WO2004027352A2 - Dispositif de dosage volumetrique differentiel - Google Patents

Dispositif de dosage volumetrique differentiel Download PDF

Info

Publication number
WO2004027352A2
WO2004027352A2 PCT/FR2003/002432 FR0302432W WO2004027352A2 WO 2004027352 A2 WO2004027352 A2 WO 2004027352A2 FR 0302432 W FR0302432 W FR 0302432W WO 2004027352 A2 WO2004027352 A2 WO 2004027352A2
Authority
WO
WIPO (PCT)
Prior art keywords
piston
liquid
groove
hollow body
chamber
Prior art date
Application number
PCT/FR2003/002432
Other languages
English (en)
Other versions
WO2004027352A3 (fr
Inventor
Marc Tessier
Original Assignee
S.P.C. France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.P.C. France filed Critical S.P.C. France
Priority to AU2003271827A priority Critical patent/AU2003271827A1/en
Publication of WO2004027352A2 publication Critical patent/WO2004027352A2/fr
Publication of WO2004027352A3 publication Critical patent/WO2004027352A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • G01F11/02Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement
    • G01F11/021Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it with measuring chambers which expand or contract during measurement of the piston type

Definitions

  • the invention relates to a differential volumetric metering device with accelerating chamber, in particular intended to deliver a determined and dosed quantity of liquid, very particularly for volumes typically between one tenth of a microliter and a hundred microliters.
  • a device In order to carry out the metering of small quantities of liquid, a device has been proposed in particular implementing the principle of metering by means of a piston with alternating stroke within a cylindrical chamber, the stroke of the piston being well heard depending on the volume to be dosed.
  • the determination of the volume to be metered is a function either of the length of the piston stroke within the cylindrical chamber, or of the diameter of said metering chamber.
  • a piston provided on its periphery with a longitudinal distribution groove, said piston sliding in a hollow cylinder defining the metering chamber.
  • the implementation of this type of device taking into account the degree of precision in the production of the elements, makes it possible to get rid of any sealing anointing.
  • the rise of the piston in the cylinder causes the suction of the liquid to be dosed from a pipe opening into the body of the cylinder.
  • the piston is rotated by an angle determined by the positioning angle of the pump lines, for example 180 degrees, in order to match said groove with another pipe, also opening into the cylinder body, and located in a position diametrically opposite to the intake pipe.
  • the downward stroke of the piston induces the ejection of the liquid from the peripheral groove in this delivery or ejection pipe.
  • the piston again undergoes a new rotation by an angle equal to the previously mentioned angle, 180 ° in the example described, and the described cycle begins again.
  • washing and decontamination devices of a known dosing system uses a pump provided with a cleaning chamber attached to the piston cylinder, and inducing the injection of cleaning solvents hot and / or cold and pressurized vapors.
  • this cleaning system is relatively ineffective, especially when this washing phase occurs after the dosing of relatively high viscosity fluid.
  • a hollow body defining a cylindrical metering chamber at the level of which opens respectively a supply and delivery or ejection pipe of the liquid to be metered; said hollow body is extended at one of its ends by a secondary chamber coaxial with the metering chamber, but of a diameter less than the internal diameter of the metering chamber;
  • a cylindrical piston the external diameter of which corresponds to the clearance close to the internal diameter of the metering chamber, and capable of sliding within the latter, the piston being provided at its periphery with a longitudinal distribution groove capable of come opposite the opening orifice, respectively of the supply and delivery or ejection pipe; said piston is extended by a part coaxial with the latter, also of external diameter less than the external diameter of said piston, and corresponding to the clearance close to that of said secondary chamber.
  • This piston is capable of being animated by an upward and downward translational movement within said hollow body, simultaneously or not with a rotational movement.
  • the metering chamber is surmounted at its other end by a washing chamber, also coaxial, with an internal diameter slightly greater than the external diameter of the piston, and provided with a peripheral partition perforated at level of which a washing fluid is conveyed by a pipe, said pipe being closable, in particular during the dosing phases, by means of a valve.
  • a washing chamber also coaxial, with an internal diameter slightly greater than the external diameter of the piston, and provided with a peripheral partition perforated at level of which a washing fluid is conveyed by a pipe, said pipe being closable, in particular during the dosing phases, by means of a valve.
  • the present invention aims to overcome this drawback. To do this, it partly takes up the architecture of the aforementioned device. It is characterized in that the metering chamber is doubled at the end of the pump by a so-called liquid accelerator chamber. This architecture can be used with or without the cleaning chamber as required.
  • the metering device comprises: “a hollow body, defining a cylindrical metering chamber, surmounted by an upper zone at the level of which open respectively a supply pipe and a delivery pipe or ejection of a liquid to be dosed;
  • a cylindrical piston comprising several coaxial, respectively upper, and intermediate parts, the respective diameters of which correspond to the clearance close to the internal diameters of the metering chamber and of the upper zone of the cylindrical body, said piston having at the periphery of its part upper a longitudinal distribution groove, capable of coming to be positioned opposite the arrival of the supply line for the liquid to be metered, said piston being also capable of being animated by an upward and downward movement of translation within of said hollow body, simultaneously or not simultaneously with a rotational movement. It is characterized:
  • the internal wall of said upper zone of the hollow body is provided with a longitudinal groove, extending substantially from the level of opening of the supply line for the liquid to be metered towards the end of the zone upper part of the hollow body, defining at this level an accumulation chamber for the liquid to be metered, said groove being intended to cooperate with the distribution groove of the upper part of the piston; • and in that the delivery or ejection pipe for the liquid to be dosed opens out at the level of the accumulation chamber.
  • the accelerating chamber is therefore in communication with the metering chamber proper by a set of grooves located on the piston and the cylinder or hollow body.
  • the dose ejection nozzle is therefore offset at the end of the metering device, in direct communication with the accelerating chamber.
  • the longitudinal distribution grooves are located at the periphery of the zone of the piston and of the cylinder having the smallest diameter.
  • Figure 1 is a schematic representation in longitudinal section of the metering device according to the invention, shown in the intermediate metering position.
  • Figure 2 is a schematic representation similar to Figure 1, but showing the metering device with a cleaning chamber whose operation is identical to that described in document FR-A-2 797 046 of the Applicant, this device will therefore not described in this document.
  • Figures 3 to 6 are schematic representations similar to Figures 1 and 2, showing the different stages of positioning the piston relative to the hollow body during a metering phase.
  • Figures 7 to 9 are schematic representations, illustrating in cross section of the device according to the invention, different configurations of the operation thereof.
  • Figures 10 to 12 are schematic representations similar to Figures 7 to 9 of a variant of the invention.
  • FIG. 1 therefore represents a view in longitudinal section of the volumetric metering device according to the invention, in the metering position.
  • this metering device is based on the principle of actuation of a piston within a cylinder, said cylinder defining the metering chamber. More precisely, the cylinder is defined by a hollow body (1) defining a metering chamber (2).
  • a piston (3) translates in an upward or downward movement, said piston being also capable of performing a rotational movement.
  • the member ensuring the translation and the rotation of the piston has not been shown.
  • the hollow cylindrical body (1) defines two zones of different diameter, respectively an upper zone (11), and a lower zone (12), of larger diameter important.
  • this pipe (8) for delivering or ejecting the liquid to be dosed opens out at the upper end of the upper zone (11) of the hollow body.
  • this pipe (8) is even oriented in the main direction of the metering device.
  • the upper zone (11) of the hollow body (1) also comprises a groove for discharging (4) the metered liquid extending between the level of opening of the supply line (6) of the liquid to be metering, and the upper end of said zone (11).
  • This upper end defines an accumulation chamber, also referred to in the following description as the acceleration chamber for the liquid to be metered.
  • the respective locations of the level of opening of the supply line of the liquid to be dosed (6) and the groove (4) form a 180 ° angle, this angle can be considerably reduced. It will be noted that the reduction of this angle allows a significant gain in operating rate, and in addition the establishment of a set of additional grooves described in relation to FIGS. 7 to 12.
  • the purpose of these additional grooves is to rapidly initiate the metering device according to the invention, by putting the various pipes and chambers thereof into direct communication.
  • the accelerating chamber (7) is defined by the upper end of the upper zone (11) of the hollow body (1), and by a plug in the form of an adjusted conical part (13), according to a principle known per se.
  • the conical plug integrates the pipe (8) for delivering or ejecting the metered liquid, advantageously placed at the highest point, thus promoting the priming of the liquid device avoiding any accumulation of air in the upper part.
  • the pipe fixing member has not been intentionally shown so as not to unnecessarily overload the figures.
  • the piston (3) proper has different portions.
  • this portion (10) has an intermediate portion (10), the diameter of which corresponds to the clearance, to the diameter of the zone (12) of the cylindrical body (1).
  • This portion (10) is extended by an upper zone (9), having a diameter less than the diameter of the zone (10).
  • this zone (9) has first of all an external diameter corresponding to the clearance close to the internal diameter of the upper zone (11) of the hollow cylinder.
  • this portion (9) has at its periphery a longitudinal groove or groove (5), the operation of which will be described in more detail later.
  • the intermediate zone (10) is extended by a lower extreme zone (18) of smaller diameter relative to the zone (10), and has the sole function of transmitting the movement of translation and rotation to the whole of the piston.
  • This zone (18) is itself extended by a zone (14), not shown in detail, which constitutes the member for fixing the piston to its means for driving in rotation and translation.
  • the volume generated at the metering chamber (2) becomes perfectly defined and reproducible as a function of the difference in the sections of the aforementioned diameters and the stroke imparted to the piston during the metering phase.
  • the piston (3) is located at the maximum of its upward stroke in its defined and known position, called the reference.
  • the longitudinal groove (5) with which it is provided is positioned with regard to the place of opening of the supply pipe (6) of the liquid to be metered.
  • the ejection groove (4) is closed by the upper zone (9) of the piston (3).
  • the volume in the accelerating chamber is defined by the diameter of the upper zone (11) of the cylindrical body and the stroke produced by the piston.
  • the downward stroke of the piston is stopped, and the piston is rotated by a value equal to the angle formed between the supply line (6 ) of the liquid and the ejection groove (4) towards the accelerating chamber, 180 ° in our example (FIG. 5), so as to make the groove (5) of the piston coincide with the groove (4) of which is provided with the wall of the upper zone (11) of the cylindrical body.
  • the supply pipe (6) of the liquid to be metered is found closed by said piston.
  • a new rotation of the piston (FIG. 3) by 180 ° in the example described, makes it possible to restart the cycle, by repositioning the groove (5) with regard to the supply pipe (6) of the liquid to be dosed.
  • the previously described cycle therefore exposes the operating principle of the accelerating chamber. Indeed, for dosages of a very small volume, the major difficulty for the ejection of a dose is the lack of kinetic energy at the ejection site, directly related to the volumes in movement in the pipes. and the pressure losses linked to these same pipes. Thus, it is observed that the larger the volume on the move, the easier it is to eject the desired dose.
  • the present system proposes to move, for each piston movement, a volume called accelerator which will not be ejected and will therefore only serve as a kinetic energy supply to eject the metered volume coming from the metering chamber.
  • the groove (5) of the piston (3) is positioned opposite the supply pipe (6) of the liquid to be metered, the metering device therefore being in the suction configuration.
  • the liquid to be dosed is therefore routed in the direction of the metering chamber (2).
  • the ejection groove (4) is closed by said upper zone (9) of the piston.
  • the piston has made a rotation of 90 ° relative to its position in FIG. 7, inducing on the one hand, the closure of the supply line (6) of the liquid to be dosed, and on the other hand, the communication of the metering chamber (2) with the ejection groove (4), by means of an additional groove (21), formed at the level of the upper zone (9) of the piston (3), and extending along the same length and the same direction as the groove (5).
  • FIG. 9 is new compared to the preceding description. It is intended to allow rapid priming or purging of the metering arrangement according to the invention.
  • the piston has undergone a rotation of 180 ° relative to its orientation in FIG. 8.
  • one of the grooves (21) of the upper zone (9) of the piston (3) is in communication with the supply line (6) of the liquid to be dosed, the piston being in maximum upward travel, therefore at its reference position (minimum dead volume).
  • the second groove (5) of the piston is found directly above a second groove (22), formed in the upper zone (11) of the hollow body, said second groove (22), offset by 90 ° relative to to the ejection groove (4), and having the same characteristics in terms of length and orientation as the groove (4).
  • the liquid can therefore fill the entire metering device by simple flow to the ejection nozzle, no pump movement is necessary for this operation.
  • This configuration allows rapid filling of the circuit.
  • the advantage of this priming process is clearly seen in the case of pumps intended to produce very low doses of the order of microliter up to a hundred microliters.
  • priming is carried out by dosing cycles in maximum stroke of the pump.
  • the maximum dose may represent only a very small fraction of the total volume of the dosing circuit. In this case, it is necessary to carry out a very large number of cycles before the complete circuit is started, and therefore requires a long implementation before being able to start the production dosages.
  • Figures 10 to 12 illustrate a variant of the previous configuration, in which the upper part (9) of the piston (3) always has two grooves (5, 21), but this time offset from each other by an angle of approximately 120 °, the upper zone (11) of the hollow body (1) having only one ejection groove (4).
  • This embodiment simplifies the manufacture of the device, and as a corollary to reduce costs. Its mode of operation is broadly identical.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Reciprocating Pumps (AREA)
  • Coating Apparatus (AREA)

Abstract

Ce dispositif de dosage volumétrique différentiel, comprend un corps creux (1), définissant une chambre de dosage cylindrique (2), surmontée d'une zone supérieure (11) au niveau de laquelle débouchent respectivement une canalisation d'amenée (6) et une canalisation de délivrance ou d'éjection (8) d'un liquide à doser, la paroi de ladite zone supérieure (11) étant munie d'une rainure longitudinale (4), s'étendant sensiblement depuis le niveau de débouchement de la canalisation d'amenée (6) du liquide à doser en direction de l'extrémité supérieure de la zone supérieure (11) du corps creux (1); un piston cylindrique (3), comportant plusieurs parties coaxiales, respectivement supérieure (9), et intermédiaire (10), ledit piston présentant à la périphérie de sa partie supérieure (9) une rainure longitudinale de distribution (5), susceptible de venir se positionner en regard de l'arrivée de la canalisation d'amenée (6) du liquide à doser, ledit piston étant en outre susceptible d'être animé d'un mouvement de translation ascendante et descendante au sein dudit corps creux (1), simultanément ou non à un mouvement de rotation.

Description

DISPOSITIF DE DOSAGE VO U+VIETRIQUE DIFFERENTIEL
L'invention concerne un dispositif de dosage volumétrique différentiel à chambre accélératrice, notamment destiné à délivrer une quantité déterminée et dosée de liquide, tout particulièrement pour des volumes typiquement compris entre le dixième de microlitre et la centaine de microlitres.
De nombreux secteurs industriels nécessitent la mise en œuvre de dosage précis et en très faible quantité de liquide, tout particulièrement dans le domaine de l'industrie pharmaceutique, de l'analyse médicale, de Tagro alimentaire, et des activités connexes.
Afin de réaliser le dosage de faibles quantités de liquide, il a notamment été proposé un dispositif mettant en œuvre le principe d'un dosage au moyen d'un piston à course alternative au sein d'une chambre cylindrique, la course du piston étant bien entendu fonction du volume à doser. De fait, la détermination du volume à doser est fonction soit de la longueur de la course du piston au sein de la chambre cylindrique, soit du diamètre de ladite chambre de dosage.
Or, on observe que si la course du piston est diminuée de manière trop importante, cela impose une cinématique du piston ou de la chambre cylindrique quasi-parfaite, et qui ne présente pas de dérivation dans le temps. De fait, l'expérience montre que l'on se heurte à des problèmes de reproductibilité et partant, de précision au niveau des quantités dosées et délivrées.
Si au contraire on choisit de réduire le diamètre de la chambre et donc du piston, on observe qu'en dessous d'un diamètre d'une valeur typiquement voisine de six millimètres, le coût de fabrication du matériel correspondant augmente drastiquement, et par ailleurs, le dispositif s'avère d'une très grande fragilité, incompatible avec un bon nombre d'applications.
Parmi ces différents dispositifs, l'un d'entre eux met en œuvre un piston pourvu sur sa périphérie d'une rainure de distribution longitudinale, ledit piston coulissant dans un cylindre creux définissant la chambre de dosage. La mise en œuvre de ce type de dispositif, compte-tenu du degré de précision de réalisation des éléments, permet de s ' affranchir de tout j oint d' étanchéité. L' ascension du piston dans le cylindre provoque l'aspiration du liquide à doser à partir d'une canalisation débouchant dans le corps du cylindre. En bout de course ascensionnelle, le piston subit une rotation d'un angle déterminé par l'angle de positionnement des canalisations de la pompe, par exemple de 180 degrés, afin de faire correspondre ladite rainure avec une autre canalisation, débouchant également dans le corps du cylindre, et située en position diamétralement opposée à la canalisation d'admission.
La course descendante du piston induit l'éjection du liquide hors de la rainure périphérique dans cette canalisation de délivrance ou d'éjection. En bout de course, le piston subit à nouveau une nouvelle rotation d'un angle égale à l'angle précédemment cité, 180° dans l'exemple décrit, et le cycle décrit recommence.
Si cette architecture particulière permet de satisfaire les exigences en matière de dosage, il présente néanmoins les inconvénients suivants. Tout d'abord, une impureté au niveau de la rainure peut induire l'altération voire le blocage de l'aspiration ou de l'éjection du liquide contenu dans celle-ci. En outre, une telle impureté peut engendrer l'usure prématurée du piston ou du cylindre. Enfin, pour certaines applications, pharmaceutiques ou agroalimentaires notamment, ce type de dispositif est soumis à des conditions d'hygiène et de stérilité sévères, nécessitant donc la mise en œuvre d'organes facilement décontaminables. La présence d'une rainure ainsi que des canalisations d'admission et d'échappement induit une contamination relativement rapide du piston, et corollairement une décontamination rendue plus difficile, du fait de l'existence d'angles, de recoins, d'intersections.
Lorsqu'il s'agit de doser des quantités très faibles de liquides, typiquement microniques ou submicroniques, on fait appel au phénomène d'inertie et à la mise en œuvre de quartz piézo-électrique. Ce principe de dosage est notamment utilisé au niveau des imprimantes à jet d'encre. Cependant, un tel principe ne peut être exploité pour des dosages de quantité supérieure compris entre le micro et le millilitre. En effet, le nano ou le pico dosage, met en œuvre des sous-multiples du micro dosage. Pour obtenir donc une microdose, il faudra additionner des nano ou des pico-doses, ce qui provoque par conséquent une addition d'erreurs.
Outre cette fonction de dosage, l'industrie est également demandeuse d'une fonction simultanée de lavage et de stérilisation de ce type de dispositif, sans impliquer un quelconque démontage des organes le constituant.
Parmi les dispositifs de lavage et de décontamination d'un système de dosage connus, l'un d'entre eux met en œuvre une pompe munie d'une chambre de nettoyage accolée au cylindre du piston, et induisant l'injection de solvants de nettoyage chauds et/ou froids et de vapeurs sous pression. Cependant, dans la mesure où il n'y a pas agitation, l'expérience démontre que ce système de nettoyage est relativement peu efficace, notamment lorsque cette phase de lavage intervient après le dosage de fluide de viscosité relativement élevée.
On a décrit dans le document FR-A-2 797 046 du Demandeur, un dispositif rassemblant les deux fonctions, respectivement de dosage et de lavage. Ce dispositif permettant donc d'offrir respectivement la possibilité de dosage de quantités de liquides sensiblement comprises entre le microlitre et le millilitre, et la possibilité d'un nettoyage et stérilisation sur place, dénommé par la profession selon l'expression « CIP/SIP » pour « cleaning in place /stérilisation in place » comprend fondamentalement :
- un corps creux, définissant une chambre de dosage cylindrique au niveau de laquelle débouche respectivement une canalisation d'amenée et de délivrance ou d'éjection du liquide à doser ; ledit corps creux se prolonge au niveau de l'une de ses extrémités par une chambre secondaire coaxiale avec la chambre de dosage, mais d'un diamètre inférieur au diamètre interne de la chambre de dosage ;
- un piston cylindrique, dont le diamètre externe correspond au jeu près au diamètre interne de la chambre de dosage, et susceptible de coulisser au sein de cette dernière, le piston étant muni au niveau de sa périphérie d'une rainure longitudinale de distribution susceptible de venir en regard de T orifice débouchant, respectivement de la canalisation d'amenée et de délivrance ou d'éjection ; ledit piston se prolonge par une partie coaxiale avec celui-ci, également de diamètre externe inférieur au diamètre externe dudit piston, et correspondant au jeu près à celui de ladite chambre secondaire.
Ce piston est susceptible d'être animé d'un mouvement de translation ascendante et descendante au sein dudit corps creux, simultanément ou non à un mouvement de rotation.
Selon le document FR-A-2 797 046, la chambre de dosage est surmontée à son autre extrémité par une chambre de lavage, également coaxiale, de diamètre interne légèrement supérieur au diamètre externe du piston, et munie d'une cloison périphérique perforée au niveau de laquelle est acheminé par une canalisation un fluide de lavage, ladite canalisation étant obturable, notamment pendant les phases de dosage, au moyen d'une vanne. Ce dispositif permet ainsi d'assurer de manière satisfaisante les fonctions de dosage et de lavage. Si ce dispositif permet de réaliser de manière très précise des doses comprises entre le microlitre et le millilitre, il ne permet pas une éjection correcte de la dose au bout d'une certaine distance de tube de dosage pour des volumes compris entre le microlitre et la centaine de microlitres. En effet, les pertes de charge, quelqu'en soient les origines (tensions de surface, rugosités, pertes de charges singulières...) pour des quantités aussi réduites, absorbent la dynamique de l'éjection.
La présente invention a pour objectif de pallier cet inconvénient. Pour ce faire, elle reprend en partie l'architecture du dispositif précité. Elle se caractérise en ce que la chambre de dosage est doublée à l'extrémité de la pompe par une chambre dite accélératrice de liquide. Cette architecture peut se décliner avec ou sans la chambre de nettoyage selon le besoin.
Plus spécifiquement, le dispositif de dosage conforme à l'invention comprend : « un corps creux, définissant une chambre de dosage cylindrique, surmontée d'une zone supérieure au niveau de laquelle débouchent respectivement une canalisation d'amenée et une canalisation de délivrance ou d'éjection d'un liquide à doser ;
• un piston cylindrique, comportant plusieurs parties coaxiales, respectivement supérieure, et intermédiaire, dont les diamètres respectifs correspondent au jeu près aux diamètres internes de la chambre de dosage et de la zone supérieure du corps cylindrique, ledit piston présentant à la périphérie de sa partie supérieure une rainure longitudinale de distribution, susceptible de venir se positionner en regard de l'arrivée de la canalisation d'amenée du liquide à doser, ledit piston étant en outre susceptible d'être animé d'un mouvement de translation ascendante et descendante au sein dudit corps creux, simultanément ou non à un mouvement de rotation. Il se caractérise :
• en ce que le diamètre interne de la zone supérieure du corps creux est inférieur au diamètre de la zone de dosage dudit corps ;
• en ce que le diamètre externe de la partie intermédiaire du piston est supérieur au diamètre externe de la partie supérieure dudit piston ;
• en ce que la paroi interne de ladite zone supérieure du corps creux est munie d'une rainure longitudinale, s'étendant sensiblement depuis le niveau de débouchement de la canalisation d'amenée du liquide à doser en direction de l'extrémité de la zone supérieure du corps creux, définissant à ce niveau une chambre d'accumulation du liquide à doser, ladite rainure étant destinée à coopérer avec la rainure de distribution de la partie supérieure du piston ; • et en ce que la canalisation de délivrance ou d'éjection du liquide à doser débouche au niveau de la chambre d'accumulation.
La chambre accélératrice est donc en communication avec la chambre de dosage proprement dite par un jeu de rainures situé sur le piston et le cylindre ou corps creux. L'embout d'éjection de la dose se trouve déporté par voie de conséquence à l'extrémité du dispositif de dosage, en communication directe avec la chambre accélératrice.
Ainsi, les rainures longitudinales de distribution sont situées au niveau de la périphérie de la zone du piston et du cylindre présentant le diamètre le plus faible.
La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux de l'exemple de réalisation qui suit donné à titre indicatif et non limitatif à l'appui des figures annexées.
La figure 1 est une représentation schématique en section longitudinale du dispositif de dosage conforme à l'invention, représenté en position intermédiaire de dosage.
La figure 2 est une représentation schématique analogue à la figure 1, mais montrant le dispositif de dosage avec une chambre de nettoyage dont le fonctionnement est identique a celui décrit dans le document FR-A-2 797 046 du Demandeur, ce dispositif ne sera donc pas décrit dans le présent document.
Les figures 3 à 6 sont des représentations schématiques analogues aux figures 1 et 2, représentant les différentes étapes de positionnement du piston par rapport au corps creux pendant une phase de dosage.
Les figures 7 à 9 sont des représentations schématiques, illustrant en section transversale du dispositif conforme à l'invention, différentes configurations du fonctionnement de celui-ci.
Les figures 10 à 12 sont des représentations schématiques analogues aux figures 7 à 9 d'une variante de l'invention.
La figure 1 représente donc une vue en section longitudinale du dispositif de dosage volumétrique conformément à l'invention, en position de dosage.
Fondamentalement, ce dispositif de dosage repose sur le principe de l'actionnement d'un piston au sein d'un cylindre, ledit cylindre définissant la chambre de dosage. Plus précisément, le cylindre est défini par un corps creux (1) définissant une chambre de dosage (2).
Au sein de ce corps creux (1), se translate un piston (3) selon un mouvement ascendant ou descendant, ledit piston étant en outre susceptible d'effectuer un mouvement de rotation. Afin de ne pas inutilement surcharger les figures, l'organe assurant la translation et la rotation du piston n'a pas été représenté.
Ainsi qu'on peut bien l'observer au sein des figures 1 et 2, le corps cylindrique creux (1) définit deux zones de diamètre différent, respectivement une zone supérieure (11), et une zone inférieure (12), de diamètre plus important.
On observe ainsi en zone supérieure (11), une canalisation (6) d'amenée du liquide à doser et une canalisation (8) de délivrance ou d'éjection dudit liquide.
Selon une caractéristique de l'invention, cette canalisation (8) de délivrance ou d'éjection du liquide à doser débouche au niveau de l'extrémité supérieure de la zone supérieure (11) du corps creux. Dans l'exemple décrit, cette canalisation (8) est même orientée selon la direction principale du dispositif de dosage.
Selon l'invention, la zone supérieure (11) du corps creux (1) comporte également une rainure d'évacuation (4) du liquide dosé s'étendant entre le niveau de débouchement de la canalisation d'amenée (6) du liquide à doser, et l'extrémité supérieure de ladite zone (11). Cette extrémité supérieure définit une chambre d'accumulation, également dénommée dans la suite de la description chambre d'accélération du liquide à doser. Ainsi qu'on peut bien l'observer sur les figures 1 et 2 par exemple, les lieux d'implantation respectifs du niveau de débouchement de la canalisation d'amenée du liquide à doser (6) et de la rainure (4) forment un angle de 180°, cet angle pouvant être considérablement réduit. On notera que la réduction de cet angle permet un gain important de cadence de fonctionnement, et en outre la mise en place d'un jeu de rainures supplémentaires décrites en relation avec les figures 7 à 12.
Ces rainures additionnelles ont pour but un amorçage rapide du dispositif de dosage conforme à l'invention, en mettant en communication directe les différentes canalisations et chambres de celui-ci. La chambre accélératrice (7) est définie par l'extrémité supérieure de la zone supérieure (11) du corps creux (1), et par un bouchon en forme de pièce conique ajustée (13), selon un principe en soi connu. Afin d'assurer l'éjection de la dose de la chambre accélératrice, le bouchon conique intègre la canalisation (8) de délivrance ou d'éjection du liquide dosé, placée avantageusement en partie la plus haute, favorisant ainsi l'amorçage en liquide du dispositif en évitant toute accumulation d'air dans une partie haute.
Ainsi, des tuyauteries spécifiques sont susceptibles d'être raccordées aux canalisations. L'organe de fixation des tuyauteries n'a volontairement pas été représenté afin de ne pas surcharger inutilement les figures.
Le piston (3) proprement dit comporte différentes portions.
Tout d'abord, il présente une portion intermédiaire (10), dont le diamètre correspond au jeu près, au diamètre de la zone (12) du corps cylindrique (1). Cette portion (10) se prolonge par une zone supérieure (9), présentant un diamètre inférieur au diamètre de la zone (10). En outre, cette zone (9) présente tout d'abord, un diamètre extérieur correspondant au jeu près au diamètre interne de la zone (11) supérieure du cylindre creux. De plus, cette portion (9) présente au niveau de sa périphérie une rainure ou rigole longitudinale (5), dont le fonctionnement sera décrit plus en détail ultérieurement.
La zone intermédiaire (10) se prolonge par une zone extrême inférieure (18) de diamètre inférieur par rapport à la zone (10), et a seule fonction de transmettre à l'ensemble du piston le mouvement de translation et de rotation. Cette zone (18) se prolonge elle-même par une zone (14), non représentée en détail, qui constitue l'organe de fixation du piston à son moyen d'entraînement en rotation et translation.
Ainsi, dès lors que le diamètre respectif de la partie (12) du corps cylindrique (1) et des diamètres respectifs des parties (9) et (10) du piston (3) sont connus et clairement définis, le volume généré au niveau de la chambre de dosage (2) devient parfaitement défini et reproductible en fonction de la différence des sections des diamètres précités et de la course conférée au piston lors de la phase de dosage.
Il va être décrit en relation avec les figures 3 à 6, le mode de fonctionnement du dispositif de dosage conforme à l'invention. Ainsi en figure 3, le piston (3) est situé au maximum de sa course ascendante dans sa position définie et connue, dite de référence. Dans cette configuration, la rainure longitudinale (5) dont il est pourvu, est positionnée au regard du lieu de débouchement de la canalisation d'amenée (6) du liquide à doser. En revanche, la rainure (4) d'éjection est obturée par la zone supérieure (9) du piston (3).
Lors de sa course descendante, (figure 4) il y a aspiration du liquide à doser, au sein de la chambre de dosage (2) pour un volume fonction du diamètre de la zone (12) du corps cylindrique (1), des diamètres des parties (9 et 10) du piston, et de la hauteur de la course descendante dudit piston. Parallèlement, on observe aisément que la chambre accélératrice (7) se remplit en même temps que la chambre de dosage (2), avec le liquide contenu dans la tuyauterie d'éjection (8) de la dose de liquide. En d'autres termes, lors de la phase d'aspiration du liquide à doser au niveau de la chambre de dosage (2), on réaspire corollairement le liquide contenu dans la canalisation de délivrance et d'éjection dudit liquide et dans la tuyauterie qui lui est associée (non représentée), constituant de la sorte un volume « mort » accumulé au niveau de la chambre accélératrice ou d'accumulation (7).
On observe que tout au long de cette course, le liquide peut toujours être aspiré en passant respectivement par la canalisation d'amenée (6) du liquide à doser, puis par la rigole (5) dont est pourvu le piston à ce niveau (voir figure 4). On peut observer sur la figure 4, en noir, le volume occupé par le liquide à doser, volume comme déjà dit, clairement défini en fonction d'une part, des diamètres respectifs de la chambre de dosage (2), des parties (9 et 10) du piston et de la hauteur de la course dudit piston.
D'autre part, on peut observer que tout au long de cette course, le liquide peut toujours être aspiré en passant respectivement par la canalisation de délivrance et d'éjection (8) située dans le prolongement de la chambre accélératrice (7). Le volume dans la chambre accélératrice est défini par le diamètre de la zone supérieure (11) du corps cylindrique et la course réalisée par le piston.
Lorsque le volume à doser souhaité est atteint dans la chambre de dosage (2), on stoppe la course descendante du piston, et Ton opère une rotation dudit piston d'une valeur égale à l'angle formé entre la canalisation d'amenée (6)du liquide et la rainure d'éjection (4) vers la chambre accélératrice, 180° dans notre exemple (figure 5), de telle sorte à faire coïncider la rainure (5) du piston avec la ramure (4) dont est pourvue la paroi de la zone supérieure (11) du corps cylindrique. Corollairement, la canalisation d'amenée (6) du liquide à doser se retrouve obturée par ledit piston.
Ce dernier subit alors une translation ascendante, de telle sorte à chasser le liquide contenu dans la chambre de dosage (2), remontant par les deux rainures respectivement (5) et (4), alors en communication, au niveau de la chambre accélératrice (7), qui elle-même chasse le liquide dosé additionné du volume accélérateur par la canalisation d'éjection (8), jusqu'à ce que le piston atteigne le maximum possible de sa course ascendante, la portion (19) du piston située à la zone de jonction des zones supérieures (9) et intermédiaire (10) venant s'arrêter à une position définie et répétitive (20) donnée par le système d'entraînement, donc à une distance définie comme position de référence et reproductible à chaque cycle.
Une nouvelle rotation du piston (figure 3) de 180° dans l'exemple décrit, permet de redémarrer le cycle, en repositionnant la rainure (5) au regard de la canalisation d'amenée (6) du liquide à doser.
Il- peut être observé, en outre, que pendant toute cette période de dosage, l'extrémité inférieure de la chambre de dosage (2), qui est ouverte vers l'extérieur, est obturée par la portion 10) du piston (3).
Le cycle précédemment décrit expose donc le principe de fonctionnement de la chambre accélératrice. En effet, pour des dosages d'un volume très petit, la difficulté majeure pour l'éjection d'une dose est le manque d'énergie cinétique au niveau du lieu d'éjection, directement en rapport avec les volumes en mouvement dans les tuyauteries et les pertes de charges liées à ces mêmes tuyauteries. Ainsi on observe que plus le volume en déplacement est grand, plus il est aisé d'éjecter la dose voulue. Or, le présent système propose de déplacer, pour chaque mouvement de piston, un volume dit accélérateur qui ne sera pas éjecté et ne servira donc que d'apport d'énergie cinétique pour éjecter le volume dosé provenant de la chambre de dosage.
On conçoit dès lors tout l'intérêt du dispositif de dosage conforme à la présente invention.
Tout d'abord, outre la grande précision du dosage volumétrique différentiel découlant de son principe de fonctionnement, on notera l'intérêt de la fonction du volume accélérateur. On notera également la fonction de lavage également disponible, et déjà décrite en relation avec le document FR-A-2 797 046, dont le contenu est intégré à la présente description par référence, et en relation avec les références (15, 16 et 17) de la figure 2.
On a illustré en relation avec les figures 7 à 9, une version évoluée de l'invention. On a notamment représenté au niveau des sections transversales passant par la canalisation d'amenée du liquide à doser (6), les différentes configurations possibles de la zone supérieure (9) du piston (3) au sein de la zone supérieure (11) du corps creux cylindrique.
Ainsi, au sein de la figure 7, la rainure (5) du piston (3) est positionnée en regard de la canalisation d'amenée (6) du liquide à doser, le dispositif de dosage étant donc en configuration d'aspiration. Le liquide à doser est donc acheminé en direction de la chambre de dosage (2). Corollairement, la rainure d'éjection (4) est obturée par ladite zone supérieure (9) du piston.
Au sein de la figure 8, le piston a effectué une rotation de 90° par rapport à sa position de la figure 7, induisant d'une part, l'obturation de la canalisation d'amenée (6) du liquide à doser, et d'autre part, la mise en communication de la chambre de dosage (2) avec la rainure d'éjection (4), par le biais d'une rainure supplémentaire (21), ménagée au niveau de la zone supérieure (9) du piston (3), et s'étendant selon la même longueur et la même direction que la rainure (5). On est donc en position d'évacuation du contenu de la chambre de dosage (2) en direction de la chambre accélératrice (7), et corollairement vers la canalisation d'éjection ou de délivrance (8).
Enfin, la configuration de la figure 9 est nouvelle par rapport à la description qui précède. Elle est destinée à permettre un amorçage ou une purge rapide du disposition de dosage conforme à l'invention. Selon cette configuration, le piston a subi une rotation de 180 ° par rapport à son orientation de la figure 8.
Selon cette configuration, Tune des rainures (21) de la zone supérieure (9) du piston (3) est en communication avec la canalisation d'amenée (6) du liquide à doser, le piston étant en course ascendante maximum, donc à sa position de référence (volume mort minimum). Corollairement, la seconde rainure (5) du piston se retrouve à l'aplomb d'une seconde rainure (22), ménagée dans la zone supérieure (11) du corps creux, ladite seconde rainure (22), décalée de 90 ° par rapport à la rainure d'éjection (4), et présentant les mêmes caractéristiques en termes de longueur et d'orientation que la rainure (4).
Le liquide peut donc remplir tout le dispositif de dosage par simple écoulement jusqu'à l'embout d'éjection, aucun mouvement de pompe n'est nécessaire à cette opération. Cette configuration permet un remplissage rapide du circuit. L'avantage de ce procédé d'amorçage apparaît clairement dans le cas de pompes destinées à réaliser de très faibles doses de Tordre du microlitre jusqu'à la centaine de microlitres. En effet, sur un système classique, l'amorçage est réalisé par des cycles de dosage en course maximales de la pompe. Or, sur une pompe de microdosage, la dose maximale peut ne représenter qu'une très faible fraction du volume total du circuit de dosage. Dans ce cas, il nécessaire de réaliser un nombre très important de cycle avant que le circuit complet ne soit amorcé, et donc demande une longue mise en œuvre avant de ne pouvoir démarrer les dosages de production.
De plus, un flux continu de liquide lors de l'amorçage permet de drainer les éventuelles bulles d'air qui peuvent restées collées aux parois du circuit hydraulique. Sur une pompe classique à faible volume de dosage, les faibles volumes mis en œuvre ne permettent pas de décoller les bulles d'air résidentes dans le circuit.
Les figures 10 à 12 illustrent une variante de la configuration précédente, dans laquelle, la partie supérieure (9) du piston (3) comporte toujours deux rainures (5, 21), mais cette fois décalées l'une de l'autre d'un angle d'environ 120°, la zone supérieure (11) du corps creux (1) ne présentant plus qu'une seule rainure d'éjection (4). Cette forme de réalisation permet de simplifier la fabrication du dispositif, et corollairement d'en réduire les coûts. Son mode de fonctionnement est globalement identique.

Claims

REVENDICATIONS
1. Dispositif de dosage volumétrique différentiel, comprenant :
» un corps creux (1), définissant une chambre de dosage cylindrique (2), surmontée d'une zone supérieure (11) au niveau de laquelle débouchent respectivement une canalisation d'amenée (6) et une canalisation de délivrance ou d'éjection (8) d'un liquide à doser ;
• un piston cylindrique (3), comportant plusieurs parties coaxiales, respectivement supérieure (9), et intermédiaire (10), dont les diamètres respectifs correspondent au jeu près aux diamètres internes de la chambre de dosage (2) et de la zone (11) du corps cylindrique, ledit piston présentant à la périphérie de sa partie supérieure (9) une rainure longitudinale de distribution (5), susceptible de venir se positionner en regard de l'arrivée de la canalisation d'amenée (6) du liquide à doser, ledit piston étant en outre susceptible d'être animé d'un mouvement de translation ascendante et descendante au sein dudit corps creux (1), simultanément ou non à un mouvement de rotation, caractérisé :
• en ce que le diamètre interne de la zone supérieure (11) du corps creux (1) est inférieur au diamètre de la chambre de dosage (2) dudit corps ; • en ce que le diamètre externe de la partie intermédiaire (10) du piston (3) est supérieur au diamètre externe de la partie (9) dudit piston ;
• en ce que la paroi de ladite zone supérieure (11) est munie d'une rainure longitudinale (4), s'étendant sensiblement depuis le niveau de débouchement de la canalisation d'amenée (6) du liquide à doser en direction de l'extrémité supérieure de la zone supérieure (11) du corps creux
(1), définissant une chambre d'accumulation et d'accélération (7) du liquide à doser ,et destinée à coopérer avec la rainure de distribution (5) de la partie supérieure (9) du piston (3) ;
• et en ce que la canalisation de délivrance ou d'éjection (8) du liquide à doser débouche au niveau de la chambre d'accumulation et d'accélération (7).
2. Dispositif de dosage volumétrique différentiel selon la revendication 1, caractérisé en ce que la canalisation de délivrance ou d'éjection (8) du liquide à doser est orientée selon la direction principale du dispositif de dosage.
3. Dispositif de dosage volumétrique différentiel selon l'une des revendications 1 et 2, caractérisé en ce que la zone supérieure (9) du piston (3) présente des rainures supplémentaires (21), orientées selon la même direction et s'étendant selon la même distance que la rainure de distribution (5).
4. Dispositif de dosage volumétrique différentiel selon la revendication 3, caractérisé en ce que la zone supérieure (9) du piston (3) comporte une rainure supplémentaire (21), positionnée à 90° par rapport à la rainure de distribution (5).
5. Dispositif de dosage volumétrique différentiel selon la revendication 4, caractérisé en ce que la zone supérieure (11) du corps creux (l)comporte une rainure supplémentaire (22), orientée selon la même direction et s'étendant selon la même distance que la rainure d'éjection (4), et orientée à 90° par rapport à celle-ci
6. Dispositif de dosage volumétrique différentiel selon la revendication 3, caractérisé en ce que la zone supérieure (9) du piston (3) comporte une rainure supplémentaire (21), positionnée à 120° par rapport à la rainure de distribution (5).
PCT/FR2003/002432 2002-09-17 2003-07-31 Dispositif de dosage volumetrique differentiel WO2004027352A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003271827A AU2003271827A1 (en) 2002-09-17 2003-07-31 Differential volumetric dosing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/11498 2002-09-17
FR0211498A FR2844593B1 (fr) 2002-09-17 2002-09-17 Dispositif de dosage volumetrique differentiel

Publications (2)

Publication Number Publication Date
WO2004027352A2 true WO2004027352A2 (fr) 2004-04-01
WO2004027352A3 WO2004027352A3 (fr) 2004-06-24

Family

ID=31897443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002432 WO2004027352A2 (fr) 2002-09-17 2003-07-31 Dispositif de dosage volumetrique differentiel

Country Status (3)

Country Link
AU (1) AU2003271827A1 (fr)
FR (1) FR2844593B1 (fr)
WO (1) WO2004027352A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20090282A1 (it) * 2009-05-08 2010-11-09 Ima Life Srl Apparato di dosaggio con mezzi a giunto
WO2010128453A1 (fr) 2009-05-08 2010-11-11 Ima Life S.R.L. Unité de dosage pour cip/sip
CN104443473A (zh) * 2014-02-24 2015-03-25 中国药科大学 容积式计量配量装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5693566B2 (ja) * 2009-05-08 2015-04-01 アイエムエー、ライフ、ソシエタ、ア、レスポンサビリタ、リミタータIma Life S.R.L. 服用量注入装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410302A1 (de) * 1984-03-21 1985-09-26 Gebr. Bindler Maschinenfabrik GmbH & Co KG, 5275 Bergneustadt Vorrichtung zum abfuellen dosierter mengen einer fluessigen bis zaehfluessigen subsstanz, insbesondere einer schokoladenmasse
FR2797046A1 (fr) * 1999-07-30 2001-02-02 Spc France Dispositif de dosage volumetrique differentiel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410302A1 (de) * 1984-03-21 1985-09-26 Gebr. Bindler Maschinenfabrik GmbH & Co KG, 5275 Bergneustadt Vorrichtung zum abfuellen dosierter mengen einer fluessigen bis zaehfluessigen subsstanz, insbesondere einer schokoladenmasse
FR2797046A1 (fr) * 1999-07-30 2001-02-02 Spc France Dispositif de dosage volumetrique differentiel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20090282A1 (it) * 2009-05-08 2010-11-09 Ima Life Srl Apparato di dosaggio con mezzi a giunto
WO2010128453A1 (fr) 2009-05-08 2010-11-11 Ima Life S.R.L. Unité de dosage pour cip/sip
WO2010128437A1 (fr) * 2009-05-08 2010-11-11 Ima Life S.R.L. Dispositif de dosage à moyens de jonction
CN102428353A (zh) * 2009-05-08 2012-04-25 Ima生命有限公司 带有接头装置的配量装置
JP2012526277A (ja) * 2009-05-08 2012-10-25 アイエムエー、ライフ、ソシエタ、ア、レスポンサビリタ、リミタータ Cip/sip用の服用量注入ユニット
US8915404B2 (en) 2009-05-08 2014-12-23 Ima Life S.R.L. Dosing apparatus with a joint arrangement
US8944291B2 (en) 2009-05-08 2015-02-03 Ima Life, S.R.L. Dosing unit for CIP/SIP
CN104443473A (zh) * 2014-02-24 2015-03-25 中国药科大学 容积式计量配量装置

Also Published As

Publication number Publication date
AU2003271827A1 (en) 2004-04-08
FR2844593B1 (fr) 2005-07-08
WO2004027352A3 (fr) 2004-06-24
FR2844593A1 (fr) 2004-03-19

Similar Documents

Publication Publication Date Title
EP1339501B1 (fr) Dispositif de distribution de produit fluide ou pulverulent
EP0345132B1 (fr) Pompe-doseuse à précompression à amorçage amélioré
EP1042026A1 (fr) Dispositif de pulverisation de produit fluide
EP3025056B1 (fr) Sous-ensemble oscillo-rotatif pour pompage d'un fluide et dispositif de pompage oscillo-rotatif
EP2906484B1 (fr) Valve doseuse de distribution d'un aerosol
EP2490823B1 (fr) Tete de distribution pour dispositif de distribution de produit fluide
EP1037714B1 (fr) Dispositif de conditionnement et distribution d'un produit, avec pompe manuelle et filtre d'entree d'air
EP0944440B1 (fr) Dispositif de distribution d'une matiere extrudable telle qu'une pate a usage dentaire
WO2004027352A2 (fr) Dispositif de dosage volumetrique differentiel
FR2797046A1 (fr) Dispositif de dosage volumetrique differentiel
EP3488194B1 (fr) Dispositif pour déposer une quantité précise de produit
FR3036389B1 (fr) Procede et dispositif de remplissage de reservoir.
FR2835912A1 (fr) Dispositif de dosage volumetrique differentiel
EP0444990A1 (fr) Dispositif distributeur de produit liquide ou pateux, notamment de produit cosmétique
FR3135069A1 (fr) Dispositif de distribution de produit fluide et son procédé d'amorçage
FR2735043A1 (fr) Dispositif pour faciliter le vidage d'une chambre de dosage d'un inhalateur
FR3083997A1 (fr) Pompe de distribution d'un produit fluide, tete de distribution equipee d'une telle pompe et flacon associe
FR2667391A1 (fr) Dispositif de dosage volumetrique d'au moins un produit et de remplissage de contenants.
EP4408591A1 (fr) Ensemble de distribution de produit fluide
WO2014057448A1 (fr) Valve doseuse de distribution d'un aérosol
WO2012152901A1 (fr) Pompe de dosage et de distribution d'un produit liquide ou visqueux
FR3027293A3 (fr) Recipient avec capuchon de distribution allonge
FR2938643A1 (fr) Procede de dosage volumetrique d'un fluide au moyen d'un piston et dispositif destine a ce procede
FR2655728A1 (fr) Dispositif doseur.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP