaust gas recirculation amount, an intake flow rate control valve for adjusting an intake flow rate, a first timer, a second timer, and After the predetermined time measured by each of the second timer and the second timer has elapsed. And control means for outputting a control command.
本発明によれば、 内部 E G R又は外部 E G Rを用いてディーゼルェン ジンの低負荷時において排気温度を上昇させている場合であっても、 間 欠的に新気の流量を増大させて一時的に D P Fに酸素や窒素酸化物を 過剰に供給するので、 N O Xの発生を低く押さえ且つ D P Fの反応温度 を維持しつつ、 効果的に P Mを酸化させることが可能となる。 そして、 D P F内に過剰に P Mが蓄積するという不具合を防止することが可能 となる。  According to the present invention, even when the exhaust gas temperature is increased at low diesel engine load using internal EGR or external EGR, the flow rate of fresh air is momentarily increased to temporarily Since excess oxygen and nitrogen oxides are supplied to the DPF, PM can be effectively oxidized while suppressing the generation of NOx and maintaining the reaction temperature of the DPF. And, it becomes possible to prevent the problem that PM accumulates excessively in DPF.
本発明は、 ディーゼルエンジンにおける P M酸化装置において、 メイ ン D P Fとマイクロ D P Fとに排気の流路を切り替える切替弁と、吸気 流量を調節する吸気流量調節弁と、 第 1のタイマーと、 第 2のタイマー と、 アクセルペダルの踏み込み量及びエンジン回転数に応じて切替弁及 ぴ吸気流量調節弁の制御指令を出力するとともに、第 1のタイマーと第 2のタイマーの各々が計測した所定時間経過後に前記吸気流量調節弁 に制御指令を出力する制御手段とを備えた。  The present invention relates to a PM oxidation apparatus in a diesel engine, comprising: a switching valve that switches an exhaust flow path between a main DPF and a micro DPF; an intake flow control valve that controls an intake flow; a first timer; The timer, The control valve of the switching valve and the intake flow control valve is output according to the depression amount of the accelerator pedal and the engine speed, and the above-mentioned after the predetermined time measured by each of the first timer and the second timer elapses. And a control means for outputting a control command to the intake flow control valve.
本発明によれば、切替弁を用いて μ D P Fと m D P Fとに排気の経路 を切り替えている場合であっても、 間欠的に新気の流量を增大させて一 時的に μ D P F又は m D P Fに酸素や窒素酸化物を過剰に供給するの で、 N O Xの発生を低く押さえ且つ D P Fの反応温度を維持しつつ、 効 果的に P Mを酸化させることが可能となる。 そして、 /z D P F又は m D P F内に過剰に P Mが蓄積するという不具合を防止することが可能と なる。  According to the present invention, even when the exhaust path is switched between the μ DPF and the m DPF using the switching valve, the flow rate of fresh air is intermittently increased to temporarily increase the μ DPF or Since oxygen and nitrogen oxides are supplied in excess to the m DPF, it is possible to effectively oxidize PM while suppressing the generation of NO x and maintaining the reaction temperature of the DPF. And, it becomes possible to prevent the problem of excessive accumulation of PM in / z DP F or m DP F.
また本発明は、 ディーゼルエンジンにおける P M酸化装置において、 吸気流量を調節する吸気流量調節弁と、 第 1のタイマーと、 第 2のタイ マーと、 前記 D P F前後の圧力差を検出する差圧センサと、 前記第 1の タイマーが計測した第 1の所定時間経過後であって且つ前記差圧セン サが検出した圧力差が所定の閾値以上である場合には、前記吸気流量調 節弁に吸気流量を增大する制御指令を出力し、前記第 2のタイマーが計 測した第 2の所定時間経過後に前記吸気流量調節弁に吸気流量を本来 の吸気流量に戻す制御指令を出力する制御手段とを備えた。 Further, according to the present invention, in a PM oxidizer in a diesel engine, an intake flow control valve for adjusting an intake flow rate, a first timer, a second timer, and a differential pressure sensor for detecting a pressure difference before and after the DPF. After the elapse of a first predetermined time measured by the first timer and the pressure difference detected by the differential pressure sensor is equal to or greater than a predetermined threshold value, the intake flow rate is adjusted to the intake flow rate adjustment valve. Output a control command to increase the flow rate, and after the second predetermined time measured by the second timer has passed, the Control means for outputting a control command for returning to the intake air flow rate of
本発明によれば、 D P F前後の排気の差圧を監視して、 D P F前後の 排気の差圧が所定の閾値以上になっている場合にのみディ一ゼルェン ジンの燃焼に必要な酸素量よりも多く酸素を吸入するようにしたので、 頻繁な新気スパイクを禁止して、新気吸入量の増大による排気温度の低 下を防止し、 N O Xの発生を低く押さえつつ D P Fの反応温度を維持し て効果的に P Mを酸化させることが可能となる。  According to the present invention, the differential pressure of exhaust before and after DPF is monitored, and the amount of oxygen necessary for the combustion of diesel engine is exceeded only when the differential pressure of exhaust before and after DPF is equal to or greater than a predetermined threshold. Since a large amount of oxygen was inhaled, frequent fresh air spikes were prohibited to prevent the exhaust temperature from decreasing due to an increase in the amount of fresh air intake, and maintain the reaction temperature of the DPF while suppressing the generation of NOx. It is possible to effectively oxidize PM.

Claims

請求の範囲 The scope of the claims
1 . ディーゼルエンジンから排出される排気ガスを、 排気浄化装置を通 して排気ガス中の P M (パティキュレートマター) を酸化させる P M酸 化方法であって、前記ディーゼルエンジンの吸気通路に吸気絞り 2 4を 設けて前記ディーゼルエンジンから前記排気浄化装置に流入する排気 ガスの排気温度を高め、前記吸気絞り 2 4を定期的に開放して前記ディ ーゼルエンジンに新気を供給することを特徴とする P M酸化方法。 1. A PM oxidation method in which exhaust gas emitted from a diesel engine is oxidized through PM (particulate matter) in exhaust gas through an exhaust purification device, and an intake air throttle 2 in the intake passage of the diesel engine 2 4 to increase the exhaust temperature of exhaust gas flowing from the diesel engine to the exhaust purification device, and to periodically open the intake throttle 24 to supply fresh air to the diesel engine. Oxidation method.
2 .請求の範囲 1に記載の P M酸化方法において、 前記ディーゼルェン ジンから前記排気浄化装置に流入する排気ガスの排気温度を高めるた め、前記ディーゼルエンジンの吸気行程の下死点付近において排気パル プを開弁することにより、 高温の排気が減圧されている前記ディーゼル エンジンのシリンダ内に逆流して排気再循環を行なうことを特徴とす る P M酸化方法。 2. In the PM oxidation method according to claim 1, in order to increase the exhaust temperature of the exhaust gas flowing from the diesel engine into the exhaust purification device, the exhaust gas is generated near the bottom dead center of the intake stroke of the diesel engine. A PM oxidation method characterized by performing exhaust gas recirculation by flowing back into a cylinder of the diesel engine in which high temperature exhaust gas is depressurized by opening a pulp.
3 . 請求の範囲 1又は 2記載の P M酸化方法において、 前記排気浄化装 置は、 D O Cと D P F、 D O Cと触媒担持型 D P F、 触媒担持型 D P F から選択されるいずれか 1の連続再生式 D P Fであることを特徴とす る P M酸化方法。  3. The PM oxidation method according to claim 1 or 2, wherein the exhaust gas purification device is any one continuously regenerating DPF selected from DOC and DPF, DOC and catalyst supported DPF, and catalyst supported DPF. PM oxidation method characterized in that
4 . 請求の範囲 1に記載の P M酸化方法において、 前記排気浄化装置は 主排気浄化装置と補助排気浄化装置とで構成され、前記ディ一ゼルェン ジンの排気ポ一トと前記主排気浄化装置とは主排気管によって接続さ れており、補助排気管が前記主排気管に両端部を接続して設けられてお り、前記補助排気管には前記補助排気浄化装置が接続して設けられてお り、 前記ディーゼルエンジンの低負荷時における小排気流量時には、 主 排気管に設けられた切替弁を閉弁することにより前記ディーゼルェン ジンからの排気ガスの全流量が前記補助排気管を通って前記補助排気 浄化装置に送られるようにし、前記ディーゼルエンジンの高負荷時にお ける排気流量の増大時には前記切替弁を開弁することを特徴とする P M酸化方法。  4. In the PM oxidation method according to claim 1, the exhaust gas purification device is composed of a main exhaust gas purification device and an auxiliary exhaust gas purification device, and the exhaust port of the diesel engine and the main exhaust gas purification device The main exhaust pipe is connected by an auxiliary exhaust pipe, and the auxiliary exhaust pipe is provided with both ends connected to the main exhaust pipe, and the auxiliary exhaust pipe is connected with the auxiliary exhaust purification device. In other words, when the small exhaust flow rate at low load of the diesel engine, the switching valve provided on the main exhaust pipe is closed so that the total flow of exhaust gas from the diesel engine passes through the auxiliary exhaust pipe. And the switching valve is opened when the flow rate of exhaust gas is increased when the diesel engine is under high load.
5 . 請求の範囲 2に記載の P M酸化方法において、 前記排気浄化装置は 主排気浄化装置と補助排気浄化装置とで構成され、前記ディ一ゼルェン ジンの排気ポートと前記主排気浄化装置とは主排気管によって接続さ れており、補助排気管が前記主排気管に両端部を接続して設けられてお り、前記補助排気管には前記補助排気浄化装置が接続して設けられてお り、 前記ディーゼルエンジンの低負荷時における小排気流量時には、 主 排気管に設けられた切替弁を閉弁することにより前記ディーゼルェン ジンからの排気ガスの全流量が前記補助排気管を通って前記補助排気 浄化装置に送られるようにし、前記ディーゼルエンジンの高負荷時にお ける排気流量の増大時には前記切替弁を開弁することを特徴とする P M酸化方法。 5. The PM oxidation method according to claim 2, wherein the exhaust gas purification device A main exhaust purification device and an auxiliary exhaust purification device are provided, and the exhaust port of the diesel engine and the main exhaust purification device are connected by a main exhaust pipe, and the auxiliary exhaust pipe is connected to both ends of the main exhaust pipe. The auxiliary exhaust pipe is connected to the auxiliary exhaust pipe, and the auxiliary exhaust gas purification device is connected to the auxiliary exhaust pipe. When the small exhaust flow rate of the diesel engine at low load, the auxiliary exhaust pipe is connected to the main exhaust pipe. By closing the switching valve, the entire flow rate of exhaust gas from the diesel engine is sent to the auxiliary exhaust purification device through the auxiliary exhaust pipe, and the diesel engine is loaded at high load. The PM oxidation method characterized in that the switching valve is opened when the exhaust flow rate is increased.
6 . 請求の範囲 4又は請求の範囲 5に記載の P M酸化方法において、 前 記主排気浄化装置は、 D O Cと D P F、 D O Cと触媒担持型 D P F、 触 媒担持型 D P Fから選択されるいずれか 1の連続再生式 D P Fであり、 前記補助排気浄化装置は、 D O Cと D P F、D O Cと触媒担持型 D P F、 触媒担持型 D P Fから選択されるいずれか 1の連続再生式 D P Fであ ることを特徴とする P M酸化方法。  6. In the PM oxidation method according to claim 4 or 5, the main exhaust gas purification device is any one selected from DOC and DPF, DOC and catalyst supported DPF, and catalyst supported DPF. The auxiliary exhaust gas purification apparatus is any one continuous regeneration type DPF selected from DOC, DPF, DOC, catalyst supported DPF, and catalyst supported DPF. PM oxidation method.
7 . ディーゼル ·パティキュレート · フイノレタ内に堆積したディーゼル エンジンの排気に含まれるパティキュレートマター (P M) を酸化させ て排気を浄化する、 ディーゼルエンジンにおける P M酸化装置において、 ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  7. Particulate matter (PM) contained in the exhaust of the diesel engine accumulated in the diesel particulates, the finoreta is oxidized to purify the exhaust, and in the PM oxidizer in the diesel engine, the intake flow rate of the diesel engine is adjusted An intake flow rate control valve; a first timer that measures a lapse of a first predetermined time;
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
前記第 1のタイマーが計測した第 1の所定時間経過後に前記吸気流 量調節弁に前記吸気流量を増大する制御指令を出力し、 前記第 2のタイ マーが計測した第 2の所定時間経過後に前記吸気流量調節弁に前記吸 気流量を本来の吸気流量に戻す制御指令を出力する制御手段と、  After a first predetermined time measured by the first timer, a control command to increase the intake flow rate is outputted to the intake flow rate adjustment valve, and after a second predetermined time measured by the second timer, Control means for outputting a control command for returning the intake flow to the original intake flow to the intake flow control valve;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
8 . ディーゼル'パティキュレート .フィルタ内に堆積したディーゼル エンジンの排気に含まれるパティキュレートマター (P M) を酸化させ て排気を浄化する、 ディーゼルエンジンにおける P M酸化装置において、 エンジンの吸気行程終了付近にて排気バルブを開けて排気を燃焼前 のシリンダ内に戻す排気バルブタイミングを有する排気カムと、 8. Diesel 'particulates' Diesel deposited in the filter In a PM oxidizer in a diesel engine that oxidizes particulate matter (PM) contained in the exhaust of the engine to purify the exhaust, the exhaust valve is opened near the end of the intake stroke of the engine to exhaust the exhaust into the cylinder before combustion. An exhaust cam with exhaust valve timing to return;
ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  An intake flow control valve that adjusts an intake flow rate of a diesel engine; a first timer that measures an elapse of a first predetermined time;
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
前記第 1のタイマーが計測した第 1の所定時間経過後に前記吸気流 量調節弁に前記吸気流量を増大する制御指令を出力し、前記第 2のタイ マーが計測した第 2の所定時間経過後に前記吸気流量調節弁に前記吸 気流量を本来の吸気流量に戻す制御指令を出力する制御手段と、  After a first predetermined time measured by the first timer, a control command for increasing the intake flow rate is output to the intake flow rate adjustment valve, and after a second predetermined time measured by the second timer, Control means for outputting a control command for returning the intake flow to the original intake flow to the intake flow control valve;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
9 . ディーゼル ·パティキュレート 'フィルタ (D P F ) 内に堆積した ディーゼルエンジンの排気に含まれるパティキュレー トマター (P M) を酸化させて排気を浄化する、ディーゼルエンジンにおける P M酸化装 置において、  9. PM particulate oxidation apparatus in a diesel engine, which purifies exhaust gas by oxidizing particulate matter (PM) contained in the exhaust of the diesel engine deposited in the diesel particulate filter (DPF)
ディーゼルエンジンの排気に含まれるパティキュレー トマターを捕 集して処理する 2種類の D P Fであって、ディーゼルエンジンの高負荷 時に排出される多量の排気を処理するメイン D P Fと、 ディーゼルェン ジンの低負荷時に排出される少量の排気を処理するマイクロ D P Fと に排気の流路を切り替える切替弁と、  Two types of DPF that collect and process particulate matter contained in exhaust of diesel engine, which is a main DPF that processes a large amount of exhaust when the diesel engine is heavily loaded, and low load of diesel engine A micro DPF that processes a small amount of exhaust gas that is discharged from time to time;
ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  An intake flow control valve that adjusts an intake flow rate of a diesel engine; a first timer that measures an elapse of a first predetermined time;
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
アクセルペダルの踏み込み量及びエンジン回転数に応じて切替弁及 ぴ吸気流量調節弁の制御指令を出力するとともに、前記第 1のタイマー が計測した第 1の所定時間経過後に前記吸気流量調節弁に前記吸気流 量を増大する制御指令を出力し、前記第 2のタイマーが計測した第 2の 所定時間経過後に前記吸気流量調節弁に前記吸気流量を本来の吸気流 量に戻す制御指令を出力する制御手段と、 The control command for the switching valve and the intake flow control valve is output according to the depression amount of the accelerator pedal and the engine speed, and the intake flow control valve is operated after the first predetermined time measured by the first timer. The control command that increases the intake flow rate is output, and the second timer measured by the second timer Control means for outputting a control command to return the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve after a predetermined time has elapsed;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 0 . ディーゼル 'パティキュレート 'フィルタ内に堆積したディーゼ ルエンジンの排気に含まれるパティキュレートマター (P M) を酸化さ せて排気を浄化する、ディーゼルエンジンにおける P M酸化装置におい て、  1 0. Diesel PM 's in PM engine oxidizer in diesel engine, which oxidizes particulate matter (PM) contained in diesel engine's exhaust accumulated in diesel' particulate 'filter.
排気を吸気側に再循環する際の排気の再循環量を制御する E G R手 段と、  E G R means for controlling the amount of exhaust recirculation when recirculating the exhaust to the intake side;
ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  An intake flow control valve that adjusts an intake flow rate of a diesel engine; a first timer that measures an elapse of a first predetermined time;
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
前記第 1 のタイマーが計測した第 1の所定時間経過後に前記吸気流 量調節弁に前記吸気流量を増大する制御指令を出力し、前記第 2のタイ マーが計測した第 2の所定時間経過後に前記吸気流量調節弁に前記吸 気流量を本来の吸気流量に戻す制御指令を出力する制御手段と、  After a first predetermined time measured by the first timer, a control command for increasing the intake flow rate is output to the intake flow rate adjustment valve, and after a second predetermined time measured by the second timer, Control means for outputting a control command for returning the intake flow to the original intake flow to the intake flow control valve;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 1 . ディーゼル 'パティキュレート 'フィノレタ内に堆積したディーゼ ルエンジンの排気に含まれるパティキュレートマター (P M) を酸化さ せて排気を浄化する、ディーゼルエンジンにおける P M酸化装置におい て、  1 1. Diesel 'particulate' In PM oxidator in diesel engine, the particulate matter (PM) contained in the exhaust of diesel engine accumulated in the finoreta is oxidized to purify the exhaust,
ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  An intake flow control valve that adjusts an intake flow rate of a diesel engine; a first timer that measures an elapse of a first predetermined time;
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
前記 D P F前後の圧力差を検出する差圧センサと、  A differential pressure sensor that detects a pressure difference around the D P F;
前記第 1のタイマーが計測した第 1の所定時間経過後であって且つ 前記差圧センサが検出した圧力差が所定の閾値以上である場合には、前 記吸気流量調節弁に前記吸気流量を増大する制御指令を出力し、 前記第 2のタイマーが計測した第 2の所定時間経過後に前記吸気流量調節弁 に前記吸気流量を本来の吸気流量に戻す制御指令を出力する制御手段 と、 After the elapse of a first predetermined time measured by the first timer and the pressure difference detected by the differential pressure sensor is equal to or greater than a predetermined threshold value, Control command to increase the intake flow rate is output to the intake flow rate control valve, and control is performed to return the intake flow rate to the original intake flow rate to the intake flow rate control valve after a second predetermined time measured by the second timer. Control means for outputting a command;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 2 . ディーゼル ·パティキュレート ·フィノレタ内に堆積したディーゼ ルエンジンの排気に含まれるパティキュレートマター (P M) を酸化さ せて排気を浄化する、ディーゼルエンジンにおける P M酸化装置におい て、  1 2. PM P oxidizer in diesel engine which purifies exhaust gas by oxidizing particulate matter (P M) contained in exhaust of diesel engine accumulated in diesel particulate finoreta.
エンジンの吸気行程終了付近にて排気バルブを開けて排気を燃焼前 のシリンダ内に戻す排気バルブタィミングを有する排気カムと、 ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  An exhaust cam having an exhaust valve timing that opens the exhaust valve near the end of the intake stroke of the engine and returns the exhaust to the cylinder before combustion, an intake flow control valve that adjusts the intake flow rate of the diesel engine, and a first predetermined time A first timer that measures the progress of
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
前記 D P F前後の圧力差を検出する差圧センサと、  A differential pressure sensor that detects a pressure difference around the D P F;
前記第 1 のタイマーが計測した第 1の所定時間経過後であって且つ 前記差圧センサが検出した圧力差が所定の閾値以上である場合には、前 記吸気流量調節弁に前記吸気流量を増大する制御指令を出力し、前記第 2のタイマーが計測した第 2の所定時間経過後に前記吸気流量調節弁 に前記吸気流量を本来の吸気流量に戻す制御指令を出力する制御手段 と、  After the elapse of the first predetermined time measured by the first timer, and the pressure difference detected by the differential pressure sensor is equal to or greater than a predetermined threshold, the intake flow control valve Control means for outputting an increasing control command and outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow control valve after the second predetermined time measured by the second timer has elapsed.
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 3 . ディーゼル 'パティキュレート · フィルタ (D P F ) 内に堆積し たディーゼルエンジンの排気に含まれるパティキュレートマター ( P M) を酸化させて排気を浄化する、 ディーゼルエンジンにおける P M酸 化装置において、  1 3. In PM oxidizer for diesel engine, the particulate matter (PM) contained in the exhaust of diesel engine deposited in diesel 'particulate filter (DPF) is oxidized to purify the exhaust,
ディーゼルエンジンの排気に含まれるパティキュレートマターを捕 集して処理する 2種類の D P Fであって、ディーゼルエンジンの高負荷 時に排出される多量の排気を処理するメイン D P Fと、 ディーゼルェン ジンの低負荷時に排出される少量の排気を処理するマイクロ D P Fと に排気の流路を切り替える切替弁と、 Capture particulate matter contained in diesel engine exhaust Two types of DPFs that are collected and processed: a main DPF that processes a large amount of exhaust emitted when the diesel engine is heavily loaded, and a micro that processes a small amount of exhaust discharged when the diesel engine is lightly loaded Switching valve for switching the exhaust flow path to DPF, and
ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  An intake flow control valve that adjusts an intake flow rate of a diesel engine; a first timer that measures an elapse of a first predetermined time;
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
前記 D P F前後の圧力差を検出する差圧センサと、  A differential pressure sensor that detects a pressure difference around the D P F;
アクセルペダルの踏み込み量及びエンジン回転数に応じて切替弁及 ぴ吸気流量調節弁の制御指令を出力するとともに、前記第 1のタイマー が計測した第 1の所定時間経過後であって且つ前記差圧センサが検出 した圧力差が所定の閾値以上である場合には前記吸気流量調節弁に前 記吸気流量を増大する制御指令を出力し、前記第 2のタイマーが計測し た第 2の所定時間経過後に前記吸気流量調節弁に前記吸気流量を本来 の吸気流量に戻す制御指令を出力する制御手段と、  A control command for the switching valve and the intake flow control valve is output according to the depression amount of the accelerator pedal and the engine speed, and after the first predetermined time measured by the first timer has elapsed, the differential pressure When the pressure difference detected by the sensor is equal to or greater than a predetermined threshold value, a control command for increasing the intake flow rate is output to the intake flow rate control valve, and a second predetermined time elapsed by the second timer is elapsed. Control means for later outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 4 . ディーゼル ·パティキュレート ·フィルタ内に堆積したディ一ゼ ルエンジンの排気に含まれるパティキュレートマター (P M) を酸化さ せて排気を浄化する、ディーゼルエンジンにおける P M酸化装置におい て、  1 4. Particulate matter (P M) contained in the exhaust of diesel engine deposited in the diesel particulate filter The particulate matter (P M) in the diesel engine is oxidized to purify the exhaust gas.
排気を吸気側に再循環する際の排気の再循環量を制御する E G R手 段と、  E G R means for controlling the amount of exhaust recirculation when recirculating the exhaust to the intake side;
ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、  An intake flow control valve that adjusts an intake flow rate of a diesel engine; a first timer that measures an elapse of a first predetermined time;
第 2の所定時間の経過を計測する第 2のタイマーと、  A second timer that measures the elapse of a second predetermined time;
前記 D P F前後の圧力差を検出する差圧センサと、  A differential pressure sensor that detects a pressure difference around the D P F;
前記第 1のタイマーが計測した第 1の所定時間経過後であって且つ 前記差圧センサが検出した圧力差が所定の閾値以上である場合には、前 記吸気流量調節弁に前記吸気流量を増大する制御指令を出力し、前記第 2のタイマーが計測した第 2の所定時間経過後に前記吸気流量調節弁 に前記吸気流量を本来の吸気流量に戻す制御指令を出力する制御手段 と、 After the elapse of a first predetermined time measured by the first timer and the pressure difference detected by the differential pressure sensor is equal to or greater than a predetermined threshold value, The control command for increasing the intake flow rate is output to the intake flow rate control valve, and the intake flow rate control valve is returned to the original intake flow rate after the second predetermined time measured by the second timer has elapsed. Control means for outputting a command;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 5 . 請求の範囲 7乃至 1 0のディ ^ゼルエンジンにおける P M酸化装 置において、  In the PM oxidation apparatus in the diesel engine of claims 7 to 10
第 3の所定時間の経過を計測する第 3のタイマーと、  A third timer that measures the elapse of a third predetermined time;
第 4の所定時間の経過を計測する第 4のタイマーとを備え、  And a fourth timer for measuring the elapse of a fourth predetermined time,
前記第 1のタイマーが計測した第 1の所定時間経過後であって、且つ、 前記第 2のタイマーが計測した第 2の所定時間経過前に、  After the elapse of a first predetermined time measured by the first timer and before the elapse of a second predetermined time measured by the second timer,
前記第 3のタイマーが計測した第 3の所定時間経過後に前記吸気流 量調節弁に前記吸気流量を増大する制御指令を出力し、前記第 4のタイ マーが計測した第 4の所定時間経過後に前記吸気流量調節弁に前記吸 気流量を本来の吸気流量に戻す制御指令を出力する制御手段と、  After a third predetermined time measured by the third timer, a control command for increasing the intake flow rate is outputted to the intake flow rate adjustment valve, and after a fourth predetermined time measured by the fourth timer, Control means for outputting a control command for returning the intake flow to the original intake flow to the intake flow control valve;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 6 . 請求の範囲 1 1乃至 1 4のディーゼルエンジンにおける P M酸化 装置において、  A PM oxidizer in a diesel engine according to any one of claims 1 to 14
第 3の所定時間の経過を計測する第 3のタイマーと、  A third timer that measures the elapse of a third predetermined time;
第 4の所定時間の経過を計測する第 4のタイマーと、  A fourth timer measuring elapsed time of a fourth predetermined time;
前記 D P F前後の圧力差を検出する差圧センサとを備え、  And a differential pressure sensor for detecting a pressure difference around the DPF,
前記第 1のタイマーが計測した第 1の所定時間経過後であって且つ 前記差圧センサが検出した圧力差が所定の閾値以上である場合且つ前 記第 2のタイマーが計測した第 2の所定時間経過前に、前記第 3のタイ マーが計測した第 3の所定時間経過後に前記吸気流量調節弁に前記吸 気流量を増大する制御指令を出力し、前記第 4のタイマーが計測した第 4の所定時間経過後に前記吸気流量調節弁に前記吸気流量を本来の吸 気流量に戻す制御指令を出力する制御手段と、 A second predetermined value measured after the first predetermined time measured by the first timer has elapsed and the pressure difference detected by the differential pressure sensor is equal to or greater than a predetermined threshold value. Before the lapse of time, a control command for increasing the intake flow rate is outputted to the intake flow control valve after the lapse of a third predetermined time measured by the third timer, and the fourth timer measures the fourth After the predetermined time has passed, the intake flow control valve Control means for outputting a control command for returning to the air flow rate;
を備えたことを特徴とするディーゼルエンジンにおける P M酸化装 置。  PM oxidation equipment in a diesel engine characterized by
1 7 . 請求の範囲 7乃至 1 4のディーゼルエンジンにおける P M酸化装 置において、  In the PM oxidizer of a diesel engine according to any one of claims 7 to 14,
前記第 1のタイマーが計測する第 1の所定時間は、 3分乃至 3 0分の 間の時間であることを特徴とするディーゼルエンジンにおける P M酸 化装置。  The PM oxidizer in a diesel engine, wherein the first predetermined time measured by the first timer is a time between 3 minutes and 30 minutes.
1 8 . 請求の範囲 7乃至 1 4のディーゼルエンジンにおける P M酸化装 置において、  In the PM oxidation apparatus of a diesel engine according to any one of claims 7 to 14,
前記第 2のタイマーが計測する第 2の所定時間は、 0 . 5秒乃至 1 2 0秒の間の時間であることを特徴とするディーゼルエンジンにおける P M酸化装置。  The PM oxidizer in a diesel engine, wherein the second predetermined time measured by the second timer is a time between 0.5 second and 120 seconds.
1 9 . 請求の範囲 1 1乃至 1 4のディーゼルエンジンにおける P M酸化 装置において、  The PM oxidizer in the diesel engine according to claims 1 to 14
前記所定の閾値は、ディーゼルエンジンの排気の質量流量の二乗に応 じて定まる閾値であることを特徴とするディーゼルェンジンにおける P M酸化装置。  The PM oxidizer in a diesel engine, wherein the predetermined threshold is a threshold determined according to a square of a mass flow rate of exhaust of a diesel engine.
2 0 . 請求の範囲 1 1乃至 1 4のディーゼルエンジンにおける P M酸化 装置において、  In the PM oxidizer in the diesel engine according to claims 1 to 14,
前記所定の閾値は、 ディーゼルエンジンの排気の質量流量の二乗を排 気の密度で除算した値に応じて定まる閾値であることを特徴とするデ イーゼルエンジンにおける P M酸化装置。  The PM oxidizer in a diesel engine characterized in that the predetermined threshold is a threshold determined according to a value obtained by dividing the square of the mass flow rate of exhaust of a diesel engine by the density of exhaust.
2 1 . ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、第 2の所定時間の経 過を計測する第 2のタイマーと、前記第 1のタイマーが計測した第 1の 所定時間及び第 2のタイマーが計測した第 2の所定時間基づいて吸気 流量調節弁の開度を調節する制御指令を出力する制御手段とを備えた ディ一ゼルェンジンにおける P M酸化装置の制御手段にて動作し、ディ ーゼル ·パティキュレート · フィルタ内に堆積したディーゼルエンジン の排気に含まれるパティキュレートマター (P M) を酸化させて排気を 浄化する、 ディーゼルエンジンにおける P M酸化プログラムであって、 前記制御手段に、 2 1. The intake flow control valve that adjusts the intake flow rate of the diesel engine, the first timer that measures the lapse of the first predetermined time, and the second timer that measures the lapse of the second predetermined time, Control means for outputting a control command for adjusting the opening degree of the intake flow control valve based on the first predetermined time measured by the first timer and the second predetermined time measured by the second timer; Control unit of PM oxidation system in A PM oxidation program for a diesel engine, comprising purifying particulate matter (PM) contained in exhaust gas of a diesel engine deposited in a diesel particulate filter, the control means comprising:
前記第 1のタイマーが計測した第 1の所定時間経過した情報を読み 出す機能と、  A function of reading out information that has passed a first predetermined time measured by the first timer;
前記第 1のタイマーが計測した第 1の所定時間経過後に前記吸気流 量調節弁に前記吸気流量を増大する制御指令を出力する機能と、  A function of outputting a control command to increase the intake flow rate to the intake flow control valve after a first predetermined time measured by the first timer has elapsed;
前記第 2のタイマーが計測した第 2の所定時間経過した情報を読み 出す機能と、  A function of reading out information that has passed a second predetermined time measured by the second timer;
前記第 2のタイマーが計測した第 2の所定時間経過後に前記吸気流 量調節弁に前記吸気流量を本来の吸気流量に戻す制御指令を出力する 機能と、  Outputting a control command for returning the intake flow rate to the original intake flow rate to the intake flow rate adjustment valve after a second predetermined time measured by the second timer has elapsed.
を実現させることを特徴とする P M酸化プログラム。  A PM oxidation program that is characterized by realizing
2 2 . 第 3の所定時間の経過を計測する第 3のタイマーと、 第 4の所定 時間の経過を計測する第 4のタイマーとを備えた請求の範囲 2 1に記 載のディーゼルエンジンの P M酸化装置の制御手段にて動作する P M 酸化プログラムであって、 2 2. The PM of the diesel engine according to claim 1, further comprising a third timer for measuring the passage of a third predetermined time, and a fourth timer for measuring the passage of a fourth predetermined time. A PM oxidation program operated by control means of the oxidizer,
前記制御手段に、  In the control means,
前記第 1のタイマーが計測した第 1の所定時間経過後であって、且つ、 前記第 2のタイマーが計測した第 2の所定時間経過前に、前記第 3のタ イマ一が計測した第 3の所定時間経過後に前記吸気流量調節弁に前記 吸気流量を増大する制御指令を出力し、前記第 4のタイマーが計測した 第 4の所定時間経過後に前記吸気流量調節弁に前記吸気流量を本来の 吸気流量に戻す制御指令を出力する機能を実現させることを特徴とす る P M酸化プログラム。  A third time measured by the third timer after a first predetermined time measured by the first timer and before a second predetermined time measured by the second timer. The control command for increasing the intake flow rate is outputted to the intake flow control valve after a predetermined time has elapsed, and the intake flow rate is originally transmitted to the intake flow control valve after a fourth predetermined time measured by the fourth timer. A PM oxidation program characterized by realizing a function of outputting a control command to return to the intake flow rate.
2 3 . ディーゼルエンジンの吸気流量を調節する吸気流量調節弁と、 第 1の所定時間の経過を計測する第 1のタイマーと、第 2の所定時間の経 過を計測する第 2のタイマーと、 P M (パティキュレートマター) を捕 集する D P F前後の圧力差を検出する差圧センサと、前記第 1のタイマ 一が計測した第 1の所定時間、第 2のタイマーが計測.した第 2の所定時 間及び差圧センサが検出した圧力差に基づいて吸気流量調節弁の開度 を調節するための制御指令を出力する制御手段とを備えたディーゼル 5 'エンジンにおける P M酸化装置の制御手段にて動作し、 ディーゼル'パ ティキュレート ·フィルタ内に堆積したディーゼルエンジンの排気に含 まれるパティキュレートマター (P M) を酸化させて排気を浄化する、 ディーゼルエンジンにおける P M酸化プログラムであって、 2 3. An intake flow control valve that adjusts the intake flow rate of the diesel engine, a first timer that measures the lapse of a first predetermined time, and a second timer that measures the lapse of a second predetermined time, Capture PM (particulate matter) A differential pressure sensor for detecting a pressure difference before and after the DPF, a first predetermined time measured by the first timer, a second predetermined time measured by the second timer, and a differential pressure sensor The control unit of the PM 5 oxidation engine in the diesel 5 'engine has control means for controlling the opening of the intake flow control valve based on the pressure difference, and operates with the control means of the PM oxidizer in the diesel 5' engine. · A PM oxidation program in a diesel engine that purifies exhaust gas by oxidizing particulate matter (PM) contained in the exhaust of the diesel engine accumulated in the filter,
前記制御手段に、 In the control means,
0 前記差圧センサが検出した D P F前後の圧力差を取得する機能と、 前記第 1のタイマーが計測した第 1の所定時間経過した情報を読み 出す機能と、 0 A function of acquiring a pressure difference before and after D P F detected by the differential pressure sensor, and a function of reading out information that has elapsed for a first predetermined time measured by the first timer,
前記第 1のタイマーが計測した第 1の所定時間経過後であって且つ 前記差圧センサが検出した圧力差が所定の閾値以上である場合には、前5 記吸気流量調節弁に前記吸気流量を增大する制御指令を出力する機能 ' と、  After the elapse of a first predetermined time measured by the first timer and the pressure difference detected by the differential pressure sensor is equal to or greater than a predetermined threshold value, the intake flow rate is applied to the intake flow rate control valve. Function to output control commands that increase
前記第 2のタイマーが計測した第 2の所定時間経過した情報を読み 出す機能と、  A function of reading out information that has passed a second predetermined time measured by the second timer;
前記第 2のタイマーが計測した第 2の所定時間経過後に前記吸気流 0 量調節弁に前記吸気流量を本来の吸気流量に戻す制御指令を出力する 機能と、  A function of outputting a control command for returning the intake air flow rate to the original intake air flow rate to the intake air flow amount adjustment valve after a second predetermined time measured by the second timer has elapsed;
を実現させることを特徴とする P M酸化プログラム。  A PM oxidation program that is characterized by realizing
2 4 . 第 3の所定時間の経過を計測する第 3のタイマーと、 第 4の所定 時間の経過を計測する第 4のタイマーとを備えた請求の範囲 2 3に記 5 載のディーゼルエンジンの P M酸化装置の制御手段にて動作する P M 酸化プログラムであって、  The diesel engine according to claim 5, further comprising a third timer for measuring the elapse of a third predetermined time, and a fourth timer for measuring the elapse of a fourth predetermined time. A PM oxidation program operated by the control means of the PM oxidation apparatus,
前記制御手段に、  In the control means,
前記第 1のタイマーが計測した第 1の所定時間経過後であって且つ 前記差圧センサが検出した圧力差が所定の閾値以上である場合且つ前 記第 2のタイマーが計測した第 2の所定時間経過前に、前記第 3のタイ マーが計測した第 3の所定時間経過後に前記吸気流量調節弁に前記吸 気流量を増大する制御指令を出力し、 前記第 4のタイマーが計測した第After the elapse of a first predetermined time measured by the first timer, and the pressure difference detected by the differential pressure sensor is greater than or equal to a predetermined threshold Before the second predetermined time measured by the second timer, a control command to increase the intake flow rate is output to the intake flow control valve after the third predetermined time measured by the third timer has elapsed. The fourth timer measures
4の所定時間経過後に前記吸気流量調節弁に前記吸気流量を本来の吸 気流量に戻す制御指令を出力する機能を実現させることを特徴とするA function of outputting a control command for returning the intake air flow rate to the original intake air flow rate to the intake air flow rate adjustment valve after the lapse of a predetermined time of 4 is realized.
P M酸化プログラム。 PM oxidation program.
2 5 . 請求の範囲 2 1又は 2 3のディーゼルエンジンにおける P M酸化 プログラムにおいて、  In the PM oxidation program of the diesel engine according to claim 2 1 or 2 3
前記第 1のタイマーが計測する第 1の所定時間は、 3分乃至 3 0分の 間の時間であることを特徴とする P M酸化プログラム。  The PM oxidation program, wherein the first predetermined time measured by the first timer is a time between 3 minutes and 30 minutes.
2 6 . 請求の範囲 2 1又は 2 3のディーゼルエンジンにおける P M酸化 プログラムにおいて、  In the PM oxidation program of the diesel engine according to claim 21 or claim 23
前記第 2のタイマーが計測する第 2の所定時間は、 0 . 5秒乃至 1 2 0秒の間の時間であることを特徴とする P M酸化プログラム。  The PM oxidation program, wherein the second predetermined time measured by the second timer is a time between 0.5 second and 120 seconds.
2 7 . 請求の範囲 2 1又は 2 3のディーゼルエンジンにおける P M酸化 プログラムにおいて、 In the PM oxidation program of the diesel engine according to claim 2 1 or 2 3
前記所定の閾値は、 ディーゼルェンジンの排気の質量流量の二乗に応 じて定まる閾値であることを特徴とするディーゼルエンジンにおける P M酸化プログラム。  The PM oxidation program for a diesel engine, wherein the predetermined threshold value is a threshold value determined according to the square of the mass flow rate of exhaust of the diesel engine.
2 8 . 請求の範囲 2 3又は 2 4のディーゼルエンジンにおける P M酸化 プログラムにおいて、  In the PM oxidation program of the diesel engine according to claim 23 or claim 24
前記所定の閾値は、ディーゼルエンジンの排気の質量流量の二乗を排 気の密度で除算した値に応じて定まる閾値であることを特徴とするデ イーゼルエンジンにおける P M酸ィ匕プログラム。  The PM acid program in a diesel engine characterized in that the predetermined threshold value is a threshold value determined according to a value obtained by dividing the square of the mass flow rate of exhaust gas of a diesel engine by the density of exhaust gas.
PCT/JP2003/012476 2002-10-01 2003-09-30 Pm continuous regeneration device for diesel engine, and method of producing the same WO2004031548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003266704A AU2003266704A1 (en) 2002-10-01 2003-09-30 Pm continuous regeneration device for diesel engine, and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002288638A JP2006097469A (en) 2002-10-01 2002-10-01 Pm continuous regenerating method under low load on diesel engine
JP2002-288638 2002-10-01

Publications (1)

Publication Number Publication Date
WO2004031548A1 true WO2004031548A1 (en) 2004-04-15

Family

ID=32063681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012476 WO2004031548A1 (en) 2002-10-01 2003-09-30 Pm continuous regeneration device for diesel engine, and method of producing the same

Country Status (3)

Country Link
JP (1) JP2006097469A (en)
AU (1) AU2003266704A1 (en)
WO (1) WO2004031548A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914399B1 (en) * 2006-10-17 2010-03-10 Ibiden Co., Ltd. Exhaust gas purifying apparatus
US8127592B2 (en) * 2006-10-17 2012-03-06 Ibiden Co., Ltd. Particulate matter detection sensor
CN110671213A (en) * 2019-09-30 2020-01-10 潍柴动力股份有限公司 Control system and control method for exhaust temperature of engine
WO2021169947A1 (en) * 2020-02-24 2021-09-02 中国第一汽车股份有限公司 Particulate filter regeneration system and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3559431B1 (en) * 2016-12-20 2020-12-09 Volvo Truck Corporation A method for controlling an internal combustion engine
CN112983661B (en) * 2021-01-29 2022-12-16 广西玉柴机器股份有限公司 Engine plateau high-cold thermal management control device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176413A (en) * 1983-03-25 1984-10-05 Toyota Motor Corp Method of renewing particulate collector of internal- combustion engine
JPS6047937A (en) * 1983-08-26 1985-03-15 Mitsubishi Motors Corp Particulate trap level measuring apparatus for diesel engine
JPH03271515A (en) * 1990-03-21 1991-12-03 Mazda Motor Corp Exhaust minute particle purifier for diesel engine
JPH0450420A (en) * 1990-06-20 1992-02-19 Hino Motors Ltd Exhaust gas purifying device used for diesel engine
JPH0457619U (en) * 1990-09-20 1992-05-18
JP2002227688A (en) * 2001-02-01 2002-08-14 Nissan Motor Co Ltd Exhaust gas purifying device for diesel engine
JP2002276422A (en) * 2001-03-15 2002-09-25 Isuzu Motors Ltd Exhaust emission control device and its regeneration control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176413A (en) * 1983-03-25 1984-10-05 Toyota Motor Corp Method of renewing particulate collector of internal- combustion engine
JPS6047937A (en) * 1983-08-26 1985-03-15 Mitsubishi Motors Corp Particulate trap level measuring apparatus for diesel engine
JPH03271515A (en) * 1990-03-21 1991-12-03 Mazda Motor Corp Exhaust minute particle purifier for diesel engine
JPH0450420A (en) * 1990-06-20 1992-02-19 Hino Motors Ltd Exhaust gas purifying device used for diesel engine
JPH0457619U (en) * 1990-09-20 1992-05-18
JP2002227688A (en) * 2001-02-01 2002-08-14 Nissan Motor Co Ltd Exhaust gas purifying device for diesel engine
JP2002276422A (en) * 2001-03-15 2002-09-25 Isuzu Motors Ltd Exhaust emission control device and its regeneration control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914399B1 (en) * 2006-10-17 2010-03-10 Ibiden Co., Ltd. Exhaust gas purifying apparatus
US7891176B2 (en) 2006-10-17 2011-02-22 Ibiden Co., Ltd. Exhaust gas purifying apparatus
US8127592B2 (en) * 2006-10-17 2012-03-06 Ibiden Co., Ltd. Particulate matter detection sensor
CN110671213A (en) * 2019-09-30 2020-01-10 潍柴动力股份有限公司 Control system and control method for exhaust temperature of engine
WO2021169947A1 (en) * 2020-02-24 2021-09-02 中国第一汽车股份有限公司 Particulate filter regeneration system and control method thereof

Also Published As

Publication number Publication date
AU2003266704A1 (en) 2004-04-23
JP2006097469A (en) 2006-04-13
AU2003266704A8 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
US7533523B2 (en) Optimized desulfation trigger control for an adsorber
US7021051B2 (en) Method for regenerating particulate filter
EP1445438A1 (en) Exhaust gas purifying system
EP1400664B1 (en) Exhaust gas purifying method and exhaust gas purifying system
CN102003257A (en) Control of diesel particulate filter regeneration duration
US7451593B2 (en) Exhaust gas cleaning method and exhaust gas cleaning system
JP5332575B2 (en) Exhaust gas purification device for internal combustion engine
JP4012043B2 (en) Particulate filter regeneration method
JP2010116817A (en) Exhaust emission control device of engine
WO2004031548A1 (en) Pm continuous regeneration device for diesel engine, and method of producing the same
US20120102921A1 (en) System and method for controlling regeneration of an exhaust after-treatment device
KR101240937B1 (en) Regeneration method and apparatus of diesel particulate filter
JP2009299617A (en) Exhaust emission control device for internal combustion engine
JP2005307746A (en) Exhaust emission control device
JP3911406B2 (en) Exhaust gas purification device for internal combustion engine
JP7384114B2 (en) Filter condition detection device
JP4660446B2 (en) Exhaust gas purification device for internal combustion engine
JP4868908B2 (en) Control device for engine with selective reduction type NOx catalyst
JP4489504B2 (en) Diesel engine exhaust purification system
JP2007023876A (en) Exhaust emission control system and method for controlling exhaust emission control system
JP4236896B2 (en) Exhaust purification equipment
KR100506716B1 (en) Regeneration method of diesel particulate filter
JP4062229B2 (en) Exhaust gas purification device for internal combustion engine
JP4293891B2 (en) Exhaust purification equipment
JP2002106327A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN IN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP