WO2004029698A1 - Variable polarization rotation device, and variable optical attenuator using the same - Google Patents

Variable polarization rotation device, and variable optical attenuator using the same Download PDF

Info

Publication number
WO2004029698A1
WO2004029698A1 PCT/JP2002/010072 JP0210072W WO2004029698A1 WO 2004029698 A1 WO2004029698 A1 WO 2004029698A1 JP 0210072 W JP0210072 W JP 0210072W WO 2004029698 A1 WO2004029698 A1 WO 2004029698A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
input
magneto
variable
output
Prior art date
Application number
PCT/JP2002/010072
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Nagaeda
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2002/010072 priority Critical patent/WO2004029698A1/en
Priority to JP2004539447A priority patent/JPWO2004029698A1/en
Publication of WO2004029698A1 publication Critical patent/WO2004029698A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Definitions

  • the present invention relates to a variable polarization rotator that rotates (changes) the polarization state of input light using a magneto-optical effect (Faraday effect) and a variable optical attenuator using the same.
  • FIG. 24 An example of a variable polarization rotator using a conventional variable Faraday rotator is shown in FIG.
  • the device shown in FIG. 24 has, for example, an input collimating lens (collimating lens) 102 and a Faraday rotator 10 on the optical axis between the input optical fiber 101 and the output optical fiber 105. 3.
  • An output collimator (collimating lens) 104 is arranged.
  • the Faraday rotator 104 applies a magnetic field to the Faraday element (magneto-optical crystal) 13 1 and the Faraday element 13 1 in a direction parallel to the optical axis.
  • An electromagnet magnetic field generating means for applying a magnetic field to the Faraday element 13 1 from a direction crossing the optical axis approximately 90 degrees with the permanent magnets 13 2 and 13 33 It is composed of 3 and 5.
  • the strength of the magnetic field applied by the electromagnets 134 and 135 is adjusted by a current source 106 as a control signal applying means.
  • the permanent magnets 13 2 and 13 33 are practically opaque in general, they have a shape that does not hinder the optical path (for example, a hollow structure).
  • the magnetization direction of the Faraday element 131 can It is the direction of the composite magnetic field of the constant magnetic field by 33 and the variable magnetic field by electromagnets 13 4 and 1 35.
  • Patent Literature 1 Japanese Patent Application Laid-Open No. 6-51255
  • the applied electromagnetic field by the electromagnets 13 4 and 13 5 must be varied.
  • the magnetization vector changes so that its magnitude is constant and only the direction changes.
  • the component parallel to the optical axis direction changes according to the direction of the synthetic magnetic field, that is, the magnitude of the variable magnetic field of the electromagnets 13 4 and 13 5, and is determined by the magnetization component parallel to the optical axis direction.
  • the Faraday rotation angle changes according to the magnitude of the magnetic field of the electromagnets 13 4 and 13 5.
  • Patent Document 1 proposes using such a variable Faraday rotator to configure a variable optical attenuator (variable optical attenuator). That is, as shown in FIG. 25, for example, in the configuration described above with reference to FIG. 24, a polarizer 1336 is provided in front of the magneto-optical crystal 13 1 of the Faraday rotator 103, and the magneto-optical crystal 1 An analyzer 13 7 is provided after 31 to form a variable light athens.
  • the polarizer 1336 and the analyzer 1337 are each formed of a tapered (wedge-shaped) birefringent crystal (for example, rutile or the like), and a straight line having a predetermined polarization plane of the incident light. It selectively transmits polarized light, and the top and bottom of the polarizer 136 face the bottom and top of the analyzer 137, respectively, and the optical axes of both birefringent crystals (perpendicular to the plane of the paper). Are present so that they are perpendicular to each other.
  • the variable optical antenna shown in FIG. 25 operates as follows. That is, as shown in FIG.
  • FIG. 26 is a side view showing an optical path when viewed from the X-axis (arrow B) direction in FIG. However, in FIG. 26, the illustration of the permanent magnets 13 2 and 13 3 and the electromagnets 13 4 and 13 5 is omitted.
  • the analyzer 1337 further separates the ordinary light component o into the ordinary light component o o and the extraordinary light component o e, and further separates the extraordinary light e into the ordinary light component e o and the extraordinary light component e e.
  • the ordinary light component oo and the extraordinary light component ee emitted from the analyzer 13 37 are the refraction history received by the polarizer 13 36 and the analyzer 13 37 and the polarizer 13 36 and the analyzer, respectively.
  • the extraordinary light component oe of the ordinary light component o and the ordinary light component eo of the extraordinary light component e spread not parallel to each other, they are coupled to the core of the output optical fiber 105 even through the collimating lens 104. No (shown by dashed line).
  • the ratio of the total power of the ordinary light component oo and the extraordinary light component ee to the total power of the extraordinary light component oe and the ordinary light component eo depends on the rotation angle of the Faraday rotator 103, and the Faraday rotation angle is constant.
  • the total power of the ordinary light component oo and the extraordinary light component ee does not depend on the polarization state of the output light of the input optical fiber 101.
  • the electromagnetic field applied by the electromagnets 13 4 and 13 5 is 0
  • the Faraday rotation angle is 90 degrees (the magnetization is parallel to the optical axis)
  • the ordinary light component o emitted from the polarizer 13 36 is emitted almost as it is from the analyzer 13 37 as the ordinary light component oo
  • the polarizer 13 The extraordinary light component e emitted from 6 is emitted from the analyzer 13 7 as it is as the extraordinary light component ee, so that most of the emitted light from the input optical fiber 101 is coupled to the output optical fiber 105.
  • the Faraday rotation angle approaches 0 degree, and the ordinary light component 0 emitted from the polarizer 13 36 is almost unchanged from the analyzer.
  • the magnetization of the Faraday element 1331 rotates according to the strength of the electromagnetic field applied by the electromagnets 1334 and 135, and the Faraday rotation angle ranges from about 90 degrees to about 0 degrees. And the amount of light coupled to the core of the output optical fiber 105 changes accordingly, so that the device shown in FIG. 25 functions as a variable optical attenuator. 1 3 1
  • a Bi (bismuth) -substituted rare earth iron garnet single crystal film (LPE film) mainly manufactured by the LPE method (liquid phase epitaxy method) was used. The reason is that the LPE film has the advantage of a larger Faraday rotation coefficient than the YIG (yttrium iron garnet) single crystal due to the contribution of Bi.
  • reference numeral 115 denotes a two-core ferrule fixing the input optical fiber 101 and output optical fiber 105
  • 124 denotes input collimator 110 and output collimator 110.
  • the collimator lenses (collimating lenses) 124 and 138 which also serve as the evening light 104 are polarizers and analyzers which also serve as the above-mentioned polarizers 13 and 13 respectively.
  • the light beam is transmitted to the Faraday rotator 10 3. Is transmitted twice back and forth, so that the thickness of the Faraday rotator 103 (Faraday element 13 1) and the required magnetic field strength can be halved.
  • the polarizer 1336 and analyzer 13 7 and the input collimator 10 2 and the output collimator 10 4 can be shared by the polarizer / analyzer 13 8 and the collimator 12 4, respectively. Cost reductions are also being made by reducing the number of parts and the number of parts.
  • the Faraday rotator 103 (Faraday element 13 1) can be made smaller in such a reflective variable optical attenuator, the electromagnetic coil occupying most of the size of the Faraday rotator 103 Dramatic miniaturization cannot be expected because the (magnetic field generating means) does not become smaller. Although it is possible to reduce the size of the coil wire by making it thinner, it is difficult at present to reduce the size of the electromagnet coil itself due to problems such as heat generation due to increased electrical resistance.
  • the present invention has been made in view of the above-described problems, and has been made in view of the above-mentioned circumstances. And a variable optical attenuator using the same.
  • JP 2001-1420240 A (related to a variable optical attenuator using a Faraday rotator)
  • a variable polarization rotator of the present invention comprises: a first condensing means for condensing input light; and a magneto-optical device provided near a focal position of the first condensing means.
  • the first condensing means may be constituted by an input line force lens for condensing the input light linearly, or an input point condensing means for condensing the input light pointwise. It may be constituted by a lens. Further, an input collimator for collimating the input light and inputting the collimated light to the first condensing means may be provided at a stage preceding the first condensing means.
  • variable optical attenuator using the variable polarization rotator of the present invention collimates the input light and inputs the collimated light to the input line focus lens before the input line focus lens.
  • a variable polarization rotator provided with an input collimator and having a polarizer or a birefringent plate provided between the input focusing lens and the magneto-optical crystal is used.
  • variable optical attenuator using the variable polarization rotator of the present invention includes an input for collimating the input light and inputting the collimated light to the input point condensing lens before the input point condensing lens.
  • a collimator is provided, and the input collimator and the input point are collected.
  • a variable polarization rotator provided with a polarizer or a birefringent plate between the lens and the lens is used.
  • the variable polarization rotator may include an output collimator for collimating light transmitted through the magneto-optical crystal, at a stage subsequent to the magneto-optical crystal.
  • the output collimator may be constituted by an output line force lens that linearly condenses the light emitted from the magneto-optical crystal, or collects the light emitted from the magneto-optical crystal in a point-like manner. It may be constituted by an output point condenser lens that emits light.
  • variable optical attenuator using the variable polarization rotator of the present invention employs a variable polarization rotator provided with an analyzer or a birefringent plate between the magneto-optical crystal and the output lens. It is characterized by:
  • variable optical attenuator using the variable polarization rotator of the present invention the second condensing means for condensing the light emitted from the output point condensing lens at a stage subsequent to the output point condensing lens is provided.
  • a variable polarization rotator provided with an analyzer or a birefringent plate between the output point condenser lens and the second condenser means.
  • variable polarization rotator of the present invention comprises: an input optical fiber for propagating input light; an input collimator for collimating input light from the input optical fiber; and a collimator emitted from the input collimator.
  • Input light lens for condensing light in a linear manner, a magneto-optical crystal installed near the focal position of the input line focus lens, and collimating light transmitted through the magneto-optical crystal
  • a control means for controlling the magnetic field generating means to change the magnetic field.
  • variable optical attenuator using the variable polarization rotator of the present invention may further include a polarizer or a first birefringent plate provided between the input color information lens and the magneto-optical crystal.
  • a variable polarization rotator in which an analyzer or a second birefringent plate is provided between the crystal and the output color information lens is used.
  • the polarizer or the first birefringent plate and the analyzer or the second birefringent plate, Each of them may be made of a birefringent crystal having a wedge shape.
  • variable polarization rotator of the present invention comprises: a first light condensing means for condensing the input light; a magneto-optical crystal installed near a focal position of the first light condensing means; A magnetic field generating means for applying a magnetic field; a control means for controlling the magnetic field generating means to change the magnetic field; and a reflecting element for reflecting light transmitted through the magneto-optical crystal and returning the light to the magneto-optical crystal. It is characterized by having.
  • the first light condensing means may be constituted by an input color information lens that condenses the input light linearly.
  • an input collimator for collimating the input light and entering the first light condensing means may be provided in front of the first light condensing means.
  • an output collimator for collimating the reflected light reflected by the reflective element and passing through the magneto-optical crystal may be provided, and the output collimator may include the reflected light from the magneto-optical crystal. May be constituted by an output line focus lens that condenses the light into a linear shape.
  • a second condenser means for condensing the light emitted from the output collimator may be provided at a stage subsequent to the output collimator.
  • variable polarization rotator of the present invention includes an input optical fiber that propagates the input light, an input collimator that collimates the light emitted from the input optical fiber, and a collimator that emits the collimated light emitted from the input collimator.
  • a first condensing unit that emits light
  • a magneto-optic crystal installed near a focal position of the first condensing unit, and a reflection that reflects light transmitted through the magneto-optic crystal and returns the light to the magneto-optic crystal.
  • An element an output collimator for collimating the light reflected by the reflection element and transmitted through the magneto-optical crystal, and a second condensing means for condensing collimated light emitted from the output collimator;
  • An output optical fiber installed near a focal position of the second light condensing means, a magnetic field generating means for applying a magnetic field to the magneto-optical crystal, and a control means for controlling the magnetic field generating means to change the magnetic field With It is characterized in that.
  • the first condensing means and the output collimator may each be constituted by a line focus lens that condenses incident light linearly, or condenses incident light linearly. Two line focus lenses may be used.
  • the input collimator and the second condensing means may each be constituted by a collimating lens for collimating the incident light, or may be shared by one collimating lens for collimating the incident light.
  • variable optical attenuator using the variable polarization rotator of the present invention further comprises a polarizer or a first birefringent plate provided between the first light collecting means and the magneto-optical crystal.
  • a variable polarization rotator provided with an analyzer or a second birefringent plate between the magneto-optical crystal and the output collimator is used.
  • first birefringent plate and the second birefringent plate may be shared by a polarizer and an analyzer. Further, each of the first birefringent plate and the second birefringent plate may be formed of a birefringent crystal having a wedge shape. Further, the above-mentioned polarizer and analyzer may be formed of a birefringent crystal having a wedge shape.
  • FIG. 1 is a schematic perspective view showing a configuration of a variable polarization rotation device as one embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a configuration focusing on a main part of the variable polarization rotation device shown in FIG.
  • FIG. 3 is a schematic top view showing the configuration shown in FIG. 2 when viewed from the direction of arrow A, together with the optical path.
  • FIG. 4 is a schematic side view showing the configuration of FIG. 2 when viewed from the direction of arrow B, together with the optical path.
  • FIG. 5 is a schematic perspective view showing a modification of the variable polarization rotation device shown in FIG.
  • FIG. 6 is a schematic perspective view showing a configuration of a variable optical attenuator using a variable Faraday rotator as one embodiment of the present invention, together with an optical path.
  • FIG. 7 is a schematic top view showing the configuration of the variable optical attenuator shown in FIG. 6 when viewed from the direction of arrow A, together with the optical path.
  • FIG. 8 is a schematic side view showing the configuration of the variable optical attenuator shown in FIG. 6 when viewed from the direction of arrow B, together with the optical path.
  • FIG. 9 is a schematic perspective view showing a modification of the variable optical attenuator shown in FIG.
  • FIG. 10 is a schematic top view showing the configuration of the variable optical attenuator shown in FIG. 9 when viewed from the direction of arrow A, together with the optical path.
  • FIG. 11 is a schematic side view showing the configuration of the variable optical attenuator shown in FIG. 9 when viewed from the direction of arrow B, together with the optical path.
  • FIG. 12 is a diagram showing an optical path focusing on the ordinary light component and the extraordinary light component when viewed from the direction of arrow B in FIG. 9 for explaining the operation of the variable optical attenuator shown in FIG.
  • FIG. 13 is a schematic perspective view showing the configuration of a reflection-type variable polarization rotator as one embodiment of the present invention, together with an optical path.
  • FIG. 14 is a schematic view showing a side surface of the reflective element for explaining the operation of the reflective element of the variable polarization rotator shown in FIG.
  • FIG. 15 is a schematic perspective view showing a modification of the reflection type variable polarization rotation device shown in FIG.
  • FIG. 16 is a schematic perspective view showing the main components of the reflective variable polarization rotator shown in FIG. 13 together with the optical path.
  • FIG. 17 is a schematic perspective view showing the configuration of a reflection-type variable optical attenuator as one embodiment of the present invention, together with an optical path.
  • FIG. 18 is a schematic top view showing the configuration of the reflection type variable optical attenuator shown in FIG. 17 when viewed from the direction of arrow A, together with the optical path.
  • FIG. 19 is a schematic side view showing the configuration of the reflection type variable optical attenuator shown in FIG. 17 when viewed from the direction of arrow B, together with the optical path.
  • FIG. 20 is a schematic side view showing the optical paths of the ordinary light component and the extraordinary light component, respectively, for explaining the operation of the reflection type variable optical attenuator shown in FIGS.
  • FIG. 21 is an enlarged view of a main part of FIG.
  • FIG. 22 and FIG. 23 are schematic top views showing the arrangement of components to explain the usefulness of using a cylindrical lens in a reflection type variable optical attenuator.
  • FIG. 24 is a schematic perspective view showing the configuration of a conventional variable polarization rotator together with an optical path.
  • FIG. 25 is a schematic perspective view showing the configuration of a conventional variable optical attenuator together with an optical path.
  • Figure 26 shows the ordinary light component and the extraordinary light component to explain the operation of the variable optical attenuator shown in Figure 25. It is a typical side view which shows the optical path of a minute.
  • FIG. 27 is a schematic perspective view showing the configuration of a conventional reflection-type variable optical attenuator.
  • FIG. 1 is a schematic perspective view showing the configuration of a variable polarization rotator as one embodiment of the present invention.
  • the variable polarization rotator shown in FIG. 1 has an input optical fiber 1, an input collimating lens 2, an input cylindrical lens ( The variable Faraday rotator (line focus lens) 3, variable Faraday rotator 4, output cylindrical lens (line focus lens) 5, output collimator lens 6, output optical fiber 7 and variable current source 8.
  • the Faraday rotator is also composed of a Faraday element (magneto-optical crystal) 41, permanent magnets 42, 43, and electromagnets 44, 45 as magnetic field generating means. I have.
  • the input optical fiber 1 propagates the input light
  • the input collimating lens (input collimator) 2 collimates the light emitted from the input optical fiber 1
  • the input cylindrical lens (first condensing means) 3 condenses the collimated light emitted from the input collimating lens 2 linearly (only in one direction of the light wavefront).
  • the collimated light is focused in the X-axis direction shown in the figure.
  • the Faraday rotator 4 rotates the polarization state of light emitted from the input cylindrical lens 3 according to the principle described above.
  • the center of a magneto-optical crystal 41 such as a garnet single crystal is focused on the input cylindrical lens 3.
  • the permanent magnet is placed near the position, and a permanent magnetic field is applied to the magneto-optical crystal 41 by the permanent magnets 42, 42 in parallel with the light beam, and is substantially perpendicular to the light beam by the electromagnets 44, 45. Electromagnetic fields are applied in the focusing direction of the input cylindrical lens 3 (X-axis direction in FIG. 1).
  • the permanent magnetic field has a magnetic field strength sufficient to saturate the magnetization of the magneto-optical crystal 41, and the applied field strength by the electromagnets 44 and 45 is controlled by the variable current source 8 as a control means from the outside.
  • the permanent magnets 42 and 4 3 are practically opaque in general, so each has a shape that does not hinder the optical path (for example, a hollow structure).
  • the magnetization of the Faraday rotator 4 (the magneto-optical crystal 41) is saturated by the permanent magnetic field, and the direction of the magnetization vector is changed by the application of the electromagnetic field by the electromagnets 44 and 45, but the magnitude is does not change.
  • the amount of Faraday rotation is determined by the component of the magnetization vector parallel to the light beam, so that the amount of Faraday rotation can be controlled by applying an electromagnetic field.
  • the output cylindrical lens (output collimator) 5 can collect or collimate the incident light depending on its position (distance from the Faraday rotator 4).
  • the light emitted from the Faraday rotator 4 (the light transmitted and diverging through the magneto-optical crystal 41) is arranged so as to be collimated.
  • the output collimating lens (second focusing means) 6 focuses the light emitted from the output cylindrical lens 5 and couples the light to the output optical fiber 7. It propagates the output light collected from the collimating lens 6.
  • the lens material of the cylindrical lenses 3 and 5 may be a commonly used glass material such as SFS01 and BK7.
  • the light emitted from the input optical fiber 1 is collimated by the input collimating lens 2, and the collimated light is input to the input cylindrical lens 3.
  • the light After being condensed, the light is incident on the magneto-optical crystal 41 of the Faraday rotator 4, where it undergoes polarization rotation according to the electromagnetic field generated by the electromagnets 44 and 45, and then is collimated by the output cylindrical lens 5.
  • the light is condensed by the output collimating lens 6 and coupled to the output optical fiber 7.
  • the distance between the electromagnets 44, 45 of the Faraday rotator 4 must be at least as large as the beam diameter of the incident light, for example, the Faraday rotator width ( It is necessary to set the distance between the electromagnets 44 and 45 to about 460 m and the distance between the electromagnets 44 and 45 to about 460 ⁇ .
  • the incident light to the Faraday rotator 4 is condensed linearly in only one direction (in the X-axis direction) by the input cylindrical lens 3, the beam is greatly increased.
  • the diameter becomes smaller, and for example, the Faraday rotator width can be reduced to 35 / xm, and the distance between the electromagnetic stones 44 and 45 can be reduced to about 45 ⁇ 1, which can be reduced to about 1/10 of the conventional value.
  • the magnetic field resistance is reduced, and the applied magnetic field strength can be smaller than before to give the same Faraday rotation angle.
  • the number of coil windings of the electromagnets 44, 45 can be greatly reduced.
  • the electromagnets 44, 45 (coils), which conventionally occupy much of the volume of the Faraday rotator 4, can be significantly reduced in size. Therefore, the size of the electromagnets 44 and 45 can be significantly reduced, and the size of the Faraday rotator 4 can be significantly reduced.
  • FIG. 2 is a schematic perspective view showing the configuration focusing on the essential parts (the portion composed of the input cylindrical lens 3 and the Faraday rotator 4) in FIG. 1 together with the optical path
  • FIG. 3 is the configuration shown in FIG.
  • Fig. 4 is a schematic top view showing the configuration when viewed from the direction of arrow A together with the optical path
  • Fig. 4 is a schematic side view showing the configuration as viewed from the direction of arrow B and the configuration shown in Fig. 2 along with the optical path. It is.
  • the input cylindrical lens 3 and the output cylindrical lens 5 described above are, for example, as schematically shown in FIG.
  • the same operation and effect as described above can be obtained by replacing with '.
  • the distance between the electromagnets 44 and 45 can be reduced.
  • the cross-sectional area of the surfaces of the electromagnets 44 and 45 facing the magneto-optical crystal 41 can be reduced, so that the Faraday rotator 4 can be further reduced in size.
  • variable optical attenuator which is an application of the variable polarization rotation device using the variable Faraday rotator 4 described above, will be described below.
  • FIG. 6 is a schematic perspective view showing the configuration of a variable optical attenuator using the above-described variable Faraday rotator 4 together with an optical path
  • FIG. 7 is a perspective view of the variable optical attenuator shown in FIG. 8 is a schematic side view showing the configuration when the variable optical attenuator shown in FIG. 6 is viewed from the direction of arrow B, together with the optical path. is there.
  • the variable optical attenuator of the present embodiment also includes an input optical fiber 1, an input collimating lens 2, an input cylindrical lens 3, a Faraday rotator 4, an output cylindrical lens. 5, an output collimating lens 6, an output optical fiber 7 and a variable current source 8.
  • a polarizer (or between the permanent magnet 42 on the input side and the magneto-optical crystal 41) is provided.
  • a first birefringent plate 9 is provided, and an analyzer (or a second birefringent plate) 10 is provided between the magneto-optical crystal 41 and the permanent magnet 43 on the output side.
  • the same reference numerals as those described above denote the same or similar ones unless otherwise specified.
  • the polarizer 9 and the analyzer 10 are each formed of a tapered (wedge-shaped) birefringent crystal (for example, rutile or the like) on the YZ plane in FIG.
  • the polarizers 9 selectively transmits linearly polarized light having a predetermined polarization plane.
  • the top and bottom of the polarizer 9 face the bottom and top of the analyzer 10, respectively (in FIG. 6, the polarizer 9 has a wedge shape).
  • the analyzer is installed with the long side down, the analyzer 10 is installed with the short side down), and the optic axes of both birefringent crystals (in the plane perpendicular to the plane of the paper). Are present to be perpendicular to each other.
  • the variable optical attenuator of the present embodiment configured as described above the light emitted from the input optical fiber 1 is first collimated by the input collimating lens 2, and then input before the magneto-optical crystal 41.
  • the light is condensed by the cylindrical lens 3 (condensed linearly in the X-axis direction in Fig. 6) (especially, see Fig. 7).
  • the Faraday rotator width and the distance between the electromagnets 44 and 45 can be significantly reduced as compared with the conventional case.
  • the light emitted from the input cylindrical lens 3 is separated into an ordinary light component and an extraordinary light component by the polarizer 9 and the analyzer 10 in the same manner as described above with reference to FIG.
  • the element 4 receives rotation of the polarization plane according to the applied electromagnetic field of the electromagnets 44, 45, whereby the amount of light coupled to the core of the output optical fiber 7 changes according to the applied voltage.
  • variable optical attenuator that realizes the variable optical attenuation function using the Faraday rotator 4
  • the incident light Is condensed beforehand by the cylindrical lens 3 before the magneto-optical crystal 41, so that the Faraday rotator width and the distance between the electromagnets 44, 45 can be significantly reduced as compared with the conventional case, and the variable optical attenuator The size can be reduced.
  • FIG. 10 shows the configuration of the variable optical attenuator in this case when viewed from the direction of arrow A
  • FIG. 11 also shows the configuration when viewed from the direction of arrow B
  • FIG. 10 shows the optical path focusing on the ordinary light component and the extraordinary light component when viewed from the direction of arrow B in FIG.
  • the (input) point condenser lens 3 ′ is disposed after the polarizer 9 (before the magneto-optical crystal 41), and the (output) point condenser lens 5 ′ is connected to the analyzer 10. It is arranged at the front stage (after the magneto-optical crystal).
  • the polarizer 9 and the analyzer 10 are both installed with the long side of the wedge shaped downward (in the direction of arrow A in FIG. 9).
  • the arrangement relationship between the polarizer 9 and the analyzer 10 changes when the point condensing lenses 3 'and 5' are applied for the following reasons. That is, if the point condensing lenses 3 ′ and 5 ′ are arranged at the same position as when the cylindrical lenses 3 and 5 are applied, the light transmitted through the polarizer 9 and the analyzer 10 that causes an angle change in the incident light is obtained. The focusing process is performed in all directions, and the point focused beam is hardly attenuated because the position focused on the output optical fiber 7 hardly changes (the angle tolerance is loose) even if the angle changes slightly. It is.
  • the polarizer 9 and the analyzer 10 are not used at the point focused beam but at the collimated light stage.
  • the polarizer 9 is arranged before the point condensing lens 3 ′, and the analyzer 10 is arranged after the point condensing lens 5 ′ so that an angle change occurs in.
  • variable optical attenuator in the variable optical attenuator shown in FIG. 9, the ordinary light component and the extraordinary light component travel along the optical path schematically shown in FIG.
  • the amount of light coupled to the core of the output optical fiber 7 changes according to the change in the applied electromagnetic field due to 44 and 45.
  • a point condensing lens 3 ′ is provided in front of the Faraday rotator 4 (magneto-optical crystal 41) to collect light incident on the magneto-optical crystal 41 in a point-like manner in advance (see FIGS. Therefore, also in the case of this example, the Faraday rotator width and the distance between the electromagnets 44 and 45 can be greatly reduced as compared with the conventional case, and the variable optical attenuator can be significantly reduced in size.
  • FIG. 13 is a schematic perspective view showing the configuration of a reflection-type variable polarization rotator as one embodiment of the present invention, together with an optical path.
  • the variable polarization rotator shown in FIG. An input collimating lens 2, an input cylindrical lens 3, a magneto-optical crystal 41, a variable Faraday rotator 4 including permanent magnets 42, 43 and electromagnets 44, 45, and a magneto-optical crystal 4. It is composed of a reflective element 11 provided after 1 (before the permanent magnets 4 and 3), an output cylindrical lens 5, an output collimating lens 6, an output optical fiber 7, and a variable current source 8. Have been.
  • the input optical fiber 1 propagates the input light
  • the input collimating lens (input collimator) 2 collimates the light emitted from the input optical fiber 1.
  • the input cylindrical lens 3 condenses the light emitted from the input collimating lens 2 in a linear form and makes it incident on the variable Faraday rotator 4 (magneto-optical crystal 4 1). It is arranged so that the center of the magneto-optical crystal 41 is located at the focal length.
  • the Faraday rotator 4 rotates (changes) the polarization state of the light emitted from the input cylindrical lens 3 in accordance with the intensity of the electromagnetic field applied by the electromagnets 44 and 45, as described above.
  • the reflection element 11 is provided on the output side of the magneto-optical crystal 41, and reflects the light transmitted through the magneto-optical crystal 41 to form a magneto-optical element.
  • the light from the magneto-optical crystal 41 is directed in a direction different from the input optical path (for example, as schematically shown in FIG. 14, the reflection angle ⁇ and the Z axis in FIG. 13 are used). (Direction of arrow A)].
  • the reflective element 11 when the reflective element 11 is brought into close contact with the magneto-optical crystal 41, it is realized by forming a reflective film made of a dielectric multilayer film or the like on the output surface of the magneto-optical crystal 41. it can. Of course, air or another optical medium may be interposed between the reflective element 11 and the magneto-optical crystal 41 without being brought into close contact with each other.
  • an output cylindrical lens (output collimator) 5 collimates the reflected light reflected by the reflection element 11 and transmitted through the magneto-optical crystal 41 again.
  • the output collimating lens 6 is an output cylindrical lens.
  • the light emitted from 5 is condensed, and is arranged such that its focal length is located at the core of the output optical fiber 7.
  • the focal length f of the collimating lenses 2 and 6 is 4 mm, for example, and the focal length f of the cylindrical lenses 3 and 5 is 1.8 mm, for example.
  • the light emitted from the input optical fiber 1 enters the input collimating lens 2 and is collimated by the collimating lens 2. Then, the light enters the input cylindrical lens 3, is condensed linearly in advance in the X-axis direction in FIG. 13 by the input cylindrical lens 3, and is incident on the Faraday rotator 4 (magneto-optical crystal 41).
  • the light incident on the Faraday rotator 4 has its polarization plane rotated in the magneto-optical crystal 41 according to the intensity of the applied electromagnetic field by the electromagnetic stones 44 and 45, and has transmitted through the magneto-optical crystal 41. Thereafter, the light is reflected by the reflection element 11 and reenters the magneto-optical crystal 41. In the magneto-optical crystal 41, substantially the same amount of Faraday rotation angle as that of the incident light is given to the magneto-optical crystal 41 in the same rotation direction.
  • the thickness of the magneto-optical crystal 41 itself (the X-axis direction in FIG. 13) can be substantially reduced by half compared to the conventional case, and in this case, the light incident on the magneto-optical crystal 41 is cylindrically formed. Since the light is previously focused linearly in the X-axis direction in Fig. 13 by the lens 3, the Faraday rotator width and the distance between the electromagnets 44, 45 are further reduced, and the Faraday rotator 4 The size can be reduced.
  • the reflected light transmitted through the magneto-optical crystal 41 is collimated by the output cylindrical lens 5, then condensed by the output collimating lens 6, and coupled to the core of the output optical fiber 7.
  • the angle between the incident light from the magneto-optical crystal 41 to the reflective element 11 and the reflected light from the reflective element 11 to the magneto-optical crystal 41 is 0 degree. Yes.
  • an optical circuit may be used to spatially separate the reflected light from the incident light.
  • the input collimating lens 2 and the output collimating lens 6 described above are combined into one.
  • the collimating lens 26 may be used in common, and the input cylindrical lens 3 and the output cylindrical lens 5 may be used in common by one cylindrical lens 35 (in such a common use, the reflection angle 0 is small (for example, about 5 °). ) Is easier.)
  • the reflection angle 0 is small (for example, about 5 °). ) Is easier.)
  • a two-core ferrule 17 with an input optical fiber 1 and an output optical fiber 7 can be used.
  • an input cylindrical lens 3 a Faraday rotator 4 (a magneto-optical crystal 41, permanent magnets 42, 43, an electromagnet 44) , 45) and the reflective element 11, a reflection-type variable polarization rotator can be realized (the collimating lenses 2 and 6 may be unnecessary in the configuration of Fig. 13). However, the output cylindrical lens 5 may be unnecessary).
  • FIG. 17 is a schematic perspective view showing the configuration of a reflection type variable optical attenuator according to an embodiment of the present invention, together with an optical path.
  • FIG. 18 is a diagram showing the variable optical attenuator shown in FIG.
  • FIG. 19 is a schematic side view also showing the configuration when viewed from the direction together with the optical path, and
  • FIG. 19 is a schematic side view also showing the configuration when viewed from the arrow B direction.
  • the reflection-type variable optical attenuator of the present embodiment is , 2-core ferrule 17, collimating lens 26, cylindrical lens 35, Faraday rotator 4 (magneto-optical crystal 41, permanent magnets 42, 43, electromagnets 44, 45), polarizer It is provided with a combined analyzer 91, a reflection element 11 and a variable current source 8.
  • the variable optical attenuator is based on the configuration of the reflective variable polarization rotator described above with reference to FIG.
  • the polarizer / analyzer 91 which also functions as the above-mentioned polarizer (first birefringent plate) 10, was arranged. It is structured.
  • the polarizer / analyzer 91 also uses a birefringent crystal (for example, rutile) having a tapered (wedge) shape in the YZ plane in FIG.
  • a birefringent crystal for example, rutile
  • rutile a birefringent crystal having a tapered (wedge) shape in the YZ plane in FIG.
  • the light incident on the Faraday rotator 4 (the magneto-optical crystal 41) is linearly condensed by the cylindrical lens 35 in advance, so that the Faraday rotator width and A reflection-type variable optical attenuator can be realized while significantly reducing the distance between the electromagnets 44 and 45 compared to the conventional one.
  • the input optical fiber 1 is emitted, and the light beam collimated by the collimating lens 26 passes through the cylindrical lens 35. After that, it remains a collimated light, and when this light is incident on the polarizer / analyzer 91, it is polarized and separated into an ordinary light component o and an extraordinary light component e.
  • the two polarized light beams o and e thus polarized are rotated by the Faraday rotator 4 (magneto-optical crystal 41), reflected by the reflecting element 11 and then again by the Faraday rotator 4 (magnetic The light passes through the optical crystal 41) and undergoes polarization rotation.
  • the polarization state when entering the polarizer / analyzer 91 on the return path is as shown in Fig. 21. oe, the extraordinary light component e in the outward path becomes the ordinary light component eo.
  • the light ray o e and the light ray e o are substantially parallel, these two light rays can be simultaneously condensed by the collimating lens 26 and coupled to the output optical fiber 7.
  • the polarization state when entering the polarizer / analyzer 91 on the return path is as shown in FIG. 21.
  • the extraordinary light e in the outward path becomes the extraordinary light component ee again.
  • the ray Since the light beam 00 and the light beam 66 are not parallel to each other, and furthermore, neither the light beams oe and eo are parallel to each other, in the optical system where the light beam oe and the light beam e 0 are coupled to the core of the output optical fiber 7, The light is not coupled to the core of the output optical fiber 7 and is emitted from the clad of the output optical fiber 7.
  • the optical path separation at 0 ° rotation and the optical path separation at 90 ° rotation occur according to the amount of rotation.
  • the degree controlling the variable current source 8
  • the coupling rate to the output optical fiber 7 can be controlled.
  • the focal length of the collimating lens 26 is f1
  • the focal length of the cylindrical lens 35 is f2
  • each element is as described above when the cylindrical lens 35 is used as described above, that is, in order from the input side, the two-core ferrule 17, the collimating lens 26, the cylindrical lens 35, and the polarizer
  • variable attenuation can be achieved even if the positions of the cylindrical lens 35 and the polarizer / analyzer 91 are switched, as shown in Fig. 23, for example. Is possible.
  • the width of the Faraday rotator (the distance between the electromagnets 44 and 45) must be increased, so that it is difficult to reduce the size of the electromagnets 44 and 45, and it is difficult to reduce the size of the Faraday rotator 4. . Therefore, the arrangement shown in FIG. 22 is more advantageous.
  • a point condenser lens 3 ′ as described above with reference to FIGS. 5 and 9 is used instead of the cylindrical lens 35, only the arrangement shown in FIG. 23 is used to add a variable attenuation function. I can't get it. This is because, when the cylindrical lens 35 is used, the collimating light propagates between the collimating lens 26 and the reflecting element 11 in any of the arrangements shown in FIGS.
  • the angle of the optical path changes depending on the polarizer / analyzer 91, but when the point condensing lens 3 'is used and the arrangement shown in FIG. 22 is adopted, the light passes through the polarizer / analyzer 91 which causes an angle change. Because light is converging in all directions, the condensing position hardly changes (the angle tolerance is loose) even if the angle changes slightly.
  • variable polarization rotator of the present invention can be used to constitute another optical device such as an optical isolator or a laser module.
  • the optical device can be significantly reduced in size.
  • the Faraday rotator width (distance between electromagnets) ) Can be greatly reduced compared to the conventional method, and the size of the electromagnet itself can be reduced.
  • the size of the Faraday rotator can be significantly reduced. Therefore, a variable polarization rotator using a Faraday rotator, a variable optical attenuator, etc.
  • the size of the scientific equipment can be significantly reduced, and its usefulness is considered to be extremely high.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A variable polarization rotation device for rotating the polarized light of the input light by utilizing the magneto-optical effect. The intensity of the magnetic field required for magnetic field generating means (42, 43, 44 and 45) to obtain the Faraday rotation by the same magneto-optical effect is considerably reduced by collecting the input light by a first light collecting means (3), and introducing the light onto a magneto-optical crystal (41) installed in the vicinity of a focal position thereof. The considerably reduces the size of the magnetic field generating means (42, 43, 44 and 45) themselves, which in turn considerably reduces the size of the variable polarization rotation device.

Description

明 細 書 可変偏光回転装置及びそれを用いた可変光減衰器 技術分野  Description Variable polarization rotation device and variable optical attenuator using the same
本発明は、 磁気光学効果 (ファラデー効果) を利用して入力光の偏光状態を回 転 (変化) させる可変偏光回転装置及びそれを用いた可変光減衰器に関する。 背景技術  The present invention relates to a variable polarization rotator that rotates (changes) the polarization state of input light using a magneto-optical effect (Faraday effect) and a variable optical attenuator using the same. Background art
従来の可変ファラデー回転子を用いた可変偏光回転装置の一例を図 2 4に示す 。 この図 2 4に示す装置は、 例えば入力光ファイバ 1 0 1と出力光ファイバ 1 0 5との間の光軸上に、 入力コリメ一夕 (コリメ一トレンズ) 1 0 2, ファラデー 回転子 1 0 3 , 出力コリメータ (コリメートレンズ) 1 0 4が配置されて構成さ れている。  An example of a variable polarization rotator using a conventional variable Faraday rotator is shown in FIG. The device shown in FIG. 24 has, for example, an input collimating lens (collimating lens) 102 and a Faraday rotator 10 on the optical axis between the input optical fiber 101 and the output optical fiber 105. 3. An output collimator (collimating lens) 104 is arranged.
そして、 ファラデー回転子 1 0 4は、 この図 2 4に示すように、 ファラデー素 子 (磁気光学結晶) 1 3 1と、 このファラデー素子 1 3 1に対して光軸と平行な 方向に磁界を印加するための永久磁石 1 3 2, 1 3 3と、 光軸と略 9 0度交差す る方向からファラデー素子 1 3 1に磁界を印加するための電磁石 (磁界発生手段 ) 1 3 4, 1 3 5との組み合わせで構成されている。 なお、 電磁石 1 3 4, 1 3 5が印加する磁界の強度は制御信号印加手段としての電流源 1 0 6によって調整 される。 また、 永久磁石 1 3 2 , 1 3 3は、 実用的なものは一般に不透明なので 、 それぞれ、 光路を妨げない形状 (例えば、 中空構造) になっている。  As shown in FIG. 24, the Faraday rotator 104 applies a magnetic field to the Faraday element (magneto-optical crystal) 13 1 and the Faraday element 13 1 in a direction parallel to the optical axis. An electromagnet (magnetic field generating means) for applying a magnetic field to the Faraday element 13 1 from a direction crossing the optical axis approximately 90 degrees with the permanent magnets 13 2 and 13 33 It is composed of 3 and 5. The strength of the magnetic field applied by the electromagnets 134 and 135 is adjusted by a current source 106 as a control signal applying means. In addition, since the permanent magnets 13 2 and 13 33 are practically opaque in general, they have a shape that does not hinder the optical path (for example, a hollow structure).
かかる構成において、 ファラデー素子 1 3 1の磁化方向は、 例えば特開平 6 _ 5 1 2 5 5号公報 (以下、 特許文献 1という) にも記載されているように、 永久 磁石 1 3 2 , 1 3 3による一定磁界と電磁石 1 3 4, 1 3 5による可変磁界との 合成磁界の方向となる。 ここで、 永久磁石 1 3 2, 1 3 3の一定磁界により磁化 が飽和するのに十分な磁界がかかっているとすると、 電磁石 1 3 4, 1 3 5によ る印加電磁界を可変することにより、 磁化べクトルはその大きさが一定で方向だ けを変えるような変化をする。 従って、 光軸方向と平行な成分は合成磁界の方向、 即ち、 電磁石 1 3 4 , 1 3 5の可変磁界の大きさに応じて変化することになり、 光軸方向と平行な磁化成分 により決まるファラデー回転角が電磁石 1 3 4 , 1 3 5の磁界の大きさに応じて 変化することになる。 In such a configuration, the magnetization direction of the Faraday element 131, as described in, for example, Japanese Patent Application Laid-Open No. 6-51255 (hereinafter referred to as Patent Literature 1), can It is the direction of the composite magnetic field of the constant magnetic field by 33 and the variable magnetic field by electromagnets 13 4 and 1 35. Here, assuming that a magnetic field sufficient to saturate the magnetization is generated by the constant magnetic field of the permanent magnets 13 2 and 13 3, the applied electromagnetic field by the electromagnets 13 4 and 13 5 must be varied. As a result, the magnetization vector changes so that its magnitude is constant and only the direction changes. Therefore, the component parallel to the optical axis direction changes according to the direction of the synthetic magnetic field, that is, the magnitude of the variable magnetic field of the electromagnets 13 4 and 13 5, and is determined by the magnetization component parallel to the optical axis direction. The Faraday rotation angle changes according to the magnitude of the magnetic field of the electromagnets 13 4 and 13 5.
そして、 上記の特許文献 1では、 このような可変ファラデー回転子を用いて、 可変光アツテネー夕 (可変光減衰器) を構成することが提案されている。 即ち、 例えば図 2 5に示すように、 図 2 4により上述した構成において、 ファラデー回 転子 1 0 3の磁気光学結晶 1 3 1の前段に偏光子 1 3 6を設けるとともに、 磁気 光学結晶 1 3 1の後段に検光子 1 3 7を設けて可変光アツテネ一夕を構成してい る。  Patent Document 1 proposes using such a variable Faraday rotator to configure a variable optical attenuator (variable optical attenuator). That is, as shown in FIG. 25, for example, in the configuration described above with reference to FIG. 24, a polarizer 1336 is provided in front of the magneto-optical crystal 13 1 of the Faraday rotator 103, and the magneto-optical crystal 1 An analyzer 13 7 is provided after 31 to form a variable light athens.
ここで、 偏光子 1 3 6及び検光子 1 3 7は、 それぞれ、 テーパ状 (くさび形状 ) の複屈折性結晶 (例えば、 ルチル等) により構成され、 入射光のうち所定の偏 波面を有する直線偏波を選択的に透過するもので、 偏光子 1 3 6の頂部及び底部 がそれぞれ検光子 1 3 7の底部及び頂部に対向し、 且つ、 これら両複屈折性結晶 の光学軸 (紙面に垂直な平面内に存在する) が互いに垂直となるように配置され ている。 この場合、 図 2 5に示す可変光アツテネ一夕は次のように動作する。 即ち、 図 2 6に示すように、 入力光ファイバ 1 0 1から出射した光は、 入力コ リメ一夕 1 0 2にてコリメートされたのち、 偏光子 1 3 6に入射し、 そこで常光 成分 oと異常光成分 eとに分離される。 ここで、 常光成分 oと異常光成分 eの偏 光方向は互いに直交している。 なお、 図 2 6は図 2 5の X軸 (矢印 B ) 方向から 見た場合の光路を示す側面図である。 ただし、 この図 2 6において、 永久磁石 1 3 2 , 1 3 3 , 電磁石 1 3 4, 1 3 5の図示は省略している。  Here, the polarizer 1336 and the analyzer 1337 are each formed of a tapered (wedge-shaped) birefringent crystal (for example, rutile or the like), and a straight line having a predetermined polarization plane of the incident light. It selectively transmits polarized light, and the top and bottom of the polarizer 136 face the bottom and top of the analyzer 137, respectively, and the optical axes of both birefringent crystals (perpendicular to the plane of the paper). Are present so that they are perpendicular to each other. In this case, the variable optical antenna shown in FIG. 25 operates as follows. That is, as shown in FIG. 26, the light emitted from the input optical fiber 101 is collimated by the input collimator 102, and then enters the polarizer 1336, where the ordinary light component o And the extraordinary light component e. Here, the polarization directions of the ordinary light component o and the extraordinary light component e are orthogonal to each other. FIG. 26 is a side view showing an optical path when viewed from the X-axis (arrow B) direction in FIG. However, in FIG. 26, the illustration of the permanent magnets 13 2 and 13 3 and the electromagnets 13 4 and 13 5 is omitted.
そして、 上記の常光成分 0と異常光成分 eは、 それぞれファラデー回転子 1 0 3を通過する際、 光軸に平行な方向の磁化の大きさに応じて偏光方向が回転し、 検光子 1 3 7に入射する。 検光子 1 3 7は、 常光成分 oを更に常光成分 o oと異 常光成分 o eとに分離し、 異常光 eを更に常光成分 e oと異常光成分 e eとに分 離する。  When the ordinary light component 0 and the extraordinary light component e pass through the Faraday rotator 103, respectively, the polarization direction is rotated according to the magnitude of magnetization in the direction parallel to the optical axis, and the analyzer 13 It is incident on 7. The analyzer 1337 further separates the ordinary light component o into the ordinary light component o o and the extraordinary light component o e, and further separates the extraordinary light e into the ordinary light component e o and the extraordinary light component e e.
ここで、 検光子 1 3 7から出射する常光成分 o oと異常光成分 e eは、 それぞ れが偏光子 1 3 6及び検光子 1 3 7で受けた屈折の履歴と偏光子 1 3 6及び検光 子 1 3 7の形状及び配置とを考慮すると、 互いに平行である。 したがって、 これ らの常光成分 o o及び異常光成分 e eは、 コリメートレンズ 1 0 4によって集光 して出力光ファイバ 1 0 5のコアに結合することができる (実線で示す)。 一方 、 常光成分 oの異常光成分 o eと異常光成分 eの常光成分 e oは互いに平行でな く広がるために、 コリメートレンズ 1 0 4を通っても出力光ファイバ 1 0 5のコ ァには結合しない (破線で示す)。 Here, the ordinary light component oo and the extraordinary light component ee emitted from the analyzer 13 37 are the refraction history received by the polarizer 13 36 and the analyzer 13 37 and the polarizer 13 36 and the analyzer, respectively. light Considering the shape and arrangement of the child 1337, they are parallel to each other. Therefore, these ordinary light component oo and extraordinary light component ee can be condensed by the collimating lens 104 and coupled to the core of the output optical fiber 105 (shown by a solid line). On the other hand, since the extraordinary light component oe of the ordinary light component o and the ordinary light component eo of the extraordinary light component e spread not parallel to each other, they are coupled to the core of the output optical fiber 105 even through the collimating lens 104. No (shown by dashed line).
さて、 常光成分 o oと異常光成分 e eのトータルパワーと異常光成分 o eと常 光成分 e oのトータルパワーの比は、 ファラデー回転子 1 0 3の回転角に依存し 、 ファラデー回転角が一定である状態においては、 常光成分 o oと異常光成分 e eのトータルパワーは入力光ファイバ 1 0 1の出射光の偏光状態には依存しない 例えば、 電磁石 1 3 4, 1 3 5による印加電磁界が 0の時、 ファラデー回転角 は 9 0度 (磁化が光軸と平行) であり、 偏光子 1 3 6から出射した常光成分 oは 殆どそのまま検光子 1 3 7から常光成分 o oとして出射し、 偏光子 1 3 6から出 射した異常光成分 eは殆どそのまま検光子 1 3 7から異常光成分 e eとして出射 するので、 入力光ファイバ 1 0 1の出射光の殆どが出力光ファイバ 1 0 5に結合 することになる。  Now, the ratio of the total power of the ordinary light component oo and the extraordinary light component ee to the total power of the extraordinary light component oe and the ordinary light component eo depends on the rotation angle of the Faraday rotator 103, and the Faraday rotation angle is constant. In the state, the total power of the ordinary light component oo and the extraordinary light component ee does not depend on the polarization state of the output light of the input optical fiber 101. For example, when the electromagnetic field applied by the electromagnets 13 4 and 13 5 is 0 The Faraday rotation angle is 90 degrees (the magnetization is parallel to the optical axis), and the ordinary light component o emitted from the polarizer 13 36 is emitted almost as it is from the analyzer 13 37 as the ordinary light component oo, and the polarizer 13 The extraordinary light component e emitted from 6 is emitted from the analyzer 13 7 as it is as the extraordinary light component ee, so that most of the emitted light from the input optical fiber 101 is coupled to the output optical fiber 105. Become.
これに対し、 電磁石 1 3 4 , 1 3 5による印加電磁界が十分大きいと、 ファラ デ一回転角は 0度に近づき、 偏光子 1 3 6から出射した常光成分 0は殆どそのま ま検光子 1 3 7から異常光成分 ο eとして出射し、 偏光子 1 3 6から出射した異 常光成分 eは殆どそのまま検光子 1 3 7から常光成分 e oとして出射するので、 入力光ファイバ 1 0 1の出射光の殆どは出力光ファイバ 1 0 5のコアには結合し ないことになる。  On the other hand, if the electromagnetic field applied by the electromagnets 13 4 and 13 5 is sufficiently large, the Faraday rotation angle approaches 0 degree, and the ordinary light component 0 emitted from the polarizer 13 36 is almost unchanged from the analyzer. The extraordinary light component e emitted from 13 7 as the extraordinary light component ο e, and the extraordinary light component e emitted from the polarizer 13 36 exits as it is as the ordinary light component eo from the analyzer 13 7. Most of the emitted light will not be coupled to the core of the output optical fiber 105.
このようにして電磁石 1 3 4 , 1 3 5による印加電磁界の強さに応じて、 ファ ラデー素子 1 3 1の磁化が回転してファラデー回転角が約 9 0度から約 0度まで の範囲で変化し、 それに応じて出力光ファイバ 1 0 5のコアに結合する光量が変 化するので、 図 2 5に示す装置は可変光アツテネー夕として機能することになる なお、 ファラデー回転子 1 0 3に組み込むファラデー素子 1 3 1としては、 近 年、 主に L P E法 (液相ェピタキシャル法) により作製した B i (ビスマス) 置 換希土類鉄ガーネット単結晶膜 (L P E膜) が用いられている。 その理由は、 L P E膜は B iの寄与によって Y I G (イットリウム鉄ガーネット) 単結晶に比べ てファラデー回転係数が大きいという利点を有するからである。 In this way, the magnetization of the Faraday element 1331 rotates according to the strength of the electromagnetic field applied by the electromagnets 1334 and 135, and the Faraday rotation angle ranges from about 90 degrees to about 0 degrees. And the amount of light coupled to the core of the output optical fiber 105 changes accordingly, so that the device shown in FIG. 25 functions as a variable optical attenuator. 1 3 1 In 2006, a Bi (bismuth) -substituted rare earth iron garnet single crystal film (LPE film) mainly manufactured by the LPE method (liquid phase epitaxy method) was used. The reason is that the LPE film has the advantage of a larger Faraday rotation coefficient than the YIG (yttrium iron garnet) single crystal due to the contribution of Bi.
また、 従来の可変光アツテネー夕としては、 他に、 例えば図 2 7に示すように 、 ファラデー回転子 1 0 3 (ファラデー素子 1 3 1 ) の下流側に反射素子 1 0 7 を配置し、 光線が往復でファラデー回転子 1 0 3 (ファラデー素子 1 3 1 ) を 2 回透過する反射型の可変光アツテネー夕も提案されている (例えば、 特開平 1 0 一 1 6 1 0 7 6号公報 (以下、 特許文献 2という) 参照)。  In addition, as a conventional variable light beam, as shown in FIG. 27, for example, as shown in FIG. 27, a reflecting element 107 is arranged downstream of the Faraday rotator 103 (Faraday element 13 1), There has also been proposed a reflection-type variable light attenuator that transmits twice through a Faraday rotator 103 (Faraday element 131) in a reciprocating manner (for example, Japanese Patent Application Laid-Open No. H10-161706). Hereinafter, it is referred to as Patent Document 2).
なお、 この図 2 7において、 1 1 5は入力光ファイバ 1 0 1と出力光ファイバ 1 0 5とを固定している 2芯フエルール、 1 2 4は入力コリメ一夕 1 0 2と出力 コリメ一夕 1 0 4とを兼用するコリメ一夕 (コリメートレンズ) 1 2 4、 1 3 8 は前記の偏光子 1 3 6と検光子 1 3 7とを兼用する偏光子兼検光子をそれぞれ示 す。  In FIG. 27, reference numeral 115 denotes a two-core ferrule fixing the input optical fiber 101 and output optical fiber 105, and 124 denotes input collimator 110 and output collimator 110. The collimator lenses (collimating lenses) 124 and 138 which also serve as the evening light 104 are polarizers and analyzers which also serve as the above-mentioned polarizers 13 and 13 respectively.
そして、 この図 2 7に示す可変光アツテネー夕では、 上記特許文献 2の段落 〔 0 0 0 8〕 及び 〔0 0 0 9〕 にも記載されているように、 光線がファラデー回転 子 1 0 3を往復で 2回透過するため、 ファラデー回転子 1 0 3 (ファラデー素子 1 3 1 ) の厚さや必要な磁界の強さを半減することができる。 また、 偏光子 1 3 6と検光子 1 3 7、 入力コリメ一夕 1 0 2と出力コリメ一夕 1 0 4とをそれぞれ 偏光子兼検光子 1 3 8、 コリメータ 1 2 4で兼用できるため小型化及び部品点数 の低減による低コスト化も図られている。  Then, in the variable light beam shown in FIG. 27, as described in the paragraphs [0108] and [009] of Patent Document 2, the light beam is transmitted to the Faraday rotator 10 3. Is transmitted twice back and forth, so that the thickness of the Faraday rotator 103 (Faraday element 13 1) and the required magnetic field strength can be halved. The polarizer 1336 and analyzer 13 7 and the input collimator 10 2 and the output collimator 10 4 can be shared by the polarizer / analyzer 13 8 and the collimator 12 4, respectively. Cost reductions are also being made by reducing the number of parts and the number of parts.
しかしながら、 このような反射型の可変光ァッテネ一夕においてファラデー回 転子 1 0 3 (ファラデー素子 1 3 1 ) を小さくできたとしても、 ファラデー回転 子 1 0 3のサイズの大部分を占める電磁石コイル (磁界発生手段) は小さくなら ないため、 劇的な小型化は期待できない。 コイル線の細線化で小型化を図ること も可能だが、 電気抵抗上昇により発熱等の問題が生じるため電磁石コイル自体の 小型化は困難なのが現状である。  However, even if the Faraday rotator 103 (Faraday element 13 1) can be made smaller in such a reflective variable optical attenuator, the electromagnetic coil occupying most of the size of the Faraday rotator 103 Dramatic miniaturization cannot be expected because the (magnetic field generating means) does not become smaller. Although it is possible to reduce the size of the coil wire by making it thinner, it is difficult at present to reduce the size of the electromagnet coil itself due to problems such as heat generation due to increased electrical resistance.
本発明は、 このような課題に鑑み創案されたもので、 ファラデー回転子の磁界 発生手段の大幅な小型化を図って、 ファラデー回転子を用いる可変偏光回転装置 及びそれを用いた可変光減衰器の大幅な小型化を図れるようにすることを目的と する。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has been made in view of the above-mentioned circumstances. And a variable optical attenuator using the same.
なお、 ファラデー回転子を用いた光学装置に関するその他の公知技術文献情報 を以下に付記する。  Other known technical literature information on the optical device using the Faraday rotator is appended below.
(1)特開 2001-1420240号公報 (ファラデー回転子を用いた可変光減衰器に関 するもの)  (1) JP 2001-1420240 A (related to a variable optical attenuator using a Faraday rotator)
(2)特開 2000-56187 号公報 (ファラデー回転子を用いたレーザモジュールに 関するもの)  (2) Japanese Patent Laid-Open No. 2000-56187 (related to a laser module using a Faraday rotator)
(3)特開 2002-23104号公報 (ファラデー回転子を用いた光アイソレータに関 するもの) 発明の開示  (3) Japanese Patent Application Laid-Open No. 2002-23104 (related to an optical isolator using a Faraday rotator) Disclosure of the Invention
上記の目的を達成するために、 本発明の可変偏光回転装置は、 入力光を集光す る第 1の集光手段と、 該第 1の集光手段の焦点位置付近に設置された磁気光学結 晶と、 該磁気光学結晶に磁界を印加する磁界発生手段と、 該磁界発生手段を制御 して該磁界を変化させる制御手段とをそなえたことを特徴としている。  In order to achieve the above object, a variable polarization rotator of the present invention comprises: a first condensing means for condensing input light; and a magneto-optical device provided near a focal position of the first condensing means. A crystal, magnetic field generating means for applying a magnetic field to the magneto-optical crystal, and control means for controlling the magnetic field generating means to change the magnetic field.
ここで、 該第 1の集光手段は、 該入力光を線状に集光する入力ラインフォー力 スレンズにより構成されていてもよいし、 該入力光を点状に集光する入力点集光 レンズにより構成されていてもよい。 また、 該第 1の集光手段の前段に、 該入力 光をコリメートして該第 1の集光手段へコリメ一ト光を入力する入力コリメ一夕 を設けてもよい。  Here, the first condensing means may be constituted by an input line force lens for condensing the input light linearly, or an input point condensing means for condensing the input light pointwise. It may be constituted by a lens. Further, an input collimator for collimating the input light and inputting the collimated light to the first condensing means may be provided at a stage preceding the first condensing means.
さらに、 本発明の可変偏光回転装置を用いた可変光減衰器は、 該入力ラインフ オーカスレンズの前段に、 該入力光をコリメ一卜して該入力ラインフォーカスレ ンズへコリメ一ト光を入力する入力コリメ一夕が設けられるとともに、 該入カラ インフォーカスレンズと該磁気光学結晶との間に偏光子又は複屈折板が設けられ た可変偏光回転装置を用いたことを特徴としている。  Further, the variable optical attenuator using the variable polarization rotator of the present invention collimates the input light and inputs the collimated light to the input line focus lens before the input line focus lens. A variable polarization rotator provided with an input collimator and having a polarizer or a birefringent plate provided between the input focusing lens and the magneto-optical crystal is used.
また、 本発明の可変偏光回転装置を用いた可変光減衰器は、 該入力点集光レン ズの前段に、 該入力光をコリメートして該入力点集光レンズへコリメート光を入 力する入力コリメ一夕が設けられるとともに、 該入力コリメ一夕と該入力点集光 レンズとの間に偏光子又は複屈折板が設けられた可変偏光回転装置を用いたこと を特徴としている。 Further, the variable optical attenuator using the variable polarization rotator of the present invention includes an input for collimating the input light and inputting the collimated light to the input point condensing lens before the input point condensing lens. A collimator is provided, and the input collimator and the input point are collected. A variable polarization rotator provided with a polarizer or a birefringent plate between the lens and the lens is used.
なお、 上記の可変偏光回転装置は、 該磁気光学結晶の後段に、 該磁気光学結晶 を透過する光をコリメ一卜する出力コリメ一夕を設けてもよい。 この出力コリメ 一夕は、 該磁気光学結晶から出射された光を線状に集光する出力ラインフォー力 スレンズにより構成してもよいし、 該磁気光学結晶から出射された光を点状に集 光する出力点集光レンズにより構成してもよい。  The variable polarization rotator may include an output collimator for collimating light transmitted through the magneto-optical crystal, at a stage subsequent to the magneto-optical crystal. The output collimator may be constituted by an output line force lens that linearly condenses the light emitted from the magneto-optical crystal, or collects the light emitted from the magneto-optical crystal in a point-like manner. It may be constituted by an output point condenser lens that emits light.
さらに、 本発明の可変偏光回転装置を用いた可変光減衰器は、 該磁気光学結晶 と該出カラインフォ一カスレンズとの間に検光子又は複屈折板が設けられた可変 偏光回転装置を用いたことを特徴としている。  Further, the variable optical attenuator using the variable polarization rotator of the present invention employs a variable polarization rotator provided with an analyzer or a birefringent plate between the magneto-optical crystal and the output lens. It is characterized by:
また、 本発明の可変偏光回転装置を用いた可変光減衰器は、 該出力点集光レン ズの後段に該出力点集光レンズから出射された光を集光する第 2の集光手段が設 けられるとともに、 該出力点集光レンズと該第 2の集光手段との間に検光子又は 複屈折板が設けられた可変偏光回転装置を用いたことを特徴としている。  Further, in the variable optical attenuator using the variable polarization rotator of the present invention, the second condensing means for condensing the light emitted from the output point condensing lens at a stage subsequent to the output point condensing lens is provided. And a variable polarization rotator provided with an analyzer or a birefringent plate between the output point condenser lens and the second condenser means.
さらに、 本発明の可変偏光回転装置は、 入力光を伝播する入力光ファイバと、 該入力光ファイバからの入力光をコリメ一卜する入力コリメータと、 該入力コリ メ一夕から出射されるコリメ一ト光を線状に集光する入カラインフォ一カスレン ズと、 該入力ラインフォーカスレンズの焦点位置付近に設置された磁気光学結晶 と、 該磁気光学結晶を透過してくる光をコリメ一卜する出力ラインフォーカスレ ンズと、 該出カラインフォ一カスレンズから出射されるコリメート光を集光する 出力コリメートレンズと、 該出力コリメ一トレンズの焦点位置付近に設置された 出力光ファイバと、 該磁気光学結晶に磁界を印加する磁界発生手段と、 該磁界発 生手段を制御して該磁界を変化させる制御手段とをそなえたことを特徴としてい る。  Further, the variable polarization rotator of the present invention comprises: an input optical fiber for propagating input light; an input collimator for collimating input light from the input optical fiber; and a collimator emitted from the input collimator. Input light lens for condensing light in a linear manner, a magneto-optical crystal installed near the focal position of the input line focus lens, and collimating light transmitted through the magneto-optical crystal An output line focus lens, an output collimating lens for converging collimated light emitted from the output color information lens, an output optical fiber installed near a focal position of the output collimating lens, and the magneto-optical crystal And a control means for controlling the magnetic field generating means to change the magnetic field.
また、 本発明の可変偏光回転装置を用いた可変光減衰器は、 該入カラインフォ 一カスレンズと該磁気光学結晶との間に偏光子又は第 1の複屈折板が設けられる とともに、 該磁気光学結晶と該出カラインフォ一カスレンズとの間に検光子又は 第 2の複屈折板が設けられた可変偏光回転装置を用いたことを特徴としている。 ここで、 上記の偏光子又は第 1の複屈折板及び検光子又は第 2の複屈折板は、 それぞれくさび形状を有する複屈折性結晶により構成してもよい。 The variable optical attenuator using the variable polarization rotator of the present invention may further include a polarizer or a first birefringent plate provided between the input color information lens and the magneto-optical crystal. A variable polarization rotator in which an analyzer or a second birefringent plate is provided between the crystal and the output color information lens is used. Here, the polarizer or the first birefringent plate and the analyzer or the second birefringent plate, Each of them may be made of a birefringent crystal having a wedge shape.
さらに、 本発明の可変偏光回転装置は、 入力光を集光する第 1の集光手段と、 該第 1の集光手段の焦点位置付近に設置された磁気光学結晶と、 該磁気光学結晶 に磁界を印加する磁界発生手段と、 該磁界発生手段を制御して該磁界を変化させ る制御手段と、 該磁気光学結晶を透過した光を反射して該磁気光学結晶に戻す反 射素子とをそなえたことを特徴としている。  Further, the variable polarization rotator of the present invention comprises: a first light condensing means for condensing the input light; a magneto-optical crystal installed near a focal position of the first light condensing means; A magnetic field generating means for applying a magnetic field; a control means for controlling the magnetic field generating means to change the magnetic field; and a reflecting element for reflecting light transmitted through the magneto-optical crystal and returning the light to the magneto-optical crystal. It is characterized by having.
ここで、 上記の第 1の集光手段は、 該入力光を線状に集光する入カラインフォ 一カスレンズにより構成してもよい。 また、 上記の第 1の集光手段の前段には、 該入力光をコリメートして該第 1の集光手段に入射する入力コリメ一夕を設けて fcよい。  Here, the first light condensing means may be constituted by an input color information lens that condenses the input light linearly. In addition, an input collimator for collimating the input light and entering the first light condensing means may be provided in front of the first light condensing means.
さらに、 上記の反射素子により反射され該磁気光学結晶を透過してくる反射光 をコリメートする出力コリメ一夕を設けてもよく、 この出力コリメ一夕は、 該磁 気光学結晶からの該反射光を線状に集光する出力ラインフォーカスレンズにより 構成してもよい。  Further, an output collimator for collimating the reflected light reflected by the reflective element and passing through the magneto-optical crystal may be provided, and the output collimator may include the reflected light from the magneto-optical crystal. May be constituted by an output line focus lens that condenses the light into a linear shape.
また、 該出力コリメ一夕の後段には、 当該出力コリメータから出射された光を 集光する第 2の集光手段を設けてもよい。  Further, a second condenser means for condensing the light emitted from the output collimator may be provided at a stage subsequent to the output collimator.
さらに、 本発明の可変偏光回転装置は、 入力光を伝播する入力光ファイバと、 該入力光ファイバから出射される光をコリメートする入力コリメータと、 該入力 コリメ一夕から出射されるコリメート光を集光する第 1の集光手段と、 該第 1の 集光手段の焦点位置付近に設置された磁気光学結晶と、 該磁気光学結晶を透過し た光を反射して該磁気光学結晶に戻す反射素子と、 該反射素子により反射され該 磁気光学結晶を透過してきた光をコリメ一卜する出力コリメータと、 該出力コリ メータから出射されたコリメート光を集光する第 2の集光手段と、 該第 2の集光 手段の焦点位置付近に設置された出力光ファイバと、 該磁気光学結晶に磁界を印 加する磁界発生手段と、 該磁界発生手段を制御して該磁界を変化させる制御手段 とをそなえたことを特徴としている。  Further, the variable polarization rotator of the present invention includes an input optical fiber that propagates the input light, an input collimator that collimates the light emitted from the input optical fiber, and a collimator that emits the collimated light emitted from the input collimator. A first condensing unit that emits light, a magneto-optic crystal installed near a focal position of the first condensing unit, and a reflection that reflects light transmitted through the magneto-optic crystal and returns the light to the magneto-optic crystal. An element, an output collimator for collimating the light reflected by the reflection element and transmitted through the magneto-optical crystal, and a second condensing means for condensing collimated light emitted from the output collimator; An output optical fiber installed near a focal position of the second light condensing means, a magnetic field generating means for applying a magnetic field to the magneto-optical crystal, and a control means for controlling the magnetic field generating means to change the magnetic field With It is characterized in that.
ここで、 上記の第 1の集光手段及び出力コリメ一夕は、 それぞれ、 入射光を線 状に集光するラインフォーカスレンズにより構成してもよいし、 入射光を線状に 集光する 1つのラインフォーカスレンズにより兼用してもよい。 また、 上記の入力コリメータ及び第 2の集光手段は、 それぞれ、 入射光をコリ メートするコリメートレンズにより構成してもよいし、 入射光をコリメートする 1つのコリメートレンズにより兼用してもよい。 Here, the first condensing means and the output collimator may each be constituted by a line focus lens that condenses incident light linearly, or condenses incident light linearly. Two line focus lenses may be used. Further, the input collimator and the second condensing means may each be constituted by a collimating lens for collimating the incident light, or may be shared by one collimating lens for collimating the incident light.
さらに、 本発明の可変偏光回転装置を用いた可変光減衰器は、 上記の第 1の集 光手段と磁気光学結晶との間に偏光子又は第 1の複屈折板を設けるとともに、 上 記の磁気光学結晶と出力コリメータとの間に検光子又は第 2の複屈折板を設けた 可変偏光回転装置を用いたことを特徴としている。  Further, the variable optical attenuator using the variable polarization rotator of the present invention further comprises a polarizer or a first birefringent plate provided between the first light collecting means and the magneto-optical crystal. A variable polarization rotator provided with an analyzer or a second birefringent plate between the magneto-optical crystal and the output collimator is used.
ここで、 上記の第 1の複屈折板と第 2の複屈折板とは偏光子兼検光子により兼 用してもよい。 また、 上記の第 1の複屈折板及び第 2の複屈折板は、 それぞれ、 くさび形状を有する複屈折性結晶により構成してもよい。 さらに、 上記の偏光子 兼検光子は、 くさび形状を有する複屈折性結晶により構成してもよい。 図面の簡単な説明  Here, the first birefringent plate and the second birefringent plate may be shared by a polarizer and an analyzer. Further, each of the first birefringent plate and the second birefringent plate may be formed of a birefringent crystal having a wedge shape. Further, the above-mentioned polarizer and analyzer may be formed of a birefringent crystal having a wedge shape. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形態としての可変偏光回転装置の構成を示す模式的斜視 図である。  FIG. 1 is a schematic perspective view showing a configuration of a variable polarization rotation device as one embodiment of the present invention.
図 2は図 1に示す可変偏光回転装置の要部に着目した構成を示す模式的斜視図 である。  FIG. 2 is a schematic perspective view showing a configuration focusing on a main part of the variable polarization rotation device shown in FIG.
図 3は図 2に示す構成を矢印 A方向から見たときの構成を光路も併せて示す模 式的上面図である。  FIG. 3 is a schematic top view showing the configuration shown in FIG. 2 when viewed from the direction of arrow A, together with the optical path.
図 4は図 2に示す構成を矢印 B方向から見たときの構成を光路も併せて示す模 式的側面図である。  FIG. 4 is a schematic side view showing the configuration of FIG. 2 when viewed from the direction of arrow B, together with the optical path.
図 5は図 1に示す可変偏光回転装置の変形例を示す模式的斜視図である。 図 6は本発明の一実施形態としての可変ファラデー回転子を利用した可変光減 衰器の構成を光路も併せて示す模式的斜視図である。  FIG. 5 is a schematic perspective view showing a modification of the variable polarization rotation device shown in FIG. FIG. 6 is a schematic perspective view showing a configuration of a variable optical attenuator using a variable Faraday rotator as one embodiment of the present invention, together with an optical path.
図 7は図 6に示す可変光減衰器を矢印 A方向から見たときの構成を光路も併せ て示す模式的上面図である。  FIG. 7 is a schematic top view showing the configuration of the variable optical attenuator shown in FIG. 6 when viewed from the direction of arrow A, together with the optical path.
図 8は図 6に示す可変光減衰器を矢印 B方向から見たときの構成を光路も併せ て示す模式的側面図である。  FIG. 8 is a schematic side view showing the configuration of the variable optical attenuator shown in FIG. 6 when viewed from the direction of arrow B, together with the optical path.
図 9は図 6に示す可変光減衰器の変形例を示す模式的斜視図である。 図 1 0は図 9に示す可変光減衰器を矢印 A方向から見たときの構成を光路も併 せて示す模式的上面図である。 FIG. 9 is a schematic perspective view showing a modification of the variable optical attenuator shown in FIG. FIG. 10 is a schematic top view showing the configuration of the variable optical attenuator shown in FIG. 9 when viewed from the direction of arrow A, together with the optical path.
図 1 1は図 9に示す可変光減衰器を矢印 B方向から見たときの構成を光路も併 せて示す模式的側面図である。  FIG. 11 is a schematic side view showing the configuration of the variable optical attenuator shown in FIG. 9 when viewed from the direction of arrow B, together with the optical path.
図 1 2は図 9に示す可変光減衰器の動作を説明すべく図 9の矢印 B方向から見 たときの常光成分及び異常光成分に着目した光路を示す図である。  FIG. 12 is a diagram showing an optical path focusing on the ordinary light component and the extraordinary light component when viewed from the direction of arrow B in FIG. 9 for explaining the operation of the variable optical attenuator shown in FIG.
図 1 3は本発明の一実施形態としての反射型の可変偏光回転装置の構成を光路 も併せて示す模式的斜視図である。  FIG. 13 is a schematic perspective view showing the configuration of a reflection-type variable polarization rotator as one embodiment of the present invention, together with an optical path.
図 1 4は図 1 3に示す可変偏光回転装置の反射素子の動作を説明すべく反射素 子の側面を示す模式図である。  FIG. 14 is a schematic view showing a side surface of the reflective element for explaining the operation of the reflective element of the variable polarization rotator shown in FIG.
図 1 5は図 1 3に示す反射型の可変偏光回転装置の変形例を示す模式的斜視図 である。  FIG. 15 is a schematic perspective view showing a modification of the reflection type variable polarization rotation device shown in FIG.
図 1 6は図 1 3に示す反射型の可変偏光回転装置の要部構成を光路も併せて示 す模式的斜視図である。  FIG. 16 is a schematic perspective view showing the main components of the reflective variable polarization rotator shown in FIG. 13 together with the optical path.
図 1 7は本発明の一実施形態としての反射型の可変光減衰器の構成を光路も併 せて示す模式的斜視図である。  FIG. 17 is a schematic perspective view showing the configuration of a reflection-type variable optical attenuator as one embodiment of the present invention, together with an optical path.
図 1 8は図 1 7に示す反射型の可変光減衰器を矢印 A方向から見たときの構成 を光路も併せて示す模式的上面図である。  FIG. 18 is a schematic top view showing the configuration of the reflection type variable optical attenuator shown in FIG. 17 when viewed from the direction of arrow A, together with the optical path.
図 1 9は図 1 7に示す反射型の可変光減衰器を矢印 B方向から見たときの構成 を光路も併せて示す模式的側面図である。  FIG. 19 is a schematic side view showing the configuration of the reflection type variable optical attenuator shown in FIG. 17 when viewed from the direction of arrow B, together with the optical path.
図 2 0は図 1 7〜図 1 9に示す反射型の可変光減衰器の動作を説明すべく常光 成分及び異常光成分の光路をそれぞれ示す模式的側面図である。  FIG. 20 is a schematic side view showing the optical paths of the ordinary light component and the extraordinary light component, respectively, for explaining the operation of the reflection type variable optical attenuator shown in FIGS.
図 2 1は図 2 0の要部を拡大して示す図である。  FIG. 21 is an enlarged view of a main part of FIG.
図 2 2及び図 2 3は反射型の可変光減衰器においてシリンドリカルレンズを用 いることの有用性を説明すべく構成要素の配置関係を示す模式的上面図である。 図 2 4は従来の可変偏光回転装置の構成を光路も併せて示す模式的斜視図であ る。  FIG. 22 and FIG. 23 are schematic top views showing the arrangement of components to explain the usefulness of using a cylindrical lens in a reflection type variable optical attenuator. FIG. 24 is a schematic perspective view showing the configuration of a conventional variable polarization rotator together with an optical path.
図 2 5は従来の可変光減衰器の構成を光路も併せて示す模式的斜視図である。 図 2 6は図 2 5に示す可変光減衰器の動作を説明すべく常光成分及び異常光成 分の光路を示す模式的側面図である。 FIG. 25 is a schematic perspective view showing the configuration of a conventional variable optical attenuator together with an optical path. Figure 26 shows the ordinary light component and the extraordinary light component to explain the operation of the variable optical attenuator shown in Figure 25. It is a typical side view which shows the optical path of a minute.
図 2 7は従来の反射型の可変光減衰器の構成を示す模式的斜視図である。 発明を実施するための最良の形態  FIG. 27 is a schematic perspective view showing the configuration of a conventional reflection-type variable optical attenuator. BEST MODE FOR CARRYING OUT THE INVENTION
(A) 可変偏光回転装置の説明  (A) Description of variable polarization rotator
図 1は本発明の一実施形態としての可変偏光回転装置の構成を示す模式的斜視 図で、 この図 1に示す可変偏光回転装置は、 入力光ファイバ 1 , 入力コリメート レンズ 2, 入力シリンドリカルレンズ (ラインフォーカスレンズ) 3 , 可変ファ ラデー回転子 4 , 出力シリンドリカルレンズ (ラインフォーカスレンズ) 5 , 出 カコリメートレンズ 6, 出力光ファイバ 7及び可変電流源 8をそなえて構成され 、 上記可変ファラデー回転子 (以下、 単に 「ファラデー回転子」 ともいう) 4が 、 さらにファラデー素子 (磁気光学結晶) 4 1, 磁界発生手段としての永久磁石 4 2 , 4 3 , 電磁石 4 4, 4 5をそなえて構成されている。  FIG. 1 is a schematic perspective view showing the configuration of a variable polarization rotator as one embodiment of the present invention. The variable polarization rotator shown in FIG. 1 has an input optical fiber 1, an input collimating lens 2, an input cylindrical lens ( The variable Faraday rotator (line focus lens) 3, variable Faraday rotator 4, output cylindrical lens (line focus lens) 5, output collimator lens 6, output optical fiber 7 and variable current source 8. In the following, the Faraday rotator is also composed of a Faraday element (magneto-optical crystal) 41, permanent magnets 42, 43, and electromagnets 44, 45 as magnetic field generating means. I have.
ここで、 上記の入力光ファイバ 1は、 入力光を伝播するものであり、 入力コリ メートレンズ (入力コリメ一夕) 2は、 この入力光ファイバ 1から出射された光 をコリメートするものであり、 入力シリンドリカルレンズ (第 1の集光手段) 3 は、 この入力コリメ一トレンズ 2から出射されるコリメート光を線状に (光波面 の一方向のみを) 集光するもので、 ここでは、 図 1中に示す X軸方向にコリメ一 ト光が集光されるようになっている。  Here, the input optical fiber 1 propagates the input light, and the input collimating lens (input collimator) 2 collimates the light emitted from the input optical fiber 1, The input cylindrical lens (first condensing means) 3 condenses the collimated light emitted from the input collimating lens 2 linearly (only in one direction of the light wavefront). The collimated light is focused in the X-axis direction shown in the figure.
また、 ファラデー回転子 4は、 上記入力シリンドリカルレンズ 3から出射され る光の偏光状態を前述した原理に従って回転させるもので、 ガーネット単結晶な どの磁気光学結晶 4 1の中心が入力シリンドリカルレンズ 3の焦点位置付近に位 置するように配置され、 この磁気光学結晶 4 1に対して、 永久磁石 4 2, 4 2に より光線と平行に永久磁界が、 電磁石 4 4, 4 5により光線とほぼ垂直且つ入力 シリンドリカルレンズ 3の集光方向 (図 1における X軸方向) に電磁界がそれぞ れ印加されるようになっている。  The Faraday rotator 4 rotates the polarization state of light emitted from the input cylindrical lens 3 according to the principle described above. The center of a magneto-optical crystal 41 such as a garnet single crystal is focused on the input cylindrical lens 3. The permanent magnet is placed near the position, and a permanent magnetic field is applied to the magneto-optical crystal 41 by the permanent magnets 42, 42 in parallel with the light beam, and is substantially perpendicular to the light beam by the electromagnets 44, 45. Electromagnetic fields are applied in the focusing direction of the input cylindrical lens 3 (X-axis direction in FIG. 1).
なお、 この場合も、 永久磁界は磁気光学結晶 4 1の磁化を飽和させるに足る磁 界強度とし、 電磁石 4 4 , 4 5による印加電磁界強度は、 制御手段としての可変 電流源 8が外部からの制御信号に基づいて電磁石 4 4 , 4 5のコイルに流れる電 流を調整することで制御される。 また、 永久磁石 4 2, 4 3も、 実用的なものは 一般に不透明なので、 それぞれ、 光路を妨げない形状 (例えば、 中空構造) にな つている。 Also in this case, the permanent magnetic field has a magnetic field strength sufficient to saturate the magnetization of the magneto-optical crystal 41, and the applied field strength by the electromagnets 44 and 45 is controlled by the variable current source 8 as a control means from the outside. The current flowing through the coils of the electromagnets 4 4 and 4 5 based on the control signal of It is controlled by regulating the flow. Also, the permanent magnets 42 and 4 3 are practically opaque in general, so each has a shape that does not hinder the optical path (for example, a hollow structure).
これにより、 永久磁界によってファラデー回転子 4 (磁気光学結晶 4 1 ) の磁 化は飽和しているので、 電磁石 4 4, 4 5による電磁界印加によって磁化べクト ルの方向は変わるが大きさは変わらない。 この結果、 ファラデー回転量は光線と 平行な磁化べクトルの成分で決定されるため、 電磁界印加によりファラデー回転 量を制御することが可能となる。  As a result, the magnetization of the Faraday rotator 4 (the magneto-optical crystal 41) is saturated by the permanent magnetic field, and the direction of the magnetization vector is changed by the application of the electromagnetic field by the electromagnets 44 and 45, but the magnitude is does not change. As a result, the amount of Faraday rotation is determined by the component of the magnetization vector parallel to the light beam, so that the amount of Faraday rotation can be controlled by applying an electromagnetic field.
さらに、 出力シリンドリカルレンズ (出力コリメ一夕) 5は、 その配置位置 ( ファラデー回転子 4からの距離) によって、 入射光を集光したり、 コリメートし たりすることが可能なもので、 この場合は、 ファラデー回転子 4から出射される 光 (磁気光学結晶 4 1を透過し発散する光) がコリメートされるように配置され ている。  Furthermore, the output cylindrical lens (output collimator) 5 can collect or collimate the incident light depending on its position (distance from the Faraday rotator 4). In this case, The light emitted from the Faraday rotator 4 (the light transmitted and diverging through the magneto-optical crystal 41) is arranged so as to be collimated.
また、 出力コリメートレンズ (第 2の集光手段) 6は、 この出力シリンドリカ ルレンズ 5から出射される光を集光して出力光ファイバ 7に結合させるものであ り、 出力光ファイバ 7は、 出力コリメートレンズ 6から集光した出力光を伝播す るものである。 なお、 シリンドリカルレンズ 3 , 5のレンズ材料は、 一般に使用 されている SFS01, BK7等のガラス材料でよい。 また、 その焦点距離 f は自由 に設定できるが、 ここでは、 例えば f =1.8mmのレンズを使用している。  The output collimating lens (second focusing means) 6 focuses the light emitted from the output cylindrical lens 5 and couples the light to the output optical fiber 7. It propagates the output light collected from the collimating lens 6. The lens material of the cylindrical lenses 3 and 5 may be a commonly used glass material such as SFS01 and BK7. The focal length f can be set freely, but here, for example, a lens with f = 1.8 mm is used.
以上のような構成により、 この図 1に示す可変偏光回転装置では、 入力光ファ ィバ 1から出射された光が、 入力コリメートレンズ 2によつ、てコリメ一卜され、 入力シリンドリカルレンズ 3によつて集光されたのち、 ファラデー回転子 4の磁 気光学結晶 4 1に入射し、 そこで電磁石 4 4 , 4 5による電磁界に応じた偏光回 転を受けてから、 出力シリンドリカルレンズ 5によってコリメートされ、 出力コ リメ一トレンズ 6によって集光されて出力光ファイバ 7に結合される。  With the configuration as described above, in the variable polarization rotator shown in FIG. 1, the light emitted from the input optical fiber 1 is collimated by the input collimating lens 2, and the collimated light is input to the input cylindrical lens 3. After being condensed, the light is incident on the magneto-optical crystal 41 of the Faraday rotator 4, where it undergoes polarization rotation according to the electromagnetic field generated by the electromagnets 44 and 45, and then is collimated by the output cylindrical lens 5. The light is condensed by the output collimating lens 6 and coupled to the output optical fiber 7.
ここで、 従来はファラデー回転子 4の電磁石 4 4, 4 5間の距離が最低でも入 射光のビーム径以上必要であるため、 例えば 400 m のビーム径の光線に対し てはファラデー回転子幅 (図 1の X軸方向) を 440 m程度、 電磁石 4 4 , 4 5間の距離を 460 μ ιη程度にする必要があつたが、 本実施形態では、 図 2, 図 3及び図 4に模式的に示すように、 入力シリンドリカルレンズ 3によりファラデ 一回転子 4への入射光を一方向だけ (上記 X軸方向に) 線状に集光しているので 、 大幅にビーム径が小さくなり、 例えば、 ファラデー回転子幅を 35 /x m、 電磁 石 4 4 , 4 5間の距離を 45 Π1程度にすることができ、 従来の約 1 / 1 0にす ることができる。 Here, conventionally, since the distance between the electromagnets 44, 45 of the Faraday rotator 4 must be at least as large as the beam diameter of the incident light, for example, the Faraday rotator width ( It is necessary to set the distance between the electromagnets 44 and 45 to about 460 m and the distance between the electromagnets 44 and 45 to about 460 μιη. As schematically shown in FIG. 3 and FIG. 4, since the incident light to the Faraday rotator 4 is condensed linearly in only one direction (in the X-axis direction) by the input cylindrical lens 3, the beam is greatly increased. The diameter becomes smaller, and for example, the Faraday rotator width can be reduced to 35 / xm, and the distance between the electromagnetic stones 44 and 45 can be reduced to about 45Π1, which can be reduced to about 1/10 of the conventional value.
その結果、 磁場抵抗が小さくなり、 同じファラデー回転角を与えるのに印加磁 界強度が従来よりも小さくて済むため、 例えば、 電磁石 4 4, 4 5のコイル巻線 数を大幅に削減する等して、 従来、 ファラデー回転子 4の容積の多くを占めてい た電磁石 4 4, 4 5 (コイル) を大幅に小型化することが可能となる。 したがつ て、 電磁石 4 4, 4 5自体の大幅な小型化を図って、 ファラデー回転子 4の大幅 な小型化を実現することができる。  As a result, the magnetic field resistance is reduced, and the applied magnetic field strength can be smaller than before to give the same Faraday rotation angle. For example, the number of coil windings of the electromagnets 44, 45 can be greatly reduced. Thus, the electromagnets 44, 45 (coils), which conventionally occupy much of the volume of the Faraday rotator 4, can be significantly reduced in size. Therefore, the size of the electromagnets 44 and 45 can be significantly reduced, and the size of the Faraday rotator 4 can be significantly reduced.
なお、 図 2は図 1における要部 (入力シリンドリカルレンズ 3及びファラデー 回転子 4から成る部分) に着目した構成を光路も併せて示す模式的斜視図であり 、 図 3はこの図 2に示す構成を矢印 A方向から見たときの構成を光路も併せて示 す模式的上面図、 図 4は図 2に示す構成を矢印 B方向から見たときの構成を光路 も併せて示す模式的側面図である。  FIG. 2 is a schematic perspective view showing the configuration focusing on the essential parts (the portion composed of the input cylindrical lens 3 and the Faraday rotator 4) in FIG. 1 together with the optical path, and FIG. 3 is the configuration shown in FIG. Fig. 4 is a schematic top view showing the configuration when viewed from the direction of arrow A together with the optical path, and Fig. 4 is a schematic side view showing the configuration as viewed from the direction of arrow B and the configuration shown in Fig. 2 along with the optical path. It is.
また、 上述した入力シリンドリカルレンズ 3及び出力シリンドリカルレンズ 5 は、 例えば図 5に模式的に示すように、 それぞれ入射光を点状に集光する入力点 集光レンズ 3 ' 及び出力点集光レンズ 5 ' に代えても、 上記と同様の作用効果を 得ることができる。 ただし、 この場合は、 点集光レンズ 3 ' で点状に集光した光 がファラデー回転子 4 (磁気光学結晶 4 1 ) を通過するため、 電磁石 4 4 , 4 5 間の距離を小さくできるだけでなく、 電磁石 4 4 , 4 5の磁気光学結晶 4 1と対 向する面の断面積も小さくできるので、 ファラデー回転子 4のさらなる小型化を 図ることが可能である。  The input cylindrical lens 3 and the output cylindrical lens 5 described above are, for example, as schematically shown in FIG. The same operation and effect as described above can be obtained by replacing with '. However, in this case, since the light condensed by the point condensing lens 3 ′ in the form of a point passes through the Faraday rotator 4 (the magneto-optical crystal 41), the distance between the electromagnets 44 and 45 can be reduced. In addition, the cross-sectional area of the surfaces of the electromagnets 44 and 45 facing the magneto-optical crystal 41 can be reduced, so that the Faraday rotator 4 can be further reduced in size.
( B ) 可変光減衰器の説明  (B) Variable optical attenuator
次に、 以下では、 上述した可変ファラデー回転子 4を利用した可変偏光回転装 置の応用である可変光減衰器の実施形態について説明する。  Next, an embodiment of a variable optical attenuator, which is an application of the variable polarization rotation device using the variable Faraday rotator 4 described above, will be described below.
図 6は上述した可変ファラデー回転子 4を利用した可変光減衰器の構成を光路 も併せて示す模式的斜視図、 図 7はこの図 6に示す可変光減衰器を矢印 A方向か ら見たときの構成を光路も併せて示す模式的上面図、 図 8は図 6に示す可変光減 衰器を矢印 B方向から見たときの構成を光路も併せて示す模式的側面図である。 これらの図 6 , 図 7及び図 8に示すように、 本実施形態の可変光減衰器も、 入 力光ファイバ 1 , 入力コリメートレンズ 2, 入力シリンドリカルレンズ 3 , ファ ラデー回転子 4 , 出力シリンドリカルレンズ 5 , 出力コリメ一トレンズ 6 , 出力 光ファイバ 7及び可変電流源 8をそなえて構成されるが、 ここでは、 入力側の永 久磁石 4 2と磁気光学結晶 4 1との間に偏光子 (又は第 1の複屈折板) 9が設け られるとともに、 磁気光学結晶 4 1と出力側の永久磁石 4 3との間に検光子 (又 は第 2の複屈折板) 1 0が設けられている。 なお、 以下において、 既述の符号と 同一符号を付して示すのはそれぞれ特に断らない限り既述のものと同一もしくは 同様のものである。 FIG. 6 is a schematic perspective view showing the configuration of a variable optical attenuator using the above-described variable Faraday rotator 4 together with an optical path, and FIG. 7 is a perspective view of the variable optical attenuator shown in FIG. 8 is a schematic side view showing the configuration when the variable optical attenuator shown in FIG. 6 is viewed from the direction of arrow B, together with the optical path. is there. As shown in FIGS. 6, 7 and 8, the variable optical attenuator of the present embodiment also includes an input optical fiber 1, an input collimating lens 2, an input cylindrical lens 3, a Faraday rotator 4, an output cylindrical lens. 5, an output collimating lens 6, an output optical fiber 7 and a variable current source 8. Here, a polarizer (or between the permanent magnet 42 on the input side and the magneto-optical crystal 41) is provided. A first birefringent plate 9 is provided, and an analyzer (or a second birefringent plate) 10 is provided between the magneto-optical crystal 41 and the permanent magnet 43 on the output side. In the following, the same reference numerals as those described above denote the same or similar ones unless otherwise specified.
ここで、 上記の偏光子 9及び検光子 1 0は、 それぞれ、 図 6中の Y Z平面にお いてテーパ状 (くさび形状) の複屈折性結晶 (例えば、 ルチル等) により構成さ れ、 入射光のうち所定の偏波面を有する直線偏波を選択的に透過するもので、 偏 光子 9の頂部及び底部がそれぞれ検光子 1 0の底部及び頂部に対向し (図 6では 偏光子 9がくさび形状の長辺側を下にして設置され、 検光子 1 0が短辺側を下に して設置されている)、 且つ、 これら両複屈折性結晶の光学軸 (紙面に垂直な平 面内に存在する) が互いに垂直となるように配置されている。  Here, the polarizer 9 and the analyzer 10 are each formed of a tapered (wedge-shaped) birefringent crystal (for example, rutile or the like) on the YZ plane in FIG. Of the polarizers 9 selectively transmits linearly polarized light having a predetermined polarization plane. The top and bottom of the polarizer 9 face the bottom and top of the analyzer 10, respectively (in FIG. 6, the polarizer 9 has a wedge shape). The analyzer is installed with the long side down, the analyzer 10 is installed with the short side down), and the optic axes of both birefringent crystals (in the plane perpendicular to the plane of the paper). Are present to be perpendicular to each other.
なお、 本例では、 コリメ一トレンズ 2 , 6 , シリンドリカルレンズ 3 , 5のい ずれも焦点距離 f =4.0mm のレンズを使用している。 従って、 この場合、 入力 光ファイバ 1 (出力光ファイバ 7 ) から入力コリメートレンズ 2 (出力コリメ一 トレンズ 6 ) までの距離およびシリンドリカルレンズ 3, 5からファラデー回転 子 4 (磁気光学結晶 4 1 ) の中心位置までの距離はそれぞれ約 4mmとなる。 上述のごとく構成された本実施形態の可変光減衰器では、 入力光フアイバ 1か ら出射された光がまず入力コリメートレンズ 2にてコリメートされた後、 磁気光 学結晶 4 1の前段において予め入力シリンドリカルレンズ 3で集光 (図 6の X軸 方向に線状に集光) される (特に、 図 7参照)。 これにより、 本例の場合も、 フ ァラデー回転子幅及び電磁石 4 4 , 4 5間の距離を従来よりも大幅に削減するこ とができる。 そして、 入力シリンドリカルレンズ 3を出射した光は、 偏光子 9及び検光子 1 0により、 図 2 6を用いて前述した原理と同様にして、 常光成分と異常光成分と に分離し、 それぞれファラデー回転子 4により電磁石 4 4, 4 5の印加電磁界に 応じた偏波面の回転を受け、 これにより、 当該印加電圧に応じて出力光ファイバ 7のコアに結合する光量が変化する。 In this example, each of the collimating lenses 2 and 6 and the cylindrical lenses 3 and 5 uses a lens having a focal length f = 4.0 mm. Therefore, in this case, the distance from the input optical fiber 1 (output optical fiber 7) to the input collimating lens 2 (output collimating lens 6) and the center of the cylindrical lenses 3 and 5 to the Faraday rotator 4 (magneto-optical crystal 41) The distance to each position will be about 4mm. In the variable optical attenuator of the present embodiment configured as described above, the light emitted from the input optical fiber 1 is first collimated by the input collimating lens 2, and then input before the magneto-optical crystal 41. The light is condensed by the cylindrical lens 3 (condensed linearly in the X-axis direction in Fig. 6) (especially, see Fig. 7). Thus, also in the case of the present example, the Faraday rotator width and the distance between the electromagnets 44 and 45 can be significantly reduced as compared with the conventional case. Then, the light emitted from the input cylindrical lens 3 is separated into an ordinary light component and an extraordinary light component by the polarizer 9 and the analyzer 10 in the same manner as described above with reference to FIG. The element 4 receives rotation of the polarization plane according to the applied electromagnetic field of the electromagnets 44, 45, whereby the amount of light coupled to the core of the output optical fiber 7 changes according to the applied voltage.
このように、 本実施形態によれば、 ファラデー回転子 4を利用して可変光減衰 機能を実現する可変光減衰器において、 磁気光学結晶 4 1の前段にシリンドリカ ルレンズ 3を設けることにより、 入射光を磁気光学結晶 4 1の前段において予め シリンドリカルレンズ 3で集光するので、 ファラデー回転子幅及び電磁石 4 4 , 4 5間の距離を従来よりも大幅に削減することができ、 可変光減衰器の小型化を 図ることができる。  As described above, according to the present embodiment, in the variable optical attenuator that realizes the variable optical attenuation function using the Faraday rotator 4, by providing the cylindrical lens 3 in front of the magneto-optical crystal 41, the incident light Is condensed beforehand by the cylindrical lens 3 before the magneto-optical crystal 41, so that the Faraday rotator width and the distance between the electromagnets 44, 45 can be significantly reduced as compared with the conventional case, and the variable optical attenuator The size can be reduced.
なお、 図 6により上述した構成において、 シリンドリカルレンズ 3 , 5の代わ りに例えば図 9に示すようにそれぞれ点集光レンズ 3 ' , 5 ' を適用することも 可能である。 この場合の可変光減衰器を矢印 A方向から見たときの構成を光路も 併せて図 1 0 (模式的上面図) に、 矢印 B方向から見たときの構成を光路も併せ て図 1 1 (模式的側面図) に、 矢印 B方向から見たときの常光成分及び異常光成 分に着目した光路を図 1 2に示す。  In the configuration described above with reference to FIG. 6, point condensing lenses 3 ′ and 5 ′ can be applied instead of the cylindrical lenses 3 and 5 as shown in FIG. 9, for example. FIG. 10 (schematic top view) shows the configuration of the variable optical attenuator in this case when viewed from the direction of arrow A, and FIG. 11 also shows the configuration when viewed from the direction of arrow B. (Schematic side view) shows the optical path focusing on the ordinary light component and the extraordinary light component when viewed from the direction of arrow B in FIG.
ただし、 この場合、 (入力) 点集光レンズ 3 ' は、 偏光子 9の後段 (磁気光学 結晶 4 1の前段) に配置され、 (出力) 点集光レンズ 5 ' は、 検光子 1 0の前段 (磁気光学結晶の後段) に配置される。 また、 偏光子 9及び検光子 1 0は、 この 場合は共にくさび形状の長辺側を下 (図 9の矢印 A方向) に設置する。  However, in this case, the (input) point condenser lens 3 ′ is disposed after the polarizer 9 (before the magneto-optical crystal 41), and the (output) point condenser lens 5 ′ is connected to the analyzer 10. It is arranged at the front stage (after the magneto-optical crystal). In this case, the polarizer 9 and the analyzer 10 are both installed with the long side of the wedge shaped downward (in the direction of arrow A in FIG. 9).
なお、 このように、 点集光レンズ 3 ' , 5 ' を適用する場合に偏光子 9及び検 光子 1 0との配置関係が変わるのは次のような理由による。 即ち、 シリ ドリカ ルレンズ 3, 5を適用する場合と同位置に点集光レンズ 3 ' , 5 ' を配置すると 、 入射光に角度変化を生じさせる偏光子 9及び検光子 1 0を透過する光が全方向 において集光過程となり、 点集光ビームは、 角度が多少変わっても出力光フアイ バ 7に集光される位置はほとんど変わらない (角度トレランスが緩い) ため、 減 衰させることができないからである。  It should be noted that the arrangement relationship between the polarizer 9 and the analyzer 10 changes when the point condensing lenses 3 'and 5' are applied for the following reasons. That is, if the point condensing lenses 3 ′ and 5 ′ are arranged at the same position as when the cylindrical lenses 3 and 5 are applied, the light transmitted through the polarizer 9 and the analyzer 10 that causes an angle change in the incident light is obtained. The focusing process is performed in all directions, and the point focused beam is hardly attenuated because the position focused on the output optical fiber 7 hardly changes (the angle tolerance is loose) even if the angle changes slightly. It is.
そこで、 点集光ビームではなくコリメート光の段階で偏光子 9及び検光子 1 0 で角度変化が生じるよう、 点集光レンズ 3 ' の前段に偏光子 9、 点集光レンズ 5 ' の後段に検光子 1 0が配置されるのである。 Therefore, the polarizer 9 and the analyzer 10 are not used at the point focused beam but at the collimated light stage. The polarizer 9 is arranged before the point condensing lens 3 ′, and the analyzer 10 is arranged after the point condensing lens 5 ′ so that an angle change occurs in.
以上のような構成により、 図 9に示す可変光減衰器では、 図 1 2に模式的に示 すような光路を迪つて常光成分と異常光成分とが進むことになり、 この場合も、 電磁石 4 4, 4 5による印加電磁界の変化に応じて、 出力光ファイバ 7のコアに 結合する光量が変化する。 そして、 ファラデー回転子 4 (磁気光学結晶 4 1 ) の 前段に点集光レンズ 3 ' を設けて、 磁気光学結晶 4 1への入射光を予め点状に集 光する (図 1 0及び図 1 1参照) ので、 本例の場合も、 ファラデー回転子幅及び 電磁石 4 4 , 4 5間の距離を従来よりも大幅に削減して、 可変光減衰器の大幅な 小型化を図ることができる。  With the configuration described above, in the variable optical attenuator shown in FIG. 9, the ordinary light component and the extraordinary light component travel along the optical path schematically shown in FIG. The amount of light coupled to the core of the output optical fiber 7 changes according to the change in the applied electromagnetic field due to 44 and 45. A point condensing lens 3 ′ is provided in front of the Faraday rotator 4 (magneto-optical crystal 41) to collect light incident on the magneto-optical crystal 41 in a point-like manner in advance (see FIGS. Therefore, also in the case of this example, the Faraday rotator width and the distance between the electromagnets 44 and 45 can be greatly reduced as compared with the conventional case, and the variable optical attenuator can be significantly reduced in size.
( C ) 反射型の可変偏光回転装置の説明  (C) Description of reflective variable polarization rotator
次に、 以下では、 反射型の可変偏光回転装置の実施形態について説明する。 図 1 3は本発明の一実施形態としての反射型の可変偏光回転装置の構成を光路 も併せて示す模式的斜視図で、 この図 1 3に示す可変偏光回転装置は、 入力光フ ァイノ 1と、 入力コリメートレンズ 2と、 入力シリンドリカルレンズ 3と、 磁気 光学結晶 4 1 , 永久磁石 4 2, 4 3及び電磁石 4 4, 4 5をそなえて成る可変フ ァラデー回転子 4と、 磁気光学結晶 4 1の後段 (永久磁石 4 3の前段) に設けら れた反射素子 1 1と、 出力シリンドリカルレンズ 5と、 出力コリメ一トレンズ 6 と、 出力光ファイバ 7と、 可変電流源 8とをそなえて構成されている。  Next, an embodiment of a reflection-type variable polarization rotator will be described below. FIG. 13 is a schematic perspective view showing the configuration of a reflection-type variable polarization rotator as one embodiment of the present invention, together with an optical path. The variable polarization rotator shown in FIG. An input collimating lens 2, an input cylindrical lens 3, a magneto-optical crystal 41, a variable Faraday rotator 4 including permanent magnets 42, 43 and electromagnets 44, 45, and a magneto-optical crystal 4. It is composed of a reflective element 11 provided after 1 (before the permanent magnets 4 and 3), an output cylindrical lens 5, an output collimating lens 6, an output optical fiber 7, and a variable current source 8. Have been.
ここで、 この場合も、 入力光ファイバ 1は、 入力光を伝播するものであり、 入 カコリメ一トレンズ (入力コリメ一夕) 2は、 この入力光ファイバ 1から出射さ れる光をコリメートするものであり、 入力シリンドリカルレンズ 3は、 この入力 コリメ一トレンズ 2から出射される光を線状に集光して可変ファラデー回転子 4 (磁気光学結晶 4 1 ) に入射させるもので、 この場合も、 その焦点距離に磁気光 学結晶 4 1の中心が位置するよう配置されている。  Here, also in this case, the input optical fiber 1 propagates the input light, and the input collimating lens (input collimator) 2 collimates the light emitted from the input optical fiber 1. The input cylindrical lens 3 condenses the light emitted from the input collimating lens 2 in a linear form and makes it incident on the variable Faraday rotator 4 (magneto-optical crystal 4 1). It is arranged so that the center of the magneto-optical crystal 41 is located at the focal length.
また、 ファラデー回転子 4は、 前述したものと同様に、 入力シリンドリカルレ ンズ 3から出射される光の偏光状態を電磁石 4 4 , 4 5による印加電磁界強度に 応じて回転 (変化) させるものであり、 反射素子 1 1は、 磁気光学結晶 4 1の出 力側に設けられ、 この磁気光学結晶 4 1を透過してくる光を反射して磁気光学結 晶 4 1に戻すもので、 ここでは、 磁気光学結晶 4 1からの光を入力光路とは異な る方向 〔例えば図 1 4に模式的に示すように、 反射角度 Θをもって図 1 3の Z軸 (矢印 A) 方向〕 へ反射するようになっている。 Further, the Faraday rotator 4 rotates (changes) the polarization state of the light emitted from the input cylindrical lens 3 in accordance with the intensity of the electromagnetic field applied by the electromagnets 44 and 45, as described above. The reflection element 11 is provided on the output side of the magneto-optical crystal 41, and reflects the light transmitted through the magneto-optical crystal 41 to form a magneto-optical element. In this case, the light from the magneto-optical crystal 41 is directed in a direction different from the input optical path (for example, as schematically shown in FIG. 14, the reflection angle Θ and the Z axis in FIG. 13 are used). (Direction of arrow A)].
なお、 図 1 4に示すように、 反射素子 1 1を磁気光学結晶 4 1に密着させる場 合は磁気光学結晶 4 1の出力面に誘電体多層膜等から成る反射膜を形成すること で実現できる。 勿論、 密着させずに反射素子 1 1と磁気光学結晶 4 1との間に空 気その他の光学媒質が介在していてもよい。  As shown in FIG. 14, when the reflective element 11 is brought into close contact with the magneto-optical crystal 41, it is realized by forming a reflective film made of a dielectric multilayer film or the like on the output surface of the magneto-optical crystal 41. it can. Of course, air or another optical medium may be interposed between the reflective element 11 and the magneto-optical crystal 41 without being brought into close contact with each other.
さらに、 出力シリンドリカルレンズ (出力コリメータ) 5は、 反射素子 1 1に より反射され磁気光学結晶 4 1を再び透過した反射光をコリメートするものであ り、 出力コリメ一トレンズ 6は、 この出力シリンドリカルレンズ 5から出射され る光を集光するもので、 その焦点距離が出力光ファイバ 7のコアに位置するよう 配置されている。 なお、 コリメートレンズ 2, 6の焦点距離 f はそれぞれ例えば 4mm, シリンドリカルレンズ 3, 5の焦点距離 f はそれぞれ例えば 1.8mmであ る。  Further, an output cylindrical lens (output collimator) 5 collimates the reflected light reflected by the reflection element 11 and transmitted through the magneto-optical crystal 41 again. The output collimating lens 6 is an output cylindrical lens. The light emitted from 5 is condensed, and is arranged such that its focal length is located at the core of the output optical fiber 7. The focal length f of the collimating lenses 2 and 6 is 4 mm, for example, and the focal length f of the cylindrical lenses 3 and 5 is 1.8 mm, for example.
上述のごとく構成された本実施形態の反射型の可変偏光回転装置では、 入力光 ファイバ 1から出射された光が入力コリメ一トレンズ 2に入射し、 コリメ一トレ ンズ 2でコリメ一卜された後、 入力シリンドリカルレンズ 3に入射して、 入力シ リンドリカルレンズ 3で予め図 1 3の X軸方向に線状に集光されて、 ファラデー 回転子 4 (磁気光学結晶 4 1 ) に入射する。  In the reflective variable polarization rotator of the present embodiment configured as described above, the light emitted from the input optical fiber 1 enters the input collimating lens 2 and is collimated by the collimating lens 2. Then, the light enters the input cylindrical lens 3, is condensed linearly in advance in the X-axis direction in FIG. 13 by the input cylindrical lens 3, and is incident on the Faraday rotator 4 (magneto-optical crystal 41).
そして、 ファラデー回転子 4に入射した光は、 磁気光学結晶 4 1において電磁 石 4 4 , 4 5による印加電磁界強度に応じてその偏波面が回転して、 磁気光学結 晶 4 1を透過した後、 反射素子 1 1で反射して再度磁気光学結晶 4 1に入射する 。 この反射光は、 磁気光学結晶 4 1において、 入射光と実質的に同じ量のファラ デ一回転角が同じ回転方向で与えられることになる。  Then, the light incident on the Faraday rotator 4 has its polarization plane rotated in the magneto-optical crystal 41 according to the intensity of the applied electromagnetic field by the electromagnetic stones 44 and 45, and has transmitted through the magneto-optical crystal 41. Thereafter, the light is reflected by the reflection element 11 and reenters the magneto-optical crystal 41. In the magneto-optical crystal 41, substantially the same amount of Faraday rotation angle as that of the incident light is given to the magneto-optical crystal 41 in the same rotation direction.
したがって、 磁気光学結晶 4 1自体の厚み (図 1 3の X軸方向) を従来よりも 実質的に半減することができ、 しかも、 この場合は、 磁気光学結晶 4 1に入射す る光をシリンドリカルレンズ 3で予め図 1 3の X軸方向に線状に集光しているの で、 ファラデー回転子幅及び電磁石 4 4 , 4 5間の距離をさらに削減して、 ファ ラデ一回転子 4の小型化を図ることができる。 そして、 磁気光学結晶 4 1を透過した反射光は、 出力シリンドリカルレンズ 5 でコリメートされた後、 出力コリメートレンズ 6で集光されて、 出力光ファイバ 7のコアに結合する。 Therefore, the thickness of the magneto-optical crystal 41 itself (the X-axis direction in FIG. 13) can be substantially reduced by half compared to the conventional case, and in this case, the light incident on the magneto-optical crystal 41 is cylindrically formed. Since the light is previously focused linearly in the X-axis direction in Fig. 13 by the lens 3, the Faraday rotator width and the distance between the electromagnets 44, 45 are further reduced, and the Faraday rotator 4 The size can be reduced. The reflected light transmitted through the magneto-optical crystal 41 is collimated by the output cylindrical lens 5, then condensed by the output collimating lens 6, and coupled to the core of the output optical fiber 7.
なお、 磁気光学結晶 4 1から反射素子 1 1への入射光と反射素子 1 1から磁気 光学結晶 4 1への反射光とが成す角度 (反射角度;図 1 4参照) 0は、 0度であ つてもよい。 この場合は、 入射光から反射光を空間的に分離するために例えば光 サーキユレ一夕を用いればよい。  Note that the angle between the incident light from the magneto-optical crystal 41 to the reflective element 11 and the reflected light from the reflective element 11 to the magneto-optical crystal 41 (reflection angle; see Fig. 14) is 0 degree. Yes. In this case, for example, an optical circuit may be used to spatially separate the reflected light from the incident light.
また、 さらなる可変偏光回転装置の小型化, 部品点数の削減化を図る手段とし て、 例えば図 1 5に模式的に示すように、 上述した入力コリメ一トレンズ 2と出 カコリメ一トレンズ 6を 1つのコリメートレンズ 2 6により共有化し、 入力シリ ンドリカルレンズ 3と出力シリンドリカルレンズ 5を 1つのシリンドリカルレン ズ 3 5により共有化してもよい (かかる共用化は上記反射角度 0が小さい (例え ば 5 ° 程度) ほど容易である)。 勿論、 いずれか一方の組のレンズのみを共用化 することも可能である。 そして、 いずれの場合も、 入力光ファイバ 1及び出力光 ファイバ 7付きの 2芯フエルール 1 7を用いることができる。  As a means for further reducing the size and the number of parts of the variable polarization rotator, for example, as schematically shown in FIG. 15, the input collimating lens 2 and the output collimating lens 6 described above are combined into one. The collimating lens 26 may be used in common, and the input cylindrical lens 3 and the output cylindrical lens 5 may be used in common by one cylindrical lens 35 (in such a common use, the reflection angle 0 is small (for example, about 5 °). ) Is easier.) Of course, it is also possible to share only one of the lenses. In each case, a two-core ferrule 17 with an input optical fiber 1 and an output optical fiber 7 can be used.
さらに、 本発明の原理としては、 例えば図 1 6に模式的に示すように、 入力シ リンドリカルレンズ 3, ファラデー回転子 4 (磁気光学結晶 4 1 , 永久磁石 4 2 , 4 3 , 電磁石 4 4, 4 5 ) 及び反射素子 1 1から成る部分を含んでいれば、 反 射型の可変偏光回転装置は実現される (図 1 3の構成において、 コリメートレン ズ 2, 6を不要にしてよいし、 出力シリンドリカルレンズ 5を不要にしてもよい )。  Further, as a principle of the present invention, for example, as schematically shown in FIG. 16, an input cylindrical lens 3, a Faraday rotator 4 (a magneto-optical crystal 41, permanent magnets 42, 43, an electromagnet 44) , 45) and the reflective element 11, a reflection-type variable polarization rotator can be realized (the collimating lenses 2 and 6 may be unnecessary in the configuration of Fig. 13). However, the output cylindrical lens 5 may be unnecessary).
( D ) 反射型の可変光減衰器の説明  (D) Description of reflective variable optical attenuator
次に、 以下では、 上述した反射型の可変偏光回転装置の応用である反射型の可 変光減衰器の実施形態について説明する。  Next, an embodiment of a reflection-type variable optical attenuator to which the above-described reflection-type variable polarization rotation device is applied will be described.
図 1 7は本発明の一実施形態としての反射型の可変光減衰器の構成を光路も併 せて示す模式的斜視図、 図 1 8はこの図 1 7に示す可変光減衰器を矢印 A方向か ら見たときの構成を光路も併せて示す模式的上面図、 図 1 9は同じく矢印 B方向 から見たときの構成を光路も併せて示す模式的側面図である。  FIG. 17 is a schematic perspective view showing the configuration of a reflection type variable optical attenuator according to an embodiment of the present invention, together with an optical path. FIG. 18 is a diagram showing the variable optical attenuator shown in FIG. FIG. 19 is a schematic side view also showing the configuration when viewed from the direction together with the optical path, and FIG. 19 is a schematic side view also showing the configuration when viewed from the arrow B direction.
これらの図 1 7〜図 1 9に示すように、 本実施形態の反射型の可変光減衰器は 、 2芯フェル一ル 1 7, コリメ一トレンズ 2 6 , シリンドリカルレンズ 3 5, フ ァラデー回転子 4 (磁気光学結晶 4 1 , 永久磁石 4 2 , 4 3 , 電磁石 4 4 , 4 5 ) , 偏光子兼検光子 9 1 , 反射素子 1 1及び可変電流源 8をそなえて構成されて いる。 つまり、 本可変光減衰器は、 これらの図 1 7〜図 1 9から分かるように、 図 1 5により上述した反射型の可変偏光回転装置の構成を基本として、 シリンド リカルレンズ 3 5と磁気光学結晶 4 1との間に、 前述の偏光子 (第 1の複屈折板 ) 9と検光子 (第 2の複屈折板) 1 0の機能を兼用する偏光子兼検光子 9 1を配 置した構成になっているのである。 As shown in FIGS. 17 to 19, the reflection-type variable optical attenuator of the present embodiment is , 2-core ferrule 17, collimating lens 26, cylindrical lens 35, Faraday rotator 4 (magneto-optical crystal 41, permanent magnets 42, 43, electromagnets 44, 45), polarizer It is provided with a combined analyzer 91, a reflection element 11 and a variable current source 8. In other words, as can be seen from FIGS. 17 to 19, the variable optical attenuator is based on the configuration of the reflective variable polarization rotator described above with reference to FIG. Between the crystal 41 and the polarizer (first birefringent plate) 9 and the analyzer (second birefringent plate) 10, the polarizer / analyzer 91, which also functions as the above-mentioned polarizer (first birefringent plate) 10, was arranged. It is structured.
なお、 この偏光子兼検光子 9 1も、 図 1 7中の Y Z平面においてテーパ (くさ び) 形状を有する複屈折性結晶 (例えば、 ルチル等) を使用している。  The polarizer / analyzer 91 also uses a birefringent crystal (for example, rutile) having a tapered (wedge) shape in the YZ plane in FIG.
このような構成を採ることにより、 本装置では、 シリンドリカルレンズ 3 5で 予めファラデー回転子 4 (磁気光学結晶 4 1 ) に入射する光を線状に集光するこ とにより、 ファラデー回転子幅及び電磁石 4 4, 4 5間距離を従来よりも大幅に 削減しつつ、 反射型の可変光減衰器を実現することができる。  By adopting such a configuration, in the present apparatus, the light incident on the Faraday rotator 4 (the magneto-optical crystal 41) is linearly condensed by the cylindrical lens 35 in advance, so that the Faraday rotator width and A reflection-type variable optical attenuator can be realized while significantly reducing the distance between the electromagnets 44 and 45 compared to the conventional one.
即ち、 図 2 0に示すように、 図 1 7の矢印 B方向から見た光路の場合、 入力光 ファイバ 1を出射して、 コリメートレンズ 2 6でコリメートされた光線はシリン ドリカルレンズ 3 5を透過した後も、 コリメート光のままであり、 この光線が偏 光子兼検光子 9 1に入射すると、 常光成分 oと異常光成分 eとに偏光分離される 。 このように偏光分離した 2本の光線 o, eはそれぞれファラデー回転子 4 (磁 気光学結晶 4 1 ) で偏光回転され、 反射素子 1 1で反射された後、 再びファラデ 一回転子 4 (磁気光学結晶 4 1 ) を通過して偏光回転を受ける。  That is, as shown in FIG. 20, in the case of the optical path viewed from the direction of arrow B in FIG. 17, the input optical fiber 1 is emitted, and the light beam collimated by the collimating lens 26 passes through the cylindrical lens 35. After that, it remains a collimated light, and when this light is incident on the polarizer / analyzer 91, it is polarized and separated into an ordinary light component o and an extraordinary light component e. The two polarized light beams o and e thus polarized are rotated by the Faraday rotator 4 (magneto-optical crystal 41), reflected by the reflecting element 11 and then again by the Faraday rotator 4 (magnetic The light passes through the optical crystal 41) and undergoes polarization rotation.
ここで、 往復で受けた偏光回転量が 9 0 ° のとき、 復路にて偏光子兼検光子 9 1に入射する際の偏光状態は、 図 2 1において、 往路における常光成分 oが異常 光成分 o e、 往路における異常光成分 eが常光成分 e oとなる。 この場合、 光線 o eと光線 e oとは略平行となるため、 これらの 2本の光線を同時にコリメート レンズ 2 6で集光して出力光ファイバ 7に結合させることが可能となる。  Here, when the amount of polarization rotation received in the round trip is 90 °, the polarization state when entering the polarizer / analyzer 91 on the return path is as shown in Fig. 21. oe, the extraordinary light component e in the outward path becomes the ordinary light component eo. In this case, since the light ray o e and the light ray e o are substantially parallel, these two light rays can be simultaneously condensed by the collimating lens 26 and coupled to the output optical fiber 7.
一方、 往復で受けた偏光回転量が 0 ° のとき、 復路にて偏光子兼検光子 9 1に 入射する際の偏光状態は、 図 2 1において、 往路における常光成分 oが再び常光 成分 o o、 往路における異常光 eは再び異常光成分 e eとなる。 この場合、 光線 00と光線66とは、 互いに平行とならず、 さらに光線 o e, e o共に平行とな らないため、 光線 o eおよび光線 e 0が出力光ファイバ 7のコアに結合される光 学系では、 両者共に出力光ファイバ 7のコアに結合されず、 出力光ファイバ 7の クラッドから放射される。 On the other hand, when the amount of polarization rotation received in the round trip is 0 °, the polarization state when entering the polarizer / analyzer 91 on the return path is as shown in FIG. 21. The extraordinary light e in the outward path becomes the extraordinary light component ee again. In this case, the ray Since the light beam 00 and the light beam 66 are not parallel to each other, and furthermore, neither the light beams oe and eo are parallel to each other, in the optical system where the light beam oe and the light beam e 0 are coupled to the core of the output optical fiber 7, The light is not coupled to the core of the output optical fiber 7 and is emitted from the clad of the output optical fiber 7.
したがって、 往復で受けた偏光回転量が 0〜90° の間のときは、 回転量に応 じて、 0° 回転時の光路分離と 9 0° 回転時の光路分離が生じるため、 電磁界強 度の制御 (可変電流源 8の制御) により出力光ファイバ 7への結合率を制御する ことが可能になる。  Therefore, when the amount of polarization rotation received during reciprocation is between 0 and 90 °, the optical path separation at 0 ° rotation and the optical path separation at 90 ° rotation occur according to the amount of rotation. By controlling the degree (controlling the variable current source 8), the coupling rate to the output optical fiber 7 can be controlled.
なお、 上述した構成において、 例えば図 2 2に示すように、 コリメートレンズ 26の焦点距離を f 1、 シリンドリカルレンズ 3 5の焦点距離を f 2、 コリメ一 トレンズ 2 6とシリンドリカルレンズ 3 5との間の距離を αとすると、 f 1 = f 2 + となる。  In the configuration described above, for example, as shown in FIG. 22, the focal length of the collimating lens 26 is f1, the focal length of the cylindrical lens 35 is f2, and the distance between the collimating lens 26 and the cylindrical lens 35 is If the distance is α, then f 1 = f 2 +.
ここで、 各素子の配置は、 上記のようにシリンドリカルレンズ 3 5を使用する 場合、 上述した構成、 即ち、 入力側から順に、 2芯フエルール 1 7, コリメート レンズ 26, シリンドリカルレンズ 3 5, 偏光子兼検光子 9 1, ファラデー回転 子 4, 反射素子 1 1という配置の他に、 例えば図 2 3に示すように、 シリンドリ カルレンズ 3 5と偏光子兼検光子 9 1の位置を入れ替えても可変減衰が可能であ る。  Here, the arrangement of each element is as described above when the cylindrical lens 35 is used as described above, that is, in order from the input side, the two-core ferrule 17, the collimating lens 26, the cylindrical lens 35, and the polarizer In addition to the arrangement of the combined analyzer 91, Faraday rotator 4, and reflecting element 11, variable attenuation can be achieved even if the positions of the cylindrical lens 35 and the polarizer / analyzer 91 are switched, as shown in Fig. 23, for example. Is possible.
しかし、 上記のように f 1 = f 2 + αであることから、 シリンドリカルレンズ 3 5として同じ焦点距離のレンズを使用した場合でも、 図 2 3に示す配置ではコ リメ一トレンズ 2 6とシリンドリカルレンズ 3 5との間に偏光子兼検光子 9 1を 配置しなければならないため、 α<α' となる。 従って、 f 1く f 1 ' となる。 このようにコリメートレンズ 2 6の焦点距離が大きくなるとコリメートビーム 径 Φも大きくなり (図 2 3の φ ' 参照)、 ビーム径 φが大きくなるとファラデー 回転子 4 (磁気光学結晶 4 1 ) に入射する光の開口数 ( N A : Numerical Aperture) が大きくなる。 その結果、 ファラデー回転子幅 (電磁石 44, 4 5 間の距離) を大きくしなければならなくなるので、 電磁石 44, 4 5の小型化が 図りにくくなり、 ファラデー回転子 4の小型化が図りにくくなる。 従って、 図 2 2に示す配置がより有利である。 なお、 上記のシリンドリカルレンズ 3 5の代わりに、 図 5や図 9により前述し たような点集光レンズ 3 ' を用いる場合、 可変減衰機能を付加するためには図 2 3に示す配置しか採り得ない。 なぜなら、 シリンドリカルレンズ 3 5を使用する 場合は、 図 2 2及び図 2 3のいずれの配置でも、 コリメ一トレンズ 2 6と反射素 子 1 1との間はコリメート光が伝播するので、 くさび形状の偏光子兼検光子 9 1 により光路の角度が変わるが、 点集光レンズ 3 ' を用いて図 2 2に示す配置を採 ると、 角度変化を生じさせる偏光子兼検光子 9 1を透過する光が全方向において 集光過程であるため、 角度が多少変わっても集光位置は殆ど変わらない (角度ト レランスが緩い) からである。 However, since f 1 = f 2 + α as described above, even if a lens having the same focal length is used as the cylindrical lens 35, the collimating lens 26 and the cylindrical lens are arranged in the arrangement shown in FIG. Α <α ′ because the polarizer / analyzer 91 must be placed between the polarizer 35 and 35. Therefore, f 1 and f 1 '. Thus, as the focal length of the collimating lens 26 increases, the collimated beam diameter Φ also increases (see φ ′ in Fig. 23), and as the beam diameter φ increases, the beam enters the Faraday rotator 4 (the magneto-optical crystal 41). Numerical Aperture (NA) increases. As a result, the width of the Faraday rotator (the distance between the electromagnets 44 and 45) must be increased, so that it is difficult to reduce the size of the electromagnets 44 and 45, and it is difficult to reduce the size of the Faraday rotator 4. . Therefore, the arrangement shown in FIG. 22 is more advantageous. When a point condenser lens 3 ′ as described above with reference to FIGS. 5 and 9 is used instead of the cylindrical lens 35, only the arrangement shown in FIG. 23 is used to add a variable attenuation function. I can't get it. This is because, when the cylindrical lens 35 is used, the collimating light propagates between the collimating lens 26 and the reflecting element 11 in any of the arrangements shown in FIGS. The angle of the optical path changes depending on the polarizer / analyzer 91, but when the point condensing lens 3 'is used and the arrangement shown in FIG. 22 is adopted, the light passes through the polarizer / analyzer 91 which causes an angle change. Because light is converging in all directions, the condensing position hardly changes (the angle tolerance is loose) even if the angle changes slightly.
しかしながら、 図 2 3に示す配置は、 上述したように好ましくないため、 反射 型の可変光減衰器を実現する場合は、 シリンドリカルレンズ 3 5を用いて図 2 2 に示す配置を採ることが非常に有利であるということになる。  However, since the arrangement shown in FIG. 23 is not preferable as described above, when realizing a reflection type variable optical attenuator, it is extremely preferable to adopt the arrangement shown in FIG. 22 using a cylindrical lens 35. This is advantageous.
また、 上述した例では、 図 1 5により上述した反射型の可変偏光回転装置の構 成を基本とした場合について説明したが、 例えば図 1 3に示す構成を基本構成と して、 シリンドリカルレンズ 3 , 5の組と磁気光学結晶 4 1との間に、 前述の偏 光子 9と検光子 1 0の機能を兼用する偏光子兼検光子 9 1を配置しても、 上記と 同様に可変光減衰器を実現できることはいうまでもない。  Also, in the above-described example, the case where the configuration of the above-described reflective variable polarization rotator is basically described with reference to FIG. 15 is described. For example, the configuration shown in FIG. Even if a polarizer / analyzer 91 that also functions as the polarizer 9 and the analyzer 10 described above is placed between the set of, 5 and the magneto-optical crystal 41, the variable optical attenuation is the same as above. It goes without saying that a vessel can be realized.
そして、 本発明は上述した実施形態に限定されず、 本発明の趣旨を逸脱しない 範囲で種々変形して実施することができる。  The present invention is not limited to the above-described embodiment, and can be implemented with various modifications without departing from the spirit of the present invention.
例えば、 本発明の可変偏光回転装置を光アイソレータやレーザモジュール等の 他の光学装置を構成するために用いることもでき、 その場合にも、 光学装置の大 幅な小型化を実現できる。 産業上の利用可能性  For example, the variable polarization rotator of the present invention can be used to constitute another optical device such as an optical isolator or a laser module. In such a case, the optical device can be significantly reduced in size. Industrial applicability
以上のように、 本発明によれば、 ファラデー回転子を構成する磁気光学結晶に 入射する光を予めシリンドリカルレンズ等の集光手段を用いて集光するので、 フ ァラデー回転子幅 (電磁石間距離) を従来よりも大幅に削減して、 電磁石自体の 小型化を図り、 ひいてはファラデー回転子の大幅な小型化を図ることができる。 したがって、 ファラデー回転子を用いる可変偏光回転装置や可変光減衰器等の光 学装置の大幅な小型化を図ることができ、 その有用性は極めて高いものと考えら れる。 As described above, according to the present invention, since the light incident on the magneto-optical crystal constituting the Faraday rotator is condensed in advance using a condensing means such as a cylindrical lens, the Faraday rotator width (distance between electromagnets) ) Can be greatly reduced compared to the conventional method, and the size of the electromagnet itself can be reduced. As a result, the size of the Faraday rotator can be significantly reduced. Therefore, a variable polarization rotator using a Faraday rotator, a variable optical attenuator, etc. The size of the scientific equipment can be significantly reduced, and its usefulness is considered to be extremely high.

Claims

請 求 の 範 囲 The scope of the claims
1. 入力光を集光する第 1の集光手段 (3) と、 1. First focusing means (3) for focusing the input light;
該第 1の集光手段 (3) の焦点位置付近に設置された磁気光学結晶 (41) と 、  A magneto-optical crystal (41) installed near the focal point of the first light-collecting means (3);
該磁気光学結晶 (41) に磁界を印加する磁界発生手段 (42, 43, 44, 45) と、  Magnetic field generating means (42, 43, 44, 45) for applying a magnetic field to the magneto-optical crystal (41);
該磁界発生手段 (42, 43, 44, 45) を制御して該磁界を変化させる制 御手段 (8) とをそなえたことを特徴とする、 可変偏光回転装置。  A variable polarization rotator comprising control means (8) for controlling said magnetic field generating means (42, 43, 44, 45) to change said magnetic field.
2. 該第 1の集光手段 (3) が、 該入力光を線状に集光する入力ラインフォー カスレンズにより構成されたことを特徴とする、 請求の範囲第 1項に記載の可変 偏光回転装置。 2. The variable polarization rotation according to claim 1, wherein the first light condensing means (3) is constituted by an input line focus lens that condenses the input light linearly. apparatus.
3. 該第 1の集光手段 (3) が、 該入力光を点状に集光する入力点集光レンズ (3' ) により構成されたことを特徴とする、 請求の範囲第 1項に記載の可変偏 光回転装置。 3. The method according to claim 1, wherein the first light condensing means (3) is constituted by an input point condensing lens (3 ') for condensing the input light in a point shape. A variable polarization rotation device as described in the above.
4. 該第 1の集光手段 (3) の前段に、 該入力光をコリメートして該第 1の集 光手段 (3) へコリメート光を入力する入力コリメ一夕 (2) が設けられたこと を特徴とする、 請求の範囲第 1項に記載の可変偏光回転装置。 4. An input collimator (2) for collimating the input light and inputting the collimated light to the first light collecting means (3) is provided in front of the first light collecting means (3). The variable polarization rotator according to claim 1, characterized in that:
5. 該入カラインフォーカスレンズ (3) の前段に、 該入力光をコリメートし て該入力ラインフォーカスレンズ (3) へコリメート光を入力する入力コリメ一 夕 (2) が設けられるとともに、 該入カラインフォーカスレンズ (3) と該磁気 光学結晶 (41) との間に偏光子又は複屈折板 (9) が設けられたことを特徴と する、 請求の範囲第 2項に記載の可変偏光回転装置を用いた可変光減衰器。 5. An input collimator (2) for collimating the input light and inputting the collimated light to the input line focus lens (3) is provided in front of the input line focus lens (3). 3. The variable polarization rotation according to claim 2, wherein a polarizer or a birefringent plate (9) is provided between the kalein focus lens (3) and the magneto-optical crystal (41). Variable optical attenuator using device.
6. 該入力点集光レンズ (3' ) の前段に、 該入力光をコリメートして該入力 点集光レンズ (3' ) へコリメート光を入力する入力コリメ一夕 (2) が設けら れるとともに、 該入力コリメータ (2) と該入力点集光レンズ (3' ) との間に 偏光子又は複屈折板 (9) が設けられたことを特徴とする、 請求の範囲第 3項に 記載の可変偏光回転装置を用いた可変光変減衰器。 ' 6. Before the input point condenser lens (3 '), collimate the input light and An input collimator (2) for inputting collimated light to the point condenser lens (3 ') is provided, and a polarizer is provided between the input collimator (2) and the input point condenser lens (3'). Alternatively, a variable optical attenuator using the variable polarization rotation device according to claim 3, wherein a birefringent plate (9) is provided. '
7. 該磁気光学結晶 (41) の後段に、 該磁気光学結晶 (41) を透過する光 をコリメートする出力コリメータ (5) が設けられたことを特徴とする、 請求の 範囲第 1項に記載の可変偏光回転装置。 7. The output collimator (5) for collimating light transmitted through the magneto-optical crystal (41) is provided downstream of the magneto-optical crystal (41). Variable polarization rotation device.
8. 該出力コリメ一夕 (5) が、 該磁気光学結晶 (41) から出射された光を 線状に集光する出力ラインフォーカスレンズにより構成されたことを特徴とする 、 請求の範囲第 7項に記載の可変偏光回転装置。 8. The output collimator (5) is constituted by an output line focus lens that condenses light emitted from the magneto-optical crystal (41) into a linear shape. The variable polarization rotator according to Item.
9. 該出力コリメ一夕 (5) が、 該磁気光学結晶 (41) から出射された光を 点状に集光する出力点集光レンズ (5' ) により構成されたことを特徴とする、 請求の範囲第 7項に記載の可変偏光回転装置。 9. The output collimator (5) is constituted by an output point condensing lens (5 ') for condensing the light emitted from the magneto-optical crystal (41) in a point-like manner. 8. The variable polarization rotator according to claim 7.
10. 該磁気光学結晶 (41) と該出力ラインフォーカスレンズ (5) との間 に検光子又は複屈折板 (10) が設けられたことを特徴とする、 請求の範囲第 8 項に記載の可変偏光回転装置を用いた可変光減衰器。 10. The method according to claim 8, wherein an analyzer or a birefringent plate (10) is provided between the magneto-optical crystal (41) and the output line focus lens (5). Variable optical attenuator using variable polarization rotation device.
11. 該出力点集光レンズ (5' ) の後段に該出力点集光レンズ (5' ) から 出射された光を集光する第 2の集光手段 (6) が設けられるとともに、 該出力点 集光レンズ (5' ) と該第 2の集光手段 (6) との間に検光子又は複屈折板 (1 0) が設けられたことを特徴とする、 請求の範囲第 9項に記載の可変偏光回転装 置を用いた可変光減衰器。 11. A second condenser means (6) for condensing light emitted from the output point condenser lens (5 ') is provided at a stage subsequent to the output point condenser lens (5'). 10. The method according to claim 9, wherein an analyzer or a birefringent plate (10) is provided between the point condenser lens (5 ') and the second condenser means (6). A variable optical attenuator using the variable polarization rotation device described.
12. 入力光を伝播する入力光ファイバ (1) と、 12. An input optical fiber (1) that propagates the input light,
該入力光ファイバ (1) からの入力光をコリメートする入力コリメ一夕 (2) と、 An input collimator for collimating the input light from the input optical fiber (1) (2) When,
該入力コリメ一夕 (2) から出射されるコリメート光を線状に集光する入カラ インフォーカスレンズ (3) と、  An input focusing lens (3) for linearly condensing collimated light emitted from the input collimator (2);
該入カラインフォーカスレンズ (3) の焦点位置付近に設置された磁気光学結 晶 (41) と、  A magneto-optical crystal (41) installed near the focal point of the input focus lens (3);
該磁気光学結晶 (41) を透過してくる光をコリメートする出力ラインフォー カスレンズ (5) と、  An output line focus lens (5) for collimating light transmitted through the magneto-optical crystal (41);
該出カラインフォーカスレンズ (5) から出射されるコリメート光を集光する 出力コリメートレンズ (6) と、  An output collimating lens (6) for collecting collimated light emitted from the output line focus lens (5);
該出力コリメ一トレンズ (6) の焦点位置付近に設置された出力光ファイバ ( 7) と、  An output optical fiber (7) installed near a focal position of the output collimating lens (6);
該磁気光学結晶 (41) に磁界を印加する磁界発生手段 (42, 43, 44, 45) と、  Magnetic field generating means (42, 43, 44, 45) for applying a magnetic field to the magneto-optical crystal (41);
該磁界発生手段 (42, 43, 44, 45) を制御して該磁界を変化させる制 御手段 (8) とをそなえたことを特徴とする、 可変偏光回転装置。  A variable polarization rotator comprising control means (8) for controlling said magnetic field generating means (42, 43, 44, 45) to change said magnetic field.
13. 該入カラインフォーカスレンズ (3) と該磁気光学結晶 (41) との間 に偏光子又は第 1の複屈折板 (9) が設けられるとともに、 '該磁気光学結晶 (4 1) と該出力ラインフォーカスレンズ (5) との間に検光子又は第 2の複屈折板 (10) が設けられたことを特徴とする、 請求の範囲第 12項に記載の可変偏光 回転装置を用いた可変光減衰器。 13. A polarizer or a first birefringent plate (9) is provided between the input focus lens (3) and the magneto-optical crystal (41). 13. The variable polarization rotator according to claim 12, wherein an analyzer or a second birefringent plate (10) is provided between the output line focus lens (5) and the output line focus lens (5). Variable optical attenuator.
14. 該偏光子又は第 1の複屈折板 ( 9 ) 及び該検光子又は第 2の複屈折板 ( 10) が、 それぞれくさび形状を有する複屈折性結晶により構成されたことを特 徵とする、 請求の範囲第 13項に記載の可変光減衰器。 14. It is characterized in that the polarizer or the first birefringent plate (9) and the analyzer or the second birefringent plate (10) are each composed of a birefringent crystal having a wedge shape. 14. The variable optical attenuator according to claim 13.
15. 入力光を集光する第 1の集光手段 (3) と、 15. A first focusing means (3) for focusing the input light;
該第 1の集光手段 (3) の焦点位置付近に設置された磁気光学結晶 (41) と 該磁気光学結晶 (41) に磁界を印加する磁界発生手段 (42, 43, 44, 45) と、 A magneto-optical crystal (41) installed near the focal point of the first light condensing means (3); Magnetic field generating means (42, 43, 44, 45) for applying a magnetic field to the magneto-optical crystal (41);
該磁界発生手段 (42, 43, 44, 45) を制御して該磁界を変化させる制 御手段 (8) と、  Control means (8) for controlling the magnetic field generating means (42, 43, 44, 45) to change the magnetic field;
該磁気光学結晶 (41) を透過した光を反射して該磁気光学結晶 (41) に戻 す反射素子 (11) とをそなえたことを特徴とする、 可変偏光回転装置。  A variable polarization rotator, comprising: a reflection element (11) for reflecting light transmitted through the magneto-optical crystal (41) and returning the reflected light to the magneto-optical crystal (41).
16. 該第 1の集光手段 (3) が、 該入力光を線状に集光する入カラインフォ 一カスレンズにより構成されたことを特徴とする、 請求の範囲第 1 5項に記載の 可変偏光回転装置。 16. The variable device according to claim 15, wherein the first light condensing means (3) is constituted by an input color information lens that condenses the input light linearly. Polarization rotation device.
17. 該第 1の集光手段 (3) の前段に、 該入力光をコリメートして該第 1の 集光手段 (3) に入射する入力コリメ一夕 (2) が設けられたことを特徴とする 、 請求の範囲第 15項又は第 16項に記載の可変偏光回転装置。 17. An input collimator (2) for collimating the input light and entering the first condenser means (3) is provided in front of the first condenser means (3). 17. The variable polarization rotator according to claim 15 or claim 16.
18. 該反射素子 (1 1) により反射され該磁気光学結晶 (41) を透過して くる反射光をコリメ一トする出力コリメ一夕 (5) が設けられたことを特徴とす る、 請求の範囲第 15〜17項のいずれか 1項に記載の可変偏光回転装置。 18. An output collimator (5) for collimating reflected light reflected by the reflection element (11) and transmitted through the magneto-optical crystal (41) is provided. 18. The variable polarization rotation device according to any one of items 15 to 17.
19. 該出力コリメ一夕 (5) が、 該磁気光学結晶 (41) からの該反射光を 線状に集光する出カラインフォ一カスレンズにより構成されたことを特徴とする 、 請求の範囲第 18項に記載の可変偏光回転装置。 19. The output collimator (5) is formed by an output color information lens that linearly condenses the reflected light from the magneto-optical crystal (41). 19. The variable polarization rotation device according to item 18.
20. 該出力コリメ一夕 (5) の後段に、 当該出力コリメ一夕 (5) から出射 された光を集光する第 2の集光手段 (6) が設けられたことを特徴とする、 請求 の範囲第 18項又は第 19項に記載の可変偏光回転装置。 20. A second condenser means (6) for condensing light emitted from the output collimator (5) is provided at a stage subsequent to the output collimator (5). 20. The variable polarization rotator according to claim 18 or 19.
21. 入力光を伝播する入力光ファイバ (1) と、 21. An input optical fiber (1) that propagates input light,
該入力光ファイバ (1) から出射される光をコリメートする入力コリメ一夕 ( 2) と、 An input collimator for collimating the light emitted from the input optical fiber (1) 2) and
該入力コリメータ (2) から出射されるコリメート光を集光する第 1の集光手 段 (3) と、  A first focusing means (3) for focusing collimated light emitted from the input collimator (2);
該第 1の集光手段 (3) の焦点位置付近に設置された磁気光学結晶 (41) と 、  A magneto-optical crystal (41) installed near the focal point of the first light-collecting means (3);
該磁気光学結晶 (41) を透過した光を反射して該磁気光学結晶 (41) に戻 す反射素子 (1 1) と、  A reflection element (11) for reflecting light transmitted through the magneto-optical crystal (41) and returning the reflected light to the magneto-optical crystal (41);
該反射素子 (1 1) により反射され該磁気光学結晶 (41) を透過してきた光 をコリメ一卜する出力コリメ一夕 (5) と、  An output collimator (5) for collimating the light reflected by the reflective element (11) and transmitted through the magneto-optical crystal (41);
該出力コリメ一夕 (5) から出射されたコリメ一ト光を集光する第 2の集光手 段 (6) と、  A second focusing means (6) for focusing the collimated light emitted from the output collimator (5);
該第 2の集光手段 (6) の焦点位置付近に設置された出力光ファイバ (7) と 該磁気光学結晶 (41) に磁界を印加する磁界発生手段 (42, 43, 44, 45) と、  An output optical fiber (7) installed near the focal point of the second condensing means (6); and magnetic field generating means (42, 43, 44, 45) for applying a magnetic field to the magneto-optical crystal (41). ,
該磁界発生手段 (42, 43, 44, 45) を制御して該磁界を変化させる制 御手段 (8) とをそなえたことを特徴とする、 可変偏光回転装置。  A variable polarization rotator, comprising control means (8) for controlling said magnetic field generating means (42, 43, 44, 45) to change said magnetic field.
22. 該第 1の集光手段 (3) 及び該出力コリメ一夕 (5) が、 それぞれ、 入 射光を線状に集光するラインフォーカスレンズにより構成されたことを特徴とす る、 請求の範囲第 2 1項に記載の可変偏光回転装置。 22. The first light-condensing means (3) and the output collimator (5) are each constituted by a line focus lens that condenses incident light in a linear manner. 21. The variable polarization rotator according to item 21.
23. 該第 1の集光手段 (3) と該出力コリメ一夕 (5) とが、 入射光を線状 に集光する 1つのラインフォーカスレンズ (35) により兼用されていることを 特徴とする、 請求の範囲第 2 1項に記載の可変偏光回転装置。 23. The first light-collecting means (3) and the output collimator (5) are shared by one line focus lens (35) for linearly condensing incident light. 22. The variable polarization rotation device according to claim 21.
24. 該入力コリメ一夕 (2) 及び該第 2の集光手段 (6) が、 それぞれ、 入 射光をコリメ一卜するコリメートレンズにより構成されたことを特徴とする、 請 求の範囲第 2 1〜23項のいずれか 1項に記載の可変偏光回転装置。 24. The method according to claim 2, wherein said input collimator (2) and said second condenser means (6) are each constituted by a collimating lens for collimating the incident light. 24. The variable polarization rotator according to any one of 1 to 23.
25. 該入力コリメ一夕 (2) と該第 2の集光手段 (6) とが、 入射光をコリ メートする 1つのコリメ一トレンズ (26) により兼用されていることを特徴と する、 請求の範囲第 21〜23項のいずれか 1項に記載の可変偏光回転装置。 25. The input collimator (2) and the second condenser means (6) are shared by one collimating lens (26) for collimating incident light. 24. The variable polarization rotation device according to any one of items 21 to 23.
26. 該第 1の集光手段 (3) と該磁気光学結晶 (41) との間に偏光子又は 第 1の複屈折板 (9) が設けられるとともに、 該磁気光学結晶 (41) と該出力 コリメ一夕 (5) との間に検光子又は第 2の複屈折板 (10) が設けられたこと を特徴とする、 請求の範囲第 21〜25項のいずれか 1項に記載の可変偏光回転 装置を用いた可変光減衰器。 26. A polarizer or a first birefringent plate (9) is provided between the first condensing means (3) and the magneto-optical crystal (41), and the magneto-optical crystal (41) and the magneto-optical crystal (41) are provided. The variable according to any one of claims 21 to 25, characterized in that an analyzer or a second birefringent plate (10) is provided between the output collimator and the collimator (5). Variable optical attenuator using a polarization rotation device.
27. 該第 1の複屈折板 (9) と該第 2の複屈折板 (10) とが偏光子兼検光 子 (91) により兼用されていることを特徴とする、 請求の範囲第 26項に記載 の可変光減衰器。 27. The method according to claim 26, wherein the first birefringent plate (9) and the second birefringent plate (10) are shared by a polarizer and analyzer (91). The variable optical attenuator according to the item.
28. 該第 1の複屈折板 (9) 及び該第 2の複屈折板 (10) が、 それぞれ、 くさび形状を有する複屈折性結晶により構成されたことを特徴とする、 請求の範 囲第 26項に記載の可変光減衰器。 28. The first birefringent plate (9) and the second birefringent plate (10) are each composed of a birefringent crystal having a wedge shape. 27. A variable optical attenuator according to item 26.
29. 該偏光子兼検光子 (91) が、 くさび形状を有する複屈折性結晶により 構成されたことを特徴とする、 請求の範囲第 27項に記載の可変光減衰器。 29. The variable optical attenuator according to claim 27, wherein said polarizer and analyzer (91) is made of a birefringent crystal having a wedge shape.
PCT/JP2002/010072 2002-09-27 2002-09-27 Variable polarization rotation device, and variable optical attenuator using the same WO2004029698A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/010072 WO2004029698A1 (en) 2002-09-27 2002-09-27 Variable polarization rotation device, and variable optical attenuator using the same
JP2004539447A JPWO2004029698A1 (en) 2002-09-27 2002-09-27 Variable polarization rotator and variable optical attenuator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010072 WO2004029698A1 (en) 2002-09-27 2002-09-27 Variable polarization rotation device, and variable optical attenuator using the same

Publications (1)

Publication Number Publication Date
WO2004029698A1 true WO2004029698A1 (en) 2004-04-08

Family

ID=32040319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010072 WO2004029698A1 (en) 2002-09-27 2002-09-27 Variable polarization rotation device, and variable optical attenuator using the same

Country Status (2)

Country Link
JP (1) JPWO2004029698A1 (en)
WO (1) WO2004029698A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106849B2 (en) * 2004-05-28 2012-12-26 株式会社トリマティス Optical device using polarization variable element
CN109613724A (en) * 2019-01-30 2019-04-12 福建华科光电有限公司 A kind of magneto-optic adjustable optical attenuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3625621A1 (en) * 2017-05-15 2020-03-25 Qioptiq Photonics GmbH & Co. KG Glue free faraday isolator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118357A (en) * 1992-10-02 1994-04-28 Seiko Epson Corp Optical modulator
US5973821A (en) * 1996-03-01 1999-10-26 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of light signal
US6226115B1 (en) * 1998-09-30 2001-05-01 Fujitsu Limited Optical circulator or switch having a birefringent wedge positioned between faraday rotators
JP2002258229A (en) * 2001-03-06 2002-09-11 Nec Tokin Corp Optical attenuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118357A (en) * 1992-10-02 1994-04-28 Seiko Epson Corp Optical modulator
US5973821A (en) * 1996-03-01 1999-10-26 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of light signal
US6226115B1 (en) * 1998-09-30 2001-05-01 Fujitsu Limited Optical circulator or switch having a birefringent wedge positioned between faraday rotators
JP2002258229A (en) * 2001-03-06 2002-09-11 Nec Tokin Corp Optical attenuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106849B2 (en) * 2004-05-28 2012-12-26 株式会社トリマティス Optical device using polarization variable element
CN109613724A (en) * 2019-01-30 2019-04-12 福建华科光电有限公司 A kind of magneto-optic adjustable optical attenuator
CN109613724B (en) * 2019-01-30 2024-02-13 福建华科光电有限公司 Magneto-optical adjustable optical attenuator

Also Published As

Publication number Publication date
JPWO2004029698A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US6757101B2 (en) None-mechanical dual stage optical switches
US6018411A (en) Optical device utilizing magneto-optical effect
US6577430B1 (en) Bi-directional optical switch
JPH06258598A (en) Optical isolator
US8854716B2 (en) Reflection type variable optical attenuator
US6795245B2 (en) Polarization independent magnetooptic switches
WO2004029698A1 (en) Variable polarization rotation device, and variable optical attenuator using the same
JP3771228B2 (en) Magneto-optical components
JP3718152B2 (en) Variable optical attenuator
JP2005099737A (en) Magnetooptic optical component
JP2000241762A (en) Optical isolator
JP2002258229A (en) Optical attenuator
JPS5828561B2 (en) optical isolator
JP2003098500A (en) Reflection type variable optical attenuator
JPH05313094A (en) Optical isolator
JP4382344B2 (en) Reflective variable magneto-optical device
JP2003172901A (en) Optical nonreciprocity device
JP4293921B2 (en) Polarization-independent multi-fiber optical isolator
JP2001154149A (en) Optical module and optical circulator
JP2840707B2 (en) Optical isolator
JPH08171075A (en) Optical switch
JP2004029335A (en) Optical isolator and optical isolator module
JPH01188834A (en) Light switch
JPH04140709A (en) Optical isolator
JP4345955B2 (en) Reflective variable optical attenuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004539447

Country of ref document: JP