WO2004030054A1 - Substrate processing apparatus - Google Patents

Substrate processing apparatus Download PDF

Info

Publication number
WO2004030054A1
WO2004030054A1 PCT/JP2003/012082 JP0312082W WO2004030054A1 WO 2004030054 A1 WO2004030054 A1 WO 2004030054A1 JP 0312082 W JP0312082 W JP 0312082W WO 2004030054 A1 WO2004030054 A1 WO 2004030054A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing apparatus
substrate processing
processed
oxide film
Prior art date
Application number
PCT/JP2003/012082
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Horiguchi
Ryo Kuwajima
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2003266562A priority Critical patent/AU2003266562A1/en
Publication of WO2004030054A1 publication Critical patent/WO2004030054A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase

Definitions

  • the present invention relates to a substrate processing apparatus, and more particularly to a substrate processing apparatus for performing processing such as film formation on a substrate.
  • the thickness of the gate insulating film must be set to l to 2 nm or less using a conventional thermal oxide film. Insulating films do not avoid the problem of increased tunnel currents and consequently increased gate leakage currents.
  • the relative dielectric constant has conventionally been much higher than that of the mature oxide film, so that even when the actual film thickness is large, the film thickness when converted to the Si 02 film is small.
  • 2O5 and a L2_rei_3, Z r O2, Hf 0 2 further been proposed to apply the high-dielectric ⁇ « ⁇ fee gate insulating film, such as Z r S i O4 or H f S i O4 ing.
  • a Ta 2 Os film can be formed by a CVD method using Ta (OC 2 H 5) 5 and O 2 as a vapor source material.
  • CVD processes are performed in a reduced pressure environment at temperatures of about 480 ° C or higher.
  • Ta 2 Rei_5 thus formed film is heat-treated in the further oxygen atmosphere, the As a result, oxygen vacancies in the film are eliminated, and the film itself is crystallized. In this way, the sintered crystallized been T a 2 0 5 film shows a large specific dielectric constant.
  • an extremely thin base oxide having a thickness of 1 nm or less, preferably 0.8 nm or less is provided between the high-dielectric gate oxide film and the silicon substrate. It is preferable to interpose a membrane.
  • the base oxide must be very thin; thicker ones offset the effect of using a high-k dielectric as the gate dielectric.
  • such a very thin base oxide film needs to uniformly cover the surface of the silicon substrate, and is required not to form defects such as interface states.
  • a thin gate oxide film is generally formed by rapid thermal oxidation (RTO) treatment of a silicon substrate (for example, see Patent Document 1).
  • FIG. 1 shows a schematic configuration of a high-speed semiconductor device 10 having a high dielectric gate insulating film. .
  • a semiconductor device 10 is formed on a silicon substrate 11, and Ta 2 0 5 , A 1 2 O 3 , A high dielectric gate insulating film 13 such as ZrO2, HfO2, ZrSi4, HfSiO4, etc. is formed, and a gate electrode is formed on the high dielectric gate insulating film 13. 14 are formed.
  • the surface of the base oxide film 12 is coated with nitrogen within a range where the flatness of the interface between the silicon substrate 11 and the base oxide film 12 is maintained.
  • the oxynitride film 12 A is doped to form an oxynitride film 12A.
  • the oxynitride film 12 A having a higher relative dielectric constant than the silicon oxide film in the base oxide film 12, it is possible to further reduce the equivalent thermal oxide film thickness of the base oxide film 12. become.
  • the thickness of the base oxide film 12 is preferably as thin as possible.
  • the base oxide film 12 is formed uniformly and stably with a thickness of 1 nm or less, for example, 0.8 nm or less, and a thickness of about 0.4 nm corresponding to 2 to 3 atomic layers. Is It was very difficult than before.
  • the deposited high-dielectric film 13 is crystallized by heat treatment, and the oxygen deficiency is compensated.
  • the thickness of the base oxide film 12 will increase, and the high dielectric gate insulating film 13 must be used.
  • the effective decrease in Hi * of the gate insulating film due to the above was substantially offset.
  • An object of the present invention is to provide a new and useful substrate processing apparatus that solves the above-mentioned problems.
  • a more detailed object of the present invention is to stably form a very thin, typically 2 to 3 atomic layer thick oxide film on the surface of a silicon substrate, and further nitride the film to form an oxynitride film.
  • An object of the present invention is to provide a substrate processing apparatus capable of forming a substrate.
  • a more specific object of the present invention is to provide a method for stably forming an extremely thin oxide film having a thickness of typically 2 to 3 atomic layers on the surface of a silicon substrate and further stably nitriding the oxide film.
  • An object of the present invention is to provide a cluster type substrate processing system including a processing apparatus.
  • Still another object of the present invention is to solve the above-mentioned problems, improve the uniformity of the oxide film, improve the throughput, and prevent contamination. It is an object of the present invention to provide a processed substrate processing apparatus.
  • the present invention has the following features to achieve the above object.
  • the substrate to be processed is supported at a position facing the heater unit, and the holding member for holding the substrate to be processed is rotated, so that the temperature distribution of the substrate to be processed is kept uniform, Warpage can be suppressed, and film formation processing of a substrate to be processed can be performed stably and efficiently.
  • the arm of the holding member is formed of transparent quartz, or the shaft is formed of opaque quartz, or the shaft of the holding member is rotatably supported by a ceramic bearing. Contamination due to metal can be prevented.
  • the rotation position of the plurality of arms supporting the substrate to be processed by detecting the rotation position of the shaft of the holding member is a transporting means for transporting the substrate to be processed, and the lifter for moving the substrate to be processed up and down Interference with the mechanism can be prevented.
  • FIG. 1 is a diagram showing a configuration of a semiconductor device having a high dielectric gate insulating film.
  • FIG. 2 is a front view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention.
  • FIG. 3 is a side view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a front view showing a configuration of a device disposed below the processing container 22.
  • FIG. 6 is a plan view showing a configuration of a device arranged below the processing container 22.
  • FIG. 7 is a side view showing a configuration of a device arranged below the processing container 22.
  • FIG. 8A is a plan view showing the configuration of the exhaust path 32.
  • FIG. 8B is a front view showing the configuration of the exhaust path 32.
  • FIG. 8C is a longitudinal sectional view taken along line BB.
  • FIG. 9 is a side longitudinal sectional view showing the processing container 22 and its surrounding ⁇ in an enlarged manner.
  • FIG. 10 is a plan view of the inside of the processing container 22 with the cover member 82 removed, as viewed from above.
  • FIG. 11 is a plan view of the processing container 22.
  • FIG. 12 is a front view of the processing container 22.
  • FIG. 13 is a bottom view of the processing container 22.
  • FIG. 14 is a longitudinal sectional view taken along line C-C in FIG.
  • FIG. 15 is a right side view of the processing container 22.
  • FIG. 16 is a left side view of the processing container 22.
  • FIG. 17 is an enlarged longitudinal sectional view showing the mounting structure of the ultraviolet light sources 86 and 87.
  • FIG. 18 is a longitudinal sectional view showing the configuration of the gas injection nozzle section 93 in an enlarged manner.
  • FIG. 19 is a cross-sectional view showing the configuration of the gas injection nozzle section 93 in an enlarged manner.
  • FIG. 20 is an enlarged front view showing the configuration of the gas injection nozzle section 93.
  • FIG. 21 is an enlarged longitudinal sectional view showing the configuration of the heater section 24.
  • FIG. 22 is a bottom view showing the heater section 24 in an enlarged manner.
  • FIG. 23 is an enlarged longitudinal sectional view showing a mounting structure of the second inlet 170 and the second outlet 174.
  • FIG. 24 is a longitudinal sectional view showing the mounting structure of the flange 140 in an enlarged manner.
  • FIG. 25 is an enlarged longitudinal sectional view showing the mounting structure at the upper end of the clamp mechanism 190.
  • FIG. 26 is a diagram illustrating a configuration of a control system of the SiC heater 114 and the SoC heater 114.
  • FIG. 27A is a plan view showing the configuration of the quartz peruger 112.
  • FIG. 27B is a longitudinal sectional view showing the configuration of the quartz peruger 112.
  • FIG. 28A is a perspective view of the configuration of the quartz peruger 112 seen from above.
  • FIG. 28B is a perspective view of the configuration of the quartz belger 112 seen from below.
  • FIG. 29 is a system diagram showing a configuration of an exhaust system of the pressure reducing system.
  • FIG. 3OA is a plan view showing the configuration of the holding member 120.
  • FIG. 30B is a plan view showing the configuration of the holding member 120.
  • FIG. 31 is a vertical cross-sectional view showing the configuration of a rotation drive unit 28 disposed below the heater unit 24.
  • FIG. 32 is a longitudinal cross-sectional view showing the rotation drive unit 28 in an enlarged manner.
  • FIG. 33A is a cross-sectional view showing the configuration of the holder cooling mechanism 234.
  • FIG. 33B is a side view showing the configuration of the holder cooling mechanism 234.
  • FIG. 34 is a cross-sectional view showing the configuration of the rotational position detecting mechanism 232.
  • FIG. 35A is a diagram showing a non-detection state of the rotation position detection mechanism 2 32.
  • FIG. 35B is a diagram showing a detection state of the rotation position detection mechanism 232.
  • FIG. 36A is a waveform diagram showing an output signal S of the light receiving element 2688 of the rotation position detecting mechanism 2 32.
  • FIG. 36B is a waveform diagram of the pulse signal P output from the rotational position determination circuit 270.
  • FIG. 37 is a flowchart for explaining a rotational position control process performed by the control circuit.
  • Fig. 38 is a cross-sectional view of the mounting location of the windows 75, 76 as viewed from above.
  • FIG. 39 is a cross-sectional view showing the window 75 in an enlarged manner.
  • FIG. 40 is a cross-sectional view showing the window 76 in an enlarged manner.
  • FIG. 41A is a plan view showing the configuration of the lower case 102.
  • FIG. 41A is a plan view showing the configuration of the lower case 102.
  • FIG. 41B is a side view showing the configuration of the lower case 102.
  • FIG. 41B is a side view showing the configuration of the lower case 102.
  • FIG. 42A is a plan view showing a configuration of the side case 104.
  • FIG. 42A is a plan view showing a configuration of the side case 104.
  • FIG. 42B is a front view showing the configuration of the side case 104.
  • FIG. 42B is a front view showing the configuration of the side case 104.
  • FIG. 42C is a rear view showing the configuration of the side case 104. As shown in FIG. 42C
  • FIG. 42D is a left side view showing the configuration of the side case 104. As shown in FIG. 42D
  • FIG. 42E is a right side view showing the configuration of the side case 104. As shown in FIG. 42E
  • FIG. 43A is a bottom view showing the configuration of the upper case 106.
  • FIG. 43A is a bottom view showing the configuration of the upper case 106.
  • FIG. 43B is a side view showing the configuration of the upper case 106.
  • FIG. 44A is a plan view showing the configuration of the cylindrical case 108.
  • FIG. 44A is a plan view showing the configuration of the cylindrical case 108.
  • FIG. 44B is a side longitudinal sectional view showing the configuration of the cylindrical case 108.
  • FIG. 44C is a side view showing the configuration of the cylindrical case 108.
  • FIG. 45 is a longitudinal sectional view showing the lifter mechanism 30 in an enlarged manner.
  • FIG. 46 is a longitudinal sectional view showing the seal structure of the lifter mechanism 30 in an enlarged manner.
  • FIG. 47A is a side view and a plan view showing a case where the substrate W to be processed is subjected to radical oxidation using the substrate processing apparatus 20 of FIG.
  • FIG. 47B is a plan view showing the configuration of FIG. 47A.
  • FIG. 48 is a view showing a substrate oxidation treatment step performed by using the substrate processing apparatus 20.
  • FIG. 49 is a diagram showing a method of measuring a film thickness by XPS used in the present invention.
  • FIG. 50 is another diagram showing a film thickness measuring method using XPS used in the present invention.
  • FIG. 51 is a diagram schematically showing a phenomenon of halting of oxidized growth observed when an oxide film is formed by the substrate processing apparatus 20.
  • FIG. 52A is a view showing the oxide film forming step 1 on the silicon-based surface.
  • FIG. 52B is a view showing the oxide film forming step 2 on the silicon substrate surface.
  • FIG. 53 is a diagram showing the leakage current characteristics of the oxide film obtained in the first example of the present invention.
  • FIG. 54A is a diagram for explaining the cause of the leakage current characteristics of FIG.
  • FIG. 54B is a diagram for explaining the cause of the leak current characteristic of FIG.
  • FIG. 55A is a view showing an oxide film forming step 1 which occurs in the substrate processing apparatus 20.
  • FIG. 55B is a view showing an oxide film forming step 2 which occurs in the substrate processing apparatus 20.
  • FIG. 4 is a view showing an oxide film forming step 3 that occurs in the substrate processing apparatus 20.
  • FIG. 56 is a diagram showing a configuration of a remote plasma source used in the substrate processing apparatus 20.
  • FIG. 57 is a diagram comparing characteristics of the RF remote plasma and the microwave plasma.
  • Figure 58 is another diagram comparing the characteristics of RF remote plasma and microwave plasma.
  • FIG. 59A is a side view showing an oxide film nitriding process performed by using the substrate processing apparatus 20.
  • FIG. 59B is a plan view showing the nitridation of the oxide film performed using the substrate processing apparatus 20.
  • FIG. 60A shows an oxidized film formed on a Si substrate to a thickness of 2.0 nm by a thermal oxidation process using a substrate processing apparatus 20.
  • FIG. 4 is a diagram showing a nitrogen concentration distribution in the oxidation film when nitriding under the conditions shown.
  • FIG. 6 OB is a diagram showing the relationship between the nitrogen concentration distribution and the oxygen concentration distribution in the same oxide film.
  • FIG. 61 is a diagram showing an outline of XPS used in the present invention.
  • FIG. 62 is a diagram showing the relationship between the nitriding time of an oxide film by remote plasma and the nitrogen concentration in the film.
  • FIG. 63 is a diagram showing the relationship between the nitriding time of the oxide film and the distribution of nitrogen in the film.
  • FIG. 64 is a diagram showing a change in the film thickness of each oxynitride film formed by nitriding the oxide film for each wafer.
  • FIG. 65 is a diagram showing an increase in film thickness accompanying the nitridation treatment of the oxidation film according to the present embodiment.
  • FIG. 2 is a front view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention.
  • FIG. 3 is a side view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG.
  • the substrate processing apparatus 20 includes, as described later, an ultraviolet radical oxidation treatment of a silicon substrate and a high frequency remote control of an oxide film formed by the ultraviolet radical oxidation treatment.
  • the radical nitriding treatment using plasma can be performed continuously.
  • the main components of the substrate processing apparatus 20 include a processing container 22 having a processing space defined therein, and a heater unit for heating a substrate (silicon substrate) inserted into the processing container 22 to a predetermined temperature. 24, an ultraviolet irradiation unit 26 mounted on the upper part of the processing vessel 22, a remote plasma unit 27 for supplying nitrogen radicals, a rotation driving unit 28 for rotating the substrate to be processed, and a processing space.
  • a lifter mechanism 30 for raising and lowering the inserted substrate to be processed, an exhaust path 32 for depressurizing the inside of the processing vessel 22, and a gas (a process such as a nitrogen gas or an oxygen gas) inside the processing vessel 22.
  • Gas supply section 3 4 for supplying gas) Mosquitoes.
  • the substrate processing apparatus 20 includes a frame 36 for supporting each of the main components.
  • the frame 36 is a three-dimensional combination of steel frames, and has a trapezoidal bottom frame 38 placed on the floor, and a vertical frame 40 standing upright from the rear of the bottom frame 38. 41, an intermediate frame 42 extending horizontally from an intermediate portion of the vertical frame 40, and an upper portion extending horizontally from the upper ends of the vertical frames 40, 41.
  • the frame is composed of four and four.
  • the bottom frame 38 has a cooling water supply unit 46, exhaust pulp 48 a and 48 b composed of solenoid valves, a turbo molecular pump 50, a vacuum line 51, and a power unit for an ultraviolet irradiation unit 26. 52, a drive section 13 6 of the lifter mechanism 30 and a gas supply section 34 are mounted.
  • a cable duct 40a through which various cables pass is formed inside the vertical frame 40.
  • an exhaust duct 41 a is formed inside the vertical frame 41.
  • an emergency stop switch 60 is attached to the bracket 58 fixed to the middle part of the vertical frame 40, and the temperature of cooling water is set to the bracket 62 fixed to the middle part of the vertical frame 41. Perform adjustment ⁇ Adjuster 64 is installed.
  • the intermediate frame 42 supports the processing container 22, an ultraviolet irradiation section 26, a remote plasma section 27, a rotation drive section 28, a lifter mechanism 30, and a UV lamp controller 57.
  • the upper frame 44 also has a gas box 66 connected to a plurality of gas pipelines 58 drawn from the gas supply unit 34, an ion gauge controller 68, an APC controller 70 for controlling pressure, A TMP controller 72 for controlling the turbo molecular pump 50 is mounted.
  • FIG. 5 is a front view showing the structure of ⁇ disposed below the processing container 22.
  • FIG. 6 is a plan view showing a configuration of a device disposed below the processing container 22.
  • FIG. 7 is a side view showing the configuration of ⁇ disposed below the processing container 22.
  • 8A is a plan view showing the configuration of the exhaust path 32
  • FIG. 8C is a front view showing the configuration of the exhaust path 32
  • FIG. 8C is a longitudinal sectional view taken along the line ⁇ - ⁇ .
  • the processing container 22 An exhaust path 32 for exhausting the internal gas is provided.
  • the exhaust path 32 is attached so as to communicate with a rectangular exhaust port 74 having a width dimension substantially the same as the width of the processing space formed inside the processing vessel 22. .
  • the exhaust port 74 is formed so as to extend to a length corresponding to the width of the inside of the processing container 22, the gas supplied from the front part 22 a side of the processing container 22 to the inside is formed. As will be described later, the gas passes through the inside of the processing container 22 and flows backward, and is efficiently exhausted to the exhaust passage 32 at a constant flow rate (laminar flow).
  • the exhaust path 32 has a rectangular opening 32 a communicating with the exhaust port 74, and the left and right side surfaces of the opening 32 a face downward. Theno ,. Tapered section 3 2b, bottom section 3 c with narrow passage area at the lower end of tapered section 3 2b, and L-shaped main exhaust pipe 3 2 d protruding forward from bottom section 3 2c And a discharge outlet 32 e opened at the lower end of the main exhaust pipe 32 d and a bypass outlet 32 g opened at a lower portion 32 f of the tapered portion 32 b.
  • the outlet 32 e is connected to the inlet of the turbo molecular pump 50.
  • the discharge port 32 g for the no-pass is communicated with the bypass pipe 51 a.
  • the gas discharged from the exhaust port 74 of the processing vessel 22 flows in from the rectangular opening 32 a by the suction force of the turbo molecular pump 50. Then, it passes through the tapered portion 32b, reaches the bottom portion 32c, and is guided to the turbo-molecular pump 50 via the main exhaust pipe 3'2d and the outlet 32e.
  • the discharge pipe 50 a of the molecular pump 50 is connected to the vacuum pipe 51 via the valve 48 a. Therefore, the gas filled in the processing vessel 22 is supplied to the valve 4.
  • the valve 8a When the valve 8a is opened, the gas is exhausted to the vacuum line 51 via the turbo molecular pump 50.
  • a bypass line 51a is connected to the bypass outlet 32g of the exhaust path 32.
  • the bypass pipe 51a is connected to the vacuum pipe 51 by opening the valve 48b.
  • FIG. 9 is a side longitudinal sectional view showing the processing container 22 and its peripheral devices in an enlarged manner.
  • Figure 10 is a plan view of the inside of the processing container 22 with the cover member 82 removed, as viewed from above. As shown in FIGS. 9 and 10, the processing container 22 has a configuration in which the upper opening of the chamber 80 is closed by a lid member 82, and the inside becomes a process space (processing space) 84. I have.
  • a supply port 22 g through which gas is supplied is formed in a front part 22 a, and a transfer port 94 is formed in a rear part 22 b.
  • the supply port 22 g is provided with a gas injection nozzle section 93 described later, and the transfer port 94 is connected to a gate valve 96 described later.
  • FIG. 11 is a plan view of the processing container 22.
  • FIG. 12 is a front view of the processing container 22.
  • FIG. 13 is a bottom view of the processing container 22.
  • FIG. 14 is a longitudinal sectional view taken along the line C—C in FIG.
  • FIG. 15 is a right side view of the processing container 22.
  • FIG. 16 is a left side view of the processing container 22.
  • the bottom part 2 2 c of the processing container 22 has an opening 73 into which the heater part 24 is inserted, and the above-described rectangular-shaped exhaust port 74. Is set up.
  • the aforementioned exhaust path 32 is connected to the exhaust port 74.
  • the chamber 80 and the lid member 82 are, for example, formed by cutting an aluminum alloy into the above-described shape.
  • a first window 75 formed in an oval shape is disposed on the left side of the center of the right side surface 22 e, and a second window formed in a circular shape on the right side of the center of the right side surface 22 e. Since the substrate 6 is arranged, the state of the substrate to be processed held in the process space 84 can be directly observed from both directions, which is advantageous for observing the film formation state of the substrate W to be processed. .
  • the windows 75 and 76 are configured so that they can be removed from the processing container 22 when a temperature measuring instrument such as a thermocouple is inserted.
  • a sensor unit 85 for measuring the pressure in the process space 84 is attached to the left side surface 22 d of the processing container 22.
  • this sensor unit 85 3 012082
  • Three pressure gauges 85a to 85c with different measurement ranges are provided, and it is possible to measure the pressure change in the process space 84 with high accuracy.
  • curved portions 22h formed in an R shape are provided at the four corners of the inner wall of the processing vessel 22 forming the process space 84.
  • This curved portion 22h prevents stress concentration and
  • the gas jet nozzle 93 acts to stabilize the gas flow injected from the nozzle.
  • the ultraviolet irradiation section 26 is attached to the upper surface of the lid member 82.
  • two cylindrical ultraviolet light sources (UV lamps) 86 and 87 are arranged at predetermined intervals ffi in a cylindrical shape.
  • the ultraviolet light sources 86 and 87 have a characteristic of emitting ultraviolet light having a wavelength of 172 nm, and have a rectangular opening 82 formed in the cover member 82 and extending in the lateral direction. A position where the front half (left half in FIG. 8) of the process space 84 is irradiated with ultraviolet rays so as to face the upper surface of the substrate W to be processed held in the process space 84 via a and 82b. It is provided in.
  • the intensity distribution of the ultraviolet light irradiated onto the substrate W from the linearly extending ultraviolet light sources 86 and 87 is not uniform, and varies depending on the position of the substrate W in the radial direction. One decreases toward the outer periphery of the substrate W to be processed, and the other decreases toward the outer periphery.
  • the ultraviolet light sources 86 and 87 independently form a monotonically changing ultraviolet intensity distribution on the substrate to be treated w, but the direction of change of the ultraviolet intensity distribution with respect to the substrate to be treated is reversed.
  • the optimum value of the strong drive power can be obtained by changing the drive output to the ultraviolet light sources 86 and 87 and evaluating the film formation result.
  • the distance between the substrate to be treated; KW and the center of the cylindrical core of the ultraviolet light sources 86, 87 is set to, for example, 50 to 30 Omm, preferably 100 to 100 mm. 2 0 0 12082
  • FIG. 17 is an enlarged longitudinal sectional view showing the mounting structure of the ultraviolet light sources 86 and 87. As shown in FIG. As shown in Fig. 17, the ultraviolet light sources 86 and 87 are
  • the bottom opening 26 b is opened at a position facing the upper surface of the substrate W to be processed held in the process space 84, and is longer than the entire length of the ultraviolet light sources 86, 87! /, It is formed in a rectangular shape with a width dimension.
  • a transparent window 88 formed of transparent quartz is attached to a peripheral portion 26c of the bottom opening 26b.
  • the transparent window 88 transmits ultraviolet light emitted from the ultraviolet light sources 86 and 87 to the process space 84, and has a strength capable of withstanding a pressure difference when the process space 84 is depressurized. .
  • a sealing surface 8 8 a is formed on the lower peripheral edge of the transparent window 8 8, where the sealing member (O-ring) 8 9 mounted in the groove of the lower opening 2 6 b peripheral edge 26 c contacts.
  • This sealing surface 88a is formed of a coating or black quartz for protecting the see-through member 89.
  • a stainless steel cover 88 b is in contact with the peripheral edge of the upper surface of the transparent window 88, and by increasing the strength when the transparent window 88 is clamped by the fastening member 91, the pressing force at the time of fastening is increased. This prevents the transparent window 8 8 from being damaged by pressure.
  • the ultraviolet light sources 86 and 87 and the transparent window 88 are provided so as to extend in a direction perpendicular to the flow direction of the gas flow injected from the gas injection nozzle portion 93.
  • the present invention is not limited to this.
  • the ultraviolet light sources 86 and 87 and the transparent window 88 may be provided in a direction extending in the gas flow direction.
  • the processing container 22 is provided with a gas jet for injecting nitrogen gas or oxygen gas into the process space 84 through a supply port 22 g opening to the front part 22 a.
  • An injection nozzle portion 93 is provided.
  • the gas injection nozzle section 93 has a plurality of injection ports 93 a arranged in a row in the width direction of the process space 84 as described later.
  • a stable flow is generated inside the process space 84 so that the gas injected from the plurality of injection ports 93a passes through the surface of the substrate W to be processed in a laminar flow state.
  • the distance between the lower surface of the lid member 82 that closes the process space 84 and the substrate W to be processed is set, for example, to 5 to 100 mm, and preferably about 25 to 85 mm. No.
  • the heater section 24 includes a base 110 made of an aluminum alloy, a transparent quartz peruger 1 12 fixed on the base 110, and a quartz belt jar. Mounted on the top of the SiC heater 1 14 housed in the internal space 1 1 3 of 1 1 2, the heat reflecting member (reflector) 1 16 made of opaque quartz, and the quartz perg 1 1 2 And a SiC susceptor (heating member) 118 heated by the SiC heater 114.
  • the SiC heater 114 and the heat reflection member 116 are isolated in the internal space 113 of the quartz perger 112, and the contamination in the process space 84 is stopped.
  • the cleaning step only the SiC susceptor 118 exposed in the process space 84 needs to be cleaned, so that the trouble of cleaning the SiC heater 114 and the heat reflecting member 116 is eliminated. It can be omitted.
  • the target substrate OT is held by the holding member 120 so as to face above the SoC susceptor 118.
  • the SiC heater 114 is placed on the upper surface of the heat reflecting member 116, and the heat generated by the SiC heater 114 is generated by the SiC susceptor 118, and the heat is generated. However, the heat reflected by the heat reflecting member 116 is also transmitted to the SiC susceptor 118. Note that the SiC heater 114 of the present embodiment is heated to a temperature of about 700 ° C. while being slightly separated from the SiC susceptor 118.
  • the SiC susceptor 118 Since the SiC susceptor 118 has a good thermal conductivity, the heat from the SiC heater 114 is efficiently transmitted to the substrate to be processed, and the substrate to be processed W is formed between the peripheral portion and the central portion. By eliminating the difference, the substrate W to be processed is prevented from warping due to the temperature difference.
  • the rotation drive unit 28 is 31.
  • a holding member 120 for holding the substrate to be processed above the susceptor 118 and a lower surface of the base 110 A fixed casing 122, a motor 128 for rotating and driving a ceramic shaft 126 coupled to the shaft 120d of the holding member 120 in a partial space 124 defined by the casing 122, and a motor 128 And a magnet coupling 130 for transmitting the rotation of the magnet.
  • the shaft 120d of the holding member 120 is penetrated through the quartz peruger 112 to be connected to the ceramic shaft 126, and a magnetic cup is provided between the ceramic shaft 126 and the rotary shaft of the motor 128 Since the driving force is transmitted through the ring 130 in a non-contact manner, the configuration of the rotary drive system is compact, which also contributes to the miniaturization of the entire apparatus.
  • the holding member 120 has arms 120a to 120c extending radially (at intervals of 120 degrees in the circumferential direction) in the horizontal direction from the upper end of the shaft 120d.
  • the substrate to be processed is held in a state of being placed on the arm portions 120 a to 120 c of the holding member 120.
  • the substrate to be processed j3 ⁇ 4W held in this manner is rotated at a constant rotation speed by the motor 128 together with the holding member 120, whereby the temperature distribution due to the heat generated by the SiC heater 114 is averaged.
  • the intensity distribution of the ultraviolet light emitted from the ultraviolet light sources 86 and 87 becomes uniform, and a uniform film is formed on the surface.
  • the lifter mechanism 30 is provided below the chamber 80 and on the side of the quartz veneer roll 112, and is provided with a lift arm 132 inserted into the champ 80 and a lift mechanism 132.
  • An elevating shaft 134 connected to the arm 132 and a driving unit 136 that elevates the elevating shaft 134 are configured.
  • the elevating arm 132 is formed of, for example, ceramic or quartz, and surrounds a coupling portion 132 a to which the upper end of the elevating shaft 134 is coupled and an outer periphery of the SiC susceptor 118 as shown in FIG. And an annular portion 132b.
  • the elevating arm 132 is provided with three contact pins 138a to 138c extending from the inner periphery of the annular portion 132b to the center at intervals of 120 degrees in the circumferential direction.
  • the contact pins 138a to 138c are lowered to a position where they fit into the grooves 118a to 18c formed so as to extend from the outer periphery of the SiC susceptor 118 toward the center.
  • the lifting arm 132 moves upward to move above the SiC susceptor 118.
  • the contact pins 138 a to 138 c are arranged so as not to interfere with the arms 120 a to 120 c of the holding member 120 formed so as to extend from the center of the SiC susceptor 118 to the outer peripheral side. Have been.
  • the lifting arm 132 holds the substrate W by bringing the contact pins 138 a to 138 c into contact with the lower surface of the substrate W just before the robot hand of the transfer port 98 takes out the substrate W. Lift from the arm parts 120 a to 120 c of the member 120. Thereby, the robot hand of the transfer robot 98 can move below the substrate W to be processed, and can move and hold the substrate to be processed W by lowering the elevating arm 132. .
  • a quartz liner 100 made of, for example, white opaque quartz is mounted inside the processing container 22 to block ultraviolet rays. Further, the quartz liner 100 has a configuration in which a lower case 102, a side case 104, an upper case 106, and a cylindrical case 108 that covers the outer periphery of the quartz peruger 112 are combined as described later.
  • the quartz liner 100 covers the inner walls of the processing container 22 and the lid member 82 forming the process space 34, thereby providing a heat insulating effect of preventing the thermal expansion of the processing container 22 and the lid member 82, and It has a function of preventing the inner walls of the container 22 and the cover member 82 from being oxidized by ultraviolet rays, and also preventing metal contamination.
  • the remote plasma unit 27 that supplies nitrogen radicals to the process space 84 is attached to the front part 22 a of the processing container 22, and is connected to the processing container via a supply pipe 90. It is connected to 22 supply ports 92.
  • a nitrogen gas is supplied together with an inert gas such as Ar, and the nitrogen gas can be activated by plasma to form nitrogen radicals.
  • the nitrogen radicals thus formed flow along the surface of the target 3 ⁇ 43 ⁇ 4W to be processed, and nitride the substrate surface.
  • a transfer port 94 for transferring the substrate to be processed is provided at the rear of the processing container 22.
  • the transfer port 94 is closed by the gate valve 96 and is opened by the opening operation of the gate valve 96 only when the substrate to be processed is transferred.
  • a transfer port pot 98 is provided behind the gate valve 96. Then, in accordance with the opening operation of the gate pulp 96, the robot hand of the transfer robot 98 enters the process space 84 from the transfer port 94 to perform the work of exchanging the substrate W to be processed.
  • FIG. 18 is an enlarged longitudinal sectional view showing the configuration of the gas injection nozzle section 93.
  • FIG. 19 is a cross-sectional view showing the configuration of the gas injection nozzle section 93 in an enlarged manner.
  • FIG. 20 is an enlarged front view showing the configuration of the gas injection nozzle section 93.
  • the gas injection nozzle portion 93 has a communication hole 92 in the center of the front surface, through which the supply pipe 90 of the remote plasma portion 27 communicates.
  • Roh nozzle plate 9 3 bi ⁇ 9 3 b 3 that above the holes 9 2 a plurality of injection holes 9 3 ai ⁇ 9 3 a n arranged in a line in the transverse direction are attached.
  • Injection holes 9 3 ai ⁇ 9 3 a n if example embodiment, a small diameter hole l mm, are provided in a 1 O mni intervals.
  • injection holes 9 3 ai ⁇ 9 3 a n consisting of small holes is not limited thereto, for example, may be provided with a narrow slit as ⁇ hole.
  • the nozzle plates 93 b ⁇ to 93 b 3 are fastened to the wall surface of the gas injection nozzle portion 93. Therefore, the injection hole 9 3 a ⁇ 9 3 gas injected from a n flows in front of the wall surface of the gas injection Roh nozzle part 9 3.
  • injection hole 9 3 ai ⁇ 9 3 a n are provided in the nozzle pipe pipe-like, injection hole 9 3 ai ⁇ 9 3 a n part nozzle tube of the injected gas from A flow that wraps around the back of the road is generated, and a gas pool is generated in the process space 84, which causes a problem that the gas flow around the substrate W to be processed becomes unstable.
  • the injection holes 93 a to 93 an are provided in the gas injection nozzle section 9.
  • the structure formed on the wall of No. 3 does not cause such a phenomenon that such gas returns to the back of the nozzle, and it is possible to maintain a stable laminar gas flow around the substrate to be treated. . Thereby, a film is uniformly formed on the substrate to be processed W.
  • the recess 9 3 C l ⁇ 9 3 c 3 that acts as a gas pocket is formed. Since the recess 9 3 ci ⁇ 9 3 c 3 is provided upstream of the injection Iana 9 3 a ⁇ 9 3 a n , the respective injection holes 9 3 a 3 a n forces et ⁇ is the gas respectively the The flow rates can be averaged. This makes it possible to average the flow velocity in the entire process space 84.
  • each of the concave portions 93 ci to 93 c 3 communicates with a gas supply hole 93 ( ⁇ 93 d 3) penetrating the gas injection nozzle portion 93.
  • the central gas supply hole 93 d 2 is formed in a position shifted laterally so as not to intersect the communication hole 9 2 is bent in a crank shape.
  • the center of the gas supply holes 9 3 d 2 the flow control gas by the first mass flow controller 9 7 a is supplied through the gas supply pipe 9 9 2. Further, the gas supply hole 9 3 d x, 9 3 d 3 which is disposed on the left and right gas supply holes 9 3 d 2 is the second mass flow controller 9 7 b by the flow controlled gas a gas supply pipe 9 Supplied through 9 9 3 .
  • the first mass flow controller 9 7 a ⁇ Pi second mass flow controller 9 7 b is Ri Contact is connected to the gas supply unit 3 4 through the gas supply pipe 9 9 4, 9 9 5, gas The flow rate of the gas supplied from the supply unit 34 is controlled to a preset flow rate.
  • the first mass flow controller 9 7 a ⁇ Pi gas supplied from the second mass flow controller 9 7 b, the gas supply hole 9 through the gas supply pipe 9 9 ⁇ 9 9 3 3 d ⁇ 9 3 d 3 leads to, after being filled into the recesses 9 3 c! ⁇ 9 3 c 3, is injected toward the process space 8 4 from ⁇ hole 9 3 a E ⁇ 9 3 a n.
  • the rear part 2 2b side of the processing container 22 it extends in the width direction of the rear part 22 b. Since the rectangular exhaust port 74 is open, the gas in the process space 84 flows backward, and is exhausted to the exhaust path 32 at a constant flow rate (laminar flow). Further, in the present embodiment, since two systems of flow control are possible, for example, different flow control can be performed by the first mass flow controller 97a and the second mass flow controller 97b.
  • the flow rate (flow velocity) of the gas supplied into the process space 84 can change the gas concentration distribution in the process space 84.
  • different types of gases can be supplied by the first mass flow controller 97a and the second mass flow controller 97b.
  • the flow rate of nitrogen gas can be controlled by the first mass flow controller 97a.
  • the flow rate of the oxygen gas can be controlled by the second mass flow controller .97b.
  • the used gas include an oxygen-containing gas, a nitrogen-containing gas, and a rare gas.
  • FIG. 21 is a longitudinal sectional view showing the configuration of the heater section 24 in an enlarged manner.
  • FIG. 22 is a bottom view showing the heater section 24 in an enlarged manner.
  • the heater section 24 has a quartz peruger 1 1 2 placed on an aluminum alloy base 110 and a flange 2 2 c on the bottom 2 c of the processing vessel 2 2. Fixed through 140. And, in the internal space 113 of the quartz peruger 112, the SiC heater 114 and the heat reflecting member 116 are housed. Therefore, the SiC heater 114 and the heat reflecting member 116 are isolated from the process space 84 of the processing vessel 22, do not come into contact with the gas in the process space 84, and the contamination is reduced. The configuration does not occur.
  • the SiC susceptor 118 is mounted on the quartz belger 112 so as to face the SiC heater 114, and the temperature is measured by a pie-meter 119.
  • This mouthpiece meter 119 measures the value of the SiC susceptor 118 by the pyroelectric effect (picket electrical effect) generated as the SiC susceptor 118 is heated.
  • the control circuit estimates the temperature of the substrate W to be processed from the temperature signal detected by the pie-mouth meter 119, and based on the estimated temperature, generates heat of the SiC heater 114. T / JP2003 / 012082
  • the quartz peruger 112 does not need to be made thick (for example, about 30 mm) in consideration of the pressure difference during the depressurization process, and has a small heat capacity, which improves the responsiveness during heating. .
  • the base 110 is formed in a disc shape, has a central hole 144 through which the shaft 120 d of the holding member 120 passes through in the center, and extends in the circumferential direction inside.
  • a first water channel 144 for the used cooling water is provided. Since the base 110 is made of an aluminum alloy, it has a large coefficient of thermal expansion, but is cooled by flowing cooling water through the first water channel 144.
  • the flange 140 is fitted to the first flange 144 interposed between the base 110 and the bottom 22 c of the processing container 22 and the inner periphery of the first flange 144. And a second flange 148.
  • a second water channel 150 for cooling water extending in the circumferential direction is provided on the inner peripheral surface of the first flange 146.
  • the cooling water supplied from the upper cooling water supply section 46 flows through the above-mentioned water channels 144 and 150, and thereby the base 110 and the flange heated by the heat generated by the SiC heater 114.
  • thermal expansion of base 110 and flange 140 is suppressed.
  • the lower surface of the base 110 passes through a first inlet port 15 4 through which a first inlet pipe 15 2 through which cooling water flows into the water channel 144 and a water channel 14 4 are connected.
  • a first outlet 158 to which an outlet pipe 156 for discharging the cooled water is connected.
  • a plurality of mounting holes 162 for passing through the bonoleto 160 to be fastened to the first flange 146 are provided in the circumferential direction (for example, 8 to 10). (About 1 or 2 places)
  • a temperature sensor 16 4 composed of a thermocouple for measuring the temperature of the SiC heater 114 and a SiC heater 1 14 near the intermediate position on the lower surface of the base 110 in the radial direction.
  • the SoC heater 114 has three regions, and the power cable connection terminals 166a to 166f supply power to each region.
  • the + terminal and the one terminal are provided.
  • FIG. 23 is an enlarged longitudinal sectional view showing a mounting structure of the second inflow port 170 and the second outflow port 174.
  • FIG. 24 is an enlarged longitudinal sectional view showing the mounting structure of the flange 140.
  • the first flange 146 is provided with an L-shaped communication hole 146a which is communicated with the second inlet 170 force S.
  • the end of the communication hole 146a communicates with the water channel 150.
  • the second outlet 174 has the same configuration as the second inlet 170 and is connected to the water channel 150.
  • the water channel 150 is formed to extend in the circumferential direction inside the flange 140, the water channel 150 is sandwiched between the step portion 146b of the first flange 146 and the base 110 by cooling the flange 140.
  • the temperature of the flange 112a of the quartz peruger 112 is also indirectly cooled. Thereby, the thermal expansion of the flange 112a of the quartz peruger 112 in the radial direction can be suppressed.
  • a plurality of positioning holes 178 are provided at predetermined intervals in the circumferential direction on the lower surface of the flange 112a of the quartz bell jar 112.
  • the positioning hole 178 is a hole into which the pin 176 screwed into the upper surface of the base 110 fits.
  • the flange portion 112a of the quartz peruger 112 is provided with a radial clearance with respect to the step portion 146b of the first flange 146, the heat of the base 110 is also increased by this clearance from this point. Inflation is allowed.
  • the lower surface of the quartz bell jar 1; L 2 112 a is sealed by a seal member (O-ring) 180 attached to the upper surface of the base 110, and the upper surface of the flange 112 a of the quartz Seal member mounted on (O-ring) Sealed by 1 8 2
  • first flange 1 46 and the second flange 1 48 are sealed by sealing members (O-rings) 18 4 and 18 6 attached to the bottom 2 2 c of the processing vessel 22. Is done.
  • the lower surface of the second flange 148 is sealed by a seal member (O-ring) 188 mounted on the upper surface of the base 110.
  • the double seal structure is provided between the base 110 and the flange 140 and between the flange 140 and the bottom 22 c of the processing vessel 22, respectively. Even if one seal member breaks, it can be sealed by another seal member, so that the reliability of the seal structure between the processing container 22 and the heater portion 24 is further improved.
  • the quartz peruger 1 1 2 is broken, or if the flange 1 1 2 a is cracked, the quartz perg 1 1 2 is provided by the sealing member 180 located outside the flange 1 1 2 a. The inside airtightness is ensured, and the gas in the processing container 22 is prevented from flowing out.
  • the SiC heater 114 is placed on the upper surface of the heat reflecting member 116 in the internal space 113 of the quartz peruger 112 and the base 111 It is held at a predetermined height by a plurality of clamp mechanisms 190 standing on the upper surface of the zero.
  • the clamp mechanism 190 includes an outer cylinder 190a that abuts on the lower surface of the heat reflecting member 1 16 and an outer cylinder 190a that penetrates the outer cylinder 190a. It has a shaft 190 b that contacts the upper surface of the heater 114, and a coil panel 192 that presses the outer cylinder 190 a against the shaft 190 b.
  • the clamp mechanism 190 sandwiches the SiC heater 114 and the heat reflecting member 116 with the panel force of the coil panel 192, for example, vibration during transportation is input.
  • the SiC heater 114 and the heat reflecting member 116 can be held so as not to contact the quartz bell jar 112.
  • the above coil bar Since the panel force of the screw 192 always acts, the loosening of the screw due to thermal expansion is also prevented, and the ic heater 114 and the heat reflecting member 116 are maintained in a stable state without rattling.
  • each clamp mechanism 190 is S i with respect to the base 110.
  • the height position of the heater 114 and the heat reflecting member 116 can be adjusted to an arbitrary position.
  • the height position of the plurality of clamp mechanisms 190 adjusts the horizontal position of the SiC heater 114 and the heat reflecting member 116. Can be held.
  • connection member 194 a for electrically connecting each terminal of the SiC heater 114 and the power cable connection terminals 166 a to 166 f connected to the base is provided in the internal space 113 of the quartz peruger 112. 194194f (however, connecting members 194a and 194c are shown in FIG. 21).
  • FIG. 25 is an enlarged longitudinal sectional view showing the mounting structure at the upper end of the clamp mechanism 190.
  • the clamp mechanism 190 includes a nut screwed into an upper end of a shaft 190 b inserted through the insertion hole 116 a of the heat reflecting member 116 and the through hole 114 e of the SoC heater 114.
  • the L-shaped washers 197 and 199 are pressed in the axial direction via the washers 195 to clamp the SoC heater 114.
  • the cylindrical portions 197a and 199a of the L-shaped washers 197 and 199 are inserted into the through holes 114e, and the shaft 190b of the clamp mechanism 190 is inserted into the cylindrical portions 197a and 199a. Communicated. Then, the flange portions 197b and 199b of the L-shaped washers 197 and 199 abut on the upper and lower surfaces of the SiC heater 114.
  • the shaft 190b of the clamp mechanism 190 is urged downward by the panel force of the coil panel 192, and the outer cylinder 190a of the clamp mechanism 190 is urged upward by the spring force of the coil panel 192. .
  • the panel force of the coil panel 192 acts as a clamping force, the heat reflecting member 116 and the SiC heater 114 are stably held, and damage due to vibration during transportation is prevented.
  • the insertion hole 114e of the SiC heater 114 has a larger diameter than the cylindrical portions 197c and 197d of the L-shaped pushers 197a and 197, and is provided with a clearance. Therefore, the insertion hole 114 2003/012082
  • the through hole 114 e can be shifted in the horizontal direction while abutting on the flanges 197 b and l 99 b of the L-shaped pushers 197 and 199. This prevents the occurrence of stress due to thermal expansion.
  • the SiC heater 114 has a first heat generating portion 114a formed in a circular shape at the center and an arc shape surrounding the outer periphery of the first heat generating portion 114a. And second and third heat generating portions 114b and 114c. Further, a through hole 114 d through which the shaft 120 d of the holding member 120 is inserted is provided at the center of the SoC heater 114.
  • the heat generating units 114 a to 114 c are connected in parallel to the heater control circuit 196, respectively, and are controlled to an arbitrary temperature set by the temperature controller 198.
  • the heater control circuit 196 controls the amount of heat radiated from the SiC heater 114 by controlling the voltage supplied from the power supply 200 to the heat generating units 114 a to 114 c. Further, if the capacities differ depending on the heating units 114a to 114c, the load on the power supply 200 increases, and therefore, in this embodiment, the resistance is set so that the capacities (2 KW) of the heating units 114a to 114c are the same. Is set.
  • the heater control circuit 196 includes a control method I for simultaneously energizing the heat generating units 114 a to 114 c to generate heat, and a central first heat generating unit 114 a or an external second heat generating unit depending on the temperature distribution of the substrate to be processed.
  • the control method II for generating either one of the third heat generating portions 114b and 114c and the heat generating portions 114a to 114c in accordance with the temperature change of the substrate W to be processed.
  • the peripheral portion is upward due to a temperature difference between the outer peripheral side and the central portion. May be warped.
  • the substrate to be processed KW is heated by the heat generated by each of the heat generating portions 114a to 114c while being rotated while being held by the holding member 120, the peripheral portion is upward due to a temperature difference between the outer peripheral side and the central portion. May be warped.
  • the 5 iC heater 114 heats the substrate to be processed W via the SiC susceptor 118 having good thermal conductivity, so that the entire substrate to be processed W is heated by the heat from the SiC heater 114 to be processed.
  • the difference between the peripheral part and the central part of the iKW This prevents the substrate W from warping.
  • FIG. 27A is a plan view showing the structure of the quartz peruger 112
  • FIG. 27B is a longitudinal sectional view showing the structure of the quartz peruger 112.
  • FIG. 28A is a perspective view of the configuration of the quartz peruger 112 viewed from above
  • FIG. 28B is a perspective view of the configuration of the quartz peruger 112 viewed from below.
  • the quartz peruger 112 is formed of transparent quartz, and has a cylindrical portion formed above the above-mentioned flange portion 112a. 112b, a top plate 112c that covers the upper side of the cylindrical portion 112b, a hollow portion 112d extending below the center of the top plate 112c, and a bridge formed over an opening formed inside the flange portion 112a. Beam portion 112e for reinforcement.
  • the flange 112a and the top plate 112c receive a load, they are formed thicker than the cylindrical portion 112b.
  • the vertically extending hollow portion 112d and the horizontally extending beam portion 112e intersect inside the quartz peruger 112, the strength in the vertical and radial directions is increased. I have.
  • a lower end portion of the hollow portion 112d is connected to an intermediate position of the beam portion 112e, and the through hole 112f in the hollow portion 112d also penetrates the beam portion 112e.
  • the shaft 120d of the holding member 120 is inserted into the through hole 112f.
  • the SiC heater 114 and the heat reflecting member 116 described above are inserted into the internal space 113 of the quartz peruger 112. Further, although the SiC heater 114 and the heat reflecting member 116 are formed in a disk shape, they can be divided into arc shapes, and after entering the internal space 113 avoiding the beam portion 112 e. Assembled.
  • bosses 112 g to 112 i for supporting the SiC susceptor 118 protrude from the top plate 112 c of the quartz peruger 112 at three locations (120 ° intervals). Therefore, the S i C susceptor 118 supported by the bosses 112 g to 112 i is placed so as to slightly float from the top plate 112 c. For this reason, even if the internal pressure of the processing container 22 changes or the temperature changes and the internal pressure fluctuates below the SiC susceptor 118, contact with the top plate 112c is prevented.
  • the internal pressure of the quartz peruger 112 is controlled by the processing pressure of the processing vessel 22 as described later. Since the exhaust gas flow rate is controlled by the pressure reducing system so that the pressure and the difference in the process space 84 become 5 OTorr or less, the thickness of the quartz peruger 112 can be made relatively thin. As a result, the thickness of the top plate 112c can be reduced to about 6 to 10 mm, so that the responsiveness can be improved by increasing the heat capacity M of the quartz peruger 112 and increasing the heat conduction efficiency during heating. Becomes possible. Note that the quartz peruger 112 of this embodiment is designed to have a strength to withstand a pressure of lOOTorr.
  • FIG. 29 is a system diagram showing a configuration of an exhaust system of the pressure reducing system.
  • the process space 84 of the processing container 22 is filled with the suction force of the turbo molecular pump 50 through the exhaust path 32 connected to the exhaust port 74 by opening the valve 48a as described above.
  • the pressure is reduced.
  • the downstream of the vacuum pipe 51 connected to the exhaust port of the turbo-molecular pump 50 is connected to a pump (MBP) 201 for sucking the exhausted gas.
  • MBP pump
  • the internal space 113 of the quartz nozzle 12 is connected to the bypass line 51 a through the exhaust line 202, and the internal space 124 defined by the casing 122 of the rotary drive unit 28 is connected through the exhaust line 204.
  • the exhaust pipe 202 is provided with a pressure gauge 205 for measuring the pressure in the internal space 113 and a valve 206 that is opened when the internal space 113 of the quartz peruger 112 is depressurized.
  • the pulp 48 is provided in the bypass pipe 51a, and the branch pipe 208 that bypasses the valve 48b is provided.
  • the branch pipe 208 is provided with a pulp 210 that is opened at an initial stage of the decompression process, and a variable throttle 211 for narrowing the flow rate more than the pulp 48b.
  • an opening / closing valve 212 and a pressure gauge 214 for measuring the pressure on the air side are provided on the exhaust side of the turbo-molecular pump 50.
  • a check valve 218, a throttle 220, and a pulp 222 are provided in a turbo line 216 in which an N 2 line for turbo shaft purging is connected to the turbo molecular pump 50.
  • the vanolebs 206, 210, 212, and 222 are composed of solenoid valves and are opened by a control signal from a control circuit.
  • the processing vessel 22, quartz peruger 11 2.
  • the pressure is not reduced at once, but is decompressed in a stepwise manner so as to gradually approach the vacuum.
  • the internal space 113 of the quartz perger 112 and the process space 84 are communicated via the air path 32, and the pressure is reduced. Is made uniform. This reduces the pressure difference between the internal space 113 of the quartz peruger 112 and the process space 84 at the beginning of the pressure reduction step.
  • valve 210 provided in the branch conduit 208 is opened to reduce the pressure by the small flow rate restricted by the variable restrictor 211.
  • valve 48b provided in the bypass line 5la is opened to gradually increase the exhaust flow rate.
  • the pressure of the quartz peruger 112 measured by the pressure gauge 205 and the pressure of the process space 84 measured by the pressure gauges 85 a to 85 c of the sensor unit 85 are compared, and the difference between the two pressures is 50 Torr or less.
  • the pulp 48b is opened.
  • the depressurizing step a pressure difference between the inside and the outside applied to the quartz perger 112 is reduced, and the depressurizing step is performed so that unnecessary stress does not act on the quartz perger 112.
  • valve 48a is opened to increase the exhaust flow rate due to the suction force of the turbo molecular pump 50, and the pressure inside the processing vessel 22, the quartz peruger 112, and the rotary driving unit 28 is reduced to a vacuum. .
  • FIG. 30A is a plan view showing the configuration of the holding member 120
  • FIG. 30B is a side view showing the configuration of the holding member 120.
  • the holding member 120 includes an arm 120 a to: 120 c supporting the substrate W to be processed, and a shaft 12 to which the arm 120 a to 120 c are connected. 0d.
  • the arms 120 a to 120 c are formed of transparent quartz in order to prevent contamination in the process space 84 and not to shield heat from the SiC susceptor 118. It extends radially in the horizontal direction at intervals of 12 ° with the upper end of 120 d as the central axis.
  • bosses 120e to 120g that abut on the lower surface of the substrate to be processed project at intermediate positions in the longitudinal direction of the arms 120a to 120c. Therefore, the substrate to be processed JP2003 / 012082
  • W is supported at three points where the bosses 120e to 120g abut.
  • the holding member 120 is configured to support the target substrate W by point contact, the target substrate W is held at a position slightly separated from the SiC susceptor 118. can do.
  • the distance between the SiC susceptor 118 and the substrate W to be processed is, for example, 1 to 20 mm, and preferably about 3 to 1 Omm. That is, the substrate W to be processed is rotated while floating above the SiC susceptor 118, and the SiC susceptor is moved more than when the substrate W is placed directly on the SiC susceptor 118.
  • the heat from 118 is evenly radiated, the temperature difference between the peripheral portion and the central portion is hardly generated, and the warpage of the substrate W due to the temperature difference is also prevented.
  • the substrate W to be treated is held at a position away from the SiC susceptor 118, so even if warpage occurs due to a temperature difference, it does not contact the SiC susceptor 118, It is possible to return to the original horizontal state as the temperature becomes uniform.
  • the shaft 120 d of the holding member 120 is formed in a rod shape by opaque quartz, and is formed in the through hole 112 f of the SiC susceptor 118 and the quartz peruger 112. It extends through it. As described above, the holding member 120 holds the substrate W to be processed in the process space 84. However, since the holding member 120 is formed of quartz and laid, the possibility of contamination is higher than that of metal. Absent.
  • FIG. 31 is a longitudinal sectional view showing the configuration of the rotation drive unit 28 disposed below the heater unit 24.
  • FIG. 32 is an enlarged longitudinal sectional view showing the rotation drive unit 28.
  • a holder 230 for supporting the rotation drive unit 28 is fastened to the lower surface of the base 110 of the heater unit 24.
  • the holder 230 is provided with a rotation position detection mechanism 2 32 and a honoleda cooling mechanism 2 34.
  • a ceramic shaft 126 into which the shaft 120 d of the holding member 120 is inserted and fixed is inserted below the holder 230, and rotatably supports the ceramic shaft 126.
  • the fixed casing 122 holding the ceramic bearings 236 and 237 is fixed by a bolt 240.
  • the rotating part is composed of the ceramic shaft 126 and the ceramic bearings 236, 237, so that metal contamination is prevented.
  • the casing 122 has a flange 242 through which the bolt 240 is inserted, and a bottomed cylindrical partition wall 244 extending below the flange 238.
  • the outer peripheral surface of the partition wall 2 4 4 is provided with an exhaust port 2 46 to which the exhaust pipe 204 of the pressure reducing system described above communicates, and the gas in the internal space 1 2 4 of the casing 1 2 2 is In the decompression step by the above-described decompression system, the air is exhausted and decompressed. Therefore, the gas in the process space 84 is prevented from flowing out along the axis 120d of the holding member 120.
  • the driven space magnet 248 of the magnet coupling 130 is accommodated in the internal space 124.
  • the driven magnet 248 is covered with a magnet cover 250 fitted around the outer periphery of the ceramic shaft 126 to prevent contamination, and is connected to the gas in the internal space 124. Mounted so that they do not touch.
  • the magnet cover 250 is a force par formed in an annular shape from an aluminum alloy, and has an annular space housed therein. It is housed in a state without rattling. Further, the joint portion of the magnet cover 250 is joined without gaps by electron beam welding, and is processed so that silver does not flow out and cause contamination as in the case of welding. ing.
  • a cylindrical air-side rotating portion 252 is provided on the outer periphery of the casing 122 so as to fit therewith, and is rotatably supported via bearings 255, 255. Have been.
  • a drive-side magnet 2 56 of the magnet coupling 130 is attached on the inner periphery of the atmosphere-side rotating section 25 2.
  • the lower end portion 25a of the atmosphere-side rotating portion 252 is connected to the drive shaft 128a of the motor 128 via a transmission member 255. Therefore, the rotational driving force of the motor 128 is set between the driving-side magnet ′ 256 provided in the atmosphere-side rotating part 252 and the driven-side magnet 248 provided in the casing 122. The magnetic force is transmitted to the ceramic shaft 126 and transmitted to the holding member 120 and the substrate W to be processed.
  • a rotation detection cutout 258 for detecting the rotation of the atmosphere-side rotating unit 255 is provided outside the atmosphere-side rotating unit 255.
  • Disc-shaped slit plates 26 0 and 26 1 attached to the outer periphery of the lower end of the 30-side rotating unit 25 2 and a photointerrupter that optically detects the amount of rotation of the slit plates 260 and 26 1 26, and 26 3.
  • the photo interrupters 26 2 and 26 3 are fixed to the fixed casing 122 by a bracket 26 4.
  • a pulse corresponding to the rotation angle is simultaneously detected from the pair of photointerrupters 262, 263, and the rotation detection accuracy is determined by comparing the two pulses. Can be increased.
  • FIG. 33A is a cross-sectional view showing the configuration of the holder cooling mechanism 234, and FIG. 33B is a side view showing the configuration of the holder cooling mechanism 234.
  • the holder cooling mechanism 234 has a water channel 230a for cooling water extending in the circumferential direction inside the holder 230.
  • the cooling water supply port 230b is connected to one end of the water channel 230a, and the cooling water discharge port 230c is connected to the other end of the water channel 230a.
  • the cooling water supplied from the cooling water supply unit 46 passes through the cooling water supply port 230b from the cooling water supply port 230a, and then is discharged from the cooling water discharge port 230c.
  • the entire 230 can be cooled.
  • FIG. 34 is a cross-sectional view showing the configuration of the rotational position detecting mechanism 232.
  • the light emitting element 266 is attached to one side of the holder 230, and the light of the light emitting element 266 is attached to the other side of the holder 230.
  • a photodetector 266 that receives light is attached.
  • a central hole 230d through which the shaft 120d of the holding member 120 passes is vertically penetrated, and the central hole 230d
  • the light emitting element 266 is inserted into the end of one through hole 230 e, and the light receiving element 268 is inserted into the end of the other through hole 230 f. Since the axis 120 d is passed between the through holes 230 e and 230 f, the rotational position of the axis 120 d is detected from the output change of the photodetector element 268 It becomes possible to do.
  • FIG. 35A is a diagram illustrating a non-detection state of the rotation position detection mechanism 232
  • FIG. 35B is a diagram illustrating a detection state of the rotation position detection mechanism 232.
  • the shaft 120 d of the holding member 120 has a tangential chamfering process on the outer periphery.
  • the chamfered portion 120i is rotated to an intermediate position between the light emitting element 2666 and the light receiving element 2668, the light emitted from the light emitting element 2666 is parallel to the emitted light.
  • the light from the light emitting element 266 passes the side of the chamfered portion 120i and is irradiated on the light receiving element 268.
  • the output signal S of the light receiving element 268 is turned on and supplied to the rotational position determination circuit 270.
  • FIG. 36A is a waveform diagram showing the output signal S of the light-receiving element 268 of the rotation position detection mechanism 2 32
  • FIG. 36B is a pulse signal P output from the rotation position determination circuit 270.
  • the light receiving element 268 has a parabolic change in the amount of light received from the light emitting element 266 (output signal S) depending on the rotation position of the shaft 120 d. Change.
  • the rotation position determination circuit 270 sets a threshold value H for the output signal S, and outputs a pulse P when the output signal S exceeds the threshold value H.
  • the panless P is output as a detection signal for detecting the rotation position of the holding member 120. That is, as shown in FIG. 10, the rotational position determination circuit 27 0 is configured such that the arm portions 120 a to 120 c of the holding member 120 are connected to the contact pins 1 3 8 of the elevating arm 13 2. It judges that it is at a position that does not interfere with a to 138c and does not interfere with the robot hand of the transfer robot 98, and outputs the detection signal (pulse P).
  • FIG. 37 is a flowchart for explaining the rotational position control processing executed by the control circuit.
  • the control circuit proceeds to S12 and starts the motor 128. Subsequently, the flow advances to S13 to check whether or not the signal of the light receiving element 268 is ON. If the signal of the light receiving element 268 is on in S13, the process proceeds to S14, and the rotation number of the holding member 120 and the substrate W to be processed is calculated from the period of the detection signal (pulse P). I do.
  • the process proceeds to S15, where it is checked whether the rotation speed n of the holding member 1200 and the substrate to be processed W is a preset target rotation na.
  • S 15 if the rotation speed n of the holding member 1 2 ⁇ ⁇ ⁇ ⁇ 3 ⁇ 4 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ does not reach the target rotation speed na, return to S 13 and check whether the rotation speed of the motor 128 Check again.
  • FIG. 38 is a cross-sectional view of the mounting location of the windows 75, 76 as viewed from above.
  • FIG. 39 is a cross-sectional view showing the window 75 in an enlarged manner.
  • FIG. 40 is a cross-sectional view showing the window 76 in an enlarged manner.
  • the first window 75 is used for supplying gas to the process space 84 formed inside the processing vessel 122 and for reducing the pressure to a vacuum.
  • the structure is more airtight.
  • the window 75 has a double structure including transparent quartz 272 and UV glass 274 for blocking ultraviolet rays.
  • the first window frame 278 is screwed to the window mounting portion 276 with screws 277 while the transparent quartz 272 is in contact with the window mounting portion 276 and fixed.
  • a sealing member (O-ring) 280 for hermetically sealing the gap with the transparent quartz 272 is mounted on the outer surface of the window mounting portion 276. Further, on the outer surface of the first window frame 278, the second window frame 282 is screwed with the UV glass 274 in contact with the screw 2.
  • the window 75 prevents the ultraviolet rays emitted from the ultraviolet light sources (UV lamps) 86 and 87 from being blocked by the UV glass 27 4 and leaking out of the process space 84.
  • the sealing effect of the sealing member 280 prevents the gas supplied to the process space 84 from flowing out.
  • the opening 286 penetrating the side surface of the processing container 22 penetrates obliquely toward the center of the processing container 22, that is, toward the center of the substrate W held by the holding member 120. ing. Therefore, although the window 75 is provided at a position deviating from the center of the side surface of the processing container 22, the window 75 is formed in an elliptical shape so that it can be seen wide in the lateral direction, and the state of the substrate W to be processed is externally determined. You can see it.
  • the second window 76 has the same configuration as the window 75 described above, and has a double structure including a transparent quartz 292 and a UV glass 294 that blocks ultraviolet rays.
  • the first quartz frame 298 is screwed to the window mounting part 296 with screws 297 and fixed in a state where the transparent quartz 292 contacts the window mounting part 296.
  • a seal member (O-ring) 300 for hermetically sealing the space between the window mounting portion 296 and the transparent quartz 292 is mounted.
  • the outer surface of the first window frame 298 has UV glass 2
  • the second window frame 302 is screwed and fixed with screws 304 with the 94 in contact.
  • the window 76 prevents the ultraviolet light emitted from the ultraviolet light sources (UV lamps) 86 and 87 from being blocked by the UV glass 294 and leaking out of the process space 84.
  • the sealing effect of the sealing member 300 prevents the gas supplied to the process space 84 from flowing out.
  • the configuration in which the pair of windows 75 and 76 are arranged on the side surface of the processing container 22 has been described as an example.
  • the present invention is not limited to this, and three or more windows may be provided. Of course, it may be provided at a place other than the side.
  • the quartz liner 100 is configured by combining a lower case 102, a side case 104, an upper case 106, and a cylindrical case 108, each of which is made of opaque quartz. It is provided for the purpose of protecting the processing container 22 made of aluminum alloy from gas and ultraviolet rays and preventing metal contamination by the processing container 22.
  • FIG. 41A is a plan view showing the configuration of the lower case 102
  • FIG. 41B is a side view showing the configuration of the lower case 102.
  • the lower case 102 is formed in a plate shape having an outline shape corresponding to the inner wall shape of the processing container 22, and has a SoC susceptor 118 and a center in the center thereof. ⁇ ⁇ A circular opening 310 facing the substrate to be processed is formed.
  • the circular opening 310 is formed to have a dimension into which the cylindrical case 108 can be inserted, and has a concave portion 310 for inserting the tip portion of the arm portion 120a to 120c of the holding member 120 at the inner periphery. a to 310c are provided at intervals of 120 degrees.
  • the positions of the recesses 310 a to 310 c are such that the arm portions 120 a to 120 c of the holding member 120 do not interfere with the contact pins 138 a to 138 c of the lifting arm 132, and This is a position that does not interfere with the robot hand.
  • the lower case 102 is provided with a rectangular opening 312 facing the exhaust port 74 formed at the bottom of the processing container 22. Further, the lower case 102 has positioning protrusions 314a and 314b on the lower surface at asymmetric positions. In addition, a concave portion 310 d is formed on the inner periphery of the circular opening 310 so that a protrusion of a cylindrical case 108 described later is fitted thereto. Further, a stepped portion 315 that fits into the side surface case 104 is provided on a peripheral portion of the lower case 102.
  • FIG. 42A is a plan view showing the configuration of the side case 104
  • FIG. 42B is a front view of the side case 104
  • FIG. 42C is a rear view of the side case 104
  • FIG. 42D is a left side view of the side case 104
  • FIG. 42E is a right side view of the side case 104.
  • the side case 104 is formed in a substantially rectangular frame shape in which the outer shape corresponds to the inner wall shape of the processing container 22 and the four corners are R-shaped. And a process space 84 is formed inside.
  • the side case 104 has an elongated slit 3 16 extending in the lateral direction so as to face the plurality of injection ports 93 a of the gas injection nozzle portion 93 described above on the front surface 104 a. And a U-shaped opening 317 provided at a position facing the communication hole 92 communicating with the remote plasma section 27.
  • the slit 316 and the opening 317 are connected to each other, but they may be formed as independent openings.
  • a concave portion 318 through which the above-described robot hand of the transfer robot 98 passes is formed on the rear surface 104 b at a position facing the transfer port 94.
  • a circular hole 319 facing the sensor unit 85 described above is formed in the left side 104c, and the windows 75, 76 described above are formed in the right side 104d. Holes 320 to 322 facing the sensor unit 77 are formed.
  • FIG. 43A is a bottom view showing the configuration of the upper case 106
  • FIG. 43B is a side view of the upper case 106.
  • the upper case 106 is formed in a plate shape whose contour corresponds to the inner wall shape of the processing vessel 22, and an ultraviolet light source (UV lamp) 8. Rectangular openings 324, 325 are formed at positions opposite to 6, 87. Further, a step portion 326 fitted to the side case 104 is provided on a peripheral portion of the upper case 106.
  • UV lamp ultraviolet light source
  • the upper case 106 is provided with circular holes 327 to 329 corresponding to the shape of the lid member 82 and a rectangular hole 340 having a rectangular shape.
  • FIG. 44A is a plan view showing the configuration of the cylindrical case 108
  • FIG. 44B is a side longitudinal sectional view of the cylindrical case 108
  • FIG. 44C is a cylindrical case 108.
  • the cylindrical case 108 is formed in a cylindrical shape so as to cover the outer periphery of the quartz belger 112, and a lifting arm is provided at the upper end edge.
  • a lifting arm is provided at the upper end edge.
  • recesses 108 a to 108 c into which the 13 2 contact pins 1 38 a to 38 c are inserted.
  • the cylindrical case 108 is provided with a positioning projection 108d on the outer periphery of the upper end portion, into which the concave portion 310d of the lower case 102 fits.
  • FIG. 45 is a longitudinal sectional view showing the lifter mechanism 30 in an enlarged manner.
  • FIG. 46 is a longitudinal sectional view showing the seal structure of the lifter mechanism 30 in an enlarged manner.
  • the lifter mechanism 30 raises and lowers the elevating shaft 13 4 by the drive unit 13 6 to raise and lower the elevating arm 13 2 inserted into the chamber 80.
  • the outer periphery of the elevating shaft 1 34 inserted into the through hole 80 a of the chamber 80 is covered with a bellows-shaped bellows 3 32 so as to prevent contamination in the champ 80. Is configured.
  • the bellows 332 has a shape in which the bellows part can expand and contract, and is formed of, for example, Inconel Hastelloy. Further, the through-hole 80a is closed by a lid member 350 into which the elevating shaft 134 is inserted.
  • a cylindrical ceramic cover 338 is fitted and fixed to a connecting member 336 of the lifting arm 132 to which the upper end of the lifting shaft 133 is fastened by a bolt 334. Since the ceramic cover 338 extends below the connecting member 336, it is provided so as to cover the periphery of the bellows 332 so as not to be directly exposed in the chamber 80.
  • the bellows 3332 extends upward when the elevating arm 1332 is raised in the process space 84, and is covered by a cylindrical cover 38 formed of ceramic. Therefore, the bellows 3332 is not directly exposed to the gas and heat in the process space 84 by the cylindrical cover 338 inserted so as to be able to move up and down into the through hole 80a, and the deterioration due to the gas and heat is prevented. Have been.
  • FIG. 47A is a side view and a plan view showing a case where the substrate to be processed W is subjected to radical oxidation using the substrate processing apparatus 20 of FIG. 2, and FIG. 47B is a configuration of FIG. 47A.
  • FIG. 47A is a side view and a plan view showing a case where the substrate to be processed W is subjected to radical oxidation using the substrate processing apparatus 20 of FIG. 2, and FIG. 47B is a configuration of FIG. 47A.
  • oxygen gas is supplied into the process space 84 from the gas injection nozzle 93 and flows along the surface of the substrate W to be processed. Pumped through molecular pump 50 and pump 201.
  • the process pressure in the process space 84 is set in a range of 10 -3 to 10 -6 T rr required for oxidation of the base by oxygen radicals.
  • oxygen radicals are formed in the oxygen gas stream thus formed by driving the ultraviolet light sources 86, 87, which preferably generate ultraviolet light having a wavelength of 170 nm.
  • the formed oxygen radicals flow along the surface of the substrate to be processed W, they oxidize the rotating substrate surface. Oxidation of the substrate to be treated by oxygen radicals causes a very thin oxide film with a thickness of 1 nm or less on the silicon substrate surface, especially an oxide film with a thickness of about 0.4 nm, which corresponds to a few atomic layers. Can be formed stably with good reproducibility.
  • the ultraviolet light sources 86 and 87 are tubular light sources extending in a direction crossing the direction of the oxygen gas flow, and the turbo molecular pump 50 is connected to the exhaust port 74 through the exhaust port 74. It can be seen that the process space 84 is exhausted. On the other hand, the exhaust path indicated by a dotted line in FIG. 47B, which directly leads from the exhaust port 74 to the pump 50, is blocked by closing the pulp 48.
  • FIG. 48 shows an ultraviolet light irradiation in the substrate processing apparatus 20 of FIG. 2 by setting a silicon oxide film on the surface of the silicon substrate and a substrate temperature of 450 ° C. by the processes of FIGS. 47A and 47B.
  • the relationship between ⁇ and the oxidation time when formed while varying the strength, oxygen gas flow rate or oxygen partial pressure in various ways is shown.
  • the natural oxide film on the silicon substrate surface was removed prior to radical oxidation, and in some cases, carbon remaining on the substrate surface was removed in ultraviolet-excited nitrogen radicals.
  • the substrate surface is planarized by performing a high-temperature heat treatment at 950 ° C.
  • the excimerane having a wavelength of 172 nm was used as the ultraviolet light sources 86 and 87. Difficult
  • the ultraviolet light irradiation intensity was set to 5% of the reference intensity (50 mW / cm2) at the window surface of the ultraviolet light source 24 B, and the process pressure was 66 5 mPa (5 mTo rr).
  • the relationship between the oxidizing time and the oxidizing film thickness when the oxygen gas flow rate was set to 30 SCCM is shown in the series 2 data, where the ultraviolet light intensity was set to zero and the process pressure was set to 133 Pa (l rr), the relationship between the oxidation time and the oxide film thickness when the oxygen gas flow rate was set to 3 SLM.
  • the data of series 3 shows the relationship between the oxidation time and the oxide film thickness when the ultraviolet light intensity is set to zero, the process pressure is set to 2.66 Pa (2 OmTorr), and the oxygen gas flow rate is set to 150 SCCM.
  • the data in series 4 are based on the case where the ultraviolet light irradiation intensity is set to 100%, that is, the reference intensity, the process pressure is set to 2.66 Pa (2 OmTo rr), and the oxygen gas flow rate is set to 150 SCCM.
  • the relationship between oxidation time and oxidation Hff is shown.
  • the data in series 5 shows the oxidation time and the oxidation time when the UV irradiation intensity was set to 20% of the reference intensity, the process pressure was set to 2.66 Pa (20 mTorr), and the oxygen gas flow rate was set to 150 SCCM. The relationship with the oxide film pressure is shown.
  • the data in series 6 shows that the UV irradiation intensity is set to 20% of the reference irradiation intensity, the process pressure is about 67 Pa (0.5 To rr), and the oxygen gas flow rate is 0.5 The relationship between the oxidation time and the oxide film thickness when set to SLM is shown.
  • Series 7 data also shows the oxidation time and oxidation when the UV light intensity is set to 20% of the reference intensity, the process pressure is set to 665 Pa (5 Torr), and the oxygen gas flow rate is set to 2 SLM.
  • the UV light irradiation intensity was set to 5% of the reference intensity, the process pressure was 2.66 Pa (2 OmTo rr), and the oxygen gas flow rate was 150 SCCM.
  • the relationship between the oxidation time and the oxide film thickness when the value is set to is shown below.
  • the oxide film thickness is obtained by the XPS method. However, there is no unified method for obtaining such a very thin oxide film thickness of less than 1 nm at this time.
  • the inventor of the present invention carried out the separation correction of the background correction mode 3/2 and the 1 2 spin state with respect to the XPS spectrum of the measured Si 2p orbit shown in FIG. Based on the resulting Si 2p 3/2 XP S spectrum shown in FIG. 50, Lu et al. (ZH Lu, et al., Appl. Phvs ,: Lett. 71 (1997), pp. 2764 ) 2003/012082
  • is the detection angle of the XPS spectrum shown in FIG. 55, and is set to 30 ° in the illustrated example.
  • ⁇ + is the integrated intensity of the spectrum peak corresponding to the oxide film. 50, which corresponds to the peak seen in the energy region of 102 to 104 eV in FIG.
  • 1 0+ corresponds to the energy region of 1 00 e V near, corresponding to the integrated intensity of the scan Bae Kutorupi over click resulting from the silicon substrate.
  • the oxide thickness of the oxide film is initially 0 nm.
  • the series 4, 5, 6, and 7 in which the UV light irradiation power is set to 20% or more of the reference intensity are schematically shown in Figure 51.
  • the growth of the oxide film stops after reaching a value of about 0.4 nm after the start of the growth, and the growth is rapidly restarted after a certain dwell time has elapsed.
  • FIG. 48 The relationship between FIG. 48 and FIG. 51 means that an extremely thin oxide film having a thickness of about 0.4 nm can be formed stably in the oxidation treatment of the silicon substrate surface.
  • the formed oxide film has a uniform thickness. That is, according to the present invention, an oxide film having a thickness of about 0.4 nm can be formed on a silicon substrate to a uniform thickness.
  • FIGS. 52A and 52B schematically show a process of forming a thin oxide film on such a silicon substrate. It should be noted that these figures greatly simplify the structure on a silicon (100) substrate.
  • two oxygen atoms are bonded to each silicon atom on the silicon substrate surface to form a single atomic layer of oxygen.
  • the silicon atoms on the substrate surface have two silicon atoms inside the substrate and two silicon atoms on the substrate surface. To form a suboxide.
  • the silicon atom at the top of the silicon substrate is coordinated by four oxygen atoms, and a stable Si 4+ state is obtained.
  • the thickness of the oxide film in the state of FIG. 52B is about 0.4 nm, which is in good agreement with the oxide film thickness in the stationary state observed in FIG.
  • the oxide film thickness is 0.1 nm or 0.2 nm
  • the low peak seen in the energy range of 101 to 104 eV corresponds to the suboxide in FIG.
  • the peak appearing in this energy region when the thickness exceeds 0.3 nm is attributable to Si 4+ , and is considered to indicate the formation of an oxide film exceeding one atomic layer.
  • Such a stationary phenomenon of the oxide film thickness at a thickness of 0.4 nm is not limited to the UV ⁇ 2 radical oxidation process shown in FIGS. 47A and 47B. It is considered that the same method can be used if an oxide film can be formed with high accuracy.
  • FIG. 53 shows a 0.4 nm thick ZrSiox film on the oxide film formed by the ultraviolet light radical oxidation process of FIGS. 47A and 47B using the substrate processing apparatus 20 in this manner. And an electrode film are formed (see FIG. 54B described later), and the relationship between the equivalent thermal oxide film thickness T eq and the leak current Ig obtained for the obtained laminated structure is shown.
  • the leakage current characteristics in FIG. 53 are measured with a voltage of Vfb ⁇ 0.8 V applied between the electrode film and the silicon substrate with reference to the flat band voltage Vfb.
  • FIG. 53 also shows the leakage current characteristics of the thermal oxide film.
  • the reduced film thickness shown is for a structure in which an oxide film and a ZrSiox film are combined.
  • the leak current density exceeds the leak current density of the thermal oxide film. It can be seen that eq also becomes a relatively large value of about 1.7 nm.
  • the Hff of the oxide film is increased from 0 nm to 0.4 nm, thermal oxidation It can be seen that the value of the film equivalent thickness T eq starts to decrease.
  • FIG. 54A and FIG. 54B show schematic cross sections of the sample formed in this way, and an oxide film 442 is formed on a silicon substrate 441, and an oxide film 44 2 shows a structure in which a ZrSiox film 443 is formed on 2.
  • the thickness of the oxide film exceeds 0.4 nm
  • the value of the thermal oxide film equivalent thickness starts to increase again.
  • the value of the leak current decreases as the thickness increases, and the increase in the conversion is due to the increase in the physical thickness of the oxide film. It is considered to be.
  • the thickness corresponds to the minimum value of the converted film thickness of the system consisting of the oxide film and the high dielectric film.
  • the diffusion of metal elements such as Zr into the silicon substrate is effectively Jh by the stable oxide film shown in Fig. 52 (B), and the thickness of the oxide film is further increased.
  • the effect of inhibiting diffusion of metal elements is not so high.
  • the value of leakage current when using an oxide film with a thickness of 0.4 nm is about two orders of magnitude smaller than the value of leakage current of a corresponding thickness of thermal oxide film. It can be seen that the gate leakage current can be minimized by using it for the gate insulating film of the M ⁇ S transistor.
  • the oxide film 442 formed on the silicon substrate 441 was formed. Even if there is an initial change in film thickness or irregularities, the increase in film thickness during oxide film growth stops near 0.4 nm as shown in Fig. 55B. Within the period By continuing the growth of the oxide film in this manner, an oxidized film 442 having a very flat and uniform thickness shown in FIG. 55C can be obtained.
  • the lff value itself of the oxide film 442 in FIG. 55C may be different depending on the measurement method.
  • the thickness at which oxide film growth stops is known to be the thickness of two atomic layers, and therefore, the preferred oxide film thickness is It is considered to be about 2 atomic layers thick. In this preferable thickness, a region having a thickness of three atomic layers is formed partially so that a thickness of two atomic layers is secured over the entire oxide film 442. included. That is, it is believed that the preferred thickness of oxide film 442 is actually in the range of 2-3 atomic layers.
  • FIG. 56 shows a configuration of a remote plasma unit 27 used in the substrate processing apparatus 20.
  • the remote plasma section 27 has a gas circulation passage 27a, a gas inlet 27b and a gas outlet 76c communicating with the gas circulation passage 27a, and is typically formed. It includes a block 27A made of aluminum, and a ferrite core 27B is formed in a part of the block 27A.
  • the inner surfaces of the gas circulation passage 27a, the gas inlet 27b, and the gas outlet 27c are provided with a fluororesin coating 27d, and the coil wound around the ferrite core 27B has a frequency of 40.
  • a plasma 27C is formed in the gas circulation passage 27a.
  • FIG. 57 shows the relationship between the number of ions formed by the remote plasma section 27 and the electron energy in comparison with the case of a microphone mouth-wave plasma source.
  • the ionization energy conversion efficiency while about 1 X 10_ 2 about the case of microwave excitation in the case of RF excitation, Ri Contact reduced to about 1 X 10 one 7, also
  • the dischargeable pressure is about ⁇ 0. lmTo rr ⁇ 0. lTo rr (133 mPa ⁇ l 3.3 P a ) for microwave excitation, whereas for RF excitation ⁇ is 0.1 ⁇ :! OOTo rr (13.3 Pa ⁇ : 13.3 kPa) Power.
  • plasma power consumption is higher for RF excitation than for microwave excitation, and process gas flow rates are much higher for RF excitation than for microwave excitation.
  • the nitridation of the oxidation film is performed not with nitrogen ions but with nitrogen radicals N 2 *. Therefore, it is preferable that the number of excited nitrogen ions is small. From the viewpoint of minimizing damage to the substrate to be processed, the number of excited nitrogen ions is preferably small. Further, in the substrate processing apparatus 20, the number of excited nitrogen radicals is small, and a very thin pace oxide film having a thickness of at most about 2 to 3 atomic layers under the high dielectric gate insulating film is nitrided. It is suitable to do.
  • FIGS. 59A and 59B are side views and plan views showing the case where the substrate to be processed W is subjected to radial nitriding using the substrate processing apparatus 20.
  • the process space 84 has a process pressure in the range of 1.33 Pa to 13.3 kPa (0.01 to: L00Torr) suitable for radical nitridation of the substrate W. Is set to.
  • the valves 48 a and 212 are opened, and the valve 48 a is closed, so that the process space 8 is closed.
  • the valves 48 a and 212 are closed, and the turbo molecular pump 50 is not included in the exhaust path of the process space 84.
  • Figure 60A shows the oxide film formed on the Si substrate to a thickness of 2. ⁇ nm by thermal oxidation by the substrate processing apparatus 20 using the remote plasma unit 27, as shown in Table 2.
  • Fig. 6 shows a nitrogen concentration distribution in the oxide film when nitrided under the conditions, and Fig. 6 OB shows a relationship between the nitrogen concentration distribution and the oxygen concentration distribution in the same oxide film.
  • Table 2
  • the residual oxygen is diluted with Ar and nitrogen in the process space 84, and the residual oxygen concentration, and hence the heat of the residual oxygen, is reduced.
  • the mechanical activity is very small.
  • the processing pressure during the nitridation process is almost the same as the purge pressure, and therefore, the residual oxygen has high thermodynamic activity in the plasma atmosphere. Conceivable.
  • the concentration of nitrogen introduced into the oxide film was limited, and nitridation of the oxide film did not substantially proceed. You can see that.
  • the nitrogen concentration in the oxidized film changes like a fiber with depth, reaching a concentration close to 20% near the surface. You can see that.
  • FIG. 61 shows the principle of the measurement of FIG. 60A performed using XPS (X-ray spectroscopy spectrum).
  • a sample in which an oxide film 4 1 2 was formed on a silicon substrate 4 1 1 Is irradiated with X-rays obliquely at a predetermined angle, and the excited X-ray spectrum is detected at various angles by the detectors DET1 and DET2.
  • the detector DET1 set at a deep detection angle of 90 ° the path of the excited X-rays in the oxide film 412 is short, so that the X-ray spectrum detected by the detector DET1 has an oxide film.
  • the detector DET 2 set at a shallow detection angle has a longer path of the excited X-rays in the oxide film 12, whereas the detector DET 2 set at a shallower detection angle has a longer path. The information near the surface of is detected.
  • FIG. 60B shows the relationship between the nitrogen concentration and the oxygen concentration in the oxide film.
  • the oxygen concentration is represented by the X-ray intensity corresponding to the Ols orbit.
  • the oxygen concentration decreased with the increase in the nitrogen concentration, and the nitrogen concentration in the oxide film increased. It can be seen that the atoms have replaced the oxygen atoms.
  • the nitriding of the oxide film is performed by the microphone mouth-wave plasma, such a substitution relationship is not observed, and a relationship in which the oxygen concentration decreases with the nitrogen concentration is not observed.
  • Fig. 6 OB the oxygen concentration is represented by the X-ray intensity corresponding to the Ols orbit.
  • FIG. 62 shows that an oxide film is formed to a thickness of 4 A (0.4 nm) and 7 A (0.7 nm) in the substrate processing apparatus 20, and this is formed using the remote plasma section 27 shown in FIG.
  • FIG. 63 shows a state in which nitrogen is biased on the surface of the silicon oxide film due to the nitriding treatment of FIG.
  • FIGS. 62 and 63 also show the case where the oxide film was formed to a thickness of 5 A (0.5 nm) and 7 A (0.7 nm) by rapid thermal oxidation treatment.
  • the nitrogen concentration in the film increases with the nitridation time for any of the oxide films, but particularly for the two atomic layers formed by ultraviolet radical oxidation.
  • the same film forming conditions are used because the oxide film is thin. In this case, the nitrogen concentration in the film increased.
  • FIG. 63 shows the result of detecting the nitrogen concentration in FIG. 61 by setting the detectors DET1 and DET2 to the detection angles of 30 ° and 90 °, respectively.
  • the vertical axis in Fig. 63 shows the X-ray spectrum intensity from nitrogen atoms segregated on the film surface obtained at a detection angle of 30 ° at a detection angle of 90 °. It is divided by the value of the X-ray spectrum intensity from the nitrogen atoms dispersed throughout the obtained film, and this is defined as the nitrogen segregation rate. If this value is 1 or more, the surface is biased by nitrogen.
  • the nitrogen partialization rate became 1 or more, and the nitrogen atoms were initially segregated on the surface. It is considered that the oxynitride film is in a state like 12 A. It is also apparent that the particles are almost uniformly distributed in the film after performing the nitriding treatment for 90 seconds. In addition, it can be seen that the distribution of nitrogen atoms in the other films becomes almost uniform by the nitriding treatment for 90 seconds.
  • FIG. 64 shows the thickness variation of each oxynitride film obtained in this manner for each wafer.
  • the results in FIG. 64 indicate that the thickness of the oxide film obtained by XPS measurement was 0.4 when the ultraviolet light sources 86 and 87 were driven in the substrate processing apparatus 20 to perform the ultraviolet radical oxidation treatment.
  • the oxide film thus formed is then formed into an oxynitride film containing about 4% of nitrogen atoms by a nitriding treatment performed by driving the remote plasma unit 27. If you convert it, you have everything.
  • the vertical axis shows ff obtained by ellipsometry for the oxynitride film obtained in this manner. As can be seen from FIG. 64, the obtained value is approximately 8 A (0 8 nm).
  • Fig. 65 shows that the substrate processing equipment 20 uses a 0.4 nm oxide film on a silicon substrate. The results obtained by examining the increase in Hff due to nitridation when formed by a radical oxidation process using ultraviolet light sources 86 and 87 and then nitrided by a remote plasma unit 27 are shown.
  • the oxide film which had a thickness of about 0.38 nm at the beginning (before nitriding), had a thickness of 4 to 7% when nitrogen was introduced by nitriding. Is increased to about 0.5 nm. On the other hand, when nitrogen atoms were introduced at about 15 ° / 0 by nitriding, the film thickness increased to about 1.3 nm. In this case, the introduced nitrogen atoms passed through the oxide film and It is considered that they penetrate into the substrate and form a nitride film.
  • FIG. 65 the relationship between the nitrogen concentration and the film thickness for an ideal model structure in which only one layer of nitrogen is introduced into the 0.4 nm thick oxide film is shown.
  • the increase in film thickness is about 0.1 nm, and the nitrogen concentration is about 12%. It becomes. Based on this model, it is concluded that, when the oxide film is nitrided by the substrate processing apparatus 20, it is preferable to suppress the film thickness ⁇ ⁇ ⁇ to about 0.1 to 0.2 nm. At that time, the amount of nitrogen atoms taken into the film is estimated to be about 12% at the maximum.
  • the present invention is not limited to such a specific embodiment, and is not limited to a silicon substrate or a silicon substrate. It can be applied to form a high quality oxide, nitride or oxynitride film on a silicon layer to a desired thickness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A substrate processing apparatus stably and efficiently conducts a film-forming process on a substrate (W) to be processed. By supporting the substrate (W) to be processed at a position facing a heater portion and rotating a holding member for holding the substrate (W), the temperature distribution of the substrate (W) is kept uniform and a warp of the substrate (W) is suppressed. Contamination by a metal can be prevented by making an arm portion of the holding member of a transparent quartz, making a shaft of the holding member of an opaque quartz, or rotatably supporting the shaft of the holding member by a ceramic bearing. The rotational position of the arm portion can be prevented from interfering with a robot hand and a lifter mechanism for conveying the substrate (W) by sensing the rotational position of the shaft of the holding member.

Description

技術分野 Technical field
本発明は基板処理装置に係り、 特に基板に対し成膜などの処理を施す基板処理 装置に関する。 背景技術  The present invention relates to a substrate processing apparatus, and more particularly to a substrate processing apparatus for performing processing such as film formation on a substrate. Background art
今日の超高速半導体装置では、 微細化プロセスの進歩とともに、 0. l ^m以 下のゲート長が可能になりつつある。 一般に微細ィ匕とともに半導体装置の動作速 度は向上するが、 このように非常に微細化された半導体装置では、 ゲート絶縁膜 の膜厚を、 微細化によるゲート長の短縮に伴って、 スケーリング則に従って減少 させる必要がある。  In today's ultra-high-speed semiconductor devices, gate lengths of less than 0.1 l ^ m are becoming possible with the progress of miniaturization processes. In general, the operating speed of a semiconductor device improves with the miniaturization. However, in such a very miniaturized semiconductor device, the thickness of the gate insulating film is reduced according to the scaling law as the gate length is reduced by the miniaturization. It is necessary to decrease according to.
しかしゲート長が 0. 1 μιη以下になると、 ゲート絶縁膜の厚さも、 従来の熱 酸化膜を使った 、 l〜2nm、 あるいはそれ以下に設定する必要があるが、 このように非常に薄いゲート絶縁膜ではトンネル電流が増大し、 その結果ゲート リーク電流が増大する問題を回避することができない。  However, when the gate length becomes 0.1 μιη or less, the thickness of the gate insulating film must be set to l to 2 nm or less using a conventional thermal oxide film. Insulating films do not avoid the problem of increased tunnel currents and consequently increased gate leakage currents.
このような事情で従来より、比誘電率が熟酸化膜のものよりもはるカ に大きく、 このため実際の膜厚が大きくても S i 02膜に換算した場合の膜厚が小さい T a 2O5や A l2〇3, Z r O2, Hf 02、 さらには Z r S i O4あるいは H f S i O4 のような高誘電 ί«ί料をゲート絶縁膜に対して適用することが提案されている。 このような高誘電体材料を使うことにより、 ゲート長が 0. l ^m以下と、 非常 に短い超高速半導体装置においても 10 nm程度の物理的膜厚のゲート絶縁膜を 使うことができ、トンネル効果によるゲートリーク電流を抑制することができる。 例えば、 従来より Ta2Os膜は Ta (OC2H5) 5および 02を気相原料とした CVD法により形成できることが知られている。 典型的な場合、 CVDプロセス は減圧環境下、 約 480° C、 あるいはそれ以上の温度で実行される。 このよう にして形成された Ta2〇5膜は、 さらに酸素雰囲気中において熱処理され、 その 結果、 膜中の酸素欠損が解消され、 また膜自体が結晶化する。 このようにして結 晶化された T a 205膜は大きな比誘電率を示す。 Under such circumstances, the relative dielectric constant has conventionally been much higher than that of the mature oxide film, so that even when the actual film thickness is large, the film thickness when converted to the Si 02 film is small. 2O5 and a L2_rei_3, Z r O2, Hf 0 2 , further been proposed to apply the high-dielectric ί «ί fee gate insulating film, such as Z r S i O4 or H f S i O4 ing. By using such a high dielectric material, it is possible to use a gate insulating film having a physical thickness of about 10 nm even in an ultra-high-speed semiconductor device having a gate length of 0.1 μm or less, Gate leak current due to the tunnel effect can be suppressed. For example, it is conventionally known that a Ta 2 Os film can be formed by a CVD method using Ta (OC 2 H 5) 5 and O 2 as a vapor source material. Typically, CVD processes are performed in a reduced pressure environment at temperatures of about 480 ° C or higher. Thus Ta 2 Rei_5 thus formed film is heat-treated in the further oxygen atmosphere, the As a result, oxygen vacancies in the film are eliminated, and the film itself is crystallized. In this way, the sintered crystallized been T a 2 0 5 film shows a large specific dielectric constant.
チャネル領域中のキヤリアモビリティーを向上させる観点からは、 高誘電体ゲ ート酸ィヒ膜とシリコン基板との間に、 1 n m以下、 好ましくは 0 . 8 n m以下の 厚さのきわめて薄いベース酸化膜を介在させるのが好ましい。 ベース酸化膜は、 非常に薄い必要があり、 厚さが厚いと高誘電体膜をゲート絶縁膜に使った効果が 相殺される。 一方、 かかる非常に薄いベース酸化膜は、 シリコン基板表面を一様 に覆う必要があり、 また界面準位等の欠陥を形成しないことが要求される。 従来より、 薄いゲート酸化膜はシリコン基板の急速熱酸化 (R T O) 処理 (例 えば、 特許文献 1参照) により形成されるのが一般的である力 熱酸化膜を所望 の 1 n m以下の厚さに形成しようとすると、 膜形成時の処理温度を低下させる必 要がある。 しカゝし、 このように低温で形成された熱酸化膜は界面? (立等の欠陥を 含みやすく、 高誘電体ゲート酸化膜のベース酸化膜としては不適当である。 図 1は高誘電体ゲート絶縁膜を有する高速半導体装置 1 0の概略的な構成を、 示す。  From the viewpoint of improving the carrier mobility in the channel region, an extremely thin base oxide having a thickness of 1 nm or less, preferably 0.8 nm or less is provided between the high-dielectric gate oxide film and the silicon substrate. It is preferable to interpose a membrane. The base oxide must be very thin; thicker ones offset the effect of using a high-k dielectric as the gate dielectric. On the other hand, such a very thin base oxide film needs to uniformly cover the surface of the silicon substrate, and is required not to form defects such as interface states. Conventionally, a thin gate oxide film is generally formed by rapid thermal oxidation (RTO) treatment of a silicon substrate (for example, see Patent Document 1). If it is attempted to form a film, it is necessary to lower the processing temperature during film formation. Is the thermal oxide film formed at such a low temperature an interface? (It is likely to contain vertical defects and is unsuitable as a base oxide film of a high dielectric gate oxide film. FIG. 1 shows a schematic configuration of a high-speed semiconductor device 10 having a high dielectric gate insulating film. .
図 1を参照するに、 半導体装置 1 0はシリコン基板 1 1上に形成されており、 シリコン基板 1 1上には薄いベース酸化膜 1 2を介して、 T a 205, A 1 2O3, Z r O2, H f O2, Z r S i〇4, H f S i O4等の高誘電体ゲート絶縁膜 1 3が形 成され、 さらに前記高誘電体ゲート絶縁膜 1 3上にはゲート電極 1 4が形成され ている。 Referring to FIG. 1, a semiconductor device 10 is formed on a silicon substrate 11, and Ta 2 0 5 , A 1 2 O 3 , A high dielectric gate insulating film 13 such as ZrO2, HfO2, ZrSi4, HfSiO4, etc. is formed, and a gate electrode is formed on the high dielectric gate insulating film 13. 14 are formed.
図 1の半導体装置 1 0では、 前記ベース酸化廳 1 2の表面部分に、 シリコン 基板 1 1とベース酸化膜 1 2との間の界面の平坦性が保たれるような範囲で窒素 In the semiconductor device 10 shown in FIG. 1, the surface of the base oxide film 12 is coated with nitrogen within a range where the flatness of the interface between the silicon substrate 11 and the base oxide film 12 is maintained.
(N) がドープされ、 酸窒化膜 1 2 Aが形成されている。 シリコン酸化膜よりも 比誘電率の大きい酸窒ィ匕膜 1 2 Aをベース酸化膜 1 2中に形成することにより、 ベース酸化膜 1 2の熱酸化膜換算膜厚をさらに減少させることが可能になる。 先にも説明したように、 力かる高速半導体装置 1 0では、 前記ベース酸化膜 1 2の厚さは可能な限り薄いのが好ましい。 (N) is doped to form an oxynitride film 12A. By forming the oxynitride film 12 A having a higher relative dielectric constant than the silicon oxide film in the base oxide film 12, it is possible to further reduce the equivalent thermal oxide film thickness of the base oxide film 12. become. As described above, in the powerful high-speed semiconductor device 10, the thickness of the base oxide film 12 is preferably as thin as possible.
し力 し、 ベース酸化膜 1 2を 1 n m以下、 例えば 0 . 8 n m以下、 さらには 2 〜 3原子層に対応する 0 . 4 n m前後の厚さで一様に、かつ安定に形成するのは、 従来より非常に困難であった。 The base oxide film 12 is formed uniformly and stably with a thickness of 1 nm or less, for example, 0.8 nm or less, and a thickness of about 0.4 nm corresponding to 2 to 3 atomic layers. Is It was very difficult than before.
また、 ベース酸化膜 1 2上に形成される高誘電体ゲート絶縁膜 1 3の機能を発 現させるためには、 堆積した高誘電体膜 1 3を熱処理により結晶化し、 また酸素 欠損捕償を行う必要があるが、 このような熱処理を高誘電体膜 1 3に対して行つ た場合、 ベース酸化膜 1 2の膜厚が増大してしまい、 高誘電体ゲート絶縁膜 1 3 を使うことによるゲート絶縁膜の実効的な Hi*の減少が、 実質的に相殺されてし まっていた。  Further, in order to realize the function of the high-dielectric gate insulating film 13 formed on the base oxide film 12, the deposited high-dielectric film 13 is crystallized by heat treatment, and the oxygen deficiency is compensated. However, if such a heat treatment is performed on the high dielectric film 13, the thickness of the base oxide film 12 will increase, and the high dielectric gate insulating film 13 must be used. The effective decrease in Hi * of the gate insulating film due to the above was substantially offset.
このような熱処理に伴うベース酸化膜 1 2の Hffの増大は、 シリコン基板 1 1 とベース酸化膜 1 2の界面における、 酸素原子おょぴシリコン原子の相互拡散、 およびこれに伴うシリケ一ト遷移層の形成、 あるいはシリコン基板中への酸素の 侵入によるベース酸化膜 1 2の成長の可能性を示唆している。 このようなベース 酸化膜 1 2の熱処理に伴う膜厚増大の問題は、 特にベース酸化膜 1 2の膜厚が、 ベース酸化膜として望ましい数原子層以下の膜厚まで低減された場合、 非常に深 刻な問題になる。 特許文献 1 特開平 5— 4 7 6 8 7号公報 発明の開示  The increase in Hff of the base oxide film 12 due to such a heat treatment is caused by the interdiffusion of oxygen atoms and silicon atoms at the interface between the silicon substrate 11 and the base oxide film 12 and the resulting silicate transition. This suggests the possibility of growth of the base oxide film 12 due to formation of a layer or penetration of oxygen into the silicon substrate. The problem of such an increase in the film thickness due to the heat treatment of the base oxide film 12 is particularly serious when the film thickness of the base oxide film 12 is reduced to a thickness of several atomic layers or less, which is desirable as the base oxide film. This is a serious problem. Patent Document 1 Japanese Patent Application Laid-Open No. 5-476787 Disclosure of the Invention
本発明は、 上記課題を解決した新規で有用な基板処理装置を提供することを目 的とする。  An object of the present invention is to provide a new and useful substrate processing apparatus that solves the above-mentioned problems.
本発明のより詳細な目的は、 シリコン基板表面に非常に薄い、 典型的には 2〜 3原子層分の厚さの酸化膜を安定に形成し、 さらにこれを窒ィヒして酸窒化膜を形 成することのできる基板処理装置を提供することにある。  A more detailed object of the present invention is to stably form a very thin, typically 2 to 3 atomic layer thick oxide film on the surface of a silicon substrate, and further nitride the film to form an oxynitride film. An object of the present invention is to provide a substrate processing apparatus capable of forming a substrate.
さらに、 本発明のより詳細な目的は、 シリコン基板表面に非常に薄い、 典型的 には 2〜 3原子層分の厚さの酸化膜を安定に形成し、 さらにこれを安定に窒化で きる基板処«置を含んだ、 クラスタ型の基板処理システムを提供することにあ る。  Further, a more specific object of the present invention is to provide a method for stably forming an extremely thin oxide film having a thickness of typically 2 to 3 atomic layers on the surface of a silicon substrate and further stably nitriding the oxide film. An object of the present invention is to provide a cluster type substrate processing system including a processing apparatus.
さらに、 本発明の他の課題は、 上記のような課題を解決すると共に、 酸化膜の 均一性やスループットの改善、 及ぴコンタミネーションの防止を図るように構成 された基板処理装置を提供することを目的とする。 Still another object of the present invention is to solve the above-mentioned problems, improve the uniformity of the oxide film, improve the throughput, and prevent contamination. It is an object of the present invention to provide a processed substrate processing apparatus.
本発明は、 上記目的を達成するため、 以下のような特徴を有する。  The present invention has the following features to achieve the above object.
本発明によれば、 ヒータ部に対向する位置に被処理基板を支持すると共に、 被 処理基板を保持する保持部材を回転させることにより、 被処理基板の温度分布を 均一に保ち、 被処理基板の反りを抑制することができ、 被処理基板の成膜処理を 安定、 且つ効率良く行える。  According to the present invention, the substrate to be processed is supported at a position facing the heater unit, and the holding member for holding the substrate to be processed is rotated, so that the temperature distribution of the substrate to be processed is kept uniform, Warpage can be suppressed, and film formation processing of a substrate to be processed can be performed stably and efficiently.
また、 本発明によれば、 保持部材の腕部を透明石英により形成し、 あるいは軸 を不透明石英により形成し、 あるいは保持部材の軸をセラミック製の軸受けによ り回転可能に支持することにより、 金属によるコンタミネーションを防止するこ とができる。  According to the present invention, the arm of the holding member is formed of transparent quartz, or the shaft is formed of opaque quartz, or the shaft of the holding member is rotatably supported by a ceramic bearing. Contamination due to metal can be prevented.
また、 本発明によれば、 保持部材の軸の回転位置を検出して被処理基板を支持 する複数の腕部の回転位置が被処理基板の搬送を行う搬送手段及び被処理基板を 昇降させるリフタ機構と干渉することを防止できる。 図面の簡単な説明  Further, according to the present invention, the rotation position of the plurality of arms supporting the substrate to be processed by detecting the rotation position of the shaft of the holding member is a transporting means for transporting the substrate to be processed, and the lifter for moving the substrate to be processed up and down Interference with the mechanism can be prevented. BRIEF DESCRIPTION OF THE FIGURES
図 1は、高誘電体ゲート絶縁膜を有する半導体装置装置の構成を示す図である。 図 2は、 本発明になる基板処理装置の一実施例の構成を示す正面図である。 図 3は、 本発明になる基板処理装置の一実施例の構成を示す側面図である。 図 4は、 図 2中 A— A線に沿う横断面図である。  FIG. 1 is a diagram showing a configuration of a semiconductor device having a high dielectric gate insulating film. FIG. 2 is a front view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention. FIG. 3 is a side view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention. FIG. 4 is a cross-sectional view taken along line AA in FIG.
図 5は、 処理容器 2 2の下方に配置された機器の構成を示す正面図である。 図 6は、 処理容器 2 2の下方に配置された機器の構成を示す平面図である。 図 7は、 処理容器 2 2の下方に配置された機器の構成を示す側面図である。 図 8 Aは排気経路 3 2の構成を示す平面図である。  FIG. 5 is a front view showing a configuration of a device disposed below the processing container 22. FIG. 6 is a plan view showing a configuration of a device arranged below the processing container 22. As shown in FIG. FIG. 7 is a side view showing a configuration of a device arranged below the processing container 22. As shown in FIG. FIG. 8A is a plan view showing the configuration of the exhaust path 32. FIG.
図 8 Bは排気経路 3 2の構成を示す正面図である。  FIG. 8B is a front view showing the configuration of the exhaust path 32.
図 8 Cは B— B線に沿う縦断面図である。  FIG. 8C is a longitudinal sectional view taken along line BB.
図 9は、 処理容器 2 2及びその周辺 βを拡大して示す側面縦断面図である。 図 1 0は、 蓋部材 8 2を外した処理容器 2 2の内部を上方からみた平面図であ る。  FIG. 9 is a side longitudinal sectional view showing the processing container 22 and its surrounding β in an enlarged manner. FIG. 10 is a plan view of the inside of the processing container 22 with the cover member 82 removed, as viewed from above.
図 1 1は、 処理容器 2 2の平面図である。 図 1 2は、 処理容器 2 2の正面図である。 FIG. 11 is a plan view of the processing container 22. FIG. 12 is a front view of the processing container 22.
図 1 3は、 処理容器 2 2の底面図である。  FIG. 13 is a bottom view of the processing container 22.
図 1 4は、 図 1 2中 C一 C線に沿う縦断面図である。  FIG. 14 is a longitudinal sectional view taken along line C-C in FIG.
図 1 5は、 処理容器 2 2の右側面図である。  FIG. 15 is a right side view of the processing container 22.
図 1 6は、 処理容器 2 2の左側面図である。  FIG. 16 is a left side view of the processing container 22.
図 1 7は、 紫外線光源 8 6, 8 7の取付構造を拡大して示す縦断面図である。 図 1 8は、 ガス噴射ノズル部 9 3の構成を拡大して示す縦断面図である。 図 1 9は、 ガス噴射ノズル部 9 3の構成を拡大して示す横断面図である。 図 2 0は、 ガス噴射ノズル部 9 3の構成を拡大して示す正面図である。  FIG. 17 is an enlarged longitudinal sectional view showing the mounting structure of the ultraviolet light sources 86 and 87. As shown in FIG. FIG. 18 is a longitudinal sectional view showing the configuration of the gas injection nozzle section 93 in an enlarged manner. FIG. 19 is a cross-sectional view showing the configuration of the gas injection nozzle section 93 in an enlarged manner. FIG. 20 is an enlarged front view showing the configuration of the gas injection nozzle section 93.
図 2 1は、 ヒータ部 2 4の構成を拡大して示す縦断面図である。  FIG. 21 is an enlarged longitudinal sectional view showing the configuration of the heater section 24.
図 2 2は、 ヒータ部 2 4を拡大して示す底面図である。  FIG. 22 is a bottom view showing the heater section 24 in an enlarged manner.
図 2 3は、 第 2の流入口 1 7 0及び第 2の流出口 1 7 4の取付構造を拡大して 示す縦断面図である。  FIG. 23 is an enlarged longitudinal sectional view showing a mounting structure of the second inlet 170 and the second outlet 174.
図 2 4は、 フランジ 1 4 0の取付構造を拡大して示す縦断面図である。  FIG. 24 is a longitudinal sectional view showing the mounting structure of the flange 140 in an enlarged manner.
図 2 5は、 クランプ機構 1 9 0の上端部の取付構造を拡大して示す縦断面図で ある。  FIG. 25 is an enlarged longitudinal sectional view showing the mounting structure at the upper end of the clamp mechanism 190.
図 2 6は、 S i Cヒータ 1 1 4及ぴ S i Cヒータ 1 1 4の制御系の構成を示す 図である。  FIG. 26 is a diagram illustrating a configuration of a control system of the SiC heater 114 and the SoC heater 114.
図 2 7 Aは、 石英ペルジャ 1 1 2の構成を示す平面図である。  FIG. 27A is a plan view showing the configuration of the quartz peruger 112. FIG.
図 2 7 Bは、 石英ペルジャ 1 1 2の構成を示す縦断面図である。  FIG. 27B is a longitudinal sectional view showing the configuration of the quartz peruger 112.
図 2 8 Aは、 石英ペルジャ 1 1 2の構成を上方からみた斜視図である。  FIG. 28A is a perspective view of the configuration of the quartz peruger 112 seen from above.
図 2 8 Bは、 石英べルジャ 1 1 2の構成を下方からみた斜視図である。  FIG. 28B is a perspective view of the configuration of the quartz belger 112 seen from below.
図 2 9は、 減圧システムの排気系統の構成を示す系統図である。  FIG. 29 is a system diagram showing a configuration of an exhaust system of the pressure reducing system.
図 3 O Aは、 保持部材 1 2 0の構成を示す平面図である。  FIG. 3OA is a plan view showing the configuration of the holding member 120. FIG.
図 3 0 Bは、 保持部材 1 2 0の構成を示す平面図である。  FIG. 30B is a plan view showing the configuration of the holding member 120.
図 3 1は、 ヒータ部 2 4の下方に配置された回転駆動部 2 8の構成を示す縦断 面図である。  FIG. 31 is a vertical cross-sectional view showing the configuration of a rotation drive unit 28 disposed below the heater unit 24.
図 3 2は、 回転駆動部 2 8を拡大して示す縦断面図である。  FIG. 32 is a longitudinal cross-sectional view showing the rotation drive unit 28 in an enlarged manner.
図 3 3 Aは、 ホルダ冷却機構 2 3 4の構成を示す横断面図である。 図 3 3 Bは、 ホルダ冷却機構 2 3 4の構成を示す側 図である。 FIG. 33A is a cross-sectional view showing the configuration of the holder cooling mechanism 234. FIG. 33B is a side view showing the configuration of the holder cooling mechanism 234.
図 3 4は、 回転位置検出機構 2 3 2の構成を示す横断面図である。  FIG. 34 is a cross-sectional view showing the configuration of the rotational position detecting mechanism 232.
図 3 5 Aは、 回転位置検出機構 2 3 2の非検出状態を示す図である。  FIG. 35A is a diagram showing a non-detection state of the rotation position detection mechanism 2 32.
図 3 5 Bは、 回転位置検出機構 2 3 2の検出状態を示す図である。  FIG. 35B is a diagram showing a detection state of the rotation position detection mechanism 232.
図 3 6 Aは、 回転位置検出機構 2 3 2の受光素子 2 6 8の出力信号 Sを示す波 形図である。  FIG. 36A is a waveform diagram showing an output signal S of the light receiving element 2688 of the rotation position detecting mechanism 2 32.
図 3 6 Bは、 回転位置判定回路 2 7 0から出力されるパルス信号 Pの波形図で ある。  FIG. 36B is a waveform diagram of the pulse signal P output from the rotational position determination circuit 270.
図 3 7は、 制御回路が実行する回転位置制御処理を説明するためのフローチヤ ートである。  FIG. 37 is a flowchart for explaining a rotational position control process performed by the control circuit.
図 3 8は、 窓 7 5, 7 6の取付箇所を上方からみた横断面図である。  Fig. 38 is a cross-sectional view of the mounting location of the windows 75, 76 as viewed from above.
図 3 9は、 窓 7 5を拡大して示す横断面図である。  FIG. 39 is a cross-sectional view showing the window 75 in an enlarged manner.
図 4 0は、 窓 7 6を拡大して示す横断面図である。  FIG. 40 is a cross-sectional view showing the window 76 in an enlarged manner.
図 4 1 Aは、 下部ケース 1 0 2の構成を示す平面図である。  FIG. 41A is a plan view showing the configuration of the lower case 102. FIG.
図 4 1 Bは、 下部ケース 1 0 2の構成を示す側面図である。  FIG. 41B is a side view showing the configuration of the lower case 102. FIG.
図 4 2 Aは、 側面ケース 1 0 4の構成を示す平面図である。  FIG. 42A is a plan view showing a configuration of the side case 104. FIG.
図 4 2 Bは、 側面ケース 1 0 4の構成を示す正面図である。  FIG. 42B is a front view showing the configuration of the side case 104. FIG.
図 4 2 Cは、 側面ケース 1 0 4の構成を示す背面図である。  FIG. 42C is a rear view showing the configuration of the side case 104. As shown in FIG.
図 4 2 Dは、 側面ケース 1 0 4の構成を示す左側面図である。  FIG. 42D is a left side view showing the configuration of the side case 104. As shown in FIG.
図 4 2 Eは、 側面ケース 1 0 4の構成を示す右側面図である。  FIG. 42E is a right side view showing the configuration of the side case 104. As shown in FIG.
図 4 3 Aは、 上部ケース 1 0 6の構成を示す底面図である。  FIG. 43A is a bottom view showing the configuration of the upper case 106. FIG.
図 4 3 Bは、 上部ケース 1 0 6の構成を示す側面図である。  FIG. 43B is a side view showing the configuration of the upper case 106.
図 4 4 Aは、 円筒状ケース 1 0 8の構成を示す平面図である。  FIG. 44A is a plan view showing the configuration of the cylindrical case 108. FIG.
図 4 4 Bは、 円筒状ケース 1 0 8の構成を示す側面縦断面図である。  FIG. 44B is a side longitudinal sectional view showing the configuration of the cylindrical case 108.
図 4 4 Cは、 円筒状ケース 1 0 8の構成を示す側面図である。  FIG. 44C is a side view showing the configuration of the cylindrical case 108.
図 4 5は、 リフタ機構 3 0を拡大して示す縦断面図である。  FIG. 45 is a longitudinal sectional view showing the lifter mechanism 30 in an enlarged manner.
図 4 6は、 リフタ機構 3 0のシール構造拡大して示す縦断面図である。  FIG. 46 is a longitudinal sectional view showing the seal structure of the lifter mechanism 30 in an enlarged manner.
図 4 7 Aは、 図 2の基板処理装置 2 0を使つて被処理基板 Wのラジカル酸化を 行う場合を示す側面図おょぴ平面図である。 図 4 7 Bは図 4 7 Aの構成を示す平面図である。 FIG. 47A is a side view and a plan view showing a case where the substrate W to be processed is subjected to radical oxidation using the substrate processing apparatus 20 of FIG. FIG. 47B is a plan view showing the configuration of FIG. 47A.
図 4 8は、 基板処理装置 2 0を使って行なわれる基板の酸化処理工程を示す図 である。  FIG. 48 is a view showing a substrate oxidation treatment step performed by using the substrate processing apparatus 20.
図 4 9は、 本発明で使われる X P Sによる膜厚測定方法を示す図である。 図 5 0は、 本発明で使われる X P Sによる膜厚測定方法を示す別の図である。 図 5 1は、 基板処理装置 2 0により酸化膜を形成する際に観測される酸化醇 成長の停留現象を概略的に示す図である。  FIG. 49 is a diagram showing a method of measuring a film thickness by XPS used in the present invention. FIG. 50 is another diagram showing a film thickness measuring method using XPS used in the present invention. FIG. 51 is a diagram schematically showing a phenomenon of halting of oxidized growth observed when an oxide film is formed by the substrate processing apparatus 20.
図 5 2 Aは、 シリコン基扳表面における酸化膜形成過程 1を示す図である。 図 5 2 Bは、 シリコン基板表面における酸化膜形成過程 2を示す図である。 図 5 3は、 本発明の第 1実施例において得られた酸化膜のリーク電流特性を示 す図である。  FIG. 52A is a view showing the oxide film forming step 1 on the silicon-based surface. FIG. 52B is a view showing the oxide film forming step 2 on the silicon substrate surface. FIG. 53 is a diagram showing the leakage current characteristics of the oxide film obtained in the first example of the present invention.
図 5 4 Aは、 図 5 3のリーク電流特性の原因を説明する図である。  FIG. 54A is a diagram for explaining the cause of the leakage current characteristics of FIG.
図 5 4 Bは、 図 5 3のリーク電流特性の原因を説明する図である。  FIG. 54B is a diagram for explaining the cause of the leak current characteristic of FIG.
図 5 5 Aは、 基板処理装置 2 0のおいて生じる酸化膜形成工程 1を示す図であ る。  FIG. 55A is a view showing an oxide film forming step 1 which occurs in the substrate processing apparatus 20.
図 5 5 Bは、 基板処理装置 2 0のおいて生じる酸化膜形成工程 2を示す図であ る。  FIG. 55B is a view showing an oxide film forming step 2 which occurs in the substrate processing apparatus 20.
図 5 5。は、 基板処理装置 2 0のおいて生じる酸化膜形成工程 3を示す図であ る。  Figure 55. FIG. 4 is a view showing an oxide film forming step 3 that occurs in the substrate processing apparatus 20.
図 5 6は、 基板処理装置 2 0において使われるリモートプラズマ源の構成を示 す図である。  FIG. 56 is a diagram showing a configuration of a remote plasma source used in the substrate processing apparatus 20.
図 5 7は、 R Fリモートプラズマとマイクロ波プラズマの特性を比較する図で ある。  FIG. 57 is a diagram comparing characteristics of the RF remote plasma and the microwave plasma.
図 5 8は、 R Fリモートプラズマとマイクロ波プラズマの特性を比較する別の 図である。  Figure 58 is another diagram comparing the characteristics of RF remote plasma and microwave plasma.
図 5 9 Aは、 基板処理装置 2 0を使って行われる酸化膜の窒ィ匕処理を示す側面 図である。  FIG. 59A is a side view showing an oxide film nitriding process performed by using the substrate processing apparatus 20.
図 5 9 Bは、 基板処理装置 2 0を使って行われる酸化膜の窒化処理を示す平面 図である。 図 6 0 Aは、 基板処理装置 2 0により S i基板上に熱酸化処理により 2 . O n mの厚さに形成された酸ィ匕膜を、 リモートプラズマ部 2 7を使って、 表 2に示す 条件で窒ィ匕した場合の前記酸ィ匕膜中における窒素濃度分布を示し図である。 図 6 O Bは、 同じ酸化膜中における窒素濃度分布と酸素濃度分布との関係を示 す図である。 FIG. 59B is a plan view showing the nitridation of the oxide film performed using the substrate processing apparatus 20. FIG. 60A shows an oxidized film formed on a Si substrate to a thickness of 2.0 nm by a thermal oxidation process using a substrate processing apparatus 20. FIG. 4 is a diagram showing a nitrogen concentration distribution in the oxidation film when nitriding under the conditions shown. FIG. 6 OB is a diagram showing the relationship between the nitrogen concentration distribution and the oxygen concentration distribution in the same oxide film.
図 6 1は、 本発明で使われる X P Sの概略を示す図である。  FIG. 61 is a diagram showing an outline of XPS used in the present invention.
図 6 2は、 酸化膜のリモートプラズマによる窒化時間と膜中窒素濃度との関係 を示す図である。  FIG. 62 is a diagram showing the relationship between the nitriding time of an oxide film by remote plasma and the nitrogen concentration in the film.
図 6 3は、 酸化膜の窒化時間と、 窒素の膜内分布との関係を示す図である。 図 6 4は、 酸化膜の窒化処理により形成された酸窒ィ匕膜のウェハごとの膜厚変 動を示す図である。  FIG. 63 is a diagram showing the relationship between the nitriding time of the oxide film and the distribution of nitrogen in the film. FIG. 64 is a diagram showing a change in the film thickness of each oxynitride film formed by nitriding the oxide film for each wafer.
図 6 5は、 本実施例による酸ィ匕膜の窒ィ匕処理に伴う膜厚増を示す図である。 発明の実施をするための最良の形態  FIG. 65 is a diagram showing an increase in film thickness accompanying the nitridation treatment of the oxidation film according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下図面と共に本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 2は本発明になる基板処理装置の一実施例の構成を示す正面図である。 図 3 は本発明になる基板処理装置の一実施例の構成を示す側面図である。 図 4は図 2 中 A— A線に沿う横断面図である。  FIG. 2 is a front view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention. FIG. 3 is a side view showing the configuration of one embodiment of the substrate processing apparatus according to the present invention. FIG. 4 is a cross-sectional view taken along line AA in FIG.
図 2乃至図 4に示されるように、 基板処理装置 2 0は、 後述するように、 シリ コン基板の紫外光ラジカル酸化処理と、 かかる紫外光ラジカル酸化処理により形 成された酸化膜の高周波リモートプラズマを使ったラジカル窒化処理とを、 連続 して行うことができるように構成されている。  As shown in FIGS. 2 to 4, the substrate processing apparatus 20 includes, as described later, an ultraviolet radical oxidation treatment of a silicon substrate and a high frequency remote control of an oxide film formed by the ultraviolet radical oxidation treatment. The radical nitriding treatment using plasma can be performed continuously.
基板処理装置 2 0の主要構成は、内部に処理空間が画成された処理容器 2 2と、 処理容器 2 2の内部に挿入された被処理基板 (シリコン基板) を所定温度に加熱 するヒータ部 2 4と、 処理容器 2 2の上部に搭載された紫外線照射部 2 6と、 窒 素ラジカルを供給するリモートプラズマ部 2 7と、 被処理基板を回転させる回転 駆動部 2 8と、処理空間に挿入された被処理基板を昇降させるリフタ機構 3 0と、 処理容器 2 2の内部を減圧するための排気経路 3 2と、 処理容器 2 2の内部にガ ス (窒素ガス、 酸素ガス等のプロセスガス) を供給するためのガス供給部 3 4と カ らなる。 The main components of the substrate processing apparatus 20 include a processing container 22 having a processing space defined therein, and a heater unit for heating a substrate (silicon substrate) inserted into the processing container 22 to a predetermined temperature. 24, an ultraviolet irradiation unit 26 mounted on the upper part of the processing vessel 22, a remote plasma unit 27 for supplying nitrogen radicals, a rotation driving unit 28 for rotating the substrate to be processed, and a processing space. A lifter mechanism 30 for raising and lowering the inserted substrate to be processed, an exhaust path 32 for depressurizing the inside of the processing vessel 22, and a gas (a process such as a nitrogen gas or an oxygen gas) inside the processing vessel 22. Gas supply section 3 4 for supplying gas) Mosquitoes.
また、 基板処理装置 2 0は、 上記各主要構成部を支持するためのフレーム 3 6 を有する。 フレーム 3 6は、 鉄骨を立体的に組み合わせたものであり、 床面に載 置される台形状の底部フレーム 3 8と、 底部フレーム 3 8の後部より垂直方向に 起立された垂直フレーム 4 0, 4 1と、 垂直フレーム 4 0の中間部より水平方向 に延在するように横架された中間フレーム 4 2と、 垂直フレーム 4 0, 4 1の上 端部より水平方向に横架された上部フレーム 4 4とから構成されている。  Further, the substrate processing apparatus 20 includes a frame 36 for supporting each of the main components. The frame 36 is a three-dimensional combination of steel frames, and has a trapezoidal bottom frame 38 placed on the floor, and a vertical frame 40 standing upright from the rear of the bottom frame 38. 41, an intermediate frame 42 extending horizontally from an intermediate portion of the vertical frame 40, and an upper portion extending horizontally from the upper ends of the vertical frames 40, 41. The frame is composed of four and four.
底部フレーム 3 8には、 冷却水供給部 4 6、 電磁弁からなる排気用パルプ 4 8 a, 4 8 b , ターボ分子ポンプ 5 0、 真空管路 5 1、 紫外線照射部 2 6の鹭源ュ ニット 5 2、 リフタ機構 3 0の駆動部 1 3 6、 ガス供給部 3 4などが搭載されて いる。  The bottom frame 38 has a cooling water supply unit 46, exhaust pulp 48 a and 48 b composed of solenoid valves, a turbo molecular pump 50, a vacuum line 51, and a power unit for an ultraviolet irradiation unit 26. 52, a drive section 13 6 of the lifter mechanism 30 and a gas supply section 34 are mounted.
垂直フレーム 4 0の内部には、 各種ケーブルが揷通されるケーブルダクト 4 0 aが形成されている。 また、 垂直フレーム 4 1の内部には、 排気ダクト 4 1 aが 形成されている。 さらに、 垂直フレーム 4 0の中間部に固定されたブラケット 5 8には、 緊急停止スィッチ 6 0が取り付けられ、 垂直フレーム 4 1の中間部に固 定されたブラケット 6 2には、 冷却水による温度調整を行う ^^調整器 6 4が取 り付けられている。  Inside the vertical frame 40, a cable duct 40a through which various cables pass is formed. Further, an exhaust duct 41 a is formed inside the vertical frame 41. In addition, an emergency stop switch 60 is attached to the bracket 58 fixed to the middle part of the vertical frame 40, and the temperature of cooling water is set to the bracket 62 fixed to the middle part of the vertical frame 41. Perform adjustment ^^ Adjuster 64 is installed.
中間フレーム 4 2には、 上記処理容器 2 2、 紫外線照射部 2 6、 リモートプラ ズマ部 2 7、 回転駆動部 2 8、 リフタ機構 3 0、 UVランプコントローラ 5 7が 支持されている。 また、 上部フレーム 4 4には、 ガス供給部 3 4から引き出され た複数のガス管路 5 8が連通されたガスボックス 6 6、 イオンゲージコントロー ラ 6 8、 圧力制御を行う A P Cコントローラ 7 0、 ターボ分子ポンプ 5 0を制御 する TMPコントローラ 7 2などが搭載されている。 , 図 5は処理容器 2 2の下方に配置された βの構成を示す正面図である。 図 6 は処理容器 2 2の下方に配置された機器の構成を示す平面図である。 図 7は処理 容器 2 2の下方に配置された βの構成を示す側面図である。 図 8Αは排気経路 3 2の構成を示す平面図、 図 8 Βは排気経路 3 2の構成を示す正面図、 図 8 Cは Β - Β線に沿う縦断面図である。  The intermediate frame 42 supports the processing container 22, an ultraviolet irradiation section 26, a remote plasma section 27, a rotation drive section 28, a lifter mechanism 30, and a UV lamp controller 57. The upper frame 44 also has a gas box 66 connected to a plurality of gas pipelines 58 drawn from the gas supply unit 34, an ion gauge controller 68, an APC controller 70 for controlling pressure, A TMP controller 72 for controlling the turbo molecular pump 50 is mounted. FIG. 5 is a front view showing the structure of β disposed below the processing container 22. FIG. 6 is a plan view showing a configuration of a device disposed below the processing container 22. FIG. 7 is a side view showing the configuration of β disposed below the processing container 22. 8A is a plan view showing the configuration of the exhaust path 32, FIG. 8C is a front view showing the configuration of the exhaust path 32, and FIG. 8C is a longitudinal sectional view taken along the line Β-Β.
図 5乃至図 7に示されるように、 処理容器 2 2の後部下方には、 処理容器 2 2 内部のガスを排気する排気経路 3 2が設けられている。 この排気経路 3 2は、 横 幅寸法が処理容器 2 2の内部に形成された処理空間の横幅と略同一寸法に形成さ れた長方形状の排気口 7 4と連通するように取り付けられている。 As shown in FIG. 5 to FIG. 7, the processing container 22 An exhaust path 32 for exhausting the internal gas is provided. The exhaust path 32 is attached so as to communicate with a rectangular exhaust port 74 having a width dimension substantially the same as the width of the processing space formed inside the processing vessel 22. .
このように、 排気口 7 4が処理容器 2 2内部の横幅寸法に応じた長さに延在形 成されているため、 処理容器 2 2の前部 2 2 a側から内部に供給されたガスは、 後述するように処理容器 2 2の内部を通過して後方へ向かう流れとなり、 一定流 速 (層流) のまま排気経路 3 2へ効率良く排気される。  As described above, since the exhaust port 74 is formed so as to extend to a length corresponding to the width of the inside of the processing container 22, the gas supplied from the front part 22 a side of the processing container 22 to the inside is formed. As will be described later, the gas passes through the inside of the processing container 22 and flows backward, and is efficiently exhausted to the exhaust passage 32 at a constant flow rate (laminar flow).
図 8 A〜図 8 Cに示されるように、 排気経路 3 2は、 排気口 7 4に連通される 長方形状の開口部 3 2 aと、 開口部 3 2 aの左右側面が下方に向けてテーノ、。状に 傾斜したテーパ部 3 2 bと、 テーパ部 3 2 bの下端で通路面積が絞られた底部 3 2 cと、 底部 3 2 cから前方に突出する L字状の主排気管 3 2 dと、 主排気管 3 2 dの下端に開口する排出口 3 2 eと、 テーパ部 3 2 bの下部 3 2 f に開口する バイパス用排出口 3 2 gとを有する。 排出口 3 2 eは、 ターボ分子ポンプ 5 0の 吸気口に連通される。 また、 ノ ィパス用排出口 3 2 gは、 バイパス管路 5 1 aに 連通される。  As shown in FIG. 8A to FIG. 8C, the exhaust path 32 has a rectangular opening 32 a communicating with the exhaust port 74, and the left and right side surfaces of the opening 32 a face downward. Theno ,. Tapered section 3 2b, bottom section 3 c with narrow passage area at the lower end of tapered section 3 2b, and L-shaped main exhaust pipe 3 2 d protruding forward from bottom section 3 2c And a discharge outlet 32 e opened at the lower end of the main exhaust pipe 32 d and a bypass outlet 32 g opened at a lower portion 32 f of the tapered portion 32 b. The outlet 32 e is connected to the inlet of the turbo molecular pump 50. In addition, the discharge port 32 g for the no-pass is communicated with the bypass pipe 51 a.
図 5乃至図 7に示されるように、 処理容器 2 2の排気口 7 4から排出されたガ スは、 ターボ分子ポンプ 5 0の吸引力により長方形状に形成された開口部 3 2 a から流入してテーパ部 3 2 bを通過して底部 3 2 cに至り、 主排気管 3' 2 d及び 排出口 3 2 eを介してターボ分子ポンプ 5 0に導力れる。  As shown in FIGS. 5 to 7, the gas discharged from the exhaust port 74 of the processing vessel 22 flows in from the rectangular opening 32 a by the suction force of the turbo molecular pump 50. Then, it passes through the tapered portion 32b, reaches the bottom portion 32c, and is guided to the turbo-molecular pump 50 via the main exhaust pipe 3'2d and the outlet 32e.
タ^"ポ分子ポンプ 5 0の吐出管 5 0 aは、 バルブ 4 8 aを介して真空管路 5 1 に連通されている。 そのため、 処理容器 2 2の内部に充填されたガスは、 バルブ 4 8 aが開弁されると、 ターボ分子ポンプ 5 0を介して真空管路 5 1へ排出され る。 また、 排気経路 3 2のバイパス用排出口 3 2 gには、 バイパス管路 5 1 aが 接続されており、 このパイパス管路 5 1 aは、 バルブ 4 8 bの開弁により真空管 路 5 1と連通される。  The discharge pipe 50 a of the molecular pump 50 is connected to the vacuum pipe 51 via the valve 48 a. Therefore, the gas filled in the processing vessel 22 is supplied to the valve 4. When the valve 8a is opened, the gas is exhausted to the vacuum line 51 via the turbo molecular pump 50. In addition, a bypass line 51a is connected to the bypass outlet 32g of the exhaust path 32. The bypass pipe 51a is connected to the vacuum pipe 51 by opening the valve 48b.
ここで、 本発明の要部を構成する処理容器 2 2及びその周辺機器の構成につい て説明する。  Here, a configuration of the processing container 22 and a peripheral device thereof that constitute a main part of the present invention will be described.
〔処理容器 2 2の構成〕  [Configuration of processing vessel 22]
図 9は処理容器 2 2及びその周辺機器を拡大して示す側面縦断面図である。 図 1 0は蓋部材 8 2を外した処理容器 2 2の内部を上方からみた平面図である。 図 9及ぴ図 1 0に示されるように、 処理容器 2 2は、 チャンバ 8 0の上部開口 を蓋部材 8 2により閉塞する構成であり、 内部がプロセス空間 (処理空間) 8 4 になっている。 FIG. 9 is a side longitudinal sectional view showing the processing container 22 and its peripheral devices in an enlarged manner. Figure 10 is a plan view of the inside of the processing container 22 with the cover member 82 removed, as viewed from above. As shown in FIGS. 9 and 10, the processing container 22 has a configuration in which the upper opening of the chamber 80 is closed by a lid member 82, and the inside becomes a process space (processing space) 84. I have.
処理容器 2 2は、 前部 2 2 aにガスが供給される供給口 2 2 gが形成され、 後 部 2 2 bに搬送口 9 4が形成されている。 供給口 2 2 gには、 後述するガス噴射 ノズル部 9 3が設けられ、 搬送口 9 4には後述するゲートバルブ 9 6が連通され る。  In the processing container 22, a supply port 22 g through which gas is supplied is formed in a front part 22 a, and a transfer port 94 is formed in a rear part 22 b. The supply port 22 g is provided with a gas injection nozzle section 93 described later, and the transfer port 94 is connected to a gate valve 96 described later.
図 1 1は処理容器 2 2の平面図である。図 1 2は処理容器 2 2の正面図である。 図 1 3は処理容器 2 2の底面図である。 図 1 4は図 1 2中 C— C線に沿う縦断面 図である。 図 1 5は処理容器 2 2の右側面図である。 図 1 6は処理容器 2 2の左 側面図である。  FIG. 11 is a plan view of the processing container 22. FIG. 12 is a front view of the processing container 22. FIG. 13 is a bottom view of the processing container 22. FIG. 14 is a longitudinal sectional view taken along the line C—C in FIG. FIG. 15 is a right side view of the processing container 22. FIG. 16 is a left side view of the processing container 22.
図 1 1乃至図 1 6に示されるように、 処理容器 2 2の底部 2 2 cには、 ヒータ 部 2 4が挿入される開口 7 3と、 前述した長方形状に開口した排気口 7 4とが設 けられている。 排気口 7 4には、 前述した排気経路 3 2が連通される。 尚、 チヤ ンバ 8 0及ぴ蓋部材 8 2は、 例えば、 アルミ合金を切削加工して上記のような形 状に加工したものである。  As shown in FIGS. 11 to 16, the bottom part 2 2 c of the processing container 22 has an opening 73 into which the heater part 24 is inserted, and the above-described rectangular-shaped exhaust port 74. Is set up. The aforementioned exhaust path 32 is connected to the exhaust port 74. The chamber 80 and the lid member 82 are, for example, formed by cutting an aluminum alloy into the above-described shape.
また、処理容器 2 2の右側面 2 2 eには、プロセス空間 8 4を靦くための第 1、 第 2の窓 7 5, 7 6と、 プロセス空間 8 4の温度を測定するためのセンサュ-ッ ト 7 7が取り付けられている。  Also, on the right side 22 e of the processing vessel 22, there are first and second windows 75, 76 for measuring the process space 84, and a sensor for measuring the temperature of the process space 84. -Kit 7 is installed.
本実施例では、 右側面 2 2 eの中央より左側に楕円形に形成された第 1の窓 7 5が配置され、 右側面 2 2 eの中央より右側に円形に形成された第 2の窓 7 6が 配置されているので、 両方向からプロセス空間 8 4に保持された被処理基 の 状態を直接目視することができるので、 被処理基板 Wの成膜状況などを観測する のに有利である。  In the present embodiment, a first window 75 formed in an oval shape is disposed on the left side of the center of the right side surface 22 e, and a second window formed in a circular shape on the right side of the center of the right side surface 22 e. Since the substrate 6 is arranged, the state of the substrate to be processed held in the process space 84 can be directly observed from both directions, which is advantageous for observing the film formation state of the substrate W to be processed. .
尚、 窓 7 5, 7 6は、 熱電対などの温度測定器具を挿入する場合に処理容器 2 2から外すことが可能な構成になっている。  The windows 75 and 76 are configured so that they can be removed from the processing container 22 when a temperature measuring instrument such as a thermocouple is inserted.
また、 処理容器 2 2の左側面 2 2 dには、 プロセス空間 8 4の圧力を測定する ためのセンサュニット 8 5が取り付けられている。このセンサュニット 8 5には、 3 012082 A sensor unit 85 for measuring the pressure in the process space 84 is attached to the left side surface 22 d of the processing container 22. In this sensor unit 85, 3 012082
12 測定レンジの異なる 3個の圧力計 8 5 a〜8 5 cが設けられており、 プロセス空 間 8 4の圧力変化を高精度に測定することが可能である。 12 Three pressure gauges 85a to 85c with different measurement ranges are provided, and it is possible to measure the pressure change in the process space 84 with high accuracy.
また、 プロセス空間 8 4を形成する処理容器 2 2の内壁の四隅には、 R形状に 形成された湾曲部 2 2 hが設けられており、 この湾曲部 2 2 hにより応力集中を 回避すると共に、 ガス噴射ノズル部 9 3から噴射されたガス流が安定化するよう に作用する。  In addition, at the four corners of the inner wall of the processing vessel 22 forming the process space 84, curved portions 22h formed in an R shape are provided. This curved portion 22h prevents stress concentration and However, the gas jet nozzle 93 acts to stabilize the gas flow injected from the nozzle.
〔紫外線照射部 2 6の構成〕  [Configuration of UV irradiation section 26]
図 8乃至図 1 1に示されるように、 紫外線照射部 2 6は、 蓋部材 8 2の上面に 取り付けられている。 この紫外線照射部 2 6の筐体 2 6 aの内部には、 円筒状に 形成された 2本の紫外線光源 (UVランプ) 8 6, 8 7が所定間隔で ffiに配置 されている。  As shown in FIGS. 8 to 11, the ultraviolet irradiation section 26 is attached to the upper surface of the lid member 82. Inside the housing 26a of the ultraviolet irradiation section 26, two cylindrical ultraviolet light sources (UV lamps) 86 and 87 are arranged at predetermined intervals ffi in a cylindrical shape.
この紫外線光源 8 6, 8 7は、 波長が 1 7 2 n mの紫外線を発光する特性を有 しており、 蓋部材 8 2に形成された横方向に延在形成された長方形状の開口 8 2 a , 8 2 bを介してプロセス空間 8 4に保持された被処理基板 Wの上面に対向す るようにプロセス空間 8 4の前側半分 (図 8では左半分) の領域に紫外線を照射 する位置に設けられている。  The ultraviolet light sources 86 and 87 have a characteristic of emitting ultraviolet light having a wavelength of 172 nm, and have a rectangular opening 82 formed in the cover member 82 and extending in the lateral direction. A position where the front half (left half in FIG. 8) of the process space 84 is irradiated with ultraviolet rays so as to face the upper surface of the substrate W to be processed held in the process space 84 via a and 82b. It is provided in.
また、 直線状に延在する紫外線光源 8 6, 8 7から被処理基板 W上に照射され る紫外線の強度分布は、 一様ではなく、 被処理基板 Wの半径方向の位置によって 変化しており、 一方が被処理基板 Wの外周側ほど減少し、 他方が內周側ほど減少 する。 このように紫外線光源 8 6, 8 7は、 単独では単調に変化する紫外線強度 分布を被処理基 ¾w上に形成するが、 被処理基 に対する紫外線強度分布の変 化方向が逆になつている。  Also, the intensity distribution of the ultraviolet light irradiated onto the substrate W from the linearly extending ultraviolet light sources 86 and 87 is not uniform, and varies depending on the position of the substrate W in the radial direction. One decreases toward the outer periphery of the substrate W to be processed, and the other decreases toward the outer periphery. As described above, the ultraviolet light sources 86 and 87 independently form a monotonically changing ultraviolet intensity distribution on the substrate to be treated w, but the direction of change of the ultraviolet intensity distribution with respect to the substrate to be treated is reversed.
そのため、 紫外線光源 8 6, 8 7の駆動パワーを UVランプコントローラ 5 7 の制御により最適化することにより、 被処理基板 W上に非常に一様な紫外線強度 分布を実現することが可能になる。  Therefore, by optimizing the driving power of the ultraviolet light sources 86 and 87 under the control of the UV lamp controller 57, it becomes possible to realize a very uniform ultraviolet intensity distribution on the substrate W to be processed.
尚、 力かる駆動パワーの最適値は、 紫外線光源 8 6, 8 7への駆動出力を変化 させて成膜結果を評価することで最適値を求めることができる。  The optimum value of the strong drive power can be obtained by changing the drive output to the ultraviolet light sources 86 and 87 and evaluating the film formation result.
また、 被処理基; KWと紫外線光源 8 6, 8 7の円筒形状の円筒芯の中心との距 離は、 例えば、 5 0〜3 0 O mmに設定されており、 望ましくは 1 0 0〜2 0 0 12082 Also, the distance between the substrate to be treated; KW and the center of the cylindrical core of the ultraviolet light sources 86, 87 is set to, for example, 50 to 30 Omm, preferably 100 to 100 mm. 2 0 0 12082
13 mm程度が良い。 About 13 mm is good.
図 1 7は紫外線光源 8 6 , 8 7の取付構造を拡大して示す縦断面図である。 図 1 7に示されるように、 紫外線光源 8 6, 8 7は、 紫外線照射部 2 6の筐体 FIG. 17 is an enlarged longitudinal sectional view showing the mounting structure of the ultraviolet light sources 86 and 87. As shown in FIG. As shown in Fig. 17, the ultraviolet light sources 86 and 87 are
2 6 aの底部開口 2 6 bに対向する位置に保持されている。 そして、 底部開口 2 6 bは、 プロセス空間 8 4に保持された被処理基板 Wの上面に対向する位置に開 口すると共に、 紫外線光源 8 6, 8 7の全長よりも長!/、横幅寸法の長方形状に形 成されている。 26a is held at a position facing the bottom opening 26b. The bottom opening 26 b is opened at a position facing the upper surface of the substrate W to be processed held in the process space 84, and is longer than the entire length of the ultraviolet light sources 86, 87! /, It is formed in a rectangular shape with a width dimension.
底部開口 2 6 bの周縁部 2 6 cには、 透明な石英により形成された透明窓 8 8 が取り付けられている。 透明窓 8 8は、 紫外線光源 8 6, 8 7から照射された紫 外線をプロセス空間 8 4に透過する共に、 プロセス空間 8 4が減圧されたときの 圧力差にも耐える強度を有している。  A transparent window 88 formed of transparent quartz is attached to a peripheral portion 26c of the bottom opening 26b. The transparent window 88 transmits ultraviolet light emitted from the ultraviolet light sources 86 and 87 to the process space 84, and has a strength capable of withstanding a pressure difference when the process space 84 is depressurized. .
また、 透明窓 8 8の下面周縁部には、 底部開口 2 6 bの周縁部 2 6 cの溝内に 装着されたシール部材 (Oリング) 8 9が当接するシール面 8 8 aが形成されて レヽる。 このシール面 8 8 aは、 シーノレ部材 8 9を保護するためのコーティングま たは黒石英により形成されている。 これにより、 シール部材 8 9の材質が^?せ ず、 劣ィ匕を防止してシール性能を確保すると共に、 シール部材 8 9の材質がプロ セス空間 8 4に侵入することを防止する。  In addition, a sealing surface 8 8 a is formed on the lower peripheral edge of the transparent window 8 8, where the sealing member (O-ring) 8 9 mounted in the groove of the lower opening 2 6 b peripheral edge 26 c contacts. Reply This sealing surface 88a is formed of a coating or black quartz for protecting the see-through member 89. As a result, the material of the seal member 89 does not change, preventing deterioration and ensuring sealing performance, and preventing the material of the seal member 89 from entering the process space 84.
また、 透明窓 8 8の上面周縁部には、 ステンレス製のカバー 8 8 bが当接して おり、 透明窓 8 8を締結部材 9 1により挟持する際の強度を高めることで、 締結 時の押圧力により透明窓 8 8が破損することを防止する。  In addition, a stainless steel cover 88 b is in contact with the peripheral edge of the upper surface of the transparent window 88, and by increasing the strength when the transparent window 88 is clamped by the fastening member 91, the pressing force at the time of fastening is increased. This prevents the transparent window 8 8 from being damaged by pressure.
また、 本実施例では、 紫外線光源 8 6, 8 7及び透明窓 8 8がガス噴射ノズル 部 9 3から噴射されたガス流の流れ方向に対して直交する方向に延在するように 設けたが、 これに限らず、 例えば、 紫外線光源 8 6, 8 7及び透明窓 8 8をガス 流の流れ方向に延在する方向に設けるようにしても良い。  In the present embodiment, the ultraviolet light sources 86 and 87 and the transparent window 88 are provided so as to extend in a direction perpendicular to the flow direction of the gas flow injected from the gas injection nozzle portion 93. However, the present invention is not limited to this. For example, the ultraviolet light sources 86 and 87 and the transparent window 88 may be provided in a direction extending in the gas flow direction.
〔ガス噴射ノズル部 9 3の構成〕  [Configuration of gas injection nozzle section 93]
図 9及ぴ図 1 0に示されるように、 処理容器 2 2は、 前部 2 2 aに開口する供 給口 2 2 gに窒素ガスまたは酸素ガスをプロセス空間 8 4内部に噴射するガス噴 射ノズル部 9 3が設けられている。 このガス噴射ノズル部 9 3は、 後述するよう にプロセス空間 8 4の横幅方向に複数の噴射口 9 3 aがー列に配置されており、 複数の噴射口 9 3 aカ ら噴射されたガスが層流状態で被処理基板 Wの表面を通過 するようにプロセス空間 8 4の内部に安定した流れを発生させる。 As shown in FIG. 9 and FIG. 10, the processing container 22 is provided with a gas jet for injecting nitrogen gas or oxygen gas into the process space 84 through a supply port 22 g opening to the front part 22 a. An injection nozzle portion 93 is provided. The gas injection nozzle section 93 has a plurality of injection ports 93 a arranged in a row in the width direction of the process space 84 as described later. A stable flow is generated inside the process space 84 so that the gas injected from the plurality of injection ports 93a passes through the surface of the substrate W to be processed in a laminar flow state.
尚、プロセス空間 8 4を閉塞する蓋部材 8 2の下面と被処理基板 Wとの距離は、 例えば、 5〜 1 0 0 mmに設定されており、 望ましくは 2 5〜 8 5 mm程度が良 い。  The distance between the lower surface of the lid member 82 that closes the process space 84 and the substrate W to be processed is set, for example, to 5 to 100 mm, and preferably about 25 to 85 mm. No.
〔ヒータ部 2 4の構成〕  [Configuration of heater section 24]
図 9及び図 1 0に示されるように、 ヒータ部 2 4は、 アルミ合金製のベース 1 1 0と、 ベース 1 1 0上に固定された透明な石英ペルジャ 1 1 2と、 石英べルジ ャ 1 1 2の内部空間 1 1 3に収納された S i Cヒータ 1 1 4と、 不透明石英によ り形成された熱反射部材 (リフレクタ) 1 1 6と、 石英ペルジャ 1 1 2の上面に 載置され S i Cヒータ 1 1 4により加熱される S i Cサセプタ (加熱部材) 1 1 8と、 を備えた構成である。  As shown in FIG. 9 and FIG. 10, the heater section 24 includes a base 110 made of an aluminum alloy, a transparent quartz peruger 1 12 fixed on the base 110, and a quartz belt jar. Mounted on the top of the SiC heater 1 14 housed in the internal space 1 1 3 of 1 1 2, the heat reflecting member (reflector) 1 16 made of opaque quartz, and the quartz perg 1 1 2 And a SiC susceptor (heating member) 118 heated by the SiC heater 114.
そのため、 S i Cヒータ 1 1 4及び熱反射部材 1 1 6は、 石英ペルジャ 1 1 2 の内部空間 1 1 3に隔離されており、 プロセス空間 8 4でのコンタミネーション 力 方止される。 また、 洗浄工程においては、 プロセス空間 8 4内に露出された S i Cサセプタ 1 1 8のみを洗浄すれば良いので、 S i Cヒータ 1 1 4及び熱反射 部材 1 1 6を洗浄する手間を省略することが可能になる。  Therefore, the SiC heater 114 and the heat reflection member 116 are isolated in the internal space 113 of the quartz perger 112, and the contamination in the process space 84 is stopped. In the cleaning step, only the SiC susceptor 118 exposed in the process space 84 needs to be cleaned, so that the trouble of cleaning the SiC heater 114 and the heat reflecting member 116 is eliminated. It can be omitted.
被処理基ネ OTは、 保持部材 1 2 0により S i Cサセプタ 1 1 8の上方に対向す るように保持される。 一方、 S i Cヒータ 1 1 4は、 熱反射部材 1 1 6の上面に 載置されており、 S i Cヒータ 1 1 4の発熱は、 S i Cサセプタ 1 1 8に¾1~さ れると共に、 熱反射部材 1 1 6で反射された熱も S i Cサセプタ 1 1 8に ¾|†さ れる。 尚、 本実施例の S i Cヒータ 1 1 4は、 S i Cサセプタ 1 1 8から僅かに 離間した状態で約 7 0 0 ° Cの温度に加熱される。  The target substrate OT is held by the holding member 120 so as to face above the SoC susceptor 118. On the other hand, the SiC heater 114 is placed on the upper surface of the heat reflecting member 116, and the heat generated by the SiC heater 114 is generated by the SiC susceptor 118, and the heat is generated. However, the heat reflected by the heat reflecting member 116 is also transmitted to the SiC susceptor 118. Note that the SiC heater 114 of the present embodiment is heated to a temperature of about 700 ° C. while being slightly separated from the SiC susceptor 118.
S i Cサセプタ 1 1 8は、 熱伝導率が良いので、 S i Cヒータ 1 1 4力 らの熱 を被処理基ホ に効率良く伝達して被処理基 ¾Wが周縁部分と中心部分との 差を無くして、 被処理基板 Wが温度差で反ることを防止する。  Since the SiC susceptor 118 has a good thermal conductivity, the heat from the SiC heater 114 is efficiently transmitted to the substrate to be processed, and the substrate to be processed W is formed between the peripheral portion and the central portion. By eliminating the difference, the substrate W to be processed is prevented from warping due to the temperature difference.
〔回転駆動部 2 8の構成〕  [Structure of rotary drive unit 28]
図 9及び図 1 0に示されるように、 回転駆動部 2 8は、 3 1。サセプタ1 1 8 の上方で被処理基ネ を保持する保持部材 1 2 0と、 上記ベース 1 1 0の下面に 固定されたケーシング 1 22と、 ケーシング 1 22により画成された內部空間 1 24内で保持部材 1 20の軸 120 dに結合されたセラミック軸 1 26を回転駆 動させるモータ 1 28と、 モータ 128の回転を伝達するためのマグネットカツ プリング 1 30とから構成されている。 As shown in FIG. 9 and FIG. 10, the rotation drive unit 28 is 31. A holding member 120 for holding the substrate to be processed above the susceptor 118 and a lower surface of the base 110 A fixed casing 122, a motor 128 for rotating and driving a ceramic shaft 126 coupled to the shaft 120d of the holding member 120 in a partial space 124 defined by the casing 122, and a motor 128 And a magnet coupling 130 for transmitting the rotation of the magnet.
回転駆動部 28においては、 保持部材 1 20の軸 1 20 dが石英ペルジャ 1 1 2を貫通してセラミック軸 126に結合され、 セラミック軸 126とモータ 1 2 8の回転軸との間がマグネットカップリング 1 30を介して非接触で駆動力を伝 達する構成であるので、 回転駆動系の構成がコンパクトになっており、 装置全体 の小型ィ匕にも寄与している。  In the rotary drive unit 28, the shaft 120d of the holding member 120 is penetrated through the quartz peruger 112 to be connected to the ceramic shaft 126, and a magnetic cup is provided between the ceramic shaft 126 and the rotary shaft of the motor 128 Since the driving force is transmitted through the ring 130 in a non-contact manner, the configuration of the rotary drive system is compact, which also contributes to the miniaturization of the entire apparatus.
保持部材 1 20は、 軸 120 dの上端より水平方向に放射状 (周方向に 1 20 度間隔) に延在する腕部 120 a〜 1 20 cを有する。 被処理基ネ は、 保持部 材 1 20の腕部 1 20 a~120 cに載置された状態で保持される。 このように 保持された被処理基ネ j¾Wは、 保持部材 1 20と共にモータ 1 28により一定の回 転速度で回転されており、 これにより S i Cヒータ 1 14の発熱による温度分布 が平均化されると共に、 紫外線光源 86, 87から照射される紫外線の強度分布 が均一になり、 表面に均一な成膜が施される。  The holding member 120 has arms 120a to 120c extending radially (at intervals of 120 degrees in the circumferential direction) in the horizontal direction from the upper end of the shaft 120d. The substrate to be processed is held in a state of being placed on the arm portions 120 a to 120 c of the holding member 120. The substrate to be processed j¾W held in this manner is rotated at a constant rotation speed by the motor 128 together with the holding member 120, whereby the temperature distribution due to the heat generated by the SiC heater 114 is averaged. At the same time, the intensity distribution of the ultraviolet light emitted from the ultraviolet light sources 86 and 87 becomes uniform, and a uniform film is formed on the surface.
〔リフタ機構 30の構成〕  [Configuration of lifter mechanism 30]
図 9及び図 10に示されるように、 リフタ機構 30は、 チャンバ 80の下方、 且つ石英べノレジャ 1 1 2の側方に設けられ、 チャンパ 80内に挿入された昇降ァ —ム 132と、 昇降アーム 132に連結された昇降軸 134と、 昇降軸 1 34を 昇降させる駆動部 1 36とから構成されている。 昇降アーム 132は、 例えば、 セラミックまたは石英により形成されており、 図 10に示されるように、 昇降軸 134の上端が結合された結合部 132 aと、 S i Cサセプタ 1 18の外周を囲 む環状部 1 32 bとを有する。 そして、 昇降アーム 132には、 環状部 132 b の内周より中心に延在する 3本の当接ピン 138 a〜1.38 cが周方向に 1 20 度間隔で設けられている。  As shown in FIGS. 9 and 10, the lifter mechanism 30 is provided below the chamber 80 and on the side of the quartz veneer roll 112, and is provided with a lift arm 132 inserted into the champ 80 and a lift mechanism 132. An elevating shaft 134 connected to the arm 132 and a driving unit 136 that elevates the elevating shaft 134 are configured. The elevating arm 132 is formed of, for example, ceramic or quartz, and surrounds a coupling portion 132 a to which the upper end of the elevating shaft 134 is coupled and an outer periphery of the SiC susceptor 118 as shown in FIG. And an annular portion 132b. The elevating arm 132 is provided with three contact pins 138a to 138c extending from the inner periphery of the annular portion 132b to the center at intervals of 120 degrees in the circumferential direction.
当接ピン 138 a〜 1 38 cは、 S i Cサセプタ 1 18の外周から中心に向か つて延在形成された溝 1 18 a〜l 1 8 cに嵌合する'位置に降下しており、 昇降 アーム 1 32が上昇することにより S i Cサセプタ 1 18の上方に移動する。 ま た、 当接ピン 138 a〜 138 cは、 S i Cサセプタ 118の中心より外周側に 延在するように形成された保持部材 120の腕部 120 a〜 120 cと干渉しな いように配置されている。 The contact pins 138a to 138c are lowered to a position where they fit into the grooves 118a to 18c formed so as to extend from the outer periphery of the SiC susceptor 118 toward the center. The lifting arm 132 moves upward to move above the SiC susceptor 118. Ma In addition, the contact pins 138 a to 138 c are arranged so as not to interfere with the arms 120 a to 120 c of the holding member 120 formed so as to extend from the center of the SiC susceptor 118 to the outer peripheral side. Have been.
昇降アーム 132は、 搬送口ポット 98のロボットハンドが被処理基板 Wを取 り出す直前に上記当接ピン 138 a〜 138 cを被処理基板 Wの下面に当接させ て被処理基板 Wを保持部材 120の腕部 120 a~120 cより持ち上げる。 こ れにより、 搬送ロボット 98のロボットハンドは、 被処理基板 Wの下方に移動す ることが可能になり、 昇降アーム 132が降下することで被処理 ¾¾Wを保持し て搬送することが可能になる。  The lifting arm 132 holds the substrate W by bringing the contact pins 138 a to 138 c into contact with the lower surface of the substrate W just before the robot hand of the transfer port 98 takes out the substrate W. Lift from the arm parts 120 a to 120 c of the member 120. Thereby, the robot hand of the transfer robot 98 can move below the substrate W to be processed, and can move and hold the substrate to be processed W by lowering the elevating arm 132. .
〔石英ライナ 100の構成〕  [Configuration of quartz liner 100]
図 9及び図 10に示されるように、 処理容器 22の内部には、 紫外線を遮断す るため、 例えば白色などの不透明石英により形成された石英ライナ 100が装着 されている。 また、 石英ライナ 100は、 後述するように下部ケース 102と、 側面ケース 104と、 上部ケース 106と、 石英ペルジャ 112の外周を覆う円 筒状ケース 108とを組み合わせた構成になっている。  As shown in FIGS. 9 and 10, a quartz liner 100 made of, for example, white opaque quartz is mounted inside the processing container 22 to block ultraviolet rays. Further, the quartz liner 100 has a configuration in which a lower case 102, a side case 104, an upper case 106, and a cylindrical case 108 that covers the outer periphery of the quartz peruger 112 are combined as described later.
この石英ライナ 100は、 プロセス空間 34を形成する処理容器 22及び蓋部 材 82の内壁を覆うことにより、 処理容器 22及ぴ蓋部材 82の熱膨張を防止す る断熱効果が得られると共に、 処理容器 22及び蓋部材 82の内壁が紫外線によ つて酸化することを防止し、 且つ金属のコンタミネーションを防止する役目を有 している。  The quartz liner 100 covers the inner walls of the processing container 22 and the lid member 82 forming the process space 34, thereby providing a heat insulating effect of preventing the thermal expansion of the processing container 22 and the lid member 82, and It has a function of preventing the inner walls of the container 22 and the cover member 82 from being oxidized by ultraviolet rays, and also preventing metal contamination.
〔リモートブラズマ部 27の構成〕  [Configuration of Remote Plasma Unit 27]
図 9及び図 10に示されるように、 プロセス空間 84に窒素ラジカルを供給す るリモートプラズマ部 27は、処理容器 22の前部 22 aに取り付けられており、 供給管路 90を介して処理容器 22の供給口 92に連通されている。  As shown in FIGS. 9 and 10, the remote plasma unit 27 that supplies nitrogen radicals to the process space 84 is attached to the front part 22 a of the processing container 22, and is connected to the processing container via a supply pipe 90. It is connected to 22 supply ports 92.
このリモートプラズマ部 27では、 A rなどの不活性ガスと共に窒素ガスが供 給され、 これをプラズマにより活性ィ匕することにより、 窒素ラジカルを形成する ことが可能である。 このようにして形成された窒素ラジカルは、 被処理 ¾¾Wの 表面に沿って流れ、 基板表面を窒化する。  In the remote plasma section 27, a nitrogen gas is supplied together with an inert gas such as Ar, and the nitrogen gas can be activated by plasma to form nitrogen radicals. The nitrogen radicals thus formed flow along the surface of the target ¾¾W to be processed, and nitride the substrate surface.
また、窒素ガスの他に、 02, NO, N20, N02, NH3ガス等を用いた酸化、 2003/012082 In addition to nitrogen gas, oxidation with 0 2, NO, N 2 0 , N0 2, NH 3 gas or the like, 2003/012082
17 酸窒ィヒラジカルプ口セスも実施可能である。 17 An oxynitride radical process is also feasible.
〔ゲートバルブ 9 6の構成〕  [Configuration of gate valve 96]
図 9及び図 1 0に示されるように、 処理容器 2 2の後部には、 被処理基 を 搬送するための搬送口 9 4が設けられている。 この搬送口 9 4は、 ゲートバルブ 9 6により閉塞されており、 被処理基ネ を搬送するときのみゲートバルブ 9 6 の開動作により開放される。 '  As shown in FIG. 9 and FIG. 10, a transfer port 94 for transferring the substrate to be processed is provided at the rear of the processing container 22. The transfer port 94 is closed by the gate valve 96 and is opened by the opening operation of the gate valve 96 only when the substrate to be processed is transferred. '
ゲートバルブ 9 6の後方には、 搬送口ポット 9 8が設けられている。 そして、 ゲートパルプ 9 6の開動作に合わせて搬送ロボット 9 8のロボットハンドが搬送 口 9 4よりプロセス空間 8 4内部に進入して被処理基板 Wの交換作業を行う。 〔上記各構成部の詳細〕  A transfer port pot 98 is provided behind the gate valve 96. Then, in accordance with the opening operation of the gate pulp 96, the robot hand of the transfer robot 98 enters the process space 84 from the transfer port 94 to perform the work of exchanging the substrate W to be processed. [Details of each component above]
( 1 ) ここで、 上記ガス噴射ノズル部 9 3の構成について詳細に説明する。 図 1 8はガス噴射ノズル部 9 3の構成を拡大して示す縦断面図である。 図 1 9 はガス噴射ノズル部 9 3の構成を拡大して示す横断面図である。 図 2 0はガス噴 射ノズル部 9 3の構成を拡大して示す正面図である。  (1) Here, the configuration of the gas injection nozzle section 93 will be described in detail. FIG. 18 is an enlarged longitudinal sectional view showing the configuration of the gas injection nozzle section 93. FIG. 19 is a cross-sectional view showing the configuration of the gas injection nozzle section 93 in an enlarged manner. FIG. 20 is an enlarged front view showing the configuration of the gas injection nozzle section 93.
図 1 8乃至図 2 0に示されるように、 ガス噴射ノズル部 9 3は、 前面中央に上 記リモートプラズマ部 2 7の供給管路 9 0が連通される連通孔 9 2を有し、 連通 孔 9 2の上方に複数の噴射孔 9 3 a i〜 9 3 a nが横方向に一列に配設されたノ ズル板 9 3 b i〜 9 3 b 3が取り付けられている。 噴射孔 9 3 a i〜 9 3 a nは、例 えば、 直径 l mmの小孔であり、 1 O mni間隔で設けられている。 As shown in FIGS. 18 to 20, the gas injection nozzle portion 93 has a communication hole 92 in the center of the front surface, through which the supply pipe 90 of the remote plasma portion 27 communicates. Roh nozzle plate 9 3 bi~ 9 3 b 3 that above the holes 9 2 a plurality of injection holes 9 3 ai~ 9 3 a n arranged in a line in the transverse direction are attached. Injection holes 9 3 ai~ 9 3 a n, if example embodiment, a small diameter hole l mm, are provided in a 1 O mni intervals.
また、 本実施例では、 小孔からなる噴射孔 9 3 a i〜 9 3 a nを設けたが、 これ に限らず、 例えば、 細いスリットを嘖射孔として設ける構成としても良い。 また、 ノズル板 9 3 b 丄〜 9 3 b 3は、 ガス嘖射ノズル部 9 3の壁面に締結され ている。 そのため、 噴射孔 9 3 a 丄〜 9 3 a nから噴射されたガスは、 ガス噴射ノ ズル部 9 3の壁面より前方に流れる。 Further, in this embodiment, is provided with the injection holes 9 3 ai~ 9 3 a n consisting of small holes is not limited thereto, for example, may be provided with a narrow slit as嘖射hole. Further, the nozzle plates 93 b 丄 to 93 b 3 are fastened to the wall surface of the gas injection nozzle portion 93. Therefore, the injection hole 9 3 a丄~ 9 3 gas injected from a n flows in front of the wall surface of the gas injection Roh nozzle part 9 3.
例えば、噴射孔 9 3 a i〜 9 3 a nがパイプ状のノズル管路に設けられている場 合には、噴射孔 9 3 a i〜 9 3 a nから噴射されたガスの一部がノズル管路の後方 に回り込むような流れが生じてしまい、 プロセス空間 8 4内にガス溜まりが発生 して被処理基板 W周辺のガス流が安定しないという問題が生じる。 For example, the if the injection hole 9 3 ai~ 9 3 a n are provided in the nozzle pipe pipe-like, injection hole 9 3 ai~ 9 3 a n part nozzle tube of the injected gas from A flow that wraps around the back of the road is generated, and a gas pool is generated in the process space 84, which causes a problem that the gas flow around the substrate W to be processed becomes unstable.
しかしながら、 本実施例では、 噴射孔 9 3 a 〜 9 3 a nがガス噴射ノズル部 9 3の壁面に形成される構成であるので、 このようなガスがノズル後方に戻るとい う現象が発生せず、 被処理基 周辺のガス流を安定した層流状態に保つことが • 可能になる。 これにより、 被処理基板 W上の成膜が均一に形成される。 However, in the present embodiment, the injection holes 93 a to 93 an are provided in the gas injection nozzle section 9. The structure formed on the wall of No. 3 does not cause such a phenomenon that such gas returns to the back of the nozzle, and it is possible to maintain a stable laminar gas flow around the substrate to be treated. . Thereby, a film is uniformly formed on the substrate to be processed W.
また、 各ノズル板 9 3 b 1〜 9 3 b 3に対向する内壁には、 ガス溜まりとして機 能する凹部 9 3 C l〜 9 3 c 3が形成されている。 この凹部 9 3 c i〜 9 3 c 3が噴 射孔 9 3 a 〜 9 3 a nの上流に設けられているので、各噴射孔 9 3 a 3 a n 力 ら嘖射されるガスの夫々の流速を平均化にすることができる。 これにより、 プ ロセス空間 8 4の全域における流速を平均化することが可能になる。 Further, on the inner wall opposed to the nozzle plate 9 3 b 1 ~ 9 3 b 3, the recess 9 3 C l ~ 9 3 c 3 that acts as a gas pocket is formed. Since the recess 9 3 ci~ 9 3 c 3 is provided upstream of the injection Iana 9 3 a ~ 9 3 a n , the respective injection holes 9 3 a 3 a n forces et嘖射is the gas respectively the The flow rates can be averaged. This makes it possible to average the flow velocity in the entire process space 84.
さらに、各凹部 9 3 c i〜 9 3 c 3は、 ガス噴射ノズル部 9 3を貫通するガス供 給孔 9 3 (^ 9 3 d 3が連通されている。 尚、 中央のガス供給孔 9 3 d 2は、 連 通孔 9 2と交差しないように横方向にずらした位置に形成されており、 クランク 形状に曲げられている。 Further, each of the concave portions 93 ci to 93 c 3 communicates with a gas supply hole 93 (^ 93 d 3) penetrating the gas injection nozzle portion 93. The central gas supply hole 93 d 2 is formed in a position shifted laterally so as not to intersect the communication hole 9 2 is bent in a crank shape.
そして、 中央のガス供給孔 9 3 d 2には、 第 1のマスフローコントローラ 9 7 aによって流量制御されたガスがガス供給管路 9 9 2を介して供給される。 また、 ガス供給孔 9 3 d 2の左右に配置されたガス供給孔 9 3 d x , 9 3 d 3には、 第 2 のマスフローコントローラ 9 7 bによって流量制御されたガスがガス供給管路 9 9い 9 9 3を介して供給される。 Then, the center of the gas supply holes 9 3 d 2, the flow control gas by the first mass flow controller 9 7 a is supplied through the gas supply pipe 9 9 2. Further, the gas supply hole 9 3 d x, 9 3 d 3 which is disposed on the left and right gas supply holes 9 3 d 2 is the second mass flow controller 9 7 b by the flow controlled gas a gas supply pipe 9 Supplied through 9 9 3 .
また、 第 1のマスフローコントローラ 9 7 a及ぴ第 2のマスフローコントロー ラ 9 7 bは、 ガス供給管路 9 9 4, 9 9 5を介してガス供給部 3 4と接続されてお り、ガス供給部 3 4から供給されるガスの流量を予め設定された流量に制御する。 第 1のマスフローコントローラ 9 7 a及ぴ第 2のマスフローコントローラ 9 7 bから供給されたガスは、 ガス供給管路 9 9 〜 9 9 3を介してガス供給孔 9 3 d 丄〜 9 3 d 3に至り、 各凹部 9 3 c ! ~ 9 3 c 3に充填された後、 嘖射孔 9 3 a ェ〜 9 3 a nからプロセス空間 8 4に向けて噴射される。 The first mass flow controller 9 7 a及Pi second mass flow controller 9 7 b is Ri Contact is connected to the gas supply unit 3 4 through the gas supply pipe 9 9 4, 9 9 5, gas The flow rate of the gas supplied from the supply unit 34 is controlled to a preset flow rate. The first mass flow controller 9 7 a及Pi gas supplied from the second mass flow controller 9 7 b, the gas supply hole 9 through the gas supply pipe 9 9 ~ 9 9 3 3 d丄~ 9 3 d 3 leads to, after being filled into the recesses 9 3 c! ~ 9 3 c 3, is injected toward the process space 8 4 from嘖射hole 9 3 a E ~ 9 3 a n.
プロセス空間' 8 4内のガスは、 処理容器 2 2の前部 2 2 aの横幅方向に延在す る各ノズル板 9 3 b 〜 9 3 b 3の嘖射孔 9 3 a 丄~ 9 3 a nからプロセス空間 8 4の全幅に向かって噴射されるため、プロセス空間 8 4の全域で一定流速(層流) で処理容器 2 2の後部 2 2 b側へ流れる。 Gas process space '8 4, the process chamber 2 2 front 2 2 a respective nozzle plates that Mashimasu extending in the lateral direction of 9 3 b ~ 9 3 b嘖射hole 9 3 3 a丄~ 9 3 to be injected toward the full width of the processing space 8 4 from a n, it flows at a constant flow rate across the process space 8 4 (laminar flow) into the processing vessel 2 2 rear 2 2 b side.
さらに、 処理容器 2 2の後部 2 2 b側には、 後部 2 2 bの横幅方向に延在する 長方形状の排気口 7 4が開口しているため、 プロセス空間 8 4内のガスは、 後方 へ向かう流れとなり、 一定流速 (層流) のまま排気経路 3 2へ排気される。 また、 本実施例においては、 2系統の流量制御が可能であるので、 例えば、 第 1のマスフローコントローラ 9 7 aと第 2のマスフローコントローラ 9 7 bとで 異なる流量制御することも可能である。 Further, on the rear part 2 2b side of the processing container 22, it extends in the width direction of the rear part 22 b. Since the rectangular exhaust port 74 is open, the gas in the process space 84 flows backward, and is exhausted to the exhaust path 32 at a constant flow rate (laminar flow). Further, in the present embodiment, since two systems of flow control are possible, for example, different flow control can be performed by the first mass flow controller 97a and the second mass flow controller 97b.
これにより、 プロセス空間 8 4内に供給されるガスの流量 (流速) を異なるよ うに設定してプロセス空間 8 4内におけるガスの濃度分布を変化させることも可 能である。 さらには、 第 1のマスフローコントローラ 9 7 aと第 2のマスフロー コントローラ 9 7 bとで異なる種類のガスを供給することもでき、 例えば、 第 1 のマスフローコントローラ 9 7 aにより窒素ガスの流量制御を行い、 第 2のマス フローコントローラ . 9 7 bにより酸素ガスの流量制御を行うことも可能である。 使用ガスとしては、 例えば、 酸素含有ガス、 窒素含有ガス、 並びに希ガス等が 挙げられる。  Thereby, it is also possible to change the flow rate (flow velocity) of the gas supplied into the process space 84 to change the gas concentration distribution in the process space 84. Further, different types of gases can be supplied by the first mass flow controller 97a and the second mass flow controller 97b.For example, the flow rate of nitrogen gas can be controlled by the first mass flow controller 97a. Then, the flow rate of the oxygen gas can be controlled by the second mass flow controller .97b. Examples of the used gas include an oxygen-containing gas, a nitrogen-containing gas, and a rare gas.
( 2 ) ここで、 ヒータ部 2 4の構成について詳細に説明する。 , 図 2 1はヒータ部 2 4の構成を拡大して示す縦断面図である。 図 2 2はヒータ 部 2 4を拡大して示す底面図である。  (2) Here, the configuration of the heater section 24 will be described in detail. FIG. 21 is a longitudinal sectional view showing the configuration of the heater section 24 in an enlarged manner. FIG. 22 is a bottom view showing the heater section 24 in an enlarged manner.
図 2 1及ぴ図 2 2に示されるように、 ヒータ部 2 4は、 アルミ合金製のベース 1 1 0に石英ペルジャ 1 1 2を載置し、 処理容器 2 2の底部 2 2 cにフランジ 1 4 0を介して固定される。 そして、 石英ペルジャ 1 1 2の内部空間 1 1 3には、 S i Cヒータ 1 1 4及ぴ熱反射部材 1 1 6が収納される。 そのため、 S i Cヒー タ 1 1 4及び熱反射部材 1 1 6は、 処理容器 2 2のプロセス空間 8 4から隔離さ れており、 プロセス空間 8 4のガスと接触せず、 コンタミネーシヨンが生じない 構成になっている。  As shown in Fig. 21 and Fig. 22, the heater section 24 has a quartz peruger 1 1 2 placed on an aluminum alloy base 110 and a flange 2 2 c on the bottom 2 c of the processing vessel 2 2. Fixed through 140. And, in the internal space 113 of the quartz peruger 112, the SiC heater 114 and the heat reflecting member 116 are housed. Therefore, the SiC heater 114 and the heat reflecting member 116 are isolated from the process space 84 of the processing vessel 22, do not come into contact with the gas in the process space 84, and the contamination is reduced. The configuration does not occur.
S i Cサセプタ 1 1 8は、 S i Cヒータ 1 1 4と対向するように石英べルジャ 1 1 2上に載置されており、 パイ口メータ 1 1 9によって温度が測定される。 こ のパイ口メータ 1 1 9は、 S i Cサセプタ 1 1 8が加熱されるのに伴って生じる 焦電効果 (パイ口電気効果) により S i Cサセプタ 1 1 8の を測定するもの であり、 制御回路では、 パイ口メータ 1 1 9により検出された温度信号から被処 理基板 Wの温度を推測し、 この推測温度に基づいて S i Cヒータ 1 1 4の発熱量 T/JP2003/012082 The SiC susceptor 118 is mounted on the quartz belger 112 so as to face the SiC heater 114, and the temperature is measured by a pie-meter 119. This mouthpiece meter 119 measures the value of the SiC susceptor 118 by the pyroelectric effect (picket electrical effect) generated as the SiC susceptor 118 is heated. The control circuit estimates the temperature of the substrate W to be processed from the temperature signal detected by the pie-mouth meter 119, and based on the estimated temperature, generates heat of the SiC heater 114. T / JP2003 / 012082
20 を制御する。 Control 20.
また、 石英ペルジャ ;L 1 2の内部空間 1 1 3は、 後述するように処理容器 2 2 のプロセス空間 8 4を減圧するとき、 プロセス空間 8 4との圧力差が小さくなる ように減圧システムが作動して同時に減圧される。 そのため、 石英ペルジャ 1 1 2は、 減圧工程時の圧力差を考慮して肉厚 (例えば 3 0 mm程度) にする必要が なく、 熱容量が小さくて済み、 その分加熱時の応答性を高められる。  Also, as described later, when the pressure in the process space 84 of the processing vessel 22 is reduced, a pressure reducing system is provided so that the pressure difference from the process space 84 is reduced. It operates and is depressurized at the same time. Therefore, the quartz peruger 112 does not need to be made thick (for example, about 30 mm) in consideration of the pressure difference during the depressurization process, and has a small heat capacity, which improves the responsiveness during heating. .
ベース 1 1 0は、 円盤状に形成されており、 中央に保持部材 1 2 0の軸 1 2 0 dが揷通される中央孔 1 4 2を有し、 内部には周方向に延在形成された冷却水用 の第 1の水路 1 4 4が設けられている。 ベース 1 1 0は、 アルミ合金製であるの で、 熱膨張率が大きいが、 第 1の水路 1 4 4に冷却水を流すことにより、 冷却さ れる。  The base 110 is formed in a disc shape, has a central hole 144 through which the shaft 120 d of the holding member 120 passes through in the center, and extends in the circumferential direction inside. A first water channel 144 for the used cooling water is provided. Since the base 110 is made of an aluminum alloy, it has a large coefficient of thermal expansion, but is cooled by flowing cooling water through the first water channel 144.
また、 フランジ 1 4 0は、 ベース 1 1 0と処理容器 2 2の底部 2 2 cとの間に 介在する第 1のフランジ 1 4 6と、 第 1のフランジ 1 4 6の内周に嵌合する第 2 のフランジ 1 4 8とを組み合わせた構成である。 第 1のフランジ 1 4 6の内周面 には、 周方向に延在形成された冷却水用の第 2の水路 1 5 0が設けられている。 上冷却水供給部 4 6から供給された冷却水は、 上記水路 1 4 4及び 1 5 0を流 れることにより、 S i Cヒータ 1 1 4の発熱により加熱されたベース 1 1 0及ぴ フランジ 1 4 0を冷却してベース 1 1 0及びフランジ 1 4 0の熱膨張を抑える。 また、 ベース 1 1 0の下面には、 水路 1 4 4に冷却水を流入させる第 1の流入 管路 1 5 2が連通される第 1の流入口 1 5 4と、 水路 1 4 4を通過した冷却水を 排出する流出管路 1 5 6が連通される第 1の流出口 1 5 8とが設けられている。 さらに、 ベース 1 1 0の下面の外周近傍には、 第 1のフランジ 1 4 6に締結され るボノレト 1 6 0を揷通するための取付孔 1 6 2が周方向に複数 (例えば、 8〜 1 2箇所程度) 設けられている。  Further, the flange 140 is fitted to the first flange 144 interposed between the base 110 and the bottom 22 c of the processing container 22 and the inner periphery of the first flange 144. And a second flange 148. On the inner peripheral surface of the first flange 146, a second water channel 150 for cooling water extending in the circumferential direction is provided. The cooling water supplied from the upper cooling water supply section 46 flows through the above-mentioned water channels 144 and 150, and thereby the base 110 and the flange heated by the heat generated by the SiC heater 114. By cooling 140, thermal expansion of base 110 and flange 140 is suppressed. In addition, the lower surface of the base 110 passes through a first inlet port 15 4 through which a first inlet pipe 15 2 through which cooling water flows into the water channel 144 and a water channel 14 4 are connected. There is provided a first outlet 158 to which an outlet pipe 156 for discharging the cooled water is connected. Furthermore, in the vicinity of the outer periphery of the lower surface of the base 110, a plurality of mounting holes 162 for passing through the bonoleto 160 to be fastened to the first flange 146 are provided in the circumferential direction (for example, 8 to 10). (About 1 or 2 places)
また、 ベース 1 1 0下面の半径方向上の中間位置付近には、 S i Cヒータ 1 1 4の温度を測定するための熱電対からなる温度センサ 1 6 4と、 S i Cヒータ 1 1 4に鼇源を供給するための電源ケーブル接続用端子 (ソルトン端子) 1 6 6 a 〜1 6 6 ίが設けられている。 尚、 S i Cヒータ 1 1 4には、 3つの領域が形成 されており、 電源ケ ブル接続用端子 1 6 6 a〜1 6 6 f は各領域に戆源を供給 する +側端子、 一側端子として設けられている。 A temperature sensor 16 4 composed of a thermocouple for measuring the temperature of the SiC heater 114 and a SiC heater 1 14 near the intermediate position on the lower surface of the base 110 in the radial direction. There is a power cable connection terminal (solton terminal) 1666a to 1666mm to supply the source to the country. The SoC heater 114 has three regions, and the power cable connection terminals 166a to 166f supply power to each region. The + terminal and the one terminal are provided.
また、 フランジ 140の下面には、 水路 150に冷却水を流入させる第 2の流 入管路 168が連通される第 2の流入口 170と、 水路 150を通過した冷却水 を排出する流出管路 172が連通される第 2の流出口 174とが設けられている。 図 23は第 2の流入口 170及び第 2の流出口 174の取付構造を拡大して示 す縦断面図である。 図 24はフランジ 140の取付構造を拡大して示す縦断面図 である。  Further, on the lower surface of the flange 140, a second inlet 170 through which a second inlet pipe 168 for flowing the cooling water into the water passage 150 is communicated, and an outlet pipe 172 through which the cooling water passing through the water passage 150 is discharged. And a second outlet 174 through which the fluid flows. FIG. 23 is an enlarged longitudinal sectional view showing a mounting structure of the second inflow port 170 and the second outflow port 174. FIG. 24 is an enlarged longitudinal sectional view showing the mounting structure of the flange 140.
図 23に示されるように、 第 1のフランジ 146には、 第 2の流入口 170力 S 連通された L字状の連通孔 146 aが設けられている。 この連通孔 146 aの端 部は、 水路 150に連通されている。 また、 第 2の流出口 174も上記第 2の流 入口 170と同様な構成で水路 150に連通されている。  As shown in FIG. 23, the first flange 146 is provided with an L-shaped communication hole 146a which is communicated with the second inlet 170 force S. The end of the communication hole 146a communicates with the water channel 150. Further, the second outlet 174 has the same configuration as the second inlet 170 and is connected to the water channel 150.
水路 150は、 フランジ 140の内部に周方向に延在形成されているため、 フ ランジ 140を冷却することにより、 第 1のフランジ 146の段部 146 bとべ ース 110との間で挟持された石英ペルジャ 112の鍔部 112 aの温度も間接 的に冷却している。 これにより、 石英ペルジャ 112の鍔部 112 aが半径方向 に熱膨張することを抑制することができる。  Since the water channel 150 is formed to extend in the circumferential direction inside the flange 140, the water channel 150 is sandwiched between the step portion 146b of the first flange 146 and the base 110 by cooling the flange 140. The temperature of the flange 112a of the quartz peruger 112 is also indirectly cooled. Thereby, the thermal expansion of the flange 112a of the quartz peruger 112 in the radial direction can be suppressed.
図 23及び図 24に示されるように、 石英べルジャ 112の鍔部 112 aの下 面には、 複数の位置決め孔 178が周方向に所定間隔毎に設けられている。 この 位置決め孔 178は、 ベース 110の上面に螺入されたピン 176が嵌合する孔 であるが、 熱膨張率の大きいベース 110が半径方向に熱膨張したときに鍔部 1 12 aに負荷がかからないようにピン 176の^よりも大径に形成されている。 すなわち、 ピン 176と位置決め孔 178とのクリァランス分だけ石英ペルジャ 112の鍔部 112 aに対するベース 110の熱膨張が許容される。  As shown in FIGS. 23 and 24, a plurality of positioning holes 178 are provided at predetermined intervals in the circumferential direction on the lower surface of the flange 112a of the quartz bell jar 112. The positioning hole 178 is a hole into which the pin 176 screwed into the upper surface of the base 110 fits. When the base 110 having a large coefficient of thermal expansion thermally expands in the radial direction, a load is applied to the flange 112a. The pin 176 is formed to have a larger diameter than ^ so that it is not applied. That is, the thermal expansion of the base 110 with respect to the flange 112a of the quartz peruger 112 is permitted by the clearance between the pin 176 and the positioning hole 178.
また、 石英ペルジャ 112の鍔部 1 12 aは、 第 1のフランジ 146の段部 1 46 bに対して半径方向のクリアランスが設けられているので、 この点からもこ のクリアランス分だけベース 110の熱膨張が許容される。  In addition, since the flange portion 112a of the quartz peruger 112 is provided with a radial clearance with respect to the step portion 146b of the first flange 146, the heat of the base 110 is also increased by this clearance from this point. Inflation is allowed.
石英べルジャ 1 ;L 2の 112 aの下面は、 ベース 110の上面に装着され たシール部材 (Oリング) 180によってシールされ、 石英ペルジャ 112の鍔 部 112 aの上面は、第 1のフランジ 146に装着されたシール部材 (Oリング) 1 8 2によってシールされる。 The lower surface of the quartz bell jar 1; L 2 112 a is sealed by a seal member (O-ring) 180 attached to the upper surface of the base 110, and the upper surface of the flange 112 a of the quartz Seal member mounted on (O-ring) Sealed by 1 8 2
さらに、 第 1のフランジ 1 4 6及ぴ第 2のフランジ 1 4 8の上面は、 処理容器 2 2の底部 2 2 cに装着されたシール部材 (Oリング) 1 8 4 , 1 8 6によって シールされる。 また、 第 2のフランジ 1 4 8の下面は、 ベース 1 1 0の上面に装 着されたシール部材 (Oリング) 1 8 8によってシールされる。  Further, the upper surfaces of the first flange 1 46 and the second flange 1 48 are sealed by sealing members (O-rings) 18 4 and 18 6 attached to the bottom 2 2 c of the processing vessel 22. Is done. The lower surface of the second flange 148 is sealed by a seal member (O-ring) 188 mounted on the upper surface of the base 110.
このように、 ベース 1 1 0とフランジ 1 4 0との間、 及びフランジ 1 4 0と処 理容器 2 2の底部 2 2 cとの間は、 夫々 2重シール構造になっており、 どれか一 つのシール部材が破損しても他のシール部材によってシールすることができるの で、 処理容器 2 2とヒータ部 2 4との間のシール構造に対する信頼性がより高め られている。  As described above, the double seal structure is provided between the base 110 and the flange 140 and between the flange 140 and the bottom 22 c of the processing vessel 22, respectively. Even if one seal member breaks, it can be sealed by another seal member, so that the reliability of the seal structure between the processing container 22 and the heater portion 24 is further improved.
例えば、 石英ペルジャ 1 1 2が割れた場合、 あるいは鍔部 1 1 2 aにひび割れ が生じた場合、 鍔部 1 1 2 aよりも外側に配置されたシール部材 1 8 0によって 石英ペルジャ 1 1 2内部の気密性が確保され、 処理容器 2 2内のガスが外部に流 出することが阻止される。  For example, if the quartz peruger 1 1 2 is broken, or if the flange 1 1 2 a is cracked, the quartz perg 1 1 2 is provided by the sealing member 180 located outside the flange 1 1 2 a. The inside airtightness is ensured, and the gas in the processing container 22 is prevented from flowing out.
あるいは、 ヒータ部 2 4に近い方のシール部材 1 8 0, 1 8 2が劣化した場合 でも、 ヒータ部 2 4よりも離れた位置に装着された外側のシール部材 1 8 6, 1 8 8によって処理容器 2 2とベース 1 1 0との間のシール性能が維持されるため、 経年変化によるガス漏れも防止できる。  Alternatively, even if the seal members 180 and 182 closer to the heater portion 24 are deteriorated, the outer seal members 186 and 188 mounted at a position farther from the heater portion 24 will deteriorate. Since the sealing performance between the processing container 22 and the base 110 is maintained, gas leakage due to aging can be prevented.
図 2 1に示されるように、 S i Cヒータ 1 1 4は、 石英ペルジャ 1 1 2の内部 空間 1 1 3において、 熱反射部材 1 1 6の上面に載置されており、 且つベース 1 1 0の上面に起立する複数のクランプ機構 1 9 0によって所定高さに保持されて いる。  As shown in FIG. 21, the SiC heater 114 is placed on the upper surface of the heat reflecting member 116 in the internal space 113 of the quartz peruger 112 and the base 111 It is held at a predetermined height by a plurality of clamp mechanisms 190 standing on the upper surface of the zero.
このクランプ機構 1 9 0は、 熱反射部材 1 1 6の下面に当接する外筒 1 9 0 a と、外筒 1 9 0 aを貫通して S i。ヒータ 1 1 4の上面に当接する軸 1 9 0 bと、 軸 1 9 0 bに対して外筒 1 9 0 aを押圧するコイルパネ 1 9 2とを有する。  The clamp mechanism 190 includes an outer cylinder 190a that abuts on the lower surface of the heat reflecting member 1 16 and an outer cylinder 190a that penetrates the outer cylinder 190a. It has a shaft 190 b that contacts the upper surface of the heater 114, and a coil panel 192 that presses the outer cylinder 190 a against the shaft 190 b.
そして、 クランプ機構 1 9 0は、 コイルパネ 1 9 2のパネ力で S i Cヒータ 1 1 4及び熱反射部材 1 1 6を挟持する構成になっているため、 例えば、 運搬時の 振動が入力された場合でも S i Cヒータ 1 1 4及び熱反射部材 1 1 6が石英ベル ジャ 1 1 2に接触しないように保持することが可能になる。 また、 上記コイルバ ネ 192のパネ力が常に作用することで、 熱膨張によるネジのゆるみも防止され ており、 S i Cヒータ 114及び熱反射部材 116はがたつきの無い安定状態に 保持される。 Since the clamp mechanism 190 sandwiches the SiC heater 114 and the heat reflecting member 116 with the panel force of the coil panel 192, for example, vibration during transportation is input. In this case, the SiC heater 114 and the heat reflecting member 116 can be held so as not to contact the quartz bell jar 112. Also, the above coil bar Since the panel force of the screw 192 always acts, the loosening of the screw due to thermal expansion is also prevented, and the ic heater 114 and the heat reflecting member 116 are maintained in a stable state without rattling.
また、 各クランプ機構 190は、 ベース 110に対して S i。ヒータ 114及 び熱反射部材 116の高さ位置を任意の位置に調整できるように構成されており、 複数のクランプ機構 190の高さ位置調整によって S i Cヒータ 114及び熱反 射部材 116の水平に保持することが可能になる。  Also, each clamp mechanism 190 is S i with respect to the base 110. The height position of the heater 114 and the heat reflecting member 116 can be adjusted to an arbitrary position. The height position of the plurality of clamp mechanisms 190 adjusts the horizontal position of the SiC heater 114 and the heat reflecting member 116. Can be held.
さらに、 石英ペルジャ 112の内部空間 113には、 S i Cヒータ 114の各 端子とベース に揷通された電源ケーブル接続用端子 166 a〜166 f と を電気的に接続するための接続部材 194 a〜194 f (但し、 図 21には接続 部材 194 a, 194 cが図示してある) 取り付けられている。  Further, a connection member 194 a for electrically connecting each terminal of the SiC heater 114 and the power cable connection terminals 166 a to 166 f connected to the base is provided in the internal space 113 of the quartz peruger 112. 194194f (however, connecting members 194a and 194c are shown in FIG. 21).
図 25はクランプ機構 190の上端部の取付構造を拡大して示す縦断面図であ る。  FIG. 25 is an enlarged longitudinal sectional view showing the mounting structure at the upper end of the clamp mechanism 190.
図 25に示されるように、 クランプ機構 190は、 熱反射部材 116の挿通孔 116 a及び S i Cヒータ 114の揷通孔 114 eに挿通された軸 190 bの上 端に螺入されたナツト 193を締め付けることで、 ヮッシャ 195を介して L字 状ヮッシャ 197, 199を軸方向に押圧して S i Cヒータ 114を挟持する。  As shown in FIG. 25, the clamp mechanism 190 includes a nut screwed into an upper end of a shaft 190 b inserted through the insertion hole 116 a of the heat reflecting member 116 and the through hole 114 e of the SoC heater 114. By tightening the 193, the L-shaped washers 197 and 199 are pressed in the axial direction via the washers 195 to clamp the SoC heater 114.
S i Cヒータ 114は、 揷通孔 114 eに L字状ヮッシャ 197, 199の円 筒部 197 a、 199 aが挿入され、 円筒部 197 a, 199 a内にクランプ機構 190の軸 190 bが揷通される。 そして、 L字状ヮッシャ 197, 199の鍔 部 197b, 199 bが S i Cヒータ 114の上面,下面に当接する。  In the SiC heater 114, the cylindrical portions 197a and 199a of the L-shaped washers 197 and 199 are inserted into the through holes 114e, and the shaft 190b of the clamp mechanism 190 is inserted into the cylindrical portions 197a and 199a. Communicated. Then, the flange portions 197b and 199b of the L-shaped washers 197 and 199 abut on the upper and lower surfaces of the SiC heater 114.
クランプ機構 190の軸 190 b.は、 上記コイルパネ 192のパネ力により下 方に付勢され、 且つクランプ機構 190の外筒 190 aは、 上記コイルパネ 19 2のバネ力により上方に付勢されている。 このように、 コイルパネ 192のパネ 力がクランプ力として作用するため、 熱反射部材 116及び S i Cヒータ 114 は、 安定的に保持され、 運搬時の振動による破損が防止される。  The shaft 190b of the clamp mechanism 190 is urged downward by the panel force of the coil panel 192, and the outer cylinder 190a of the clamp mechanism 190 is urged upward by the spring force of the coil panel 192. . As described above, since the panel force of the coil panel 192 acts as a clamping force, the heat reflecting member 116 and the SiC heater 114 are stably held, and damage due to vibration during transportation is prevented.
S i Cヒータ 114の挿通孔 114 eは、 L字状ヮッシャ 197 a, 197 の円筒部 197 c、l 97 dよりも大径であり、クリアランスが設けられている。 そのため、 S i Cヒータ 114の発熱によって生じる熱膨張により挿通孔 114 2003/012082 The insertion hole 114e of the SiC heater 114 has a larger diameter than the cylindrical portions 197c and 197d of the L-shaped pushers 197a and 197, and is provided with a clearance. Therefore, the insertion hole 114 2003/012082
24 eと軸 190 bとの位置が相対変位した場合、 揷通孔 114 eは L字状ヮッシャ 197, 199の鍔部 197 b,l 99 bに当接したまま水平方向にずれることが 可能になり、 熱膨張に伴う応力の発生が防止される。 When the position of 24 e and the shaft 190 b are displaced relative to each other, the through hole 114 e can be shifted in the horizontal direction while abutting on the flanges 197 b and l 99 b of the L-shaped pushers 197 and 199. This prevents the occurrence of stress due to thermal expansion.
(3) ここで、 S i Cヒータ 114について説明する。  (3) Here, the SiC heater 114 will be described.
図 26に示されるように、 S i Cヒータ 114は、 中心部に円形状に形成され た第 1の発熱部 114 aと、 第 1の発熱部 114aの外周を囲むように円弧状に 形成された第 2、第 3の発熱部 114 b, 114cとから構成されている。また、 S i Cヒータ 114の中心には、 保持部材 120の軸 120 dが挿通される揷通 孔 114 dが設けられている。  As shown in FIG. 26, the SiC heater 114 has a first heat generating portion 114a formed in a circular shape at the center and an arc shape surrounding the outer periphery of the first heat generating portion 114a. And second and third heat generating portions 114b and 114c. Further, a through hole 114 d through which the shaft 120 d of the holding member 120 is inserted is provided at the center of the SoC heater 114.
発熱部 114 a〜 114 cは、 夫々ヒータ制御回路 196に並列に接続されて おり、 温度調整器 198によって設定された任意の温度に制御される。 ヒータ制 御回路 196では、 電源 200から発熱部 114 a〜 114 cに供給される電圧 を制御することにより S i Cヒータ 114から放射される発熱量を制御する。 また、 発熱部 114 a〜l 14 cによって容量が異なると、 電源 200の負担 が増大するため、 本実施例では、 各発熱部 114a〜 114 cの容量 ( 2 KW) が同一になるように抵抗が設定されている。  The heat generating units 114 a to 114 c are connected in parallel to the heater control circuit 196, respectively, and are controlled to an arbitrary temperature set by the temperature controller 198. The heater control circuit 196 controls the amount of heat radiated from the SiC heater 114 by controlling the voltage supplied from the power supply 200 to the heat generating units 114 a to 114 c. Further, if the capacities differ depending on the heating units 114a to 114c, the load on the power supply 200 increases, and therefore, in this embodiment, the resistance is set so that the capacities (2 KW) of the heating units 114a to 114c are the same. Is set.
ヒータ制御回路 196は、 発熱部 114 a〜 114cを同時に通電して発熱さ せる制御方法 Iと、 被処理基ネ の温度分布状況に応じて中心の第 1の発熱部 1 14aあるいは外側の第 2、 第 3の発熱部 114b, 114 cの何れ力一方を発 熱させる制御方法 IIと、被処理基板 Wの温度変化に応じて発熱部 114 a〜 11 The heater control circuit 196 includes a control method I for simultaneously energizing the heat generating units 114 a to 114 c to generate heat, and a central first heat generating unit 114 a or an external second heat generating unit depending on the temperature distribution of the substrate to be processed. The control method II for generating either one of the third heat generating portions 114b and 114c and the heat generating portions 114a to 114c in accordance with the temperature change of the substrate W to be processed.
4 cを同時に発熱させたり、 第 1の発熱部 114 aあるいは第 2、 第 3の発熱部 114b, 114 cの何れかを発熱させたりする制御方法 IIIを選択することが できる。 It is possible to select a control method III for simultaneously generating heat from 4c or generating heat from the first heat generating section 114a or any of the second and third heat generating sections 114b and 114c.
被処理基 KWは、 上記保持部材 120により保持された状態で回転しながら各 発熱部 114 a〜 114 cの発熱により加熱される際、 外周側と中心部分との温 度差によって周縁部分が上方に反ることがある。 しかしながら、 本実施例では、 When the substrate to be processed KW is heated by the heat generated by each of the heat generating portions 114a to 114c while being rotated while being held by the holding member 120, the peripheral portion is upward due to a temperature difference between the outer peripheral side and the central portion. May be warped. However, in this embodiment,
5 i Cヒータ 114は、 熱伝導率が良い S i Cサセプタ 118を介して被処理基 ¾Wを加熱するため、 被処理基板 Wの全体が S i Cヒータ 114からの熱で加熱 され、 被処理基 iKWの周縁部分と中心部分との 差を小さく抑えられて、 被処 理基板 Wが反ることを防止する。 The 5 iC heater 114 heats the substrate to be processed W via the SiC susceptor 118 having good thermal conductivity, so that the entire substrate to be processed W is heated by the heat from the SiC heater 114 to be processed. The difference between the peripheral part and the central part of the iKW This prevents the substrate W from warping.
(4) ここで、 石英べルジャ 112の構成について詳細に説明する。  (4) Here, the configuration of the quartz bell jar 112 will be described in detail.
図 27 Aは石英ペルジャ 112の構成を示す平面図であり、 図 27 Bは石英べ ルジャ 112の構成を示す縦断面図である。 図 28 Aは石英ペルジャ 112の構 成を上方からみた斜視図であり、 図 28 Bは石英ペルジャ 112の構成を下方か らみた斜視図である。  FIG. 27A is a plan view showing the structure of the quartz peruger 112, and FIG. 27B is a longitudinal sectional view showing the structure of the quartz peruger 112. FIG. 28A is a perspective view of the configuration of the quartz peruger 112 viewed from above, and FIG. 28B is a perspective view of the configuration of the quartz peruger 112 viewed from below.
図 27 A、 図 27 B及び図 28 A、 図 28 Bに示されるように、 石英ペルジャ 112は、 透明な石英により形成されており、 前述した鍔部 112 aの上方に形 成された円筒部 112bと、 円筒部 112 bの上方を覆う天板 112 cと、 天板 112 cの中央より下方に延在する中空部 112 dと、 鍔部 112 aの内側に形 成される開口に横架された補強のための梁部 112 eとを有する。  As shown in FIG. 27A, FIG. 27B, FIG. 28A, and FIG. 28B, the quartz peruger 112 is formed of transparent quartz, and has a cylindrical portion formed above the above-mentioned flange portion 112a. 112b, a top plate 112c that covers the upper side of the cylindrical portion 112b, a hollow portion 112d extending below the center of the top plate 112c, and a bridge formed over an opening formed inside the flange portion 112a. Beam portion 112e for reinforcement.
鍔部 112 a及び天板 112 cは、 荷重を受けるので、 円筒部 112 bよりも 厚く形成されている。 また、 石英ペルジャ 112は、 縦方向に延在する中空部 1 12 dと横方向に延在する梁部 112 eとが内部で交差しているため、 上下方向 及び半径方向の強度が高められている。  Since the flange 112a and the top plate 112c receive a load, they are formed thicker than the cylindrical portion 112b. In addition, since the vertically extending hollow portion 112d and the horizontally extending beam portion 112e intersect inside the quartz peruger 112, the strength in the vertical and radial directions is increased. I have.
また、 梁部 112 eの中間位置には、 中空部 112 dの下端部分が結合されて おり、 中空部 112 d内の揷通孔 112 f は梁部 112 eも貫通している。 この 揷通孔 112 f には、 保持部材 120の軸 120 dが挿通される。  A lower end portion of the hollow portion 112d is connected to an intermediate position of the beam portion 112e, and the through hole 112f in the hollow portion 112d also penetrates the beam portion 112e. The shaft 120d of the holding member 120 is inserted into the through hole 112f.
そして、 石英ペルジャ 112の内部空間 113には、 前述した S i Cヒータ 1 14及び熱反射部材 116が挿入される。 また、 S i Cヒータ 114及び熱反射 部材 116は、 円盤状に形成されているが、 円弧状に分割可能な構成であり、 梁 部 112 eを避けて内部空間 1 13に揷入された後に組み立てられる。  The SiC heater 114 and the heat reflecting member 116 described above are inserted into the internal space 113 of the quartz peruger 112. Further, although the SiC heater 114 and the heat reflecting member 116 are formed in a disk shape, they can be divided into arc shapes, and after entering the internal space 113 avoiding the beam portion 112 e. Assembled.
さらに、 石英ペルジャ 112の天板 112 cには、 S i Cサセプタ 118を支 持するためのボス 112 g〜l 12 iが 3箇所(120度間隔)に突出している。 そのため、 ボス 112 g〜112 iに支持された S i Cサセプタ 118は、 天板 112 cから僅かに浮いた状態に載置される。 そのため、 処理容器 22の内部圧 力が変化したり、 あるいは温度変化が生じることのより S i Cサセプタ 118カ 下方に変動した場合でも、 天板 112 cに接触することが防止される。  Further, bosses 112 g to 112 i for supporting the SiC susceptor 118 protrude from the top plate 112 c of the quartz peruger 112 at three locations (120 ° intervals). Therefore, the S i C susceptor 118 supported by the bosses 112 g to 112 i is placed so as to slightly float from the top plate 112 c. For this reason, even if the internal pressure of the processing container 22 changes or the temperature changes and the internal pressure fluctuates below the SiC susceptor 118, contact with the top plate 112c is prevented.
また、 石英ペルジャ 112の内部圧力は、 後述するように処理容器 22のプロ セス空間 84の圧力と差が 5 OTo r r以下になるように減圧システムによる排 気流量の制御を行うため、 石英ペルジャ 112の肉厚を比較的薄く製作すること が可能になる。 これにより、 天板 112 cの厚さを 6〜10mm程度に薄くする ことができるので、 石英ペルジャ 112の熱容量力 M、さくなって加熱時の熱伝導 効率を高めることにより応答性を向上させることが可能になる。 尚、 本実施例の 石英ペルジャ 112は、 l O OTo r rの圧力に耐える強度を有するように設計 されている。 Further, the internal pressure of the quartz peruger 112 is controlled by the processing pressure of the processing vessel 22 as described later. Since the exhaust gas flow rate is controlled by the pressure reducing system so that the pressure and the difference in the process space 84 become 5 OTorr or less, the thickness of the quartz peruger 112 can be made relatively thin. As a result, the thickness of the top plate 112c can be reduced to about 6 to 10 mm, so that the responsiveness can be improved by increasing the heat capacity M of the quartz peruger 112 and increasing the heat conduction efficiency during heating. Becomes possible. Note that the quartz peruger 112 of this embodiment is designed to have a strength to withstand a pressure of lOOTorr.
図 29は減圧システムの排気系統の構成を示す系統図である。  FIG. 29 is a system diagram showing a configuration of an exhaust system of the pressure reducing system.
図 29に示されるように、 処理容器 22のプロセス空間 84は、 前述したよう にバルブ 48 aの開弁により排気口 74に連通された排気経路 32を介してター ボ分子ポンプ 50の吸引力により減圧される。 さらに、 ターボ分子ポンプ 50の 排気口に接続された真空管路 51の下流は、排気されたガスを吸引するポンプ (M BP) 201に違通されている。  As shown in FIG. 29, the process space 84 of the processing container 22 is filled with the suction force of the turbo molecular pump 50 through the exhaust path 32 connected to the exhaust port 74 by opening the valve 48a as described above. The pressure is reduced. Further, the downstream of the vacuum pipe 51 connected to the exhaust port of the turbo-molecular pump 50 is connected to a pump (MBP) 201 for sucking the exhausted gas.
石英べノレジャ丄 12の内部空間 113は、 排気管路 202を介してバイパス管 路 51 aに接続され、 回転駆動部 28のケーシング 122により画成された内部 空間 124は、 排気管路 204を介してバイパス管路 51 aに接続されている。 排気管路 202には、 内部空間 113の圧力を測定する圧力計 205と、 石英 ペルジャ 112の内部空間 113を減圧する際に開弁されるバルブ 206とが設 けられている。 また、 バイパス管路 51 aには、 前述したようにパルプ 48 が 設けられ、 且つバルブ 48 bをバイパスする分岐管路 208が設けられている。 この分岐管路 208には、 減圧工程の初期段階に開弁されるパルプ 210と、 バ ルプ 48 bよりも流量を絞るための可変絞り 211とが設けられている。  The internal space 113 of the quartz nozzle 12 is connected to the bypass line 51 a through the exhaust line 202, and the internal space 124 defined by the casing 122 of the rotary drive unit 28 is connected through the exhaust line 204. Connected to the bypass line 51a. The exhaust pipe 202 is provided with a pressure gauge 205 for measuring the pressure in the internal space 113 and a valve 206 that is opened when the internal space 113 of the quartz peruger 112 is depressurized. As described above, the pulp 48 is provided in the bypass pipe 51a, and the branch pipe 208 that bypasses the valve 48b is provided. The branch pipe 208 is provided with a pulp 210 that is opened at an initial stage of the decompression process, and a variable throttle 211 for narrowing the flow rate more than the pulp 48b.
また、 ターボ分子ポンプ 50の排気側には、 開閉用のバルブ 212と、 気側 の圧力を測定する圧力計 214とが設けられている。 そして、 ターボ軸パージ用 の N 2ラインがターボ分子ポンプ 50に連通されたターボ管路 216には、 逆止 弁 218、絞り 220、パルプ 222が設けられている。  On the exhaust side of the turbo-molecular pump 50, an opening / closing valve 212 and a pressure gauge 214 for measuring the pressure on the air side are provided. A check valve 218, a throttle 220, and a pulp 222 are provided in a turbo line 216 in which an N 2 line for turbo shaft purging is connected to the turbo molecular pump 50.
尚、 上記バノレブ 206, 210、212、222は、 電磁弁からなり、 制御回路 力 らの制御信号により開弁する。  The vanolebs 206, 210, 212, and 222 are composed of solenoid valves and are opened by a control signal from a control circuit.
上記のように構成された減圧システムでは、 処理容器 22、 石英ペルジャ 11 2、 回転駆動部 28の減圧工程を行う場合、 一気に減圧するのではなく、 段階的 に減圧して徐々に真空に近づけるように減圧させる。 In the decompression system configured as described above, the processing vessel 22, quartz peruger 11 2. When performing the decompression process of the rotation drive unit 28, the pressure is not reduced at once, but is decompressed in a stepwise manner so as to gradually approach the vacuum.
まず、 石英ペルジャ 112の排気管路 202に設けられたバルブ 206を開弁 することで石英べ ジャ 112の内部空間 113とプロセス空間 84との間がお 気経路 32を介して連通状態となり、 圧力の均一化が行われる。 これにより、 減 圧工程の開始段階での石英ペルジャ 112の内部空間 113とプロセス空間 84 との間の圧力差が小さくなる。  First, by opening the valve 206 provided in the exhaust pipe 202 of the quartz peruger 112, the internal space 113 of the quartz perger 112 and the process space 84 are communicated via the air path 32, and the pressure is reduced. Is made uniform. This reduces the pressure difference between the internal space 113 of the quartz peruger 112 and the process space 84 at the beginning of the pressure reduction step.
次に上記分岐管路 208に設けられたバルブ 210を開弁させて可変絞り 21 1により絞られた小流量による減圧を行う。 その後、 バイパス管路 5 l aに設け られたバルブ 48 bを開弁させて排気流量を段階的に増大させる。  Next, the valve 210 provided in the branch conduit 208 is opened to reduce the pressure by the small flow rate restricted by the variable restrictor 211. Thereafter, the valve 48b provided in the bypass line 5la is opened to gradually increase the exhaust flow rate.
また、 圧力計 205により測定された石英ペルジャ 112の圧力と、 センサュ ニット 85の圧力計 85 a〜 85 cにより測定されたプロセス空間 84の圧力と を比較し、 両圧力の差が 50 T o r r以下であるとき、 パルプ 48 bを開弁させ る。 これにより、 減圧工程において、 石英ペルジャ 112にかかる内外の圧力差 を緩和して石英ペルジャ 112に不要な応力が作用しないように減圧工程を行う。 そして、 所定時間経過後にバルブ 48 aを開弁させてターボ分子ポンプ 50の 吸引力による排気流量を増大させて処理容器 22、 石英ペルジャ 112、 回転駆 動部 28の内部を真空になるまで減圧する。  Also, the pressure of the quartz peruger 112 measured by the pressure gauge 205 and the pressure of the process space 84 measured by the pressure gauges 85 a to 85 c of the sensor unit 85 are compared, and the difference between the two pressures is 50 Torr or less. When, the pulp 48b is opened. Thus, in the depressurizing step, a pressure difference between the inside and the outside applied to the quartz perger 112 is reduced, and the depressurizing step is performed so that unnecessary stress does not act on the quartz perger 112. After a lapse of a predetermined time, the valve 48a is opened to increase the exhaust flow rate due to the suction force of the turbo molecular pump 50, and the pressure inside the processing vessel 22, the quartz peruger 112, and the rotary driving unit 28 is reduced to a vacuum. .
(5) ここで、 上記保持部材 120の構成について説明する。  (5) Here, the configuration of the holding member 120 will be described.
図 30 Aは保持部材 120の構成を示す平面図であり、 図 30 Bは保持部材 1 20の構成を示す側面図である。  FIG. 30A is a plan view showing the configuration of the holding member 120, and FIG. 30B is a side view showing the configuration of the holding member 120.
図 30 A、 図 30 Bに示されるように、 保持部材 120は、 被処理基板 Wを支 持する腕部 120 a〜: 120 cと、 腕部 120 a〜: 120 cが結合された軸 12 0 dとから構成されている。 腕部 120 a〜l 20 cは、 プロセス空間 84にお けるコンタミネーシヨンを防止し、 且つ S i Cサセプタ 118からの熱を遮蔽し ないようにするため、 透明石英により形成されており、 軸 120 dの上端を中心 軸として 12◦度間隔で水平方向に放射状に延在している。  As shown in FIGS. 30A and 30B, the holding member 120 includes an arm 120 a to: 120 c supporting the substrate W to be processed, and a shaft 12 to which the arm 120 a to 120 c are connected. 0d. The arms 120 a to 120 c are formed of transparent quartz in order to prevent contamination in the process space 84 and not to shield heat from the SiC susceptor 118. It extends radially in the horizontal direction at intervals of 12 ° with the upper end of 120 d as the central axis.
さらに、 腕部 120 a〜 120 cの長手方向の中間位置には、 被処理基ネ の 下面に当接するボス 120 e〜l 20 gが突出している。 そのため、 被処理基板 JP2003/012082 Further, bosses 120e to 120g that abut on the lower surface of the substrate to be processed project at intermediate positions in the longitudinal direction of the arms 120a to 120c. Therefore, the substrate to be processed JP2003 / 012082
28 28
Wは、 ボス 1 2 0 e〜1 2 0 gが当接する 3点で支持される。 W is supported at three points where the bosses 120e to 120g abut.
このように、 保持部材 1 2 0は、 点接触で被処理基板 Wを支持する構成である ので、 S i Cサセプタ 1 1 8に対して僅かな距離で離間した位置に被処理基板 W を保持することができる。 尚、 S i Cサセプタ 1 1 8と被処理基板 Wとの離間距 離は、 例えば、 1〜2 0 mmであり、 望ましくは 3〜1 O mm程度が良い。 すなわち、 被処理基板 Wは、 S i Cサセプタ 1 1 8の上方に浮いた状態で回転 することになり、 真接 S i Cサセプタ 1 1 8に载置される場合よりも S i Cサセ プタ 1 1 8からの熱が均一に放射され、 周縁部分と中心部分の温度差が生じにく く、 温度差による被処理基板 Wの反りも防止される。  As described above, since the holding member 120 is configured to support the target substrate W by point contact, the target substrate W is held at a position slightly separated from the SiC susceptor 118. can do. The distance between the SiC susceptor 118 and the substrate W to be processed is, for example, 1 to 20 mm, and preferably about 3 to 1 Omm. That is, the substrate W to be processed is rotated while floating above the SiC susceptor 118, and the SiC susceptor is moved more than when the substrate W is placed directly on the SiC susceptor 118. The heat from 118 is evenly radiated, the temperature difference between the peripheral portion and the central portion is hardly generated, and the warpage of the substrate W due to the temperature difference is also prevented.
被処理基ネ^ Wは、 S i Cサセプタ 1 1 8から離間した位置に保持されているの で、 温度差によって反りが生じても S i Cサセプタ 1 1 8に接触せず、 定常時の 温度均一化に伴って元の水平状態に復帰することが可能になる。  The substrate W to be treated is held at a position away from the SiC susceptor 118, so even if warpage occurs due to a temperature difference, it does not contact the SiC susceptor 118, It is possible to return to the original horizontal state as the temperature becomes uniform.
また、 保持部材 1 2 0の軸 1 2 0 dは、 不透明石英により棒状に形成されてお り、 上記 S i Cサセプタ 1 1 8及び石英ペルジャ 1 1 2の揷通孔 1 1 2 f に揷通 されて下方に延在する。 このように、 保持部材 1 2 0は、 プロセス空間 8 4内で 被処理基板 Wを保持するものであるが、 石英により形成されてレヽるので、 金属製 のものよりもコンタミネーシヨンのおそれがない。  The shaft 120 d of the holding member 120 is formed in a rod shape by opaque quartz, and is formed in the through hole 112 f of the SiC susceptor 118 and the quartz peruger 112. It extends through it. As described above, the holding member 120 holds the substrate W to be processed in the process space 84. However, since the holding member 120 is formed of quartz and laid, the possibility of contamination is higher than that of metal. Absent.
( 6 ) ここで、 上記回転駆動部 2 8の構成について詳細に説明する。  (6) Here, the configuration of the rotation drive unit 28 will be described in detail.
図 3 1はヒータ部 2 4の下方に配置された回転駆動部 2 8の構成を示す縦断面 図である。 図 3 2は回転駆動部 2 8を拡大して示す縦断面図である。  FIG. 31 is a longitudinal sectional view showing the configuration of the rotation drive unit 28 disposed below the heater unit 24. FIG. 32 is an enlarged longitudinal sectional view showing the rotation drive unit 28.
図 3 1及ぴ図 3 2に示されるように、 ヒータ部 2 4のベース 1 1 0の下面に回 転駆動部 2 8を支持するためのホルダ 2 3 0が締結されている。 このホルダ 2 3 0には、回転位置検出機構 2 3 2と、ホノレダ冷却機構 2 3 4とが設けられている。 さらに、 ホルダ 2 3 0の下方には、 保持部材 1 2 0の軸 1 2 0 dが挿通固定さ れたセラミック軸 1 2 6が挿入されており、 セラミック軸 1 2 6を回転可能に支 持するセラミック軸受 2 3 6, 2 3 7を保持する固定側のケーシング 1 2 2がボ ルト 2 4 0により固定されている。  As shown in FIGS. 31 and 32, a holder 230 for supporting the rotation drive unit 28 is fastened to the lower surface of the base 110 of the heater unit 24. The holder 230 is provided with a rotation position detection mechanism 2 32 and a honoleda cooling mechanism 2 34. Further, a ceramic shaft 126 into which the shaft 120 d of the holding member 120 is inserted and fixed is inserted below the holder 230, and rotatably supports the ceramic shaft 126. The fixed casing 122 holding the ceramic bearings 236 and 237 is fixed by a bolt 240.
ケーシング 1 2 2内においては、 回転部分がセラミック軸 1 2 6とセラミック 軸受 2 3 6, 2 3 7とから構成されているので、 金属のコンタミネーシヨンが防 2 In the casing 122, the rotating part is composed of the ceramic shaft 126 and the ceramic bearings 236, 237, so that metal contamination is prevented. Two
29 止されている。 29 has been stopped.
ケーシング 1 2 2は、 ボルト 2 4 0が挿通されるフランジ 2 4 2と、 フランジ 2 3 8より下方に延在形成された有底筒状の隔壁 2 4 4とを有する。 隔壁 2 4 4 の外周面には、 前述した減圧システムの排気管路 2 0 4が連通される排気ポート 2 4 6が設けられており、 ケーシング 1 2 2の内部空間 1 2 4の気体は、 前述し た減圧システムによる減圧工程において、 排気されて減圧される。 そのため、 プ ロセス空間 8 4内のガスが保持部材 1 2 0の軸 1 2 0 dに沿って外部に流出する ことが防止される。  The casing 122 has a flange 242 through which the bolt 240 is inserted, and a bottomed cylindrical partition wall 244 extending below the flange 238. The outer peripheral surface of the partition wall 2 4 4 is provided with an exhaust port 2 46 to which the exhaust pipe 204 of the pressure reducing system described above communicates, and the gas in the internal space 1 2 4 of the casing 1 2 2 is In the decompression step by the above-described decompression system, the air is exhausted and decompressed. Therefore, the gas in the process space 84 is prevented from flowing out along the axis 120d of the holding member 120.
さらに、 内部空間 1 2 4には、 マグネットカップリング 1 3 0の従動側マグネ ット 2 4 8が収納されている。 この従動側マグネット 2 4 8は、 コンタミネーシ ョンを防止するため、 セラミック軸 1 2 6の外周に嵌合されたマグネットカバー 2 5 0に覆われており、 内部空間 1 2 4内の気体と接触しないように取り付けら れている。  Further, the driven space magnet 248 of the magnet coupling 130 is accommodated in the internal space 124. The driven magnet 248 is covered with a magnet cover 250 fitted around the outer periphery of the ceramic shaft 126 to prevent contamination, and is connected to the gas in the internal space 124. Mounted so that they do not touch.
マグネットカバー 2 5 0は、アルミ合金により環状に形成された力パーであり、 内部に収納する環状の空間が形成されている。 内にがたつきの無い状態に収納さ れている。 また、 マグネットカバー 2 5 0の継ぎ目部分は、 電子ビーム溶接によ り隙間無く結合されており、 口ゥ付け等のように銀が流出してコンタミネーショ ンが生じることがないように加工されている。  The magnet cover 250 is a force par formed in an annular shape from an aluminum alloy, and has an annular space housed therein. It is housed in a state without rattling. Further, the joint portion of the magnet cover 250 is joined without gaps by electron beam welding, and is processed so that silver does not flow out and cause contamination as in the case of welding. ing.
さらに、 ケーシング 1 2 2の外周には、 筒状に形成された大気側回転部 2 5 2 が嵌合するように設けられており、 軸受 2 5 4, 2 5 5を介して回転可能に支持 されている。 そして、 大気側回転部 2 5 2の内周には、 マグネットカツプリング 1 3 0の駆動側マグネット 2 5 6が取り付けられている。  Further, a cylindrical air-side rotating portion 252 is provided on the outer periphery of the casing 122 so as to fit therewith, and is rotatably supported via bearings 255, 255. Have been. On the inner periphery of the atmosphere-side rotating section 25 2, a drive-side magnet 2 56 of the magnet coupling 130 is attached.
大気側回転部 2 5 2は、 下端部 2 5 2 aが伝達部材 2 5 7を介してモータ 1 2 8の駆動軸 1 2 8 aが結合されている。そのため、モータ 1 2 8の回転駆動力は、 大気側回転部 2 5 2に設けられた駆動側マグネット' 2 5 6とケーシング 1 2 2の 内部に設けられた従動側マグネット 2 4 8との間の磁力を介してセラミック軸 1 2 6に伝達され、 保持部材 1 2 0及び被処理基板 Wに伝達される。  The lower end portion 25a of the atmosphere-side rotating portion 252 is connected to the drive shaft 128a of the motor 128 via a transmission member 255. Therefore, the rotational driving force of the motor 128 is set between the driving-side magnet ′ 256 provided in the atmosphere-side rotating part 252 and the driven-side magnet 248 provided in the casing 122. The magnetic force is transmitted to the ceramic shaft 126 and transmitted to the holding member 120 and the substrate W to be processed.
また、 大気側回転部 2 5 2の外側には、 大気側回転部 2 5 2の回転を検出する 回転検出ュ-ット 2 5 8が設けられている。 この回転検出ュニット 2 5 8は、 大 PC蘭麵 12082 Further, a rotation detection cutout 258 for detecting the rotation of the atmosphere-side rotating unit 255 is provided outside the atmosphere-side rotating unit 255. This rotation detection unit 2 5 8 PC orchid 12082
30 気側回転部 2 5 2の下端部外周に取り付けられた円盤状のスリット板 2 6 0 , 2 6 1と、 スリット板 2 6 0, 2 6 1の回転量を光学的に検出するフォトインタラ プタ 2 6 2, 2 6 3とから構成されている。 Disc-shaped slit plates 26 0 and 26 1 attached to the outer periphery of the lower end of the 30-side rotating unit 25 2 and a photointerrupter that optically detects the amount of rotation of the slit plates 260 and 26 1 26, and 26 3.
フォトインタラプタ 2 6 2, 2 6 3は、 ブラケット 2 6 4により固定側のケー シング 1 2 2に固定されている。 そして、 回転検出ュ-ット 2 5 8では、 一対の フォトインタラプタ 2 6 2, 2 6 3から回^ ¾度に応じたパルスが同時に検出さ れるので、 両パルスを比較することにより回転検出精度を高めることが可能にな る。  The photo interrupters 26 2 and 26 3 are fixed to the fixed casing 122 by a bracket 26 4. In the rotation detection unit 255, a pulse corresponding to the rotation angle is simultaneously detected from the pair of photointerrupters 262, 263, and the rotation detection accuracy is determined by comparing the two pulses. Can be increased.
図 3 3 Aはホルダ冷却機構 2 3 4の構成を示す横断面図であり、 図 3 3 Bはホ ルダ冷却機構 2 3 4の構成を示す側面図である。  FIG. 33A is a cross-sectional view showing the configuration of the holder cooling mechanism 234, and FIG. 33B is a side view showing the configuration of the holder cooling mechanism 234.
図 3 3 A、 図 3 3 Bに示されるように、 ホルダ冷却機構 2 3 4は、 ホルダ 2 3 0の内部に周方向に延在する冷却水用の水路 2 3 0 aが形成されている。そして、 水路 2 3 0 aの一端に冷却水供給ポート 2 3 0 bが連通され、 水路 2 3 0 aの他 端に冷却水排出ポート 2 3 0 cが連通されている。  As shown in FIG. 33A and FIG. 33B, the holder cooling mechanism 234 has a water channel 230a for cooling water extending in the circumferential direction inside the holder 230. . The cooling water supply port 230b is connected to one end of the water channel 230a, and the cooling water discharge port 230c is connected to the other end of the water channel 230a.
冷却水供給部 4 6力ら供給された冷却水は、 冷却水供給ポート 2 3 0 bから水 路 2 3 0 aを通過した後、 冷却水排出ポート 2 3 0 cから排出されるため、 ホル ダ 2 3 0全体を冷却することができる。  The cooling water supplied from the cooling water supply unit 46 passes through the cooling water supply port 230b from the cooling water supply port 230a, and then is discharged from the cooling water discharge port 230c. The entire 230 can be cooled.
図 3 4は回転位置検出機構 2 3 2の構成を示す横断面図である。  FIG. 34 is a cross-sectional view showing the configuration of the rotational position detecting mechanism 232.
図 3 4に示されるように、 ホルダ 2 3 0の一方の側面には、 発光素子 2 6 6カ 取り付けられ、 ホルダ 2 3 0の他方の側面には、 発光素子 2 6 6カゝらの光を受光 する受光素子 2 6 8が取り付けられている。  As shown in FIG. 34, the light emitting element 266 is attached to one side of the holder 230, and the light of the light emitting element 266 is attached to the other side of the holder 230. A photodetector 266 that receives light is attached.
また、 ホルダ 2 3 0の中央には、 保持部材 1 2 0の軸 1 2 0 dが揷通される中 央孔 2 3 0 dが上下方向に貫通しており、 この中央孔 2 3 0 dに交差するように 横方向に貫通する貫通孔 2 3 0 e , 2 3 0 f が設けられている。  In the center of the holder 230, a central hole 230d through which the shaft 120d of the holding member 120 passes is vertically penetrated, and the central hole 230d There are provided through-holes 230 e and 230 f penetrating in the lateral direction so as to intersect.
発光素子 2 6 6は、 一方の貫通孔 2 3 0 eの端部に挿入され、 受光素子 2 6 8 は、 他方の貫通孔 2 3 0 f の端部に挿入されている。 貫通孔 2 3 0 eと 2 3 0 f との間には、 軸 1 2 0 dが揷通されているため、 軸 1 2 0 dの回転位置を受光素 子 2 6 8の出力変化から検出することが可能になる。  The light emitting element 266 is inserted into the end of one through hole 230 e, and the light receiving element 268 is inserted into the end of the other through hole 230 f. Since the axis 120 d is passed between the through holes 230 e and 230 f, the rotational position of the axis 120 d is detected from the output change of the photodetector element 268 It becomes possible to do.
( 7 ) ここで、 回転位置検出機構 2 3 2の構成及び作用について詳細に説明す る。 (7) Here, the configuration and operation of the rotational position detecting mechanism 2 32 will be described in detail. You.
図 3 5 Aは回転位置検出機構 2 3 2の非検出状態を示す図であり、 図 3 5 Bは 回転位置検出機構 2 3 2の検出状態を示す図である。  FIG. 35A is a diagram illustrating a non-detection state of the rotation position detection mechanism 232, and FIG. 35B is a diagram illustrating a detection state of the rotation position detection mechanism 232.
図 3 5 Aに示されるように、 保持部材 1 2 0の軸 1 2 0 dは、 外周に接線方向 の面取り加工が施されている。 この面取り部 1 2 0 iは、発光素子 2 6 6と受光 素子 2 6 8との中間位置に回動したとき、 発光素子 2 6 6力 発光された光と平 行になる。  As shown in FIG. 35A, the shaft 120 d of the holding member 120 has a tangential chamfering process on the outer periphery. When the chamfered portion 120i is rotated to an intermediate position between the light emitting element 2666 and the light receiving element 2668, the light emitted from the light emitting element 2666 is parallel to the emitted light.
このとき、 発光素子 2 6 6からの光は、 面取り部 1 2 0 iの横を通過して受光 素子 2 6 8に照射される。 これにより、 受光素子 2 6 8の出力信号 Sはオンにな り、 回転位置判定回路 2 7 0に供給される。  At this time, the light from the light emitting element 266 passes the side of the chamfered portion 120i and is irradiated on the light receiving element 268. As a result, the output signal S of the light receiving element 268 is turned on and supplied to the rotational position determination circuit 270.
図 3 5 Bに示されるように、 保持部材 1 2 0の軸 1 2 0 dが回動して面取り部 1 2 0 iの位置が中間位置からずれると、 発光素子 2 6 6からの光は、 軸 1 2 0 dに遮断され、 回転位置判定回路 2 7 0への出力信号 Sはオフになる。  As shown in FIG. 35B, when the shaft 120 d of the holding member 120 rotates and the position of the chamfered portion 120 i deviates from the intermediate position, the light from the light emitting element 260 Then, the shaft 120 is shut off by d and the output signal S to the rotation position determination circuit 270 is turned off.
図 3 6 Aは、 回転位置検出機構 2 3 2の受光素子 2 6 8の出力信号 Sを示す波 形図であり、 図 3 6 Bは回転位置判定回路 2 7 0から出力されるパルス信号 Pの 波形図である。  FIG. 36A is a waveform diagram showing the output signal S of the light-receiving element 268 of the rotation position detection mechanism 2 32, and FIG. 36B is a pulse signal P output from the rotation position determination circuit 270. FIG.
囡 3 6 Aに示されるように、 受光素子 2 6 8は、 軸 1 2 0 dの回動位置によつ て発光素子 2 6 6からの光の受光量 (出力信号 S ) が放物線状に変化する。 回転 位置判定回路 2 7 0では、 この出力信号 Sに対する閾値 Hを設定することで、 出 力信号 Sが閾値 H以上になったときにパルス Pを出力する。  As shown in 囡 36 A, the light receiving element 268 has a parabolic change in the amount of light received from the light emitting element 266 (output signal S) depending on the rotation position of the shaft 120 d. Change. The rotation position determination circuit 270 sets a threshold value H for the output signal S, and outputs a pulse P when the output signal S exceeds the threshold value H.
このパノレス Pが保持部材 1 2 0の回動位置を検出した検出信号として出力され る。 すなわち、 回転位置判定回路 2 7 0は、 図 1 0に示されるように、 保持部材 1 2 0の腕部 1 2 0 a〜 1 2 0 cが昇降アーム 1 3 2の当接ピン 1 3 8 a〜 1 3 8 cに干渉せず、 且つ搬送ロボット 9 8のロボットハンドと干渉しない位置にあ ることを判定し、 その検出信号 (パルス P ) を出力する。  The panless P is output as a detection signal for detecting the rotation position of the holding member 120. That is, as shown in FIG. 10, the rotational position determination circuit 27 0 is configured such that the arm portions 120 a to 120 c of the holding member 120 are connected to the contact pins 1 3 8 of the elevating arm 13 2. It judges that it is at a position that does not interfere with a to 138c and does not interfere with the robot hand of the transfer robot 98, and outputs the detection signal (pulse P).
( 8 ) ここで、 上記回転位置判定回路 2 7 0から出力された検出信号 (パノレス P ) に基づ 、て制御回路が実行する回転位置制御処理について説明する。  (8) Here, the rotation position control processing executed by the control circuit based on the detection signal (Panores P) output from the rotation position determination circuit 270 will be described.
図 3 7は制御回路が実行する回転位置制御処理を説明するためのフローチヤ一 トである。 図 3 7に示されるように、 制御回路は、 S 1 1において、 被処理基ネ^ Wの回転 を指示する制御信号があると、 S 1 2に進み、 モータ 1 2 8を起動させる。 続い て、 S 1 3に進み、 受光素子 2 6 8の信号がオンかどうかをチェックする。 S 1 3で受光素子 2 6 8の信号がオンであるときは、 S 1 4に進み、 検出信号 (パル ス P ) の周期から保持部材 1 2 0及ぴ被処理基板 Wの回転数を演算する。 FIG. 37 is a flowchart for explaining the rotational position control processing executed by the control circuit. As shown in FIG. 37, when there is a control signal instructing the rotation of the processing target device W in S11, the control circuit proceeds to S12 and starts the motor 128. Subsequently, the flow advances to S13 to check whether or not the signal of the light receiving element 268 is ON. If the signal of the light receiving element 268 is on in S13, the process proceeds to S14, and the rotation number of the holding member 120 and the substrate W to be processed is calculated from the period of the detection signal (pulse P). I do.
続いて、 S 1 5に進み、 持部材 1 2 0及ぴ被処理基板 Wの回転数 nが予め設 定された目標回転 n aかどうかをチェックする。 S 1 5において、 保持部材 1 2 ひ及ぴ被処理基¾ ¥の回転数 nが目標回転 n aに達していないときは、 上記 S 1 3に戻り、 モータ 1 2 8の回転数が上昇したかどうかを再度チェックする。 また、 上記 S 1 5におレヽて、 n = n aのときは、 保持部材 1 2 0及び被処理基 板 Wの回転数 nが目標回転 n aに達しているので、 S 1 7に進み、 モータ停止の 制御信号があるかどうかをチェックする。 S 1 7において、 モータ停止の制御信 号が無いときは、 上記 S 1 3に戻り、 モータ停止の制御信号があるときは、 S 1 8に進み、 モータ 1 2 8を停止させる。 続いて、 S 1 9で受光素子 2 6 8の信号 がオンかどうかをチェックし、受光素子 2 6 8の信号がオンになるまで繰り返す。 このようにして、 保持部材 1 2 0の腕部 1 2 0 a〜l 2 0 cが昇降アーム 1 3 2の当接ピン 1 3 8 a〜 1 3 8 cに干渉せず、 且つ搬送ロボット 9 8のロボット ハンドと干渉しなレ、位置に停止させることができる。  Subsequently, the process proceeds to S15, where it is checked whether the rotation speed n of the holding member 1200 and the substrate to be processed W is a preset target rotation na. In S 15, if the rotation speed n of the holding member 1 2 ぴ ぴ ぴ ぴ ¾ い な い し て し て い な い does not reach the target rotation speed na, return to S 13 and check whether the rotation speed of the motor 128 Check again. When n = na in S15, since the rotation speed n of the holding member 120 and the substrate W to be processed has reached the target rotation na, the process proceeds to S17 and the motor Check for a stop control signal. In S17, if there is no control signal for stopping the motor, the process returns to S13. If there is a control signal for stopping the motor, the process proceeds to S18 to stop the motor 128. Subsequently, in S19, it is checked whether or not the signal of the light receiving element 268 is on, and this operation is repeated until the signal of the light receiving element 268 is turned on. In this way, the arm portions 120 a to l 20 c of the holding member 120 do not interfere with the contact pins 1 38 a to 1 38 c of the elevating arm 13 2, and the transfer robot 9 It can be stopped at a position without interfering with the robot hand of 8.
尚、 上記回転位置制御処理では、 受光素子 2 6 8からの出力信号の周期から回 転数を求める方法を用いた場合について説明したが、 例えば前述したフォトイン タラプタ 2 6 2, 2 6 3から出力された信号を積算して回転数を求めることも可 能である。  In the above rotation position control processing, the case of using the method of calculating the number of rotations from the cycle of the output signal from the light receiving element 268 has been described. For example, the above-described photointerrupters 262, 263 It is also possible to obtain the number of rotations by integrating the output signals.
( 9 ) ここで、 処理容器 1 2 2の側面に形成された窓 7 5, 7 6の構成にっレヽ て詳細に説明する。  (9) Here, the configuration of the windows 75 and 76 formed on the side surface of the processing container 122 will be described in detail.
図 3 8は窓 7 5, 7 6の取付箇所を上方からみた横断面図である。 図 3 9は窓 7 5を拡大して示す横断面図である。 図 4 0は窓 7 6を拡大して示す横断面図で ある。  Fig. 38 is a cross-sectional view of the mounting location of the windows 75, 76 as viewed from above. FIG. 39 is a cross-sectional view showing the window 75 in an enlarged manner. FIG. 40 is a cross-sectional view showing the window 76 in an enlarged manner.
図 3 8及び図 3 9に示されるように、 第 1の窓 7 5は、 処理容器 1 2 2の内部 に形成されたプロセス空間 8 4にガスが供給されたり、 真空に減圧されるため、 気密性がより高められた構成になっている。 As shown in FIG. 38 and FIG. 39, the first window 75 is used for supplying gas to the process space 84 formed inside the processing vessel 122 and for reducing the pressure to a vacuum. The structure is more airtight.
窓 7 5は、 透明石英 2 7 2と、 紫外線を遮断する UVガラス 2 7 4とを有する 2重構造になっている。 透明石英 2 7 2は、 窓取り付け部 2 7 6に当接させた状 態で第 1の窓枠 2 7 8が窓取り付け部 2 7 6にビス 2 7 7でネジ止めされて固定 される。 窓取り付け部 2 7 6の外面には、 透明石英 2 7 2との間を気密にシール するシール部材 (Oリング) 2 8 0が装着されている。 さらに、 第 1の窓枠 2 7 8の外面には、 UVガラス 2 7 4を当接させた状態で第 2の窓枠 2 8 2がビス 2 The window 75 has a double structure including transparent quartz 272 and UV glass 274 for blocking ultraviolet rays. The first window frame 278 is screwed to the window mounting portion 276 with screws 277 while the transparent quartz 272 is in contact with the window mounting portion 276 and fixed. A sealing member (O-ring) 280 for hermetically sealing the gap with the transparent quartz 272 is mounted on the outer surface of the window mounting portion 276. Further, on the outer surface of the first window frame 278, the second window frame 282 is screwed with the UV glass 274 in contact with the screw 2.
8 4でネジ止めされて固定される。 8 Screwed and fixed in 4.
このように、 窓 7 5は、 紫外線光源 (UVランプ) 8 6, 8 7から照射された 紫外線が UVガラス 2 7 4によって遮断されてプロセス空間 8 4の外部に漏れる ことを防止していると共に、 シール部材 2 8 0のシール効果によってプロセス空 間 8 4に供給されたガスが外部に流出することを防止している。  As described above, the window 75 prevents the ultraviolet rays emitted from the ultraviolet light sources (UV lamps) 86 and 87 from being blocked by the UV glass 27 4 and leaking out of the process space 84. The sealing effect of the sealing member 280 prevents the gas supplied to the process space 84 from flowing out.
また、 処理容器 2 2の側面を貫通する開口 2 8 6は、 処理容器 2 2の中央、 す なわち保持部材 1 2 0に保持された被処理基板 Wの中心に向かうように斜めに貫 通している。 そのため、 窓 7 5は、 処理容器 2 2の側面中心から外れた位置に設 けられているが、 横方向に広く見えるように楕円形状に形成されており、 被処理 基板 Wの状態を外部から視認することができる。  The opening 286 penetrating the side surface of the processing container 22 penetrates obliquely toward the center of the processing container 22, that is, toward the center of the substrate W held by the holding member 120. ing. Therefore, although the window 75 is provided at a position deviating from the center of the side surface of the processing container 22, the window 75 is formed in an elliptical shape so that it can be seen wide in the lateral direction, and the state of the substrate W to be processed is externally determined. You can see it.
また、第 2の窓 7 6は、上記窓 7 5と同様な構成になっており、透明石英 2 9 2 と、 紫外線を遮新する UVガラス 2 9 4とを有する 2重構造になっている。 透明 石英 2 9 2は、 窓取り付け部 2 9 6に当接させた状態で第 1の窓枠 2 9 8が窓取 り付け部 2 9 6にビス 2 9 7でネジ止めされて固定される。 窓取り付け部 2 9 6 の外面には、 透明石英 2 9 2との間を気密にシールするシール部材 (Oリング) 3 0 0が装着されている。 さらに、 第 1の窓枠 2 9 8の外面には、 UVガラス 2 The second window 76 has the same configuration as the window 75 described above, and has a double structure including a transparent quartz 292 and a UV glass 294 that blocks ultraviolet rays. . The first quartz frame 298 is screwed to the window mounting part 296 with screws 297 and fixed in a state where the transparent quartz 292 contacts the window mounting part 296. . A seal member (O-ring) 300 for hermetically sealing the space between the window mounting portion 296 and the transparent quartz 292 is mounted. In addition, the outer surface of the first window frame 298 has UV glass 2
9 4を当接させた状態で第 2の窓枠 3 0 2がビス 3 0 4でネジ止めされて固定さ れる。 The second window frame 302 is screwed and fixed with screws 304 with the 94 in contact.
このように、 窓 7 6は、 紫外線光源 (UVランプ) 8 6, 8 7から照射された 紫外線が UVガラス 2 9 4によって遮断されてプロセス空間 8 4の外部に漏れる ことを防止していると共に、 シール部材 3 0 0のシール効果によってプロセス空 間 8 4に供給されたガスが外部に流出することを防止している。 尚、 本実施例では、 処理容器 22の側面に一対の窓 75, 76を配置した構成 を一例として説明したが、 これに限らず、 3個以上の窓を設けるようにしても良 いし、 あるいは側面以外の場所に設けるようにしても良いのは勿論である。 As described above, the window 76 prevents the ultraviolet light emitted from the ultraviolet light sources (UV lamps) 86 and 87 from being blocked by the UV glass 294 and leaking out of the process space 84. The sealing effect of the sealing member 300 prevents the gas supplied to the process space 84 from flowing out. In this embodiment, the configuration in which the pair of windows 75 and 76 are arranged on the side surface of the processing container 22 has been described as an example. However, the present invention is not limited to this, and three or more windows may be provided. Of course, it may be provided at a place other than the side.
(10) ここで、 石英ライナ 100を構成する各ケース 102,104,106, 108について説明する。  (10) Here, each of the cases 102, 104, 106, and 108 constituting the quartz liner 100 will be described.
図 9及ぴ図 1 0に示されるように、 石英ライナ 100は、 下部ケース 102、 側面ケース 104、 上部ケース 106、 円筒状ケース 108とを組み合わせた構 成になっており、 夫々が不透明石英により形成されており、 アルミ合金製の処理 容器 22をガスや紫外線から保護すると共に、 処理容器 22による金属のコンタ ミネーションを防止することを目的として設けられている。  As shown in FIGS. 9 and 10, the quartz liner 100 is configured by combining a lower case 102, a side case 104, an upper case 106, and a cylindrical case 108, each of which is made of opaque quartz. It is provided for the purpose of protecting the processing container 22 made of aluminum alloy from gas and ultraviolet rays and preventing metal contamination by the processing container 22.
図 41 Aは下部ケース 102の構成を示す平面図であり、 図 41 Bは下部ケー ス 102の構成を示す側面図である。  FIG. 41A is a plan view showing the configuration of the lower case 102, and FIG. 41B is a side view showing the configuration of the lower case 102.
図 41 A、 図 41 Bに示されるように、 下部ケース 102は、 輪郭形状が処理 容器 22の内壁形状に対応した板状に形成されており、 その中央には S i Cサセ プタ 1 18及ぴ被処理基ネ に対向する円形開口 310が形成されている。 この 円形開口 3 10は、 円筒状ケース 108が挿入可能な寸法に形成されており、 内 周には保持部材 1 20の腕部 120 a〜: 1 20 cの先端部を挿入するための凹部 310 a〜 31 0 cが 1 20度間隔で設けられている。  As shown in FIGS. 41A and 41B, the lower case 102 is formed in a plate shape having an outline shape corresponding to the inner wall shape of the processing container 22, and has a SoC susceptor 118 and a center in the center thereof.円 形 A circular opening 310 facing the substrate to be processed is formed. The circular opening 310 is formed to have a dimension into which the cylindrical case 108 can be inserted, and has a concave portion 310 for inserting the tip portion of the arm portion 120a to 120c of the holding member 120 at the inner periphery. a to 310c are provided at intervals of 120 degrees.
尚、 凹部 310 a〜 310 cの位置は、 保持部材 1 20の腕部 120 a〜 12 0 cが昇降アーム 1 32の当接ピン 138 a〜 138 cに干渉せず、 且つ搬送口 ボット 98のロボットハンドと干渉しない位置である。  The positions of the recesses 310 a to 310 c are such that the arm portions 120 a to 120 c of the holding member 120 do not interfere with the contact pins 138 a to 138 c of the lifting arm 132, and This is a position that does not interfere with the robot hand.
また、 下部ケース 102には、 処理容器 22の底部に形成された排気口 74に 対向する長方形状の開口 3 1 2が設けられている。さらに、下部ケース 102は、 下面に位置決め用の突起 3 14 a, 314 bが非対称位置に設けられている。 また、 上記円形開口 310の内周には、 後述する円筒状ケース 108の突起が 嵌合するための凹部 310 dが形成されている。 さらに、 下部ケース 102の周 縁部には、 側面ケース 104に嵌合する段部 3 1 5が設けられている。  Further, the lower case 102 is provided with a rectangular opening 312 facing the exhaust port 74 formed at the bottom of the processing container 22. Further, the lower case 102 has positioning protrusions 314a and 314b on the lower surface at asymmetric positions. In addition, a concave portion 310 d is formed on the inner periphery of the circular opening 310 so that a protrusion of a cylindrical case 108 described later is fitted thereto. Further, a stepped portion 315 that fits into the side surface case 104 is provided on a peripheral portion of the lower case 102.
図 42 Aは側面ケース 104の構成を示す平面図であり、 図 42 Bは側面ケー ス 104の正面図であり、 図 42 Cは側面ケース 104の背面図であり、 図 42 03 012082 42A is a plan view showing the configuration of the side case 104, FIG. 42B is a front view of the side case 104, FIG. 42C is a rear view of the side case 104, and FIG. 03 012082
35 35
Dは側面ケース 1 0 4の左側面図であり、 図 4 2 Eは側面ケース 1 0 4の右側面 図である。 D is a left side view of the side case 104, and FIG. 42E is a right side view of the side case 104.
図 4 2 A〜図 4 2 Eに示されるように、 側面ケース 1 0 4は、 外形状が処理容 器 2 2の内壁形状に対応した四隅が R形状とされた略四角形の枠形状に形成され' ており、 内側にプロセス空間 8 4が形成される。  As shown in FIGS. 42A to 42E, the side case 104 is formed in a substantially rectangular frame shape in which the outer shape corresponds to the inner wall shape of the processing container 22 and the four corners are R-shaped. And a process space 84 is formed inside.
また、 側面ケース 1 0 4は、 正面 1 0 4 aに前述したガス噴射ノズル部 9 3の 複数の噴射口 9 3 aに対向するように横方向に延在された細長形状のスリット 3 1 6と、 リモートプラズマ部 2 7に連通される連通孔 9 2に対向する位置に設け られた U字状の開口 3 1 7とが設けられている。 尚、 本実施例では、 スリット 3 1 6と開口 3 1 7とが連通した構成になっているが、 夫々独立した開口として形 成することも可能である。  Also, the side case 104 has an elongated slit 3 16 extending in the lateral direction so as to face the plurality of injection ports 93 a of the gas injection nozzle portion 93 described above on the front surface 104 a. And a U-shaped opening 317 provided at a position facing the communication hole 92 communicating with the remote plasma section 27. In the present embodiment, the slit 316 and the opening 317 are connected to each other, but they may be formed as independent openings.
また、 側面ケース 1 0 4は、 背面 1 0 4 bに前述した搬送ロボット 9 8のロボ ットハンドが通過するための凹部 3 1 8が搬送口 9 4に対向する位置に形成され ている。  In the side case 104, a concave portion 318 through which the above-described robot hand of the transfer robot 98 passes is formed on the rear surface 104 b at a position facing the transfer port 94.
また、 側面ケース 1 0 4は、 左側面 1 0 4 cに前述したセンサュニット 8 5に 対向する円形の孔 3 1 9が形成され、右側面 1 0 4 dに前述した窓 7 5, 7 6と、 センサュエツト 7 7に対向する孔 3 2 0〜3 2 2が形成されている。  In the side case 104, a circular hole 319 facing the sensor unit 85 described above is formed in the left side 104c, and the windows 75, 76 described above are formed in the right side 104d. Holes 320 to 322 facing the sensor unit 77 are formed.
図 4 3 Aは上部ケース 1 0 6の構成を示す底面図であり、 図 4 3 Bは上部ケー ス 1 0 6の側面図である。  FIG. 43A is a bottom view showing the configuration of the upper case 106, and FIG. 43B is a side view of the upper case 106. FIG.
図 4 3 A、 図 4 3 Bに示されるように、 上部ケース 1 0 6は、 輪郭形状が処理 容器 2 2の内壁形状に対応した板状に形成されており、紫外線光源(UVランプ) 8 6, 8 7に対向する位置に長方形状の開口 3 2 4, 3 2 5が形成されている。 さらに、 上部ケース 1 0 6の周縁部には、 側面ケース 1 0 4に嵌合する段部 3 2 6が設けられている。  As shown in FIGS. 43A and 43B, the upper case 106 is formed in a plate shape whose contour corresponds to the inner wall shape of the processing vessel 22, and an ultraviolet light source (UV lamp) 8. Rectangular openings 324, 325 are formed at positions opposite to 6, 87. Further, a step portion 326 fitted to the side case 104 is provided on a peripheral portion of the upper case 106.
また、 上部ケース 1 0 6は、 蓋部材 8 2の形状に対応する円形孔 3 2 7〜 3 2 9、 及ぴ長方形の四角孔 3 3 0が設けられている。  In addition, the upper case 106 is provided with circular holes 327 to 329 corresponding to the shape of the lid member 82 and a rectangular hole 340 having a rectangular shape.
図 4 4 Aは円筒状ケース 1 0 8の構成を示す平面図であり、 図 4 4 Bは円筒状 ケース 1 0 8の側面縦断面図であり、 図 4 4 Cは円筒状ケース 1 0 8の側面図で ある。 図 4 4 A〜図 4 4 Cに示されるように、 円筒状ケース 1 0 8は、 石英べルジャ 1 1 2の外周を覆うように筒状に形成されており、 上端縁部には昇降アーム 1 3 2の当接ピン 1 3 8 a〜l 3 8 cが挿入される凹部 1 0 8 a〜l 0 8 cが設けら れている。 さらに、 円筒状ケース 1 0 8は、 上端部の外周に下部ケース 1 0 2の 凹部 3 1 0 dが嵌合する位置合わせ用の突起 1 0 8 dが形成されている。 FIG. 44A is a plan view showing the configuration of the cylindrical case 108, FIG. 44B is a side longitudinal sectional view of the cylindrical case 108, and FIG. 44C is a cylindrical case 108. FIG. As shown in FIGS. 44A to 44C, the cylindrical case 108 is formed in a cylindrical shape so as to cover the outer periphery of the quartz belger 112, and a lifting arm is provided at the upper end edge. There are provided recesses 108 a to 108 c into which the 13 2 contact pins 1 38 a to 38 c are inserted. Further, the cylindrical case 108 is provided with a positioning projection 108d on the outer periphery of the upper end portion, into which the concave portion 310d of the lower case 102 fits.
( 1 1 ) ここで、 リフタ機構 3 0のシール構造について説明する。  (11) Here, the seal structure of the lifter mechanism 30 will be described.
図 4 5はリフタ機構 3 0を拡大して示す縦断面図である。 図 4 6はリフタ機構 3 0のシール構造拡大して示す縦断面図である。  FIG. 45 is a longitudinal sectional view showing the lifter mechanism 30 in an enlarged manner. FIG. 46 is a longitudinal sectional view showing the seal structure of the lifter mechanism 30 in an enlarged manner.
図 4 5及び図 4 6に示されるように、 リフタ機構 3 0は、 駆動部 1 3 6により 昇降軸 1 3 4を昇降させてチャンバ 8 0内に挿入された昇降アーム 1 3 2を昇降 させる際、 チャンバ 8 0の貫通孔 8 0 a内に挿入された昇降軸 1 3 4の外周が蛇 腹形状のベローズ 3 3 2により覆われており、 チャンパ 8 0内でのコンタミネー ションを防止するように構成されている。  As shown in FIGS. 45 and 46, the lifter mechanism 30 raises and lowers the elevating shaft 13 4 by the drive unit 13 6 to raise and lower the elevating arm 13 2 inserted into the chamber 80. In this case, the outer periphery of the elevating shaft 1 34 inserted into the through hole 80 a of the chamber 80 is covered with a bellows-shaped bellows 3 32 so as to prevent contamination in the champ 80. Is configured.
ベローズ 3 3 2は、 蛇腹部分が伸縮可能な形状になっており、 例えばインコネ ルゃハステロイなどにより形成されている。 また、 貫通孔 8 0 aは、 昇降軸 1 3 4が挿通された蓋部材 3 4 0により閉塞されている。  The bellows 332 has a shape in which the bellows part can expand and contract, and is formed of, for example, Inconel Hastelloy. Further, the through-hole 80a is closed by a lid member 350 into which the elevating shaft 134 is inserted.
さらに、 昇降軸 1 3 4の上端がボルト 3 3 4により締結される昇降アーム 1 3 2の連結部材 3 3 6には、 円筒形状のセラミックカバー 3 3 8が嵌合固定されて いる。 このセラミックカバー 3 3 8は、 連結部材 3 3 6より下方に延在形成され るため、 ベローズ 3 3 2の周囲を覆うことによりチャンバ 8 0内で直接露出され ないように設けられている。  Further, a cylindrical ceramic cover 338 is fitted and fixed to a connecting member 336 of the lifting arm 132 to which the upper end of the lifting shaft 133 is fastened by a bolt 334. Since the ceramic cover 338 extends below the connecting member 336, it is provided so as to cover the periphery of the bellows 332 so as not to be directly exposed in the chamber 80.
そのため、 ベローズ 3 3 2は、 プロセス空間 8 4において、 昇降アーム 1 3 2 を上昇させる際に上方に伸びてしまい、 セラミックにより形成された円筒状カバ 一 3 3 8により覆われている。 よって、 ベローズ 3 3 2は、 貫通孔 8 0 aに昇降 可能に挿入された円筒状カバー 3 3 8によりプロセス空間 8 4のガスや熱に直接 晒されることがなく、 ガスや熱による劣化を防止されている。  For this reason, the bellows 3332 extends upward when the elevating arm 1332 is raised in the process space 84, and is covered by a cylindrical cover 38 formed of ceramic. Therefore, the bellows 3332 is not directly exposed to the gas and heat in the process space 84 by the cylindrical cover 338 inserted so as to be able to move up and down into the through hole 80a, and the deterioration due to the gas and heat is prevented. Have been.
( 1 2 ) 以下に、 基板処理装置 2 0を使って行う被処理基板 W表面の紫外光ラ ジカル酸化処理、 およびその後に行われるリモートプラズマラジカル窒化処理に ついて説明する。 2003/012082 (12) Hereinafter, the ultraviolet light radial oxidation treatment on the surface of the substrate W to be processed using the substrate processing apparatus 20 and the remote plasma radical nitridation treatment performed thereafter will be described. 2003/012082
37 37
〔紫外光ラジカル酸化処理〕 (Ultraviolet light radical oxidation treatment)
図 4 7 Aは、 図 2の基板処理装置 2 0を使つて被処理基板 Wのラジカル酸化を 行う場合を示す側面図おょぴ平面図であり、 図 4 7 Bは図 4 7 Aの構成を示す平 面図である。  FIG. 47A is a side view and a plan view showing a case where the substrate to be processed W is subjected to radical oxidation using the substrate processing apparatus 20 of FIG. 2, and FIG. 47B is a configuration of FIG. 47A. FIG.
図 4 7 Aに示されるように、 前記プロセス空間 8 4中にはガス噴射ノズル部 9 3から酸素ガスが供給され、被処理基板 Wの表面に沿って流れた後、排気口 7 4、 ターボ分子ポンプ 5 0およびポンプ 2 0 1を通って排気される。 ターボ分子ポン プ 5 0を使うことにより、 前記プロセス空間 8 4のプロセス圧が、 基ネ の酸素 ラジカルによる酸化に必要な 1 0 -3〜1 0 -6T o r rの範囲に設定される。  As shown in FIG. 47A, oxygen gas is supplied into the process space 84 from the gas injection nozzle 93 and flows along the surface of the substrate W to be processed. Pumped through molecular pump 50 and pump 201. By using the turbo molecular pump 50, the process pressure in the process space 84 is set in a range of 10 -3 to 10 -6 T rr required for oxidation of the base by oxygen radicals.
これと同時に、 好ましくは 1 7 2 n mの波長の紫外光を発生する紫外線光源 8 6, 8 7を駆動することにより、 このようにして形成された酸素ガス流中に酸素 ラジカルが形成される。 形成された酸素ラジカルは前記被処理基 ¾Wの表面に沿 つて流れる際に、 回動している基板表面を酸化する。 このような被処理基 の 酸素ラジカルによる酸化により、 シリコン基板表面に 1 n m以下の膜厚の非常に 薄い酸化膜、 特に 2〜3原子層に相当する約 0 . 4 n mの膜厚の酸化膜を、 安定 に再現性良く形成することが可能になる。  At the same time, oxygen radicals are formed in the oxygen gas stream thus formed by driving the ultraviolet light sources 86, 87, which preferably generate ultraviolet light having a wavelength of 170 nm. When the formed oxygen radicals flow along the surface of the substrate to be processed W, they oxidize the rotating substrate surface. Oxidation of the substrate to be treated by oxygen radicals causes a very thin oxide film with a thickness of 1 nm or less on the silicon substrate surface, especially an oxide film with a thickness of about 0.4 nm, which corresponds to a few atomic layers. Can be formed stably with good reproducibility.
図 4 7 Bに示されるように、 紫外線光源 8 6, 8 7は酸素ガス流の方向に交差 する方向に延在する管状の光源であり、 ターボ分子ポンプ 5 0が排気口 7 4を介 してプロセス空間 8 4を排気するのがわかる。 一方、 前記排気口 7 4から直接に ポンプ 5 0に至る、 図 4 7 B中に点線で示した排気経路は、 パルプ 4 8 を閉鎖 することにより遮断されている。  As shown in FIG. 47B, the ultraviolet light sources 86 and 87 are tubular light sources extending in a direction crossing the direction of the oxygen gas flow, and the turbo molecular pump 50 is connected to the exhaust port 74 through the exhaust port 74. It can be seen that the process space 84 is exhausted. On the other hand, the exhaust path indicated by a dotted line in FIG. 47B, which directly leads from the exhaust port 74 to the pump 50, is blocked by closing the pulp 48.
図 4 8は、 図 2の基板処理装置 2 0において図 4 7 A、 図 4 7 Bの工程により シリコン基板表面にシリコン酸化膜を、 基板温度を 4 5 0 °Cに設定し、 紫外光照 射強度およぴ酸素ガス流量あるいは酸素分圧を様々に変化させながら形成した場 合の、 ^と酸化時間との関係を示す。 ただし図 4 8の実験ではラジカル酸化に 先立ってシリコン基板表面の自然酸化膜を除去し、 また場合によっては基板表面 に残留する炭素を紫外光励起窒素ラジカル中において除去し、 さらに A r雰囲気 中、 約 9 5 0 °Cにおける高温熱処理を行うことにより、 基板表面を平坦化してい る。 'また前記紫外線光源 8 6 , 8 7としては、 波長が 1 7 2 n mのエキシマラン 難謂 FIG. 48 shows an ultraviolet light irradiation in the substrate processing apparatus 20 of FIG. 2 by setting a silicon oxide film on the surface of the silicon substrate and a substrate temperature of 450 ° C. by the processes of FIGS. 47A and 47B. The relationship between ^ and the oxidation time when formed while varying the strength, oxygen gas flow rate or oxygen partial pressure in various ways is shown. However, in the experiment of Fig. 48, the natural oxide film on the silicon substrate surface was removed prior to radical oxidation, and in some cases, carbon remaining on the substrate surface was removed in ultraviolet-excited nitrogen radicals. The substrate surface is planarized by performing a high-temperature heat treatment at 950 ° C. The excimerane having a wavelength of 172 nm was used as the ultraviolet light sources 86 and 87. Difficult
38 プを使った。 38 was used.
図 48を参照するに、 系列 1のデータは、 紫外光照射強度を紫外光源 24 Bの 窓面における基準強度 (50mW/cm2) の 5%に設定し、 プロセス圧を 66 5mP a (5mTo r r),酸素ガス流量を 30 S C CMに設定した場合の酸ィ匕時 間と酸ィ匕膜厚との関係を、 系列 2のデータは紫外光強度をゼロに設定し、 プロセ ス圧を 133Pa (lTo r r),酸素ガス流量を 3 S LMに設定した場合の酸化 時間と酸化膜厚との関係を示す。 また系列 3のデータは紫外光強度をゼロに設定 し、プロセス圧を 2. 66 P a (2 OmTo r r), 酸素ガス流量を 150 SCC Mに設定した場合の酸化時間と酸化膜厚との関係を示し、 系列 4のデータは紫外 光照射強度を 100%、 すなわち前記基準強度に設定し、 プロセス圧を 2. 66 P a (2 OmTo r r),酸素ガス流量を 150 S C CMに設定した場合の酸化時 間と酸化 Hffとの関係を示す。 さらに系列 5のデータは紫外光照射強度を基準強 度の 20%に設定し、プロセス圧を 2. 66 P a ( 20 mT o r r ), 酸素ガス流 量を 150 SCCMに設定した場合の酸化時間と酸化膜圧との関係を示し、 系列 6のデータは、 紫外光照射強度を基準照射強度の 20%に設定し、 プロセス圧を 約 67Pa (0. 5 To r r)、酸素ガス流量を 0. 5 S LMに設定した場合の酸 化時間と酸化膜厚との関係を示す。 さらに系列 7のデータは、 紫外光照射強度を 基準強度の 20 %に設定し、 プロセス圧を 665Pa (5To r r) に、 酸素ガ ス流量を 2 S LMに設定した場合の酸ィ匕時間と酸化 HJ¥との関係を、 系列 8のデ ータは、 紫外光照射強度を基準強度の 5 %に設定し、 プロセス圧を 2. 66 P a (2 OmTo r r),酸素ガス流量を 150 S C CMに設定した場合の酸化時間と 酸化膜厚との関係を示す。  Referring to FIG. 48, in the data of series 1, the ultraviolet light irradiation intensity was set to 5% of the reference intensity (50 mW / cm2) at the window surface of the ultraviolet light source 24 B, and the process pressure was 66 5 mPa (5 mTo rr). The relationship between the oxidizing time and the oxidizing film thickness when the oxygen gas flow rate was set to 30 SCCM is shown in the series 2 data, where the ultraviolet light intensity was set to zero and the process pressure was set to 133 Pa (l rr), the relationship between the oxidation time and the oxide film thickness when the oxygen gas flow rate was set to 3 SLM. The data of series 3 shows the relationship between the oxidation time and the oxide film thickness when the ultraviolet light intensity is set to zero, the process pressure is set to 2.66 Pa (2 OmTorr), and the oxygen gas flow rate is set to 150 SCCM. The data in series 4 are based on the case where the ultraviolet light irradiation intensity is set to 100%, that is, the reference intensity, the process pressure is set to 2.66 Pa (2 OmTo rr), and the oxygen gas flow rate is set to 150 SCCM. The relationship between oxidation time and oxidation Hff is shown. Furthermore, the data in series 5 shows the oxidation time and the oxidation time when the UV irradiation intensity was set to 20% of the reference intensity, the process pressure was set to 2.66 Pa (20 mTorr), and the oxygen gas flow rate was set to 150 SCCM. The relationship with the oxide film pressure is shown.The data in series 6 shows that the UV irradiation intensity is set to 20% of the reference irradiation intensity, the process pressure is about 67 Pa (0.5 To rr), and the oxygen gas flow rate is 0.5 The relationship between the oxidation time and the oxide film thickness when set to SLM is shown. Series 7 data also shows the oxidation time and oxidation when the UV light intensity is set to 20% of the reference intensity, the process pressure is set to 665 Pa (5 Torr), and the oxygen gas flow rate is set to 2 SLM. For the relationship with HJ ¥, for the data in series 8, the UV light irradiation intensity was set to 5% of the reference intensity, the process pressure was 2.66 Pa (2 OmTo rr), and the oxygen gas flow rate was 150 SCCM. The relationship between the oxidation time and the oxide film thickness when the value is set to is shown below.
図 48の実験において、 酸化膜の膜厚は XPS法により求めているが、 このよ うに 1 nmを下回る非常に薄い酸化膜の膜厚を求める統一された方法は、 現時点 では存在しない。  In the experiment shown in Fig. 48, the oxide film thickness is obtained by the XPS method. However, there is no unified method for obtaining such a very thin oxide film thickness of less than 1 nm at this time.
そこで本発明の発明者は、 図 49に示 «測された S i 2p軌道の X P Sスぺク トルに対してバックグラウンド捕正おょぴ 3/2と 1ノ 2スピン状態の分離補正 を行い、 その結果得られた図 50に示す S i2p 3/2XP Sスペクトルをもとに、 L u他 (Z. H. Lu, et al., Appl. Phvs,: Lett.71 (1997), pp.2764) の教示に従って、 2003/012082 Therefore, the inventor of the present invention carried out the separation correction of the background correction mode 3/2 and the 1 2 spin state with respect to the XPS spectrum of the measured Si 2p orbit shown in FIG. Based on the resulting Si 2p 3/2 XP S spectrum shown in FIG. 50, Lu et al. (ZH Lu, et al., Appl. Phvs ,: Lett. 71 (1997), pp. 2764 ) 2003/012082
39 式 (1) に示す式および係数を使って酸化膜の膜厚 dを求めた。 39 The thickness d of the oxide film was determined using the equation and coefficient shown in equation (1).
d = λ sin α · In [ I χ+/ ( ]3 I 0+) + 1 ] ( 1 ) λ=2. 96 d = λ sin α · In [I χ + / (] 3 I 0+ ) + 1] (1) λ = 2.96
]3 = 0. 75 ] 3 = 0.75
ただし式 (1) において αは図 55に示す X PSスペクトルの検出角であり、 図示の例では 30° に設定されている。 また数 1中、 Ιχ+は酸ィ匕膜に対応するス ぺクトルピークの積分強度
Figure imgf000041_0001
であり、図 50中、 102〜 1 0 4 eVのエネルギ領域において見られるピークに対応している。 一方、 10+は 1 00 e V近傍のエネルギ領域に対応した、 シリコン基板に起因するスぺクトルピ ークの積分強度に対応する。
However, in equation (1), α is the detection angle of the XPS spectrum shown in FIG. 55, and is set to 30 ° in the illustrated example. In Equation 1, χ + is the integrated intensity of the spectrum peak corresponding to the oxide film.
Figure imgf000041_0001
50, which corresponds to the peak seen in the energy region of 102 to 104 eV in FIG. Meanwhile, 1 0+ corresponds to the energy region of 1 00 e V near, corresponding to the integrated intensity of the scan Bae Kutorupi over click resulting from the silicon substrate.
再ぴ図 48を参照するに、 紫外光照射パワー、 従って形成される酸素ラジカル 密度が小さい場合 (系列 1, 2, 3, 8) には、 最初は酸化膜の酸化 Ιϋ¥が 0 n mであったものが、 酸化時間と共に酸化膜厚が徐々に增加し続けるのに対し、 紫 外光照射パワーを基準強度の 20%以上に設定した系列 4, 5, 6, 7では、 図 51に概略的に示すように酸ィ匕膜成長が成長開始後、 おおよそ 0. 4 nmの^ に到達した時点で停留し、 ある程度の停留時間が経過した後、 急激に成長が再開 されるのが認められる。  Referring to FIG. 48, when the ultraviolet light irradiation power, and thus the density of the formed oxygen radicals, is low (sequences 1, 2, 3, and 8), the oxide thickness of the oxide film is initially 0 nm. However, while the oxide film thickness gradually increases with the oxidation time, the series 4, 5, 6, and 7 in which the UV light irradiation power is set to 20% or more of the reference intensity are schematically shown in Figure 51. As shown in the figure, it is observed that the growth of the oxide film stops after reaching a value of about 0.4 nm after the start of the growth, and the growth is rapidly restarted after a certain dwell time has elapsed.
図 48あるいは図 51の関係は、 シリコン基板表面の酸化処理において、 0. 4 nm前後の膜厚の非常に薄い酸化膜を、 安定して形成できることを意味してレ、 る。 また、 図 48に見られるように、 かかる停留時間がある程度継続することか ら、 形成される酸ィ匕膜は、 一様な厚さを有することがわかる。 すなわち、 本発明 によれば、 約 0. 4 n mの厚さの酸化膜をシリコン基板上に、 一様な厚さに形成 することが可能になる。  The relationship between FIG. 48 and FIG. 51 means that an extremely thin oxide film having a thickness of about 0.4 nm can be formed stably in the oxidation treatment of the silicon substrate surface. In addition, as shown in FIG. 48, since the dwell time continues to some extent, it can be seen that the formed oxide film has a uniform thickness. That is, according to the present invention, an oxide film having a thickness of about 0.4 nm can be formed on a silicon substrate to a uniform thickness.
図 52A、 図 52Bは、 かかるシリコン基板上への薄い酸化膜の形成過程を概 略的に示す。 これらの図では、 シリコン (100) 基板上の構造を極めて単純化 していることに注意すべきである。  FIGS. 52A and 52B schematically show a process of forming a thin oxide film on such a silicon substrate. It should be noted that these figures greatly simplify the structure on a silicon (100) substrate.
図 52 Aを参照するに、 シリコン基板表面には、 シリコン原子 1個あたり 2個 の酸素原子が結合し、 1原子層の酸素層が形成されている。 この代表的な状態で は、 基板表面のシリコン原子は基板内部の 2つのシリコン原子と基板表面の二つ の酸素原子により配位され、 サブォキサイドを形成している。 Referring to FIG. 52A, two oxygen atoms are bonded to each silicon atom on the silicon substrate surface to form a single atomic layer of oxygen. In this typical state, the silicon atoms on the substrate surface have two silicon atoms inside the substrate and two silicon atoms on the substrate surface. To form a suboxide.
これに対し、 図 52 Bの状態ではシリコン基板最上部のシリコン原子は 4つの 酸素原子により配位されており、 安定な S i 4+の状態をとる。 これが理由で、 図 52 Aの状態では速やかに酸 が進み、 図 52 Bの状態になって酸化が停留する ものと考えられる。図 52 Bの状態における酸化膜の厚さは約 0.4 nmであり、 これは図 48において観測される停留状態における酸ィ匕膜厚と良く一致する。 図 50の XP Sスペクトルにおいて、 酸化膜厚が 0. l nmあるいは 0. 2n mの場合に 101〜104 e Vのエネルギ範囲において見られる低いピークが図 52 Aのサブォキサイドに対応し、 酸化膜厚が 0. 3 nmを超えた場合にこのェ ネルギ領域に表れるピークが S i4+に起因するもので、 1原子層を超える酸化膜 の形成を表しているものと考えられる。 On the other hand, in the state shown in FIG. 52B, the silicon atom at the top of the silicon substrate is coordinated by four oxygen atoms, and a stable Si 4+ state is obtained. For this reason, it is considered that the acid rapidly advances in the state of FIG. 52A, and the oxidation stops in the state of FIG. 52B. The thickness of the oxide film in the state of FIG. 52B is about 0.4 nm, which is in good agreement with the oxide film thickness in the stationary state observed in FIG. In the XPS spectrum of FIG. 50, when the oxide film thickness is 0.1 nm or 0.2 nm, the low peak seen in the energy range of 101 to 104 eV corresponds to the suboxide in FIG. The peak appearing in this energy region when the thickness exceeds 0.3 nm is attributable to Si 4+ , and is considered to indicate the formation of an oxide film exceeding one atomic layer.
このような 0. 4n mの膜厚における酸ィ匕膜厚の停留現象は、 図 47 A、 図 4 7Bの UV〇2ラジカル酸化プロセスに限定されるものではなく、 同様に薄い酸 化膜が精度よく形成できる酸化膜形成方法であれば、 同じように見られるもので あると考えられる。  Such a stationary phenomenon of the oxide film thickness at a thickness of 0.4 nm is not limited to the UV〇2 radical oxidation process shown in FIGS. 47A and 47B. It is considered that the same method can be used if an oxide film can be formed with high accuracy.
図 52Bの状態からさらに酸化を継続すると、 酸化膜の厚さは再び増大する。 図 53は、 このように基板処理装置 20を使った図 47 A、 図 47Bの紫外光 ラジカル酸ィ匕プロセスにより形成された酸化膜上に厚さが 0. 4 nmの Z r S i Ox膜と電極膜とを形成し (後で説明する図 54 Bを参照)、 得られた積層構造に 対して求めた熱酸化膜換算膜厚 T e qとリーク電流 I gとの関係を示す。ただし、 図 53のリーク電流特性は、 前記電極膜とシリコン基板との間にフラットバンド 電圧 V f bを基準に、 V f b— 0. 8 Vの電圧を印加した状態で測定している。 比較のため、 図 53中には熱酸化膜のリーク電流特性をも示してある。 また図示 している換算膜厚は、 酸化膜と Z r S i Ox膜を合わせた構造についてのもので ある。  When the oxidation is further continued from the state shown in FIG. 52B, the thickness of the oxide film increases again. FIG. 53 shows a 0.4 nm thick ZrSiox film on the oxide film formed by the ultraviolet light radical oxidation process of FIGS. 47A and 47B using the substrate processing apparatus 20 in this manner. And an electrode film are formed (see FIG. 54B described later), and the relationship between the equivalent thermal oxide film thickness T eq and the leak current Ig obtained for the obtained laminated structure is shown. However, the leakage current characteristics in FIG. 53 are measured with a voltage of Vfb−0.8 V applied between the electrode film and the silicon substrate with reference to the flat band voltage Vfb. For comparison, FIG. 53 also shows the leakage current characteristics of the thermal oxide film. The reduced film thickness shown is for a structure in which an oxide film and a ZrSiox film are combined.
図 53を参照するに、 酸化膜を省略した場合、 すなわち酸化膜の膜厚が Onm の場合にはリーク電流密度が熱酸化膜のリーク電流密度を超えており、 また熱酸 化膜換算 ^ffT e qも約 1. 7 nm程度の比較的大きな値になることがわかる。 これに対し、 酸化膜の Hffを 0 nmから 0. 4 nmまで増大させると、 熱酸化 膜換算膜厚 T e qの値が減少をはじめるのがわかる。 このような状態では酸化膜 がシリコン基板と Z r S i Ox膜との間に介在することになり、 物理膜厚は実際 には増大するはずなのに換算膜厚 T e qは減少しているが、 これはシリコン基板 上に Z r〇2膜を直接に形成した場合、 図 5 4 Aに示すように Z rのシリコン基 板中への拡散あるいは S iの Z r S i Ox膜中への拡散が大規模に生じ、 シリコ ン基板と Z r S i Ox膜との間に厚い界面層が形成されていることを示唆してい る。 これに対し、 図 5 4 Bに示すように厚さが 0 . 4 n mの酸化膜を介在させる ことにより、 このような界面層の形成が抑制され、 結果として換算膜厚が減少す るものと考えられる。 これに伴って、 リーク電流の値も酸化膜の厚さと共に減少 するのがわかる。 ただし図 5 4 A、 図 5 4 Bは、 このようにして形成された試料 の概略的な断面を示しており、シリコン基板 4 4 1上に酸化膜 4 4 2が形成され、 酸化膜 4 4 2上に Z r S i Ox膜 4 4 3が形成されている構造を示している。 一方、 前記酸化膜の膜厚が 0 . 4 n mを超えると、 熱酸化膜換算膜厚の値は再 び増大をはじめる。酸化膜の膜厚が 0 . 4 n mを超えた範囲においては、膜厚の増 大と共にリーク電流の値も減少しており、 換算,の増大は酸化膜の物理膜厚の 増大に起因するものであると考えられる。 Referring to FIG. 53, when the oxide film is omitted, that is, when the thickness of the oxide film is Onm, the leak current density exceeds the leak current density of the thermal oxide film. It can be seen that eq also becomes a relatively large value of about 1.7 nm. On the other hand, when the Hff of the oxide film is increased from 0 nm to 0.4 nm, thermal oxidation It can be seen that the value of the film equivalent thickness T eq starts to decrease. In such a state it will be interposed between oxide film between the silicon substrate and the Z r S i O x film, although the physical thickness is equivalent thickness T eq, but it should be actually increases is reduced , which when formed directly on the Z R_〇 2 film on a silicon substrate, the diffusion or S i to silicon substrate in Z r as shown in FIG. 5 4 a to Z r S i Ox film Diffusion occurred on a large scale, suggesting that a thick interfacial layer was formed between the silicon substrate and the ZrSiOx film. In contrast, by interposing an oxide film having a thickness of 0.4 nm as shown in FIG. 54B, the formation of such an interface layer is suppressed, and as a result, the equivalent film thickness is reduced. Conceivable. Accordingly, the value of the leakage current decreases with the thickness of the oxide film. However, FIG. 54A and FIG. 54B show schematic cross sections of the sample formed in this way, and an oxide film 442 is formed on a silicon substrate 441, and an oxide film 44 2 shows a structure in which a ZrSiox film 443 is formed on 2. On the other hand, when the thickness of the oxide film exceeds 0.4 nm, the value of the thermal oxide film equivalent thickness starts to increase again. In the range where the thickness of the oxide film exceeds 0.4 nm, the value of the leak current decreases as the thickness increases, and the increase in the conversion is due to the increase in the physical thickness of the oxide film. It is considered to be.
このように、 図 4 8で観測された酸化膜の成長が停留する 0 . 4 n m付近の膜 •厚は、 酸化膜と高誘電体膜とよりなる系の換算膜厚の最小値に対応しており、 図 5 2 (B) に示す安定な酸化膜により、 Z r等の金属元素のシリコン基板中への 拡散が効果的に Jhされること、 またこれ以上酸化膜の厚さを増大させても、 金 属元素の拡散阻止効果はそれほど高まらないことがわかる。  Thus, the film thickness near 0.4 nm where the oxide film growth stops observed in Fig. 48 • The thickness corresponds to the minimum value of the converted film thickness of the system consisting of the oxide film and the high dielectric film. The diffusion of metal elements such as Zr into the silicon substrate is effectively Jh by the stable oxide film shown in Fig. 52 (B), and the thickness of the oxide film is further increased. However, it can be seen that the effect of inhibiting diffusion of metal elements is not so high.
さらに 0 . 4 n mの厚さの酸化膜を使った場合のリーク電流の値は、 対応する 厚さの熱酸化膜のリーク電流の値よりも二桁ほど小さく、 このような構造の絶縁 膜を M〇Sトランジスタのゲート絶縁膜に使うことにより、 ゲートリーク電流を 最小化できることがわかる。  Furthermore, the value of leakage current when using an oxide film with a thickness of 0.4 nm is about two orders of magnitude smaller than the value of leakage current of a corresponding thickness of thermal oxide film. It can be seen that the gate leakage current can be minimized by using it for the gate insulating film of the M〇S transistor.
また、 図 4 8あるいは図 5 1で説明した酸化膜成長の 0 . 4 n mにおける停留 現象の結果、 図 5 5 Aに示すようにシリコン基板 4 4 1上に形成された酸化膜 4 4 2に当初膜厚の変化ないし凹凸が存在していても、 酸化膜成長の際に膜厚の増 大が図 5 5 Bに示すように 0 . 4 n mの近傍にぉレ、て停留するため、 停留期間内 で酸化膜成長を継続することにより、 図 5 5 Cに示す非常に平坦な、 一様な膜厚 の酸ィ匕膜 4 4 2を得ることができる。 In addition, as a result of the oxide film growth stopping phenomenon at 0.4 nm described in FIG. 48 or FIG. 51, as shown in FIG. 55A, the oxide film 442 formed on the silicon substrate 441 was formed. Even if there is an initial change in film thickness or irregularities, the increase in film thickness during oxide film growth stops near 0.4 nm as shown in Fig. 55B. Within the period By continuing the growth of the oxide film in this manner, an oxidized film 442 having a very flat and uniform thickness shown in FIG. 55C can be obtained.
先にも説明したように、 非常に薄い酸化膜に対しては、 現状では統一された膜 厚測定方法が存在しない。 このため、 図 5 5 Cの酸化膜 4 4 2のlff値自体は、 測定方法で異なる可能性がある。 しかし、 先に説明した理由から、 酸化膜成長に 停留が生じる厚さは、 2原子層分の厚さであることがわかっており、 従って、 好 ましい酸化膜 4 4 2の膜厚は、 約 2原子層分の厚さであると考えられる。 この好 ましい厚さには、 2原子層分の厚さが酸化膜 4 4 2全体にわたり確保されるよう に、 部分的に 3原子層分の厚さの領域が形成されている ¾ ^も含まれる。 すなわ ち、 好ましい酸化膜 4 4 2の厚さは、 実際には 2〜 3原子層の範囲であると考え られる。  As mentioned earlier, there is currently no unified thickness measurement method for very thin oxide films. Therefore, the lff value itself of the oxide film 442 in FIG. 55C may be different depending on the measurement method. However, for the reasons explained above, the thickness at which oxide film growth stops is known to be the thickness of two atomic layers, and therefore, the preferred oxide film thickness is It is considered to be about 2 atomic layers thick. In this preferable thickness, a region having a thickness of three atomic layers is formed partially so that a thickness of two atomic layers is secured over the entire oxide film 442. included. That is, it is believed that the preferred thickness of oxide film 442 is actually in the range of 2-3 atomic layers.
〔リモートプラズマラジカル窒化処理〕  [Remote plasma radical nitriding]
図 5 6は、 基板処理装置 2 0において使われるリモートブラズマ部 2 7の構成 を示す。  FIG. 56 shows a configuration of a remote plasma unit 27 used in the substrate processing apparatus 20.
図 5 6に示されるように、 リモートプラズマ部 2 7は、 内部にガス循環通路 2 7 aとこれに連通したガス入り口 2 7 bおよびガス出口 7 6 cを形成された、 典 型的にはアルミニウムよりなるブロック 2 7 Aを含み、 前記ブロック 2 7 Aの一 部にはフェライトコア 2 7 Bが形成されている。  As shown in FIG. 56, the remote plasma section 27 has a gas circulation passage 27a, a gas inlet 27b and a gas outlet 76c communicating with the gas circulation passage 27a, and is typically formed. It includes a block 27A made of aluminum, and a ferrite core 27B is formed in a part of the block 27A.
前記ガス循環通路 2 7 aおよびガス入り口 2 7 b、 ガス出口 2 7 cの内面には フッ素樹脂コーティング 2 7 dが施され、 前記フェライトコア 2 7 Bに卷回され たコイルに周波数が 4 0 0 k H zの高周波を供給することにより、 前記ガス循環 通路 2 7 a内にプラズマ 2 7 Cが形成される。  The inner surfaces of the gas circulation passage 27a, the gas inlet 27b, and the gas outlet 27c are provided with a fluororesin coating 27d, and the coil wound around the ferrite core 27B has a frequency of 40. By supplying a high frequency of 0 kHz, a plasma 27C is formed in the gas circulation passage 27a.
プラズマ 2 7 Cの励起に伴って、 前記ガス循環通路 2 7 a中には窒素ラジカル および窒素イオンが形成される力 窒素イオンは前記循環通路 2 7 aを循環する 際に消滅し、 前記ガス出口 2 7 cからは主に窒素ラジカル N2*が放出される。 さ らに図 5 6の構成では前記ガス出口 2 7 cに接地されたイオンフィルタ 2 7 eを 設けることにより、 窒素イオンをはじめとする荷電粒子が除去され、 前記プロセ ス空間 8 4には窒素ラジカルのみが供給される。 また、 前記イオンフィルタ 2 7 eを接地させない場合においても、 前記イオンフィルタ 2 7 eの構造は拡散板と して作用し、 十分に窒素ィオンをはじめとする荷電粒子を除去することが可能に なる。 A force that forms nitrogen radicals and nitrogen ions in the gas circulation passage 27 a with the excitation of the plasma 27 C Nitrogen ions disappear when circulating in the circulation passage 27 a, and the gas outlet The nitrogen radical N2 * is mainly released from 27c. Further, in the configuration of FIG. 56, by providing an ion filter 27 e grounded to the gas outlet 27 c, charged particles such as nitrogen ions are removed, and nitrogen is added to the process space 84. Only radicals are supplied. Further, even when the ion filter 27 e is not grounded, the structure of the ion filter 27 e is a diffusion plate. It is possible to sufficiently remove charged particles such as nitrogen ions.
図 57は、 リモートプラズマ部 27により形成されるイオンの数と電子エネル ギの関係を、 マイク口波プラズマ源の場合と比較して示す。  FIG. 57 shows the relationship between the number of ions formed by the remote plasma section 27 and the electron energy in comparison with the case of a microphone mouth-wave plasma source.
図 57に示されるように、 マイクロ波によりプラズマを励起した場合には窒素 分子のイオン化が促進され、 多量の窒素イオンが形成されることになる。 これに 対し 500 kHz以下の高周波によりプラズマを励起した場合には、 形成される 窒素イオンの数が大幅に減少する。 マイク口波によりプラズマ処理を行う場合に は、 図 58に示すように 1. 33X 10— 3〜 1.33X 10— 6P a (10―1〜 10 一4 To r r)の高真空が必要になる力 高周波プラズマ処理は、 13. 3-13. 3 k P a (0. l〜100To r r) の比較的高い圧力で実行可能である。 以下の表 1は、 マイクロ波によりプラズマを励起する場合と、 高周波によりプ ラズマを励起する場合との間での、 イオン化エネルギ変換効率、 放電可能圧力範 囲、 プラズマ消費電力、 プロセスガス流量の比較を示す。 As shown in Fig. 57, when plasma is excited by microwaves, ionization of nitrogen molecules is promoted and a large amount of nitrogen ions are formed. On the other hand, when the plasma is excited by a high frequency of 500 kHz or less, the number of formed nitrogen ions is greatly reduced. When performing the plasma treatment by the microphone port wave will require high vacuum 1. 33X 10- 3 ~ 1.33X 10- 6 P a (10- 1 ~ 10 one 4 the To rr) as shown in FIG. 58 Force RF plasma processing can be performed at relatively high pressures of 13.3-13.3 kPa (0.1-100 rr). Table 1 below shows the comparison of ionization energy conversion efficiency, dischargeable pressure range, plasma power consumption, and process gas flow rate between when plasma is excited by microwave and when plasma is excited by high frequency. Is shown.
Figure imgf000045_0001
表 1を参照するに、 イオン化エネルギ変換効率は、 マイクロ波励起の場合に約 1 X 10_2程度であるのに対し、 RF励起の場合、約 1 X 10一7まで減少してお り、 また放電可能圧力はマイクロ波励起の;^ 0. lmTo r r〜0. lTo r r (133mP a~l 3. 3 P a ) 程度であるのに対し、 R F励起の^には、 0. 1〜:! OOTo r r (13. 3Pa〜: 13. 3 k P a ) 程度であることがわ 力る。 これに伴い、 プラズマ消費電力は R F励起の場合の方がマイクロ波励起の 場合よりも大きく、 プロセスガス流量は、 R F励起の場合の方がマイクロ波励起 の場合よりもはるかに大きくなっている。
Figure imgf000045_0001
Referring to Table 1, the ionization energy conversion efficiency, while about 1 X 10_ 2 about the case of microwave excitation in the case of RF excitation, Ri Contact reduced to about 1 X 10 one 7, also The dischargeable pressure is about ^ 0. lmTo rr ~ 0. lTo rr (133 mPa ~ l 3.3 P a ) for microwave excitation, whereas for RF excitation ^ is 0.1 ~ :! OOTo rr (13.3 Pa ~: 13.3 kPa) Power. As a result, plasma power consumption is higher for RF excitation than for microwave excitation, and process gas flow rates are much higher for RF excitation than for microwave excitation.
基板処理装置 2 0では、 酸ィ匕膜の窒化処理を窒素ィオンではなく窒素ラジカル N2*で行っており、 このため励起される窒素イオンの数は少ない方が好ましい。 また被処理基板に加えられるダメージを最小化する観点からも、 励起される窒素 イオンの数は少ないのが好ましい。 さらに基板処理装置 2 0では、 励起される窒 素ラジカルの数も少なく、 高誘電体ゲート絶縁膜下の非常に薄い、 せいぜい 2〜 3原子層程度の厚さしかないペース酸化膜を窒ィ匕するのに好適である。 In the substrate processing apparatus 20, the nitridation of the oxidation film is performed not with nitrogen ions but with nitrogen radicals N 2 *. Therefore, it is preferable that the number of excited nitrogen ions is small. From the viewpoint of minimizing damage to the substrate to be processed, the number of excited nitrogen ions is preferably small. Further, in the substrate processing apparatus 20, the number of excited nitrogen radicals is small, and a very thin pace oxide film having a thickness of at most about 2 to 3 atomic layers under the high dielectric gate insulating film is nitrided. It is suitable to do.
図 5 9 A、図 5 9 Bは、それぞれ基板処理装置 2 0を使つて被処理基板 Wのラ ジカル窒化を行う場合を示す側面図おょぴ平面図である。  FIGS. 59A and 59B are side views and plan views showing the case where the substrate to be processed W is subjected to radial nitriding using the substrate processing apparatus 20.
図 5 9 A、 図 5 9 Bに示されるように、 リモートプラズマ部 2 7には A rガス と窒素ガスが供給され、 プラズマを数 1 0 0 k H zの周波数で高周波励起するこ とにより窒素ラジカルが形成される。 形成された窒素ラジカルは前記被処理基板 Wの表面に沿って流れ、前記排気口 7 4およびポンプ 2 0 1を介して排気される。 その結果前記プロセス空間 8 4は、 基板 Wのラジカル窒化に適当な、 1 . 3 3 P a ~ 1 3 . 3 k P a ( 0 . 0 1〜: L 0 0 T o r r ) の範囲のプロセス圧に設定さ れる。 このようにして形成された窒素ラジカルは、 前記被処理基 ¾Wの表面に沿 つて流れる際に、 被処理基板 wの表面を窒化する。  As shown in FIGS. 59A and 59B, Ar gas and nitrogen gas are supplied to the remote plasma section 27, and the plasma is excited by high frequency at a frequency of several hundred kHz. Nitrogen radicals are formed. The formed nitrogen radicals flow along the surface of the substrate W to be processed, and are exhausted through the exhaust port 74 and the pump 201. As a result, the process space 84 has a process pressure in the range of 1.33 Pa to 13.3 kPa (0.01 to: L00Torr) suitable for radical nitridation of the substrate W. Is set to. The nitrogen radicals thus formed, when flowing along the surface of the substrate to be processed W, nitride the surface of the substrate to be processed w.
図 5 9 A、 図 5 9 Bの窒化工程では、 窒化工程に先立つパージ工程では前記バ ルブ 4 8 aおよび 2 1 2が開放され、 バルブ 4 8 aが閉鎖されることで前記プロ セス空 8 4の圧力が 1 . 3 3 X 1 0―1〜 1 . 3 3 X 1 0— 4P aの圧力まで され、 プロセス空間 8 4中に残留している酸素や水分がパージされるが、 その後 の窒ィ匕処理ではバルブ 4 8 aおよび 2 1 2は閉鎖され、 ターボ分子ポンプ 5 0は プロセス空間 8 4の排気経路には含まれない。 In the nitridation step shown in FIGS. 59A and 59B, in the purge step prior to the nitridation step, the valves 48 a and 212 are opened, and the valve 48 a is closed, so that the process space 8 is closed. pressure of 4 1. 3 3 X 1 0- 1 ~ 1. it is to a pressure of 3 3 X 1 0- 4 P a , the oxygen and moisture remaining in the process space 8 4 is purged, thereafter In the nitriding process, the valves 48 a and 212 are closed, and the turbo molecular pump 50 is not included in the exhaust path of the process space 84.
このように、 基板処理装置 2 0を使うことにより、 被処理基板 Wの表面に非常 に薄い酸化膜を形成し、 その酸化膜表面をさらに窒化することが可能になる。 図 6 0 Aは、 基板処理装置 2 0により S i基板上に熱酸化処理により 2 . ◦ n mの厚さに形成された酸化膜を、 リモートプラズマ部 2 7を使って、 表 2に示す 条件で窒化した場合の前記酸化膜中における窒素濃度分布を示し、 図 6 O Bは、 同じ酸化膜中における窒素濃度分布と酸素濃度分布との関係を示す。 表 2 As described above, by using the substrate processing apparatus 20, a very thin oxide film can be formed on the surface of the substrate W to be processed, and the oxide film surface can be further nitrided. Figure 60A shows the oxide film formed on the Si substrate to a thickness of 2.◦ nm by thermal oxidation by the substrate processing apparatus 20 using the remote plasma unit 27, as shown in Table 2. Fig. 6 shows a nitrogen concentration distribution in the oxide film when nitrided under the conditions, and Fig. 6 OB shows a relationship between the nitrogen concentration distribution and the oxygen concentration distribution in the same oxide film. Table 2
Figure imgf000047_0001
表 2を参照するに、 基板処理装置 2 0を使った R F窒化処理の際には、 前記プ ロセス空間 8 4中に窒素を 5 0 S C CMの流量で、 また A rを 2 S LMの流量で 供給し、 窒化処理は l T o r r ( 1 3 3 P a ) の圧力下で行われるが、 窒化処理 開始前にー且プロセス空間 8 4の内圧を 1 0— 6T o r r ( 1 .3 3 X 1 0 _4P a ) 程度まで減圧し、内部に残留している酸素あるいは水分を十分にパージして!/、る。 このため、 前記 l T o r r程度の圧力で行われる窒化処理の際には、 プロセス空 間 8 4中において残留酸素は A rおよび窒素により希釈されており、 残留酸素濃 度、 従って残留酸素の熱力学的な活動度は非常に小さくなっている。
Figure imgf000047_0001
As shown in Table 2, during RF nitridation using the substrate processing apparatus 20, nitrogen was flowed into the process space 84 at a flow rate of 50 SCCM, and Ar was flowed at a flow rate of 2 SLM. in supply, but nitriding process is performed at a pressure of l T orr (1 3 3 P a), over before starting nitriding且process space 8 4 of the internal pressure of 1 0- 6 T orr (1 .3 3 Reduce the pressure to about X 10 _ 4 P a) and purge the remaining oxygen or moisture sufficiently. For this reason, during the nitriding treatment performed at a pressure of about l Torr, the residual oxygen is diluted with Ar and nitrogen in the process space 84, and the residual oxygen concentration, and hence the heat of the residual oxygen, is reduced. The mechanical activity is very small.
これに対し、 マイクロ波プラズマを使った窒化処理では、 窒化処理の際の処理 圧力がパージ圧と同程度であり、 従ってプラズマ雰囲気中において残留酸素は高 い熱力学的な活動度を有するものと考えられる。  On the other hand, in the nitridation process using microwave plasma, the processing pressure during the nitridation process is almost the same as the purge pressure, and therefore, the residual oxygen has high thermodynamic activity in the plasma atmosphere. Conceivable.
図 6 0 Aを参照するに、 マイク口波励起プラズマにより窒ィ匕した場合には酸化 膜中に導入される窒素の濃度は限られており、 酸化膜の窒化は実質的に進行して いないことがわかる。 これに対し本実施例のように R F励起ブラズマにより窒化 した場合には、 酸ィ匕膜中において窒素濃度が深さと共に纖的に変化し、 表面近 傍では 2 0 %近い濃度に達していることがわかる。  Referring to FIG. 60A, when nitridation was performed by the microphone mouth-wave excited plasma, the concentration of nitrogen introduced into the oxide film was limited, and nitridation of the oxide film did not substantially proceed. You can see that. On the other hand, when nitriding by RF excitation plasma as in this example, the nitrogen concentration in the oxidized film changes like a fiber with depth, reaching a concentration close to 20% near the surface. You can see that.
図 6 1は、 X P S (X線分光スぺクトル) を使って行う図 6 0 Aの測定の原理 を示す。  FIG. 61 shows the principle of the measurement of FIG. 60A performed using XPS (X-ray spectroscopy spectrum).
図 6 1を参照するに、 シリコン基板 4 1 1上に酸化膜 4 1 2を形成された試料 には所定の角度で斜めに X線が照射され、 励起された X線スぺクトルを検出器 D ET1, DET2により、 様々な角度で検出する。 その際、 例えば 90° の深い 検出角に設定された検出器 DET1では励起 X線の酸化膜 412内における行路 が短く、 従って前記検出器 DET 1で検出される X線スぺクトルには酸化膜 41 2の下部の情報を多く含まれるに対し、 浅い検出角に設定された検出器 DET 2 では、 励起 X線の酸化膜 12中における行路が長く、 従って、 検出器 DET2は 主に酸化膜 412の表面近傍の情報を検出する。 Referring to FIG. 61, a sample in which an oxide film 4 1 2 was formed on a silicon substrate 4 1 1 Is irradiated with X-rays obliquely at a predetermined angle, and the excited X-ray spectrum is detected at various angles by the detectors DET1 and DET2. At that time, for example, in the detector DET1 set at a deep detection angle of 90 °, the path of the excited X-rays in the oxide film 412 is short, so that the X-ray spectrum detected by the detector DET1 has an oxide film. 41 The detector DET 2 set at a shallow detection angle has a longer path of the excited X-rays in the oxide film 12, whereas the detector DET 2 set at a shallower detection angle has a longer path. The information near the surface of is detected.
図 60Bは、 前記酸化膜中における窒素濃度と酸素濃度との関係を示す。 ただ し図 6 OB中、 酸素濃度は Ols軌道に対応する X線強度により表されている。 図 60 Bを参照するに、 酸化膜の窒ィ匕を本発明のように RFリモートプラズマ で行った場合には、 窒素濃度の増大に伴って酸素濃度が減少しており、 酸化膜中 において窒素原子が酸素原子を置き換えていることがわかる。 これに対し、 酸化 膜の窒化をマイク口波プラズマで行った場合には、 このような置換関係は見られ ず、 窒素濃度と共に酸素濃度が低下する関係は見られない。 また特に図 60Bに おいては、 マイクロ波窒化により 5〜 6 %の窒素を導入した例においては酸素濃 度の増加が見られており、 これは窒化と共に酸化膜の增膜が起こることを示唆し ている。 このようなマイクロ波窒化に伴う酸素濃度の増カ卩は、 マイクロ波窒化が 高真空中において行われ、 従って処理空間中に残留する酸素あるいは水分が高周 波リモートプラズマ窒ィ匕の場合のように A rガスや窒素ガスにより希釈されるこ とがなく、 雰囲気中において高い活動度を有することによるものと考えられる。 図 62は、 基板処理装置 20にお 、て酸化膜を 4 A ( 0. 4 nm) および 7 A (0. 7nm) の厚さに形成し、 これを前記リモートプラズマ部 27を使った図 59 A、 図 59 Bの窒ィ匕工程により窒ィ匕した場合の窒化時間と膜中の窒素濃度と の関係を示す。 また図 63は、 図 62の窒化処理に伴う窒素の酸ィ匕膜膜表面への 偏祈の様子を示す。 なお、 図 62及ぴ図 63には、 酸化膜を急速熱酸化処理によ り 5A (0. 5 nm) および 7 A (0. 7 nm) の厚さに形成した場合をも示し ている。  FIG. 60B shows the relationship between the nitrogen concentration and the oxygen concentration in the oxide film. However, in Fig. 6 OB, the oxygen concentration is represented by the X-ray intensity corresponding to the Ols orbit. Referring to FIG. 60B, when the nitriding of the oxide film was performed by the RF remote plasma as in the present invention, the oxygen concentration decreased with the increase in the nitrogen concentration, and the nitrogen concentration in the oxide film increased. It can be seen that the atoms have replaced the oxygen atoms. On the other hand, when nitriding of the oxide film is performed by the microphone mouth-wave plasma, such a substitution relationship is not observed, and a relationship in which the oxygen concentration decreases with the nitrogen concentration is not observed. In particular, in Fig. 60B, an increase in oxygen concentration was observed in the case where 5 to 6% of nitrogen was introduced by microwave nitridation, suggesting that the oxide film was formed together with nitridation. are doing. Such an increase in oxygen concentration due to microwave nitriding is performed in a case where microwave nitriding is performed in a high vacuum and oxygen or moisture remaining in the processing space is high frequency remote plasma nitriding. This is probably because the gas is not diluted by Ar gas or nitrogen gas and has high activity in the atmosphere. FIG. 62 shows that an oxide film is formed to a thickness of 4 A (0.4 nm) and 7 A (0.7 nm) in the substrate processing apparatus 20, and this is formed using the remote plasma section 27 shown in FIG. A, shows the relationship between the nitriding time and the nitrogen concentration in the film when nitriding is performed in the nitriding step of FIG. 59B. FIG. 63 shows a state in which nitrogen is biased on the surface of the silicon oxide film due to the nitriding treatment of FIG. FIGS. 62 and 63 also show the case where the oxide film was formed to a thickness of 5 A (0.5 nm) and 7 A (0.7 nm) by rapid thermal oxidation treatment.
図 62を参照するに、 膜中の窒素濃度は、 いずれの酸化膜であっても窒化処理 時間と共に上昇するが、 特に紫外光ラジカル酸化により形成された 2原子層分に 対応する 0. 4 n mの膜厚を有する酸化膜の場合に、 あるいはこれに近い 0. 5 nmの IU¥を有する熱酸化膜の場合には、 酸ィ匕膜が薄いため、 同一成膜条件にお いて膜中の窒素濃度が高くなつている。 Referring to FIG. 62, the nitrogen concentration in the film increases with the nitridation time for any of the oxide films, but particularly for the two atomic layers formed by ultraviolet radical oxidation. In the case of a corresponding oxide film having a thickness of 0.4 nm, or in the case of a thermal oxide film having an IU of 0.5 nm close thereto, the same film forming conditions are used because the oxide film is thin. In this case, the nitrogen concentration in the film increased.
図 6 3は図 6 1において検出器 D E T 1および D E T 2をそれぞれ 3 0 ° お よび 9 0 ° の検出角に設定して窒素濃度を検出した結果を示す。  FIG. 63 shows the result of detecting the nitrogen concentration in FIG. 61 by setting the detectors DET1 and DET2 to the detection angles of 30 ° and 90 °, respectively.
図 6 3よりわかるように、 図 6 3の縦軸は 3 0° の検出角で得られる膜表面に 偏析している窒素原子からの X線スぺクトル強度を、 9 0° の検出角で得られる 膜全体に分散している窒素原子からの X線スぺクトル強度の値で割つたものにな つており、 これを窒素偏析率と定義する。 この値が 1以上の場合には、 表面への 窒素の偏祈が生じている。  As can be seen from Fig. 63, the vertical axis in Fig. 63 shows the X-ray spectrum intensity from nitrogen atoms segregated on the film surface obtained at a detection angle of 30 ° at a detection angle of 90 °. It is divided by the value of the X-ray spectrum intensity from the nitrogen atoms dispersed throughout the obtained film, and this is defined as the nitrogen segregation rate. If this value is 1 or more, the surface is biased by nitrogen.
図 6 3を参照するに、 酸化膜が紫外光励起酸素ラジカル処理により 7 の, に形成されたものの場合, 窒素偏祈率が 1以上となり、 窒素原子は当初表面に偏 析し、 図 1中の酸窒化膜 1 2 Aのような状態になっているものと考えられる。 ま た 9 0秒間の窒ィ匕処理を行った後では、 膜中にほぼ一様に分布していることがわ 力る。 また他の膜でも、 9 0秒間の窒ィ匕処理で、 窒素原子の膜中の分布はほぼ一 様になることがわかる。  Referring to Fig. 63, when the oxide film was formed on the surface of the substrate by ultraviolet light-excited oxygen radical treatment, the nitrogen partialization rate became 1 or more, and the nitrogen atoms were initially segregated on the surface. It is considered that the oxynitride film is in a state like 12 A. It is also apparent that the particles are almost uniformly distributed in the film after performing the nitriding treatment for 90 seconds. In addition, it can be seen that the distribution of nitrogen atoms in the other films becomes almost uniform by the nitriding treatment for 90 seconds.
図 6 4の実験では、 基板処《¾置 2 0において、 前記紫外光ラジカル酸化処理 およびリモートプラズマ窒化処理を、 1 0枚のウェハ (ウェハ # 1〜ウェハ # 1 0 ) について繰り返し実行した。 図 6 4は、 このようにして得られた酸窒化膜の ゥェハ毎の膜厚変動を示す。 ただし図 6 4の結果は、 基板処理装置 2 0において 紫外線光源 8 6, 8 7を駆動して行う紫外光ラジカル酸ィ匕処理の際、 X P S測定 により求めた酸化膜の膜厚が 0. 4 n mになるように酸化膜を形成し、 次いでこ のようにして形成された酸化膜を、 前記リモートプラズマ部 2 7を駆動して行う 窒化処理により、 窒素原子を約 4 %含む酸窒化膜に変換した場合にっ 、てのもの である。  In the experiment shown in FIG. 64, in the substrate treatment << place 20, the ultraviolet radical oxidation treatment and the remote plasma nitridation treatment were repeatedly performed on 10 wafers (wafer # 1 to wafer # 10). FIG. 64 shows the thickness variation of each oxynitride film obtained in this manner for each wafer. However, the results in FIG. 64 indicate that the thickness of the oxide film obtained by XPS measurement was 0.4 when the ultraviolet light sources 86 and 87 were driven in the substrate processing apparatus 20 to perform the ultraviolet radical oxidation treatment. The oxide film thus formed is then formed into an oxynitride film containing about 4% of nitrogen atoms by a nitriding treatment performed by driving the remote plasma unit 27. If you convert it, you have everything.
図 6 4を参照するに、 縦軸は、 このようにして得られた酸窒化膜についてエリ プソメ トリにより求めた ffを示すが、 図 6 4よりわかるように得られた は ほぼ 8 A ( 0 . 8 nm) で、 一定していることがわかる。  Referring to FIG. 64, the vertical axis shows ff obtained by ellipsometry for the oxynitride film obtained in this manner. As can be seen from FIG. 64, the obtained value is approximately 8 A (0 8 nm).
図 6 5は、 基板処理装置 2 0により Hi享が 0. 4 n mの酸化膜をシリコン基板 上に紫外線光源 8 6, 8 7を使ったラジカル酸化処理により形成した後、 これを リモートプラズマ部 2 7により窒ィ匕した場合の、 窒ィ匕による Hff増を調べた結果 を示す。 Fig. 65 shows that the substrate processing equipment 20 uses a 0.4 nm oxide film on a silicon substrate. The results obtained by examining the increase in Hff due to nitridation when formed by a radical oxidation process using ultraviolet light sources 86 and 87 and then nitrided by a remote plasma unit 27 are shown.
図 6 5を参照するに、 当初 (窒化処理を行う前) 膜厚が約 0 . 3 8 n mであつ た酸化膜は、窒化処理により 4〜 7 %の窒素原子を導入された時点で膜厚が約 0 . 5 n mまで増大しているのがわかる。 一方、 窒化処理により窒素原子を約 1 5 °/0 導入した場合には膜厚は約 1 . 3 n mまで増大しており、 この場合には導入され た窒素原子が酸化膜を通過してシリコン基板中に侵入し、 窒化膜を形成している ものと考えられる。 Referring to Fig. 65, the oxide film, which had a thickness of about 0.38 nm at the beginning (before nitriding), had a thickness of 4 to 7% when nitrogen was introduced by nitriding. Is increased to about 0.5 nm. On the other hand, when nitrogen atoms were introduced at about 15 ° / 0 by nitriding, the film thickness increased to about 1.3 nm. In this case, the introduced nitrogen atoms passed through the oxide film and It is considered that they penetrate into the substrate and form a nitride film.
図 6 5中には、 厚さが 0 . 4 n mの酸ィ匕膜中に窒素を一層分だけ導入した理想 的なモデル構造についての窒素濃度と膜厚との関係を▲で示している。  In FIG. 65, the relationship between the nitrogen concentration and the film thickness for an ideal model structure in which only one layer of nitrogen is introduced into the 0.4 nm thick oxide film is shown.
図 6 5を参照するに、 この理想的なモデル構造では、 窒素原子導入後の が 約 0 . 5 n mとなり、その場合の膜厚の増加は約 0 . 1 n m,窒素濃度は約 1 2 % となる。 このモデルを基準とすると、 基板処理装置 2 0により酸化膜の窒化を行 う場合、 膜厚增は同程度の 0 . 1〜0 . 2 n mに抑制するのが好ましいことが結 論される。 またその際に膜中に取り込まれる窒素原子の量は、 最大で 1 2 %程度 になると見積もられる。  Referring to FIG. 65, in this ideal model structure, after nitrogen atom introduction is about 0.5 nm, the increase in film thickness is about 0.1 nm, and the nitrogen concentration is about 12%. It becomes. Based on this model, it is concluded that, when the oxide film is nitrided by the substrate processing apparatus 20, it is preferable to suppress the film thickness 抑制 す る to about 0.1 to 0.2 nm. At that time, the amount of nitrogen atoms taken into the film is estimated to be about 12% at the maximum.
なお、 以上の説明では、 基板処理装置 2 0を使って非常に薄いベース酸化膜を 形成する例を説明したが、 本発明はかかる特定の実施例に限定されるものではな く、 シリコン基板あるいはシリコン層上に高品質の酸化膜、 窒化膜あるいは酸窒 化膜を、 所望の膜厚に形成するのに適用することが可能である。  In the above description, an example in which a very thin base oxide film is formed using the substrate processing apparatus 20 has been described. However, the present invention is not limited to such a specific embodiment, and is not limited to a silicon substrate or a silicon substrate. It can be applied to form a high quality oxide, nitride or oxynitride film on a silicon layer to a desired thickness.
以上、 本発明を好ましい実施例について説明したが、 本発明は上記の特定の実 施例に限定されるものではなく、 特許請求の範囲に記載した要旨内において様々 な変形 ·変更が可能である。  Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to the above-described specific embodiments, and various modifications and changes can be made within the scope of the claims. .

Claims

請求の範囲 The scope of the claims
1 . 内部に処理空間が画成された処理容器と、 1. A processing vessel with a processing space defined inside,
前記処理空間に挿入された被処理基板を所定温度に加熱するヒータ部と、 前記ヒータ部に対向する位置に前記被処理基板を支持する複数の腕部と、 一端 が前記複数の腕部を支持し、 他端が前記ヒータ部に挿通された軸とを有する保持 部材と、  A heater for heating the substrate to be processed inserted into the processing space to a predetermined temperature; a plurality of arms for supporting the substrate for processing at a position facing the heater; and one end supporting the plurality of arms. A holding member having a shaft having the other end inserted through the heater portion;
該保持部材の軸を回転駆動する回転駆動手段と、  Rotation driving means for rotationally driving the shaft of the holding member,
を備えたことを特徴とする基板処理装置。  A substrate processing apparatus comprising:
2. クレーム 1記載の基板処理装置において、 2. In the substrate processing apparatus described in claim 1,
ΙίίΐΒ複数の腕部は、透明石英により形成されたことを特徴とする基板処理装置。  (4) The substrate processing apparatus, wherein the plurality of arms are formed of transparent quartz.
3. クレーム 1記載の基板処理装置において、 3. In the substrate processing apparatus described in claim 1,
前記複数の腕部は、 1 2 0度間隔で水平方向に放射状に延在形成された 3本の 腕部からなることを特徴とする基板処理装置。  The substrate processing apparatus according to claim 1, wherein the plurality of arms include three arms formed to extend radially in the horizontal direction at intervals of 120 degrees.
4. クレーム 2記載の基板処理装置において、 4. In the substrate processing apparatus described in claim 2,
前記複数の腕部は、 1 2 0度間隔で水平方向に放射状に延在形成された 3本の 腕部からなることを特徴とする基板処理装置。  The substrate processing apparatus according to claim 1, wherein the plurality of arms include three arms formed to extend radially in the horizontal direction at intervals of 120 degrees.
5. クレーム 1記載の基板処理装置において、  5. In the substrate processing apparatus described in claim 1,
前記複数の腕部は、 前記被処理基板に点接触する突起を有することを特徴とす る基板処理装置。  The substrate processing apparatus, wherein the plurality of arms have projections that make point contact with the substrate to be processed.
6 . クレーム 2記載の基板処理装置において、  6. In the substrate processing apparatus according to claim 2,
前記複数の腕部は、 前記被処理基板に点接触する突起を有することを特徴とす  The plurality of arms have projections that make point contact with the substrate to be processed.
7. クレーム 3記載の基板処理装置において、 7. In the substrate processing apparatus according to claim 3,
前記複数の腕部は、 前記被処理基板に点接触する突起を有することを特徴とす  The plurality of arms have projections that make point contact with the substrate to be processed.
8 . クレ ム 1記載の基板処理装置において、 8. In the substrate processing apparatus described in claim 1,
前記軸は、 不透明石英により形成されたことを特徴とする基板処理装置。 The substrate processing apparatus, wherein the shaft is formed of opaque quartz.
9. クレーム 1記載の基板処理装置において、 前記軸は、 セラミック製の軸受けにより回転可能に支持されたことを特徴とす 9. In the substrate processing apparatus described in claim 1, The shaft is rotatably supported by a ceramic bearing.
1 0. クレーム 1記載の基板処理装置において、 10 In the substrate processing apparatus according to claim 1,
前記軸の回転位置を検出する検出手段と、  Detecting means for detecting the rotational position of the shaft;
該検出手段からの信号に基づレ、て複数の腕部の回転位置が前記被処理基板の搬 送を行う搬送手段及び前記被処理基板を昇降させるリフタ機構と干渉しなレヽ位置 にあることを判定する判定手段と、  Based on the signal from the detecting means, the rotational positions of the plurality of arms are located at a level that does not interfere with the transporting means for transporting the substrate to be processed and the lifter mechanism for lifting and lowering the substrate to be processed. Determining means for determining
を備えたことを特徴とする基板処理装置。  A substrate processing apparatus comprising:
1 1 . クレーム 1 0記載の基板処理装置において、  1 1. In the substrate processing apparatus described in claim 10,
前記検出手段は、 前記保持部材の軸の外周に設けられた面取り部の位置を検出 することを特徴とする基板処理装置。  The substrate processing apparatus, wherein the detecting unit detects a position of a chamfer provided on an outer periphery of a shaft of the holding member.
1 2. クレーム 1 1記載の基板処理装置において、  1 2. In the substrate processing apparatus described in claim 11,
前記検出手段は、 tiif己保持部材の軸の半径方向に設けられた発光素子と、 前記 軸を介して前記発光素子に対向する位置に設けられた受光素子とからなることを 特徴とする基板処理装置。  The substrate processing, comprising: a light emitting element provided in a radial direction of an axis of the tiif self-holding member; and a light receiving element provided at a position facing the light emitting element via the axis. apparatus.
1 3 . クレーム 1 2記載の基板処理装置において、  1 3. In the substrate processing apparatus described in claim 12,
前記判定手段は、 前記発光素子からの光が前記軸の面取り部を通過して前記受 光素子に受光されたとき、 前記複数の腕部の回転位置が前記被処理基板の搬送を 行う搬送手段及び前記被処理基板を昇降させるリフタ機構と干渉しない位置にあ ることを判定することを特徴とする基板処理装置。  When the light from the light emitting element passes through the chamfered portion of the shaft and is received by the light receiving element, the rotation position of the plurality of arms transfers the substrate to be processed. A substrate processing apparatus that determines that the substrate is at a position that does not interfere with a lifter mechanism that raises and lowers the substrate to be processed.
PCT/JP2003/012082 2002-09-24 2003-09-22 Substrate processing apparatus WO2004030054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003266562A AU2003266562A1 (en) 2002-09-24 2003-09-22 Substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002278196A JP2004119519A (en) 2002-09-24 2002-09-24 Substrate processing equipment
JP2002-278196 2002-09-24

Publications (1)

Publication Number Publication Date
WO2004030054A1 true WO2004030054A1 (en) 2004-04-08

Family

ID=32040420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012082 WO2004030054A1 (en) 2002-09-24 2003-09-22 Substrate processing apparatus

Country Status (4)

Country Link
JP (1) JP2004119519A (en)
AU (1) AU2003266562A1 (en)
TW (1) TWI230401B (en)
WO (1) WO2004030054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294566B2 (en) 2015-03-25 2019-05-21 Sumitomo Chemical Company, Limited Substrate processing apparatus and substrate processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997765A (en) * 1995-09-29 1997-04-08 Toshiba Corp Substrate processing device
JPH10107114A (en) * 1996-09-27 1998-04-24 Kokusai Electric Co Ltd Substrate carrying device
JPH10247680A (en) * 1997-03-04 1998-09-14 Tokyo Electron Ltd Fork for transferring wafer to high-temperature oven and thermal treatment device
JP2000252347A (en) * 1999-03-01 2000-09-14 Kawasaki Heavy Ind Ltd Method and apparatus for conveyance of substrate as well as substrate conveyance arm
US6192603B1 (en) * 1998-08-26 2001-02-27 Sony Corporation Vacuum processing apparatus and magnetic seal rotary bearing unit
WO2002047153A1 (en) * 2000-12-08 2002-06-13 Tokyo Electron Limited Semiconductor processing system and method for transferring workpiece
JP2002176002A (en) * 2000-12-07 2002-06-21 Tokyo Electron Ltd Method and apparatus for treatment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927877B2 (en) * 1990-04-09 1999-07-28 エム・セテック株式会社 Uniform heating structure of semiconductor manufacturing equipment
JP2855308B2 (en) * 1993-02-08 1999-02-10 東京エレクトロン株式会社 Processing device and processing method
JPH0917742A (en) * 1995-06-30 1997-01-17 Hitachi Ltd Heat-treating apparatus
JP3412735B2 (en) * 1996-08-07 2003-06-03 株式会社山形信越石英 Wafer heat treatment equipment
JPH1057875A (en) * 1996-08-23 1998-03-03 Dainippon Screen Mfg Co Ltd Substrate treating device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997765A (en) * 1995-09-29 1997-04-08 Toshiba Corp Substrate processing device
JPH10107114A (en) * 1996-09-27 1998-04-24 Kokusai Electric Co Ltd Substrate carrying device
JPH10247680A (en) * 1997-03-04 1998-09-14 Tokyo Electron Ltd Fork for transferring wafer to high-temperature oven and thermal treatment device
US6192603B1 (en) * 1998-08-26 2001-02-27 Sony Corporation Vacuum processing apparatus and magnetic seal rotary bearing unit
JP2000252347A (en) * 1999-03-01 2000-09-14 Kawasaki Heavy Ind Ltd Method and apparatus for conveyance of substrate as well as substrate conveyance arm
JP2002176002A (en) * 2000-12-07 2002-06-21 Tokyo Electron Ltd Method and apparatus for treatment
WO2002047153A1 (en) * 2000-12-08 2002-06-13 Tokyo Electron Limited Semiconductor processing system and method for transferring workpiece

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294566B2 (en) 2015-03-25 2019-05-21 Sumitomo Chemical Company, Limited Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
TW200421434A (en) 2004-10-16
AU2003266562A1 (en) 2004-04-19
JP2004119519A (en) 2004-04-15
TWI230401B (en) 2005-04-01

Similar Documents

Publication Publication Date Title
JP3887291B2 (en) Substrate processing equipment
JP3877157B2 (en) Substrate processing equipment
WO2003063220A1 (en) Method and device for processing substrate, and apparatus for manufacturing semiconductor device
US7122454B2 (en) Method for improving nitrogen profile in plasma nitrided gate dielectric layers
US20020035962A1 (en) Photo-excited gas processing apparatus for semiconductor process
US11521839B2 (en) Inline measurement of process gas dissociation using infrared absorption
US6287984B1 (en) Apparatus and method for manufacturing semiconductor device
WO2004030066A1 (en) Substrate processing apparatus
WO2004030063A1 (en) Substrate processing apparatus
WO2004030054A1 (en) Substrate processing apparatus
KR100839679B1 (en) Sheet-type treating device
JP2004006614A (en) Nitriding method, semiconductor device and its manufacture, substrate processing device, and substrate processing method
JP2006121106A (en) Substrate processing equipment
JP4646354B2 (en) Heat treatment apparatus and method
JPH1032195A (en) Lamp-heating furnace for oxynitride film manufacture use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase