WO2004028732A1 - Connection method and connection device - Google Patents

Connection method and connection device Download PDF

Info

Publication number
WO2004028732A1
WO2004028732A1 PCT/JP2003/012144 JP0312144W WO2004028732A1 WO 2004028732 A1 WO2004028732 A1 WO 2004028732A1 JP 0312144 W JP0312144 W JP 0312144W WO 2004028732 A1 WO2004028732 A1 WO 2004028732A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
bonding
metal
ultrasonic
joined
Prior art date
Application number
PCT/JP2003/012144
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Yamauchi
Original Assignee
Toray Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co., Ltd. filed Critical Toray Engineering Co., Ltd.
Priority to AU2003271061A priority Critical patent/AU2003271061A1/en
Publication of WO2004028732A1 publication Critical patent/WO2004028732A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/10Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating making use of vibrations, e.g. ultrasonic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • the present invention relates to a joining method and an apparatus for joining objects to be joined having a metal joint on the surface of a substrate, such as a chip, a wafer, and various circuit boards.
  • a joining method using ultrasonic waves is conventionally known.
  • the oxide film, organic material layer, or contamination layer formed on the surface of the bonding surface is relatively thick or strongly adhered, it can be sufficiently applied by applying ultrasonic waves.
  • the ultrasonic wave is increased in intensity (for example, the amplitude is increased) or applied for a long time in order to forcibly join the chip, the chip as the object to be bonded or the chip formed on the chip is formed.
  • Damage to the bumps may result, greatly reducing the reliability of the bonded product.
  • long-time application is not preferable because it causes an increase in the tact time of the junction. Therefore, in the conventional method, it is difficult and undesired to increase the intensity of the ultrasonic wave and the application time. However, if the intensity is low and the application time is short, the ultrasonic bonding with high reliability is performed. I can't do it.
  • Japanese Patent No. 2791429 discloses a method for bonding the bonding surfaces of one silicon wafer.
  • a silicon wafer-to-silicon bonding method is disclosed in which an inert gas ion beam or an inert gas fast atom beam is irradiated in a vacuum at room temperature and sputter-etched.
  • oxides, organic substances, etc. on the bonding surface of the silicon wafer are blown by the above-mentioned beam to form a surface with activated atoms, and the surfaces are bonded by a high bonding force between the atoms. Joined. Therefore, this method basically eliminates the need for heating for bonding, and enables bonding at room temperature or a lower temperature by simply bringing the activated surfaces into contact with each other.
  • the bonding between the etched bonding surfaces is performed in a vacuum. It must be performed while maintaining the state of surface activation. For this reason, a predetermined vacuum state must be maintained from the surface cleaning by the beam to the bonding, and at least a part of the bonding mechanism is configured in a chamber capable of holding a predetermined degree of vacuum. Therefore, the size of the sealing mechanism becomes large, and the entire apparatus becomes large and expensive. Further, if these are to be performed at different locations in order to separate the steps of surface cleaning and bonding by the beam, if a predetermined vacuum state is maintained between the two locations, or the workpiece is maintained while maintaining the vacuum state.
  • a means for transporting from the cleaning location to the joining location is required, making practical equipment design difficult and further increasing the overall size of the equipment.
  • a high pressing force of about 300 MPa is required in order to crush unevenness of the bonding surface and obtain a good bonding area, and a bump on the semiconductor circuit is required.
  • Compound semiconductors such as semiconductors and optical devices may be damaged.
  • the metal bonding part of the workpiece is The possibility of joining together in the air. If bonding in the air becomes possible after surface activation, the bonding process and equipment can be greatly simplified as compared with bonding in the air or the like.
  • the present inventors focused on the bonding technique by surface activation as described above, which has been recently studied, while considering the above-described problems in the conventional ultrasonic bonding, and as a result of conducting intensive studies and tests, It has been found that a problem in the conventional ultrasonic bonding can be solved by properly combining the heating and the heating, and the present invention has been completed in which metal bonding can be performed at a temperature lower than the conventional solder melting point.
  • an object of the present invention is to reduce the intensity of ultrasonic waves and to shorten the application time, to perform desired ultrasonic bonding without damaging the object to be bonded or the bonded portion, and to reduce the bonding time. It is an object of the present invention to provide a bonding method and apparatus using ultrasonic waves which can reduce the length of ultrasonic energy required for bonding, can reduce the capacity of ultrasonic energy required for bonding, and can reduce the size and cost of the entire apparatus. . In addition, the table It is an object of the present invention to provide a method and an apparatus which can perform bonding at a low pressure without applying a risk of damaging a bump or the like by applying ultrasonic waves even in low-temperature bonding by surface activation.
  • a joining method provides a method for joining objects having a metal joint on a surface of a base material, by using an energy wave on the surface of the metal joint of both objects. After cleaning, the method is characterized in that the metal joints are ultrasonically joined together in the air. Cleaning of the metal joint surface with energy waves can be performed under atmospheric pressure, or under reduced pressure.
  • the conditions for applying ultrasonic waves for bonding are preferably optimized as follows in order to suppress damage (particularly, cracks) to the metal bonding part. That is, the amplitude of the applied ultrasonic wave is set to less than 3 / m. It is more preferably 2 m or less, and further preferably 1 m or less.
  • the decrease in the bonding performance due to the decrease in the intensity of the applied ultrasonic wave by reducing the amplitude of the ultrasonic wave as described above can be compensated for by increasing the frequency of the applied ultrasonic wave.
  • the frequency of the ultrasonic wave is preferably 40 kHz or more, and more preferably 60 kHz or more.
  • the application of ultrasonic waves makes it possible to significantly reduce the bonding load compared to conventional low-temperature pressure bonding by surface activation.
  • the joining load is preferably set to 150 MPa or less.
  • plasma As an energy wave used for cleaning the surface of the metal joint, plasma is preferable, and in particular, plasma in an Ar gas atmosphere is preferable.
  • the above-mentioned bonding can be performed at room temperature.However, by using heating together, the diffusion of particles is promoted, so that the unevenness of the bonding interface can be more easily crushed and flattened, and a good bonding state can be obtained. become.
  • the heating temperature may be 180 ° C. or less, preferably less than 150 ° C.
  • the conventional general low-temperature metal bonding is a solder bonding, and the melting point of the hang is about 18 ° C., so the lower-temperature bonding, that is, 180 ° C. or less, preferably 150 ° C. This enables joining at a temperature lower than ° C.
  • the entire surface to be joined of the metal joint is 1 nm or less. It is preferable to etch to an upper depth. By irradiating energy waves that can be etched to such a depth or more, it becomes possible to obtain surface properties necessary for joining metal joints in the air.
  • the ultrasonic joining according to the present invention is particularly suitable for joining metal joints whose surfaces are formed of any one of Au, Cu, Al, In, and Sn.
  • the same kind of metal of Au, Cu, Al, In, Sn, or any two kinds of dissimilar metals, or One can be A u and the other can be any of Cu, A 1, In, and Sn.
  • joining Au the joining can be surely performed even at room temperature.
  • joining of Au for example, joining of ⁇ ⁇ ⁇ / Cu, Au / A1, etc.
  • joining can be performed at room temperature or at a low temperature close to that.
  • the entire electrode or the like forming the metal joint can be made of Au, but only the surface is made of Au. You can also.
  • the form for forming the surface with Au is not particularly limited, and a form of Au plating or a form in which an Au thin film is formed by sputtering or vapor deposition may be used.
  • the bonding surface is limited to Au, surface activation enables bonding at room temperature even in air, and even if the pressure is reduced to about half by ultrasonic application under bonding at room temperature, the interface Squeezes the unevenness of the slab to achieve good bonding. Conventionally, a pressure of about 300 MPa was required, but by applying ultrasonic waves after surface activation, the pressure can be reduced to about 150 MPa.
  • the variation in the gap between the metal joints is 4 ⁇ m or less at the maximum. If the variation of the gap is 4 / m or less, an appropriate joint load, for example, a joint load of about 300 MPa (preferably, 150 MPa or less) is used for joining metal joints. It is possible to suppress the variation of the gap required for the following. Further, it is preferable to adjust the parallelism between the objects to be joined to within 4 m when joining the metal joints. Such parallelism adjustment makes it possible to reduce the above-mentioned variation in the gap, and allows the metal joints to come into more close surface contact with each other, thereby making it easier to perform low-temperature joining.
  • At least the surface roughness (particularly surface undulation) of at least one metal joint before joining should be 300 nm or less so that the surfaces can be in good contact with each other. Is preferred. With such a surface roughness, closer bonding can be achieved.
  • the surface roughness of the metal joint after joining is 10 nm or less.
  • the interface after bonding is crushed to a surface roughness of 10 nm or less, the bonding area is increased, resulting in a low resistance and good bonding strength.
  • the surface hardness of at least one of the metal joints may be reduced to 120 or less in picker hardness H, and more preferably, reduced to 100 or less by annealing.
  • the surface hardness Hv is preferably in the range of 30 to 70 (for example, the average ⁇ V is 50). With such a low hardness, the surface of the metal joint is appropriately deformed when a joining load is applied, so that a more intimate joint is possible.
  • a joining apparatus is an apparatus for joining objects to be joined having a metal joint on a surface of a base material, and a cleaning unit for irradiating an energy wave to the surface of the metal joint of each article to be joined. And a joining means for ultrasonically joining the metal joints of the objects taken out from the means in the air.
  • the cleaning means may be configured to irradiate an energy wave to the surface of the metal joint under atmospheric pressure, or to irradiate the energy wave to the surface of the metal joint under reduced pressure.
  • Means can also be constituted.
  • the above-mentioned bonding means should have an amplitude of less than 3 / zm, preferably 2 // m or less, and more preferably It is preferable to use a means capable of applying an ultrasonic wave of 1 / m or less.
  • the joining means is constituted by means capable of applying an ultrasonic wave having a frequency of 40 kHz or more, preferably 60 kHz or more, the energy can be increased even if the amplitude is reduced. It is preferable that it is comprised as follows. Further, it is preferable that the joining means is a means capable of joining with a joining load of 150 MPa or less.
  • the cleaning unit is a plasma irradiation unit, and it is particularly preferable that the cleaning unit is an Ar plasma irradiation unit.
  • the joining means has a heating means and is configured to be capable of ultrasonically joining the metal joints at a temperature of 180 ° C. or less, preferably less than 150 ° C. lower than the solder melting point. Is preferred.
  • the above-mentioned cleaning means can perform etching to a depth of 1 nm or more on the entire surface to be joined of the metal joint in order to perform surface etching necessary for joining metal joints in the air. It is preferable to include a means for irradiating an energy wave with a high energy or more.
  • the combination of the surface metal types of the two metal joints to be combined is, as described above, any one of the same metal of Au, Cu, Al, In, and Sn, or any two of them. Or a combination in which one is Au and the other is one of Cu, Al, In, and Sn. Above all, when Au is combined, bonding becomes the easiest.
  • the above-mentioned joining means is provided with means for reducing a variation of a gap at the time of joining between metal joints to a maximum of 4 ⁇ m or less. Further, it is preferable that the joining means includes means for adjusting the parallelism between the objects to be joined at the time of joining the metal joints to within 4 / m.
  • the surface roughness of at least one of the metal joints before joining is 300 nm or less. It is also desirable that the surface roughness of at least one of the metal joints after joining is 10 nm or less. Further, it is desirable that at least one metal joint has a surface hardness of 120 or less, more preferably 100 or less, in Vickers hardness HV.
  • the present invention also provides a joined body produced by the joining method as described above.
  • the joined body according to the present invention is a joined body of objects to be joined having a metal joint on the surface of the base material, and the surfaces of the metal joints of both the objects are cleaned by energy waves. After that, the metal joints are ultrasonically joined to each other in the air, and are produced.
  • At least one of the joined objects can be made of a semiconductor.
  • the surface of the metal bonding portion of the workpiece is irradiated with an energy wave under reduced pressure or atmospheric pressure, and the surface is etched.
  • the metal joints cleaned and activated by the metal bonding are ultrasonically bonded in the air. Since the oxide film, organic layer, and contamination layer on the surface are removed by energy wave irradiation beforehand, desired bonding can be performed in a short time with low-intensity ultrasonic waves. Therefore, it is possible to perform good ultrasonic bonding without damaging the workpieces and the joints, and shorten the time required for ultrasonic bonding to shorten the tact time of the entire bonding process. Becomes possible.
  • the whole apparatus can be reduced in size and cost. Furthermore, since joining in the atmosphere is possible, a large-scale vacuum device and a sealing device therefor are not required for joining. From this aspect, the entire process and the entire device are greatly simplified, and It will also allow for downtime. Furthermore, since bonding can be performed at a low temperature, particularly at or near normal temperature, the load on the heating device can be reduced.
  • the oxide film, organic layer, and contamination layer on the surface are removed in advance by irradiation with energy waves, which enables the joining of dissimilar metals, which could not be done conventionally, for example, the ultrasonic joining of gold / copper / gold / aluminum. This greatly expands the scope of ultrasonic bonding.
  • the bonding load can be significantly reduced even at room temperature bonding.
  • the bonding surface is Au
  • surface activation enables bonding at room temperature even in air, and in this bonding at room temperature, even if the pressure is reduced to about half by applying ultrasonic waves, the unevenness of the interface And a good joining is possible.
  • bonding conditions are greatly reduced by a combination of cleaning by irradiation of energy waves in advance and ultrasonic bonding.
  • ultrasonic bonding it was necessary to apply ultrasonic waves with an amplitude of 3 ⁇ m or more, but if the amplitude is 3 // in or more, the contribution to the bonding will be large, but there is a risk of damage.
  • the amplitude of the contamination layer can be reduced because the contaminant layer is extremely thin due to the activation of the bonding surface by the energy wave cleaning. Therefore, it is possible to eliminate damage (for example, crack generation) due to application of ultrasonic waves.
  • the ultrasonic intensity may decrease due to the decrease in amplitude, and the contribution to joining may decrease accordingly. Even if the amplitude is reduced to reduce the leakage, sufficient contribution to the junction is maintained by increasing the frequency, especially by increasing the frequency to 40 kHz or more, preferably 60 kHz or more. It is possible to do.
  • the bonding mechanism is considered to be such that the metal itself expands and contracts repeatedly due to the high-frequency vibration, so that it is possible to almost eliminate the need to increase the amplitude.
  • desired ultrasonic bonding can be performed without causing damage, and the ultrasonic bonding time can be shortened, and the tact time of the entire bonding process can be shortened.
  • pre-energy wave cleaning makes it possible to greatly reduce the intensity of applied ultrasonic waves, and by optimizing the application conditions, damage is caused even on objects that are easily damaged. Without joining, it is possible to join well with high production efficiency.
  • the application of ultrasonic waves makes it possible to greatly reduce the bonding load, and it is possible to use compound semiconductors such as bumps and optical elements on semiconductor circuits. Joining is possible even for those that cannot apply a large load.
  • FIG. 1 is a schematic configuration diagram of a joining device according to an embodiment of the present invention.
  • Figure 2 shows the relationship between the thermal shock test cycle and the yield rate.
  • Figure 3 is a diagram showing the relationship between the ultrasonic amplitude and the shear strength in the model test.
  • Figure 4 shows the relationship between ultrasonic amplitude and shear strength (relative value) in another model test.
  • FIG. 5 is a diagram showing the relationship between the bonding load and the amount of bump crush in the model test.
  • Figure 6 is a diagram showing the relationship between the frequency and the non-defective product ratio (relative value) in the ultrasonic test with an amplitude of 1 / zm.
  • FIG. 1 shows a joining apparatus 1 according to one embodiment of the present invention.
  • a workpiece 4 or 5 having a metal joint 2 or 3 on the surface of a base material is firstly cleaned as a means for cleaning by an energy wave in a chamber 7 evacuated by a vacuum pump 6 to a predetermined degree of vacuum.
  • the surfaces of the metal joints 2 and 3 are cleaned by etching with the plasma 9 irradiated from the plasma irradiation means 8 (cleaning step).
  • the Ar gas can be supplied into the chamber 7 by the pump 10, so that plasma irradiation can be performed in an Ar gas atmosphere and under a predetermined reduced pressure.
  • plasma irradiation is performed under a predetermined reduced pressure in this embodiment, plasma irradiation may be performed under atmospheric pressure.
  • the cleaned workpieces 4 and 5 are taken out of the chamber 7, and the metal bonding sections 2 and 3 are ultrasonically bonded to each other in the air in a bonding process (a bonding apparatus section 11).
  • the article 4 is made of, for example, a chip
  • the article 5 is made of, for example, a substrate.
  • the chip refers to all forms on the side to be bonded to the substrate regardless of the type or size, such as an IC chip, a semiconductor chip, an optical element, a surface mount component, and a wafer.
  • bumps are formed on the article 4 as the metal joints 2.
  • substrate refers to, for example, a resin substrate, a glass substrate, a film substrate, a chip, a wafer, or any other form of the side to be bonded to the chip regardless of the type or size.
  • a typical embodiment of the present invention is an embodiment in which at least one of the objects to be joined is made of a semiconductor.
  • the cleaned articles 4 and 5 are transported by a suitable transporting means from the cleaning means having the chamber 7 to the bonding means in the bonding apparatus 11.
  • the above-mentioned cleaned articles 4 and 5 are placed in a predetermined standby section 12.
  • the workpiece 4 is held on the head 14 of the reversing mechanism 13 by suction or the like so as not to touch the cleaning surface, is turned upside down, and is installed under the bonding head 15.
  • the metal bonding portion 2 is held by suction or the like in the form in which the metal bonding portion 2 faces downward on the bonded bonding tool 16.
  • the article 5 is transferred from the standby section 12, and is held on the bonding stage 17, for example, by suction or the like with the metal joined section 3 facing upward.
  • the bonding tool 16 is used as a heating means. All heaters 18 are built-in, and it is possible to perform both joining at room temperature and joining under heating in the air.
  • the bonding head 15 can press the workpiece 4 downward through the bonding tool 16 to apply and control a predetermined bonding load to the workpiece 5.
  • the bonding head 15 can be moved and positioned in a vertical direction (Z direction).
  • the bonding head 15 or the bonding tool 16 is provided with an ultrasonic wave applying means 19, and in this embodiment, the ultrasonic vibration is applied to the object 4 side, particularly to the metal joint 2 thereof. By applying, ultrasonic bonding can be performed with the metal joint 3 of the article 5 to be joined.
  • the bonding stage 17 holding the article 5 is provided with a horizontal position control in the X and Y directions, By controlling the rotational direction of the workpiece and the tilt adjustment control around the X-axis and Y-axis, relative positioning and parallelism adjustment with the workpiece 4 can be performed. This also makes it possible to reduce variations in the gap at the time of joining.
  • the relative alignment and the parallelism adjustment are performed by the recognition means inserted between the workpieces 4 and 5 so as to be able to move forward and backward, for example, the two-view recognition means 21 (for example, a two-view camera), Alternatively, the recognition is performed by reading recognition marks (not shown) attached to the holding means, and performing necessary corrections of the position and the angle based on the read information.
  • the two-field-of-view recognizing means 21 can adjust the position in the X and Y directions, and in some cases in the Z direction.
  • the relative positioning and the parallelism adjustment are mainly performed on the bonding stage 17 side, but it is also possible to perform the bonding on the bonding head 15 or the bonding tool 16 side. It is also possible to do it on both sides.
  • rotation control and Z or parallel movement control as well as lifting and lowering control are performed for the bonding head 15 side as necessary, and rotation control and parallel control are also performed for the bonding stage 17 side. Movement control and elevation control can be performed, and these control forms can be arbitrarily combined as needed.
  • the joining method according to the present invention using the above-described joining apparatus is performed as follows. First, in a chamber 7 having a predetermined degree of vacuum, a metal bonding portion 2 (for example, a bump) of a chip 4 as a workpiece 4 and a metal bonding portion 3 (for example, a bump) of a substrate 5 as a workpiece 5
  • the electrodes are cleaned by Ar plasma and the surface is activated.
  • the plasma irradiation intensity and time are set so that the entire surface where the metal joint is bonded can be etched by 1 nm or more. It is preferable to set. As an example, this is a level at which Ar plasma is irradiated for 5 seconds by a plasma cleaning means of 100 V and 50 W.
  • the chip 4 and the substrate 5 whose surfaces have been cleaned are temporarily placed on the standby unit 12, and the chip 4 is turned upside down to the bonding tool 16, and the substrate 5 is not turned upside down to the bonding stage 17, respectively. Will be retained.
  • the chip 4 and the substrate 5 held opposite to each other are aligned so as to be within a predetermined accuracy based on information read by the two-field recognition means 21 and the parallelism is adjusted so as to be within the predetermined accuracy. Is done.
  • the parallelism between the two workpieces should be 4 // m or less, and the variation in the gap between metal joints should be 4 / m or less. It is preferable that the adjustment be made in such a manner.
  • the bonding tool 16 is lowered, a predetermined bonding load is applied, heated by a heater 18 as necessary, and utilizing ultrasonic vibration applied by ultrasonic applying means 19.
  • the metal joint 2 (bump) of the chip 4 and the metal joint 3 of the substrate 5 are ultrasonically bonded in the air.
  • ultrasonic bonding In conventional ultrasonic bonding, as described above, if the oxide film, organic material layer, or contamination layer on the surface of the bonding surface is thick or firmly adhered, ultrasonic bonding could not actually be performed.
  • the surface cleaning is performed by an energy wave, and in this embodiment, Ar plasma, and the etching required for the ultrasonic bonding is performed on the bonding surface. Is applied to sufficiently remove or decompose the foreign material layer as described above, and the surface is sufficiently activated, so that the ultrasonic irradiation intensity is lower than before (for example, with a smaller amplitude than before) and Desired ultrasonic bonding can be performed in a shorter time than before.
  • the ultrasonic wave application intensity may be small, the ultrasonic energy capacity is reduced, and the ultrasonic wave application means 19 may be small and inexpensive. Therefore, it can contribute to downsizing of the entire device and cost reduction.
  • At least one of the metal joints has a surface roughness of 300 nm or less before joining, or at least one of the metal joints has a surface roughness of less than 1 nm. It is effective to set the surface hardness of at least one of the metal joints to a value of 120 or less in terms of a picker hardness HV of 120 or less, or to use heating at the time of joining. By heating, the hardness of the surface can be reduced, and the movement of atoms on the surface at the time of bonding can be activated, so that the desired ultrasonic bonding can be performed more easily.
  • the effect of the combined use of heating is great, and both the effect of heating and the effect of energy wave cleaning can be obtained synergistically. Especially when heated to about 150 ° C, a great effect can be obtained.
  • the heating temperature is appropriately set at a temperature of, for example, 180 ° C or less, preferably less than 150 ° C, so that a large load is not applied to the device and a problem due to heating does not occur in the metal joint. (For example, as described above, a temperature near 150 ° C. or lower) may be set.
  • the desired ultrasonic bonding can be performed with a short application time.
  • the bonding method according to the present invention since the energy wave cleaning is performed in advance, not only the bonding of Au Any combination of, for example, Au ZCu Au / A1 ultrasonic bonding is possible, and by using heating as described above, ultrasonic bonding between these dissimilar metals can be performed more easily. Will be possible.
  • the metal contact of AuZAu When performing the ultrasonic bonding of the joints, tests were performed for the case where ultrasonic bonding was performed without prior plasma cleaning and the case where ultrasonic bonding was performed after plasma cleaning, while also considering the effect of heating.
  • the plasma cleaning is performed with an energy capable of etching the surface of the bump as a metal joint at a depth of 1 nm in one time.
  • Ar plasma cleaning is performed for 5 seconds by a plasma means of 100 V and 50 W.
  • a thermal shock test was performed to measure the non-defective rate (%) of bump bonding at that time by repeatedly applying temperature fluctuations of between 65 ° C and 150 ° C to the bonded body. . As a result, the characteristics shown in Fig. 2 were obtained.
  • the effect of the pre-plasma cleaning may be higher.
  • both pre-plasma cleaning and heating are performed, both plasma cleaning once and plasma cleaning twice have achieved extremely high effects. It turns out that it is a form.
  • the ultrasonic energy required for bonding is also small, the ultrasonic application time can be shortened, which can contribute to shortening the time required for bonding and also shortening the tact time of the entire bonding process.
  • the metal joints are made of Au, there is no oxide film on the surface, and only organic matter is used.
  • ultrasonic bonding can be performed by removing organic substances using oxygen plasma of atmospheric pressure plasma means without forcibly etching with reduced pressure plasma.
  • Figure 5 shows the measurement results. As shown in Fig. 5, conventional room-temperature bonding requires 300 0 to achieve good bonding (bump crush: 1 // m or more, surface roughness after bonding: 10 nm or less). Although a bonding load of MPa was required, the same result was obtained at 150 MPa, which was half, by applying ultrasonic waves.
  • FIG. 6 shows the relationship between the non-defective rate after bonding and the frequency of the applied ultrasonic wave when applying an ultrasonic wave having an amplitude of 1 am in the method according to the present invention.
  • the conventional ultrasonic welding required a joint load of 300 MPa or more, but the method according to the present invention required a joint load of 150 MPa. Welding with welding load was successful.
  • the bonding apparatus and method according to the present invention can be applied to any ultrasonic bonding between objects to be bonded having a metal bonding portion, and are particularly suitable for ultrasonic bonding when at least one of the objects to be bonded is a semiconductor. is there.

Abstract

A connection method for joining, to each other, connected objects having metal connection parts on the surfaces of the base materials thereof and a connection device, the method comprising the steps of washing the connected surfaces of the metal connection parts of both connected objects by energy wave and joining the metal connection parts to each other by ultrasonic wave in the air, whereby a specified ultrasonic connection can be performed without damaging the objects, an ultrasonic connection time can be shortened to shorten the tact time of an overall connection process and reduce an ultrasonic energy capacity so as to reduce the size and cost of the entire device, and also dissimilar metals such as metals in the combinations of gold/copper and gold/aluminum which could not be joined by ultrasonic wave before can be jointed.

Description

曰月 糸田 »  Satsuki Itoda »
接合方法および装置  Joining method and apparatus
技 術 分 野  Technical field
本発明は、 チップやウェハ一、 各種回路基板等の、 基材の表面に金属接合部を 有する被接合物同士を接合する接合方法および装置に関する。  The present invention relates to a joining method and an apparatus for joining objects to be joined having a metal joint on the surface of a substrate, such as a chip, a wafer, and various circuit boards.
背 景 技 術  Background technology
金属接合部を有する被接合物同士を接合する方法として、 従来から超音波を利 用した接合方法が知られている。 しかし、 従来の超音波接合では、 接合面の表面 に形成された酸化膜や有機物層、 コンタミ層が比較的厚いものであったり、 強固 に付着したものであると、 それらを超音波印加により十分に破壊したり除去した りすることが困難で、 現実には信頼性の高い超音波接合を行うことができなかつ た。 また、 このような状況下で強引に接合させようとして、 超音波の強度を上げ たり (たとえば、 振幅を大きく したり) 、 長時間印加したりすると、 被接合物と してのチップやそれに形成されたバンプにダメージを与えることがあり、 接合製 品の信頼性を大きく低下させることになる。 また、 長時間の印加は、 接合のタク トタイムの増加を招くため、 好ましくない。 したがって、 従来方法においては、 超音波の強度増大や印加時間の増加は困難かつ望ましくないものであり、 そうか といって低強度、 短時間印加のままでは、 信頼性の高い超音波接合を行うことが できなかつた。  As a method of joining objects to be joined having a metal joint, a joining method using ultrasonic waves is conventionally known. However, in conventional ultrasonic bonding, if the oxide film, organic material layer, or contamination layer formed on the surface of the bonding surface is relatively thick or strongly adhered, it can be sufficiently applied by applying ultrasonic waves. However, it was difficult to break or remove it in a short time, and in practice, it was impossible to perform highly reliable ultrasonic bonding. Also, in such a situation, if the ultrasonic wave is increased in intensity (for example, the amplitude is increased) or applied for a long time in order to forcibly join the chip, the chip as the object to be bonded or the chip formed on the chip is formed. Damage to the bumps may result, greatly reducing the reliability of the bonded product. In addition, long-time application is not preferable because it causes an increase in the tact time of the junction. Therefore, in the conventional method, it is difficult and undesired to increase the intensity of the ultrasonic wave and the application time. However, if the intensity is low and the application time is short, the ultrasonic bonding with high reliability is performed. I can't do it.
一方、 上記超音波接合とは別に、 接合部を有する被接合物同士を接合する方法 として、 特許第 2 7 9 1 4 2 9号公報には、 シリコンウェハ一の接合面同士を接 合するに際し、 接合に先立って室温の真空中で不活性ガスイオンビームまたは不 活性ガス高速原子ビームを照射してスパッタエツチングする、 シリコンウェハ一 の接合法が開示されている。 この接合法では、 シリ コンウェハーの接合面におけ る酸化物や有機物等が上記のビームで飛ばされて活性化された原子で表面が形成 され、 その表面同士が、 原子間の高い結合力によって接合される。 したがって、 この方法では、 基本的に、 接合のための加熱を不要化でき、 活性化された表面同 士を単に接触させるだけで、 常温またはそれに近い低温での接合が可能になる。  On the other hand, apart from the above ultrasonic bonding, as a method of bonding objects to be bonded having a bonding portion, Japanese Patent No. 2791429 discloses a method for bonding the bonding surfaces of one silicon wafer. Prior to bonding, a silicon wafer-to-silicon bonding method is disclosed in which an inert gas ion beam or an inert gas fast atom beam is irradiated in a vacuum at room temperature and sputter-etched. In this bonding method, oxides, organic substances, etc. on the bonding surface of the silicon wafer are blown by the above-mentioned beam to form a surface with activated atoms, and the surfaces are bonded by a high bonding force between the atoms. Joined. Therefore, this method basically eliminates the need for heating for bonding, and enables bonding at room temperature or a lower temperature by simply bringing the activated surfaces into contact with each other.
しかし、 この接合法では、 エッチングされた接合面同士の接合は、 真空中にて、 表面活性化の状態を維持したまま行われなければならない。 そのため、 上記ビ一 ムによる表面洗浄から接合に至るまで、 所定の真空状態に保たなければならず、 とくに接合のための機構の少なくとも一部を所定の真空度に保持可能なチヤンバ 内に構成しなければならないためシール機構が大がかりになり、 装置全体が大型 かつ高価なものになる。 また、 上記ビームによる表面洗浄と接合の工程を分ける ためにこれらを別の箇所で行おうとすると、 両箇所間にわたって所定の真空伏態 に保つことや、 該真空状態に保ったまま被接合物を洗浄箇所から接合箇所に搬送 する手段が必要になり、 現実的な装置設計が難しくなるとともに、 さらに装置全 体の大型化を招く。 また、 本接合法では、 高温加熱しないので、 接合面の凹凸を 潰して良好な接合面積を得るためには、 3 0 0 M P a程度の高加圧力が必要とな り、 半導体回路上のバンプや光素子のような化合物半導体においてはダメージを 与える可能性がある。 However, in this bonding method, the bonding between the etched bonding surfaces is performed in a vacuum. It must be performed while maintaining the state of surface activation. For this reason, a predetermined vacuum state must be maintained from the surface cleaning by the beam to the bonding, and at least a part of the bonding mechanism is configured in a chamber capable of holding a predetermined degree of vacuum. Therefore, the size of the sealing mechanism becomes large, and the entire apparatus becomes large and expensive. Further, if these are to be performed at different locations in order to separate the steps of surface cleaning and bonding by the beam, if a predetermined vacuum state is maintained between the two locations, or the workpiece is maintained while maintaining the vacuum state. A means for transporting from the cleaning location to the joining location is required, making practical equipment design difficult and further increasing the overall size of the equipment. In addition, in this bonding method, since high-temperature heating is not performed, a high pressing force of about 300 MPa is required in order to crush unevenness of the bonding surface and obtain a good bonding area, and a bump on the semiconductor circuit is required. Compound semiconductors such as semiconductors and optical devices may be damaged.
上記のようなビーム照射によるスパッタエツチングにより表面洗浄して接合す る方法に関して、 最近、 上述したような接合面の表面活性化による接合に対する 利点を最大限確保しつつ、 被接合物の金属接合部同士の接合を大気中で行うこと の可能性が探究され始めた。 表面活性化後、 大気中での接合が可能になれば、 真 空中等で接合を行う場合に比べて、 接合工程、 装置を大幅に簡素化することが可 能となる。  As for the method of bonding by cleaning the surface by sputter etching by beam irradiation as described above, recently, while maximizing the advantage to the bonding by surface activation of the bonding surface as described above, the metal bonding part of the workpiece is The possibility of joining together in the air has begun to be explored. If bonding in the air becomes possible after surface activation, the bonding process and equipment can be greatly simplified as compared with bonding in the air or the like.
発 明 の 開 示  Disclosure of the invention
そこで本発明者らは、 前述した従来の超音波接合における問題点を考慮しつつ、 最近検討され始めた上記のような表面活性化による接合技術に着目して鋭意検討、 試験した結果、 両技術および加熱をうまく組み合わせることにより、 従来の超音 波接合における問題点を解決できることを見出し、 従来のハンダ融点以下の温度 で金属接合を行うことが可能な本発明を完成するに至った。  Therefore, the present inventors focused on the bonding technique by surface activation as described above, which has been recently studied, while considering the above-described problems in the conventional ultrasonic bonding, and as a result of conducting intensive studies and tests, It has been found that a problem in the conventional ultrasonic bonding can be solved by properly combining the heating and the heating, and the present invention has been completed in which metal bonding can be performed at a temperature lower than the conventional solder melting point.
すなわち、 本発明の目的は、 超音波の強度低下や印加時間の短縮が可能で、 被 接合物や接合部にダメージを与えることなく所望の超音波接合を行うことができ るとともに接合のタク トタイムの短縮が可能であり、 かつ、 接合に要求される超 音波エネルギーの容量を低減でき、 装置全体の小型化、 コストダウンも可能な、 超音波を利用した接合方法および装置を提供することにある。 また、 接合面の表 面活性化による低温接合においても、 超音波を印加することにより、 バンプ等に ダメージを与えるおそれのない低加圧力で接合可能な方法および装置を提供する ことにある。 That is, an object of the present invention is to reduce the intensity of ultrasonic waves and to shorten the application time, to perform desired ultrasonic bonding without damaging the object to be bonded or the bonded portion, and to reduce the bonding time. It is an object of the present invention to provide a bonding method and apparatus using ultrasonic waves which can reduce the length of ultrasonic energy required for bonding, can reduce the capacity of ultrasonic energy required for bonding, and can reduce the size and cost of the entire apparatus. . In addition, the table It is an object of the present invention to provide a method and an apparatus which can perform bonding at a low pressure without applying a risk of damaging a bump or the like by applying ultrasonic waves even in low-temperature bonding by surface activation.
上記目的を達成するために、 本発明に係る接合方法は、 基材の表面に金属接合 部を有する被接合物同士を接合するに際し、 両被接合物の前記金属接合部の表面 をエネルギー波により洗浄した後、 大気中で金属接合部同士を超音波接合するこ とを特徴とする方法からなる。 金属接合部の表面のエネルギー波による洗浄は、 大気圧下で行うことも可能であり、 減圧下で行うことも可能である。  In order to achieve the above object, a joining method according to the present invention provides a method for joining objects having a metal joint on a surface of a base material, by using an energy wave on the surface of the metal joint of both objects. After cleaning, the method is characterized in that the metal joints are ultrasonically joined together in the air. Cleaning of the metal joint surface with energy waves can be performed under atmospheric pressure, or under reduced pressure.
接合のための超音波印加条件は、 金属接合部へのダメージ (とくに、 クラック の発生) を抑えるために、 以下のように最適化することが好ましい。 すなわち、 印加する超音波の振幅を 3 / m未満にする。 より好ましくは 2〃m以下、 さらに 好ましくは 1 m以下である。  The conditions for applying ultrasonic waves for bonding are preferably optimized as follows in order to suppress damage (particularly, cracks) to the metal bonding part. That is, the amplitude of the applied ultrasonic wave is set to less than 3 / m. It is more preferably 2 m or less, and further preferably 1 m or less.
また、 上記の如く超音波の振幅を小さく して印加超音波強度を低下させたこと による接合性能の低下は、 印加する超音波の周波数を上げることで補うことが可 能である。 超音波の周波数としては、 4 0 k H z以上が好ましく、 より好ましく は 6 0 k H z以上である。  In addition, the decrease in the bonding performance due to the decrease in the intensity of the applied ultrasonic wave by reducing the amplitude of the ultrasonic wave as described above can be compensated for by increasing the frequency of the applied ultrasonic wave. The frequency of the ultrasonic wave is preferably 40 kHz or more, and more preferably 60 kHz or more.
また、 超音波印加により、 従来の表面活性化による低温での加圧接合に比べ、 接合荷重を大幅に低下させることが可能になる。 金属接合部へのダメージを抑え つつ良好な接合を達成するためには、 接合荷重を 1 5 0 M P a以下にすることが 好ましい。  In addition, the application of ultrasonic waves makes it possible to significantly reduce the bonding load compared to conventional low-temperature pressure bonding by surface activation. In order to achieve good joining while suppressing damage to the metal joint, the joining load is preferably set to 150 MPa or less.
金属接合部の表面洗浄のために用いるエネルギー波としては、 プラズマが好ま しく、 中でも、 A rガス雰囲気下でのプラズマが好ましい。  As an energy wave used for cleaning the surface of the metal joint, plasma is preferable, and in particular, plasma in an Ar gas atmosphere is preferable.
上記接合は常温で行うことも可能であるが、 加熱を併用することにより、 粒子 の拡散が助長されるので、 より容易に接合界面の凹凸を潰して平坦にし、 良好な 接合状態が得られるようになる。 加熱温度としては、 1 8 0 °C以下好ましくは 1 5 0 °C未満でよい。 つまり、 従来の一般的な低温金属接合はハンダ接合であり、 ハングの融点は 1 8 3 °C程度であるので、 それよりも低温の接合、 すなわち、 1 8 0 °C以下好ましくは 1 5 0 °C未満での接合を可能とするものである。  The above-mentioned bonding can be performed at room temperature.However, by using heating together, the diffusion of particles is promoted, so that the unevenness of the bonding interface can be more easily crushed and flattened, and a good bonding state can be obtained. become. The heating temperature may be 180 ° C. or less, preferably less than 150 ° C. In other words, the conventional general low-temperature metal bonding is a solder bonding, and the melting point of the hang is about 18 ° C., so the lower-temperature bonding, that is, 180 ° C. or less, preferably 150 ° C. This enables joining at a temperature lower than ° C.
上記エネルギー波による洗浄では、 金属接合部の接合される全表面で 1 n m以 上の深さにエッチングすることが好ましい。 このような深さ以上にエッチング可 能なエネルギー波照射により、 金属接合部同士を大気中で接合するに必要な表面 性状を得ることが可能になる。 In the above-mentioned cleaning by energy waves, the entire surface to be joined of the metal joint is 1 nm or less. It is preferable to etch to an upper depth. By irradiating energy waves that can be etched to such a depth or more, it becomes possible to obtain surface properties necessary for joining metal joints in the air.
本発明に係る超音波接合は、 とくに、 表面が A u、 C u、 A l、 I n、 S nの いずれかにより構成されている金属接合部同士を接合する場合に好適である。 た とえば、 互いに接合される金属接合部の組み合わせとして、 A u、 C u、 A l、 I n、 S nのいずれかの同種金属同士、 あるいは任意の 2つの異種金属同士、 あ るいは、 方を A uとし他方を C u、 A 1、 I n、 S nのいずれかとする組み合 わせとすることができる。 中でも、 A u同士の接合の場合、 常温でも確実に接合 できるようになる。 ただし、 A u同士の接合以外の場合でも (たとえば、 λ \χ / C u、 A u / A 1等の接合等) 、 常温あるいはそれに近い低温での接合を可能と することができる。 また、 少なくとも一方の金属接合部を特定の金属、 たとえば A uで構成する場合、 金属接合部を形成する電極等の全体を A uで構成すること もできるが、 表面だけを A uで構成することもできる。 表面を A uで構成するた めの形態はとくに限定されず、 A uめっきの形態や A u薄膜をスパッタリ ングや 蒸着等により形成した形態を採用すればよい。 また、 接合表面を A uに限定する ならば、 表面活性化により大気中でも常温で接合が可能になり、 常温接合による 接合のもと、 超音波印加により加圧力を約半分に下げても、 界面の凹凸を潰して 良好な接合が可能となる。 従来 3 0 0 M P a程度の加圧力が必要であつたが、 表 面活性化後超音波を印加することにより、 約 1 5 0 M P aまで下げることが可能 となった。  The ultrasonic joining according to the present invention is particularly suitable for joining metal joints whose surfaces are formed of any one of Au, Cu, Al, In, and Sn. For example, as a combination of metal joints to be joined to each other, the same kind of metal of Au, Cu, Al, In, Sn, or any two kinds of dissimilar metals, or One can be A u and the other can be any of Cu, A 1, In, and Sn. Above all, in the case of joining Au, the joining can be surely performed even at room temperature. However, even in cases other than the joining of Au (for example, joining of λ \ χ / Cu, Au / A1, etc.), joining can be performed at room temperature or at a low temperature close to that. When at least one of the metal joints is made of a specific metal, for example, Au, the entire electrode or the like forming the metal joint can be made of Au, but only the surface is made of Au. You can also. The form for forming the surface with Au is not particularly limited, and a form of Au plating or a form in which an Au thin film is formed by sputtering or vapor deposition may be used. Also, if the bonding surface is limited to Au, surface activation enables bonding at room temperature even in air, and even if the pressure is reduced to about half by ultrasonic application under bonding at room temperature, the interface Squeezes the unevenness of the slab to achieve good bonding. Conventionally, a pressure of about 300 MPa was required, but by applying ultrasonic waves after surface activation, the pressure can be reduced to about 150 MPa.
上記金属接合部同士の接合時には、 金属接合部間の隙間のばらつきを最大 4 μ m以下にすることが好ましい。 隙間のばらつきが 4 / m以下であれば、 適切な接 合荷重、 たとえば 3 0 0 M P a程度 (好ましくは、 1 5 0 M P a以下) の接合荷 重で、 金属接合部同士の接合のために必要な隙間のばらつき以下に抑えることが 可能となる。 また、 金属接合部同士の接合時に、 被接合物間の平行度を 4 m以 内に調整することが好ましい。 このような平行度調整により、 上記の隙間のばら つきを小さく抑えることが可能になるとともに、 金属接合部同士がより密接に面 接触できるようになり、 一層容易に低温接合できるようになる。 また、 金属接合部同士の接合に際し、 表面同士が良好に密着できるように、 少 なくとも一方の金属接合部の接合前の表面粗さ (とくに表面のうねり) を 3 0 0 n m以下にすることが好ましい。 このような表面粗さとすることにより、 より密 接な接合が可能となる。 At the time of joining the metal joints, it is preferable that the variation in the gap between the metal joints is 4 μm or less at the maximum. If the variation of the gap is 4 / m or less, an appropriate joint load, for example, a joint load of about 300 MPa (preferably, 150 MPa or less) is used for joining metal joints. It is possible to suppress the variation of the gap required for the following. Further, it is preferable to adjust the parallelism between the objects to be joined to within 4 m when joining the metal joints. Such parallelism adjustment makes it possible to reduce the above-mentioned variation in the gap, and allows the metal joints to come into more close surface contact with each other, thereby making it easier to perform low-temperature joining. In addition, at the time of joining metal joints, at least the surface roughness (particularly surface undulation) of at least one metal joint before joining should be 300 nm or less so that the surfaces can be in good contact with each other. Is preferred. With such a surface roughness, closer bonding can be achieved.
また、 金属接合部の接合後の表面粗さは 1 0 n m以下にすることが好ましい。 接合後の界面が表面粗さ 1 0 n m以下に押し潰されることにより、 接合面積が大 きくなり、 低抵抗でシュア強度的にも良好な接合となる。  Further, it is preferable that the surface roughness of the metal joint after joining is 10 nm or less. When the interface after bonding is crushed to a surface roughness of 10 nm or less, the bonding area is increased, resulting in a low resistance and good bonding strength.
また、 上記同様の目的で、 少なくとも一方の金属接合部の表面硬度がピツカ一 ス硬度 H で 1 2 0以下、 さらに好ましくは、 ァニ一リ ングにより硬度を 1 0 0 以下に下げたものが好ましい。 たとえば、 表面硬度 H vを 3 0〜7 0の範囲内 (たとえば、 平均 Η Vを 5 0 ) とすることが好ましい。 このような低硬度として おくことで、 接合荷重印加時に金属接合部の表面が適当に変形し、 より密接な接 合が可能となる。  For the same purpose as described above, the surface hardness of at least one of the metal joints may be reduced to 120 or less in picker hardness H, and more preferably, reduced to 100 or less by annealing. preferable. For example, the surface hardness Hv is preferably in the range of 30 to 70 (for example, the average 平均 V is 50). With such a low hardness, the surface of the metal joint is appropriately deformed when a joining load is applied, so that a more intimate joint is possible.
本発明に係る接合装置は、 基材の表面に金属接合部を有する被接合物同士を接 合する装置であって、 各被接合物の前記金属接合部の表面にエネルギー波を照射 する洗浄手段と、 該手段から取り出した被接合物の金属接合部同士を大気中で超 音波接合する接合手段とを有することを特徴とするものからなる。 この接合装置 においては、 上記洗浄手段を、 大気圧下で金属接合部の表面にエネルギー波を照 射する手段に構成することもできるし、 減圧下で金属接合部の表面にエネルギー 波を照射する手段に構成することもできる。  A joining apparatus according to the present invention is an apparatus for joining objects to be joined having a metal joint on a surface of a base material, and a cleaning unit for irradiating an energy wave to the surface of the metal joint of each article to be joined. And a joining means for ultrasonically joining the metal joints of the objects taken out from the means in the air. In this bonding apparatus, the cleaning means may be configured to irradiate an energy wave to the surface of the metal joint under atmospheric pressure, or to irradiate the energy wave to the surface of the metal joint under reduced pressure. Means can also be constituted.
接合のための超音波印加条件を最適な条件とするために、 上記接合手段は、 ダ メ一ジを少なくするためには、 振幅 3 /z m未満、 望ましくは 2 // m以下、 さらに 望ましくは 1 / m以下の超音波を印加可能な手段からなることが好ましい。 また、 接合手段は、 周波数 4 0 k H z以上、 望ましくは 6 0 k H z以上の超音波を印加 可能な手段からなることにより、 振幅を落としてもエネルギーを増大させること ができるので、 このように構成されていることが好ましい。 さらに、 接合手段は、 1 5 0 M P a以下の接合荷重で接合可能な手段からなることが好ましい。  In order to optimize the ultrasonic application conditions for bonding, the above-mentioned bonding means should have an amplitude of less than 3 / zm, preferably 2 // m or less, and more preferably It is preferable to use a means capable of applying an ultrasonic wave of 1 / m or less. In addition, since the joining means is constituted by means capable of applying an ultrasonic wave having a frequency of 40 kHz or more, preferably 60 kHz or more, the energy can be increased even if the amplitude is reduced. It is preferable that it is comprised as follows. Further, it is preferable that the joining means is a means capable of joining with a joining load of 150 MPa or less.
この接合装置においては、 上記洗浄手段がプラズマ照射手段からなることが好 ましく、 中でも、 A rプラズマ照射手段からなることが好ましい。 また、 上記接合手段は、 加熱手段を有し、 ハンダ融点より低い 1 8 0 °C以下好 ましくは 1 5 0 °C未満の温度で金属接合部同士を超音波接合できる手段に構成さ れていることが好ましい。 In this bonding apparatus, it is preferable that the cleaning unit is a plasma irradiation unit, and it is particularly preferable that the cleaning unit is an Ar plasma irradiation unit. Further, the joining means has a heating means and is configured to be capable of ultrasonically joining the metal joints at a temperature of 180 ° C. or less, preferably less than 150 ° C. lower than the solder melting point. Is preferred.
また、 上記洗浄手段は、 金属接合部同士を大気中で接合するに必要な表面エツ チングを行うために、 金属接合部の接合される全表面で 1 n m以上の深さののェ ッチングが可能なエネルギー以上でエネルギー波を照射する手段からなることが 好ましい。  In addition, the above-mentioned cleaning means can perform etching to a depth of 1 nm or more on the entire surface to be joined of the metal joint in order to perform surface etching necessary for joining metal joints in the air. It is preferable to include a means for irradiating an energy wave with a high energy or more.
また、 揆合される両金属接合部の表面金属種の組み合わせは、 前述したように、 A u、 C u、 A l、 I n、 S nのいずれかの同種金属同士、 あるいは任意の 2つ の異種金属同士、 あるいは、 一方を A uとし他方を C u、 A l、 I n、 S nのい ずれかとする組み合わせとすることができる。 中でも、 A u同士の組み合わせと する場合、 接合が最も容易になる。  Also, as described above, the combination of the surface metal types of the two metal joints to be combined is, as described above, any one of the same metal of Au, Cu, Al, In, and Sn, or any two of them. Or a combination in which one is Au and the other is one of Cu, Al, In, and Sn. Above all, when Au is combined, bonding becomes the easiest.
また、 上記接合手段は、 金属接合部同士の接合時の隙間のばらつきを最大 4 μ m以下にする手段を備えていることが好ましい。 また、 接合手段が、 金属接合部 同士の接合時の被接合物間の平行度を 4 / m以内に調整する手段を備えているこ とが好ましい。 また、 少なくとも一方の金属接合部の接合前の表面粗さが 3 0 0 n m以下とされていることが望ましい。 また、 少なく とも一方の金属接合部の接 合後の表面粗さが 1 0 n m以下とされていることが望ましい。 さらに、 少なく と も一方の金属接合部の表面硬度がビッカース硬度 H Vで 1 2 0以下、 さらには 1 0 0以下とされていることが望ましい。  Further, it is preferable that the above-mentioned joining means is provided with means for reducing a variation of a gap at the time of joining between metal joints to a maximum of 4 μm or less. Further, it is preferable that the joining means includes means for adjusting the parallelism between the objects to be joined at the time of joining the metal joints to within 4 / m. In addition, it is desirable that the surface roughness of at least one of the metal joints before joining is 300 nm or less. It is also desirable that the surface roughness of at least one of the metal joints after joining is 10 nm or less. Further, it is desirable that at least one metal joint has a surface hardness of 120 or less, more preferably 100 or less, in Vickers hardness HV.
本発明はまた、 前記のような接合方法により作製された接合体も提供する。 す なわち、 本発明に係る接合体は、 基材の表面に金属接合部を有する被接合物同士 の接合体であって、 両被接合物の前記金属接合部の表面がエネルギー波により洗 浄された後、 大気中で金属接合部同士が超音波接合されることによつて作製され たことを特徴とするものからなる。  The present invention also provides a joined body produced by the joining method as described above. In other words, the joined body according to the present invention is a joined body of objects to be joined having a metal joint on the surface of the base material, and the surfaces of the metal joints of both the objects are cleaned by energy waves. After that, the metal joints are ultrasonically joined to each other in the air, and are produced.
上記接合体においては、 接合された被接合物の少なく とも一方が半導体からな る構成とすることができる。  In the above joined body, at least one of the joined objects can be made of a semiconductor.
上記のような本発明に係る接合方法および装置においては、 減圧下または大気 圧下で被接合物の金属接合部の表面にエネルギー波が照射され、 表面がエツチン グにより洗浄され活性化された金属接合部同士が大気中で超音波接合される。 事 前にエネルギー波照射により表面の酸化膜や有機物層、 コンタミ層が除去される ため、 低強度の超音波にて短時間で所望の接合を行うことが可能になる。 したが つて、 被接合物や接合部にダメ一ジを与えることなく良好な超音波接合を行うこ とが可能になるとともに、 超音波接合に要する時間短縮により、 接合工程全体の タク トタイムの短縮が可能となる。 また、 超音波印加手段の容量も小さくてよい ため、 装置全体の小型化、 コス トダウンも可能となる。 さらに、 大気中での接合 が可能と るので、 接合のために大がかりな真空装置やそのためのシール装置等 が不要になり、 この面からも、 工程全体、 装置全体として大幅に簡素化され、 コ ス トダウンも可能となる。 さらにまた、 低温、 とくに常温あるいはそれに近い温 度での接合まで可能となるので、 加熱に関する装置負担も小さくすることが可能 となる。 In the bonding method and apparatus according to the present invention as described above, the surface of the metal bonding portion of the workpiece is irradiated with an energy wave under reduced pressure or atmospheric pressure, and the surface is etched. The metal joints cleaned and activated by the metal bonding are ultrasonically bonded in the air. Since the oxide film, organic layer, and contamination layer on the surface are removed by energy wave irradiation beforehand, desired bonding can be performed in a short time with low-intensity ultrasonic waves. Therefore, it is possible to perform good ultrasonic bonding without damaging the workpieces and the joints, and shorten the time required for ultrasonic bonding to shorten the tact time of the entire bonding process. Becomes possible. In addition, since the capacity of the ultrasonic wave applying means may be small, the whole apparatus can be reduced in size and cost. Furthermore, since joining in the atmosphere is possible, a large-scale vacuum device and a sealing device therefor are not required for joining. From this aspect, the entire process and the entire device are greatly simplified, and It will also allow for downtime. Furthermore, since bonding can be performed at a low temperature, particularly at or near normal temperature, the load on the heating device can be reduced.
また、 事前にエネルギー波照射により表面の酸化膜や有機物層、 コンタミ層が 除去されるため、 従来できなかった異種金属同士の接合、 たとえば、 金ノ銅ゃ金 /アルミニウムの超音波接合が可能になり、 超音波接合の適用範囲が大幅に拡大 される。  In addition, the oxide film, organic layer, and contamination layer on the surface are removed in advance by irradiation with energy waves, which enables the joining of dissimilar metals, which could not be done conventionally, for example, the ultrasonic joining of gold / copper / gold / aluminum. This greatly expands the scope of ultrasonic bonding.
また、 事前のエネルギー波照射による接合面の表面活性化後に超音波印加によ り接合することにより、 常温接合においても、 接合荷重を大幅に低減できるよう になる。 接合表面が A uの場合、 表面活性化により大気中でも常温で接合が可能 になるのに加え、 この常温接合による接合においては、 超音波印加により加圧力 を約半分に下げても、 界面の凹凸を潰して良好な接合が可能となる。  In addition, by applying ultrasonic waves after activating the surface of the bonding surface by irradiation with energy waves in advance, the bonding load can be significantly reduced even at room temperature bonding. When the bonding surface is Au, surface activation enables bonding at room temperature even in air, and in this bonding at room temperature, even if the pressure is reduced to about half by applying ultrasonic waves, the unevenness of the interface And a good joining is possible.
また、 とくに本発明では、 事前のエネルギー波照射による洗浄と超音波接合と の組み合わせにより、 接合条件が大幅に緩和される。 従来の超音波接合では振幅 3 〃m以上の超音波印加が必要であつたが、 振幅 3 // in以上では接合への寄与度 は大きくなるものの、 ダメージを与えるおそれがある。 本発明では、 エネルギー 波洗浄による接合面の表面活性化により、 コンタミ層が極めて薄くなつているた め、 振幅を低下することが可能になる。 そのため、 超音波印加によるダメージ (たとえば、 クラック発生) を無くすことが可能になる。 また、 振幅低下により 超音波強度が低下し、 その分接合への寄与度が低下するおそれもあるが、 ダメー ジ低減のために振幅を下げても、 周波数を上げることにより、 とくに周波数を 4 0 k H z以上、 好ましくは 6 0 k H z以上とすることにより、 接合に対して十分 な寄与度を維持することが可能となる。 つまり、 接合メカニズムは、 高周波振動 により金属そのものが膨張収縮を繰り返すことと考えられるので、 振幅を大きく することをほとんど不要化することが可能となる。 In particular, in the present invention, bonding conditions are greatly reduced by a combination of cleaning by irradiation of energy waves in advance and ultrasonic bonding. In conventional ultrasonic bonding, it was necessary to apply ultrasonic waves with an amplitude of 3 μm or more, but if the amplitude is 3 // in or more, the contribution to the bonding will be large, but there is a risk of damage. In the present invention, the amplitude of the contamination layer can be reduced because the contaminant layer is extremely thin due to the activation of the bonding surface by the energy wave cleaning. Therefore, it is possible to eliminate damage (for example, crack generation) due to application of ultrasonic waves. Also, the ultrasonic intensity may decrease due to the decrease in amplitude, and the contribution to joining may decrease accordingly. Even if the amplitude is reduced to reduce the leakage, sufficient contribution to the junction is maintained by increasing the frequency, especially by increasing the frequency to 40 kHz or more, preferably 60 kHz or more. It is possible to do. In other words, the bonding mechanism is considered to be such that the metal itself expands and contracts repeatedly due to the high-frequency vibration, so that it is possible to almost eliminate the need to increase the amplitude.
また、 超音波印加により、 接合界面での応力が増大するため、 界面の凹凸は潰 れやすくなり、 結果として軟らかくなるのと同等の状態が創出される。 その結果、 単なる加圧による接合に比べ、 低荷重での接合が可能になる。 従来少なく とも 3 0 0 M P aの接合荷重が必要であつたのに対し、 1 5 0 M P a以下での接合が可 能になる。  In addition, the application of ultrasonic waves increases the stress at the bonding interface, so that the unevenness at the interface is easily crushed, and as a result, the same state as softening is created. As a result, joining with a lower load is possible compared to joining by simple pressurization. Conventionally, a joining load of at least 300 MPa was required, but joining at 150 MPa or less is possible.
さらに、 適切な温度での加熱の併用や、 金属接合部の隙間のばらつきの抑制、 平行度の調整等を行うことにより、 一層容易に所定の超音波接合を行うことがで きるようになる。  Further, by performing the combined use of heating at an appropriate temperature, suppressing the variation in the gap between the metal joints, and adjusting the parallelism, it becomes possible to more easily perform the predetermined ultrasonic welding.
このように、 本発明に係る接合方法および装置によれば、 ダメージを与えるこ となく所望の超音波接合が可能になり、 超音波接合時間の短縮、 ひいては接合ェ 程全体のタク トタイムの短縮が可能になるとともに、 超音波エネルギー容量の縮 小が可能となって装置全体の小型化、 コストダウンをはかることが可能になる。 また、 従来超音波接合できなかった異種金属、 たとえば金/銅や金 アルミニゥ ムの組み合わせでの接合も可能になる。  As described above, according to the bonding method and apparatus according to the present invention, desired ultrasonic bonding can be performed without causing damage, and the ultrasonic bonding time can be shortened, and the tact time of the entire bonding process can be shortened. At the same time, it is possible to reduce the ultrasonic energy capacity, thereby making it possible to reduce the size and cost of the entire device. Also, it is possible to join with a combination of dissimilar metals, such as gold / copper or gold aluminum, which could not be ultrasonically joined conventionally.
また、 事前エネルギー波洗浄により、 印加超音波の強度を大幅に低下させるこ とが可能になり、 印加条件を最適化することにより、 ダメージを受けやすい被接 合物にあっても、 ダメージを発生させることなく、 高い生産効率をもって良好に 接合できるようになる。  In addition, pre-energy wave cleaning makes it possible to greatly reduce the intensity of applied ultrasonic waves, and by optimizing the application conditions, damage is caused even on objects that are easily damaged. Without joining, it is possible to join well with high production efficiency.
さらに、 従来の表面活性化による低温接合と比べ、 超音波を印加することによ り、 接合荷重を大幅に低減することが可能となり、 半導体回路上のバンプや光素 子のような化合物半導体など大きな荷重をかけられないものについても、 接合が 可能になる。  Furthermore, compared to the conventional low-temperature bonding by surface activation, the application of ultrasonic waves makes it possible to greatly reduce the bonding load, and it is possible to use compound semiconductors such as bumps and optical elements on semiconductor circuits. Joining is possible even for those that cannot apply a large load.
図 面 の 簡 単 な 説 明  Brief explanation of drawings
図 1は、 本発明の一実施態様に係る接合装置の概略構成図である。 図 2は、 熱衝撃試験サイクルと良品率との関係図である。 FIG. 1 is a schematic configuration diagram of a joining device according to an embodiment of the present invention. Figure 2 shows the relationship between the thermal shock test cycle and the yield rate.
図 3は、 モデル試験における超音波振幅とシ ア強度との関係図である。 図 4は、 別のモデル試験における超音波振幅とシ ア強度 (相対値) との関係 図である。  Figure 3 is a diagram showing the relationship between the ultrasonic amplitude and the shear strength in the model test. Figure 4 shows the relationship between ultrasonic amplitude and shear strength (relative value) in another model test.
図 5は、 モデル試験における接合荷重とバンプ潰れ量との関係図である。 図 6は、 振幅 1 /z mの超音波印加試験における周波数と良品率 (相対値) との 関係図である。  FIG. 5 is a diagram showing the relationship between the bonding load and the amount of bump crush in the model test. Figure 6 is a diagram showing the relationship between the frequency and the non-defective product ratio (relative value) in the ultrasonic test with an amplitude of 1 / zm.
〔符号の説明〕  [Explanation of symbols]
1 接合装置  1 Joining equipment
2、 3 金属接合部  2, 3 metal joint
4 被接合物 (チップ)  4 Workpiece (chip)
5 被接合物 (基板)  5 Workpiece (substrate)
6 真空ポンプ  6 Vacuum pump
7 チヤ ンバ  7 Chamber
8 プラズマ照射手段  8 Plasma irradiation means
9 プラズマ  9 Plasma
1 0 A rガス供給ポンプ  1 0 Ar gas supply pump
1 1 接合装置部  1 1 Joining unit
1 2 待機部  1 2 Standby unit
1 3 反転機構  1 3 Reversing mechanism
1 4 反転機構のへッ ド部  1 4 Head of reversing mechanism
1 5 ボンディ ングへッ ド  1 5 Bonding head
1 6 ボンディ ングツール  1 6 Bonding tool
1 7 ボンディ ングステージ  1 7 Bonding stage
1 8 加熱手段としてのヒータ  1 8 Heater as heating means
1 9 超音波印加手段  1 9 Ultrasonic wave applying means
2 0 位置調整テーブル  2 0 Position adjustment table
2 1 2視野の認識手段  2 1 2 Field of view recognition
発 明 を実施す る た め の最良 の形態 以下に、 本発明の望ましい実施の形態を、 図面を参照しながら説明する。 Best mode for carrying out the invention Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の一実施態様に係る接合装置 1を示している。 基材の表面に金 属接合部 2または 3を有する被接合物 4または 5は、 まず、 真空ポンプ 6により 減圧され所定の真空度にされたチャンバ 7内で、 エネルギー波による洗浄手段と してのプラズマ照射手段 8から照射されたプラズマ 9によって金属接合部 2、 3 の表面がエッチングにより洗浄される (洗浄工程) 。 本実施態様では、 ポンプ 1 0によりチャンバ 7内に A rガスを供給できるようになっており、 A rガス雰囲 下でかつ所定の減圧下にてプラズマ照射できるようになつている。 なお、 本実施 態様では所定の減圧下にてプラズマ照射することとしているが、 大気圧下でのプ ラズマ照射とすることも可能である。 洗浄された被接合物 4、 5は、 チャ ンバ 7 内から取り出され、 接合工程 (接合装置部 1 1 ) にて、 金属接合部 2、 3同士が 大気中で超音波接合される。  FIG. 1 shows a joining apparatus 1 according to one embodiment of the present invention. A workpiece 4 or 5 having a metal joint 2 or 3 on the surface of a base material is firstly cleaned as a means for cleaning by an energy wave in a chamber 7 evacuated by a vacuum pump 6 to a predetermined degree of vacuum. The surfaces of the metal joints 2 and 3 are cleaned by etching with the plasma 9 irradiated from the plasma irradiation means 8 (cleaning step). In the present embodiment, the Ar gas can be supplied into the chamber 7 by the pump 10, so that plasma irradiation can be performed in an Ar gas atmosphere and under a predetermined reduced pressure. Although plasma irradiation is performed under a predetermined reduced pressure in this embodiment, plasma irradiation may be performed under atmospheric pressure. The cleaned workpieces 4 and 5 are taken out of the chamber 7, and the metal bonding sections 2 and 3 are ultrasonically bonded to each other in the air in a bonding process (a bonding apparatus section 11).
なお、 上記被接合物 4は、 たとえばチップからなり、 被接合物 5は、 例えば基 板からなる。 ただし、 ここでチップとは、 たとえば、 I Cチップ、 半導体チップ、 光素子、 表面実装部品、 ウェハ一など種類や大きさに関係なく基板と接合される 側の全ての形態のものを指す。 この被接合物 4上に、 金属接合部 2として、 たと えばバンプが形成されている。 また、 基板とは、 たとえば、 樹脂基板、 ガラス基 板、 フィルム基板、 チップ、 ウェハ一など種類や大きさに関係なくチップと接合 される側の全ての形態のものを指す。 本発明における代表的な態様として、 接合 される被接合物の少なくとも一方が半導体からなる態様を挙げることができる。 上記洗浄された被接合物 4、 5は、 チャ ンバ 7を有する洗浄手段から接合装置 部 1 1における接合手段まで、 適当な搬送手段で搬送される。 接合装置部 1 1で は、 たとえば、 所定の待機部 1 2に、 上記洗浄された被接合物 4、 5が載置され る。 被接合物 4は、 反転機構 1 3のへッ ド部 1 4に、 洗浄面に触れないように、 吸着等により保持され、 上下反転された後、 ボンディ ングへッ ド 1 5の下部に設 けられたボンディ ングツール 1 6に、 金属接合部 2が下方に向けられた形態で吸 着等によって保持される。 被接合物 5は、 待機部 1 2から移載され、 たとえば、 ボンディ ングステージ 1 7上に、 金属接合部 3が上方に向けられた形態で吸着等 によって保持される。 本実施態様では、 ボンディ ングツール 1 6に加熱手段とし てのヒータ 1 8が内蔵されており、 大気中にて、 常温下での接合、 加熱下での接 合のいずれも可能となっている。 The article 4 is made of, for example, a chip, and the article 5 is made of, for example, a substrate. However, here, the chip refers to all forms on the side to be bonded to the substrate regardless of the type or size, such as an IC chip, a semiconductor chip, an optical element, a surface mount component, and a wafer. For example, bumps are formed on the article 4 as the metal joints 2. Further, the term “substrate” refers to, for example, a resin substrate, a glass substrate, a film substrate, a chip, a wafer, or any other form of the side to be bonded to the chip regardless of the type or size. A typical embodiment of the present invention is an embodiment in which at least one of the objects to be joined is made of a semiconductor. The cleaned articles 4 and 5 are transported by a suitable transporting means from the cleaning means having the chamber 7 to the bonding means in the bonding apparatus 11. In the joining device section 11, for example, the above-mentioned cleaned articles 4 and 5 are placed in a predetermined standby section 12. The workpiece 4 is held on the head 14 of the reversing mechanism 13 by suction or the like so as not to touch the cleaning surface, is turned upside down, and is installed under the bonding head 15. The metal bonding portion 2 is held by suction or the like in the form in which the metal bonding portion 2 faces downward on the bonded bonding tool 16. The article 5 is transferred from the standby section 12, and is held on the bonding stage 17, for example, by suction or the like with the metal joined section 3 facing upward. In the present embodiment, the bonding tool 16 is used as a heating means. All heaters 18 are built-in, and it is possible to perform both joining at room temperature and joining under heating in the air.
ボンディ ングへッ ド 1 5は、 ボンディ ングツール 1 6を介して、 被接合物 4を 下方に押圧し、 被接合物 5に対して、 所定の接合荷重を印加、 コントロールでき るようになっている。 本実施態様では、 ボンディ ングへッ ド 1 5は、 上下方向 ( Z方向) に移動および位置決めできるようになつている。 このボンディ ングへ ッ ド 1 5またはボンディ ングツール 1 6に超音波印加手段 1 9が設けられており、 本実施態様では、 被接合物 4側に、 とくにその金属接合部 2に超音波振動を与え ることにより、 被接合物 5の金属接合部 3との間で超音波接合を行うことができ るようになっている。  The bonding head 15 can press the workpiece 4 downward through the bonding tool 16 to apply and control a predetermined bonding load to the workpiece 5. I have. In this embodiment, the bonding head 15 can be moved and positioned in a vertical direction (Z direction). The bonding head 15 or the bonding tool 16 is provided with an ultrasonic wave applying means 19, and in this embodiment, the ultrasonic vibration is applied to the object 4 side, particularly to the metal joint 2 thereof. By applying, ultrasonic bonding can be performed with the metal joint 3 of the article 5 to be joined.
また、 上記被接合物 5を保持しているボンディ ングステージ 1 7は、 本実施態 様では、 下部に設けられている位置調整テーブル 2 0による、 X、 Y方向の水平 方向位置制御、 0方向の回転方向位置制御、 および、 X軸、 Y軸周りの傾き調整 制御により、 被接合物 4 との間の相対位置合わせおよび平行度調整を行うことが できるようになつており、 金属接合部同士の接合時の隙間のばらつきを小さく抑 えることもできるようになつている。 この相対位置合わせおよび平行度調整は、 被接合物 4、 5間に進退可能に挿入される認識手段、 たとえば 2視野の認識手段 2 1 (たとえば、 2視野カメラ) により、 被接合物 4、 5あるいはそれらの保持 手段に付された認識マーク (図示略) を読み取り、 読み取り情報に基づいて位置 や角度の必要な修正を行うことにより、 実施される。 2視野の認識手段 2 1は、 X、 Y方向、 .場合によっては Z方向への位置調整が可能となっている。 この相対 位置合わせおよび平行度調整は、 本実施態様では主としてボンディ ングステージ 1 7側で行われるが、 ボンディ ングへッ ド 1 5またはボンディ ングツール 1 6側 で行うようにすることも可能であり、 両側で行うことも可能である。 両側で行う 場合には、 必要に応じて、 ボンディ ングへッ ド 1 5側については昇降制御だけで なく回転制御および Zまたは平行移動制御を行い、 ボンディ ングステージ 1 7側 についても回転制御、 平行移動制御および昇降制御などを行うことができ、 これ ら制御形態は必要に応じて任意に組み合わせることが可能である。  Further, in this embodiment, the bonding stage 17 holding the article 5 is provided with a horizontal position control in the X and Y directions, By controlling the rotational direction of the workpiece and the tilt adjustment control around the X-axis and Y-axis, relative positioning and parallelism adjustment with the workpiece 4 can be performed. This also makes it possible to reduce variations in the gap at the time of joining. The relative alignment and the parallelism adjustment are performed by the recognition means inserted between the workpieces 4 and 5 so as to be able to move forward and backward, for example, the two-view recognition means 21 (for example, a two-view camera), Alternatively, the recognition is performed by reading recognition marks (not shown) attached to the holding means, and performing necessary corrections of the position and the angle based on the read information. The two-field-of-view recognizing means 21 can adjust the position in the X and Y directions, and in some cases in the Z direction. In this embodiment, the relative positioning and the parallelism adjustment are mainly performed on the bonding stage 17 side, but it is also possible to perform the bonding on the bonding head 15 or the bonding tool 16 side. It is also possible to do it on both sides. In the case of performing on both sides, rotation control and Z or parallel movement control as well as lifting and lowering control are performed for the bonding head 15 side as necessary, and rotation control and parallel control are also performed for the bonding stage 17 side. Movement control and elevation control can be performed, and these control forms can be arbitrarily combined as needed.
上記のような接合装置を用いて本発明に係る接合方法は次のように実施される まず、 所定の真空度とされたチヤンバ 7内で、 被接合物 4としてのチップ 4の金 属接合部 2 (たとえば、 バンプ) と、 被接合物 5としての基板 5の金属接合部 3 (たとえば、 電極) が、 A rプラズマ洗浄され、 表面が活性化される。 プラズマ 洗浄においては、 超音波接合のために表面異物層を除去し十分に表面活性化する ために、 金属接合部の接合される全表面で 1 n m以上エッチングできるようにプ ラズマ照射強度、 時間を設定することが好ましい。 一例で示すと、 1 0 0 V、 5 0 Wのプラズマ洗浄手段で A rプラズマを 5秒照射するレベルである。 The joining method according to the present invention using the above-described joining apparatus is performed as follows. First, in a chamber 7 having a predetermined degree of vacuum, a metal bonding portion 2 (for example, a bump) of a chip 4 as a workpiece 4 and a metal bonding portion 3 (for example, a bump) of a substrate 5 as a workpiece 5 The electrodes are cleaned by Ar plasma and the surface is activated. In plasma cleaning, in order to remove the surface foreign material layer for ultrasonic bonding and sufficiently activate the surface, the plasma irradiation intensity and time are set so that the entire surface where the metal joint is bonded can be etched by 1 nm or more. It is preferable to set. As an example, this is a level at which Ar plasma is irradiated for 5 seconds by a plasma cleaning means of 100 V and 50 W.
表面洗浄されたチップ 4および基板 5は、 一旦待機部 1 2に載置され、 チップ 4は上下反転されてボンディ ングツール 1 6に、 基板 5は反転されずにボンディ ングステージ 1 7に、 それぞれ保持される。 対向保持されたチップ 4と基板 5は は、 2視野の認識手段 2 1による読み取り情報に基づいて、 所定の精度内に入る ように位置合わせされ、 平行度も所定の精度内に入るように調整される。 とくに 平行度に関しては、 良好な超音波接合を達成するために、 両被接合物間の平行度 を 4 // m以下とし、 かつ、 金属接合部間の隙間のばらつきを最大 4 / m以下とす るように調整されることが好ましい。  The chip 4 and the substrate 5 whose surfaces have been cleaned are temporarily placed on the standby unit 12, and the chip 4 is turned upside down to the bonding tool 16, and the substrate 5 is not turned upside down to the bonding stage 17, respectively. Will be retained. The chip 4 and the substrate 5 held opposite to each other are aligned so as to be within a predetermined accuracy based on information read by the two-field recognition means 21 and the parallelism is adjusted so as to be within the predetermined accuracy. Is done. Regarding parallelism, in order to achieve good ultrasonic bonding, the parallelism between the two workpieces should be 4 // m or less, and the variation in the gap between metal joints should be 4 / m or less. It is preferable that the adjustment be made in such a manner.
この状態から、 ボンディ ングツール 1 6が降下され、 所定の接合荷重が印加さ れ、 必要に応じてヒータ 1 8によって加熱され、 超音波印加手段 1 9により印加 される超音波振動を利用して、 チップ 4の金属接合部 2 (バンプ) と基板 5の金 属接合部 3が、 大気中にて超音波接合される。  From this state, the bonding tool 16 is lowered, a predetermined bonding load is applied, heated by a heater 18 as necessary, and utilizing ultrasonic vibration applied by ultrasonic applying means 19. The metal joint 2 (bump) of the chip 4 and the metal joint 3 of the substrate 5 are ultrasonically bonded in the air.
従来の超音波接合においては、 前述したように、 接合面表面の酸化膜や有機物 層、 コンタミ層が厚かったり、 強固に付着していたりすると、 現実には超音波接 合ができなかった。 しかし、 上記のような本発明に係る超音波接合においては、 接合前に、 エネルギー波、 本実施態様では A rプラズマによる表面洗浄が施され ており、 接合面表面に超音波接合に必要なエッチングが施されて上記のような異 物層が十分に除去あるいは分解され表面が十分に活性化されているので、 従来よ りも低い超音波印加強度で (たとえば、 従来よりも小さい振幅で) かつ従来より も短い時間で所望の超音波接合を行うことが可能になる。 したがって、 無理に接 合させるために超音波印加強度を上げたり、 印加時間を長く したりする必要はな く、 チップやバンプにダメージを与えるおそれも除去されて、 接合品質も確保さ れることになる。 また、 超音波接合時間を短縮できるので、 接合工程全体のタク トタイムも短縮され、 生産性が大幅に向上される。 さらに、 超音波印加強度が小 さくてよいので、 超音波エネルギー容量が縮小され、 超音波印加手段 1 9として も小型かつ安価なものでよい。 したがって、 装置全体の小型化、 コストダウンに も寄与できることになる。 In conventional ultrasonic bonding, as described above, if the oxide film, organic material layer, or contamination layer on the surface of the bonding surface is thick or firmly adhered, ultrasonic bonding could not actually be performed. However, in the ultrasonic bonding according to the present invention as described above, before the bonding, the surface cleaning is performed by an energy wave, and in this embodiment, Ar plasma, and the etching required for the ultrasonic bonding is performed on the bonding surface. Is applied to sufficiently remove or decompose the foreign material layer as described above, and the surface is sufficiently activated, so that the ultrasonic irradiation intensity is lower than before (for example, with a smaller amplitude than before) and Desired ultrasonic bonding can be performed in a shorter time than before. Therefore, it is not necessary to increase the intensity of the applied ultrasonic waves or lengthen the application time to forcibly join the joints, which eliminates the possibility of damaging the chips and bumps and ensures the joint quality. Will be. Also, since the ultrasonic bonding time can be shortened, the tact time of the entire bonding process is also reduced, and productivity is greatly improved. Furthermore, since the ultrasonic wave application intensity may be small, the ultrasonic energy capacity is reduced, and the ultrasonic wave application means 19 may be small and inexpensive. Therefore, it can contribute to downsizing of the entire device and cost reduction.
この超音波接合においては、 前述の如く、 少なく とも一方の金属接合部の接合 前の表面粗さが 3 0 0 n m以下とされたり、 少なくとも一方の金属接合部の接合 後の表面粗さが 1 0 n m以下とされたり、 少なくとも一方の金属接合部の表面硬 度をピツカ一ス硬度 H Vで 1 2 0以下のものとしたり、 接合時に加熱を併用した りすることが有効である。 加熱により、 表面の硬度を下げたり、 接合時の表面に おける原子の動きを活発化させたりすることが可能であり、 一層容易に所望の超 音波接合を行うことが可能になる。  In this ultrasonic bonding, as described above, at least one of the metal joints has a surface roughness of 300 nm or less before joining, or at least one of the metal joints has a surface roughness of less than 1 nm. It is effective to set the surface hardness of at least one of the metal joints to a value of 120 or less in terms of a picker hardness HV of 120 or less, or to use heating at the time of joining. By heating, the hardness of the surface can be reduced, and the movement of atoms on the surface at the time of bonding can be activated, so that the desired ultrasonic bonding can be performed more easily.
とくに加熱の併用による効果は大きく、 その加熱による効果とエネルギー波洗 浄による効果の両方を相乗的に得ることが可能になる。 とくに 1 5 0 °C程度にま で加熱すると、 大きな効果が得られる。 とくに、 従来のハンダ融点よりも低い温 度で接合することにより、 従来のハンダ接合に比べ低温接合の特徴を維持しつつ, エネルギー波洗浄による効果を発揮させることができる。 ただし、 加熱温度は、 装置に大きな負担がかからないように、 かつ、 金属接合部に加熱による不都合が 発生しないように、 たとえば 1 8 0 °C以下好ましくは 1 5 0 °C未満の温度で適切 に (たとえば、 上記の如く 1 5 0 °C近傍の温度あるいはそれ以下の温度に) 設定 すればよい。  In particular, the effect of the combined use of heating is great, and both the effect of heating and the effect of energy wave cleaning can be obtained synergistically. Especially when heated to about 150 ° C, a great effect can be obtained. In particular, by bonding at a temperature lower than the conventional solder melting point, the effect of energy wave cleaning can be exhibited while maintaining the characteristics of low-temperature bonding as compared with conventional solder bonding. However, the heating temperature is appropriately set at a temperature of, for example, 180 ° C or less, preferably less than 150 ° C, so that a large load is not applied to the device and a problem due to heating does not occur in the metal joint. (For example, as described above, a temperature near 150 ° C. or lower) may be set.
また、 本発明に係るエネルギー波洗浄後に大気中で超音波接合を行う方法では、 後述の実施例に示すように、 とくに金属接合部の表面がともに A uからなる場合、 低い超音波印加強度、 短い印加時間で所望の超音波接合を行うことが可能になる < ただし、 本発明に係る接合方法では、 事前にエネルギー波洗浄を行うため、 A u A uの接合に限らず、 前述した各種金属の任意の組み合わせ、 たとえば、 A u Z C u A u / A 1の超音波接合が可能になり、 上記の如く加熱を併用すれば、 これら異種金属同士の超音波接合についても一層容易に行うことが可能になる。 上記のような本発明による作用、 効果を確認するために、 A u Z A uの金属接 合部の超音波接合を行うに際し、 事前のプラズマ洗浄なしに超音波接合した場合 と、 プラズマ洗浄後に超音波接合した場合とについて、 加熱による効果確認も加 味して、 試験を行った。 プラズマ洗浄は、 1回で金属接合部としてのバンプの表 面を 1 n mの深さエツチングできるエネルギーで処理する。 一例として、 1 0 0 V、 5 0 Wのプラズマ手段で A rプラズマ洗浄を 5秒行う。 評価は、 接合体に一 6 5 °C〜十 1 5 0 °Cの間の温度変動を繰り返し加え、 そのときのバンプ接合につ いての良品率 (%) を測定する熱衝撃試験を行った。 その結果、 図 2に示すよう な特性が得られた。 Further, in the method of performing ultrasonic bonding in the air after the energy wave cleaning according to the present invention, as shown in Examples described later, particularly when both surfaces of the metal bonding portion are made of Au, low ultrasonic application intensity, The desired ultrasonic bonding can be performed with a short application time. However, in the bonding method according to the present invention, since the energy wave cleaning is performed in advance, not only the bonding of Au Any combination of, for example, Au ZCu Au / A1 ultrasonic bonding is possible, and by using heating as described above, ultrasonic bonding between these dissimilar metals can be performed more easily. Will be possible. In order to confirm the operation and effect of the present invention as described above, the metal contact of AuZAu When performing the ultrasonic bonding of the joints, tests were performed for the case where ultrasonic bonding was performed without prior plasma cleaning and the case where ultrasonic bonding was performed after plasma cleaning, while also considering the effect of heating. The plasma cleaning is performed with an energy capable of etching the surface of the bump as a metal joint at a depth of 1 nm in one time. As an example, Ar plasma cleaning is performed for 5 seconds by a plasma means of 100 V and 50 W. For the evaluation, a thermal shock test was performed to measure the non-defective rate (%) of bump bonding at that time by repeatedly applying temperature fluctuations of between 65 ° C and 150 ° C to the bonded body. . As a result, the characteristics shown in Fig. 2 were obtained.
図 2に示すように、 事前のプラズマ洗浄なしで常温にて超音波接合した場合に は、 熱衝撃サイクル数が少ない段階でも、 低い良品率しか得られなかったが、 事 前にプラズマ洗浄 (2回の照射) を行うことにより、 熱衝撃サイクル数が多い段 階まで、 高い良品率が得られた。 また、 加熱による効果を確認するために、 事前 のプラズマ洗浄なしで接合時の温度を 1 5 0 °Cにして超音波接合したところ、 熱 衝撃サイクル数が多い段階まで、 高い良品率が得られた。 この図 2に示す結果で は、 事前プラズマ洗浄よりも加熱による効果の方が高く現れているが、 これは 1 5 0 °Cという比較的高い温度で試験したためで、 加熱による効果は温度に依存す ると考えられるため、 1 5 0 °Cよりも低い温度で試験する場合には、 事前プラズ マ洗浄による効果の方が高く現れる場合もある。 そして、 事前プラズマ洗浄と加 熱の両方を行った場合には、 プラズマ洗浄 1回の場合とプラズマ洗浄 2回の場合 との両方とも、 極めて高い効果が得られており、 これらの併用が最適な形態であ ることが分かる。  As shown in Fig. 2, when ultrasonic bonding was performed at room temperature without plasma cleaning, only a low yield rate was obtained at a stage where the number of thermal shock cycles was small, but before plasma cleaning (2 Irradiation), a high yield rate was obtained up to the stage where the number of thermal shock cycles was large. In order to confirm the effect of heating, ultrasonic bonding was performed at 150 ° C at the time of joining without prior plasma cleaning, and a high yield rate was obtained up to the stage where the number of thermal shock cycles was large. Was. In the results shown in Fig. 2, the effect of heating is higher than that of pre-plasma cleaning.This is because the test was performed at a relatively high temperature of 150 ° C, and the effect of heating depends on the temperature. Therefore, if the test is performed at a temperature lower than 150 ° C, the effect of the pre-plasma cleaning may be higher. When both pre-plasma cleaning and heating are performed, both plasma cleaning once and plasma cleaning twice have achieved extremely high effects. It turns out that it is a form.
また、 上記 A u Z A u接合を行う場合において、 従来の単なる超音波接合に比 ベ、 本発明における事前プラズマ洗浄を行った場合、 超音波の印加強度を低下さ せることが可能であることを確認するために、 印加超音波の振幅 ( m ) と接合 品のシェア強度 (g /バンプ) との関係を求めるモデル試験を行った。 結果、 図 3に示すように、 このモデル試験は、 比較的大振幅の超音波印加を対象としたも のであり、 とくに事前プラズマ洗浄の効果を確認するために、 現在汎用されてい るチップに比べ大型のバンプを形成したものを使用した。 このモデル試験の条件 では、 従来 1 0 ^ m程度の振幅の超音波を印加していたのに比べ、 本発明に係る 方法では、 印加超音波の振幅を 4 / m以下にまで落としても、 同等の接合強度が 得られることを確認でき、 事前プラズマ洗浄が印加超音波の強度低下に大きく寄 与できることを確認できた。 超音波の振幅を小さくできるということは、 チップ やバンプのダメージも減り、 また、 超音波印加手段としても小型かつ安価なもの でよいことになり、 装置全体の小型化、 コストダウンに寄与できることが分かつ た。 また、 接合に必要な超音波エネルギーも少なくて済むことが明らかであるか ら、 超音波印加時間も短くて済み、 接合に要する時間短縮、 ひいては接合工程全 体のタク タイムの短縮にも寄与できる。 なお、 金属接合部が A u同士である場 合には、 表面に酸化膜は存在せず、 有機物のみである。 その場合は、 減圧プラズ マで強制的にエッチングしなくとも、 大気圧プラズマ手段の酸素プラズマによる 有機物の除去で、 その後の超音波接合が可能となる。 Also, when performing the above AuZAu bonding, it is possible to reduce the applied intensity of ultrasonic waves when performing the pre-plasma cleaning in the present invention as compared with the conventional simple ultrasonic bonding. To confirm this, a model test was performed to determine the relationship between the amplitude (m) of the applied ultrasonic wave and the shear strength (g / bump) of the bonded product. As a result, as shown in Fig. 3, this model test was applied to the application of ultrasonic waves with a relatively large amplitude. The one on which a large bump was formed was used. Under the conditions of this model test, compared with the case where ultrasonic waves having an amplitude of about 10 In the method, it was confirmed that the same bonding strength was obtained even when the amplitude of the applied ultrasonic wave was reduced to 4 / m or less, and that the pre-plasma cleaning could greatly contribute to the decrease in the applied ultrasonic wave intensity. . The ability to reduce the amplitude of ultrasonic waves reduces damage to chips and bumps, and also allows small and inexpensive means for applying ultrasonic waves, contributing to downsizing and cost reduction of the entire device. I was divided. In addition, since it is clear that the ultrasonic energy required for bonding is also small, the ultrasonic application time can be shortened, which can contribute to shortening the time required for bonding and also shortening the tact time of the entire bonding process. . When the metal joints are made of Au, there is no oxide film on the surface, and only organic matter is used. In this case, ultrasonic bonding can be performed by removing organic substances using oxygen plasma of atmospheric pressure plasma means without forcibly etching with reduced pressure plasma.
さらに、 近年急速に発展されてきた、 金属接合部 (バンプ) のピッチが極めて 小さいファイ ンピッチ化されたチップ、 すなわち、 従来、 超音波接合のためには 3 m以上の振幅の超音波印加が必要であったものについて、 本発明に係る方法 により上記同様のモデル試験を行った。 試験結果について、 接合品のシ ア強度 ( g Zバンプ) との関係を図 4に示す。 事前プラズマ洗浄を行うことにより、 3 m未満の超音波振幅で優れた効果が得られていることが判る。 ちなみに、 3 〃 mの振幅の時には、 バンプ裏に微小クラックが入ったが、 振幅 2〃 mではクラッ クは全く入らなかった。 また、 振幅 1 mでも接合が可能であった。  Furthermore, a chip that has been rapidly developed in recent years and has a fine pitch between metal joints (bumps) is used. In other words, conventional ultrasonic bonding requires the application of ultrasonic waves with an amplitude of 3 m or more. Were subjected to the same model test as described above by the method according to the present invention. Figure 4 shows the relationship between the test results and the shear strength (gZ bump) of the joined product. It can be seen that excellent effects were obtained with ultrasonic amplitude of less than 3 m by pre-plasma cleaning. By the way, when the amplitude was 3 μm, a small crack was formed on the back of the bump, but no crack was formed when the amplitude was 2 μm. Also, welding was possible even with an amplitude of 1 m.
また、 このモデル試験において、 バンプ (材質: A u、 硬度: 6 0 H v、 初期 表面粗さ : 3 0 0 n m ) に超音波を印加した場合としない場合でのバンプの潰れ 量と接合荷重を測定した結果を図 5に示す。 図 5に示すように、 従来の常温接合 では、 良好な接合 (バンプ潰れ量: 1 // m以上、 接合後の表面粗さ : 1 0 n m以 下) を達成するためには、 3 0 0 M P aの接合荷重が必要であつたが、 超音波を 印加することで、 半分の 1 5 0 M P aで同等の結果が得られた。  In this model test, the amount of bump crush and bonding load with and without applying ultrasonic waves to the bump (material: Au, hardness: 60 Hv, initial surface roughness: 300 nm) Figure 5 shows the measurement results. As shown in Fig. 5, conventional room-temperature bonding requires 300 0 to achieve good bonding (bump crush: 1 // m or more, surface roughness after bonding: 10 nm or less). Although a bonding load of MPa was required, the same result was obtained at 150 MPa, which was half, by applying ultrasonic waves.
さらに、 本発明に係る方法における、 振幅 1 a mの超音波印加時の、 接合後の 良品率と、 印加超音波の周波数との関係を図 6に示した。 図 6に示すように、 周 波数を 4 0 k H z以上、 とくに 6 0 k H z以上とすることで、 振幅 1 μ mの超音 波でも、 極めて優れた結果が得られた。 このように、 とくに上記モデル試験から分かるように、 従来の超音波接合では 3 0 0 M P aあるいはそれ以上の接合荷重を必要としたが、 本発明に係る方法で は、 1 5 0 M P aの接合荷重での接合に成功した。 Furthermore, FIG. 6 shows the relationship between the non-defective rate after bonding and the frequency of the applied ultrasonic wave when applying an ultrasonic wave having an amplitude of 1 am in the method according to the present invention. As shown in Fig. 6, by setting the frequency to 40 kHz or more, particularly to 60 kHz or more, extremely excellent results were obtained even with an ultrasonic wave having an amplitude of 1 µm. Thus, as can be seen from the above model test, the conventional ultrasonic welding required a joint load of 300 MPa or more, but the method according to the present invention required a joint load of 150 MPa. Welding with welding load was successful.
産 業 上 の 利 用 可 能 性  Industrial availability
本発明に係る接合装置および方法は、 金属接合部を有する被接合物同士のあら ゆる超音波接合に適用でき、 とくに少なく とも一方の被接合物が半導体である場 合の超音波接合に好適である。  INDUSTRIAL APPLICABILITY The bonding apparatus and method according to the present invention can be applied to any ultrasonic bonding between objects to be bonded having a metal bonding portion, and are particularly suitable for ultrasonic bonding when at least one of the objects to be bonded is a semiconductor. is there.

Claims

言青 求 の 範 囲 Scope of demand
1. 基材の表面に金属接合部を有する被接合物同士を接合するに際し、 両被接合 物の前記金属接合部の表面をエネルギー波により洗浄した後、 大気中で金属接合 部同士を超音波接合することを特徴とする接合方法。  1. When joining objects having a metal joint on the surface of the base material, the surfaces of the metal joints of the two objects are cleaned with an energy wave, and then the metal joints are sonicated in the air. A joining method characterized by joining.
2. 印加する超音波の振幅を 3 //m未満にする、 請求項 1の接合方法。 2. The joining method according to claim 1, wherein the amplitude of the applied ultrasonic wave is less than 3 // m.
3. 印加する超音波の周波数を 4 0 k H z以上にする、 請求項 1の接合方法。 3. The bonding method according to claim 1, wherein the frequency of the applied ultrasonic wave is set to 40 kHz or more.
4. 印加する超音波の周波数を 6 0 k H z以上にする、 請求項 3の接合方法。 4. The bonding method according to claim 3, wherein the frequency of the applied ultrasonic wave is set to 60 kHz or more.
5. 接合荷重を 1 5 0 MP a以下にする、 請求項 1の接合方法。 5. The joining method according to claim 1, wherein the joining load is set to 150 MPa or less.
6. 前記金属接合部の表面のエネルギー波による洗浄を減圧下で行う、 請求項 1 の接合方法。 6. The bonding method according to claim 1, wherein cleaning of the surface of the metal bonding portion with an energy wave is performed under reduced pressure.
7. 前記エネルギー波としてプラズマを用いる、 請求項 1の接合方法。 7. The bonding method according to claim 1, wherein plasma is used as the energy wave.
8. 前記エネルギー波として A rプラズマを用いる、 請求項 7の接合方法。 8. The bonding method according to claim 7, wherein an Ar plasma is used as the energy wave.
9. 1 8 0°C以下に加熱した状態にて超音波接合する、 請求項 1の接合方法。 9. The bonding method according to claim 1, wherein the ultrasonic bonding is performed in a state of being heated to 180 ° C or lower.
1 0. 前記エネルギー波による洗浄により、 前記金属接合部の接合される全表面 で 1 nm以上の深さにエッチングする、 請求項 1の接合方法。 10. The bonding method according to claim 1, wherein the entire surface to be bonded of the metal bonding portion is etched to a depth of 1 nm or more by the cleaning with the energy wave.
1 1. 接合表面が A u、 C u、 A 1、 I n、 S nのいずれかにより構成されてい る金属接合部同士を接合する、 請求項 1の接合方法。 1 1. The bonding method according to claim 1, wherein the metal bonding portions whose bonding surfaces are formed of any one of Au, Cu, A1, In, and Sn are bonded.
1 2. 金属接合部同士の接合時に、 金属接合部間の隙間のばらつきを最大 4 以下にする、 請求項 1の接合方法。 1 2. When joining metal joints, the variation in the gap between metal joints can be up to 4 The joining method according to claim 1, wherein:
1 3. 金属接合部同士の接合時に、 被接合物間の平行度を 4 m以内に調整する、 請求項 1の接合方法。 1 3. The joining method according to claim 1, wherein when joining the metal joints, the parallelism between the objects to be joined is adjusted within 4 m.
1 4. 少なくとも一方の金属接合部の接合前の表面粗さを 3 0 0 nm以下にする、 請求項 1の接合方法。 1 4. The bonding method according to claim 1, wherein the surface roughness of at least one metal bonding portion before bonding is set to 300 nm or less.
1 5. 少なく とも一方の金属接合部の接合後の表面粗さを 1 O nm以下にする、 請求項 1の接合方法。 1 5. The joining method according to claim 1, wherein the surface roughness of at least one of the metal joints after joining is set to 1 O nm or less.
1 6. 少なく とも一方の金属接合部の表面硬度をピツカ—ス硬度 H Vで 1 2 0以 下にする、 請求項 1の接合方法。 1 6. The joining method according to claim 1, wherein the surface hardness of at least one of the metal joints is set to a picker hardness HV of 120 or less.
1 7. 基材の表面に金属接合部を有する被接合物同士を接合する装置であって、 各被接合物の前記金属接合部の表面にエネルギー波を照射する洗浄手段と、 該手 段から取り出した被接合物の金属接合部同士を大気中で超音波接合する接合手段 とを有することを特徴とする接合装置。 1 7. A device for joining objects to be joined having a metal joint on the surface of a base material, wherein the washing means irradiates the surface of the metal joint of each object with an energy wave; Joining means for ultrasonically joining the metal joints of the taken-out objects to be joined together in the air.
1 8. 前記接合手段が、 振幅 3 //m未満の超音波を印加可能な手段からなる、 請 求項 1 7の接合装置。 18. The joining apparatus according to claim 17, wherein said joining means comprises means capable of applying ultrasonic waves having an amplitude of less than 3 // m.
1 9. 前記接合手段が、 周波数 4 0 kH z以上の超音波を印加可能な手段からな る、 請求項 1 7の接合装置。 19. The joining apparatus according to claim 17, wherein the joining means comprises means capable of applying an ultrasonic wave having a frequency of 40 kHz or more.
2 0. 前記接合手段が、 周波数 6 0 k H z以上の超音波を印加可能な手段からな る、 請求項 1 9の接合装置。 20. The joining apparatus according to claim 19, wherein said joining means comprises means capable of applying an ultrasonic wave having a frequency of 60 kHz or more.
2 1. 前記接合手段が、 1 5 0 MP a以下の接合荷重で接合可能な手段からなる、 請求項 1 7の接合装置。 2 1. The joining means comprises means capable of joining with a joining load of 150 MPa or less, 18. The joining device according to claim 17.
2 2. 前記洗浄手段が、 減圧下で金属接合部の表面にエネルギー波を照射する手 段からなる、 請求項 1 7の接合装置。 22. The bonding apparatus according to claim 17, wherein the cleaning means includes means for irradiating the surface of the metal bonding section with an energy wave under reduced pressure.
2 3. 前記洗浄手段がプラズマ照射手段からなる、 請求項 1 7の接合装置。 23. The bonding apparatus according to claim 17, wherein the cleaning unit includes a plasma irradiation unit.
2 4. 前 β洗浄手段が A rプラズマ照射手段からなる、 請求項 2 3の接合装置。 24. The bonding apparatus according to claim 23, wherein the pre-β cleaning means comprises Ar plasma irradiation means.
2 5. 前記洗浄手段と前記接合手段との間に洗浄された被接合物の搬送手段が設 けられている、 請求項 1 7の接合装置。 25. The joining apparatus according to claim 17, further comprising a transporting means for transporting the cleaned workpiece between the cleaning means and the joining means.
2 6. 前記接合手段が加熱手段を有し、 1 8 0°C以下で金属接合部同士を超音波 接合する手段からなる、 請求項 1 7の接合装置。 28. The joining apparatus according to claim 17, wherein the joining means has a heating means, and comprises means for ultrasonically joining the metal joints at 180 ° C or lower.
2 7. 前記洗浄手段が、 前記金属接合部の接合される全表面で 1 nm以上の深さ のエッチングが可能なエネルギ一以上でエネルギー波を照射する手段からなる、 請求項 1 7の接合装置。 2 7. The bonding apparatus according to claim 17, wherein the cleaning unit is configured to irradiate an energy wave with energy of at least one capable of etching to a depth of 1 nm or more on the entire surface of the metal bonding unit to be bonded. .
2 8. 接合される両金属接合部の表面が A u、 C u、 A 1、 I n、 S nのいずれ かにより構成されている、 請求項 1 7の接合装置。 2 8. The joining apparatus according to claim 17, wherein the surfaces of the two metal joints to be joined are formed of any one of Au, Cu, A1, In, and Sn.
2 9. 前記接合手段が、 金属接合部同士の接合時の隙間のばらつきを最大 4 以下にする手段を備えている、 請求項 1 7の接合装置。 28. The joining apparatus according to claim 17, wherein the joining means includes means for reducing a variation in a gap at the time of joining the metal joints to a maximum of 4 or less.
3 0. 前記接合手段が、 金属接合部同士の接合時の被接合物間の平行度を 4 urn 以内に調整する手段を備えている、 請求項 1 7の接合装置。 30. The joining apparatus according to claim 17, wherein the joining means includes means for adjusting the parallelism between the objects to be joined at the time of joining the metal joined portions to within 4 urn.
3 1. 少なく とも一方の金属接合部の接合前の表面粗さが 3 0 0 nm以下とされ ている、 請求項 1 7の接合装置。 3 1. The surface roughness of at least one metal joint before joining should be less than 300 nm. The joining device according to claim 17, wherein
3 2 . 少なくとも一方の金属接合部の接合後の表面粗さが 1 0 n m以下とされる、 請求項 1 7の接合装置。 32. The bonding apparatus according to claim 17, wherein the surface roughness of at least one of the metal bonding portions after bonding is 10 nm or less.
3 3 . 少なくとも一方の金属接合部の表面硬度がピツカ—ス硬度 H Vで 1 2 0以 下とされている、 請求項 1 7の接合装置。 33. The joining apparatus according to claim 17, wherein the surface hardness of at least one of the metal joints is set to a Picker hardness HV of 120 or less.
r  r
3 4 . 基材の表面に金属接合部を有する被接合物同士の接合体であって、 両被接 合物の前記金属接合部の表面がエネルギー波により洗浄された後、 大気中で金属 接合部同士が超音波接合されることによつて作製されたことを特徴とする接合体 c 3 4. This is a joined body of objects to be joined having a metal joint on the surface of the base material. After the surfaces of the metal joints of both the objects to be joined are cleaned by an energy wave, the metal is joined in air. A joined body c characterized by being produced by ultrasonic joining of the parts
3 5 . 前記接合された被接合物の少なく とも一方が半導体からなる、 請求項 3 4 の接合体。 35. The joined body according to claim 34, wherein at least one of the joined objects is made of a semiconductor.
PCT/JP2003/012144 2002-09-25 2003-09-24 Connection method and connection device WO2004028732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003271061A AU2003271061A1 (en) 2002-09-25 2003-09-24 Connection method and connection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-278646 2002-09-25
JP2002278646 2002-09-25
JP2002364903 2002-12-17
JP2002-364903 2002-12-17

Publications (1)

Publication Number Publication Date
WO2004028732A1 true WO2004028732A1 (en) 2004-04-08

Family

ID=32044605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012144 WO2004028732A1 (en) 2002-09-25 2003-09-24 Connection method and connection device

Country Status (3)

Country Link
AU (1) AU2003271061A1 (en)
TW (1) TW200406875A (en)
WO (1) WO2004028732A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522849A (en) * 2007-03-13 2010-07-08 エアバス・ユ―ケ―・リミテッド Preparing components for use in joints
JP2016201501A (en) * 2015-04-14 2016-12-01 東レエンジニアリング株式会社 Semiconductor chip mounting method and semiconductor device
US20210167455A1 (en) * 2017-01-31 2021-06-03 Panasonic Intellectual Property Management Co., Ltd. Battery module and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196333A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Method and device for solid-phase welding
JPH0726076U (en) * 1993-10-13 1995-05-16 三菱重工業株式会社 Room temperature bonding equipment
WO2000048779A1 (en) * 1999-02-19 2000-08-24 Unaxis Balzers Aktiengesellschaft Method for producing building components, use thereof, airbearing workpiece and vacuum treatment chamber
US20010013652A1 (en) * 1997-03-31 2001-08-16 Shigeharu Hino Semiconductor device free from short-circuit between bump electrodes and separation from circuit board and process of fabrication thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196333A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Method and device for solid-phase welding
JPH0726076U (en) * 1993-10-13 1995-05-16 三菱重工業株式会社 Room temperature bonding equipment
US20010013652A1 (en) * 1997-03-31 2001-08-16 Shigeharu Hino Semiconductor device free from short-circuit between bump electrodes and separation from circuit board and process of fabrication thereof
WO2000048779A1 (en) * 1999-02-19 2000-08-24 Unaxis Balzers Aktiengesellschaft Method for producing building components, use thereof, airbearing workpiece and vacuum treatment chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522849A (en) * 2007-03-13 2010-07-08 エアバス・ユ―ケ―・リミテッド Preparing components for use in joints
JP2016201501A (en) * 2015-04-14 2016-12-01 東レエンジニアリング株式会社 Semiconductor chip mounting method and semiconductor device
US20210167455A1 (en) * 2017-01-31 2021-06-03 Panasonic Intellectual Property Management Co., Ltd. Battery module and method for manufacturing same

Also Published As

Publication number Publication date
AU2003271061A1 (en) 2004-04-19
TW200406875A (en) 2004-05-01

Similar Documents

Publication Publication Date Title
JP2004119430A (en) Bonding device and method
JP3790995B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
JP4233802B2 (en) Mounting method and mounting apparatus
JP4686377B2 (en) Joining method and joining apparatus
JP2005294824A (en) Ultrasonic joining method and ultrasonic joining device in vacuum
WO2003001858A1 (en) Method and device for installation
WO2002017694A1 (en) Installation device
JP5181158B2 (en) Bonding method, device produced by this method, and bonding apparatus
WO2004028732A1 (en) Connection method and connection device
JP2005142537A (en) Longitudinal vibration bonding method and device
WO2004030079A1 (en) Connection method and connection device
JP2006134899A (en) Bonding method and bonder
JP2004071611A (en) Device and method of mounting electronic part
JP4867042B2 (en) Method for joining metal to metal or ceramics
JP2006134900A (en) Bonding method and bonder
JP3773201B2 (en) Delivery method and apparatus for workpieces
JP4378227B2 (en) Flip chip mounting method
Suppiah et al. A short review on thermosonic flip chip bonding
JP3970732B2 (en) Joining method and apparatus
WO2004030077A1 (en) Connection method and connection device
JP2005229005A (en) Ultrasonic bonding method and apparatus in vacuum
JP2006332151A (en) Method of packaging semiconductor device
JP2004119701A (en) Method and device for joining
JP3915624B2 (en) Electronic component mounting apparatus and electronic component mounting method
JP4523819B2 (en) Bump forming method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP