WO2004029328A1 - Method of electroless plating - Google Patents

Method of electroless plating Download PDF

Info

Publication number
WO2004029328A1
WO2004029328A1 PCT/JP2003/006499 JP0306499W WO2004029328A1 WO 2004029328 A1 WO2004029328 A1 WO 2004029328A1 JP 0306499 W JP0306499 W JP 0306499W WO 2004029328 A1 WO2004029328 A1 WO 2004029328A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroless plating
catalytically active
reducing agent
wafer
active material
Prior art date
Application number
PCT/JP2003/006499
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Marumo
Hiroshi Sato
Miho Jomen
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2003241757A priority Critical patent/AU2003241757A1/en
Publication of WO2004029328A1 publication Critical patent/WO2004029328A1/en
Priority to US11/082,807 priority patent/US20050164499A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • the present invention relates to an electroless plating method for forming an electroless plating film.
  • Wiring is formed on the semiconductor substrate when producing a semiconductor device
  • an electroless plating method as a plating method which does not require a shield layer.
  • the electroless plating forms a plating film by chemical reduction, and the plating film formed can act as an autocatalyst to continuously form a plating film made of a wiring material.
  • electroless plating it is not necessary to form a seed layer in advance, and there is a possibility that the plating film may become nonuniform due to nonuniformity of the seed layer (particularly, step coverage in the concave and convex portions). Few.
  • a barrier layer may be formed on the substrate and a plating film may be formed thereon.
  • metal nitrides such as T i N, T a N, etc. are used, and they are inert to electroless plating. Therefore, it is difficult to perform electroless plating on the barrier layer.
  • the same material as the coating film is formed on the barrier layer, and the processing content is limited.
  • an object of the present invention to provide an electroless plating method capable of realizing electroless plating on a barrier layer by various treatments.
  • a diffusion limiting layer forming step of forming a diffusion limiting layer on a substrate for limiting diffusion of a predetermined material and the diffusion limiting layer forming step. At least on part of the diffusion limiting layer formed on the substrate in the layer forming step, has catalytic activity for the oxidation reaction of the reducing agent in the electroless plating reaction, and has different catalytic activity from that of the predetermined material.
  • an electroless plating solution is used. Perform electroless plating. The reaction of the reducing agent contained in the electroless plating film is promoted by the catalytically active nucleus, and the formation of the electroless plating film can be performed.
  • the catalytic activity nuclei are formed discontinuously on the diffusion limiting layer. It may be That is, whether the catalytic active nucleus formed on the diffusion limiting layer is continuous (for example, a continuous layer film) or discontinuous (for example, a discontinuous film dispersed in an island shape), the formation of an electroless plating film Can do
  • the electroless plating method according to the present invention has a catalytic activity for the oxidation reaction of a given reducing agent and contains a catalytically active material different from the given material, and restricts the diffusion of the given material.
  • a step of forming a plating film made of a predetermined material is
  • electroless plating is performed using an electroless plating solution.
  • the reaction of the reducing agent contained in the electroless plating film is promoted by the catalytically active material in the diffusion limiting layer, and the electroless plating film can be formed.
  • the electroless plating method according to the present invention has a catalytic activity for the oxidation reaction of a given reducing agent, consists of a catalytically active material different from the given material, and restricts the diffusion of the given material.
  • a diffusion limiting layer for example, a noble layer
  • electroless plating is performed using an electroless plating solution.
  • the catalytically active material constituting the diffusion limiting layer accelerates the reaction of the reducing agent contained in the electroless plating film, whereby the formation of the electroless plating film can be performed.
  • FIG. 1 is a flow chart showing the procedure of the electroless plating method according to the first embodiment.
  • FIG. 1 2A to 2D are cross sectional views showing the cross section of the wafer W in the procedure of FIG.
  • FIG. 3 is a partial sectional view showing an electroless plating apparatus used for the electroless plating in FIG.
  • FIG. 4 is a partial cross-sectional view showing a state in which a wafer W or the like installed in the electroless plating apparatus shown in FIG. 3 is inclined.
  • FIG. 5 is a flow diagram showing an example of a procedure in the case of performing electroless plating using the electroless plating apparatus according to the first embodiment.
  • FIG. 6 is a partial cross-sectional view showing the state of the electroless plating device when the electroless plating is performed according to the procedure shown in FIG.
  • FIG. 7 is a partial cross-sectional view showing the state of the electroless plating device when the electroless plating is performed according to the procedure shown in FIG.
  • FIG. 8 is a partial cross-sectional view showing the state of the electroless plating apparatus in the case where electroless plating is performed in the procedure shown in FIG.
  • FIG. 9 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG.
  • FIG. 10 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG.
  • FIG. 11 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG.
  • FIG. 12 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG.
  • FIG. 13 is a flowchart showing the procedure of the electroless plating method according to the second embodiment.
  • 14A and 14B are cross-sectional views showing the cross section of the wafer W in the procedure of FIG.
  • FIG. 15 is a flowchart showing the procedure of the electroless plating method according to the third embodiment.
  • FIGS. 16A and 16B are cross-sectional views showing the cross section of the wafer W in the procedure of FIG. MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a flow chart showing the procedure of the electroless plating method according to the first embodiment of the present invention.
  • 2A to 2D are cross sectional views showing the cross section of the wafer W in the procedure of FIG.
  • the wafer W is processed in the order of steps S11 to S13. The details of this process will be described below.
  • step S 1 Formation of barrier layer on wafer W (step S 1 1, FIG. 2 A)
  • a barrier layer is formed on the wafer W.
  • the barrier layer functions as a diffusion limiting layer, and is a barrier for preventing the diffusion of the wiring material (eg, copper).
  • the barrier layer prevents the contamination of the wafer W due to diffusion of wiring material or the like (for example, electoral migration).
  • As the material of this barrier layer for example, Ta, TaN, W, WN, Ti, Tin can be used.
  • concaves and convexes for embedding wiring materials such as trenches and vias are appropriately formed, and a barrier layer is formed corresponding to the concaves and convexes.
  • FIG. 2A shows a state in which the barrier layer 2 is formed corresponding to the recess 1.
  • the barrier layer 2 can be formed by, for example, a physical film forming method (sputtering method, vacuum deposition or the like) or a chemical film forming method (CVD method or the like).
  • Step S12, FIG. 2B Catalytically active nuclei 3 are formed on the barrier layer 2.
  • the catalytically active core 3 is composed of a catalytically active material having an activity as a catalyst for promoting the oxidation reaction of the reducing agent which is the component, particularly the electroless plating solution used in Step S13, It acts as a nucleus (origin) to form.
  • the catalytically active core 3 may be a continuous membrane in the form of a layer or a discontinuous membrane dotted in the form of islands (island).
  • catalytically active material constituting the catalytically active nucleus 3
  • This catalytically active material can be selected according to the reducing agent used as a component of the electroless plating solution described later.
  • the reducing agent is a metal salt (such as cobalt nitrate): Ag, Pt, Rh, Ir, Pd, Au
  • Electroless plating of wafer W (step S 13, FIG. 2 C, 2 D) Wafer W
  • Electroless plating is performed to form an electroless plating film. This electroless plating can be performed according to the procedure of FIG. 5 using the apparatus shown in FIG. 3 as described later.
  • an electroless plating film is formed on catalytically active nuclei 3 (FIG. 2C). That is, at this stage, when the catalytic active nucleus 3 is a discontinuous film, the electroless plating film also becomes a discontinuous film.
  • the electroless plating film 4 is grown, and the electroless plating film 4 on the catalytically active core 3 is spread on the surface of the wafer W. That is, even when the catalytic active nucleus 3 is a discontinuous film, the electroless plating films 4 on the catalytic active nucleus 3 are connected to each other to form a continuous film.
  • the catalytically active nucleus 3 is a continuous film, it is continuous without necessarily going through the process of forming the non-continuous film electroless plating film 4 as shown in FIGS. 2C and 2D. An electroless plating film 4 is formed.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the electroless plating apparatus 10 used for the electroless plating in step S13.
  • the electroless plating apparatus 10 can perform the electroless plating process on the wafer W which is the substrate, the pretreatment process, the washing process after the plating process, and the drying process using the processing solution.
  • processing solution in addition to the chemical solution for electroless plating, various liquids such as a pretreatment for plating, a chemical solution for post-treatment, pure water and the like can be included.
  • electroless plating solution electroless plating solution
  • Metal salt A material that supplies the metal ions that make up the coating film.
  • the metal salt is, for example, copper sulfate, copper nitrate, or copper chloride when the plating film is copper.
  • Complexing agent A material for complexing metal and improving its stability in liquid so that metal ions do not precipitate as hydroxide under strong alkalinity.
  • the complexing agent for example, HEADTA, EDTA, ED as an amine-based material, and citric acid, tartaric acid, gluconic acid as an organic-based material can be used.
  • Reducing agent A material for catalytically reducing and precipitating metal ions.
  • the reducing agent for example, formaldehyde, hypophosphite, glyoxylic acid, metal salt (eg, cobaltous nitrate), dimethylamine borane, stannic chloride, borohydride compound can be used.
  • Stabilizer A material that prevents the natural decomposition of the plating solution caused by the non-uniformity of the oxide (in the case of copper film, cupric oxide).
  • the stabilizer for example, biviridyl which preferentially forms a complex with monovalent copper, cyanide compound, thiourea, 0-phenanthrin, neoproine can be used as a nitrogen-based material.
  • pH buffer A material to control the change in pH when the reaction of the plating solution proceeds.
  • pH buffers for example, boric acid, carbonic acid, hydroxyl power Rubynic acid can be used.
  • Additives include materials that promote and suppress the deposition of the coated film, and materials that modify the surface or coated film.
  • -A a material for suppressing the deposition rate of the coated film and improving the stability of the coating solution and the characteristics of the coated film, use, for example, thiosulfuric acid or 2-MBT as a sulfur-based material.
  • thiosulfuric acid or 2-MBT as a sulfur-based material.
  • polyalkylene glycol As a material for lowering the surface tension of the coating solution and for evenly placing the coating solution on the surface of the wafer W, for example, polyalkylene glycol, polyethylene as a nonionic material of surfactant Glycol can be used.
  • the electroless plating apparatus 10 includes a base 1 1, a hollow mold 1 2, a wafer chuck 20 as a substrate holding unit, an upper plate 30, a lower plate 40, a cup 50, and a nozzle arm 6. 1, 6 2, the inclination adjustment section, the substrate inclination mechanism 70, and the liquid supply mechanism 80.
  • hollow cylinder 12, wafer chuck 20, upper plate 30, lower plate 40, cup 50, nozzle arm 61 and 62 are directly or indirectly connected to base 11. It moves with the base 1 1 and tilts by the substrate tilt mechanism 70.
  • the wafer chuck 20 holds and fixes the wafer W, and includes a wafer holding claw 21, a wafer chuck bottom plate 23, and a wafer chuck support 24.
  • a plurality of wafer holding claws 21 are arranged on the outer periphery of the wafer check bottom plate 23 to hold and fix the wafer W.
  • the wafer check bottom plate 23 is a substantially circular flat plate connected to the top surface of the wafer check support 24, and is disposed on the bottom of the cup 50.
  • Wafer chuck support 24 has a substantially cylindrical shape and has a wafer chuck bottom It is connected to a circular opening provided in the plate 23 and constitutes a rotational shaft of the hollow motor 12. As a result, by driving the hollow motor 12, it is possible to rotate the wafer check 20 while holding the wafer W. Further, as described later, since the cup 50 can move up and down, the wafer chuck 20 disposed at the bottom of the force cup 50 also moves up and down with the cup 50.
  • the upper plate 30 has a substantially circular flat plate shape, and has a heat sink H (not shown), a treatment solution discharge port 31, a treatment solution inflow portion 32, a temperature measurement mechanism 33, and an elevation mechanism 3 Connected to four.
  • the heat treatment H is a heating means such as a heating wire for heating the upper plate 30.
  • the heat treatment H corresponds to the temperature measurement result by the temperature measurement mechanism 33 so that the upper plate 30 and hence the wafer W can be maintained at a desired temperature (for example, the range from room temperature to about 60 ° C.)
  • the amount of heat generation is controlled by control means (not shown).
  • One or more treatment liquid discharge ports 31 are formed on the lower surface of the upper plate 30 and discharge the treatment liquid flowing in from the treatment liquid inflow portion 32.
  • the treatment liquid inflow portion 32 is on the upper surface side of the upper plate 30, and the treatment liquid flows in, and the treatment liquid that has flowed in is distributed to the treatment liquid discharge port 31.
  • the processing liquid flowing into the processing liquid inflow section 32 can be used by switching the pure water (RT: room temperature) and the heated chemical solutions 1 and 2 (for example, the range from room temperature to about 60 ° C.).
  • the chemical solutions 1 and 2 mixed in a mixing box 85 described later in some cases, by mixing a plurality of other chemical solutions including other chemical solutions) can be made to flow into the processing solution inflow portion 3 2.
  • the temperature measurement mechanism 33 is a temperature measurement means such as a thermocouple embedded in the upper plate 30 and measures the temperature of the upper plate 30.
  • Lifting mechanism 34 is connected to upper plate 30 and upper plate 30
  • the distance between the wafer W and the wafer W can be controlled within a range of 0.1 to 500 mm.
  • the wafer W and the top plate 30 are brought close to each other (for example, the distance between the wafer W and the top plate 30 is 2 mm or less), and the size of the space of these gaps is limited. It is possible to make the processing liquid supplied onto the surface of the wafer W uniform and reduce the amount used.
  • the lower plate 40 is a substantially circular flat plate disposed to face the lower surface of the wafer W, and the wafer W is supplied by supplying heated pure water to the lower surface in a state close to the wafer W. It can be heated appropriately.
  • the size of the lower plate 40 be close to the size of the wafer w.
  • the size of the lower plate 40 is preferably 80% or more, or 90% or more of the area of the wafer W.
  • the lower plate 40 has a processing solution discharge port 41 formed at the center of its upper surface, and is supported by a support portion 42.
  • the processing liquid discharge port 41 discharges the processing liquid that has passed through the inside of the support portion 42.
  • the processing solution can be used by switching between pure water (RT: room temperature) and heated pure water (for example, a range from room temperature to about 60 ° C.).
  • the support portion 42 penetrates the hollow cylinder 12 and is connected to a lift mechanism (not shown) which is a distance adjustment portion. By operating the elevating mechanism, the support portion 42 and hence the lower plate 40 can be vertically moved up and down.
  • the cup 50 holds the wafer chuck 20 therein and receives and discharges the processing solution used for processing the wafer W.
  • the cup side 51, the force cup bottom plate 52, the waste pipe It has five three.
  • the cup side 51 has a substantially cylindrical shape whose inner periphery is along the periphery of the wafer chuck 2 °, and its upper end is located in the vicinity of the upper side of the holding surface of the wafer chuck 20. doing.
  • the cup bottom plate 52 is connected to the lower end of the cup side 51, and has an opening at a position corresponding to the hollow mirror 12.
  • the wafer chuck 20 is disposed at a position corresponding to the opening. There is.
  • the waste liquid pipe 53 is connected to the cup bottom plate 52, and the waste liquid (treatment liquid treated with Wah W) is connected to the waste liquid line etc. of the plant where the electroless plating device 10 is installed from the cup 50. It is piping for discharging.
  • the cup 50 is connected to a lifting mechanism (not shown) and can move up and down relative to the base 1 1 and the wafer W.
  • the nozzle arms 61 and 62 are disposed in the vicinity of the upper surface of the wafer W, and discharge the fluid such as the processing liquid or air from the opening at the tip end thereof.
  • the fluid to be discharged pure water, chemical solution and nitrogen gas can be appropriately selected.
  • Moving mechanisms (not shown) for moving the nozzle arms 61, 62 in the direction toward the center of the wafer W are connected to the nozzle arms 61, 62, respectively.
  • the nozzle arms 61 and 62 are moved to the upper side of the wafer W, and when the discharge is completed, the nozzle arms 61 and 62 are moved out of the outer periphery of the wafer W.
  • the number of nozzle arms can be one or three or more depending on the amount and type of the chemical solution to be discharged.
  • the substrate inclining mechanism 70 is connected to the base 1 1, and the base 1 1 is connected to the base 1 1 by raising and lowering one end of the base 1 1, and the wafer chuck 20, wafer W, top plate 30, lower portion connected thereto.
  • Plate 40, cup 50 are inclined, for example, in the range of 0 to 10 ° or 0 to 5 °.
  • FIG. 4 is a partial cross-sectional view showing the wafer W or the like being tilted by the substrate tilting mechanism 70. It can be seen that the base 11 is inclined by the substrate inclining mechanism 70, and the wafer W or the like directly or indirectly connected to the base 11 is inclined at an angle 0.
  • the liquid supply mechanism 80 is to supply the processing solution heated to the upper plate 30 and the lower plate 40, and the temperature control mechanism 81, the treatment solution tank 82, 83, 84, and the pump P1.
  • ⁇ P 5 valves V 1 to V 5, mixing box 85 are included.
  • FIG. 3 shows the case where the chemical solutions 1 and 2 and two kinds of chemical solutions are used, the number of processing tanks, pumps and valves can be set appropriately according to the number of chemical solutions to be mixed in the mixing box 85. .
  • the temperature control mechanism 81 has warm water and treatment solution balances 82 to 4 in its interior, and the treatment solution balances 82 to 84 are used to warm the treatment solution (pure water, chemical solutions 1 and 2).
  • the apparatus heats the processing solution appropriately, for example, in the range from room temperature to about 60.degree.
  • a war bath, a throwing heater, and an external heating can be used as appropriate.
  • the treatment solution tanks 82, 8 3 and 8 4 are tanks for holding pure water and chemicals 1 and 2, respectively.
  • the pumps P1 to P3 suck the processing solution from the processing solution reservoirs 82 to 84.
  • Valves V1 to V3 open and close pipes, and supply and stop the treatment liquid.
  • the valves V4 and V5 are for supplying room temperature (not heated) pure water to the upper plate 30 and the lower plate 40, respectively.
  • the mixing box 85 is a container for mixing the liquid medicines 1 and 2 sent from the processing liquid tanks 83 and 84.
  • the chemical solutions 1 and 2 can be appropriately mixed in the mixing box 85 and temperature-controlled and sent.
  • temperature-controlled pure water can be appropriately sent to the lower plate 40.
  • FIG. 5 is a flow chart showing an example of a procedure for performing electroless plating on the wafer W which has been subjected to the steps S11 and S12 described above using the electroless plating apparatus 10.
  • 6 to 12 are partial cross-sectional views showing the state of the electroless plating apparatus 10 in each step when the electroless plating is performed according to the procedure shown in FIG. The procedure will be described in detail below with reference to FIGS.
  • the wafer W which has been subjected to the steps S11 and S12 described above is held on the wafer mask 20.
  • a suction arm substrate transfer mechanism (not shown) having the wafer W suctioned on its upper surface mounts the wafer W on the wafer chuck 20. Then, the wafer W is held and fixed by the wafer holding claw 21 of the wafer chuck 20. In addition, by lowering the cup 50, the suction arm can be moved horizontally below the upper surface of the light W.
  • the wafer W is pretreated by rotating the wafer W and supplying the processing solution to the upper surface of the wafer W from the nozzle arm 61 or the nozzle arm 62.
  • the rotation of the wafer W is performed by rotating the wafer chuck 20 by means of the hollow cylinder 12.
  • the rotation speed at this time can be, for example, 10 0 to 20 r p m.
  • the nozzle arm 61 or 62 moves to the upper side of the wafer W and discharges the processing solution.
  • the processing solution supplied from the nozzle arms 61 and 62 for example, pure water for cleaning the wafer W or chemical solution for catalyst activation processing of wafer W is sequentially supplied according to the purpose of the pretreatment. Ru.
  • the discharge amount at this time may be an amount necessary to form a pad (layer) of the processing liquid on the wafer W, for example, about 100 ml. However, if necessary, increase the discharge amount. No problem.
  • the processing solution to be discharged may be appropriately heated (for example, in the range of about room temperature to about 60 ° C.).
  • the wafer W is heated to keep the wafer W at a temperature suitable for the reaction of the plating solution.
  • the lower plate 40 is heated to be close to the lower surface of the wafer W (as an example, the distance between the lower surface of the wafer W and the upper surface of the lower plate 40: about 0.1 to 2 mm) Supply pure water heated by mechanism 80.
  • the heated pure water fills the space between the lower surface of the wafer W and the upper surface of the lower plate 40 to heat the wafer W.
  • the uniformity of heating of the wafer W can be improved.
  • the above heating of the wafer W may be performed by other means.
  • the wafer W may be heated by radiant heat of a lamp.
  • the wafer W may be heated by contacting the heated lower plate 40 with the wafer W.
  • the upper plate 30 is heated to be close to the upper surface of the wafer W (as an example, the distance between the upper surface of the wafer W and the lower surface of the upper plate 30: about 0.1 to 2 mm)
  • Supply chemical solution (marking solution) for use for example, 30 to: L 0 0 m L / min.
  • the supplied plating solution fills the space between the upper surface of the wafer W and the lower surface of the upper plate 30 and flows out to the cup 50.
  • the temperature is controlled by the upper plate 30 (an example) As the room temperature to about 60 ° C).
  • the temperature of the supplied coating liquid is controlled by the liquid supply mechanism 80.
  • ⁇ W W is rotated by 10 to 50 r p m.
  • the heating of the upper plate 30 can be preceded by any of the steps S1 to S3 above. By heating the upper plate 30 in parallel with the other steps, the processing time of the wafer W can be reduced.
  • the wafer chuck 20 and the upper plate 30 can be tilted by the substrate tilting mechanism 70 before the supply of the plating solution.
  • the gas between the wafer W and the upper plate 30 can be quickly removed and replaced with a plating solution. If removal of the gas between the wafer W and the upper plate 30 is incomplete, the cause is that the uniformity of the plating film formed by remaining air bubbles between the wafer W and the upper plate 30 is disturbed. become.
  • a gas for example, hydrogen
  • bubbles may be formed by the generated gas, which may inhibit the uniformity of the coating film.
  • Inclination of the wafer W by the substrate inclining mechanism 70 reduces generation of air bubbles and promotes escape of generated air bubbles to improve uniformity of the marking film. It is possible to go up.
  • the temperature of the marking liquid can be changed temporally.
  • the wafer W is cleaned with pure water.
  • This cleaning can be performed by switching the processing solution discharged from the processing solution discharge port 31 of the upper plate 30 from the plating solution to pure water. At this time, pure water can be supplied from the processing solution discharge port 41 of the lower plate 40.
  • the nozzle arms 61 and 62 can also be used to clean the wafer W. At this time, the supply of the plating solution from the processing solution discharge port 31 of the upper plate 30 is stopped, and the upper plate 30 is separated from the wafer W. Thereafter, the nozzle arms 61, 62 are moved to above the wafer W to supply pure water. Also at this time, it is preferable to supply pure water from the processing solution discharge port 41 of the lower plate 40.
  • the supply of pure water to the wafer W is stopped, and the pure water on the wafer W is removed by rotating the wafer W at high speed.
  • nitrogen gas may be jetted from the nozzle arms 61 and 62 to accelerate the drying of the wafer W.
  • the wafer chuck 20 Holding is stopped. Thereafter, the wafer W is removed from the wafer chuck 20 by a suction arm (substrate transfer mechanism) not shown.
  • FIG. 13 is a view showing steps of the electroless plating method according to the second embodiment of the present invention.
  • FIGS. 14A and 14B are cross-sectional views showing the cross section of wafer W in the process of FIG.
  • the wafer W is processed in the order of steps S 21 to S 22.
  • the details of this processing procedure are described below.
  • barrier layer 2 a is formed on the wafer W.
  • a non-catalytic material having no catalytic activity for the reducing agent of the non-electrolytic plating solution is mixed with a catalytically active material having a catalytic activity for the reducing agent of the non-electrolytic plating solution ( — Used as
  • any one of T a, T a N, W, W N, T i and T i N is used.
  • catalytic activity can be imparted to the noble layer 2a.
  • the catalytically active material shown in the first embodiment can be selected according to the reducing agent of the nonelectrolytic plating solution.
  • the formation of the barrier layer 2a can be performed, for example, by a physical film forming method.
  • the target is a mixture of a noncatalytic material and a catalytic material (or a combination of noncatalytic material and catalytic material at the same time) by a sputtering method.
  • Nolia layer 2 a can be formed. This can also be done by vacuum evaporation (co-evaporation) with simultaneous evaporation of non-catalytic and catalytically active material.
  • Electroless plating of wafer W (Step S 2 2, Fig. 1 4 B) Electroless plating is performed on the wafer W to form an electroless plating film 4 a.
  • the catalytic activity is imparted to the barrier layer 2a based on the doped catalytic active material, so that the electroless plating film 4a is formed on the barrier layer 2a.
  • FIG. 15 is a flowchart showing the steps of the electroless plating method according to the third embodiment of the present invention.
  • 16A and 16B are cross-sectional views showing the cross section of wafer W in the process of FIG.
  • the wafer W is processed in the order of steps S 31 to S 32.
  • the details of this processing procedure are described below.
  • Barrier layer 2 b is formed on wafer W.
  • the barrier layer 2 b is composed of a catalytically active material having catalytic activity with respect to the reducing agent of the electroless plating solution.
  • the catalytically active material shown in the first embodiment can be selected according to the reducing agent of the non-electrolytic plating solution.
  • the barrier layer 2 b can be formed, for example, by a physical deposition method (for example, a sputtering method, a vacuum evaporation method) or a chemical deposition method (for example, a C V D method).
  • a physical deposition method for example, a sputtering method, a vacuum evaporation method
  • a chemical deposition method for example, a C V D method
  • Electroless plating is performed on the wafer W to form an electroless plating film.
  • the electroless plating film 4 b is formed on the noble layer 2 b.
  • the barrier layer is composed of a catalytically active material.
  • electroless plating of copper was performed for each of the underlayer (varier layer) Ru, Ag, Pt, V, In, Ir, Co, and Rh.
  • copper electroless plating was performed also in the case where the base was Cu, TaN, TiN, W, WN, and Ta.
  • the underlayer is Ru, Ag, Pt, or Ir, all showed better adhesion and deposition rate than the underlayer with Cu.
  • the adhesion is better than when the substrate is Cu.
  • WN and T a did not precipitate Cu itself. Also, in the case where the base is Ta N, T i N, or W, although the formation of Cu is carried out, it is hard to say that the adhesion to the base of the formed Cu is good.
  • a copper salt and a metal salt (cobalt nitrate) are used for each of the metal salt and the reducing agent constituting the electroless plating solution, and copper is applied according to the procedure corresponding to the third embodiment (the barrier layer is composed of a catalytically active material)
  • the electroless plating film was formed.
  • electroless plating of copper was performed for each of Ag, Ir, and Rh as the base (barrier layer).
  • electroless plating of copper was performed also when the base was Cu, TaN, TiN, W, WN, V, Co, In, Ru, Pt.
  • the underlayer is Ag, Ir, or Rh, all showed better adhesion and deposition rate than the case where the underlayer is Cu.
  • the adhesion was better than when the base was Cu.
  • Embodiments of the present invention are not limited to the above-described embodiments, and can be extended or modified. Extended and modified embodiments are also included in the technical scope of the present invention.
  • a glass plate or the like other than the wafer W can be used as the substrate.
  • the electroless plating method according to the present invention can realize electroless plating on a barrier layer by various treatments, and can be used industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method of elctroless plating, which comprises forming catalytically active nuclei comprising a catalytically active material having a catalytic activity toward a reducing agent contained in an electroless plating solution on a diffusion inhibiting layer (such as a barrier layer), and then carrying out an electroleless plating using the electroless plating solution. The method allows the formation of an electrolessly plated coating on a barrier layer through the acceleration of the reaction of a reducing agent contained in an electroless plating solution by catalytically active nuclei.

Description

明 細 書 無電解メツキ方法  Description book Electroless plating method
技術分野 Technical field
本発明は、 無電解メ ツキ膜を形成する無電解メ ツキ方法に関する。 背景技術  The present invention relates to an electroless plating method for forming an electroless plating film. Background art
半導体デバイスの作成に際して半導体基板上への配線の形成が行われ る  Wiring is formed on the semiconductor substrate when producing a semiconductor device
半導体デバイスの集積度の向上に伴って配線の微細化が進められてお り、 これに対応して配線の作成技術の開発が行われている。 例えば、 銅 配線の形成方法として、 銅のシード層をスパッタ リングで形成し、 電気 メ ツキで溝等を埋め込むことで配線および層間接続を形成するデュアル ダマシン法が実用化されている。 この手法では、 シード層が形成されて いない被メ ツキ面への電気メ ツキの形成が困難である。  As the degree of integration of semiconductor devices increases, the miniaturization of wiring is in progress, and in response to this, development of wiring creation technology is being carried out. For example, as a method of forming a copper wiring, a dual damascene method in which a wiring and an interlayer connection are formed by forming a copper seed layer by sputtering and embedding a groove or the like by electric plating has been put to practical use. In this method, it is difficult to form an electrical film on the surface to be plated where the seed layer is not formed.
一方、シ一ド層を必要としないメ ツキ法として無電解メ ツキ法がある。 無電解メツキは化学還元によってメ ツキ膜を形成するものであり、 形成 されたメ ヅキ膜が自己触媒として作用することで配線材料からなるメ ッ キ膜を連続的に形成することができる。 無電解メ ツキはシード層を事前 に形成する必要がなく、 シード層の不均一性 (特に、 凹部、 凸部におけ るステヅプカバレ一ジ) に起因してメ ヅキ膜が不均一になるおそれが少 ない。  On the other hand, there is an electroless plating method as a plating method which does not require a shield layer. The electroless plating forms a plating film by chemical reduction, and the plating film formed can act as an autocatalyst to continuously form a plating film made of a wiring material. In electroless plating, it is not necessary to form a seed layer in advance, and there is a possibility that the plating film may become nonuniform due to nonuniformity of the seed layer (particularly, step coverage in the concave and convex portions). Few.
配線材料の拡散を防止するために、 基板にバリァ層を形成しておき、 その上にメ ツキ膜を形成する場合がある。 このバリア層には T i N、 T a N等の窒化金属等が用いられ、 無電解メ ツキに対して不活性であるこ とから、 バリァ層上に無電解メ ツキを行うことが困難である。 In order to prevent the diffusion of the wiring material, a barrier layer may be formed on the substrate and a plating film may be formed thereon. For this barrier layer, metal nitrides such as T i N, T a N, etc. are used, and they are inert to electroless plating. Therefore, it is difficult to perform electroless plating on the barrier layer.
ここで、 ノ リア層を用いる場合において、 ノ リア層上にスパ ヅ夕 リン グ等で銅を先に形成しておく ことで、 バリア層上への銅の無電解メ ヅキ 膜の形成を可能とする技術が開示されている (特開 2 0 0 1— 8 5 4 3 4号公報参照)。 発明の開示  Here, in the case of using the nolia layer, by forming the copper first on the nolia layer by sputtering or the like, it is possible to form an electroless copper plating film on the barrier layer. Japanese Patent Laid-Open Publication No. 2001-85434 has been disclosed. Disclosure of the invention
上記の文献に示された技術では、 メ ツキ膜と同一の材料をバリア層上 に形成することとなり、 処理内容が制限される。  According to the technique disclosed in the above-mentioned document, the same material as the coating film is formed on the barrier layer, and the processing content is limited.
以上に鑑み本発明は、 バリア層上への無電解メ ツキを多様な処理で実 現可能な無電解メ ツキ方法を提供することを目的とする。  In view of the above, it is an object of the present invention to provide an electroless plating method capable of realizing electroless plating on a barrier layer by various treatments.
A . 上記目的を達成するために、 本発明に係る無電解メ ツキ方法は、 所 定の材料の拡散を制限する拡散制限層を基板上に形成する拡散制限層形 成ステツプと、 前記拡散制限層形成ステツプで基板上に形成された拡散 制限層の少なく とも一部上に、 無電解メ ツキ反応における還元剤の酸化 反応に対して触媒活性を有し、 かつ前記所定の材料と異なる触媒活性材 料からなる触媒活性核を形成する触媒活性核形成ステップと、 前記触媒 活性核形成ステツプで触媒活性核が形成された基板上に、 前記還元剤を 含有する無電解メ ツキ液を用いて前記所定の材料からなるメ ツキ膜を形 成するメ ツキ膜形成ステップと、 を具備する。 A. In order to achieve the above object, according to the electroless plating method of the present invention, there is provided a diffusion limiting layer forming step of forming a diffusion limiting layer on a substrate for limiting diffusion of a predetermined material, and the diffusion limiting layer forming step. At least on part of the diffusion limiting layer formed on the substrate in the layer forming step, has catalytic activity for the oxidation reaction of the reducing agent in the electroless plating reaction, and has different catalytic activity from that of the predetermined material. A catalytically active nucleation step of forming a catalytically active nucleus composed of a material; and the electroless plating solution containing the reducing agent on the substrate on which the catalytically active nucleus is formed in the catalytically active nucleation step. And a step of forming a plating film made of a predetermined material.
無電解メ ツキ膜に含有される還元剤に対して触媒活性を有する触媒活 性材料からなる角 媒活性核を拡散制限層 (例えば、 バリア層) 上に形成 した後に、 無電解メツキ液を用いて無電解メ ツキを行う。 触媒活性核に よって無電解メ ツキ膜に含有される還元剤の反応が促進され、 無電解メ ツキ膜の形成を行うことができる。  After forming an amphiphilic active nucleus made of a catalytically active material having catalytic activity with respect to the reducing agent contained in the electroless plating film on the diffusion limiting layer (for example, barrier layer), an electroless plating solution is used. Perform electroless plating. The reaction of the reducing agent contained in the electroless plating film is promoted by the catalytically active nucleus, and the formation of the electroless plating film can be performed.
こ こで、 前記触媒活性核が、 前記拡散制限層上に不連続に形成されて いてもよい。即ち、 拡散制限層上に形成された触媒活性核が、 連続的(例 えば層状の連続膜)、 不連続的 (例えば島状に散在する不連続膜) いずれ でも、 無電解メ ツキ膜の形成を行える。 Here, the catalytic activity nuclei are formed discontinuously on the diffusion limiting layer. It may be That is, whether the catalytic active nucleus formed on the diffusion limiting layer is continuous (for example, a continuous layer film) or discontinuous (for example, a discontinuous film dispersed in an island shape), the formation of an electroless plating film Can do
B . 本発明に係る無電解メ ツキ方法は、 所定の還元剤の酸化反応に対し て触媒活性を有し、 かつ前記所定の材料と異なる触媒活性材料を含み、 所定の材料の拡散を制限する拡散制限層を基板上に形成する拡散制限層 形成ステツプと、 前記拡散制限層形成ステツプで拡散制限層が形成され た基板上に、 前記所定の還元剤を含有する無電解メツキ液を用いて前記 所定の材料からなるメ ツキ膜を形成するメ ツキ膜形成ステップと、 を具 備する。  B. The electroless plating method according to the present invention has a catalytic activity for the oxidation reaction of a given reducing agent and contains a catalytically active material different from the given material, and restricts the diffusion of the given material. A diffusion limiting layer forming step for forming a diffusion limiting layer on a substrate, and an electroless plating solution containing the predetermined reducing agent on the substrate on which the diffusion limiting layer is formed in the diffusion limiting layer forming step. And a step of forming a plating film made of a predetermined material.
触媒活性材料を含む拡散制限層 (例えば、 バリア層) を形成した後に、 無電解メ ツキ液を用いて無電解メツキを行う。 拡散制限層中の触媒活性 材料によって無電解メ ツキ膜に含有される還元剤の反応が促進され、 無 電解メ ッキ膜の形成を行うことができる。  After forming a diffusion limiting layer (for example, a barrier layer) containing a catalytically active material, electroless plating is performed using an electroless plating solution. The reaction of the reducing agent contained in the electroless plating film is promoted by the catalytically active material in the diffusion limiting layer, and the electroless plating film can be formed.
C . 本発明に係る無電解メ ツキ方法は、 所定の還元剤の酸化反応に対す る触媒活性を有し、 前記所定の材料と異なる触媒活性材料からなり、 か つ所定の材料の拡散を制限する拡散制限層を基板上に形成する拡散制限 層形成ステツプと、 前記拡散制限層形成ステツプで拡散制限層が形成さ れた基板上に、 前記所定の還元剤を含有する無電解メ ッキ液を用いて前 記所定の材料からなるメツキ膜を形成するメ ツキ膜形成ステップと、 を 具備する。 C. The electroless plating method according to the present invention has a catalytic activity for the oxidation reaction of a given reducing agent, consists of a catalytically active material different from the given material, and restricts the diffusion of the given material. A diffusion limiting layer forming step of forming a diffusion limiting layer on the substrate, and an electroless plating solution containing the predetermined reducing agent on the substrate on which the diffusion limiting layer is formed in the diffusion limiting layer forming step. And a step of forming a plating film of the predetermined material using the above-mentioned material.
触媒活性および拡散制限性の双方を有する材料によつて拡散制限層 (例えば、 ノ リア層) を形成した後に、 無電解メ ツキ液を用いて無電解 メ ツキを行う。 拡散制限層を構成する触媒活性材料によって無電解メッ キ膜に含有される還元剤の反応が促進され、 無電解メ ツキ膜の形成を行 うことができる。 図面の簡単な説明 After forming a diffusion limiting layer (for example, a noble layer) from a material having both catalytic activity and diffusion limiting property, electroless plating is performed using an electroless plating solution. The catalytically active material constituting the diffusion limiting layer accelerates the reaction of the reducing agent contained in the electroless plating film, whereby the formation of the electroless plating film can be performed. Brief description of the drawings
図 1は、 第 1実施形態に係る無電解メ ツキ方法の手順を表したフロー 図である。  FIG. 1 is a flow chart showing the procedure of the electroless plating method according to the first embodiment.
図 2 A〜 2 Dは、 図 1の手順におけるウェハ Wの断面を表す断面図で ある。  2A to 2D are cross sectional views showing the cross section of the wafer W in the procedure of FIG.
図 3は、 図 1での無電解メ ツキに用いられる無電解メ ツキ装置を表し た一部断面図である。  FIG. 3 is a partial sectional view showing an electroless plating apparatus used for the electroless plating in FIG.
図 4は、 図 3に示した無電解メ ツキ装置に設置されたウェハ W等が傾 斜された状態を表す一部断面図である。  FIG. 4 is a partial cross-sectional view showing a state in which a wafer W or the like installed in the electroless plating apparatus shown in FIG. 3 is inclined.
図 5は、 第 1の実施形態に係る無電解メ ツキ装置を用いて無電解メ ッ キを行う場合の手順の一例を表すフロー図である。  FIG. 5 is a flow diagram showing an example of a procedure in the case of performing electroless plating using the electroless plating apparatus according to the first embodiment.
図 6は、 図 5に表した手順で無電解メ ツキを行った場合における無電 解メツキ装置の状態を表した一部断面図である。  FIG. 6 is a partial cross-sectional view showing the state of the electroless plating device when the electroless plating is performed according to the procedure shown in FIG.
図 7は、 図 5に表した手順で無電解メ ツキを行った場合における無電 解メツキ装置の状態を表した一部断面図である。  FIG. 7 is a partial cross-sectional view showing the state of the electroless plating device when the electroless plating is performed according to the procedure shown in FIG.
図 8は、 図 5に表した手順で無電解メ ツキを行った場合における無電 解メッキ装置の状態を表した一部断面図である。  FIG. 8 is a partial cross-sectional view showing the state of the electroless plating apparatus in the case where electroless plating is performed in the procedure shown in FIG.
図 9は、 図 5に表した手順で無電解メ ツキを行った場合における無電 解メ ツキ装置の状態を表した一部断面図である。  FIG. 9 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG.
図 1 0は、 図 5に表した手順で無電解メ ツキを行った場合における無 電解メ ツキ装置の状態を表した一部断面図である。  FIG. 10 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG.
図 1 1は、 図 5に表した手順で無電解メ ツキを行った場合における無 電解メ ツキ装置の状態を表した一部断面図である。  FIG. 11 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG.
図 1 2は、 図 5に表した手順で無電解メ ツキを行った場合における無 電解メ ツキ装置の状態を表した一部断面図である。 図 1 3は、 第 2実施形態に係る無電解メ ツキ方法の手順を表したフロ 一図である。 FIG. 12 is a partial cross-sectional view showing the state of the electroless plating apparatus when the electroless plating is performed according to the procedure shown in FIG. FIG. 13 is a flowchart showing the procedure of the electroless plating method according to the second embodiment.
図 14A、 14 Bは、 図 1 3の手順におけるウェハ Wの断面を表す断 面図である。  14A and 14B are cross-sectional views showing the cross section of the wafer W in the procedure of FIG.
図 1 5は、 第 3実施形態に係る無電解メ ツキ方法の手順を表したフロ 一図である。  FIG. 15 is a flowchart showing the procedure of the electroless plating method according to the third embodiment.
図 1 6 A、 1 6 Bは、 図 1 5の手順におけるウェハ Wの断面を表す断 面図である。 発明を実施するための形態  FIGS. 16A and 16B are cross-sectional views showing the cross section of the wafer W in the procedure of FIG. MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態に係る無電解メ ツキ方法を図面を参照して詳 細に説明する。  Hereinafter, the electroless plating method according to the embodiment of the present invention will be described in detail with reference to the drawings.
(第 1実施形態)  First Embodiment
図 1は、 本発明の第 1実施形態に係る無電解メ ツキ方法の手順を表す フロー図である。 また、 図 2 A〜 2 Dは図 1の手順におけるウェハ Wの 断面を表す断面図である。  FIG. 1 is a flow chart showing the procedure of the electroless plating method according to the first embodiment of the present invention. 2A to 2D are cross sectional views showing the cross section of the wafer W in the procedure of FIG.
図 1に示すように、 本発明の第 1実施形態に係る無電解メ ツキ方法で は、 ステップ S 1 1〜S 1 3の順にウェハ Wが処理される。 以下、 この 処理手順の詳細を説明する。  As shown in FIG. 1, in the electroless plating method according to the first embodiment of the present invention, the wafer W is processed in the order of steps S11 to S13. The details of this process will be described below.
( 1 ) ウェハ Wへのバリァ層の形成 (ステップ S 1 1、 図 2 A)  (1) Formation of barrier layer on wafer W (step S 1 1, FIG. 2 A)
ウェハ Wにバリア層が形成される。 バリア層は、 拡散制限層として機 能するものであり、 配線材料 (例えば、 銅) 等の拡散を防止するための 障壁である。 バリア層によって、 配線材料等の拡散 (例えば、 エレク ト 口マイグレーション) によるウェハ Wの汚染が防止される。 このバリア 層の材料には、 例えば、 T a、 T aN、 W、 WN、 T i、 T i Nを用い ることができる。 ウェハ wには適宜に トレンチ、 ビア等の配線材料を埋め込むための凹 凸が形成され、 この凹凸に対応してバリア層が形成される。 図 2 Aでは 凹部 1に対応してバリア層 2が形成された状態を表している。 なお、 バ リア層 2の形成は例えば、 物理的成膜法 (スパッタリング法、 真空蒸着 等)、 あるいは化学的成膜法 (CVD法等) によって行うことができる。 (2 ) バリア層上への触媒活性核の形成 (ステップ S 1 2、 図 2 B) バリア層 2上に触媒活性核 3が形成される。 触媒活性核 3は、 ステツ プ S 1 3で用いられる無電解メツキ液、 特にその成分たる還元剤の酸化 反応を促進する触媒としての活性を有する触媒活性材料で構成され、 無 電解メ ツキ膜を形成するための核 (起点) として機能する。 この触媒活 性核 3は、 層状の連続膜でもよいし、 島状 (アイラン ド状) に点在する 不連続膜でも差し支えない。 A barrier layer is formed on the wafer W. The barrier layer functions as a diffusion limiting layer, and is a barrier for preventing the diffusion of the wiring material (eg, copper). The barrier layer prevents the contamination of the wafer W due to diffusion of wiring material or the like (for example, electoral migration). As the material of this barrier layer, for example, Ta, TaN, W, WN, Ti, Tin can be used. In the wafer w, concaves and convexes for embedding wiring materials such as trenches and vias are appropriately formed, and a barrier layer is formed corresponding to the concaves and convexes. FIG. 2A shows a state in which the barrier layer 2 is formed corresponding to the recess 1. The barrier layer 2 can be formed by, for example, a physical film forming method (sputtering method, vacuum deposition or the like) or a chemical film forming method (CVD method or the like). (2) Formation of catalytically active nuclei on the barrier layer (Step S12, FIG. 2B) Catalytically active nuclei 3 are formed on the barrier layer 2. The catalytically active core 3 is composed of a catalytically active material having an activity as a catalyst for promoting the oxidation reaction of the reducing agent which is the component, particularly the electroless plating solution used in Step S13, It acts as a nucleus (origin) to form. The catalytically active core 3 may be a continuous membrane in the form of a layer or a discontinuous membrane dotted in the form of islands (island).
ここで、 触媒活性核 3を構成する触媒活性材料の例を示す。 この触媒 活性材料は、 後述する無電解メツキ液の成分として用いる還元剤に対応 して選択することができる。  Here, an example of the catalytically active material constituting the catalytically active nucleus 3 is shown. This catalytically active material can be selected according to the reducing agent used as a component of the electroless plating solution described later.
1 ) 還元剤がホルムアルデヒ ドの場合 : I r、 P d、 Ag、 R u R h、 A u、 P t  1) When the reducing agent is formaldehyde: I r, P d, Ag, R u R h, A u, P t
無電解メツキ時の反応 : 2 HC (OH) 〇— + 20H— Reaction at electroless plating: 2 HC (OH) ○-+ 20H-
Figure imgf000008_0001
Figure imgf000008_0001
2 e—  2 e—
2 ) 還元剤が次亜燐酸塩の場合 : Au、 N i、 P d、 C o、 P t (左 ほど触媒活性が高くなるように配列 ( A u > P t ))  2) When the reducing agent is hypophosphite: Au, Ni, Pd, Co, Pt (arranged so that the catalytic activity is higher towards the left (A u> Pt))
無電解メ ツキ時の反応 : H2P 02— + 2 OH-Reaction during electroless plating: H 2 P 0 2 — + 2 OH-
→ 2 H 2 P 03" + H2† + 2 e - 3 ) 還元剤がグルキォキシル酸の場合 : I r、 P cU Ag、 Ru、 R h、 A u、 P d、 P t 無電解メ ツキ時の反応 : 2 HC (OH) 0— + 20H一 → 2 H 2 P 0 3 " + H 2 † + 2 e - 3) If the reducing agent is a Gurukiokishiru acid: I r, P cU Ag, Ru, R h, A u, P d, P t Reaction during electroless plating: 2 HC (OH) 0-+ 20H 1
→ 2 H C 00 + + 2 H 20 + 112个 +→ 2 HC 00 + + 2 H 2 0 + 11 2 +
2 θ " 2 θ "
4 ) 還元剤が金属塩 (硝酸コバルト等) の場合 : Ag、 P t、 Rh、 I r、 P d、 A u  4) When the reducing agent is a metal salt (such as cobalt nitrate): Ag, Pt, Rh, Ir, Pd, Au
5) 還元剤がジメチルァミンボランの場合: N i、 P d、 Ag、 Au、 P t  5) When the reducing agent is dimethylamine borane: Ni, Pd, Ag, Au, Pt
無電解メ ツキ時の反応 : (CH3) 2HN · BH3 + 3 H20 Reaction during electroless plating: (CH 3 ) 2 HN · BH 3 + 3 H 2 0
→ H 3 B 03 + ( C H 3 ) 2 H 2 N+ + 5 H+ + 6 e- ( 3 ) ウェハ Wの無電解メ ヅキ (ステップ S 1 3、 図 2 C、 2 D) ウェハ Wに対して無電解メ ツキを行い、 無電解メ ツキ膜を形成する。 なお、 この無電解メ ツキは、 後述するように、 図 3に示す装置を用いて、 図 5の手順で行うことができる。 → H 3 B 03 + (CH 3) 2 H 2 N + + 5 H + + 6 e− (3) Electroless plating of wafer W (step S 13, FIG. 2 C, 2 D) Wafer W Electroless plating is performed to form an electroless plating film. This electroless plating can be performed according to the procedure of FIG. 5 using the apparatus shown in FIG. 3 as described later.
無電解メ ツキの初期段階において、 無電解メ ツキ膜は触媒活性核 3上 に形成される (図 2 C)。 即ち、 この段階では触媒活性核 3が不連続膜の 場合には無電解メ ッキ膜も不連続膜になる。  In the initial stage of electroless plating, an electroless plating film is formed on catalytically active nuclei 3 (FIG. 2C). That is, at this stage, when the catalytic active nucleus 3 is a discontinuous film, the electroless plating film also becomes a discontinuous film.
その後、 無電解メツキ膜 4が成長して、 触媒活性核 3上の無電解メ ッ キ膜 4がウェハ Wの面上に拡がる。 即ち、 触媒活性核 3が不連続膜の場 合であっても触媒活性核 3上の無電解メ ツキ膜 4が互いに接続して連続 膜が形成される。  Thereafter, the electroless plating film 4 is grown, and the electroless plating film 4 on the catalytically active core 3 is spread on the surface of the wafer W. That is, even when the catalytic active nucleus 3 is a discontinuous film, the electroless plating films 4 on the catalytic active nucleus 3 are connected to each other to form a continuous film.
なお、 触媒活性核 3が連続膜の場合には、 図 2 C、 2 Dのような非連 続膜の無電解メ ッキ膜 4が形成される工程を必ずしも経ることなく、 連 続的な無電解メ ツキ膜 4が形成される。  When the catalytically active nucleus 3 is a continuous film, it is continuous without necessarily going through the process of forming the non-continuous film electroless plating film 4 as shown in FIGS. 2C and 2D. An electroless plating film 4 is formed.
(無電解メ ツキに用いる無電解メ ツキ装置の詳細)  (Details of the electroless plating device used for electroless plating)
図 3はステップ S 1 3での無電解メツキに用いられる無電解メ ツキ装 置 1 0の構成を示す一部断面図である。 無電解メ ツキ装置 1 0は、 処理液を用いて基板たるウェハ Wへの無電 解メツキ処理、 その前処理、 メツキ後の洗浄処理および乾燥処理を行う ことができる。 FIG. 3 is a partial cross-sectional view showing the configuration of the electroless plating apparatus 10 used for the electroless plating in step S13. The electroless plating apparatus 10 can perform the electroless plating process on the wafer W which is the substrate, the pretreatment process, the washing process after the plating process, and the drying process using the processing solution.
即ち、 処理液としては、 無電解メツキ用の薬液の他に、 メ ツキの前処 理、 後処理用の薬液、 純水等種々の液体を含めることができる。  That is, as the processing solution, in addition to the chemical solution for electroless plating, various liquids such as a pretreatment for plating, a chemical solution for post-treatment, pure water and the like can be included.
無電解メ ツキに用いる薬液 (無電解メ ツキ液) として以下の材料を混 合し純水に溶解したものを用いることができる。  As a chemical solution (electroless plating solution) used for the electroless plating, it is possible to use a mixture of the following materials and dissolving in pure water.
1 ) 金属塩 : メ ツキ膜を構成する金属イオンを供給する材料である。 金 属塩は、 メ ツキ膜が銅の場合には、 例えば、 硫酸銅、 硝酸銅、 塩化銅で ある。  1) Metal salt: A material that supplies the metal ions that make up the coating film. The metal salt is, for example, copper sulfate, copper nitrate, or copper chloride when the plating film is copper.
2 ) 錯化剤 : 強アルカリ性下において、 金属イオンが水酸化物として沈 殿しないように、 金属を錯体化して液中での安定性を向上させるための 材料である。 錯化剤には、 例えば、 アミ ン系材料として H E D T A、 E D T A、 E D、 有機系材料としてクェン酸、 酒石酸、 グルコン酸を用い ることができる。  2) Complexing agent: A material for complexing metal and improving its stability in liquid so that metal ions do not precipitate as hydroxide under strong alkalinity. As the complexing agent, for example, HEADTA, EDTA, ED as an amine-based material, and citric acid, tartaric acid, gluconic acid as an organic-based material can be used.
3 ) 還元剤 : 金属イオンを触媒的に還元析出させるための材料である。 還元剤には、 例えば、 ホルムアルデヒ ド、 次亜憐酸塩、 グリオキシル酸、 金属塩 (硝酸第ニコバルト等)、 ジメチルァミンボラン、 塩化第二スズ、 水素化ホウ素化合物を用いることができる。  3) Reducing agent: A material for catalytically reducing and precipitating metal ions. As the reducing agent, for example, formaldehyde, hypophosphite, glyoxylic acid, metal salt (eg, cobaltous nitrate), dimethylamine borane, stannic chloride, borohydride compound can be used.
4 ) 安定剤 : 酸化物 (メツキ膜が銅の場合には酸化第二銅) の不均一性 に起因するメ ツキ液の自然分解を防止する材料である。 安定剤には、 窒 素系の材料として、 例えば、 1価の銅と優先的に錯体を形成するビビル ジル、 シアン化合物、 チォ尿素、 0—フエナン ト口 リン、 ネオプロイ ン を用いることができる。  4) Stabilizer: A material that prevents the natural decomposition of the plating solution caused by the non-uniformity of the oxide (in the case of copper film, cupric oxide). As the stabilizer, for example, biviridyl which preferentially forms a complex with monovalent copper, cyanide compound, thiourea, 0-phenanthrin, neoproine can be used as a nitrogen-based material.
5 ) p H緩衝剤 : メ ヅキ液の反応が進んだときの p Hの変化を抑制する ための材料である。 p H緩衝剤には、 例えば、 ホウ酸、 炭酸、 ォキシ力 ルボン酸を用いることができる。 5) pH buffer: A material to control the change in pH when the reaction of the plating solution proceeds. For pH buffers, for example, boric acid, carbonic acid, hydroxyl power Rubynic acid can be used.
6 ) 添加剤 : 添加剤にはメ ツキ膜の析出の促進、 抑制を行う材料や、 表 面またはメ ツキ膜の改質を行う材料がある。  6) Additives: Additives include materials that promote and suppress the deposition of the coated film, and materials that modify the surface or coated film.
- メ ツキ膜の析出速度を抑制し、 メ ツキ液の安定化およびメ ツキ膜の 特性を改善するための材料としては、 硫黄系の材料として、 例えば、 チ ォ硫酸、 2— M B Tを用いることができる。  -As a material for suppressing the deposition rate of the coated film and improving the stability of the coating solution and the characteristics of the coated film, use, for example, thiosulfuric acid or 2-MBT as a sulfur-based material. Can.
• メ ツキ液の表面張力を低下させ、 ウェハ Wの面上にメ ツキ液が均一 に配置されるようにするための材料としては、 界面活性剤のノニオン系 材料として、 例えばポリアルキレングリコール、 ポリエチレングリコー ルを用いることができる。  • As a material for lowering the surface tension of the coating solution and for evenly placing the coating solution on the surface of the wafer W, for example, polyalkylene glycol, polyethylene as a nonionic material of surfactant Glycol can be used.
図 3に示すように無電解メツキ装置 1 0は、 ベース 1 1、 中空モ一夕 1 2 基板保持部たるウェハチヤック 2 0、 上部プレート 3 0、 下部プ レート 4 0、 カップ 5 0、 ノズルアーム 6 1、 6 2、 傾斜調節部たる基 板傾斜機構 7 0、 液供給機構 8 0を有する。 ここで、 中空モー夕 1 2、 ウェハチヤ ヅク 2 0、 上部プレート 3 0、 下部プレート 4 0、 カ ヅプ 5 0、 ノズルアーム 6 1、 6 2は、 直接的あるいは間接的にベース 1 1 に 接続され、 ベース 1 1 と共に移動、 基板傾斜機構 7 0による傾斜等が行 われる。  As shown in FIG. 3, the electroless plating apparatus 10 includes a base 1 1, a hollow mold 1 2, a wafer chuck 20 as a substrate holding unit, an upper plate 30, a lower plate 40, a cup 50, and a nozzle arm 6. 1, 6 2, the inclination adjustment section, the substrate inclination mechanism 70, and the liquid supply mechanism 80. Here, hollow cylinder 12, wafer chuck 20, upper plate 30, lower plate 40, cup 50, nozzle arm 61 and 62 are directly or indirectly connected to base 11. It moves with the base 1 1 and tilts by the substrate tilt mechanism 70.
ウェハチャック 2 0は、 ウェハ Wを保持 · 固定するものであり、 ゥェ ハ保持爪 2 1、 ウェハチヤック底板 2 3、 ウェハチャック支持部 2 4か ら構成される。  The wafer chuck 20 holds and fixes the wafer W, and includes a wafer holding claw 21, a wafer chuck bottom plate 23, and a wafer chuck support 24.
ウェハ保持爪 2 1は、 ウェハチヤック底板 2 3の外周上に複数個配置 され、 ウェハ Wを保持、 固定する。  A plurality of wafer holding claws 21 are arranged on the outer periphery of the wafer check bottom plate 23 to hold and fix the wafer W.
ウェハチヤック底板 2 3は、 ウェハチヤック支持部 2 4の上面に接続 された略円形の平板であり、 カップ 5 0の底面上に配置されている。 ウェハチャック支持部 2 4は、 略円筒形状であり、 ウェハチャ ック底 '板 2 3に設けられた円形状の開口部に接続され、 かつ中空モータ 1 2の 回転軸を構成する。 この結果、 中空モータ 1 2を駆動することで、 ゥェ ハ Wを保持したままで、ウェハチヤヅク 2 0を回転させることができる。 また、 後述するようにカップ 5 0が上下に移動可能であることから、 力 ヅプ 5 0の底に配置されているウェハチャック 2 0もカヅプ 5 0に伴つ て上下動を行う。 The wafer check bottom plate 23 is a substantially circular flat plate connected to the top surface of the wafer check support 24, and is disposed on the bottom of the cup 50. Wafer chuck support 24 has a substantially cylindrical shape and has a wafer chuck bottom It is connected to a circular opening provided in the plate 23 and constitutes a rotational shaft of the hollow motor 12. As a result, by driving the hollow motor 12, it is possible to rotate the wafer check 20 while holding the wafer W. Further, as described later, since the cup 50 can move up and down, the wafer chuck 20 disposed at the bottom of the force cup 50 also moves up and down with the cup 50.
上部プレート 3 0は、 略円形の平板形状であり、 ヒー夕 H (図示せず)、 処理液吐出口 3 1、 処理液流入部 3 2、 温度測定機構 3 3を有し、 かつ 昇降機構 3 4に接続されている。  The upper plate 30 has a substantially circular flat plate shape, and has a heat sink H (not shown), a treatment solution discharge port 31, a treatment solution inflow portion 32, a temperature measurement mechanism 33, and an elevation mechanism 3 Connected to four.
ヒ一夕 Hは上部プレート 3 0を加熱するための電熱線等の加熱手段で ある。 ヒー夕 Hは温度測定機構 3 3での温度測定結果に対応して、 上部 プレート 3 0、 ひいてはウェハ Wが所望の温度に保持されるように (例 えば、 室温から 6 0 °C程度の範囲)、 図示しない制御手段により発熱量が 制御される。  H is a heating means such as a heating wire for heating the upper plate 30. The heat treatment H corresponds to the temperature measurement result by the temperature measurement mechanism 33 so that the upper plate 30 and hence the wafer W can be maintained at a desired temperature (for example, the range from room temperature to about 60 ° C.) The amount of heat generation is controlled by control means (not shown).
処理液吐出口 3 1は、 上部プレート 3 0の下面に単数または複数形成 され、 処理液流入部 3 2から流入した処理液を吐出する。  One or more treatment liquid discharge ports 31 are formed on the lower surface of the upper plate 30 and discharge the treatment liquid flowing in from the treatment liquid inflow portion 32.
処理液流入部 3 2は上部プレート 3 0の上面側にあって、 処理液が流 入し、 流入した処理液は処理液吐出口 3 1へと分配される。 処理液流入 部 3 2に流入する処理液は、 純水 (R T :室温)、 加熱された薬液 1、 2 (例えば、 室温から 6 0 °C程度の範囲) を切り替えて用いることができ る。 また、 後述するミキシングボックス 8 5で混合された薬液 1、 2 (場 合により、 他の薬液を含む複数の薬液を混合して) を処理液流入部 3 2 に流入させることもできる。  The treatment liquid inflow portion 32 is on the upper surface side of the upper plate 30, and the treatment liquid flows in, and the treatment liquid that has flowed in is distributed to the treatment liquid discharge port 31. The processing liquid flowing into the processing liquid inflow section 32 can be used by switching the pure water (RT: room temperature) and the heated chemical solutions 1 and 2 (for example, the range from room temperature to about 60 ° C.). In addition, the chemical solutions 1 and 2 mixed in a mixing box 85 described later (in some cases, by mixing a plurality of other chemical solutions including other chemical solutions) can be made to flow into the processing solution inflow portion 3 2.
温度測定機構 3 3は、 上部プレート 3 0に埋め込まれた熱電対等の温 度測定手段であり、 上部プレート 3 0の温度を測定する。  The temperature measurement mechanism 33 is a temperature measurement means such as a thermocouple embedded in the upper plate 30 and measures the temperature of the upper plate 30.
昇降機構 3 4は、 上部プレート 3 0に接続され、 上部プレート 3 0を ウェハ Wに対向した状態で上下に昇降し、 例えば、 ウェハ Wとの間隔を 0 . 1〜 5 0 0 m mの間で制御することができる。 無電解メ ツキ中にお いてはウェハ Wと上部プレート 3 0を近接させ (例えば、 ウェハ Wと上 部プレート 3 0 との間隔が 2 m m以下)、これらのギヤヅプの空間の大き さを制限し、 ウェハ Wの面上に供給される処理液の均一化、 および使用 量の低減を図ることができる。 Lifting mechanism 34 is connected to upper plate 30 and upper plate 30 For example, the distance between the wafer W and the wafer W can be controlled within a range of 0.1 to 500 mm. During electroless plating, the wafer W and the top plate 30 are brought close to each other (for example, the distance between the wafer W and the top plate 30 is 2 mm or less), and the size of the space of these gaps is limited. It is possible to make the processing liquid supplied onto the surface of the wafer W uniform and reduce the amount used.
下部プレート 4 0は、 ウェハ Wの下面に対向して配置された略円形の 平板形状であり、 ウェハ Wに近接した状態でその下面へ加熱された純水 の供給を行うことで、 ウェハ Wを適宜に加熱することができる。  The lower plate 40 is a substantially circular flat plate disposed to face the lower surface of the wafer W, and the wafer W is supplied by supplying heated pure water to the lower surface in a state close to the wafer W. It can be heated appropriately.
ウェハ Wの加熱を効率よく行うためには、 下部プレート 4 0の大きさ がウェハ wの大きさに近似することが好ましい。 具体的には、 下部プレ ート 4 0の大きさがウェハ Wの面積の 8 0 %以上、 あるいは 9 0 %以上 とすることが好ましい。  In order to heat the wafer W efficiently, it is preferable that the size of the lower plate 40 be close to the size of the wafer w. Specifically, the size of the lower plate 40 is preferably 80% or more, or 90% or more of the area of the wafer W.
下部プレート 4 0は、その上面の中央に処理液吐出口 4 1が形成され、 支持部 4 2で支持されている。  The lower plate 40 has a processing solution discharge port 41 formed at the center of its upper surface, and is supported by a support portion 42.
処理液吐出口 4 1は、 支持部 4 2内を通過した処理液が吐出する。 処 理液は純水 (R T :室温)、 加熱された純水 (例えば、 室温から 6 0 °C程 度の範囲) を切り替えて用いることができる。  The processing liquid discharge port 41 discharges the processing liquid that has passed through the inside of the support portion 42. The processing solution can be used by switching between pure water (RT: room temperature) and heated pure water (for example, a range from room temperature to about 60 ° C.).
支持部 4 2は、 中空モ一夕 1 2を貫通し、間隔調節部たる昇降機構(図 示せず) に接続されている。 昇降機構を動作することで、 支持部 4 2、 ひいては下部プレート 4 0を上下に昇降することができる。  The support portion 42 penetrates the hollow cylinder 12 and is connected to a lift mechanism (not shown) which is a distance adjustment portion. By operating the elevating mechanism, the support portion 42 and hence the lower plate 40 can be vertically moved up and down.
カップ 5 0は、 ウェハチャック 2 0をその中に保持し、 かつウェハ W の処理に用いられた処理液を受け止め排出するものであり、 カツプ側部 5 1、 力ヅプ底板 5 2、 廃液管 5 3を有する。  The cup 50 holds the wafer chuck 20 therein and receives and discharges the processing solution used for processing the wafer W. The cup side 51, the force cup bottom plate 52, the waste pipe It has five three.
カップ側部 5 1は、 その内周がウェハチャック 2 ◦の外周に沿う略円 筒形であり、 その上端がウェハチヤック 2 0の保持面の上方近傍に位置 している。 The cup side 51 has a substantially cylindrical shape whose inner periphery is along the periphery of the wafer chuck 2 °, and its upper end is located in the vicinity of the upper side of the holding surface of the wafer chuck 20. doing.
カップ底板 5 2は、 カップ側部 5 1の下端に接続され、 中空モ一夕 1 2に対応する位置に開口部を有し、 その開口部に対応する位置にウェハ チャック 2 0が配置されている。  The cup bottom plate 52 is connected to the lower end of the cup side 51, and has an opening at a position corresponding to the hollow mirror 12. The wafer chuck 20 is disposed at a position corresponding to the opening. There is.
廃液管 5 3は、 カツプ底板 5 2に接続され、 カップ 5 0から廃液 (ゥ ェハ Wを処理した処理液) を無電解メ ッキ装置 1 0が設置された工場の 廃液ライン等へと排出するための配管である。  The waste liquid pipe 53 is connected to the cup bottom plate 52, and the waste liquid (treatment liquid treated with Wah W) is connected to the waste liquid line etc. of the plant where the electroless plating device 10 is installed from the cup 50. It is piping for discharging.
カップ 5 0は、 図示しない昇降機構に接続され、 ベース 1 1 とウェハ Wに対して上下に移動することができる。  The cup 50 is connected to a lifting mechanism (not shown) and can move up and down relative to the base 1 1 and the wafer W.
ノズルアーム 6 1、 6 2は、 ウェハ Wの上面近傍に配置され、 その先 端の開口部から処理液、 エア一等の流体を吐出する。 吐出する流体は純 水、 薬液、 窒素ガスを適宜に選択することができる。 ノズルアーム 6 1、 6 2にはそれぞれ、 ウェハ Wの中央に向かう方向にノズルアーム 6 1、 6 2を移動させる移動機構 (図示せず) が接続されている。 ウェハ に 流体を吐出する場合にはノズルアーム 6 1、 6 2がウェハ Wの上方に移 動され、 吐出が完了するとウェハ Wの外周の外に移動される。 なお、 ノ ズルアームの数は吐出する薬液の量、 種類により単数もしくは 3本以上 にすることも可能である。  The nozzle arms 61 and 62 are disposed in the vicinity of the upper surface of the wafer W, and discharge the fluid such as the processing liquid or air from the opening at the tip end thereof. As the fluid to be discharged, pure water, chemical solution and nitrogen gas can be appropriately selected. Moving mechanisms (not shown) for moving the nozzle arms 61, 62 in the direction toward the center of the wafer W are connected to the nozzle arms 61, 62, respectively. When the fluid is discharged onto the wafer, the nozzle arms 61 and 62 are moved to the upper side of the wafer W, and when the discharge is completed, the nozzle arms 61 and 62 are moved out of the outer periphery of the wafer W. The number of nozzle arms can be one or three or more depending on the amount and type of the chemical solution to be discharged.
基板傾斜機構 7 0は、 ベース 1 1に接続され、 ベース 1 1の一端を上 下させることで、 ベース 1 1、 およびこれに接続されたウェハチャック 2 0、 ウェハ W、 上部プレート 3 0、 下部プレート 4 0、 カップ 5 0を 例えば、 0〜 1 0 ° 、 あるいは◦〜 5 ° の範囲で傾斜させる。  The substrate inclining mechanism 70 is connected to the base 1 1, and the base 1 1 is connected to the base 1 1 by raising and lowering one end of the base 1 1, and the wafer chuck 20, wafer W, top plate 30, lower portion connected thereto. Plate 40, cup 50 are inclined, for example, in the range of 0 to 10 ° or 0 to 5 °.
図 4は基板傾斜機構 7 0によって、 ウェハ W等が傾斜された状態を表 す一部断面図である。 基板傾斜機構 7 0によってベース 1 1が傾き、 ベ ース 1 1に直接的あるいは間接的に接続されたウェハ W等が角度 0傾斜 していることが判る。 液供給機構 8 0は、 上部プレート 3 0、 下部プレート 4 0に加熱され た処理液を供給するものであり、 温度調節機構 8 1、処理液タンク 8 2、 8 3、 8 4、 ポンプ P 1〜 P 5、 バルブ V 1〜 V 5、 ミキシングボック ス 8 5から構成される。 なお、 図 3は薬液 1、 2 と 2種類の薬液を用い た場合を表しているが、 処理タンク、 ポンプ、 バルブの数はミキシング ボックス 8 5で混合する薬液の数に応じて適宜に設定できる。 FIG. 4 is a partial cross-sectional view showing the wafer W or the like being tilted by the substrate tilting mechanism 70. It can be seen that the base 11 is inclined by the substrate inclining mechanism 70, and the wafer W or the like directly or indirectly connected to the base 11 is inclined at an angle 0. The liquid supply mechanism 80 is to supply the processing solution heated to the upper plate 30 and the lower plate 40, and the temperature control mechanism 81, the treatment solution tank 82, 83, 84, and the pump P1. ~ P 5, valves V 1 to V 5, mixing box 85 are included. Although FIG. 3 shows the case where the chemical solutions 1 and 2 and two kinds of chemical solutions are used, the number of processing tanks, pumps and valves can be set appropriately according to the number of chemical solutions to be mixed in the mixing box 85. .
温度調節機構 8 1はその内部に温水、 および処理液夕ンク 8 2〜 8 4 を有し、 処理液夕ンク 8 2〜 8 4中の処理液 (純水、 薬液 1、 2 ) を温 水によって加熱する装置であり、 処理液を例えば、 室温から 6 0 °C程度 の範囲で適宜に加熱する。 この温度調節には、 例えば、 ウォー夕バス、 投げ込みヒータ、 外部ヒー夕を適宜に用いることができる。  The temperature control mechanism 81 has warm water and treatment solution balances 82 to 4 in its interior, and the treatment solution balances 82 to 84 are used to warm the treatment solution (pure water, chemical solutions 1 and 2). The apparatus heats the processing solution appropriately, for example, in the range from room temperature to about 60.degree. For this temperature control, for example, a war bath, a throwing heater, and an external heating can be used as appropriate.
処理液夕ンク 8 2、 8 3、 8 4は、 それぞれ、 純水、 薬液 1、 2を保 持するタンクである。  The treatment solution tanks 82, 8 3 and 8 4 are tanks for holding pure water and chemicals 1 and 2, respectively.
ポンプ P 1〜P 3は、処理液夕ンク 8 2〜 8 4から処理液を吸い出す。 なお、 処理液夕ンク 8 2〜 8 4をそれぞれ加圧することで、 処理液夕ン ク 8 2〜 8 4からの送液を行ってもよい。  The pumps P1 to P3 suck the processing solution from the processing solution reservoirs 82 to 84. In addition, you may perform the liquid feeding from processing solution tank 82-84 by pressurizing process solution tank 82-84, respectively.
バルブ V 1〜 V 3は配管の開閉を行い、 処理液の供給および供給停止 を行う。 また、 バルブ V 4、 V 5は、 それぞれ上部プレート 3 0、 下部 プレート 4 0に室温の (加熱されない) 純水を供給するためのものであ る。  Valves V1 to V3 open and close pipes, and supply and stop the treatment liquid. The valves V4 and V5 are for supplying room temperature (not heated) pure water to the upper plate 30 and the lower plate 40, respectively.
ミキシングボックス 8 5は、 処理液夕ンク 8 3、 8 4から送られた薬 液 1、 2を混合するための容器である。  The mixing box 85 is a container for mixing the liquid medicines 1 and 2 sent from the processing liquid tanks 83 and 84.
上部プレート 3 0には、 薬液 1、 2を適宜にミキシングボックス 8 5 で混合、 温度調節して送ることができる。 また、 下部プレート 4 0には、 温度調節された純水を適宜に送ることができる。  To the upper plate 30, the chemical solutions 1 and 2 can be appropriately mixed in the mixing box 85 and temperature-controlled and sent. In addition, temperature-controlled pure water can be appropriately sent to the lower plate 40.
(無電解メ ツキ工程の詳細) 図 5は、 無電解メヅキ装置 1 0を用いて前述のステップ S 1 1、 S 1 2の工程を経たウェハ Wに対して無電解メ ツキを行う手順の一例を表す フロー図である。 また、 図 6から 1 2は、 図 5に表した手順で無電解メ ツキを行った場合において、 各工程における無電解メ ツキ装置 1 0の状 態を表した一部断面図である。 以下、 図 5〜 1 2を用いてこの手順を詳 細に説明する。 (Details of electroless plating process) FIG. 5 is a flow chart showing an example of a procedure for performing electroless plating on the wafer W which has been subjected to the steps S11 and S12 described above using the electroless plating apparatus 10. 6 to 12 are partial cross-sectional views showing the state of the electroless plating apparatus 10 in each step when the electroless plating is performed according to the procedure shown in FIG. The procedure will be described in detail below with reference to FIGS.
( 1 ) ウェハ Wの保持 (ステップ S 1および図 6 )  (1) Holding wafer W (Step S1 and Figure 6)
前述のステヅプ S 1 1、 S 1 2の工程を経たウェハ Wがウェハチヤヅ ク 2 0上に保持される。 例えば、 ウェハ Wをその上面で吸引した図示し ない吸引アーム (基板搬送機構) がウェハチャック 2 0上にウェハ Wを 載置する。 そして、 ウェハチャック 2 0のウェハ保持爪 2 1によってゥ ェハ Wを保持 · 固定する。 なお、 カップ 5 0を降下させることで、 ゥェ ハ Wの上面より下で吸引アームを水平方向に動かすことができる。  The wafer W which has been subjected to the steps S11 and S12 described above is held on the wafer mask 20. For example, a suction arm (substrate transfer mechanism) (not shown) having the wafer W suctioned on its upper surface mounts the wafer W on the wafer chuck 20. Then, the wafer W is held and fixed by the wafer holding claw 21 of the wafer chuck 20. In addition, by lowering the cup 50, the suction arm can be moved horizontally below the upper surface of the light W.
( 2 ) ウェハ Wの前処理 (ステップ S 2および図 7 )  (2) Pre-treatment of wafer W (Step S2 and Figure 7)
ウェハ Wを回転させ、 ウェハ Wの上面にノズルアーム 6 1 またはノズ ルアーム 6 2から処理液を供給することで、 ウェハ Wの前処理が行われ る。  The wafer W is pretreated by rotating the wafer W and supplying the processing solution to the upper surface of the wafer W from the nozzle arm 61 or the nozzle arm 62.
ウェハ Wの回転は中空モ一夕 1 2によ りウェハチヤヅク 2 0を回転す ることで行われ、 このときの回転速度は一例として 1 0 0〜 2 0 0 r p mとすることができる。  The rotation of the wafer W is performed by rotating the wafer chuck 20 by means of the hollow cylinder 12. The rotation speed at this time can be, for example, 10 0 to 20 r p m.
ノズルアーム 6 1、 6 2いずれかまたは双方がウェハ Wの上方に移動 し、 処理液を吐出する。 ノズルアーム 6 1、 6 2から供給される処理液 は、 前処理の目的に応じて、 例えば、 ウェハ W洗浄用の純水あるいはゥ ェハ Wの触媒活性化処理用の薬液が順次に供給される。 このときの吐出 量は、 ウェハ W上に処理液のパ ドル (層) を形成するに必要な量、 例え ば、 1 0 0 m L程度で足り る。 但し、 必要に応じて、 吐出量を多く して も差し支えない。 また、 吐出される処理液は適宜に加熱 (例えば、 室温 から 6 0 °C程度の範囲) してもよい。 The nozzle arm 61 or 62 moves to the upper side of the wafer W and discharges the processing solution. As the processing solution supplied from the nozzle arms 61 and 62, for example, pure water for cleaning the wafer W or chemical solution for catalyst activation processing of wafer W is sequentially supplied according to the purpose of the pretreatment. Ru. The discharge amount at this time may be an amount necessary to form a pad (layer) of the processing liquid on the wafer W, for example, about 100 ml. However, if necessary, increase the discharge amount. No problem. In addition, the processing solution to be discharged may be appropriately heated (for example, in the range of about room temperature to about 60 ° C.).
( 3 ) ウェハ Wの加熱 (ステップ S 3および図 8 )  (3) Heating the wafer W (Step S3 and Figure 8)
ウェハ Wをメ ッキ液の反応に適した温度に保っためにウェハ Wの加熱 が行われる。  The wafer W is heated to keep the wafer W at a temperature suitable for the reaction of the plating solution.
下部プレート 4 0を加熱してウェハ Wの下面に近接させ(一例として、 ウェハ W下面と下部プレート 4 0上面との間隔: 0 . 1〜 2 m m程度)、 処理液吐出口 4 1から液供給機構 8 0で加熱された純水を供給する。 こ の加熱された純水は、 ウェハ W下面と下部プレート 4 0上面との間に充 満し、 ウェハ Wを加熱する。  The lower plate 40 is heated to be close to the lower surface of the wafer W (as an example, the distance between the lower surface of the wafer W and the upper surface of the lower plate 40: about 0.1 to 2 mm) Supply pure water heated by mechanism 80. The heated pure water fills the space between the lower surface of the wafer W and the upper surface of the lower plate 40 to heat the wafer W.
なお、 このウェハ Wの加熱中にウェハ Wを回転することで、 ウェハ W の加熱の均一性を向上することができる。  By rotating the wafer W during heating of the wafer W, the uniformity of heating of the wafer W can be improved.
ウェハ Wを純水等の液体で加熱することで、 ウェハ Wと下部プレート 4 0 とを別個に回転または非回転とすることが容易となり、 かつウェハ W下面の汚染が防止される。  By heating the wafer W with a liquid such as pure water, it becomes easy to make the wafer W and the lower plate 40 separately rotate or non-rotate, and contamination of the lower surface of the wafer W is prevented.
以上のウェハ Wの加熱は他の手段で行っても差し支えない。 例えば、 ヒ一夕ゃランプの輻射熱によってウェハ Wを加熱しても差し支えない。 また、 場合により、 加熱した下部プレート 4 0をウェハ Wに接触するこ とでウェハ Wを加熱してもよい。  The above heating of the wafer W may be performed by other means. For example, the wafer W may be heated by radiant heat of a lamp. Also, in some cases, the wafer W may be heated by contacting the heated lower plate 40 with the wafer W.
( 4 ) メ ヅキ液の供給 (ステヅプ S 4および図 9 )。  (4) Supply of solution (Step S4 and Fig. 9).
上部プレート 3 0を加熱してウェハ Wの上面に近接させ(一例として、 ウェハ W上面と上部プレート 3 0下面との間隔: 0 . 1〜 2 m m程度)、 処理液吐出口 3 1からメ ツキ用の薬液 (メ ツキ液) を供給する (一例と して、 3 0〜 : L 0 0 m L / m i n )。 供給されたメヅキ液は、 ウェハ W上 面と上部プレート 3 0下面との間に充満し、 カップ 5 0へと流出する。 このとき、 メ ヅキ液は上部プレート 3 0によって温度調節される (一例 として、 室温から 6 0 °C程度の範囲)。 なお、 供給されるメ ツキ液は液供 給機構 8 0によって温度調節されていることが好ましい。 The upper plate 30 is heated to be close to the upper surface of the wafer W (as an example, the distance between the upper surface of the wafer W and the lower surface of the upper plate 30: about 0.1 to 2 mm) Supply chemical solution (marking solution) for use (for example, 30 to: L 0 0 m L / min). The supplied plating solution fills the space between the upper surface of the wafer W and the lower surface of the upper plate 30 and flows out to the cup 50. At this time, the temperature is controlled by the upper plate 30 (an example) As the room temperature to about 60 ° C). Preferably, the temperature of the supplied coating liquid is controlled by the liquid supply mechanism 80.
ここで、 ウェハチヤヅク 2 0によってウェハ Wを回転することで、 ゥ ェハ Wに形成されるメヅキ膜の均一性を向上できる。 一例として、 ゥェ ハ Wを 1 0〜 5 0 r p mで回転する。  Here, by rotating the wafer W by means of the wafer chuck 20, the uniformity of the metal film formed on the wafer W can be improved. As an example, ゥ W W is rotated by 10 to 50 r p m.
また、 上部プレート 3 0の加熱は先のステップ S 1〜 S 3のどこかで 先行して行うことができる。 上部プレート 3 0の加熱を他の工程と並行 して行うことでウェハ Wの処理時間を低減できる。  Also, the heating of the upper plate 30 can be preceded by any of the steps S1 to S3 above. By heating the upper plate 30 in parallel with the other steps, the processing time of the wafer W can be reduced.
以上のように、 ウェハ Wの上面に所望の温度に加熱されたメツキ液を 供給することでウェハ Wにメ ツキ膜が形成される。 このメ ツキ液の供給 中にウェハ Wを回転することで、 ウェハ Wへのメ ヅキ膜の形成の均一性 を向上することができる。  As described above, by supplying the plating liquid heated to a desired temperature to the upper surface of the wafer W, a marking film is formed on the wafer W. By rotating the wafer W during the supply of this plating solution, the uniformity of the formation of the plating film on the wafer W can be improved.
以上のメ ツキ液の供給に際して、 以下のようなことを行うことも可能 である。  It is also possible to carry out the following in the supply of the above-mentioned plating solution.
1 ) メ ッキ液の供給前に、 基板傾斜機構 7 0によってウェハチヤック 2 0および上部プレート 3 0を傾斜させることができる。  1) The wafer chuck 20 and the upper plate 30 can be tilted by the substrate tilting mechanism 70 before the supply of the plating solution.
ウェハ Wが傾斜されることで、 ウェハ Wと上部プレート 3 0間の気体 を速やかに除去し、 メツキ液に置換することができる。 仮に、 ウェハ W と上部プレート 3 0間の気体の除去が不完全だと、 ウェハ Wと上部プレ —ト 3 0間に気泡が残存し形成されるメ ツキ膜の均一性が阻害される原 因になる。  By tilting the wafer W, the gas between the wafer W and the upper plate 30 can be quickly removed and replaced with a plating solution. If removal of the gas between the wafer W and the upper plate 30 is incomplete, the cause is that the uniformity of the plating film formed by remaining air bubbles between the wafer W and the upper plate 30 is disturbed. become.
また、 メ ヅキ液によるメ ツキ膜の形成に伴って気体 (例えば、 水素) が発生し、 発生した気体により気泡が形成されて、 メ ツキ膜の均一性が 阻害される可能性もある。  In addition, a gas (for example, hydrogen) may be generated as a result of the formation of the coating film by the plating solution, and bubbles may be formed by the generated gas, which may inhibit the uniformity of the coating film.
基板傾斜機構 7 0によってウェハ Wを傾斜させることで、 気泡の発生 の低減および発生した気泡の脱出の促進を図り、 メツキ膜の均一性を向 上することが可能となる。 Inclination of the wafer W by the substrate inclining mechanism 70 reduces generation of air bubbles and promotes escape of generated air bubbles to improve uniformity of the marking film. It is possible to go up.
2 ) メ ツキ液の温度を時間的に変化させることができる。  2) The temperature of the marking liquid can be changed temporally.
このようにすることで、 形成されるメ ヅキ膜の層方向でその構造や組 成を変化させることができる。  By doing this, it is possible to change the structure and composition in the layer direction of the metal film to be formed.
3 ) メ ヅキ膜の形成中におけるメ ヅキ液の供給を、 連続的ではなく、 間 欠的に行うこともできる。 ウェハ W上に供給されたメツキ液を効率良く 消費して、 その使用量を削減できる。 3) It is possible to supply the plate liquid during the formation of the metal film, not continuously but intermittently. The plating solution supplied onto the wafer W can be efficiently consumed to reduce the amount used.
( 5 ) ウェハ Wの洗浄 (ステップ S 5および図 1 0 ) 0 (5) Cleaning wafer W (Step S 5 and Fig. 10) 0
ウェハ Wを純水で洗浄する。 この洗浄は、 上部プレート 3 0の処理液 吐出口 3 1から吐出される処理液をメ ッキ液から純水に切り替えること で行える。 このとき、 下部プレート 4 0の処理液吐出口 4 1から純水を 供給することができる。  The wafer W is cleaned with pure water. This cleaning can be performed by switching the processing solution discharged from the processing solution discharge port 31 of the upper plate 30 from the plating solution to pure water. At this time, pure water can be supplied from the processing solution discharge port 41 of the lower plate 40.
ウェハ Wの洗浄に、 ノズルアーム 6 1、 6 2を用いることもできる。 このときには、 上部プレート 3 0の処理液吐出口 3 1からのメ ヅキ液の 供給を停止し、 上部プレート 3 0をウェハ Wから離す。 しかる後に、 ノ ズルアーム 6 1、 6 2をウェハ Wの上方に移動させて、純水を供給する。 このときにも下部プレート 4 0の処理液吐出口 4 1から純水を供給する ことが好ましい。  The nozzle arms 61 and 62 can also be used to clean the wafer W. At this time, the supply of the plating solution from the processing solution discharge port 31 of the upper plate 30 is stopped, and the upper plate 30 is separated from the wafer W. Thereafter, the nozzle arms 61, 62 are moved to above the wafer W to supply pure water. Also at this time, it is preferable to supply pure water from the processing solution discharge port 41 of the lower plate 40.
以上のウェハ Wの洗浄中にウェハ Wを回転することで、 ウェハ Wの洗 浄の均一性を向上することができる。  By rotating the wafer W during the above-described cleaning of the wafer W, the uniformity of the cleaning of the wafer W can be improved.
( 6 ) ウェハ Wの乾燥 (ステップ S 6および図 1 1 )。  (6) Drying of the wafer W (step S6 and FIG. 1 1).
ウェハ Wへの純水の供給を停止し、ウェハ Wを高速で回転することで、 ウェハ W上の純水を除去する。 場合によ り、 ノズルアーム 6 1、 6 2か ら窒素ガスを噴出してウェハ Wの乾燥を促進してもよい。  The supply of pure water to the wafer W is stopped, and the pure water on the wafer W is removed by rotating the wafer W at high speed. In some cases, nitrogen gas may be jetted from the nozzle arms 61 and 62 to accelerate the drying of the wafer W.
( 7 ) ウェハ Wの除去 (ステップ S 7および図 1 2 )。  (7) Removal of wafer W (step S7 and FIG. 12).
ウェハ Wの乾燥が終了した後、 ウェハチヤック 2 0によるウェハ Wの 保持が停止される。 その後、 図示しない吸引アーム (基板搬送機構) に よりウェハ Wがウェハチャック 2 0上から取り去られる。 After drying of the wafer W is completed, the wafer chuck 20 Holding is stopped. Thereafter, the wafer W is removed from the wafer chuck 20 by a suction arm (substrate transfer mechanism) not shown.
(第 2実施形態)  Second Embodiment
図 1 3は、 本発明の第 2実施形態に係る無電解メツキ方法の工程を表 すフ口一図である。 また、 図 1 4 A、 1 4 Bは図 1 3の工程におけるゥ ェハ Wの断面を表す断面図である。  FIG. 13 is a view showing steps of the electroless plating method according to the second embodiment of the present invention. FIGS. 14A and 14B are cross-sectional views showing the cross section of wafer W in the process of FIG.
図 1 3に示すように、 本発明の第 2実施形態に係る無電解メツキ方法 では、 ステップ S 2 1〜 S 2 2の順にウェハ Wが処理される。 以下、 こ の処理手順の詳細を説明する。  As shown in FIG. 13, in the electroless plating method according to the second embodiment of the present invention, the wafer W is processed in the order of steps S 21 to S 22. The details of this processing procedure are described below.
( 1 ) ウェハ Wへのバリァ層の形成 (ステップ S 2 1、 図 1 4 A ) ウェハ Wにバリア層 2 aが形成される。 このバリア層 2 aには、 無電 解メ ツキ液の還元剤に対して触媒活性を有しない非触媒活性材料に無電 解メツキ液の還元剤に対して触媒活性を有する触媒活性材料が混合 ( ド —プ) して用いられる。  (1) Formation of barrier layer on wafer W (Step S 21, FIG. 14 A) A barrier layer 2 a is formed on the wafer W. In this barrier layer 2a, a non-catalytic material having no catalytic activity for the reducing agent of the non-electrolytic plating solution is mixed with a catalytically active material having a catalytic activity for the reducing agent of the non-electrolytic plating solution ( — Used as
非触媒活性材料として、 例えば、 T a、 T a N、 W、 W N、 T i、 T i Nのいずれかが用いられる。 非触媒活性材料に触媒活性材料を ドープ することで、 ノ リア層 2 aに触媒活性を付与することができる。  As the non-catalytically active material, for example, any one of T a, T a N, W, W N, T i and T i N is used. By doping the non-catalytically active material with the catalytically active material, catalytic activity can be imparted to the noble layer 2a.
触媒活性材料としては、 第 1の実施形態で示した触媒活性材料を無電 解メ ッキ液の還元剤に対応して選択することができる。  As the catalytically active material, the catalytically active material shown in the first embodiment can be selected according to the reducing agent of the nonelectrolytic plating solution.
バリア層 2 aの形成は例えば、 物理的成膜法によって行うことができ る。 具体的には、 非触媒活性材料と触媒活性材料を混合したターゲッ ト を用いた (あるいは、 非触媒活性材料、 触媒活性材料それぞれの夕ーゲ ヅ トとを同時に用いた) スパッタ リ ング法によって、 ノ リア層 2 aを形 成できる。 これは非触媒活性材料と触媒活性材料を同時に蒸発させた真 空蒸着 (共蒸着) によって行うこともできる。  The formation of the barrier layer 2a can be performed, for example, by a physical film forming method. Specifically, the target is a mixture of a noncatalytic material and a catalytic material (or a combination of noncatalytic material and catalytic material at the same time) by a sputtering method. , Nolia layer 2 a can be formed. This can also be done by vacuum evaporation (co-evaporation) with simultaneous evaporation of non-catalytic and catalytically active material.
( 2 ) ウェハ Wの無電解メ ヅキ (ステップ S 2 2、 図 1 4 B ) ウェハ Wに対して無電解メツキを行い、 無電解メッキ膜 4 aを形成す る。 この場合、 バリア層 2 aにはド一プされた触媒活性材料に基づいて、 触媒活性が付与されていることから、 バリア層 2 a上に無電解メ ツキ膜 4 aが形成される。 (2) Electroless plating of wafer W (Step S 2 2, Fig. 1 4 B) Electroless plating is performed on the wafer W to form an electroless plating film 4 a. In this case, the catalytic activity is imparted to the barrier layer 2a based on the doped catalytic active material, so that the electroless plating film 4a is formed on the barrier layer 2a.
(第 3実施形態)  Third Embodiment
図 1 5は、 本発明の第 3実施形態に係る無電解メツキ方法の工程を表 すフロー図である。 また、 図 1 6 A、 1 6 Bは図 1 5の工程におけるゥ ェハ Wの断面を表す断面図である。  FIG. 15 is a flowchart showing the steps of the electroless plating method according to the third embodiment of the present invention. 16A and 16B are cross-sectional views showing the cross section of wafer W in the process of FIG.
図 1 5に示すように、 本発明の第 3実施形態に係る無電解メ ツキ方法 では、 ステップ S 3 1〜S 3 2の順にウェハ Wが処理される。 以下、 こ の処理手順の詳細を説明する。  As shown in FIG. 15, in the electroless plating method according to the third embodiment of the present invention, the wafer W is processed in the order of steps S 31 to S 32. The details of this processing procedure are described below.
( 1 ) ウェハ Wへのバリァ層の形成 (ステヅプ S 3 1、 図 1 6 A )  (1) Formation of barrier layer on wafer W (Step S 3 1, Fig. 16 A)
ウェハ Wにバリア層 2 bが形成される。 このバリア層 2 bは、 無電解 メツキ液の還元剤に対して触媒活性を有する触媒活性材料によって構成 される。  Barrier layer 2 b is formed on wafer W. The barrier layer 2 b is composed of a catalytically active material having catalytic activity with respect to the reducing agent of the electroless plating solution.
触媒活性材料としては、 第 1の実施形態で示した触媒活性材料を無電 解メ ヅキ液の還元剤に対応して選択することができる。  As the catalytically active material, the catalytically active material shown in the first embodiment can be selected according to the reducing agent of the non-electrolytic plating solution.
バリア層 2 bの形成は例えば、 物理的成膜法 (例えば、 スパッタ リ ン グ法、 真空蒸着法) や化学的成膜法 (例えば、 C V D法) によって行う ことができる。  The barrier layer 2 b can be formed, for example, by a physical deposition method (for example, a sputtering method, a vacuum evaporation method) or a chemical deposition method (for example, a C V D method).
( 2 ) ウェハ Wの無電解メ ツキ (ステップ S 3 2、 図 1 6 B )  (2) Electroless plating of wafer W (Step S32, Fig. 16 B)
ウェハ Wに対して無電解メ ツキを行い、 無電解メ ツキ膜を形成する。 この場合、 バリア層 2 bを構成する触媒活性材料が触媒活性を有するこ とから、 ノ リァ層 2 b上に無電解メ ッキ膜 4 bが形成される。  Electroless plating is performed on the wafer W to form an electroless plating film. In this case, since the catalytically active material constituting the barrier layer 2 b has catalytic activity, the electroless plating film 4 b is formed on the noble layer 2 b.
(実施例 1 )  (Example 1)
無電解メ ツキ液を構成する金属塩、 還元剤それぞれに、 銅塩、 グリオ キシル酸を用いて、 第 3の実施形態に対応する手順 (バリア層を触媒活 性材料で構成) で銅の無電解メ ツキ膜を形成した。 Metal salts and reductants that make up the electroless plating solution, copper salts, gli Using copper xylic acid, a copper electroless plated film was formed according to the procedure corresponding to the third embodiment (the barrier layer is composed of a catalytically active material).
具体的には、 下地 (バリァ層) が R u、 A g、 P t、 V、 I n、 I r、 C o、 R hそれぞれについて銅の無電解メツキを行った。 また、 比較例 として、 下地が Cu、 TaN、 T i N、 W、 WN、 T aの場合について も銅の無電解メ ツキを行った。  Specifically, electroless plating of copper was performed for each of the underlayer (varier layer) Ru, Ag, Pt, V, In, Ir, Co, and Rh. In addition, as a comparative example, copper electroless plating was performed also in the case where the base was Cu, TaN, TiN, W, WN, and Ta.
下地が Ru、 Ag、 P t、 I rの場合はいずれも、 下地が Cuの場合 と比べても良好な密着性、 析出速度を示した。 特に下地が Ru、 Agの 場合は下地が Cuの場合よりも良好な密着性を示した。  When the underlayer is Ru, Ag, Pt, or Ir, all showed better adhesion and deposition rate than the underlayer with Cu. In particular, when the substrate is Ru or Ag, the adhesion is better than when the substrate is Cu.
これに対して、 WN、 T aは、 C uの析出自体が行われなかった。 ま た、 下地が T aN、 T i N、 Wの場合は、 C uの形成は行われるものの、 形成された C uの下地への密着性が良好とは言い難かった。  On the other hand, WN and T a did not precipitate Cu itself. Also, in the case where the base is Ta N, T i N, or W, although the formation of Cu is carried out, it is hard to say that the adhesion to the base of the formed Cu is good.
(実施例 2 )  (Example 2)
無電解メ ツキ液を構成する金属塩、 還元剤それぞれに、 銅塩、 金属 塩 (硝酸コバルト) を用いて、 第 3の実施形態に対応する手順 (バリア 層を触媒活性材料で構成) で銅の無電解メ ツキ膜を形成した。  A copper salt and a metal salt (cobalt nitrate) are used for each of the metal salt and the reducing agent constituting the electroless plating solution, and copper is applied according to the procedure corresponding to the third embodiment (the barrier layer is composed of a catalytically active material) The electroless plating film was formed.
具体的には、 下地 (バリア層) が Ag、 I r、 Rhそれぞれについて 銅の無電解メツキを行った。 また、 比較例として、 下地が Cu、 T aN、 T i N、 W、 WN、 V、 C o、 I n、 Ru、 P tの場合についても銅の 無電解メ ツキを行った。  Specifically, electroless plating of copper was performed for each of Ag, Ir, and Rh as the base (barrier layer). In addition, as a comparative example, electroless plating of copper was performed also when the base was Cu, TaN, TiN, W, WN, V, Co, In, Ru, Pt.
下地が Ag、 I r、 Rhの場合はいずれも、 下地が Cuの場合と比べ ても良好な密着性、 析出速度を示した。 特に、 下地が Agの場合は下地 が Cuの場合よりも良好な密着性を示した。  When the underlayer is Ag, Ir, or Rh, all showed better adhesion and deposition rate than the case where the underlayer is Cu. In particular, when the base was Ag, the adhesion was better than when the base was Cu.
これに対して、 下地が T a、 T aN、 T i N、 W、 WN、 V、 I n、 Ruの場合はいずれも、 C uの析出自体が行われなかった。 下地が P t の場合は、 C uの形成が行われるものの十分ではなかった。 また、 下地 が C o、 R hの場合は、 C uの形成は行われるものの、 形成された C u の下地への密着性が良好とは言い難かった。 On the other hand, when the base was Ta, TaN, Tin, W, WN, V, In, Ru, deposition of Cu itself was not performed. When the substrate is Pt, although Cu formation is performed, it is not sufficient. Also, background In the case of C o and R h, although the formation of C u is performed, it is difficult to say that the adhesion of the formed C u to the base is good.
(その他の実施形態)  (Other embodiments)
本発明の実施形態は既述の実施形態には限られず、 拡張、 変更できる。 拡張、 変更した実施形態も本発明の技術的範囲に含まれる。  Embodiments of the present invention are not limited to the above-described embodiments, and can be extended or modified. Extended and modified embodiments are also included in the technical scope of the present invention.
例えば、 基板としてウェハ W以外の例えばガラス板等を利用すること ができる。 産業上の利用可能性  For example, a glass plate or the like other than the wafer W can be used as the substrate. Industrial applicability
本発明に係る無電解メツキ方法は、 バリア層上への無電解メ ツキを多 様な処理で実現可能となり、 産業的に使用できる。  The electroless plating method according to the present invention can realize electroless plating on a barrier layer by various treatments, and can be used industrially.

Claims

請 求 の 範 囲 The scope of the claims
1. 所定の材料の拡散を制限する拡散制限層を基板上に形成する拡散制 限層形成ステツプと、 1. a diffusion limited layer forming step of forming a diffusion limited layer on the substrate which limits diffusion of a predetermined material,
前記拡散制限層形成ステップで基板上に形成された拡散制限層の少な く とも一部上に、 無電解メ ツキ反応における還元剤の酸化反応に対して 触媒活性を有し、 かつ前記所定の材料と異なる触媒活性材料からなる触 媒活性核を形成する触媒活性核形成ステップと、  At least a portion of the diffusion limiting layer formed on the substrate in the diffusion limiting layer forming step, has catalytic activity for the oxidation reaction of the reducing agent in the electroless plating reaction, and the predetermined material A catalytically active nucleation step of forming catalytically active nuclei composed of different catalytically active materials, and
前記触媒活性核形成ステップで触媒活性核が形成された基板上に、 前 記還元剤を含有する無電解メッキ液を用いて前記所定の材料からなるメ ツキ膜を形成するメ ツキ膜形成ステップと、  A plating film forming step of forming a plating film made of the predetermined material using an electroless plating solution containing the reducing agent on the substrate on which the catalytic activation nucleus is formed in the catalytic activation nucleation step; ,
を具備する無電解メ ツキ方法。 An electroless plating method comprising
2. 前記触媒活性核が、 前記拡散制限層上に不連続に形成されている、 請求項 1記載の無電解メッキ方法。  2. The electroless plating method according to claim 1, wherein the catalytically active nuclei are formed discontinuously on the diffusion limiting layer.
3. 前記所定の還元剤がホルムアルデヒ ド、 グリオキシル酸のいずれか であり、 前記触媒活性材料が I r、 P d、 Ag、 Ru、 R h, Au、 P t、 T iの少なく ともいずれかを含む 3. The predetermined reducing agent is either formaldehyde or glyoxylic acid, and the catalytically active material contains at least one of Ir, Pd, Ag, Ru, Rh, Au, Pt, and Ti. Include
請求項 1記載の無電解メ ッキ方法。 The electroless plating method according to claim 1.
4. 前記所定の還元剤が次亜燐酸塩であり、 前記触媒活性材料が A u、 N i、 P d、 Ag、 C o、 P tの少なく ともいずれかを含む  4. The predetermined reducing agent is hypophosphite, and the catalytically active material contains at least one of Au, Ni, Pd, Ag, Co, Pt.
請求項 1記載の無電解メ ツキ方法。 The electroless plating method according to claim 1.
5. 前記所定の還元剤が金属塩であり、 前記触媒活性材料が A g、 Rh、 I r、 P d、 A U P tの少なく ともいずれかを含む  5. The predetermined reducing agent is a metal salt, and the catalytically active material contains at least one of Ag, Rh, Ir, Pd and AUt.
請求項 1記載の無電解メッキ方法。 The electroless plating method according to claim 1.
6. 前記所定の還元剤がジメチルァミンボランであり、 前記触媒活性材 料が N i、 P d、 Ag、 Au、 P tの少なく ともいずれかを含む 請求項 1記載の無電解メ ツキ方法。 6. The predetermined reducing agent is dimethylamine borane, and the catalytically active material contains at least one of Ni, Pd, Ag, Au and Pt. The electroless plating method according to claim 1.
7. 所定の還元剤の酸化反応に対して触媒活性を有し、 かつ前記所定の 材料と異なる触媒活性材料を含み、 所定の材料の拡散を制限する拡散制 限層を基板上に形成する拡散制限層形成ステップと、  7. A diffusion limiting layer is formed on the substrate which has catalytic activity for oxidation reaction of a given reducing agent and which contains a catalytically active material different from the given material and which limits the diffusion of the given material. A limiting layer forming step,
前記拡散制限層形成ステップで拡散制限層が形成された基板上に、 前 記所定の還元剤を含有する無電解メッキ液を用いて前記所定の材料から なるメ ツキ膜を形成するメ ツキ膜形成ステップと、  A plating film is formed on the substrate on which the diffusion limiting layer is formed in the diffusion limiting layer forming step, using the electroless plating solution containing the predetermined reducing agent to form the plating film made of the predetermined material. Step and
を具備する無電解メ ツキ方法。 An electroless plating method comprising
8. 前記所定の還元剤がホルムアルデヒ ド、 グリオキシル酸のいずれか であり、 前記触媒活性材料が I r、 P d、 Ag、 Ru、 Rh、 Au、 P t、 T iの少なく ともいずれかを含む  8. The predetermined reducing agent is either formaldehyde or glyoxylic acid, and the catalytically active material contains at least one of Ir, Pd, Ag, Ru, Rh, Au, Pt, and Ti.
請求項 7記載の無電解メ ツキ方法。 The electroless plating method according to claim 7.
9. 前記所定の還元剤が次亜燐酸塩であり、 前記触媒活性材料が Au、 N i、 P d、 Ag、 C o、 P tの少なく ともいずれかを含む  9. The predetermined reducing agent is hypophosphite, and the catalytically active material contains at least one of Au, Ni, Pd, Ag, Co and Pt.
請求項 7記載の無電解メ ツキ方法。 The electroless plating method according to claim 7.
1 0. 前記所定の還元剤が金属塩であり、 前記触媒活性材料が Ag、 R h、 I r、 P d、 Au、 P tの少なく ともいずれかを含む  1 0. The predetermined reducing agent is a metal salt, and the catalytically active material contains at least one of Ag, R h, I r, P d, Au, P t
請求項 7記載の無電解メツキ方法。 The electroless plating method according to claim 7.
1 1. 前記所定の還元剤がジメチルァミ ンボランであり、 前記触媒活性 材料が N i、 P d、 Ag、 Au、 P tの少なく ともいずれかを含む 請求項 7記載の無電解メツキ方法。  1 1. The electroless plating method according to claim 7, wherein the predetermined reducing agent is dimethylamine borane, and the catalytically active material contains at least one of Ni, Pd, Ag, Au and Pt.
1 2. 所定の還元剤の酸化反応に対する触媒活性を有し、 前記所定の材 料と異なる触媒活性材料からなり、 かつ所定の材料の拡散を制限する拡 散制限層を基板上に形成する拡散制限層形成ステップと、  1 2. A diffusion limiting layer is formed on a substrate which has catalytic activity for oxidation reaction of a given reducing agent, is composed of a catalytically active material different from the given material, and restricts the diffusion of the given material. A limiting layer forming step,
前記拡散制限層形成ステップで拡散制限層が形成された基板上に、 前 記所定の還元剤を含有する無電解メ ツキ液を用いて前記所定の材料から なるメツキ膜を形成するメ ツキ膜形成ステップと、 From the predetermined material using the electroless plating solution containing the predetermined reducing agent on the substrate on which the diffusion restriction layer is formed in the diffusion restriction layer forming step Forming a plating film forming the plating film;
を具備する無電解メ ツキ方法。 An electroless plating method comprising
1 3. 前記所定の還元剤がホルムアルデヒ ド、 グリオキシル酸のいずれ かであり、 前記触媒活性材料が I r、 P d、 Ag、 Ru、 Rh、 Au、 P t、 T iの少なく ともいずれかを含む  1 3. The predetermined reducing agent is either formaldehyde or glyoxylic acid, and the catalytically active material is at least one of Ir, Pd, Ag, Ru, Rh, Au, Pt, and Ti. Include
請求項 1 2記載の無電解メ ツキ方法。 The electroless plating method according to claim 1.
14.前記所定の還元剤が次亜燐酸塩であり、 前記触媒活性材料が Au、 N i、 P d、 A :、 C o、 P tの少なく ともいずれかを含む  14. The predetermined reducing agent is hypophosphite, and the catalytically active material contains at least one of Au, Ni, Pd, A :, Co, Pt.
請求項 1 2記載の無電解メ ツキ方法。 The electroless plating method according to claim 1.
1 5. 前記所定の還元剤が金属塩であり、 前記触媒活性材料が Ag、 R h、 I r、 P d、 Au、 P tの少なく ともいずれかを含む  1 5. The predetermined reducing agent is a metal salt, and the catalytically active material contains at least one of Ag, R h, I r, P d, Au, P t
請求項 1 2記載の無電解メ ツキ方法。 The electroless plating method according to claim 1.
1 6. 前記所定の還元剤がジメチルァミンボランであり、 前記触媒活性 材料が N i、 P d、 A :、 Au、 P tの少なく ともいずれかを含む 請求項 1 2記載の無電解メ ツキ方法。  1 6. The electroless metal according to claim 12, wherein the predetermined reducing agent is dimethylamine borane, and the catalytically active material contains at least one of Ni, Pd, A :, Au, Pt. Tsuki way.
PCT/JP2003/006499 2002-09-27 2003-05-23 Method of electroless plating WO2004029328A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003241757A AU2003241757A1 (en) 2002-09-27 2003-05-23 Method of electroless plating
US11/082,807 US20050164499A1 (en) 2002-09-27 2005-03-18 Electroless plating method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-283297 2002-09-27
JP2002283297A JP2004115885A (en) 2002-09-27 2002-09-27 Electroless plating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/082,807 Continuation-In-Part US20050164499A1 (en) 2002-09-27 2005-03-18 Electroless plating method and apparatus

Publications (1)

Publication Number Publication Date
WO2004029328A1 true WO2004029328A1 (en) 2004-04-08

Family

ID=32040558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006499 WO2004029328A1 (en) 2002-09-27 2003-05-23 Method of electroless plating

Country Status (5)

Country Link
JP (1) JP2004115885A (en)
KR (1) KR20050059178A (en)
CN (1) CN1685081A (en)
AU (1) AU2003241757A1 (en)
WO (1) WO2004029328A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070048447A1 (en) * 2005-08-31 2007-03-01 Alan Lee System and method for forming patterned copper lines through electroless copper plating
JP5308622B2 (en) * 2006-12-01 2013-10-09 廖智良 Horizontal electroplating electrodeposition method and horizontal electroless plating method on a substrate
CN101578394B (en) * 2007-07-31 2011-08-03 日矿金属株式会社 Plated material having metal thin film formed by electroless plating, and method for production thereof
WO2010087392A1 (en) * 2009-01-30 2010-08-05 日鉱金属株式会社 Substrate comprising alloy film of metal element having barrier function and metal element having catalytic power
JP2013213263A (en) * 2012-04-03 2013-10-17 Tokyo Electron Ltd Plating apparatus, plating method, and storage medium
JP5602790B2 (en) * 2012-06-06 2014-10-08 学校法人関東学院 Electroless plating bath and electroless plating film
US9469902B2 (en) * 2014-02-18 2016-10-18 Lam Research Corporation Electroless deposition of continuous platinum layer
JP6404174B2 (en) * 2015-04-16 2018-10-10 東京エレクトロン株式会社 Plating processing method, storage medium, and plating processing system
JP6201029B1 (en) * 2016-12-26 2017-09-20 日本エレクトロプレイテイング・エンジニヤース株式会社 Electroless platinum plating solution and electroless platinum plating method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022770A2 (en) * 1999-01-22 2000-07-26 Sony Corporation Method and apparatus for plating and plating structure
JP2001181851A (en) * 1999-10-12 2001-07-03 Sony Corp Plating method and plated structure
JP2001316834A (en) * 2000-04-28 2001-11-16 Sony Corp Apparatus for electroless plating and method for forming conductive film
JP2002053971A (en) * 2000-08-03 2002-02-19 Sony Corp Plating method, plating structure, method for producing semiconductor device, and semiconductor device
US20020036143A1 (en) * 2000-04-10 2002-03-28 Yuji Segawa Method of electroless plating and electroless plating apparatus
US20020050459A1 (en) * 2000-11-02 2002-05-02 Kabushiki Kaisha Toshiba Electronic device manufacturing method
US6451689B1 (en) * 1999-10-20 2002-09-17 Rohm Co., Ltd. Method for manufacturing semiconductor device
JP2002299306A (en) * 2001-04-02 2002-10-11 Ebara Corp Substrate processing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022770A2 (en) * 1999-01-22 2000-07-26 Sony Corporation Method and apparatus for plating and plating structure
JP2001181851A (en) * 1999-10-12 2001-07-03 Sony Corp Plating method and plated structure
US6451689B1 (en) * 1999-10-20 2002-09-17 Rohm Co., Ltd. Method for manufacturing semiconductor device
US20020036143A1 (en) * 2000-04-10 2002-03-28 Yuji Segawa Method of electroless plating and electroless plating apparatus
JP2001316834A (en) * 2000-04-28 2001-11-16 Sony Corp Apparatus for electroless plating and method for forming conductive film
JP2002053971A (en) * 2000-08-03 2002-02-19 Sony Corp Plating method, plating structure, method for producing semiconductor device, and semiconductor device
US20020050459A1 (en) * 2000-11-02 2002-05-02 Kabushiki Kaisha Toshiba Electronic device manufacturing method
JP2002299306A (en) * 2001-04-02 2002-10-11 Ebara Corp Substrate processing apparatus

Also Published As

Publication number Publication date
AU2003241757A1 (en) 2004-04-19
CN1685081A (en) 2005-10-19
KR20050059178A (en) 2005-06-17
JP2004115885A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3495033B1 (en) Electroless plating apparatus and electroless plating method
JP4547016B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP3960774B2 (en) Electroless plating apparatus and method
US20060081461A1 (en) Electroless plating apparatus and method
US9255331B2 (en) Apparatus for plating process
US20040234696A1 (en) Plating device and method
KR20020074175A (en) Device and method for electroless plating
JP4010791B2 (en) Electroless plating apparatus and electroless plating method
JP2005539369A (en) Electroless deposition equipment
US20050196523A1 (en) Electroless plating method and apparatus, and computer storage medium storing program for controlling same
WO2004029328A1 (en) Method of electroless plating
KR20140100481A (en) Plating apparatus, plating method and storage medium
JP4339045B2 (en) Electroless plating apparatus and electroless plating method
JP5631815B2 (en) Plating treatment method, plating treatment apparatus, and storage medium
US20050164499A1 (en) Electroless plating method and apparatus
TWI535889B (en) Electroplating treatment device, electroplating treatment method and memory medium
JP2005054257A (en) Electroless plating method
KR102481255B1 (en) Plating method, plating device and storage medium
WO2013080781A1 (en) Plating apparatus, plating method and storage medium
US20040251141A1 (en) Electroless plating apparatus and electroless plating method
TW201012965A (en) Metal cap forming method
WO2021039432A1 (en) Substrate liquid-treatment method, substrate liquid-treatment device, and computer-readable recording medium
JP2006057171A (en) Electroless plating apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11082807

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057004928

Country of ref document: KR

Ref document number: 2003822688X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004928

Country of ref document: KR

122 Ep: pct application non-entry in european phase