JPH06118357A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH06118357A
JPH06118357A JP26493292A JP26493292A JPH06118357A JP H06118357 A JPH06118357 A JP H06118357A JP 26493292 A JP26493292 A JP 26493292A JP 26493292 A JP26493292 A JP 26493292A JP H06118357 A JPH06118357 A JP H06118357A
Authority
JP
Japan
Prior art keywords
single crystal
light
optical
lens
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26493292A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kasai
嘉彦 河西
Yoshinobu Otsuki
喜信 大槻
Yasuo Sakai
保雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26493292A priority Critical patent/JPH06118357A/en
Publication of JPH06118357A publication Critical patent/JPH06118357A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize an optical modulator through miniaturization of a single crystal and unification of constitution parts by providing a convergent lens in an optical path, and also, constituting directly an optical thin film corresponding to a phase plate, a plate polarizer for giving a polarization characteristic and a diffraction grating in one end face of this lens or at least one end face of the single crystal and an acid compound for showing an effect. CONSTITUTION:By installing a convergent lens 1l1 between a polarizer 1a and a single crystal 1b, and allowing a convergent light to be made incident on the single crystal 1b, size of the single crystal 1b, and size of a phase plate 1c for modulating furthermore the light which passes through the single crystal 1b and an analyzer 1d are miniaturized. In this case, since a shape of the convergent lens 1l1 passes through the polarizer 1a, a cylindrical lens can utilize it, and it will suffice that only the polarized light is guided into the single crystal 1b. Therefore, it is unnecessary to be the spherical surface, and the value as parts can be reduced due to mass production. Accordingly, a cost reduction and miniaturization are realized in an industrical level, and it takes effect in a field of intensity modulation, phase modulation, etc., of light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信、光情報処理、光
計測器分野で使用されるもので、電気光学変調、磁気光
学変調や音響光学変調を用い、コーヒーレントな光分野
に利用されるもので、例えば光アイソレータの電気光学
効果、磁気光学効果や音響光学変調の効率的活用可能な
光学変調器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in the fields of optical communications, optical information processing, and optical measuring instruments, and is used in the coherent optical field by using electro-optical modulation, magneto-optical modulation, and acousto-optical modulation. The present invention relates to an optical modulator capable of efficiently utilizing the electro-optical effect, magneto-optical effect, and acousto-optical modulation of an optical isolator.

【0002】[0002]

【従来の技術】電気光学変調にはポッケルス効果やカー
効果を利用し、磁気光学変調にはファラデー効果や電磁
界変化効果、及び音響光学変調には、超音波による屈折
率変化、ラマンナス回折効果、ブラック回折効果が用い
られている。これら変調器の心臓部とも言えるポッケル
ス効果やファラデー効果、あるいは屈折率変化を起こす
物質はそのほとんどは製造が困難な単結晶が使用されて
いる。
2. Description of the Related Art The Pockels effect and Kerr effect are used for electro-optic modulation, the Faraday effect and electromagnetic field change effect are used for magneto-optic modulation, and the refractive index change, Ramanus diffraction effect by ultrasonic waves are used for acousto-optic modulation, The black diffraction effect is used. Most of the substances that cause the Pockels effect, the Faraday effect, or the change in the refractive index, which is the heart of these modulators, are made of single crystals that are difficult to manufacture.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
技術では価格が高くなってしまい、一般的普及への最大
の壁となっていた。一方、例えば光アイソレータを考慮
した時、光通信密度や情報処理密度は高ければ高い程、
今後の技術革新にマッチするものであり、さらなる小型
化が求望されている。図4、図5、図6に従来の電気光
学、磁気光学、音響光学変調の原理図を示す。
However, the conventional technique has a high price, which is the biggest obstacle to the general popularization. On the other hand, when considering, for example, an optical isolator, the higher the optical communication density and the information processing density,
It matches future technological innovation, and further miniaturization is desired. 4, 5 and 6 show principle diagrams of conventional electro-optic, magneto-optic and acousto-optic modulation.

【0004】4a、5aは偏光子、4bはポッケルス効
果を発揮するタンタル酸リチウム、ニオブ酸バリウム・
ナトリウム、ニオブ酸ストロンチウム・バリウム、チタ
ン酸ランタン等の結晶である。5b2は、円筒状の永久
磁石5b1に包囲されたファラデー効果を示すイットリ
ウム・鉄・ガーネット単結晶、又はプラセオジウム、デ
ィスプロシウム、セリウム、テレビウム等を多量に含む
硝酸塩、リン酸塩ガラスや鉛ガラス、硝酸化鉄ガラス、
ふっ化鉄ガラス、酸化ビスマスガラスの複合化合物を示
す。図3は、ブラック回折を用いた音響光学の光偏光器
を示し、モリブデン酸鉛、酸化テルル等の単結晶やフリ
ントガラスが用いられる。前述した変調能力は、全て単
結晶が機能的に優れているため高価ではあるが、エピタ
キシー成長等によって高品質なものを採用しているのが
現状である。また、光アイソレータを例にとると、光量
は光路系での損失を考慮すると取り込み面積はある程度
必要とされ、偏光子はもちろんの事、変調器の骨格をな
す単結晶も大きくせざるを得ない。4cは位相板、4d
・5dは検光子を示す。図6は、超音波により光の方向
が回折光として進行方向が変えられたことを示し、6e
は、トランスジューサー、6bは、超音波吸収体であ
り、光偏光結晶6b1は、モリブデン酸鉛や酸化テルル
である。
4a, 5a are polarizers, 4b are lithium tantalate and barium niobate, which exhibit the Pockels effect.
Crystals of sodium, strontium barium niobate, lanthanum titanate and the like. 5b 2 is a yttrium-iron-garnet single crystal exhibiting the Faraday effect surrounded by a cylindrical permanent magnet 5b 1 or nitrate, phosphate glass or lead containing a large amount of praseodymium, dysprosium, cerium, tvium, etc. Glass, iron nitrate glass,
A composite compound of iron fluoride glass and bismuth oxide glass is shown. FIG. 3 shows an acousto-optic optical polarizer using black diffraction, and a single crystal of lead molybdate, tellurium oxide, or flint glass is used. The above-mentioned modulation capability is expensive because all single crystals are functionally excellent, but at present the quality is high due to epitaxy growth or the like. Also, taking an optical isolator as an example, the amount of light requires a certain area to take in considering the loss in the optical path system, and in addition to the polarizer, the single crystal that forms the skeleton of the modulator must be large. . 4c is a phase plate and 4d
5d indicates an analyzer. FIG. 6 shows that the direction of light was changed as diffracted light by ultrasonic waves, and 6e
Is a transducer, 6b is an ultrasonic absorber, and the light polarization crystal 6b 1 is lead molybdate or tellurium oxide.

【0005】以上記述した様に従来の光変調器は高価な
単結晶の大きなブロックを必要とし、極めて高価なもの
となり、また小型高性能が困難である。
As described above, the conventional optical modulator requires a large block of expensive single crystal, becomes extremely expensive, and is difficult to be small and high performance.

【0006】本発明の目的は上記問題点を解決するため
に、例えば光アイソレータのような製品が小型でしかも
安価に構成できる光集束手段を導入し、各々の効果を発
揮する単結晶や酸化物化合物の容積を格段に小さくし、
かつ必要に応じ、収束レンズ(又は拡散レンズ)及び効
果(ポッケルス、カー、ファラデー、電磁界変位)を発
現する単結晶や酸化物化合物の光路の少なくとも一界面
に回折格子を設け、さらに小型簡略化し、低価格で小型
化を実現し、光通信、光情報、光計測器類の情報密度の
向上による省資源化を図ったものである。
In order to solve the above-mentioned problems, the object of the present invention is to introduce a light focusing means, such as a product such as an optical isolator, which is small in size and can be constructed at low cost. Remarkably reduce the volume of the compound,
And, if necessary, a converging lens (or a diffusing lens) and a diffraction grating are provided on at least one interface of the optical paths of a single crystal or an oxide compound that exerts effects (Pockels, Kerr, Faraday, electromagnetic field displacement), and further simplification , Low cost, downsizing, and resource saving by improving the information density of optical communication, optical information, and optical measuring instruments.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は光路内に収束性レンズを設け、かつこのレ
ンズの一端面もしくは効果(ポッケルス、カー、ファラ
デー、電磁界変位)を発現する単結晶や酸化物化合物の
少なくとも一端面に位相板に相当する光学薄膜や、偏光
特性を与える平板偏光子や回折格子を直接構成する事に
より、単結晶の小型化、構成部品の一体化によってさら
に小型化した光変調器を完成させた物である。
In order to solve the above problems, the present invention provides a converging lens in the optical path and exhibits one end surface or effect (Pockels, Kerr, Faraday, electromagnetic field displacement) of this lens. By directly constructing an optical thin film equivalent to a phase plate on at least one end face of a single crystal or an oxide compound, a flat plate polarizer or a diffraction grating that gives polarization characteristics, it is possible to reduce the size of the single crystal and integrate the components. This is a completed miniaturized optical modulator.

【0008】本発明に用いられる集束レンズ(又は拡散
レンズ)は、フレネルレンズ、屈折率分布型レンズ、非
球面レンズ、組合せレンズも含まれるものであり、その
レンズ基材もガラス質系、プラスチック製どちらでも良
く、好ましくは屈折率の高いものが望ましい。レンズに
限らず、構成される部品の光路界面に有機AR層や無機
AR層が設置されている事が効率向上のため望ましい。
本発明の図面では省略してある。
The converging lens (or diffusing lens) used in the present invention includes a Fresnel lens, a gradient index lens, an aspherical lens, and a combination lens, and the lens base material is made of glass or plastic. Either may be used, and one having a high refractive index is preferable. Not only the lens but also an organic AR layer or an inorganic AR layer is preferably provided at the optical path interface of the component to improve efficiency.
It is omitted in the drawings of the present invention.

【0009】[0009]

【作用】上記の様に本発明は光収束により効果を発現す
る単結晶が極めて小さいサイズで良く、電気光学変調に
おいては電極間距離が短くて良く、必要な屈折率を得る
ための電圧ロスを減少する事ができる。又図7に示すよ
うに光収束レンズ7L1の表面に平板偏光子7aを真空
蒸着法により作成した。同様に回折されて出て来た光も
7cdの一部分により、位相板と検光子を構成し、電気
光学変調となした。これにより効果発現のためのタンタ
ル酸リチウム、ニオブ酸バリウム・ナトリウム、ニオブ
酸ストロニチウム・バリウム、チタン酸ランタン等の単
結晶の体積は、1/20〜1/10の大きさで従来と同
等の性能を得ることができた。又、偏光子、位相板、検
光子を複合機能部品とする事で部品点数が減少し、組上
り品は、コンパクトとなり、レーザー光発信部や光ファ
イバーとのジョイントにおいてかさばることもなく、光
アイソレータとして十分機能を満足するものであった。
実施例により詳述するが、磁気光学変調や音響光学変調
も同様である。
As described above, according to the present invention, the size of the single crystal exhibiting the effect of light convergence can be extremely small, the distance between the electrodes can be short in electro-optical modulation, and the voltage loss for obtaining the necessary refractive index can be reduced. Can be reduced. Further, as shown in FIG. 7, a flat plate polarizer 7a was formed on the surface of the light converging lens 7L 1 by a vacuum evaporation method. Similarly, the light that was diffracted and emerged was also electro-optically modulated by configuring a phase plate and an analyzer with a part of 7 cd. As a result, the volume of single crystals such as lithium tantalate, barium sodium niobate, strontium barium niobate, and lanthanum titanate is 1/20 to 1/10, which is equivalent to the conventional performance. I was able to get In addition, the number of parts is reduced by using the polarizer, phase plate, and analyzer as multi-functional parts, and the assembled product becomes compact, and it does not become bulky at the joint with the laser light transmitter or optical fiber, and it can be used as an optical isolator. It was enough to satisfy the function.
Although details will be described with reference to Examples, the same applies to magneto-optical modulation and acousto-optical modulation.

【0010】[0010]

【実施例】【Example】

(実施例1)図1、図2、図3、図7、図8、図9、図
10に本発明の原理図を示す。図1は偏光子と単結晶の
間に収束性レンズを設置し、結晶に収束した光を入れる
事により、単結晶の大きさと、単結晶を通過した光をさ
らに変調する位相板と検光子のサイズを小型化したもの
である。この時の収束レンズの形状は偏光子を通過して
いるため、シリンドリカルレンズが利用でき、偏光され
た光のみ、結晶に導入してやればよいため、球面である
必要はなく、図11に示す11L1を偏光角に合わせセ
ットするだけで良く、部品としての価格は、大量生産が
できるため安価となる。
(Embodiment 1) FIGS. 1, 2, 3, 7, 8, 9 and 10 show the principle of the present invention. Fig. 1 shows the size of the single crystal and the phase plate and analyzer that further modulate the light passing through the single crystal by installing a converging lens between the polarizer and the single crystal, and allowing the converged light to enter the crystal. It is a smaller size. Since the shape of the converging lens at this time passes through the polarizer, a cylindrical lens can be used, and since only polarized light needs to be introduced into the crystal, it does not need to be spherical, and 11L 1 shown in FIG. Need only be set according to the polarization angle, and the price of the parts is low because mass production is possible.

【0011】図2は、入射してくる光の拡散状態に左右
されるが、偏光板をより小さくするため収束することで
小型化が可能となり、2b2の結晶体や2b1の電磁石
や、永久磁石も磁束密度が結晶体の大きさに反比例して
高める事ができるため、小型で効率的な仕様が可能とな
った。図3も超音波の発振効率が結晶を小型化する事に
より可能となり、回折光の取り出し効率を向上させる事
ができる。
In FIG. 2, although it depends on the diffusion state of the incident light, the size of the polarizing plate can be reduced by converging to make the polarizing plate smaller, and thus the crystal body of 2b 2 or the electromagnet of 2b 1 Since the magnetic flux density of the permanent magnet can be increased in inverse proportion to the size of the crystal, a compact and efficient specification is possible. Also in FIG. 3, the oscillation efficiency of ultrasonic waves is made possible by downsizing the crystal, and the extraction efficiency of diffracted light can be improved.

【0012】(実施例2)図7から図10は本発明のさ
らなる小型化を実現したタイプであり、7a・8a・9
a・10aは、λ/4薄膜を2層設け形成した蒸着法に
よる平板偏光子や、機械的や化学的、又はフォトレジス
トを用いたホログラフィック回折格子であり、薄膜によ
り偏光子の役割を果たしている。他方結晶を出る光の方
は7cdで示される様に、位相板と検光子、同様に8c
・8d及び薄膜検光子の9d・8dを示す。8dの基板
は、屈折率分布型収束レンズによりさらに光を収束さ
せ、光ファイバーに導入した。製造方法は偏光子の方法
に準ずる。
(Embodiment 2) FIGS. 7 to 10 show a type in which further miniaturization of the present invention is realized.
a · 10a is a flat plate polarizer formed by vapor deposition method in which two λ / 4 thin films are formed, or a holographic diffraction grating using mechanical, chemical or photoresist, and the thin film serves as a polarizer. There is. On the other hand, the light exiting the crystal has a phase plate and an analyzer, as well as 8c, as indicated by 7cd.
8d and 9d and 8d of the thin film analyzer are shown. The 8d substrate was further converged by a gradient index converging lens to introduce the light into an optical fiber. The manufacturing method is based on the method of the polarizer.

【0013】[0013]

【発明の効果】本発明は光変調器の光路系に光収束手段
を設置し、効果(ポッケルス、カー、ファラデー、電磁
界変位、超音波屈折、ラマンナス回折、ブラック回折)
を発現する。単結晶または酸化物化合物の体積効率を向
上させ、かつ偏光、位相、検光機能を各構成部品に複合
的に付与する事により部品点数の減少を図り、低価格
化、小型化を工業レベルで実現し、光の強度変調、位相
変調、偏光面の回転、スイッチング、偏向や周波数変
移、スペクトル分析の分野で効果を奏する。
According to the present invention, the light converging means is installed in the optical path system of the optical modulator, and the effect (Pockels, Kerr, Faraday, electromagnetic field displacement, ultrasonic refraction, Ramanus diffraction, black diffraction) is obtained.
Express. The volume efficiency of single crystals or oxide compounds is improved, and the number of parts is reduced by adding polarization, phase, and light-analyzing functions to each component in a composite manner. It is realized and effective in the fields of light intensity modulation, phase modulation, polarization plane rotation, switching, deflection, frequency shift, and spectrum analysis.

【図面の簡単な説明】[Brief description of drawings]

図1〜図3は本発明の一実施例を説明する斜視原理図で
あり図7〜図10は本発明の他の実施態様の原理側面図
を示す。図11は、実施例1に述べたシリンドリカルレ
ンズの実使用部分の説明のための斜視図を示す。
1 to 3 are perspective principle views for explaining an embodiment of the present invention, and FIGS. 7 to 10 are principle side views of other embodiments of the present invention. FIG. 11 is a perspective view for explaining an actually used portion of the cylindrical lens described in the first embodiment.

【図1】電気光学変調器を示す斜視図。FIG. 1 is a perspective view showing an electro-optic modulator.

【図2】磁気光学変調器を示す斜視図。FIG. 2 is a perspective view showing a magneto-optical modulator.

【図3】音響光学変調器を示す斜視図。FIG. 3 is a perspective view showing an acousto-optic modulator.

【図4】電気光学変調器を示す斜視図。FIG. 4 is a perspective view showing an electro-optic modulator.

【図5】磁気光学変調器を示す斜視図。FIG. 5 is a perspective view showing a magneto-optical modulator.

【図6】音響光学変調器を示す斜視図。FIG. 6 is a perspective view showing an acousto-optic modulator.

【図7】電気光学変調器を示す側面図。FIG. 7 is a side view showing an electro-optic modulator.

【図8】電気光学変調器を示す側面図。FIG. 8 is a side view showing the electro-optic modulator.

【図9】磁気光学変調器を示す側面図。FIG. 9 is a side view showing the magneto-optical modulator.

【図10】磁気光学変調器を示す側面図。FIG. 10 is a side view showing a magneto-optical modulator.

【図11】シリンドリカル収束レンズを示す斜視図。FIG. 11 is a perspective view showing a cylindrical converging lens.

【符号の説明】[Explanation of symbols]

(1,2,4,5)a 偏光子 (7,8,9,10)a 薄膜偏光子 (1〜10)b 変調効果を発
現する単結晶もしくは酸化化合物ユニット (2,5,9,10)b2 変調効果を発
現する単結晶もしくは酸化化合物 (1,4)c 位相板 (1,2,4,5)d 検光子 (9,10)d 薄膜検光子 (7,8)cd 薄膜化位相板
+薄膜検光子 (3,6)e トランスジュ
ーサー (3,6)e1 超音波吸収体 (1〜3,7〜11)l1 収束レンズ
(1,2,4,5) a Polarizer (7,8,9,10) a Thin-film polarizer (1-10) b Single crystal or oxide compound unit (2,5,9,10) that exhibits a modulation effect ) B 2 Single crystal or oxide compound expressing a modulation effect (1, 4) c Phase plate (1, 2, 4, 5) d Analyzer (9, 10) d Thin film analyzer (7, 8) cd Thin film Phase plate + thin film analyzer (3,6) e Transducer (3,6) e 1 Ultrasonic absorber ( 1 to 3,7 to 11) l 1 Convergent lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光路系内にあり効果発現の前後部に光を
収束する手段が設置されている事を特徴とする光変調
器。
1. An optical modulator, characterized in that means for converging light is provided in the optical path system before and after the effect is exhibited.
JP26493292A 1992-10-02 1992-10-02 Optical modulator Pending JPH06118357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26493292A JPH06118357A (en) 1992-10-02 1992-10-02 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26493292A JPH06118357A (en) 1992-10-02 1992-10-02 Optical modulator

Publications (1)

Publication Number Publication Date
JPH06118357A true JPH06118357A (en) 1994-04-28

Family

ID=17410197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26493292A Pending JPH06118357A (en) 1992-10-02 1992-10-02 Optical modulator

Country Status (1)

Country Link
JP (1) JPH06118357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041839A1 (en) * 1999-01-14 2000-07-20 Hitachi Via Mechanics, Ltd. Laser beam machining and laser beam machine
WO2004029698A1 (en) * 2002-09-27 2004-04-08 Fujitsu Limited Variable polarization rotation device, and variable optical attenuator using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041839A1 (en) * 1999-01-14 2000-07-20 Hitachi Via Mechanics, Ltd. Laser beam machining and laser beam machine
WO2004029698A1 (en) * 2002-09-27 2004-04-08 Fujitsu Limited Variable polarization rotation device, and variable optical attenuator using the same

Similar Documents

Publication Publication Date Title
US5488681A (en) Method for controllable optical power splitting
US5204771A (en) Optical circulator
US5732177A (en) Controllable beam director using poled structure
Tsai Integrated acoustooptic circuits and applications
Tsai Integrated acoustooptic and magnetooptic devices for optical information processing
JPH06194696A (en) Optical switch
US4246549A (en) Magneto-optical phase-modulating devices
JPH06110023A (en) Optical modulating element and its driving method
US5418866A (en) Surface acoustic wave devices for controlling high frequency signals using modified crystalline materials
US4359268A (en) Light quantity control apparatus
US4032217A (en) Optical wave guide for carrying out phase-tuning between two modes of light propagation
US4285569A (en) CCD Driven integrated optical modulator array
JP2879433B2 (en) Semiconductor magneto-optical materials
Tsai Magnetostatic waves-based integrated magnetooptic Bragg cell devices and applications
Kogelnik et al. A ray-optical analysis of thin-film polarization converters
JPH06118357A (en) Optical modulator
US4239337A (en) Magneto-optic modulator using dielectric mirrors
US5526169A (en) Electro-optical modulator
Anderson Optical applications of ferroelectrics
CN114815328A (en) Light intensity modulation method based on lithium niobate crystal electro-optic effect and optical switch
US3492061A (en) Light beam deflector in which the light is diffracted by magnetic waves
JPH0561002A (en) Waveguide type optical isolator and optical circulator
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
RU2120649C1 (en) Method of commutation and modulation of unidirectional distributively-coupled waves ( versions ) and device for its realization
Schmitt Magneto-optic devices