WO2004031450A1 - 水素活性化装置 - Google Patents

水素活性化装置 Download PDF

Info

Publication number
WO2004031450A1
WO2004031450A1 PCT/JP2003/010065 JP0310065W WO2004031450A1 WO 2004031450 A1 WO2004031450 A1 WO 2004031450A1 JP 0310065 W JP0310065 W JP 0310065W WO 2004031450 A1 WO2004031450 A1 WO 2004031450A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
water
electrode
electrodes
semiconductor
Prior art date
Application number
PCT/JP2003/010065
Other languages
English (en)
French (fr)
Inventor
Masayoshi Kitada
Masahiro Hirota
Kosuke Niki
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to JP2004541211A priority Critical patent/JPWO2004031450A1/ja
Priority to AU2003254860A priority patent/AU2003254860A1/en
Priority to US10/524,229 priority patent/US7410557B2/en
Publication of WO2004031450A1 publication Critical patent/WO2004031450A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen

Definitions

  • the present invention generally relates to a hydrogen activation device, and in particular, generates hydrogen by applying pulsed power between at least one pair of electrodes arranged to be immersed in water or a liquid containing a hydrogen-containing organic compound.
  • the present invention relates to a hydrogen activation device configured as described above. Background art
  • thermochemical production method and a hydrogen production method using sunlight have been studied.
  • a hydrogen production method other than the hydrogen production method described above for example, there is a method of producing hydrogen by thermally decomposing water. This method requires a reaction temperature of at least 150 ° C, and it is necessary to perform the reaction at a higher temperature of about 400 ° C in order to increase the rate of decomposition of water into hydrogen Therefore, energy consumption is large and it is not practical unless there is a cheap power supply.
  • the present inventors are conducting research on an active structure capable of generating hydrogen by releasing hydrogen from a hydrogen bond in water or a hydrocarbon without applying external energy.
  • a device and a method disclosed in U.S. Patents are known as hydrogen activating devices for generating hydrogen (see, for example, U.S. Patent Nos. 6,126,794 and 6,419,815). ).
  • this device at least one pair of electrodes is immersed in water in a container containing water with the distance between the electrodes kept close to each other, and when pulsed power is applied between the electrodes, ortho hydrogen (combustion heat is para
  • the structure is such that hydrogen can be produced.
  • This hydrogen activation device has an input power of 12 VX 30 O mA (low voltage ⁇ high current), and the principle is not clear, but oxygen and hydrogen bubbles are generated from the middle of the electrode plate. That is, it states that water can be decomposed.
  • an electrolyte for example, an alkali metal salt (NaOH, KOH, etc.) is added to water to improve the electrical conductivity of the solution, and the current density is increased to increase the electrolysis.
  • an electrolyte for example, an alkali metal salt (NaOH, KOH, etc.)
  • NaOH, KOH, etc. an alkali metal salt
  • the running cost of the drug is high. Therefore, if water is electrolyzed without adding an electrolyte, if ultrapure water is used as the water, not only will the amount of hydrogen generated be small, but the cost will increase, and cheap and harmless water such as tap water will be produced. When used, it is difficult to use water effectively because the current density of the electrode cannot be high.
  • the present invention has been made in order to solve the above-mentioned problems, and does not require the addition of an electrolyte or the like for improving electric conductivity to water, and has a low energy, such as water and hydrogen-containing organic compounds. It is an object of the present invention to provide a hydrogen activation device that can generate hydrogen from a substance containing atoms. Disclosure of the invention
  • a hydrogen activating device is arranged so as to be immersed in water or a liquid of a hydrogen-containing organic compound, and is provided with a pulse between at least one pair of electrodes composed of a semiconductor or a semiconductor compound. It is characterized in that a power is applied to activate hydrogen atoms contained in the water or the hydrogen-containing organic compound to generate hydrogen gas.
  • An electromagnetic wave derived from pulsed power is arranged by being immersed in water or a liquid of a hydrogen-containing organic compound, and applying pulsed power between at least one pair of electrodes composed of a semiconductor or a semiconductor compound. This energy is absorbed by hydrogen atoms having magnetic poles, and hydrogen atoms can be easily activated. As a result, a hydrogen atom can be easily eliminated from water or the organic compound containing hydrogen to generate hydrogen (molecule).
  • a hydrogen activating device capable of generating hydrogen from a substance containing hydrogen atoms such as water and a hydrogen-containing organic compound with low energy is used. Can be provided.
  • the pulse power not directly involved in the supply of electrons means a high voltage X low current (non-zero, but almost no current flow) pulse power.
  • a high voltage X low current (non-zero, but almost no current flow) pulse power Conventionally, in the method of obtaining hydrogen by electrolysis of water or a hydrogen-containing organic compound, it was necessary to increase the current density of the electrode, and operating conditions of low voltage and high current were required. Difficult semiconductor materials are used for the electrodes, and high voltage X low current pulse power is applied to each pair of electrodes.
  • the semiconductor or the semiconductor compound forming the electrode may include at least one element of silicon, germanium, gallium, phosphorus, arsenic, cadmium, sulfur, and selenium. desirable.
  • the consumption of the electrode is smaller than that of the conductor material, and hydrogen can be generated with lower energy than the conventional water electrolysis method.
  • the semiconductor element here is not an element having a purity of 100% but an element containing a trace amount of impurities.
  • the above-mentioned hydrogen activation device is preferably characterized in that the shape of the electrode is a plate or a cylinder.
  • the manufacturing cost of the electrode is high, but in the present invention, the current density may be small, so that the shape of the electrode can be simplified, and the manufacturing cost of the electrode is reduced.
  • the hydrogen activating device stops the device when the pulsed power is applied between the electrodes for a predetermined time, and exchanges the positive electrode material and the negative electrode material forming the electrodes with each other. It is preferable to employ a configuration characterized in that pulsed power can be applied.
  • the hydrogen activating device thus configured can decompose water without any loss of the electrode material outside the system. That is, when pulse power is applied to the electrode for a predetermined time, the electrode material on the negative electrode side elutes into the liquid and deposits on the electrode on the positive electrode side (earth side). Therefore, re-pulse power is applied between the electrodes, using the electrode material on the positive electrode side (earth side) as the electrode material on the negative electrode side and the electrode material on the negative electrode side as the electrode material on the positive electrode side (earth side). In this case, water can be decomposed without any loss of the electrode material outside the system.
  • BRIEF DESCRIPTION OF THE FIGURES BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a configuration diagram of an entire hydrogen activation device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a state in which an electrode is applied to the electrode of the hydrogen activation device according to one embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a waveform characteristic of a luz.
  • Fig. 3 (a) is a diagram showing the change over time in the amount of gas generated when gas is generated from water using the hydrogen activation apparatus according to this effort. ) Is a graph of Fig. 3 (a), and Fig. 3 (c) is a graph of Fig. 3 ( a ), FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • An electrode 2 formed of four plate-like silicons fixed in a state of being immersed in the water
  • the main part of Kara is constituted.
  • the container 1 is formed from a conical container top 1a and a cylindrical container bottom 1b. At the top of the conical vessel upper part 1a, there is provided a pipe 1a1 for introducing the gas generated in the vessel 1 to a facility that collects water by a water displacement method at a later stage not shown. ing.
  • glass is used as the material of the container 1 so that the inside can be seen with the naked eye.
  • the container upper part 1a is placed on the container bottom part 1b via an O-ring (not shown), and the clamp 1c sandwiches the flange part of the container upper part 1a and the flange part of the container lower part 1b to form an integral part. are doing.
  • the electrode 2 is composed of four electrodes 2a to 2d fixed in a state of being immersed in water, each of which is formed of rectangular plate-shaped silicon of the same size.
  • the electrode 2 is used by dividing into two electrodes 2a and 2c to which a negative voltage is applied from a pulse oscillator 3 described later and two electrodes 2b and 2d connected to the positive electrode (earth). Also, since the positive electrode and the ground are connected, the potential of the positive electrode is always zero port.
  • the force using the two pairs of electrodes 2a to 2d The number can be changed as appropriate to secure the number.
  • the number of electrodes can be changed in units of two. Although a rectangular plate is used as the electrode shape, a cylindrical electrode can also be used.
  • the shape of the electrode a plate
  • the manufacturing cost of the electrode is high, but in the present invention, the current density may be small, so that the shape of the electrode can be simplified, and the manufacturing cost of the electrode is reduced.
  • the electrode surface is preferably a flat surface from which generated gas can be easily desorbed.
  • grooved electrodes, wire mesh electrodes, porous plate electrodes, finned electrodes, armored door electrodes, and perforated plate electrodes that have been used to increase the surface area of the electrode, that is, the current density, can also be used. Since the surface is not flat, it is difficult for the generated gas to escape upward. In this case, a device is required to promote the separation of bubbles by forced flow.
  • silicon as a semiconductor material is used as a material for forming an electrode, but a semiconductor or semiconductor containing at least one element of silicon, germanium, gallium, phosphorus, arsenic, cadmium, sulfur, and selenium is used. Any compound can be used as an electrode material.
  • the use of semiconductor silicon as the material forming the electrode allows the electrode to be consumed less than the conductor material and to generate hydrogen with lower energy than the conventional water electrolysis method.
  • the pulse oscillator 3 is for supplying pulse power between the two pairs of electrodes 2a to 2d.
  • the pulse power generation circuit of the pulse oscillator 3 will be briefly described here.
  • the pulse power generation circuit of the pulse oscillator 3 as a component of the present invention is a commonly used well-known pulse power generation circuit, for example, a frequency conversion circuit for converting the frequency 50 Hz of a commercial frequency power supply to 40 OHz. And a booster circuit having a transformer that receives the converted power of the frequency 400 Hz and obtains a high voltage at the output, and a pulse waveform shaping circuit that shapes the boosted power into a triangular waveform. Is done.
  • the pulse power generation circuit of the pulse generator 3 configured in this way Increase the frequency of the power supply 10 OV from 5 OH z to 40 OH z.
  • the reason why the frequency is increased to 400 Hz is to reduce the size of the transformer of the subsequent booster circuit.
  • the converted power having a frequency of 400 Hz is input to the primary side of the transformer included in the booster circuit, and a high voltage (for example, 150 V) is output from the secondary side.
  • a high voltage for example, 150 V
  • the boosted power is input to the pulse waveform shaping circuit, and an output signal having a triangular wave is applied between the silicon electrodes provided in the container 1 immersed in water.
  • the pulse waveform characteristics of the pulse power applied between the silicon electrodes in this manner will be described in more detail with reference to FIG.
  • the pulse waveform characteristics of the pulse power applied between the silicon electrodes are as follows.
  • the voltage applied between the silicon electrodes is a negative voltage of 150 V, and the current value is 1 mA to 1 mA. 5 mA. That is, high voltage X low current pulse power.
  • the pulse waveform is triangular, and the interpulse between the triangular peaks is 1 Z
  • the heater plate 4 is an electric heater for heating the water in the container 1, and the container 1 containing a predetermined amount of water is placed on the plate to heat the water in the container from below.
  • the hydrogen atoms of water can be more activated due to a synergistic effect with the pulse power applied between the electrodes.
  • the present inventors speculate that the following principle may be applied to the principle that hydrogen atoms are activated when a predetermined pulse power is applied to water between the electrodes.
  • (a) Container made of transparent glass. A water capacity of 40 OmL.
  • Electrode rectangular plate-shaped silicon; 4 pieces of 2 O X 50 LX 0.5 t X. The distance between the electrodes is 1 mm.
  • the copper wire used as the connection material for connecting the silicon electrodes 2a to 2d and the pulse oscillator 3 is connected by a method of coating with an adhesive in order to prevent the copper wire and silicon from reacting. did.
  • the gas generated from the container 1 was collected by the water displacement method, and the collected gas was analyzed by gas chromatography.
  • Pulse power is input from the pulse oscillator 3 to the silicon electrodes 2a to 2d for 6 hours.
  • the power switch of pulse oscillator 3 is turned off.
  • Figure 3 shows the change over time in the amount of gas generated when the hydrogen activation device was operated in this way.
  • the graph of Fig. 3 (a) is shown in Fig. 3 (b)
  • the temporal change of Fig. 3 (a) is converted to the temporal change of gas composition in Fig. 3 (c). Shown in
  • the presence or absence of silicon deposition on the positive electrode (earth) can be determined by measuring the sample pieces of the positive electrode (earth) that have passed a predetermined time after the start of pulsed power application, using a scanning electron microscope (S) equipped with an X-ray microanalyzer. (EM).
  • the hydrogen activating device of one embodiment having such a configuration and operation, by using a semiconductor material of silicon for the electrode and applying a pulse voltage of a high voltage X a low current different from the conventional one,
  • the hydrogen activating device according to one embodiment has been described. It can be carried out with appropriate modification.
  • the waveform of the pulse power generated from the pulse oscillator may be a waveform other than a triangle if the pulse power is negative high voltage X low current.
  • the polarity of the electrode may be exchanged by an electronic circuit instead of exchanging the electrode materials for the positive electrode (earth) and the negative electrode.
  • the hydrogen activating device of the present invention enables hydrogen to be produced at a low cost with a simple equipment configuration in an energy efficient manner, and is used as a fuel cell fuel instead of fossil fuel in various industrial fields. Is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

半導体又は半導体化合物で構成される少なくとも1対の電極を、水中又は含水素有機化合物の液中に浸漬するように配置する。この少なくとも1対の電極間にパルス電力を印加し、前記水又は前記含水素有機化合物に含まれる水素原子を活性化して水素ガスを発生させる。このように構成した水素活性化装置は、水に電気伝導度を向上させるための電解質等を添加する必要が無く、しかも低エネルギーで水や含水素有機化合物等の水素原子を含む物質から水素を生成することができる。

Description

明細書
水素活性化装置 技術分野
本発明は、 一般に、 水素活性化装置に係り、 特に、 水中又は含水素有機化合物 の液中に浸漬するように配置された少なくとも 1対の電極間にパルス電力を印加 することで水素を発生させるように構成した水素活性ィ匕装置に関する。 背景技術
近年、 石油等の天然資源の枯渴化や二酸化炭素による地球温暖化の観点から石 油に代わる代替燃料として、 水素が注目されている。
今日このような水素の製造方法としては、 工業用水素の 9 0 %は石油又は天然 ガスから水蒸気改質法或は部分酸化法により製造されている。
これら以外の他の水素を製造する方法としては、 石炭を原料とする方法 (C O G法や発生炉ガス化法)、食塩電解槽からの副生水素の回収、水の電気分解法等が • 従来から行われてきている。
また、最近は熱化学製造法や太陽光を利用した水素製造方法も研究されている。 上述レた水素製造方法以外の水素製造方法として、 例えば水を熱分解して水素 を製造する方法がある。この方法は最低でも 1 5 0 0°Cの反応温度が必要になり、 水の水素への分解率を上げるためにはさらに 4 3 0 0 °C程度の高温下で反応を行 う必要があるのでエネルギー消費量が大きく、 安価な電源がある場合は別として 実用的ではない。
一方、 ナトリウム、 カリウム、 マグネシウム等のアルカリ金属、 又はアルカリ 土類金属類を水に添加して、 これらの金属と水とを化学反応させる方法が考えら れるが、 これらの金属は比較的高価であり、 これら化学反応は激しい反応である ので工業的に利用するのは困難である。
また、 水の電気分解法における水の代わりにメタノール等の炭化水素を用いて 電気分解することも考えられる。 炭化水素は、 分子内の水素と炭素との結合エネ ルギ一が比較的小さく、 それらの電気分解に必要とされる電位差は水の電気分解 よりも少なくて済むが、 反応生成物として co, co2等の副産物の生成を伴う ためこれらを分離 ·除去する対策を講じる必要がある。
また、 外部からエネルギーを与えることなしに、 水や炭化水素における水素結 合から水素を遊離させて水素を発生させることが可能な活性構造体に関する研究 が本願発明者によって進められている。
水素を発生させる水素活性化装置として米国特許に開示された装置及び方法が 知られている (例えば、 米国特許第 6 1 2 6 7 9 4号及び米国特許第 6 4 1 9 8 1 5号参照)。 この装置は、 水が入った容器に少なくとも 1対の電極を、 電極間 の距離を近接させた状態で水中に浸漬し、 電極間にパルス電力を印加した場合に はオルト水素 (燃焼熱はパラ水素よりも大) また、 電極間にパルス電力を印 加するのに加えて水中上部に設けたコイルにパルス電力を供給した場合には、 ノ ラ水素が生産できるように構成したものである。
この水素活性ィ匕装置は、 入力電力が 1 2 V X 3 0 O mA (低電圧 X高電流) で あり、 その原理は明らかにされていないが電極板の中間から酸素及び水素の気泡 が発生する、 つまり水が分解できると記載されている。
しかし、 1 2 V, 3 0 O mAのパルスでは、 3 0 0 mAの電流を電極板を介し て通電した場合.には電気分解と同様な電流による水の分解作用が生じる。 すなわ ち電力消費量が大きくなる。
また、 水を電気分解する場合には、 その溶液の電気伝導度を向上させるベく水 に電解質、 例えばアルカリ金属塩 (N a OH, KO H等) を添加し、 電流密度を あげて電気分解することが一般的であり、 薬剤のランニングコストがかかる。 そこで、 電解質を添加しないで水を電気分解すると、 水として超純水を使用し た場合は水素の発生量が微量となるばかりかコスト高となり、 水道水のような安 価で無害な水を使用した場合は、 電極の電流密度が高くとれないため水を効果的 に利用することが難しい。
本発明は、 前記課題を解決するためになされたものであって、 水に電気伝導度 を向上させるための電解質等を添加する必要が無く、 しかも低エネルギーで水や 含水素有機化合物等の水素原子を含む物質から水素を生成することができる水素 活性化装置を提供することを目的とする。 発明の開示
本発明の一側面としての水素活性化装置は、 水中又は含水素有機化合物の液中 に浸漬するように配置され、 力つ半導体又は半導体化合物で構成される少なくと も 1対の電極間にパルス電力を印加し、 前記水又は前記含水素有機化合物に含ま れる水素原子を活性化して水素ガスを発生させるように構成したことを特徴とす るものである。
このような構成を有する水素活性化装置によると、
( 1 ) 水中又は含水素有機化合物の液中に浸漬するように配置され、 かつ半導体 又は半導体化合物で構成される少なくとも 1対の電極間にパルス電力を印加する ことで、 パルス電力に由来する電磁波のエネルギーが磁極を有する水素原子に吸 収され、 容易に水素原子を活性化することができる。 その結果、 水又は含水素有 機化合物から容易に水素原子が脱離して水素 (分子) を生成することができる。
( 2 ) 電子の供給には直接関係しないパルス電力を印加することによって一般の 水道水や蒸留水又は含水素有機化合物でも容易に水素原子を活性化分解すること が可能になり、 しかも環境を汚染せず、 かつ低エネルギーでこれを実施すること ができる。
従って、 電気伝導度を向上させるための電解質等を添加する必要が無く、 しか も低エネルギーで水や含水素有機化合物等の水素原子を含む物質から水素を生成 することができる水素活性化装置を提供することができる。
尚、 ここで言う電子の供給に直接関与しないパルス電力とは、 高電圧 X低電流 (零ではないが殆ど電流の流れない) のパルス電力を意味する。 従来、 水や含水 素有機化合物の電気分解で水素を得る方法では、 電極の電流密度を高くする必要 があり、 低電圧 X高電流の操作条件が必要であつたが、 本発明では電流の流れ難 い半導体材料を電極に用い、 1対の電極毎に高電圧 X低電流のパルス電力を印加 している。
上述の水素活性化装置は、 前記電極を構成する前記半導体又は前記半導体化合 物が、 シリコン、 ゲルマニウム、 ガリウム、 燐、 ヒ素、 カドミウム、 硫黄、 セレ ンのうちの少なくとも 1種類の元素を含むことが望ましい。
前記の元素を少なくとも 1種類含む前記半導体又は前記半導体化合物によって 前記電極を構成することによって、 導体材料よりも電極の消耗が少なく、 しかも 従来の水の電気分解法よりも低エネルギーで水素を発生させることができる。尚、 ここでいう半導体の元素は、 1 0 0 %純度の元素ではなく微量の不純物を含む元 素をいう。
また、 上述の水素活性ィ匕装置は、 前記電極の形状がプレート又は円筒であるこ とを特徴とするものが好ましい。
前記電極の形状をプレート又は円筒とすることにより、 従来、 水の電気分解法 では電極の電流密度を大きくする必要があり、 電極の表面積を多孔板、 金網等複 雑な形状にする必要があるため電極の製造コストが高価であつたが、 本発明では 電流密度が小さくてもよいため電極の形状を簡素化することができ、 電極の製造 コストが安価になる。
さらに、 前記水素活性化装置は、 前記電極間に前記パルス電力を所定時間印加 したら装置を停止し、 前記電極を形成する正極の電極材料と負極の電極材料を互 いに交換した後、 改めて前記パルス電力を印加できるように構成したことを特徴 とするものが好ましい。
このように構成された水素活性化装置は、 電極材料の系外への損失がない状態 で水を分解することができる。 すなわち、 パルス電力を所定時間電極に印加する と負極側の電極材料が液中に溶出し、 正極側 (アース側) の電極に析出する。 そ こで、 正極側 (アース側) の電極材料を負極側の電極材料とし、 最初負極側であ つた電極材料を正極側 (アース側) の電極材料として再ぴパルス電力を電極間に 印加すれば、 電極材料の系外への損失がない状態で水を分解することができる。 図面の簡単な説明
第 1図は、 本発明に係る一実施形態の水素活性化装置全体の構成図である。 第 2図は、 本発明に係る一実施形態の水素活性ィ匕装置の電極に印加したノ、。ルス の波形特性を示す図である。
第 3図 (a ) は、 本努明に係る水素活性ィヒ装置を使用して水からガスを発生さ せたときのガスの発生量の経時変化を示す図であり、第 3図(b )は、第 3図(a ) をグラフ化した図、 第 3図 (c ) は、 第 3図 (a ) をガス組成の経時変化に直し た図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について第 1図〜第 3図を参照して説明する。 最初に、 本発明に係る一実施形態の水素活性化装置について第 1図を参照して 説明する。 尚、 本実施形態では、 水素活性化装置を水から水素を生成するのに適 用した場合について説明する。
本発明に係る水素活性化装置は、 第 1図に示すように、
水を所定量充満した容器 1と、
前記水の中に浸漬された状態で固定される 4枚のプレート状のシリコンから形 成される電極 2と、
前記電極 2にパルス電力を供給するパルス発振器 3と
前記容器 1内の水を加熱するためのヒータプレート 4と、
カゝら主要部が構成される。
容器 1は、 円錐状の容器上部 1 aと円筒状の容器底部 1 bとから形成される。 尚、 円錐状の容器上部 1 aの最上部には、 容器 1内で発生したガスを、 図示し ない後段で水上置換法により捕集する設備へ導入するための配管 1 a 1が設けら れている。
容器 1の材質は、 内部が目で見えるように本実施形態ではガラスを使用してい る。 容器底部 1 bの上に容器上部 1 aが図示しない Oリングを介して载置され、 クランプ 1 cで容器上部 1 aのフランジ部と容器下部 1 bのフラシジ部とを挟む ことで一体ィ匕している。
電極 2は、 水の中に浸漬された状態で固定された 4枚の電極 2 a〜2 dからな り、 それぞれが同じ大きさの矩形のプレート状のシリコンから形成されている。 電極 2は、 後述するパルス発振器 3から負の電圧がかかる 2枚の電極 2 a, 2 cと正極 (アース) と連結する 2枚の電極 2 b, 2 dとに分けて使用される。 また、 正極とアースとは結線されているため、 正極の電位は常に零ポルトであ る。
尚、 本実施形態では 2対の電極 2 a〜2 dを使用している力 必要な水素量を 確保するのに見合った枚数に適宜変更できる。 電極の枚数は、 2枚単位で変更で きる。 また、 電極の形状として矩形のプレートを使用しているが、 円筒の電極も 使用できる。
このように電極の形状をプレートとすることにより、 従来、 水の電気分解法で は電極の電流密度を大きくする必要があり、 電極の表面積を多孔板、 金網等複雑' な形状にする必要があるため電極の製造コストが高価であつたが、 本発明では電 流密度が小さくてもよいため電極の形状を簡素化することができ、 電極の製造コ ストが安価になる。
尚、 電極面は発生ガスの脱離が容易となる平坦な面が好ましい。 従来、 電極の 表面積、 すなわち電流密度を大きくするために使用されてきた溝付きの電極、 金 網の電極、 多孔質板の電極、 フィン付き電極、 よろい戸電極、 多孔板電極も使用 できるが電極面が平坦でないため発生ガスの上方への抜けが悪くなる。 この場合 は強制流によって気泡の離脱を促すための装置が必要となる。
電極を構成する材料として、 本実施形態では半導体のシリコンを使用している が、 シリコン、 ゲルマニウム、 ガリウム、 燐、 ヒ素、 カドミウム、 硫黄、 セレン のうちの少なくとも 1種類の元素を含んだ半導体又は半導体化合物であればどれ でも電極材料として使用できる。
前記電極を構成する材料を半導体のシリコンとしたことにより、 導体材料より も電極の消耗が少なく、 しかも従来の水の電気分解法よりも低エネルギーで水素 を発生させることができる。
パルス発振器 3は、 前記 2対の電極 2 a〜 2 d間にパルス電力を供給するため のものである。 パルス発振器 3のパルス電力発生回路についてここで簡単に説明 する。
本発明の構成要素であるパルス発振器 3のパルス電力発生回路は、 通常使用さ れている周知のものであり、 例えば商用周波数電源の周波数 5 0 H zを 4 0 O H zに変換する周波数変換回路と、 この変換された周波数 4 0 0 H zの電力を入力 し、 出力に高電圧を得るトランスを有する昇圧回路と、 この昇圧された電力を三 角波形に成形するパルス波形成形回路とより構成される。
このように構成されるパルス発振機 3のパルス電力発生回路は、 最初に、 交流 電源 1 0 O Vの周波数を 5 O H zから 4 0 O H zまで上げる。 周波数を 4 0 0 H zまで上げるのは後段の昇圧回路のトランスを小さくするためである。
次に、 この変換された周波数 4 0 O H zの電力を昇圧回路に有するトランスの 一次側に入力し、 二次側から高電圧 (例えば 1 5 0 0 V) を出力する。
さらにこの昇圧された電力をパルス波形成形回路に入力し、 波形が三角形の波 の出力信号を、容器 1内の水に浸漬して配設されたシリコンの電極間に印加する。 このようにしてシリコンの電極間に印加されるパルス電力のパルスの波形特性 について第 2図を参照してもう少し詳しく説明する。
シリコンの電極間に印加されるパルス電力のパルスの波形特性は、 第 2図に示 すように、 シリコンの電極間に印加した電圧は 1 5 0 0 Vの負電圧、 電流値は 1 mA〜5 mAである。 すなわち、 高電圧 X低電流のパルス電力である。
また、 パルスの波形は三角形であり、 三角形のピーク間のインターパルは 1 Z
4 0 0 s e cであった。
ヒータプレート 4は、 容器 1内の水を加熱するための電気式加熱器であり、 プ レートの上に所定量水の入った容器 1をのせて容器内の水を下から加熱して 9
5 °Cまで加熱するためのものである。 加熱することで電極間に印加するパルス電 力との相乗効果により、 水の水素原子をより活性化することができる。
次に、 電極間の水に所定のパルス電力を印加した時に水素原子が活性化される 原理について、 本発明者等は以下の原理ではないかと推察している。
以下、 この原理について説明する。
水素原子の原子核 (正電荷) の周りには、 1個の電子 (負電荷)'が自転しなが ら公転している。そのため核と電子の間には、クーロンカゃ遠心力が働 、ており、 これらの力がバランスした原子空間を形成している。
半導体であるシリコンの電極間の水にパルス電力を印加すると、 パルス電力に 由来する電磁波のエネルギーが磁極を有する水素原子に吸収され、 水素原子が励 起状態となる。
このため、 水の水素原子と酸素原子は水素結合をしているが、 水素原子と酸素 原子の原子間同士の結合が弱くなつて切断され、 その結果として水素原子が酸素 原子から脱離し、 水素原子同士が結合して水素 (分子) が得られたものと考えて いる。
次に、 第 1図及び第 3図を参照して本発明に係る一実施形態の水素活性化装置 を利用して水を分解したときの実施例について詳細に説明する。
1. 水素活性化装置の構成
(a) 容器;透明なガラス製。 水の容量として 40 OmL充填できるもの。
(b)電極;矩形のプレート状のシリコン; 2 O X 50 LX 0. 5 t X 4枚。 各電極間の距離は 1 mmとする。
(c) ヒータプレート;容器内の水を 95 °C〜 98 °Cに加熱できる容量。
( d ) パルス発振器;一 4. 5 V X 1. 1 m A。
尚、 シリコンの電極 2 a〜 2 dとパルス発振器 3とを結線する結線材料として 使用した銅線は、 銅線とシリコンとが反応するのを防止するため、 接着剤でコー ティングする方法で結線した。 また、 容器 1から発生した気体は水上置換法で捕 集し、 捕集したガスはガスクロマトグラフィ一で分析した。
次に、 この水素活性化装置を使用して実際に水素を発生させたときの運転方法 について説明する。
(1) 第 1図に示すような容器 1の中に 4枚のシリコンの電極 2 a〜2 dを固定 する。
( 2 ) 銅線でパルス発振器 3と 4枚のシリコンの電極 2 a〜 2 dとを結線する場 合、 パルス発振器 3の負極と電極 2 a, 2 cが、 またパルス発振器 3の正極 (ァ ース) と電極 2 b, 2 dがそれぞれ結線される。
(3) 次に、 4枚のシリコンの電極 2 a〜2 dの上端が水面下に浸潰するまで容 器 1に水を入れる。
(4) ヒータプレート 4に容器 1を載せて容器 1内の水を 95°Cまで加熱する。
(5) 発生してくるガスを捕集してガスの発生量を調べるため、 図示しない水上 置換設備を後段に設ける。
(6) パルス発振器 3の電源スィッチ ON。 パルス発振器 3からシリコンの電極 2 a〜 2 dにパルス電力を 6時間入力する。 6時間パルス電力を入力したらパル ス発振器 3の電源スィツチ O F F。
このように水素活性化装置を運転したときのガス発生量の経時変化を第 3図 ( a )、 第 3図 (a ) をグラフ化したものを第 3図 (b )、 第 3図 (a ) の経時変 化をガス組成の経時変化に直したものを第 3図 (c ) に示す。
第 3図 (a ), 第 3図 (b ) 力 らも分かるように、パルス電力を、 印加開始後 6 時間シリコンの電極間に印加すると、 水中の水素原子が活性ィ匕され時間と共に酸 素原子から分離されて水素が生成されてくることが分かる。
尚、 窒素、 酸素の発生量は、 時間と共に増加はするが、 第 3図 (c ) に示すよ うに、 水素の発生量と比較してはるかに少なかった。 すなわち、 水素原子を選択 的に活性化していることが分かる。
また、 負極側から水素が生成し、 正極側 (アース側) にシリコンの析出が見ら れたが所定時間、 例えばシリコンの電極の消耗量が多く (例えば 1 0 %) なった ら、 正極と負極の電極材料を互いに交換することにより、 系内のシリコンを系外 へ損失させることなく、 水を分解することができた。
また、 正極と負極の電極材料を交換することなく水を分解した場合には、 約 3 0時間で水素の発生が観測されなくなるのに対し、 正極と負極の電極材料を交換 して水を分解していくと、約 1 0 0時間経過した後でも水素の発生が観測された。 尚、 正極 (アース) へのシリコンの析出の有無は、 パルス電力を印加開始後、 所定時間経過した正極 (アース) のサンプル片をそれぞれ X線マイクロアナライ ザ一付きの走査型電子顕微鏡 ( S EM) にて観察し確認した。
このような構成と作用を有する一実施形態の水素活性化装置によれば、 電極に 半導体材料のシリコンを使用し、 従来とは異なり高電圧 X低電流のパルス電力を 印加することにより、
( 1 ) 水の電気分解ではなく水素原子のみを選択的に活性化することができ、 し かも低エネルギーで好適に水素を生成することができた。
( 2 ) 高電圧 X低電流のパルス電力を電極に印加すると、 正極側 (アース側) に シリコンが析出するが、 所定時間経過したら正極 (アース) の電極材料を負極の 電極材料とし、 負極の電極材料を正極 (アース) の電極材料とすることにより、 シリコンの系外への損失を防止することができた。
以上、 一実施形態の水素活性化装置について説明したが、 本発明に係る水素活 性化装置はこれに限定されるものでなく、 本発明の技術的範囲を逸脱しない範囲 で適宜変更して実施可能である。
例えば、 パルス発振器から発生されるパルス電力の波形は、 パルス電力が負の 高電圧 X低電流であれば三角形以外の波形であっても良い。
シリコンの系外への損失を防止する方法として、 正極 (アース)と負極の電極材 料の交換をするのではなく、 電子回路により電極の極性を交換するようにしても 良い。
以上の構成と作用からなる本発明によれば、 電気伝導度を向上させるための電 解質等を添加する必要が無く、 しかも低エネルギーで水や含水素有機化合物等の 水素原子を含む物質から水素を生成することができる水素活性化装置を提供する ことができる。 産業上の利用可能性
本発明の水素活性化装置によって、 簡単な設備構成によりエネルギー効率の高 い方法で安価に製造することが可能となる水素は、 化石燃料に代わる燃料電池燃 料等として、 あらゆる産業分野での利用が見込まれる。

Claims

請求の範囲
1 . 水中又は含水素有機化合物の液中に浸漬するように配置され、 かつ半導体 又は半導体化合物で構成される少なくとも 1対の電極間にパルス電力を印加し、 前記水又は前記含水素有機化合物に含まれる水素原子を活性化して水素ガスを発 生させるように構成したことを特徴とする水素活性化装置。
2 . 前記電極を構成する前記半導体又は前記半導体化合物が、 シリコン、 ゲル マニウム、 ガリウム、 燐、 ヒ素、 カドミウム、 硫黄、 セレンのうちの少なくとも 1種類の元素を含むことを特徴とする請求の範囲第 1項に記載の水素活性化装置。
3 . 前記電極の形状がプレート又は円筒であることを特徴とする請求の範囲第 1項に記載の水素活性化装置。
4. 前記電極間に前記パルス電力を所定時間印加したら装置を停止し、 前記電 極を形成する正極の電極材料と負極の電極材料を互いに交換した後、 改めて前記 パルス電力を印加できるように構成したことを特徴とする請求の範囲第 1項から 第 3項のうちの何れか 1項に記載の水素活性化装置。
PCT/JP2003/010065 2002-09-30 2003-08-07 水素活性化装置 WO2004031450A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004541211A JPWO2004031450A1 (ja) 2002-09-30 2003-08-07 水素活性化装置
AU2003254860A AU2003254860A1 (en) 2002-09-30 2003-08-07 Hydrogen activating apparatus
US10/524,229 US7410557B2 (en) 2002-09-30 2003-08-07 Hydrogen activating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002284947 2002-09-30
JP2002-284947 2002-09-30

Publications (1)

Publication Number Publication Date
WO2004031450A1 true WO2004031450A1 (ja) 2004-04-15

Family

ID=32063548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010065 WO2004031450A1 (ja) 2002-09-30 2003-08-07 水素活性化装置

Country Status (4)

Country Link
US (1) US7410557B2 (ja)
JP (1) JPWO2004031450A1 (ja)
AU (1) AU2003254860A1 (ja)
WO (1) WO2004031450A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223860A (ja) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> 水素供給システム
WO2008001474A1 (en) * 2006-06-28 2008-01-03 Yasuo Sakakura Hydrogen activating material and consumption controlling materials for water-soluble electrolyte chemical cells and fuel cells
EP1896622A1 (en) * 2005-06-28 2008-03-12 Yasuo Sakakura Oxygen activating material, combustion efficiency improving material, plant growth promoting material, aerobic microorganism activating material, animal growth promoting and activating material, muscle softening material, rust removing and preventing material, and oxygen activating method
JP2008156679A (ja) * 2006-12-21 2008-07-10 Just Thokai:Kk 水素製造装置及び水素製造方法
US7452451B2 (en) * 2003-09-05 2008-11-18 Honda Motor Co., Ltd. Electrode plate and electrolysis apparatus for electrolyis, electrode plate unit, and method for electrolyzing compound comprising hydrogen
US8277982B2 (en) 2006-06-29 2012-10-02 Yasuo Sakakura Method for improvement of the consumption controlling performance of water-soluble electrolyte chemical cells and fuel cells
KR101643276B1 (ko) * 2015-05-12 2016-08-02 강구일 전기분해를 이용한 수소발생장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503363A (ja) * 2005-08-03 2009-01-29 エルキュー・ホールディング・アクチボラゲット 発電機
US8082890B2 (en) 2008-11-25 2011-12-27 Common Sense Technologies, LLC Method and apparatus for efficient generation of hydrogen
US9452409B2 (en) 2011-04-22 2016-09-27 Vanderbilt University Para-hydrogen polarizer
JP6139594B2 (ja) * 2014-08-06 2017-05-31 日本システム企画株式会社 海流発電を利用した水素エネルギー供給システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131092A (ja) * 1974-04-04 1975-10-16
JPS5146581A (ja) * 1974-10-21 1976-04-21 Nippon Dento Kogyo Kk Kinzokumatahakinzokukagobutsuoyoshashita fuyoseiyokyoku
US4113601A (en) * 1976-12-09 1978-09-12 Ernst Spirig Water decomposing apparatus
JPS63143572U (ja) * 1987-03-08 1988-09-21
JPH0971886A (ja) * 1995-09-01 1997-03-18 Mikio Sugizaki 水電解装置
WO1998042893A1 (en) * 1997-03-25 1998-10-01 Whatman Inc. Direct current hydrogen generator, system and method
JPH1112773A (ja) * 1997-06-24 1999-01-19 Abe Takuma 水素と酸素を発生させるための方法および装置
JPH1177049A (ja) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The 電解イオン水生成装置、電解イオン水生成方法及び洗浄方法
JP2000160383A (ja) * 1998-12-01 2000-06-13 Techno Custom:Kk ガス発生装置および電解槽
JP2001286866A (ja) * 2000-01-31 2001-10-16 Takaaki Maekawa 溶存性有機物や微量有害物質を含む水の浄化方法及び装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734168A (en) * 1983-08-08 1988-03-29 Texas A & M University Method of making n-silicon electrodes
US4663004A (en) * 1986-04-29 1987-05-05 Union Oil Company Of California Electrochemical conversion using alternating current and semiconductor electrodes
JPS63143572A (ja) 1986-12-08 1988-06-15 Ricoh Co Ltd 現像装置
US6638413B1 (en) * 1989-10-10 2003-10-28 Lectro Press, Inc. Methods and apparatus for electrolysis of water
US5672485A (en) * 1996-08-13 1997-09-30 Regents Of The University Of Minnesota Immortalized cell lines for virus growth
US6126794A (en) * 1998-06-26 2000-10-03 Xogen Power Inc. Apparatus for producing orthohydrogen and/or parahydrogen
US6149815A (en) * 1999-11-23 2000-11-21 Sauter; Andrew D. Precise electrokinetic delivery of minute volumes of liquid(s)
US6811907B1 (en) * 2001-12-08 2004-11-02 Nanoset, Llc Fuel processor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131092A (ja) * 1974-04-04 1975-10-16
JPS5146581A (ja) * 1974-10-21 1976-04-21 Nippon Dento Kogyo Kk Kinzokumatahakinzokukagobutsuoyoshashita fuyoseiyokyoku
US4113601A (en) * 1976-12-09 1978-09-12 Ernst Spirig Water decomposing apparatus
JPS63143572U (ja) * 1987-03-08 1988-09-21
JPH0971886A (ja) * 1995-09-01 1997-03-18 Mikio Sugizaki 水電解装置
WO1998042893A1 (en) * 1997-03-25 1998-10-01 Whatman Inc. Direct current hydrogen generator, system and method
JPH1112773A (ja) * 1997-06-24 1999-01-19 Abe Takuma 水素と酸素を発生させるための方法および装置
JPH1177049A (ja) * 1997-09-01 1999-03-23 Japan Carlit Co Ltd:The 電解イオン水生成装置、電解イオン水生成方法及び洗浄方法
JP2000160383A (ja) * 1998-12-01 2000-06-13 Techno Custom:Kk ガス発生装置および電解槽
JP2001286866A (ja) * 2000-01-31 2001-10-16 Takaaki Maekawa 溶存性有機物や微量有害物質を含む水の浄化方法及び装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452451B2 (en) * 2003-09-05 2008-11-18 Honda Motor Co., Ltd. Electrode plate and electrolysis apparatus for electrolyis, electrode plate unit, and method for electrolyzing compound comprising hydrogen
EP1896622A1 (en) * 2005-06-28 2008-03-12 Yasuo Sakakura Oxygen activating material, combustion efficiency improving material, plant growth promoting material, aerobic microorganism activating material, animal growth promoting and activating material, muscle softening material, rust removing and preventing material, and oxygen activating method
EP1896622A4 (en) * 2005-06-28 2009-04-29 Yasuo Sakakura OXYGEN-ENHANCING MATERIAL, MATERIAL IMPROVING COMBUSTION EFFICIENCY, PLANT GROWTH PROMOTING MATERIAL, AEROBIC MICROORGANISM-ACTIVATING MATERIAL, ANIMAL-PROMOTING ACTIVE MATERIAL, MUSCLE RELAXING MATERIAL, RUST-PREVENTING AND ELIMINATING MATERIAL, AND METHOD OF ACTIVATION OF OXYGEN
US8079346B2 (en) 2005-06-28 2011-12-20 Yasuo Sakakura Oxygen activating material, combustion efficiency improving material, plant growth promoting material, aerobic microorganism activating material, animal growth promoting and activating material, muscle softening material, rust removing and preventing material, and oxygen activating method
JP2007223860A (ja) * 2006-02-24 2007-09-06 Nippon Telegr & Teleph Corp <Ntt> 水素供給システム
WO2008001474A1 (en) * 2006-06-28 2008-01-03 Yasuo Sakakura Hydrogen activating material and consumption controlling materials for water-soluble electrolyte chemical cells and fuel cells
JP2009542898A (ja) * 2006-06-28 2009-12-03 康郎 坂倉 水素活性化材料並びに水溶性電解質化学電池及び燃料電池の消耗抑制材料
US8277982B2 (en) 2006-06-29 2012-10-02 Yasuo Sakakura Method for improvement of the consumption controlling performance of water-soluble electrolyte chemical cells and fuel cells
JP2008156679A (ja) * 2006-12-21 2008-07-10 Just Thokai:Kk 水素製造装置及び水素製造方法
KR101643276B1 (ko) * 2015-05-12 2016-08-02 강구일 전기분해를 이용한 수소발생장치

Also Published As

Publication number Publication date
JPWO2004031450A1 (ja) 2006-02-02
US20050274607A1 (en) 2005-12-15
US7410557B2 (en) 2008-08-12
AU2003254860A1 (en) 2004-04-23

Similar Documents

Publication Publication Date Title
Zhang et al. Electronic and geometric structure engineering of bicontinuous porous Ag–Cu nanoarchitectures for realizing selectivity-tunable electrochemical CO2 reduction
Zhu et al. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide
Peng et al. Selective electrochemical reduction of CO2 to ethylene on nanopores-modified copper electrodes in aqueous solution
Garcia et al. Effect of saturating the electrolyte with oxygen on the activity for the oxygen evolution reaction
CN102264948B (zh) 一氧化碳的电化学生产方法和设备及其应用
WO2004031450A1 (ja) 水素活性化装置
Liu et al. Cationic oxidative leaching engineering modulated in situ self-reconstruction of nickel sulfide for superior water oxidation
Okatenko et al. The native oxide skin of liquid metal Ga nanoparticles prevents their rapid coalescence during electrocatalysis
EA201201295A1 (ru) Электрохимическая водородно-катализаторная система для выработки мощности
Ren et al. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom
US20240052502A1 (en) Plasma assisted electrocatalytic conversion
Gao et al. Amorphous–amorphous coupling enhancing the oxygen evolution reaction activity and stability of the NiFe-based catalyst
Zhou et al. Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation
Li et al. Theoretical investigation of electrochemical reduction mechanism of CO2 on the Cu (1 1 1), Sn@ Cu (1 1 1) and Sn (2 1 1) surfaces
Garg et al. Electrochemical Production of Hydrogen from Hydrogen Sulfide Using Cobalt Cadmium Sulfide
Yang et al. Selective CO2 Electroreduction with enhanced oxygen evolution efficiency in affordable borate-mediated molten electrolyte
Shah et al. Self-Supported Mn-Ni3Se2 Electrocatalysts for Water and Urea Electrolysis for Energy-Saving Hydrogen Production
WO2017175237A1 (en) A microfluidic electrolyzer for continuous production and separation of hydrogen/oxygen
US20180320279A1 (en) Stability control of a hydrogen generating system and method
JP2008156679A (ja) 水素製造装置及び水素製造方法
JP2011143401A (ja) 改質装置および電気分解装置
Symes Sonoelectrochemical (20 kHz) Production of hydrogen from aqueous solutions
EP3377675B1 (en) Electrochemical production of hydrogen with dye-sensitized solar cell-based anode
Liu et al. A facile route to efficient water oxidation electrodes via electrochemical activation of iron in nickel sulfate solution
Khan et al. Metal-and Carbon-Based Materials as Heterogeneous Electrocatalysts for CO

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004541211

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10524229

Country of ref document: US

122 Ep: pct application non-entry in european phase