WO2004026539A2 - Method for measuring the position of robot-guided workpieces and measuring device for the same - Google Patents

Method for measuring the position of robot-guided workpieces and measuring device for the same Download PDF

Info

Publication number
WO2004026539A2
WO2004026539A2 PCT/DE2003/002489 DE0302489W WO2004026539A2 WO 2004026539 A2 WO2004026539 A2 WO 2004026539A2 DE 0302489 W DE0302489 W DE 0302489W WO 2004026539 A2 WO2004026539 A2 WO 2004026539A2
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
sensors
robot
tool
tcp
Prior art date
Application number
PCT/DE2003/002489
Other languages
German (de)
French (fr)
Other versions
WO2004026539A3 (en
Inventor
Thomas Pagel
Johannes Kemp
Original Assignee
Thomas Pagel
Johannes Kemp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomas Pagel, Johannes Kemp filed Critical Thomas Pagel
Priority to AU2003264238A priority Critical patent/AU2003264238A1/en
Priority to EP03797160A priority patent/EP1536927A2/en
Publication of WO2004026539A2 publication Critical patent/WO2004026539A2/en
Publication of WO2004026539A3 publication Critical patent/WO2004026539A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • G01S5/163Determination of attitude
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39533Measure grasping posture and pressure distribution

Definitions

  • the invention relates to a method for measuring the position of robot-guided workpieces in relation to a tool arranged stationary with the base of an industrial robot with optical sensors which are arranged stationary with respect to the tool, the position of the industrial robot with robot position coordinates and tool center point (TCP) coordinates is described.
  • TCP tool center point
  • the invention further relates to a measuring device for measuring the position of robot-guided workpieces in relation to a tool arranged fixed to the base of an industrial robot with optical sensors which are arranged fixed in relation to the tool, the position of the industrial robot with robot position coordinates and tool center Point (TCP) coordinates is described.
  • TCP tool center Point
  • Industrial robots have several interconnected arms for moving to any point within a work space, a hand flange at the end of the last arm of the linked arms and, for example, a gripper as a tool which is attached to the hand flange.
  • the position and orientation of the hand flange or the working point of the gripper attached to the hand flange can be in a fixed robot-independent world coordinate system or in a fixed one Anchoring point of the base robot-related base coordinate system.
  • the description of the position of the degrees of freedom, ie the axes and the hand orientation, on the other hand takes place in robot coordinates, whereby starting from the basic axis of the robot, ie the basic coordinate system, an axis robot coordinate system is defined for each joint, which relates to the respective position of each axis on their previous axis.
  • the relationship between the axis robot coordinate systems of an industrial robot is described by defined coordinate transformations.
  • TCP position coordinates The position of a working point of a tool, which is attached to the hand flange of the industrial robot, is described by so-called TCP position coordinates, as described for example in DE 195 07 561 A1.
  • the industrial robot is programmed on the basis of the hand flange and the specified TCP position coordinates, which are known as the Tool Center Point (TCP).
  • TCP position coordinates like the axis robot coordinates, are each a vector with six dimensions.
  • the first three coordinates define the position of the working point relative to the tool base point of the industrial robot, i. H. the attachment point of the tool on the hand flange.
  • the other three coordinates define the orientation of the axes of the working point relative to the tool base point.
  • a workpiece is now picked up by a gripper of the industrial robot and moved in space to a tool that is arranged in a fixed position with respect to the base of the industrial robot, the position must be of the workpiece are measured precisely so that the industrial robot can move machining points on the workpiece exactly to the tool.
  • the measurement is conventionally carried out with the help of cameras by recording and evaluating image projections of the workpiece, as disclosed for example in DE 100 16 963 C2. This is relatively complex.
  • the object of the invention was therefore to create an improved method for measuring the position of robot-guided workpieces, which enables highly precise and rapid position measurement of workpieces with little measurement effort.
  • TCP coordinate system Determining the TCP coordinate system relative to the position coordinates of the tool, the position coordinates of the tool forming the tool center point (TCP) for the industrial robot,
  • the position of the sensors is related to the tool center point of the industrial robot, which does not form the TCP on the hand flange of the industrial robot as is traditionally the TCP of the gripper, but the tool that is fixed to the base of the industrial robot.
  • the method is therefore based on the idea of reversing the coordinate transformation for measuring the position of a workpiece and, as it were, defining the moving workpiece as a fixed world coordinate system and the stationary tool with the sensors arranged therefor as the moving TCP coordinate system of the industrial robot. This means that the position of the workpiece can be determined from transformed robot coordinates without the absolute position of the workpiece in the sensor space having to be determined.
  • Desired positions of base points of a calibration workpiece are preferably determined by guiding the workpiece base points to the sensors until at least one sensor has recognized a workpiece base point.
  • the target positions are then determined as the position difference between the tool center point and the transformed robot position coordinates. It is therefore proposed to determine the difference between a sensor and the tool center point, which is determined by the tool, in a calibration run with an optimally clamped and aligned calibration workpiece.
  • These target positions of the sensors are stored as so-called zero positions.
  • the orientation of the workpiece is determined from the deviation of the positions determined during the measurement of corresponding workpiece base points from the target positions.
  • the position of the workpiece is thus determined as the offset between the actual position of the workpiece and a target position of a calibration workpiece from the target positions.
  • the positional deviation from the displacement of the workpiece base points is determined as a quasi displacement of the sensors with respect to their target positions, since the method is carried out in the TCP coordinate system with respect to the sensors.
  • the height of the workpiece is determined in relation to the plane spanned by the sensors.
  • the workpiece is guided over the sensors until the sensors have recognized the workpiece surface.
  • the altitude is calculated from the transformed robot position coordinates and the known position of the sensors in relation to each other in the TCP coordinate system.
  • the workpiece is thus brought into the sensor plane by the industrial robot at defined points.
  • the orientation of the workpiece on the plane spanned by the sensors is then known with the robot position coordinates.
  • a displacement of the sensor positions to previously determined target positions can then be determined directly by difference formation, which describes the change in height of the workpiece.
  • workpiece reference points are first measured, each lying on an edge of the workpiece. Then, as described above, the height of the workpiece is then measured by guiding defined surface points of the workpiece to the sensors, starting from the edge positions determined. Since the position of the surface points relative to the workpiece reference points on the edges of the workpiece is assumed to be known and correct, these surface points are approached exactly after an edge measurement has been carried out beforehand. This ensures that the altitude is determined at the predefined surface points.
  • the position of base edges of the workpiece is preferably determined by measuring the workpiece reference points and guiding the workpiece relative to the base edges. The workpiece is then guided further on the basis of the previously measured base edges.
  • Three laser triangulation sensors are preferably used as sensors.
  • the at least three sensors are required in particular in order to be able to carry out a height measurement.
  • the object is further achieved by the generic measuring device by a measurement evaluation unit which is coupled to an industrial robot control and is designed to determine the position of the workpiece according to the above-mentioned method.
  • the method for determining the position and determining the TCP coordinate system can be carried out in particular by programming a processor-supported measurement evaluation unit.
  • Figure 1 perspective sketch of an industrial robot with a workpiece and stationary with respect to a tool arranged sensors.
  • FIG. 1 shows an industrial robot 1 which is mounted with its base 2 on a level 3.
  • a tool 4 is arranged in a fixed position relative to base 2 in order to machine a workpiece 5 guided by the industrial robot.
  • the industrial robot 1 has in a known manner a number of arms connected to one another with a gripper 6 for the workpiece 5, which is arranged on a hand flange 7 at the end of the linked arms.
  • the industrial robot 1 can be controlled in a conventional manner by coordinates in a world coordinate system, which is defined, for example, by plane 3.
  • the result of the control is a displacement of the gripper 6, which has a tool center point (TCP position coordinates) which is fixed in relation to a hand flange 7 of the industrial robot 1 and which spans its own TCP coordinate system.
  • TCP position coordinates tool center point
  • this TCP coordinate system is transformed back to the world coordinate system via the respective robot axis coordinate systems of the robot axes which are steered together.
  • the control of the industrial robot 1 takes place in reverse, by the tool 4 being the tool center point for the industrial robot 1 forms.
  • the actual TCP coordinate system of the gripper 6, on the other hand, is considered to be stationary as the world coordinate system.
  • workpiece base points B1, B2, ... B ⁇ are measured with the index y as a whole number, which lie on the edges K ⁇ of the workpiece 5.
  • the workpiece base points B y are led to at least one laser triangulation sensor S j .
  • the workpiece base point B y is exactly in the measuring point of the laser triangulation sensor S j .
  • the position of the measured workpiece reference point B y with respect to the tool center point of the gripper 6 in the coordinate system can then be transformed of the gripper 6 can be calculated.
  • the workpiece 5 is moved via the sensors S u S 2 and S 3 in such a way that defined surface points of the workpiece are at the known distance from the measured workpiece base points B ⁇ or workpiece edges K y , via which laser triangulation sensors S 1 # S 2 and S 3 are brought.
  • the robot position coordinates of the gripper 6 are recorded and transformed into the TCP coordinate system. From the position difference to the The height of the workpiece 5 is then determined on the basis of the fixed arrangement of the sensors S j known to one another.
  • the industrial robot 1 is controlled with a conventional industrial robot controller 8, to which a measurement evaluation unit 9 according to the invention is coupled, for example a computer.
  • the sensors S j are connected to the measurement evaluation unit 9 and the measurement evaluation unit 9 is in turn coupled to the industrial robot controller 8.
  • the measurement evaluation unit 9 is programmed so that the measurement method described above can be carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

A method for measuring the position of robot-guided workpieces (5), with relation to a tool (4), fixed with relation to the plinth (2) of an industrial robot (1), by means of optical sensors (Sj), which are fixed with relation to the tool (5), whereby the position of the industrial robot (1) is described with robot position coordinates (R) and tool centre point (TCP) coordinates, comprises the following steps: fixing the TCP coordinate system relative to the position coordinates of the tool (4), whereby the position coordinates for the tool (4) form the tool centre point (TCP) for the industrial robot (1), supply of workpiece base points (By) to the sensors (Sj) and determination of the position of the workpiece (5), by transformation of the robot position coordinates (R) into the TCP coordinate system and calculation of the position from the transformed robot position coordinates (R) and the known position of the sensors (Sj) relative to each other and/or the known position of the sensors (Sj) relative to the tool centre point.

Description

Verfahren zur Vermessung der Lage von robotergeführten Werkstücken und Messeinrichtung hierzuMethod for measuring the position of robot-guided workpieces and measuring device therefor
Die Erfindung betrifft ein Verfahren zur Vermessung der Lage von robotergeführten Werkstücken in Bezug auf ein ortsfest zum Sockel eines Industrieroboters angeordnetes Werkzeug mit optischen Sensoren, die ortsfest in Bezug auf das Werkzeug angeordnet sind, wobei die Lage des Industrieroboters mit Roboterlagekoordinaten und Tool-Center-Point (TCP)- Koordinaten beschrieben wird.The invention relates to a method for measuring the position of robot-guided workpieces in relation to a tool arranged stationary with the base of an industrial robot with optical sensors which are arranged stationary with respect to the tool, the position of the industrial robot with robot position coordinates and tool center point (TCP) coordinates is described.
Die Erfindung betrifft weiterhin eine Messeinrichtung zum Vermessen der Lage von robotergeführten Werkstücken in Bezug auf ein ortsfest zum Sockel eines Industrieroboters angeordnetes Werkzeug mit optischen Sensoren, die ortsfest in Bezug auf das Werkzeug angeordnet sind, wobei die Lage des Industrieroboters mit Roboterlagekoordinaten und Tool-Center- Point (TCP)-Koordinaten beschrieben wird.The invention further relates to a measuring device for measuring the position of robot-guided workpieces in relation to a tool arranged fixed to the base of an industrial robot with optical sensors which are arranged fixed in relation to the tool, the position of the industrial robot with robot position coordinates and tool center Point (TCP) coordinates is described.
Industrieroboter haben zum Anfahren beliebiger Punkte innerhalb eines Arbeitsraumes mehrere miteinander verbundene Arme, einen Handflansch am Ende des letzten Arms der miteinander verketteten Arme und beispielsweise einen Greifer als Werkzeug, das an dem Handflansch angebracht ist.Industrial robots have several interconnected arms for moving to any point within a work space, a hand flange at the end of the last arm of the linked arms and, for example, a gripper as a tool which is attached to the hand flange.
Die Lage und Orientierung des Handflansches oder des Arbeitspunktes des an dem Handflansch angebrachten Greifers kann in einem ortsfesten robo- terunabhängigen Weltkoordinatensystem oder in einem ortsfesten auf einen Verankerungspunkt des Industrieroboters bezogenen Basiskoordinatensystem erfolgen. Die Beschreibung der Lage der Freiheitsgrade, d. h. der Achsen und der Handorientierung, erfolgt hingegen in Roboterkoordinaten, wobei ausgehend von der Grundachse des Roboters, d. h. des Basiskoordi- natensystems, für jedes Gelenk ein Achsen-Roboterkoordinatensystem definiert ist, das die jeweilige Lage jeder Achse bezogen auf ihre vorhergehende Achse beschreibt. Der Zusammenhang der Achsen- Roboterkoordinatensysteme eines Industrieroboters wird durch definierte Koordinatentransformationen beschrieben. Durch Vorgabe der Lage und der Orientierung des Handflansches oder des Arbeitspunktes eines Werkzeugs im Weltkoordinatensystem können somit durch Koordinatentransformation die Achsen-Robotorkoordinaten berechnet werden, um die einzelnen Achsen des Industrieroboters ansteuern zu können.The position and orientation of the hand flange or the working point of the gripper attached to the hand flange can be in a fixed robot-independent world coordinate system or in a fixed one Anchoring point of the base robot-related base coordinate system. The description of the position of the degrees of freedom, ie the axes and the hand orientation, on the other hand takes place in robot coordinates, whereby starting from the basic axis of the robot, ie the basic coordinate system, an axis robot coordinate system is defined for each joint, which relates to the respective position of each axis on their previous axis. The relationship between the axis robot coordinate systems of an industrial robot is described by defined coordinate transformations. By specifying the position and orientation of the hand flange or the working point of a tool in the world coordinate system, the axis robot coordinates can thus be calculated by coordinate transformation in order to be able to control the individual axes of the industrial robot.
Die Lage eines Arbeitspunktes eines Werkzeuges, das an den Handflansch des Industrieroboters angebracht ist, wird, wie beispielsweise in der DE 195 07 561 A1 dargelegt, durch so genannten TCP-Lagekoordinaten beschrieben. Die Programmierung des Industrieroboters erfolgt auf der Basis des Handflansches und der festgelegten TCP-Lagekoordinaten, die als Tool- Center-Point (TCP) bekannt sind. Die TCP-Lagekoordinaten sind ebenso wie die Achsen-Roboterkoordinaten jeweils ein Vektor mit sechs Dimensionen. Die ersten drei Koordinaten definieren die Lage des Arbeitspunktes relativ zu dem Werkzeugbasispunkt des Industrieroboters, d. h. des Befestigungspunktes des Werkzeugs an dem Handflansch. Die anderen drei Koordinaten definieren die Orientierung der Achsen des Arbeitspunktes relativ zu dem Werkzeugbasispunkt.The position of a working point of a tool, which is attached to the hand flange of the industrial robot, is described by so-called TCP position coordinates, as described for example in DE 195 07 561 A1. The industrial robot is programmed on the basis of the hand flange and the specified TCP position coordinates, which are known as the Tool Center Point (TCP). The TCP position coordinates, like the axis robot coordinates, are each a vector with six dimensions. The first three coordinates define the position of the working point relative to the tool base point of the industrial robot, i. H. the attachment point of the tool on the hand flange. The other three coordinates define the orientation of the axes of the working point relative to the tool base point.
Wenn nun ein Werkstück von einem Greifer des Industrieroboters aufgenommen und im Raum zu einem Werkzeug verfahren ist, das ortsfest in Bezug auf den Sockel des Industrieroboters angeordnet ist, muss die Lage des Werkstücks genau vermessen werden, damit der Industrieroboter Bearbeitungspunkte an dem Werkstück genau zu dem Werkzeug fahren kann.If a workpiece is now picked up by a gripper of the industrial robot and moved in space to a tool that is arranged in a fixed position with respect to the base of the industrial robot, the position must be of the workpiece are measured precisely so that the industrial robot can move machining points on the workpiece exactly to the tool.
Die Vermessung wird herkömmlicherweise, wie beispielsweise in der DE 100 16 963 C2 offenbart ist, mit Hilfe von Kameras durch Aufnehmen und Auswerten von Bildprojektionen des Werkstücks vorgenommen. Dies ist relativ aufwändig.The measurement is conventionally carried out with the help of cameras by recording and evaluating image projections of the workpiece, as disclosed for example in DE 100 16 963 C2. This is relatively complex.
Aufgabe der Erfindung war es daher, ein verbessertes Verfahren zur Ver- messung der Lage von robotergeführten Werkstücken zu schaffen, das mit geringem Messaufwand eine hochgenaue und schnelle Lagevermessung von Werkstücken ermöglicht.The object of the invention was therefore to create an improved method for measuring the position of robot-guided workpieces, which enables highly precise and rapid position measurement of workpieces with little measurement effort.
Die Aufgabe wird mit dem gattungsgemäßen Verfahren erfindungsgemäß gelöst durch die Schritte:The object is achieved according to the invention with the generic method by the steps:
Festlegen des TCP-Koordinatensystems relativ zu den Lagekoordinaten des Werkzeugs, wobei die Lagekoordinaten des Werkzeugs den Tool-Center-Point (TCP) für den Industrieroboter bilden,Determining the TCP coordinate system relative to the position coordinates of the tool, the position coordinates of the tool forming the tool center point (TCP) for the industrial robot,
Führen von Werkstück-Basispunkten zu den Sensoren undGuide workpiece base points to the sensors and
Bestimmen der Lage des Werkstücks durch Transformation der Roboterlagekoordinaten in das TCP-Koordinatensystem und Berechnen der Lage aus den transformierten Roboterlagekoordinaten, der bekanntenDetermining the position of the workpiece by transforming the robot position coordinates into the TCP coordinate system and calculating the position from the transformed robot position coordinates, the known one
Lage der Sensoren zueinander und der bekannten Lage von Sensoren zu dem Tool-Center-Point.Position of the sensors to each other and the known position of sensors to the tool center point.
Erfindungsgemäß wird somit vorgeschlagen, zur Lagevermessung das Werkstück in Bezug auf ortsfeste Sensoren zu verfahren und die Lage auf der Basis der Roboterlagekoordinaten zu bestimmen. Dabei wird die Position der Sensoren auf den Tool-Center-Point des Industrieroboters bezogen, der nicht wie herkömmlich als TCP des Greifers am Handflansch des Industrieroboters, sondern das ortsfest zu dem Sockel des Industrieroboters angeordnete Werkzeug den TCP bildet. Dem Verfahren liegt also der Gedanke zu Grunde, für die Vermessung der Lage eines Werkstücks die Koordinatentransformation umzudrehen und quasi das bewegte Werkstück als festes Weltkoordinatensystem und das ortsfeste Werkzeug mit den ortsfest hierzu angeordneten Sensoren als bewegtes TCP-Koordinatensystem des Industrieroboters festzulegen. Dies führt dazu, dass die Lage des Werkstücks aus transformierten Roboterkoordinaten bestimmt werden kann, ohne dass die absolute Position des Werkstücks im Raum der Sensoren bestimmt werden muss.According to the invention, it is thus proposed to move the workpiece with respect to stationary sensors and to position the position measurement to determine the basis of the robot position coordinates. The position of the sensors is related to the tool center point of the industrial robot, which does not form the TCP on the hand flange of the industrial robot as is traditionally the TCP of the gripper, but the tool that is fixed to the base of the industrial robot. The method is therefore based on the idea of reversing the coordinate transformation for measuring the position of a workpiece and, as it were, defining the moving workpiece as a fixed world coordinate system and the stationary tool with the sensors arranged therefor as the moving TCP coordinate system of the industrial robot. This means that the position of the workpiece can be determined from transformed robot coordinates without the absolute position of the workpiece in the sensor space having to be determined.
Vorzugsweise erfolgt ein Bestimmen von Sollpositionen von Basispunkten eines Kalibrier-Werkstücks durch Führen der Werkstücks-Basispunkte zu den Sensoren so lange, bis jeweils mindestens ein Sensor einen Werkstück- Basispunkt erkannt hat. Dann werden die Sollpositionen als Positionsdifferenz zwischen dem Tool-Center-Point und den transformierten Roboterlage- koordinaten ermittelt. Es wird somit vorgeschlagen, in einer Kalibrierfahrt mit einem optimal eingespannten und ausgerichteten Kalibrier-Werkstück die Differenz eines Sensors zu dem Tool-Center-Point zu bestimmen, der durch das Werkzeug festgelegt wird. Diese Sollpositionen der Sensoren werden als sogenannte Nullpositionen abgespeichert.Desired positions of base points of a calibration workpiece are preferably determined by guiding the workpiece base points to the sensors until at least one sensor has recognized a workpiece base point. The target positions are then determined as the position difference between the tool center point and the transformed robot position coordinates. It is therefore proposed to determine the difference between a sensor and the tool center point, which is determined by the tool, in a calibration run with an optimally clamped and aligned calibration workpiece. These target positions of the sensors are stored as so-called zero positions.
Im Folgenden wird die Orientierung des Werkstücks aus der Abweichung der bei der Vermessung entsprechender Werkstück-Basispunkte ermittelten Positionen von den Sollpositionen bestimmt. Die Lage des Werkstücks wird somit als Offset zwischen der tatsächlichen Lage des Werkstücks und einer Soll-Lage eines Kalibrier-Werkstücks von den Sollpositionen bestimmt. Mit anderen Worten wird die Lageabweichung aus der Verschiebung der Werkstück-Basispunkte als quasi Verschiebung der Sensoren im Bezug auf ihre Sollpositionen bestimmt, da das Verfahren in dem TCP-Koordinatensystem bezogen auf die Sensoren durchgeführt wird.In the following, the orientation of the workpiece is determined from the deviation of the positions determined during the measurement of corresponding workpiece base points from the target positions. The position of the workpiece is thus determined as the offset between the actual position of the workpiece and a target position of a calibration workpiece from the target positions. With In other words, the positional deviation from the displacement of the workpiece base points is determined as a quasi displacement of the sensors with respect to their target positions, since the method is carried out in the TCP coordinate system with respect to the sensors.
Vorzugsweise in einem zweiten Schritt anschließend auf den vorher beschriebenen Schritt der Bestimmung der Orientierung des Werkstücks wird die Höhenlage des Werkstücks in Bezug auf die durch die Sensoren aufgespannte Ebene bestimmt. Hierzu wird das Werkstück über die Sensoren so lange geführt, bis die Sensoren die Werkstückoberfläche erkannt haben. Die Höhenlage wird aus den transformierten Roboterlagekoordinaten und der bekannten Lage der Sensoren zueinander im TCP-Koordinatensystem berechnet.Preferably, in a second step following the previously described step of determining the orientation of the workpiece, the height of the workpiece is determined in relation to the plane spanned by the sensors. For this purpose, the workpiece is guided over the sensors until the sensors have recognized the workpiece surface. The altitude is calculated from the transformed robot position coordinates and the known position of the sensors in relation to each other in the TCP coordinate system.
Das Werkstück wird also an definierten Punkten durch den Industrieroboter in die Ebene der Sensoren gebracht. Mit den Roboterlagekoordinaten ist dann die Ausrichtung des Werkstücks auf die durch die Sensoren aufgespannte Ebene bekannt. Durch Transformation der Roboterlagekoordinaten in das TCP-Koordinatensystem kann dann wie oben beschrieben eine Verla- gerung der Sensorpositionen zu vorher bestimmten Sollpositionen unmittelbar durch Differenzbildung bestimmt werden, welche die Höhenlageänderung des Werkstücks beschreibt.The workpiece is thus brought into the sensor plane by the industrial robot at defined points. The orientation of the workpiece on the plane spanned by the sensors is then known with the robot position coordinates. By transforming the robot position coordinates into the TCP coordinate system, a displacement of the sensor positions to previously determined target positions can then be determined directly by difference formation, which describes the change in height of the workpiece.
Vorzugsweise erfolgt zunächst ein Vermessen von Werkstück- Bezugspunkten, die jeweils an einer Kante des Werkstücks liegen. Anschließend wird dann wie oben beschrieben die Höhenlage des Werkstücks durch Führen definierter Oberflächenpunkte des Werkstücks zu den Sensoren ausgehend von den ermittelten Kantenpositionen vermessen. Da die Position der Oberflächenpunkte zu den Werkstück-Bezugspunkten an den Kanten des Werkstücks als bekannt und korrekt vorausgesetzt wird, kön- nen diese Oberflächenpunkte genau angefahren werden, nachdem vorher eine Kantenvermessung durchgeführt wurde. Dadurch wird sichergestellt, dass die Höhenlage an den vordefinierten Oberflächenpunkten bestimmt wird.Preferably, workpiece reference points are first measured, each lying on an edge of the workpiece. Then, as described above, the height of the workpiece is then measured by guiding defined surface points of the workpiece to the sensors, starting from the edge positions determined. Since the position of the surface points relative to the workpiece reference points on the edges of the workpiece is assumed to be known and correct, these surface points are approached exactly after an edge measurement has been carried out beforehand. This ensures that the altitude is determined at the predefined surface points.
Dabei erfolgt vorzugsweise ein Bestimmen der Lage von Basiskanten des Werkstücks durch Vermessen der Werkstück-Bezugspunkte und Führen des Werkstücks relativ zu den Basiskanten. Die weitere Führung des Werkstücks erfolgt somit auf der Basis der vorher vermessenen Basiskanten.The position of base edges of the workpiece is preferably determined by measuring the workpiece reference points and guiding the workpiece relative to the base edges. The workpiece is then guided further on the basis of the previously measured base edges.
Als Sensoren werden vorzugsweise drei Lasertriangulationssensoren eingesetzt. Die mindestens drei Sensoren sind insbesondere erforderlich, um eine Höhenmessung durchführen zu können.Three laser triangulation sensors are preferably used as sensors. The at least three sensors are required in particular in order to be able to carry out a height measurement.
Die Aufgabe wird weiterhin durch die gattungsgemäße Messeinrichtung gelöst durch eine Messauswerteeinheit, die mit einer Industrierobotersteuerung gekoppelt und zur Bestimmung der Lage des Werkstücks nach dem oben genannten Verfahren ausgebildet ist. Das Verfahren zur Lagebestimmung und Festlegung des TCP-Koordinatensystems können insbesondere durch Programmieren einer prozessorgestützten Messauswerteeinheit erfolgen. The object is further achieved by the generic measuring device by a measurement evaluation unit which is coupled to an industrial robot control and is designed to determine the position of the workpiece according to the above-mentioned method. The method for determining the position and determining the TCP coordinate system can be carried out in particular by programming a processor-supported measurement evaluation unit.
Die Erfindung wird nachfolgend anhand der beigefügten Zeichnung näher erläutert. Es zeigt:The invention is explained in more detail below with reference to the accompanying drawing. It shows:
Figur 1 - perspektivische Skizze eines Industrieroboters mit Werkstück und ortsfest in Bezug auf ein Werkzeug angeordnete Sensoren.Figure 1 - perspective sketch of an industrial robot with a workpiece and stationary with respect to a tool arranged sensors.
Die Figur 1 lässt einen Industrieroboter 1 erkennen, der mit seinem Sockel 2 auf einer Ebene 3 montiert ist. Auf der Ebene 3 ist ein Werkzeug 4 ortsfest zu dem Sockel 2 angeordnet, um ein von dem Industrieroboter geführ- tes Werkstück 5 zu bearbeiten.1 shows an industrial robot 1 which is mounted with its base 2 on a level 3. On level 3, a tool 4 is arranged in a fixed position relative to base 2 in order to machine a workpiece 5 guided by the industrial robot.
Der Industrieroboter 1 hat in bekannter Weise eine Anzahl von mit Gelenken miteinander verbundenen Arme mit einem Greifer 6 für das Werkstück 5, der an einem Handflansch 7 an dem Ende der miteinander verketteten Arme angeordnet ist.The industrial robot 1 has in a known manner a number of arms connected to one another with a gripper 6 for the workpiece 5, which is arranged on a hand flange 7 at the end of the linked arms.
Der Industrieroboter 1 kann in herkömmlicher Weise durch Koordinaten in einem Weltkoordinatensystem gesteuert werden, das beispielsweise durch die Ebene 3 festgelegt ist. Das Ergebnis der Steuerung ist eine Verlagerung des Greifers 6, der einen in Bezug auf einen Handflansch 7 des Industrieroboters 1 festgelegten Tool-Center-Point (TCP-Lagekoordinaten) hat und ein eigenes TCP-Koordinatensystem aufspannt. Herkömmlicherweise wird bei der Steuerung des Industrieroboters 1 eine Transformation dieses TCP- Koordinatensystems über die jeweiligen Roboterachsen-Koordinatensysteme der aneinander gelenkten Roboterachsen zurück zum Weltkoordinatensystem durchgeführt.The industrial robot 1 can be controlled in a conventional manner by coordinates in a world coordinate system, which is defined, for example, by plane 3. The result of the control is a displacement of the gripper 6, which has a tool center point (TCP position coordinates) which is fixed in relation to a hand flange 7 of the industrial robot 1 and which spans its own TCP coordinate system. Conventionally, when the industrial robot 1 is controlled, this TCP coordinate system is transformed back to the world coordinate system via the respective robot axis coordinate systems of the robot axes which are steered together.
Erfindungsgemäß erfolgt die Steuerung des Industrieroboters 1 umgekehrt indem das Werkzeug 4 den Tool-Center-Point für den Industrieroboter 1 bildet. Das eigentliche TCP-Koordinatensystem des Greifers 6 wird hingegen als Weltkoordinatensystem ortsfest betrachtet.According to the invention, the control of the industrial robot 1 takes place in reverse, by the tool 4 being the tool center point for the industrial robot 1 forms. The actual TCP coordinate system of the gripper 6, on the other hand, is considered to be stationary as the world coordinate system.
In ortsfester Lage zu dem Werkzeug 4 sind mindestens drei Lasertriangula- tions-Sensoren S S2 und S3 vorzugsweise auf der Ebene 3 angeordnet. Die Verlagerung der Sensoren S,, S2 und S3 zu dem Werkzeug 4 beträgt dann Δzvj mit dem Index j = 1 , 2 und 3.At least three laser triangulation sensors SS 2 and S 3 are preferably arranged on level 3 in a fixed position relative to tool 4. The displacement of the sensors S ,, S 2 and S 3 to the tool 4 is then Δzv j with the index j = 1, 2 and 3.
In einer ersten Messfahrt werden Werkstück-Basispunkte B1 , B2, ... Bγ mit dem Index y als ganzer Zahl vermessen, die an den Kanten Kγ des Werkstücks 5 liegen. Hierzu werden die Werkstück-Basispunkte By zu mindestens einem Lasertriangulationssensor Sj geführt. Dabei wird durch Unterbrechen des Laserstrahls erkannt, dass sich der Werkstück-Basispunkt By genau im Messpunkt des Lasertriangulationssensors Sj befindet. Aus der durch das festgelegte TCP-Koordinatensystem bekannten Lage des Sensors Sj sowie aus den bekannten Roboterlagekoordinaten R des Greifers 6 kann dann durch Transformation die Lage des gemessenen Werkstück- Bezugspunktes By in Bezug auf den Tool-Center-Point des Greifers 6 im Koordinatensystem des Greifers 6 berechnet werden.In a first measurement run, workpiece base points B1, B2, ... B γ are measured with the index y as a whole number, which lie on the edges K γ of the workpiece 5. For this purpose, the workpiece base points B y are led to at least one laser triangulation sensor S j . By interrupting the laser beam, it is recognized that the workpiece base point B y is exactly in the measuring point of the laser triangulation sensor S j . From the position of the sensor S j known from the defined TCP coordinate system and from the known robot position coordinates R of the gripper 6, the position of the measured workpiece reference point B y with respect to the tool center point of the gripper 6 in the coordinate system can then be transformed of the gripper 6 can be calculated.
Anschließend wird das Werkstück 5 ausgehend von den vermessenen Kanten Ky bzw. Werkstück-Basispunkten By derart über die Sensoren Su S2 und S3 verfahren, dass definierte Oberflächenpunkte des Werkstücks, die im bekannten Abstand zu den vermessenen Werkstück-Basispunkte Bγ oder Werkstückkanten Ky liegen, über die Lasertriangulationssensoren S1 # S2 und S3 gebracht werden. Sobald auf diese Weise die Oberflächenpunkte auf die durch die Lasertriangulationssensoren Sj aufgespannte Ebene ausgerichtet sind, werden die Roboterlagekoordinaten des Greifers 6 aufgenommen und in das TCP-Koordinatensystem transformiert. Aus der Lagedifferenz zu der aufgrund der ortsfesten Anordnung der Sensoren Sj zueinander bekannten Soll-Lage wird dann die Höhenlage des Werkstücks 5 bestimmt.Then, starting from the measured edges K y or workpiece base points B y , the workpiece 5 is moved via the sensors S u S 2 and S 3 in such a way that defined surface points of the workpiece are at the known distance from the measured workpiece base points B γ or workpiece edges K y , via which laser triangulation sensors S 1 # S 2 and S 3 are brought. As soon as the surface points are aligned in this way to the plane spanned by the laser triangulation sensors S j , the robot position coordinates of the gripper 6 are recorded and transformed into the TCP coordinate system. From the position difference to the The height of the workpiece 5 is then determined on the basis of the fixed arrangement of the sensors S j known to one another.
Besonders vorteilhaft ist es, wenn in einer Kalibrierfahrt die Lage der Werk- stück-Basispunkte B und die Höhenlage eines optimal in einem Greifer 6 eingespannten und fehlerfreien Kalibrier-Werkstücks vermessen wird. Dabei werden Sollpositionen ermittelt und abgespeichert. Im Betrieb wird dann nur noch die Differenz der gemessenen Positionen zu den Sollpositionen bestimmt und hieraus eine Verschiebung des Werkstücks 5 in Bezug auf ein optimal ausgerichtetes KalibrierWerkstück berechnet. Aus der Verschiebung ergibt sich bei der bekannten Ausrichtung des Kalibrier-Werkstücks dann die Lage des Werkstücks 5.It is particularly advantageous if the position of the workpiece base points B and the height of an error-free calibration workpiece optimally clamped in a gripper 6 are measured in a calibration run. Target positions are determined and saved. In operation, only the difference between the measured positions and the target positions is then determined and from this a displacement of the workpiece 5 with respect to an optimally aligned calibration workpiece is calculated. With the known alignment of the calibration workpiece, the position of the workpiece 5 then results from the displacement.
Der Industrieroboter 1 wird mit einer herkömmlichen Industrierobotersteue- rung 8 angesteuert, an die eine erfindungsgemäße Messauswerteeinheit 9 gekoppelt ist, beispielsweise ein Computer. Die Sensoren Sj sind mit der Messauswerteeinheit 9 verbunden und die Messauswerteeinheit 9 ist ihrerseits mit der Industrierobotersteuerung 8 gekoppelt. Dabei ist die Messauswerteeinheit 9 so programmiert, dass das oben beschriebene Messverfahren ausgeführt werden kann. The industrial robot 1 is controlled with a conventional industrial robot controller 8, to which a measurement evaluation unit 9 according to the invention is coupled, for example a computer. The sensors S j are connected to the measurement evaluation unit 9 and the measurement evaluation unit 9 is in turn coupled to the industrial robot controller 8. The measurement evaluation unit 9 is programmed so that the measurement method described above can be carried out.

Claims

Ansprüche Expectations
1 . Verfahren zur Vermessung der Lage von robotergeführten Werkstücken (5) in Bezug auf ein ortsfest zum Sockel 1 . Method for measuring the position of robot-guided workpieces (5) in relation to a stationary base
(2) eines Industrieroboters (1 ) angeordnetes Werkzeug (4) mit optischen Sensoren (Sj), die ortsfest in Bezug auf das Werkzeug (4) angeordnet sind, wobei die Lage des Industrieroboters (1 ) mit Roboterlagekoordinaten (R) und Tool-Center-Point (TCP)-Koordinaten beschrieben wird, gekennzeichnet durch(2) a tool (4) arranged on an industrial robot (1) with optical sensors (S j ), which are arranged in a fixed position with respect to the tool (4), the position of the industrial robot (1) being determined with robot position coordinates (R) and tool coordinates. Center Point (TCP) coordinates is described, characterized by
Festlegen des TCP-Koordinatensystems relativ zu den Lagekoordinaten des Werkzeugs (4), wobei die Lagekoordinaten des Werkzeugs (4) den Tool-Center-Point (TCP) für den Industrieroboter (1 ) bilden,Determining the TCP coordinate system relative to the position coordinates of the tool (4), the position coordinates of the tool (4) forming the tool center point (TCP) for the industrial robot (1),
Führen von Werkstück-Basispunkten (By) zu den Sensoren (Sj) undLeading workpiece base points (B y ) to the sensors (S j ) and
Bestimmen der Lage des Werkstücks (5) durch Transformation der Roboterlagekoordinaten (R) in das TCP-Koordinatensystem und Berechnen der Lage aus den transformierten Roboterlage- koordinaten (R) sowie der bekannten Lage der Sensoren (Sj) zueinander und/oder der bekannten Lage von Sensoren (Sj) zu dem Tool-Center-Point (TCP).Determining the position of the workpiece (5) by transforming the robot position coordinates (R) into the TCP coordinate system and calculating the position from the transformed robot position coordinates (R) as well as the known position of the sensors (S j ) relative to one another and/or the known position from sensors (S j ) to the tool center point (TCP).
Verfahren nach Anspruch 1 , gekennzeichnet durchMethod according to claim 1, characterized by
Bestimmen von Sollpositionen von Basispunkten (By) eine Kalibrier-Werkstücks durch Führen der Werkstück-Basispunkte (By) zu den Sensoren (Sj) bis jeweils mindestens ein Sensor (Sj) ei- nen Werkstück-Basispunkt (By) erkannt hat, und Ermitteln der Sollpositionen als Positionsdifferenz zwischen dem Tool- Center-Point (TCP) und den transformierten Roboterlagekoordinaten (R),Determining target positions of base points (B y ) of a calibration workpiece by guiding the workpiece base points (B y ) to the sensors (S j ) until at least one sensor (S j ) is in each case. has recognized a workpiece base point (B y ), and determining the target positions as the position difference between the tool center point (TCP) and the transformed robot position coordinates (R),
Bestimmen der Orientierung des Werkstücks (5) aus der Abweichung der bei der Vermessung entsprechender Werkstück- Basispunkte (By) ermittelten Positionen von den Sollpositionen.Determining the orientation of the workpiece (5) from the deviation of the positions determined when measuring corresponding workpiece base points (B y ) from the target positions.
3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch Bestimmen der Höhenlage des Werkstücks (5) in Bezug auf die durch die Sensoren (Sj) aufgespannte Ebene durch Führen des Werkstücks (5) über die Sensoren (Sj) so lange, bis die Sensoren (Sj) die Werkstückoberfläche erkannt haben, und Berechnen der Höhenlage aus den trans- formierten Roboterlagekoordinaten (R) und der bekannten Lage der3. The method according to claim 1 or 2, characterized by determining the height of the workpiece (5) in relation to the plane spanned by the sensors (S j ) by guiding the workpiece (5) over the sensors (S j ) until the sensors (S j ) have recognized the workpiece surface, and calculating the height from the transformed robot position coordinates (R) and the known position of the
Sensoren (Sj) zueinander im TCP-Koordinatensystem.Sensors (S j ) to each other in the TCP coordinate system.
4. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet durch Vermessen der Orientierung des Werkstücks (5) durch Vermessen von Werkstück-Basispunkten (By), die jeweils an einer4. Method according to one of the preceding claims, characterized by measuring the orientation of the workpiece (5) by measuring workpiece base points (B y ), each at one
Kante (Ky) des Werkstücks (5) liegen, und anschließendes Vermessen der Höhenlage des Werkstücks (5) durch Führen definierter Oberflächenpunkte des Werkstücks (5) zu den Sensoren ausgehend von den ermittelten Orientierung.Edge (K y ) of the workpiece (5), and then measuring the height of the workpiece (5) by guiding defined surface points of the workpiece (5) to the sensors based on the determined orientation.
Verfahren nach Anspruch 4, gekennzeichnet durch Bestimmen der Lage von Basiskanten (Ky) des Werkstücks (5) durch Vermessen der Werkstück-Bezugspunkte (By) und Führen des Werkstücks (5) relativ zu den Basiskanten (Ky). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Sensoren (Sj) mindestens drei Lasertriangulationssensoren eingesetzt werden.Method according to claim 4, characterized by determining the position of base edges (K y ) of the workpiece (5) by measuring the workpiece reference points (B y ) and guiding the workpiece (5) relative to the base edges (K y ). Method according to one of the preceding claims, characterized in that at least three laser triangulation sensors are used as sensors (S j ).
Messeinrichtung zur Vermessung der Lage von robotergeführtenMeasuring device for measuring the position of robot-guided
Werkstücken (5) in Bezug auf ein ortsfest zum Sockel (2) eines Industrieroboters (1 ) angeordnetes Werkzeug (4) mit optischen Sensoren (Sj), die ortsfest in Bezug auf das Werkzeug (4) angeordnet sind, wobei die Lage des Industrieroboters (1 ) mit Roboterlagekoordinaten (R) und Tool-Center-Point (TCP)-Koordinaten beschrieben wird, gekennzeichnet durch eine Messauswerteeinheit (9), die mit einer Industrierobotersteuerung (8) gekoppelt und zur Bestimmung der Lage des Werkstücks (4) durch Transformation der Roboterlagekoordinaten (R) in das TCP-Koordinatensystem und Berechnen der Lage aus dem transformierten Roboterlagekoordinaten (R) sowie der bekannten Lage der Sensoren (Sj) zueinander und/oder der bekannten Lage von Sensoren (Sj) zu den Tool-Center-Point (TCP)-Koordinaten ausgebildet ist, wobei das TCP-Koordinatensystem relativ zu den Lagekoordinaten des Werkzeugs (4) festgelegt ist und die Lagekoordinaten des Werkzeugs (4) den Tool-Center-Point (TCP) für den IndustrieroboterWorkpieces (5) in relation to a tool (4) arranged stationary to the base (2) of an industrial robot (1) with optical sensors (S j ), which are arranged stationary in relation to the tool (4), the position of the industrial robot (1) is described with robot position coordinates (R) and tool center point (TCP) coordinates, characterized by a measurement evaluation unit (9), which is coupled to an industrial robot control (8) and for determining the position of the workpiece (4) by transformation the robot position coordinates (R) into the TCP coordinate system and calculating the position from the transformed robot position coordinates (R) as well as the known position of the sensors (S j ) to one another and/or the known position of sensors (S j ) to the tool center Point (TCP) coordinates is formed, the TCP coordinate system being fixed relative to the position coordinates of the tool (4) and the position coordinates of the tool (4) being the tool center point (TCP) for the industrial robot
(1 ) bilden. (1).
PCT/DE2003/002489 2002-09-14 2003-07-24 Method for measuring the position of robot-guided workpieces and measuring device for the same WO2004026539A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003264238A AU2003264238A1 (en) 2002-09-14 2003-07-24 Method for measuring the position of robot-guided workpieces and measuring device for the same
EP03797160A EP1536927A2 (en) 2002-09-14 2003-07-24 Method for measuring the position of robot-guided workpieces and measuring device for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002142769 DE10242769C1 (en) 2002-09-14 2002-09-14 Position measuring method for robot-guided workpiece using optical sensors in known positions relative to fixed tool
DE10242769.0 2002-09-14

Publications (2)

Publication Number Publication Date
WO2004026539A2 true WO2004026539A2 (en) 2004-04-01
WO2004026539A3 WO2004026539A3 (en) 2004-09-23

Family

ID=29557888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002489 WO2004026539A2 (en) 2002-09-14 2003-07-24 Method for measuring the position of robot-guided workpieces and measuring device for the same

Country Status (4)

Country Link
EP (1) EP1536927A2 (en)
AU (1) AU2003264238A1 (en)
DE (1) DE10242769C1 (en)
WO (1) WO2004026539A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044590A1 (en) * 2004-09-13 2006-03-30 Behr Gmbh & Co. Kg Tool e.g. welding torch, center point measuring and setting device for use in machining center, has five sensors in the form of measuring sensing devices that determine tool center point, and protection device for one sensing device
US8954183B2 (en) 2010-06-02 2015-02-10 Airbus Operations Limited Aircraft component manufacturing method and apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006043810A1 (en) * 2006-09-13 2008-03-27 Hauni Maschinenbau Ag Determining a bobbin center in a bobbin handling device
DE102007056773B4 (en) * 2007-11-23 2015-08-13 Kuka Roboter Gmbh Method for automatically determining a virtual operating point

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402053A (en) * 1980-09-25 1983-08-30 Board Of Regents For Education For The State Of Rhode Island Estimating workpiece pose using the feature points method
US4727471A (en) * 1985-08-29 1988-02-23 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Miniature lightweight digital camera for robotic vision system applications
EP0577437A1 (en) * 1992-07-03 1994-01-05 Daihen Corporation Control apparatus for industrial robot
DE19507561A1 (en) * 1994-03-09 1995-09-14 Siemens Ag Position transformation method for numerically controlled machines
US5939611A (en) * 1998-02-24 1999-08-17 Data I/O Corporation Method and system for calibrating a device handler
DE10002230A1 (en) * 2000-01-20 2001-07-26 Msc Mes Sensor Und Computertec Adaptive robot guidance method, uses successive measurements with master piece and actual component for determining offset vectors used for adaption of robot movement program
US20010040683A1 (en) * 2000-05-11 2001-11-15 Karsten Hofman Apparatus for process for measuring the thickness and out-of-roundness of elongate workpieces
US6317953B1 (en) * 1981-05-11 2001-11-20 Lmi-Diffracto Vision target based assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10016963C2 (en) * 2000-04-06 2002-02-14 Vmt Vision Machine Technic Gmb Method for determining the position of a workpiece in 3D space

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402053A (en) * 1980-09-25 1983-08-30 Board Of Regents For Education For The State Of Rhode Island Estimating workpiece pose using the feature points method
US6317953B1 (en) * 1981-05-11 2001-11-20 Lmi-Diffracto Vision target based assembly
US4727471A (en) * 1985-08-29 1988-02-23 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Miniature lightweight digital camera for robotic vision system applications
EP0577437A1 (en) * 1992-07-03 1994-01-05 Daihen Corporation Control apparatus for industrial robot
DE19507561A1 (en) * 1994-03-09 1995-09-14 Siemens Ag Position transformation method for numerically controlled machines
US5939611A (en) * 1998-02-24 1999-08-17 Data I/O Corporation Method and system for calibrating a device handler
DE10002230A1 (en) * 2000-01-20 2001-07-26 Msc Mes Sensor Und Computertec Adaptive robot guidance method, uses successive measurements with master piece and actual component for determining offset vectors used for adaption of robot movement program
US20010040683A1 (en) * 2000-05-11 2001-11-15 Karsten Hofman Apparatus for process for measuring the thickness and out-of-roundness of elongate workpieces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAZAWA K ED - INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS: "COMPENSATION OF ROBOT HAND POSITION USING VISION SENSOR" PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS,CONTROL AND INSTRUMENTATION. (IECON). BOLOGNA, SEPT. 5 - 9, 1994. ROBOTICS, VISION AND SENSORS, FACTORY AUTOMATION, EMERGING TECHNOLOGIES, NEW YORK, IEEE, US, Bd. VOL. 2 CONF. 20, 5. September 1994 (1994-09-05), Seiten 847-851, XP000525431 ISBN: 0-7803-1329-1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004044590A1 (en) * 2004-09-13 2006-03-30 Behr Gmbh & Co. Kg Tool e.g. welding torch, center point measuring and setting device for use in machining center, has five sensors in the form of measuring sensing devices that determine tool center point, and protection device for one sensing device
US8954183B2 (en) 2010-06-02 2015-02-10 Airbus Operations Limited Aircraft component manufacturing method and apparatus

Also Published As

Publication number Publication date
AU2003264238A1 (en) 2004-04-08
DE10242769C1 (en) 2003-12-18
EP1536927A2 (en) 2005-06-08
WO2004026539A3 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
DE102004010312B4 (en) Method for calibrating an operating point
DE10242710A1 (en) Method for producing a connection area on a workpiece
DE102015105687B4 (en) robot
DE3144843A1 (en) METHOD FOR OPERATING A MANIPULATOR WORKING AS A WELDING ROBOT, AND CONTROLLING THEREFORE
EP1602456A2 (en) Method and device for controlling manipulators
DE3143834C2 (en)
EP1424613A1 (en) method and device for machining a workpiece
EP1604789A2 (en) Method and device for improving the positioning accuracy of a manipulator
EP1591209A2 (en) Method of controlling a machine, in particular an industrial robot
WO2010040493A1 (en) Industrial robot and path planning method for controlling the movement of an industrial robot
WO2005108019A2 (en) Positioning and machining system, and appropriate method for positioning and machining at least one component
EP3221094B1 (en) Method and system for correcting a processing path of a robot-guided tool
EP1398094B1 (en) Method and device for determining the arm length of bent products
DE102005051533B4 (en) Method for improving the positioning accuracy of a manipulator with respect to a serial workpiece
EP1536927A2 (en) Method for measuring the position of robot-guided workpieces and measuring device for the same
EP3584041A1 (en) Method for connecting components
EP1459855A2 (en) Method and device for improving the positioning accuracy of a machining robot
DE10124044B4 (en) Method for calibrating a web program
WO2003059580A2 (en) Calibration device and method for calibrating a working point of tools for industrial robots
DE3022173A1 (en) Programmable industrial robot with path control - has actuators co-ordinated by signals from differential operational amplifiers
EP0639805A1 (en) Numerical control method for a kinematic system with multiple axis
DE102004032392A1 (en) Flanging method for flanging border edges of a work piece by roll-folding with a folding tool uses a connecting flange and a folding roller rotating on an axle
WO2019086228A1 (en) Improved calibration of machine tools
DE10230772A1 (en) Measuring device and method for measuring a working point of tools for industrial robots
EP3797935A1 (en) Method for determining a position and/or the orientation of a device top

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003797160

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003797160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2003797160

Country of ref document: EP