JPH08171075A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPH08171075A
JPH08171075A JP6334408A JP33440894A JPH08171075A JP H08171075 A JPH08171075 A JP H08171075A JP 6334408 A JP6334408 A JP 6334408A JP 33440894 A JP33440894 A JP 33440894A JP H08171075 A JPH08171075 A JP H08171075A
Authority
JP
Japan
Prior art keywords
optical axis
analyzer
lens
optical
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6334408A
Other languages
Japanese (ja)
Inventor
Yoichi Suzuki
洋一 鈴木
Tomokazu Imura
智和 井村
Tsugio Tokumasu
次雄 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP6334408A priority Critical patent/JPH08171075A/en
Publication of JPH08171075A publication Critical patent/JPH08171075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To suppress the polarization dependency of polarized wave dispersion and an insertion loss and to improve the insertion loss and the cut-off characteristic. CONSTITUTION: An input fiber 10, a first lens 12, a polarizer 14, a 45 deg. Faraday rotator 16, an analyzer 18, a second lens 20 and an output fiber 22 are provided on the optical axis and an electromagnet 24 bi-directionally magnetizing the Faraday rotator 16 is provided. The polarizer 14 and the analyzer 18 are composed of the same wedge type birefringence plates, the tapered directions are mutually different by 180 deg., the opposed surfaces are parallel, the respective optical axes are parallel and made to be 45 deg. viewing from the optical axis. A compensation plate 30 composed of birefringence parallel plates is inserted on the optical axis between the first and the second lenses. The optical axis of the compensation plate 30 and the optical axis of the adjacent polarizer or the analyzer make 90 deg. viewing from the optical axis, the compensator is inclined to the optical axis so as to make the shifting amount of beams match each other and cancel the delay and the optical axis of the compensation plate 30 is designed so as to be oblique to the plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、楔形複屈折板とファラ
デー回転子とを組み合わせ、電磁石でファラデー回転子
に印加する磁界の方向を反転させることにより光の透過
・遮断を制御する光スイッチに関するものである。更に
詳しく述べると本発明は、複屈折平行平板からなる補償
板を挿入することにより、楔形複屈折板で生じる常光と
異常光とのビームシフト量を一致させるとともに、伝播
速度差による遅延を相殺した偏光無依存の光スイッチに
関するものである。この光スイッチは、例えば遠距離、
高速、大容量の光通信などの分野で有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switch in which a wedge-shaped birefringent plate and a Faraday rotator are combined, and the transmission and blocking of light is controlled by reversing the direction of a magnetic field applied to the Faraday rotator by an electromagnet. It is a thing. More specifically, according to the present invention, by inserting a compensating plate made of a birefringent parallel flat plate, the beam shift amounts of the ordinary light and the extraordinary light generated in the wedge-shaped birefringent plate are made equal to each other, and the delay due to the difference in propagation velocity is offset. The present invention relates to a polarization-independent optical switch. This optical switch is, for example, a long distance,
It is useful in fields such as high-speed, large-capacity optical communication.

【0002】[0002]

【従来の技術】光通信システムや光学測定装置などにお
いては、光の進行方向を空間的に切り換えるための光ス
イッチが必要である。偏光無依存性の1×1型光スイッ
チとしては、例えば特公平4−2934号に開示されて
いるものがある。
2. Description of the Related Art In an optical communication system and an optical measuring device, an optical switch for spatially switching the traveling direction of light is required. An example of a polarization-independent 1 × 1 type optical switch is disclosed in Japanese Examined Patent Publication No. 4-2934.

【0003】この種の光スイッチは、例えば図6に示す
ような構成である。即ち、入力ファイバ10と、該入力
ファイバ10から出射された光を平行ビームとする第1
のレンズ12と、楔形複屈折板からなる偏光子14と、
90度偏光回転をおこすファラデー回転子15と、楔形
複屈折板からなる検光子18と、平行ビームを出力ファ
イバ22に集光させる第2のレンズ20と、出力ファイ
バ22とがこの順序で光軸上に設置されている。またフ
ァラデー回転子15の近傍には、それを所定の向きに磁
化させる電磁石23が配置されている。前記偏光子14
と検光子18とは、同一の複屈折物質からなり、そのテ
ーパ角が同一で且つテーパ方向が180度異なり、対向
する面が互いに平行で、各光学軸は平行で且つ光軸から
見て45度をなすような関係にある。
An optical switch of this type has a structure as shown in FIG. 6, for example. That is, the input fiber 10 and the first beam for collimating the light emitted from the input fiber 10
Lens 12 and a polarizer 14 composed of a wedge-shaped birefringent plate,
The Faraday rotator 15 that performs 90-degree polarization rotation, the analyzer 18 that is a wedge-shaped birefringent plate, the second lens 20 that focuses the parallel beam on the output fiber 22, and the output fiber 22 are arranged in this order in the order of the optical axes. It is installed on top. An electromagnet 23 that magnetizes the Faraday rotator 15 in a predetermined direction is arranged near the Faraday rotator 15. The polarizer 14
And the analyzer 18 are made of the same birefringent material, have the same taper angle and different taper directions by 180 degrees, the surfaces facing each other are parallel to each other, and the respective optical axes are parallel and viewed from the optical axis. There is a relationship that makes sense.

【0004】偏光子14により常光oと異常光eが分離
するが、無バイアス状態では(図6のA参照)、検光子
18でそのままの偏光状態を保つため、常光oと異常光
eは平行であり、第2のレンズ20によって出力ファイ
バ22に集光する。これがオン状態である。電磁石に電
流を供給して磁界Hを印加した状態では(図6のB参
照)、ファラデー回転子15により偏光面が90度回転
するので、検光子18では常光oと異常光eが逆転し、
常光oと異常光eは更に広がって進むため、第2のレン
ズ20があっても出力ファイバ22に集光させることが
できない。これがオフ状態である。このようにして、電
磁石23によって光の透過・遮断をスイッチング制御で
きる。
The ordinary light o and the extraordinary light e are separated by the polarizer 14, but in the non-biased state (see FIG. 6A), the ordinary light o and the extraordinary light e are parallel because the analyzer 18 maintains the same polarization state. And is focused on the output fiber 22 by the second lens 20. This is the ON state. In a state in which a current is supplied to the electromagnet and a magnetic field H is applied (see B in FIG. 6), the Faraday rotator 15 rotates the polarization plane by 90 degrees, so that the ordinary light o and the extraordinary light e are reversed in the analyzer 18.
Since the ordinary light o and the extraordinary light e spread further, they cannot be condensed on the output fiber 22 even with the second lens 20. This is the off state. In this way, the electromagnet 23 can perform switching control of light transmission / blocking.

【0005】[0005]

【発明が解決しようとする課題】ところで複屈折板は、
その光学軸に対して平行な振動方向をもつ偏光と垂直な
振動方向をもつ偏光との間で屈折率差があり、常光oと
異常光eとで屈折角が異なるために、順方向から光を入
力すると、偏波分散とビームシフトが生じる。負の一軸
性結晶の場合、異常光の屈折率が常光の屈折率に比べて
大きいため、図7に示すように、入力光に対してシフト
量が大きく、伝播速度も遅い。そのため、2本の光線の
ビームシフト距離sと遅延δが大きく、レンズ系でファ
イバコリメート結合を行うときに、挿入損失に偏光依存
性が起こる。
By the way, the birefringent plate is
Since there is a difference in refractive index between the polarized light having a vibration direction parallel to the optical axis and the polarized light having a vibration direction perpendicular to the optical axis, the ordinary light o and the extraordinary light e have different refraction angles. Inputting causes polarization dispersion and beam shift. In the case of a negative uniaxial crystal, since the refractive index of extraordinary light is larger than that of ordinary light, the shift amount is large with respect to the input light and the propagation speed is slow, as shown in FIG. Therefore, the beam shift distance s and the delay δ of the two light rays are large, and the polarization dependency occurs in the insertion loss when performing the fiber collimate coupling in the lens system.

【0006】光アイソレータのようにファラデー回転子
に永久磁石で磁界を印加できる場合には、永久磁石は小
形にできるので、偏光子と検光子との間隔を狭くでき、
常光と異常光とのビームシフト量は小さい。このように
シフト量の小さな2光線は、波面収差の小さなレンズを
用いれば損失なくファイバに集光できる。しかし、光ス
イッチの場合は、スイッチングさせるために図8に示す
ように電磁石24を使用する必要があり、起磁力を効率
よく利用するために、ギャップgを小さくし、ファラデ
ー回転子15のみを挿入するようにしている。そのた
め、偏光子14と検光子18はヨーク25の外に配置さ
れることになり、偏光子14と検光子18の間隔Lはか
なり長くなる(具体的には、L=10mm程度)。なお符
号27はコイルを示す。このため、常光と異常光とのビ
ームシフト距離sは大きくなり、汎用レンズでは収差等
の影響で損失なしにファイバに集光することができず、
常光と異常光の集光比率が偏光依存性として現れる。
When a magnetic field can be applied to the Faraday rotator by a permanent magnet like an optical isolator, the permanent magnet can be made small, so that the distance between the polarizer and the analyzer can be narrowed,
The amount of beam shift between ordinary light and extraordinary light is small. In this way, the two light beams having a small shift amount can be condensed on the fiber without loss by using a lens having a small wavefront aberration. However, in the case of the optical switch, it is necessary to use the electromagnet 24 for switching as shown in FIG. 8, and in order to efficiently utilize the magnetomotive force, the gap g is reduced and only the Faraday rotator 15 is inserted. I am trying to do it. Therefore, the polarizer 14 and the analyzer 18 are arranged outside the yoke 25, and the distance L between the polarizer 14 and the analyzer 18 becomes considerably long (specifically, L = about 10 mm). Reference numeral 27 represents a coil. Therefore, the beam shift distance s between the ordinary ray and the extraordinary ray becomes large, and a general-purpose lens cannot focus light on the fiber without loss due to the influence of aberration or the like.
The condensing ratio of ordinary light and extraordinary light appears as polarization dependence.

【0007】またファラデー回転子は、磁界が印加され
ていない状態(上記の例では無バイアスのオン状態)で
は消光比が劣化し、挿入損失あるいは遮断特性が劣化す
る問題もある。
Further, the Faraday rotator has a problem that the extinction ratio is deteriorated in a state where a magnetic field is not applied (in the above-described example, a non-biased ON state), and the insertion loss or the cutoff characteristic is deteriorated.

【0008】本発明の目的は、偏波分散と挿入損失の偏
波依存性を抑制し、挿入損失及び遮断特性を改善した光
スイッチを提供することである。
An object of the present invention is to provide an optical switch that suppresses polarization dependence of polarization dispersion and insertion loss and improves insertion loss and cutoff characteristics.

【0009】[0009]

【課題を解決するための手段】本発明は、入力ファイバ
と、該入力ファイバから出射された光を平行ビームとす
る第1のレンズと、楔形複屈折板からなる偏光子と、4
5度偏光回転をおこすファラデー回転子と、楔形複屈折
板からなる検光子と、平行ビームを出力ファイバに集光
させる第2のレンズと、出力ファイバとが、この順序で
光軸上に設置され、前記ファラデー回転子の近傍に、該
ファラデー回転子を双方向に磁化させる電磁石が配置さ
れていて、前記偏光子と検光子とが同一の複屈折物質か
らなり、そのテーパ角が同一で且つテーパ方向が180
度異なり、対向する面が互いに平行で、各光学軸は平行
で且つ光軸から見て45度をなして配置されている光ス
イッチである。そして本発明の特徴は、前記第1のレン
ズと第2のレンズとの間の上記の光学部品間の光軸上に
複屈折平行平板からなる補償板が挿入され、該補償板
は、その光学軸と補償板に隣接する偏光子あるいは検光
子の光学軸とは光軸から見て90度をなし、且つ楔形複
屈折板通過後に生じる常光と異常光とのビームシフト量
を一致させると共に伝播速度の差による遅延を相殺する
ように光軸に対して傾けられ、補償板の光学軸がその平
面に対して斜めに設計されている点である。
According to the present invention, an input fiber, a first lens for collimating light emitted from the input fiber into a parallel beam, a polarizer comprising a wedge-shaped birefringent plate, and 4 are provided.
A Faraday rotator that rotates polarization by 5 degrees, an analyzer composed of a wedge-shaped birefringent plate, a second lens that focuses a parallel beam on an output fiber, and an output fiber are installed in this order on the optical axis. An electromagnet for bidirectionally magnetizing the Faraday rotator is disposed in the vicinity of the Faraday rotator, and the polarizer and the analyzer are made of the same birefringent material, and have the same taper angle and taper. Direction is 180
The optical switches are arranged so that the surfaces facing each other are parallel to each other and the optical axes thereof are parallel to each other and are arranged at 45 degrees as viewed from the optical axis. A feature of the present invention is that a compensating plate made of a birefringent parallel flat plate is inserted on the optical axis between the optical components between the first lens and the second lens, and The axis and the optical axis of the polarizer or analyzer adjacent to the compensating plate form 90 degrees from the optical axis, and the beam shift amounts of the ordinary ray and the extraordinary ray generated after passing through the wedge-shaped birefringent plate are made equal and the propagation speed is It is tilted with respect to the optical axis so as to cancel out the delay due to the difference, and the optical axis of the compensator is designed to be oblique with respect to the plane.

【0010】[0010]

【作用】光スイッチとしての動作は、原理的には補償板
無しで実現でき、従来のものと同様である。電磁石に順
バイアスを印加したオン状態では、常光と異常光とは検
光子を出る時に平行となり、レンズによって出力ファイ
バに向かって結合する方向に出射するが、電磁石に逆バ
イアスを印加したオフ状態では、常光と異常光とは検光
子を出る時に拡がるようになり、出力ファイバには結合
しない。本発明で挿入した補償板は、その光学軸の向き
と傾きを調整することで、順バイアス時に常光と異常光
の光路を変えて1本の光線に変換させるためのシフト量
補償板として機能し、同時に分散補正の機能も果たす。
これによって偏波分散と挿入損失の偏波依存性が改善さ
れる。
The operation as an optical switch can be realized in principle without a compensating plate and is the same as the conventional one. In the ON state where a forward bias is applied to the electromagnet, the ordinary light and the extraordinary light are parallel when exiting the analyzer and are emitted in the direction of coupling toward the output fiber by the lens, but in the OFF state where a reverse bias is applied to the electromagnet. The ordinary light and the extraordinary light spread when they leave the analyzer and do not couple to the output fiber. The compensator inserted in the present invention functions as a shift compensator for changing the optical paths of the ordinary ray and the extraordinary ray at the time of forward bias by converting the direction and the inclination of the optical axis to convert into a single ray. At the same time, the function of dispersion correction is also fulfilled.
This improves the polarization dispersion of polarization dispersion and insertion loss.

【0011】[0011]

【実施例】図1は本発明に係る光スイッチの一実施例を
示す全体構成図である。この光スイッチは、入力ファイ
バ10と、該入力ファイバ10から出射された光を平行
ビームとする第1のレンズ12と、楔形複屈折板からな
る偏光子14と、45度偏光回転をおこすファラデー回
転子16と、楔形複屈折板からなる検光子18と、平行
ビームを出力ファイバ22に集光させる第2のレンズ2
0と、出力ファイバ22とがこの順序で光軸上に設置さ
れ、前記ファラデー回転子16の近傍に、該ファラデー
回転子16を双方向に磁化させる電磁石24が配置され
ている。前記偏光子14と検光子18とは同一の複屈折
物質からなり、そのテーパ角が同一で且つテーパ方向が
180度異なり、対向する面が互いに平行で、各光学軸
は平行で且つ光軸から見て45度をなして配置されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram showing an embodiment of an optical switch according to the present invention. This optical switch includes an input fiber 10, a first lens 12 that makes the light emitted from the input fiber 10 a parallel beam, a polarizer 14 that is a wedge-shaped birefringent plate, and a Faraday rotation that rotates 45 degrees of polarization. Element 16, an analyzer 18 composed of a wedge-shaped birefringent plate, and a second lens 2 for converging a parallel beam on an output fiber 22.
0 and the output fiber 22 are installed on the optical axis in this order, and an electromagnet 24 for bidirectionally magnetizing the Faraday rotator 16 is arranged near the Faraday rotator 16. The polarizer 14 and the analyzer 18 are made of the same birefringent material, have the same taper angle and different taper directions by 180 degrees, the facing surfaces are parallel to each other, and the respective optical axes are parallel to each other. It is arranged at 45 degrees when viewed.

【0012】ここで本発明の特徴は、前記第1のレンズ
12と第2のレンズ20との間の上記の光学部品間の光
軸上に複屈折平行平板からなる補償板30が挿入されて
いる点である。この補償板30は、その光学軸と補償板
に隣接する偏光子あるいは検光子の光学軸とは光軸から
見て90度をなし、且つ検光子通過後に生じる常光と異
常光とのビームシフト量を一致させると共に伝播速度差
による遅延を相殺するように、光軸に対して傾けられ、
補償板の光学軸がその平面に対して斜めに設計されてい
る。この実施例では、補償板30は、検光子18の後
段、即ち検光子18と第2のレンズ20との間に挿入さ
れている。
Here, a feature of the present invention is that a compensating plate 30 made of a birefringent parallel flat plate is inserted on the optical axis between the above-mentioned optical parts between the first lens 12 and the second lens 20. That is the point. This compensator 30 has its optical axis and the optical axis of the polarizer or analyzer adjacent to the compensator 90 degrees from the optical axis, and the beam shift amount between the ordinary ray and the extraordinary ray generated after passing through the analyzer. Are tilted with respect to the optical axis so that
The optical axis of the compensator is designed oblique to its plane. In this embodiment, the compensating plate 30 is inserted after the analyzer 18, that is, between the analyzer 18 and the second lens 20.

【0013】電磁石24は、ほぼC型平板状のヨーク2
6と、該ヨーク26に巻線したコイル28とからなり、
ヨーク26のギャップgに、ギャップ長の方向に対して
垂直にファラデー回転子16を挿入した構成である。フ
ァラデー回転子16は、その一部がギャップから外側へ
はみ出す大きさとなっており、そのはみ出し部分を光線
が通過するようになっている。起磁力を効率よく利用す
るために、ギャップgを小さくしてファラデー回転子1
6のみを挿入し、偏光子14及び検光子18はヨーク2
6の外に配置する。ファラデー回転子16としては、L
PE法によるビスマス置換鉄ガーネット単結晶膜が好ま
しい。その理由は、ビスマス置換鉄ガーネット単結晶
は、ファラデー回転係数が大きく、そのため比較的薄い
膜構造にできるし、またLPE法は生産性が高い利点を
有するからである。
The electromagnet 24 is a substantially C-shaped flat yoke 2.
6 and a coil 28 wound around the yoke 26,
The Faraday rotator 16 is inserted into the gap g of the yoke 26 perpendicularly to the gap length direction. The Faraday rotator 16 has a size such that a part of the Faraday rotator 16 protrudes outward from the gap, and light rays pass through the protruding portion. In order to efficiently use the magnetomotive force, the gap g is reduced to reduce the Faraday rotator 1
6 is inserted, and the polarizer 14 and the analyzer 18 are the yoke 2
Place outside 6. As the Faraday rotator 16, L
A bismuth-substituted iron garnet single crystal film by the PE method is preferable. The reason is that the bismuth-substituted iron garnet single crystal has a large Faraday rotation coefficient, so that a relatively thin film structure can be formed, and the LPE method has an advantage of high productivity.

【0014】動作状態の概略を図2に示す。電磁石24
に順バイアスの磁界HONを印加したオン状態では、図2
のAに示すように、異常光eは常光oより屈折率が大き
く、また電磁石を用いる関係で偏光子14と検光子18
との間隔が広いため、検光子18を通過した時点で異常
光eと常光oとのビームシフト距離sは大きい。また異
常光eと常光oとは伝播速度に差があるため常光oに対
して異常光eは遅延する(遅延量δ)。この点は従来同
様である。本発明では、補償板30が挿入されており、
この補償板30によって異常光eは常光oに、また常光
oは異常光eに変換され、異常光eの屈折率が大きいた
めにビームシフト量が大きく、伝播速度が遅いため、補
償板30から出射する時に、両方の光線でビームシフト
量を一致させ、遅延を零にすることができる。そして補
償板30からは1本の光線となって出射する。逆に言う
と、このようになるように、補償板30を光軸上で配置
する際の傾き、光学軸の角度などが決定されているので
ある。
An outline of the operating state is shown in FIG. Electromagnet 24
In the ON state in which a forward bias magnetic field H ON is applied to FIG.
As indicated by A, the extraordinary ray e has a higher refractive index than the ordinary ray o, and because of the use of the electromagnet, the polarizer 14 and the analyzer 18
Since the distance between and is large, the beam shift distance s between the extraordinary light e and the ordinary light o is large when the light passes through the analyzer 18. Further, since there is a difference in propagation speed between the extraordinary light e and the ordinary light o, the extraordinary light e is delayed with respect to the ordinary light o (delay amount δ). This point is the same as the conventional one. In the present invention, the compensation plate 30 is inserted,
The compensator 30 converts the extraordinary light e into the ordinary light o and the ordinary light o into the extraordinary light e. The extraordinary light e has a large refractive index so that the beam shift amount is large and the propagation speed is slow. At the time of emission, the beam shift amounts of both light beams can be made equal to each other, and the delay can be made zero. Then, a single light beam is emitted from the compensating plate 30. Conversely speaking, the inclination when arranging the compensating plate 30 on the optical axis, the angle of the optical axis, etc. are determined so as to be as described above.

【0015】電磁石24に逆バイアスの磁界を印加した
オフ状態では、図2のBに示すように、偏光子14での
常光oは検光子18では異常光e、補償板30では常光
oに変換され、偏光子14での異常光eは検光子18で
は常光o、補償板30では異常光eに変換され、補償板
30を通過した後、常光oと異常光eの2本の光線は平
行とならず、第2のレンズで出力ファイバに集光させる
ことはできない。
In the OFF state in which a reverse bias magnetic field is applied to the electromagnet 24, the ordinary light o in the polarizer 14 is converted into the extraordinary light e in the analyzer 18 and the ordinary light o in the compensator 30, as shown in FIG. 2B. Then, the extraordinary ray e at the polarizer 14 is converted into the ordinary ray o at the analyzer 18 and the extraordinary ray e at the compensator 30, and after passing through the compensator 30, the two rays of the ordinary ray o and the extraordinary ray e are parallel. Therefore, the second lens cannot focus light on the output fiber.

【0016】本発明に係る補償板30は、上記のように
光軸に対して傾けて配置し光路を変化させて、常光oと
異常光eとのビームシフト量を一致させる(ビームシフ
ト距離を零にする)と共に、伝播速度差に起因する遅延
も零になるように調整している。なお、光アイソレータ
でも補償板を設ける例はあるが、その場合は、単に伝播
速度差に起因する遅延を小さくするように、即ち偏波分
散を補正するためだけに利用されているにすぎない。
The compensating plate 30 according to the present invention is arranged so as to be tilted with respect to the optical axis as described above, and the optical path is changed so that the beam shift amounts of the ordinary light o and the extraordinary light e are equalized (beam shift distance is It is adjusted so that the delay caused by the difference in propagation velocity becomes zero. Although there is an example in which a compensator is also provided in an optical isolator, in that case, it is merely used to reduce the delay due to the difference in propagation velocity, that is, to correct the polarization dispersion.

【0017】次に、実際の設計例について述べる。図3
及び図4に示すように各光学部品を配置する。各光学部
品の向き及び光学軸の方向は、それぞれ図示の通りであ
る。偏光子14と検光子18に用いる楔形複屈折板はル
チル単結晶からなり、中心厚0.48mm、4度テーパ、
屈折率no =2.543,ne =2.709である。ま
た偏光子14と検光子18の間隔Lは10mmである。フ
ァラデー回転子16はビスマス置換鉄ガーネット単結晶
であり、厚さ0.536mm、屈折率2.38である。電
磁石24は、半硬質磁性材料からなるC型状のヨーク2
6にコイル28を巻装したものであり、ギャップ中央に
ファラデー回転子16を挿入してある。複屈折平行平板
からなる補償板30もルチル単結晶であり、検光子18
の後段に光軸に対して14.8度傾けて配置し、その光
学軸は平面内から44.4度傾いている。この補償板3
0の厚みは1.769mmである。
Next, an actual design example will be described. FIG.
And each optical component is arranged as shown in FIG. The orientation of each optical component and the direction of the optical axis are as illustrated. The wedge-shaped birefringent plate used for the polarizer 14 and the analyzer 18 is made of rutile single crystal and has a center thickness of 0.48 mm and a taper of 4 degrees.
The refractive indexes are n o = 2.543 and n e = 2.709. The distance L between the polarizer 14 and the analyzer 18 is 10 mm. The Faraday rotator 16 is a bismuth-substituted iron garnet single crystal, has a thickness of 0.536 mm and a refractive index of 2.38. The electromagnet 24 is a C-shaped yoke 2 made of a semi-hard magnetic material.
A coil 28 is wound around 6, and a Faraday rotator 16 is inserted in the center of the gap. The compensator 30 made of a birefringent parallel plate is also a rutile single crystal, and the analyzer 18
The optical axis is tilted by 44.8 degrees from the in-plane. This compensator 3
The thickness of 0 is 1.769 mm.

【0018】この光スイッチについて光線追跡を行った
結果を図5に示す。順バイアス磁界(オン状態)では、
図5のAに示すように、検光子18を通過した後、常光
oと異常光eとのビームシフト距離は179μmであ
り、異常光eが0.71ps遅延している。しかし補償
板30を通過後は、ビームシフト距離及び遅延は共に零
となる。逆バイアス磁界(オフ状態)では、検光子18
を通過した時点で、常光oと異常光eとの開き角は2.
05度であり、補償板30を通過した後も、そのまま
2.05度で開くのでレンズがあっても出力ファイバに
は集光しない。
The result of ray tracing of this optical switch is shown in FIG. In the forward bias magnetic field (on state),
As shown in A of FIG. 5, after passing through the analyzer 18, the beam shift distance between the ordinary light o and the extraordinary light e is 179 μm, and the extraordinary light e is delayed by 0.71 ps. However, after passing through the compensation plate 30, both the beam shift distance and the delay become zero. In the reverse bias magnetic field (off state), the analyzer 18
After passing through, the opening angle between the ordinary light o and the extraordinary light e is 2.
It is 05 degrees, and even after passing through the compensation plate 30, it opens at 2.05 degrees as it is, so that even if there is a lens, it does not focus on the output fiber.

【0019】上記の実施例では、補償板を検光子の後段
に配置しているが、本発明はその構成に限らず、第1の
レンズと第2のレンズとの間であれば、どの光学部品間
に挿入してもよい。
In the above embodiment, the compensating plate is arranged in the latter stage of the analyzer. However, the present invention is not limited to this structure, and any optical element can be used as long as it is between the first lens and the second lens. It may be inserted between parts.

【0020】[0020]

【発明の効果】本発明は上記のように、第1のレンズと
第2のレンズとの間の光学部品間に、複屈折平行平板か
らなる補償板を光軸に対して所定の角度傾けて配置する
と共にその光学軸の向きと傾きを適切な値となるように
設定したことにより、オン状態の時に、常光と異常光の
光路を変えて1本の光線に変換させ、同時に遅延を相殺
することができる。そのため偏波分散と挿入損失の偏波
依存性を抑制できる。またファラデー回転子は無磁化の
状態では消光比が劣化し、挿入損失あるいは遮断特性が
劣化するが、本発明ではオン状態とオフ状態ともに磁界
を印加しているので、挿入損失及び遮断特性が向上す
る。
As described above, according to the present invention, a compensating plate made of a birefringent parallel flat plate is tilted at a predetermined angle with respect to the optical axis between the optical components between the first lens and the second lens. By arranging them and setting the direction and tilt of their optical axes to appropriate values, the optical paths of ordinary and extraordinary rays are changed to be converted into a single ray when in the ON state, and at the same time the delay is offset. be able to. Therefore, the polarization dependence of polarization dispersion and insertion loss can be suppressed. Further, the extinction ratio of the Faraday rotator is deteriorated in the non-magnetized state, and the insertion loss or the cutoff characteristic is deteriorated. However, in the present invention, since the magnetic field is applied in both the on state and the off state, the insertion loss and the cutoff characteristic are improved. To do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光スイッチの一実施例を示す説明
図。
FIG. 1 is an explanatory diagram showing an embodiment of an optical switch according to the present invention.

【図2】その動作説明図。FIG. 2 is an explanatory diagram of its operation.

【図3】試作した光スイッチの主要光学部品の配置を示
す斜視図。
FIG. 3 is a perspective view showing an arrangement of main optical components of a prototype optical switch.

【図4】試作した光スイッチの主要光学部品の配置を示
す平面図。
FIG. 4 is a plan view showing an arrangement of main optical components of a prototype optical switch.

【図5】その光線追跡線図。FIG. 5 is a ray tracing diagram thereof.

【図6】従来技術の一例を示す説明図。FIG. 6 is an explanatory diagram showing an example of a conventional technique.

【図7】主要光学部品でのビームシフト距離と遅延の説
明図。
FIG. 7 is an explanatory diagram of a beam shift distance and a delay in main optical components.

【図8】電磁石と主要光学部品との配置関係の説明図。FIG. 8 is an explanatory diagram of a positional relationship between an electromagnet and main optical components.

【符号の説明】[Explanation of symbols]

10 入力ファイバ 12 第1のレンズ 14 偏光子 15,16 ファラデー回転子 18 検光子 20 第2のレンズ 22 出力ファイバ 23,24 電磁石 25,26 ヨーク 27,28 コイル 30 補償板 10 Input Fiber 12 First Lens 14 Polarizer 15,16 Faraday Rotor 18 Analyzer 20 Second Lens 22 Output Fiber 23,24 Electromagnet 25,26 Yoke 27,28 Coil 30 Compensator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入力ファイバと、該入力ファイバから出
射された光を平行ビームとする第1のレンズと、楔形複
屈折板からなる偏光子と、45度偏光回転をおこすファ
ラデー回転子と、楔形複屈折板からなる検光子と、平行
ビームを出力ファイバに集光させる第2のレンズと、出
力ファイバとが、この順序で光軸上に設置され、前記フ
ァラデー回転子の近傍に、該ファラデー回転子を双方向
に磁化させる電磁石が配置されていて、 前記偏光子と検光子とが同一の複屈折物質からなり、そ
のテーパ角が同一で且つテーパ方向が180度異なり、
対向する面が互いに平行で、各光学軸は平行で且つ光軸
から見て45度をなして配置されている光スイッチであ
って、 前記第1のレンズと第2のレンズとの間の上記の光学部
品間の光軸上に複屈折平行平板からなる補償板が挿入さ
れ、該補償板は、その光学軸と補償板に隣接する偏光子
あるいは検光子の光学軸とは光軸から見て90度をな
し、且つ楔形複屈折板通過後に生じる常光と異常光との
ビームシフト量を一致させると共に伝播速度差による遅
延を相殺するように光軸に対して傾けられ、補償板の光
学軸がその平面に対して斜めに設計されていることを特
徴とする光スイッチ。
1. An input fiber, a first lens for collimating light emitted from the input fiber into a parallel beam, a polarizer composed of a wedge-shaped birefringent plate, a Faraday rotator for performing 45-degree polarization rotation, and a wedge-shaped element. An analyzer composed of a birefringent plate, a second lens for focusing a parallel beam on an output fiber, and an output fiber are installed on the optical axis in this order, and the Faraday rotation is provided in the vicinity of the Faraday rotator. An electromagnet that magnetizes the child bidirectionally is arranged, the polarizer and the analyzer are made of the same birefringent material, and the taper angles are the same and the taper directions are different by 180 degrees,
An optical switch in which opposing surfaces are parallel to each other, each optical axis is parallel to each other, and is arranged at an angle of 45 degrees with respect to the optical axis, the optical switch being disposed between the first lens and the second lens. A compensating plate made of a birefringent parallel flat plate is inserted on the optical axis between the optical components of the compensating plate, and the compensating plate sees the optical axis and the optical axis of the polarizer or the analyzer adjacent to the compensating plate from the optical axis. The optical axis of the compensator is 90 ° and is tilted with respect to the optical axis so as to match the beam shift amounts of the ordinary ray and the extraordinary ray generated after passing through the wedge-shaped birefringent plate and cancel the delay due to the difference in propagation velocity. An optical switch characterized by being designed obliquely to the plane.
JP6334408A 1994-12-19 1994-12-19 Optical switch Pending JPH08171075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334408A JPH08171075A (en) 1994-12-19 1994-12-19 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334408A JPH08171075A (en) 1994-12-19 1994-12-19 Optical switch

Publications (1)

Publication Number Publication Date
JPH08171075A true JPH08171075A (en) 1996-07-02

Family

ID=18277043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334408A Pending JPH08171075A (en) 1994-12-19 1994-12-19 Optical switch

Country Status (1)

Country Link
JP (1) JPH08171075A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332066A (en) * 1997-12-08 1999-06-09 Samsung Electronics Co Ltd Optical modulator and transmitter using isolator
WO2004092790A1 (en) * 2003-04-17 2004-10-28 Raymond Hesline Optical isolator, attenuator, circulator and switch
US6839170B2 (en) * 2002-10-15 2005-01-04 Oplink Communications, Inc. Optical isolator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2332066A (en) * 1997-12-08 1999-06-09 Samsung Electronics Co Ltd Optical modulator and transmitter using isolator
US6839170B2 (en) * 2002-10-15 2005-01-04 Oplink Communications, Inc. Optical isolator
WO2004092790A1 (en) * 2003-04-17 2004-10-28 Raymond Hesline Optical isolator, attenuator, circulator and switch

Similar Documents

Publication Publication Date Title
JP2710451B2 (en) Polarization independent optical isolator
EP0054411B1 (en) Optical arrangement for optically coupling optical fibres
US5631771A (en) Optical isolator with polarization dispersion and differential transverse deflection correction
JP2757093B2 (en) Non-polarization dispersion type optical isolator
EP0793130B1 (en) Polarization independent optical nonreciprocal circuit
JPH05196890A (en) Optical isolator
US6839170B2 (en) Optical isolator
US6278547B1 (en) Polarization insensitive faraday attenuator
US5408491A (en) Optical isolator
JPH07191280A (en) Optical isolator
JPH08171075A (en) Optical switch
JP2542532B2 (en) Method for manufacturing polarization-independent optical isolator
JPS5828561B2 (en) optical isolator
JP2005099737A (en) Magnetooptic optical component
US20030053209A1 (en) Dual stage optical isolator with reduced polarization mode dispersion and beam offset
JPH07191278A (en) Optical isolator
JPH0668584B2 (en) Optical isolator
JPH07191279A (en) Optical isolator
JPH0634915A (en) Optical isolator, light amplifier provided with the optical isolator, and duplex optical transmission system provided with the optical amplifier
JPH1068910A (en) Optical nonreciprocal circuit
JPH04264515A (en) Optical isolator
JPH0634916A (en) Optical isolator
JPH08240791A (en) Optical components and optical isolator and optical circulator using same
JP2507601Y2 (en) Optical isolator
JPH0720407A (en) Optical isolator