WO2004018369A1 - Method of recovering fluorine - Google Patents

Method of recovering fluorine Download PDF

Info

Publication number
WO2004018369A1
WO2004018369A1 PCT/JP2003/010450 JP0310450W WO2004018369A1 WO 2004018369 A1 WO2004018369 A1 WO 2004018369A1 JP 0310450 W JP0310450 W JP 0310450W WO 2004018369 A1 WO2004018369 A1 WO 2004018369A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
calcium
fluoride
wastewater
particle size
Prior art date
Application number
PCT/JP2003/010450
Other languages
French (fr)
Japanese (ja)
Inventor
Norio Moriya
Original Assignee
Cabot Supermetals K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Supermetals K.K. filed Critical Cabot Supermetals K.K.
Priority to AU2003262247A priority Critical patent/AU2003262247A1/en
Publication of WO2004018369A1 publication Critical patent/WO2004018369A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Definitions

  • the present invention relates to a method for recovering fluorine dissolved in wastewater or the like.
  • Solid electrolytic capacitors with anode electrodes made of tantalum are small, have low ESR, and have high capacitance, and have rapidly become popular as components for mobile phones and personal computers.
  • niobium which is a homologous element to tantalum, is cheaper than tantalum, and the dielectric constant of niobium oxide is high.
  • tantalum powder and niobium powder used as Anodo electrode material is usually a fluoride potassium salts, such as K 2 T a F 7, K 2 N b F 6, K 2 N b F 7, melting diluted It is obtained by reacting with a reducing agent such as sodium in a salt, cooling the reaction melt after completion of the reduction reaction, and washing the obtained agglomerate to remove dilute salts and the like.
  • a fluoride potassium salts such as K 2 T a F 7, K 2 N b F 6, K 2 N b F 7, melting diluted It is obtained by reacting with a reducing agent such as sodium in a salt, cooling the reaction melt after completion of the reduction reaction, and washing the obtained agglomerate to remove dilute salts and the like.
  • a fluoride potassium salts such as K 2 T a F 7, K 2 N b F 6, K 2 N b F 7, melting diluted It is obtained by reacting with a reducing agent such as sodium in a salt, cooling the reaction melt after completion
  • a method for treating such wastewater a method is generally used in which a calcium compound is added to the wastewater to precipitate calcium fluoride, and the calcium fluoride is recovered by membrane treatment.
  • the generated calcium fluoride is very fine, and it often takes a long time for the membrane treatment or the membrane is clogged, and thus there is a problem in the filterability. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for recovering fluorine, which is capable of easily generating calcium fluoride having a relatively large particle diameter and good filterability in membrane treatment.
  • the first method for recovering fluorine is a method for recovering fluorine by mixing an aqueous solution in which fluorine is dissolved and calcium carbonate to generate calcium fluoride.
  • the calcium carbonate has a particle size of 5 It is characterized by using particles of ⁇ 5 ⁇ .
  • the number of moles of the fluorine and (M F), the ratio M C a / 2M F of Karushiu moles of beam and (M C a) in the calcium carbonate 1. be 2 to 2.0 range Is preferred.
  • the second method for recovering fluorine is characterized by recovering fluorine by mixing an aqueous solution in which fluorine is dissolved and calcium sulfate to generate calcium fluoride.
  • particles having a particle size of 5 to 5 ⁇ are preferably used.
  • the number of moles of the fluorine and (M F), the ratio M C a Z 2M F of Karushiu moles of beam and (M C a) in the calcium sulfate 1. be 2 to 2.0 range Is preferred.
  • Figure 1 shows the ratio of fluorine to calcium 5 is a graph in which the residual fluorine concentration is plotted with respect to FIG.
  • FIG. 2 is a graph showing a change in the residual fluorine concentration with respect to the stirring time.
  • the aqueous solution in which fluorine is dissolved is not particularly limited, and includes wastewater generated in various manufacturing industries.
  • a potassium fluoride of tantalum is reduced in a dilute salt to be used in a capacitor. Wastewater generated in the process of manufacturing tantalum powder can be mentioned.
  • K 2 T a tantalum of full Tsu of potassium ⁇ beam salts F 7, etc., 8 00-9 00 is heated to about ° C in a molten state KC 1, N a
  • a dilute salt consisting of Cl, KF and their eutectic salts, etc., together with an alkali metal such as sodium, magnesium, calcium, etc., together with a reducing agent such as an alkaline earth metal, or a hydride of these is subjected to reduction reaction I do.
  • the potassium fluoride salt of tantalum and the reducing agent may be charged all at once or alternately little by little.
  • the reduction reaction is usually performed with stirring.
  • a mixture of the diluted salt and the reaction product in a molten state, that is, the reaction melt is cooled, and the obtained agglomerate is washed to remove and purify the diluted salt and the like. Thereby, a tantalum powder can be obtained.
  • the reduction reaction is a reaction represented by the above formula (1), and KC 1 is used as a diluting salt
  • the obtained agglomerate is composed of the target product tantalum and the diluting salt.
  • KC 1 is a KF and N a F a by-product, and thus containing a small amount of K 2 T a F 7 and N a is the unreacted residue.
  • acid such as hydrofluoric acid
  • cleaning is performed, and finally, cleaning with hydrogen peroxide and nitric acid is performed.
  • wastewater generated by washing with water includes water Fluorine is contained at a concentration of about 10 to 300 ppm because by-products (KF and NaF) as well as diluted salts (KC 1) having high solubility in water are dissolved. In this case, if KF is used as the diluting salt, the fluorine concentration in the first wastewater may be higher.
  • -Waste water generated by washing with acid such as hydrofluoric acid (hereinafter referred to as “second waste water”) reacts with fluorine in hydrofluoric acid, a part of tantalum, and the reaction rim from dilute salts to produce water.
  • K 2 T a F 2 0 4 K 3 T a 0 2 F 4 which forms is dissolved, contains fluorine in a concentration of about 1 0 0 ⁇ 2 0 000 ppm.
  • the first wastewater and the second wastewater generated in the process of manufacturing tantalum powder contain relatively high concentrations of fluorine derived from raw materials, by-products, and dilute salts.
  • Wastewater generated by washing with aqueous hydrogen peroxide and nitric acid (hereinafter referred to as “third wastewater”) contains almost no fluorine.
  • p pm is based on mass.
  • the calcium carbonate and calcium sulfate used here may be added directly to the wastewater in the form of particles, or may be added in the form of a slurry previously dispersed in water.
  • the particle size of calcium carbonate and calcium sulfate is preferably in the range of 5 to 5 ⁇ .
  • the particle size of the generated calcium fluoride is 5 to 50 ⁇ , which is almost the same as that of the used calcium carbonate and calcium sulfate. Excellent filtration properties, such as less clogging of the membrane during recovery and shorter time.
  • the particle size of the finally obtained calcium fluoride is considered to be almost the same as the particle size of the calcium carbonate and calcium sulfate originally used.
  • the particle size of the calcium carbonate and calcium sulfate used is less than 5 ⁇ , the particle size of the generated calcium fluoride also becomes small, and as a result, the filterability by membrane treatment tends to decrease.
  • the particle size exceeds 5 ⁇ the formation rate of calcium fluoride becomes extremely slow, and the efficiency tends to decrease.
  • the number of moles of fluorine is dissolved with (M F), the ratio M C a / 2M F with calcium carbonate Oyo Pi moles of calcium in the calcium sulfate (M C a) is 1.2 It is preferable to mix calcium carbonate and calcium sulfate with an aqueous solution such as wastewater in which fluorine is dissolved so as to be in the range of 2.0 to 2.0.
  • the M Ca Z 2M F is 1. less than 2, the rate of formation of calcium fluoride tends to be slower.
  • the use of excess calcium and calcium sulfate carbonate exceeding M C a / 2M F force S 2. 0, the recovery effect of the fluorine does not change much.
  • Ratio M Ca Z 2M F is 1.
  • the dissolution rate is high C a S 0 4 preferable.
  • the mixing of the aqueous solution in which fluorine is dissolved with calcium carbonate and calcium sulfate may be performed continuously or in a batch system, but the batch system is more effective in reducing the fluorine concentration. it can.
  • the generated calcium fluoride may be recovered by a method such as coagulation separation, centrifugation, sedimentation, or the like, but is preferably performed by a membrane treatment using a hollow fiber membrane, a filter press, or the like. .
  • calcium carbonate and calcium sulfate having extremely low solubility in water are used as the calcium compound. Therefore, the formation reaction of calcium fluoride is performed using calcium carbonate and calcium sulfate. On the surface of the particles. Therefore, the particle size of the obtained calcium fluoride is controlled to be substantially the same as the particle size of the calcium carbonate and sulfated calcium used, and by appropriately selecting the particle size of the calcium carbonate and calcium sulfate used, the desired particle size is obtained. A diameter of calcium fluoride can be produced. According to such a method, calcium fluoride having a relatively large particle size and excellent filterability can be easily generated, so that the recovery by membrane treatment is performed in a short time to effectively reduce the fluorine concentration in the wastewater. Can be reduced.
  • the tantalum raw material compound was charged together with a reducing agent into a diluted salt that was heated to about 870 ° C and was in a molten state, and a reduction reaction was performed.
  • K 2 Ta F 7 was used as a tantalum raw material compound
  • KF was used as a diluting salt
  • Na was used as a reducing agent.
  • the reaction melt in a molten state was cooled, and the obtained agglomerates were first washed with water.
  • the wastewater obtained here is designated as the first wastewater.
  • it was washed with 3% hydrofluoric acid.
  • the wastewater obtained here is designated as the second wastewater. Further, it was washed with 1.5% hydrogen peroxide and 9% nitric acid.
  • the wastewater obtained here is the third wastewater.
  • the concentration of fluorine dissolved in the first wastewater and the second wastewater is JISK-0102 According to the analysis, they were 100 ppm and 2000 ppm, respectively.
  • the concentration of fluorine dissolved in the third wastewater was 50 ppm.
  • the mixed wastewater 2 L (fluorine concentration 100000 Op pm) obtained by mixing the first wastewater and the second wastewater and the average particle diameter (particle diameter of the cumulative mass 50%) 38.7 7.1 ⁇ C a S_ ⁇ 4 is mixed with slurries 0. 7 L dispersed in water, calcium fluoride rollers and stirred for 10 minutes at room temperature to precipitate.
  • the average particle size of the obtained calcium fluoride (cumulative mass 50% of the particle diameter) is 4 2.
  • ⁇ ⁇ an average particle diameter of the same order of C a S ⁇ 4 used.
  • the concentration of dissolved fluorine was 20 ppm, and fluorine could be recovered at a recovery rate of 99.8%.
  • Example 2 The average particle size of C a S_ ⁇ 4 using (cumulative mass 50% particle size), in Example 2 1 1 8. 9 5 ⁇ , except for using 5. 74 ⁇ Example 2 2
  • Example 1 Calcium fluoride was precipitated in the same manner as described above, and the mixed wastewater was subjected to membrane treatment, but was smoothly performed without clogging. T / JP2003 / 010450
  • the average particle size (particle size at a cumulative mass of 50%) of the obtained calcium fluoride was 20.2 ⁇ in Example 21 and 8.1 ⁇ in Example 22. a The average particle size of SO 4 was almost the same.
  • Example 1 Except that the average particle size in place of the C a S_ ⁇ 4 (cumulative mass 50% particle size) was used nitrate Cal Shiumu of 5 0Myupaiiota in the same manner as in Example 1, to precipitate calcium fluoride, then the mixture The wastewater was subjected to membrane treatment, and the obtained filtrate was analyzed in the same manner as in Example 1.
  • the average particle size of the obtained calcium fluoride (particle size at a cumulative mass of 50%) was as fine as 0.2 ⁇ , and the film treatment required a long time. Further, when the filtration specific resistance ⁇ at the time of filtration was calculated, a [m / kg] was in the order of 10 13 .
  • the average particle size of the obtained calcium fluoride (particle size at a cumulative mass of 50%) was as fine as 0.7 ⁇ , and the film treatment required a long time. Further, when the filtration specific resistance ⁇ at the time of filtration was calculated, a [m / kg] was in the order of 10 13 .
  • R cake filtration resistance
  • c cake mass per unit
  • V filtration flow rate
  • A filtration area, indicating the ease of filtration of the slurry.
  • Ki de be generated substantially calcium fluoride having an average particle diameter substantially equal to that of sulfuric acid calcium used, also be carried out smoothly filtered was completed. Further, M C a / 2M F is 1.1 to 2.0, more in the range of 1.2 to 2.0, it became clear that it is the this to particular reduced effectively residual fluorine concentration.
  • calcium carbonate and / or calcium sulfate having extremely low solubility in water is used as the calcium compound.
  • calcium fluoride having a desired particle size can be generated.
  • calcium fluoride having a relatively large particle size and excellent filterability can be easily produced.
  • the concentration of fluorine dissolved in the metal can be effectively reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

A method of recovering fluorine wherein calcium fluoride of relatively large grain diameter exhibiting high filtration performance at membrane treatment can be formed. Recovery of fluorine is accomplished by mixing an aqueous solution having fluorine dissolved therein with calcium carbonate and/or calcium sulfate to thereby form calcium fluoride. Calcium fluoride of desired grain diameter can be formed by appropriately selecting the grain diameter of calcium carbonate and calcium sulfate mixed, so that calcium fluoride of relatively large grain diameter exhibiting high filtration performance can be formed and thus membrane treatment can be efficiently performed, thereby enabling reducing the concentration of fluoride contained in waste water, etc.

Description

明細書 フッ素の回収方法 技術分野  Description Fluorine recovery method Technical field
本発明は、 廃水などに溶解しているフッ素を回収する方法に関する。  The present invention relates to a method for recovering fluorine dissolved in wastewater or the like.
本出願は、 日本国特許出願 2 0 0 2— 2 3 9 2 1 7号を基礎としており、 その 内容を本明細書に組み込む。 背景技術  This application is based on Japanese Patent Application No. 2002-239392, the contents of which are incorporated herein. Background art
タンタルから形成されたァノード電極を備えた固体電解コンデンサは、 小型で、 低 E S R、 かつ高容量であるため、 携帯電話やパソコンなどの部品として急速に 普及してきた。 また、 タンタルと同族元素であるニオブも、 タンタルよりも安価 であり、 また、 酸化ニオブの誘電率が大きいことから、 アノード電極への利用が 研究されている。  Solid electrolytic capacitors with anode electrodes made of tantalum are small, have low ESR, and have high capacitance, and have rapidly become popular as components for mobile phones and personal computers. Also, niobium, which is a homologous element to tantalum, is cheaper than tantalum, and the dielectric constant of niobium oxide is high.
このようにァノード電極原料として使用されるタンタル粉末およびニオブ粉末 は、 通常、 K2T a F 7、 K2N b F 6、 K 2 N b F 7などのフッ化カリ ウム塩を、 溶融希釈塩中においてナトリ ウムなどの還元剤と反応させ、 還元反応終了後、 反 応融液を冷却し、 得られた集塊を洗浄して希釈塩などを除去することにより得ら れる。 例えば、 フッ化カリ ゥム塩として K2T a F 7を、 還元剤としてナトリ ウム を使用した場合、 還元反応は下記式 ( 1 ) で表され、 集塊を洗浄することにより 発生した廃水には、 フッ素が溶解している。 Thus tantalum powder and niobium powder used as Anodo electrode material is usually a fluoride potassium salts, such as K 2 T a F 7, K 2 N b F 6, K 2 N b F 7, melting diluted It is obtained by reacting with a reducing agent such as sodium in a salt, cooling the reaction melt after completion of the reduction reaction, and washing the obtained agglomerate to remove dilute salts and the like. For example, the K 2 T a F 7 as fluoride potassium © unsalted, when using sodium as the reducing agent, the reduction reaction is represented by the following formula (1), the waste water generated by washing the agglomerates Has dissolved fluorine.
K2 T a F 7 + 5 N a→2 K F + 5 N a F +T a… ( 1) K 2 T a F 7 + 5 N a → 2 KF + 5 N a F + T a… (1)
このような廃水の処理方法としては、 この廃水にカルシウム化合物を添加して フッ化カルシウムを析出させ、 これを膜処理して回収する方法が一般的である。 しかしながら、 このような方法では、 生成したフッ化カルシウムが非常に微細 となり、 膜処理に長時間を要したり、 膜が目づまりを起こしたりする場合が多く、 濾過性に問題があった。 発明の開示 As a method for treating such wastewater, a method is generally used in which a calcium compound is added to the wastewater to precipitate calcium fluoride, and the calcium fluoride is recovered by membrane treatment. However, in such a method, the generated calcium fluoride is very fine, and it often takes a long time for the membrane treatment or the membrane is clogged, and thus there is a problem in the filterability. Disclosure of the invention
本発明は上記事情に鑑みてなされたもので、 膜処理における濾過性が良好な、 比較的粒子径の大きなフッ化カルシウムを容易に生成させることが可能なフッ素 の回収方法を提供することを課題とする。  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for recovering fluorine, which is capable of easily generating calcium fluoride having a relatively large particle diameter and good filterability in membrane treatment. And
第 1のフッ素の回収方法は、 フッ素が溶解した水溶液と炭酸カルシウムとを混 合して、 フッ化カルシウムを生成させることにより、 フッ素を回収する方法であ つて、 前記炭酸カルシウムとして、 粒径 5〜 5 Ομπιの粒子を使用することを特 徴とする。  The first method for recovering fluorine is a method for recovering fluorine by mixing an aqueous solution in which fluorine is dissolved and calcium carbonate to generate calcium fluoride. The calcium carbonate has a particle size of 5 It is characterized by using particles of ~ 5 μμπι.
また、 前記フッ素のモル数 (MF) と、 前記炭酸カルシウムにおけるカルシゥ ムのモル数 (MC a) との比率 MC a/ 2MFを、 1. 2〜2. 0の範囲とすること が好ましい。 Further, the number of moles of the fluorine and (M F), the ratio M C a / 2M F of Karushiu moles of beam and (M C a) in the calcium carbonate, 1. be 2 to 2.0 range Is preferred.
第 2のフッ素の回収方法は、 フッ素が溶解した水溶液と硫酸カルシウムとを混 合して、 フッ化カルシウムを生成させることにより、 フッ素を回収することを特 徴とする。  The second method for recovering fluorine is characterized by recovering fluorine by mixing an aqueous solution in which fluorine is dissolved and calcium sulfate to generate calcium fluoride.
前記硫酸カルシウムとして、 粒径 5〜 5 Ομπιの粒子を使用することが好まし レ、。  As the calcium sulfate, particles having a particle size of 5 to 5 μπι are preferably used.
また、 前記フッ素のモル数 (MF) と、 前記硫酸カルシウムにおけるカルシゥ ムのモル数 (MC a) との比率 MC aZ 2MFを、 1. 2〜2. 0の範囲とすること が好ましい。 図面の簡単な説明 Further, the number of moles of the fluorine and (M F), the ratio M C a Z 2M F of Karushiu moles of beam and (M C a) in the calcium sulfate, 1. be 2 to 2.0 range Is preferred. BRIEF DESCRIPTION OF THE FIGURES
図 1はフッ素とカルシウムとの比
Figure imgf000004_0001
に対して、 残存フッ素濃度を プロッ トしたグラフである。
Figure 1 shows the ratio of fluorine to calcium
Figure imgf000004_0001
5 is a graph in which the residual fluorine concentration is plotted with respect to FIG.
図 2は攪拌時間に対する残存フッ素濃度の変化を示すグラフである。 発明を実施するための最良の形態  FIG. 2 is a graph showing a change in the residual fluorine concentration with respect to the stirring time. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳しく説明する。  Hereinafter, the present invention will be described in detail.
本発明のフッ素の回収方法は、 フッ素が溶解した水溶液と硫酸カルシウムおよ び/または炭酸カルシウムとを混合して、 難溶性のフッ化カルシウムを生成させ ることにより、 フッ素を回収するものである。 In the method for recovering fluorine of the present invention, an aqueous solution in which fluorine is dissolved and calcium sulfate and / or calcium carbonate are mixed to form hardly soluble calcium fluoride. By doing so, it recovers fluorine.
ここで、 フッ素が溶解した水溶液としては特に制限はなく、 各種製造業などに おいて発生する廃水が挙げられ、 例えば、 タンタルのフッ化カリ ウム塩を希釈塩 中で還元して、 コンデンサ用途のタンタル粉末を製造する工程で発生した廃水が 挙げられる。  Here, the aqueous solution in which fluorine is dissolved is not particularly limited, and includes wastewater generated in various manufacturing industries.For example, a potassium fluoride of tantalum is reduced in a dilute salt to be used in a capacitor. Wastewater generated in the process of manufacturing tantalum powder can be mentioned.
タンタル粉末を製造する工程においては、 まず、 K2T a F 7等のタンタルのフ ッ化カリ ゥム塩を、 8 00〜9 00°C程度に加熱されて溶融状態にある KC 1、 N a C l、 KFやこれらの共晶塩などからなる希釈塩中に、 ナトリ ウム、 マグネ シゥム、 カルシウム等のアルカリ金属やアルカリ土類金属、 これらの水素化物な どの還元剤とともに投入し、 還元反応を行う。 ここでタンタルのフッ化カリ ウム 塩と還元剤とは一括投入しても、 少量ずつ交互に投入してもよい。 また、 還元反 応は通常撹拌しながら行う。 In the process of manufacturing the tantalum powder, first, K 2 T a tantalum of full Tsu of potassium © beam salts F 7, etc., 8 00-9 00 is heated to about ° C in a molten state KC 1, N a Into a dilute salt consisting of Cl, KF and their eutectic salts, etc., together with an alkali metal such as sodium, magnesium, calcium, etc., together with a reducing agent such as an alkaline earth metal, or a hydride of these, is subjected to reduction reaction I do. Here, the potassium fluoride salt of tantalum and the reducing agent may be charged all at once or alternately little by little. The reduction reaction is usually performed with stirring.
ここで例えば、 原料として K2T a F 7を使用し、 還元剤としてナトリ ウムを使 用した場合には、 進行する還元反応は以下の式 (1 ) で示される。 Here, for example, when K 2 TaF 7 is used as a raw material and sodium is used as a reducing agent, a progressing reduction reaction is represented by the following equation (1).
K2T a F 7+ 5 N a→2 KF+ 5 N a F + T a · · · ( 1) K 2 T a F 7 + 5 N a → 2 KF + 5 N a F + T a (1)
このような還元反応終了後、 溶融状態にある希釈塩および反応生成物などの混 合物、 すなわち反応融液を冷却し、 得られた集塊を洗浄して、 希釈塩などを除去、 精製することにより、 タンタル粉末を得ることができる。  After the completion of the reduction reaction, a mixture of the diluted salt and the reaction product in a molten state, that is, the reaction melt is cooled, and the obtained agglomerate is washed to remove and purify the diluted salt and the like. Thereby, a tantalum powder can be obtained.
還元反応が上記 ( 1 ) 式で示される反応であって、 希釈塩として KC 1が使用 された場合を例に挙げると、 得られた集塊は、 目的生成物であるタンタルの他、 希釈塩である KC 1 と、 副生成物である KFおよび N a Fと、 未反応残渣である 少量の K2T a F 7および N a とを含有することとなる。 ここで、 タンタル以外の ものをできるだけ除去するとともに、 タンタル粉末の表面状態を平滑化し、 不純 物の少ない状態とするために、 通常、 まず、 水による洗浄を行い、 ついで、 フッ 酸などの酸による洗浄を行い、 最後に過酸化水素水と硝酸による洗浄を行う。 If the reduction reaction is a reaction represented by the above formula (1), and KC 1 is used as a diluting salt, the obtained agglomerate is composed of the target product tantalum and the diluting salt. and KC 1 is a KF and N a F a by-product, and thus containing a small amount of K 2 T a F 7 and N a is the unreacted residue. Here, to remove as much as possible other substances than tantalum, and to smooth the surface of the tantalum powder and reduce the amount of impurities, usually, first, washing with water is performed, and then acid such as hydrofluoric acid is used. Cleaning is performed, and finally, cleaning with hydrogen peroxide and nitric acid is performed.
その結果、 このような洗浄により発生する廃水としては、 水による洗浄と、 フ ッ酸などの酸による洗浄と、 過酸化水素水と硝酸による洗浄の、 3種類の廃水が 発生することとなる。  As a result, three types of wastewater are generated as wastewater generated by such washing: washing with water, washing with an acid such as hydrofluoric acid, and washing with a hydrogen peroxide solution and nitric acid.
この場合、 水による洗浄で発生した廃水 (以下、 第 1廃水という。 ) には、 水 への溶解度の高い希釈塩 (KC 1 ) だけでなく、 副生成物 (KFおよび N a F) が溶解するため、 1 0〜 3 0 0 p p m程度の濃度でフッ素が含まれる。 また、 こ の際、 希釈塩として KFが使用された場合には、 第 1廃水中のフッ素濃度はより 高くなることもある。 - フッ酸などの酸による洗浄で発生した廃水 (以下、 第 2廃水という。 ) には、 フッ酸中のフッ素とタンタルの一部と希釈塩に由来する力リ ゥムとが反応して生 成した K2T a F 204、 K3T a 02F4などが溶解することにより、 1 0 0〜 2 0 000 p p m程度の濃度でフッ素が含まれる。 In this case, wastewater generated by washing with water (hereinafter referred to as first wastewater) includes water Fluorine is contained at a concentration of about 10 to 300 ppm because by-products (KF and NaF) as well as diluted salts (KC 1) having high solubility in water are dissolved. In this case, if KF is used as the diluting salt, the fluorine concentration in the first wastewater may be higher. -Waste water generated by washing with acid such as hydrofluoric acid (hereinafter referred to as “second waste water”) reacts with fluorine in hydrofluoric acid, a part of tantalum, and the reaction rim from dilute salts to produce water. by such K 2 T a F 2 0 4 , K 3 T a 0 2 F 4 which forms is dissolved, contains fluorine in a concentration of about 1 0 0~ 2 0 000 ppm.
このように、 タンタル粉末を製造する工程において発生する第 1廃水と第 2廃 水には、 原料、 副生成物、 希釈塩に由来するフッ素が比較的高濃度で含まれる。 なお、 過酸化水素水と硝酸による洗浄で発生した廃水 (以下、 第 3廃水とい う。 ) には、 フッ素はほとんど含まれない。 また、 ここで p p mは質量基準であ る。  Thus, the first wastewater and the second wastewater generated in the process of manufacturing tantalum powder contain relatively high concentrations of fluorine derived from raw materials, by-products, and dilute salts. Wastewater generated by washing with aqueous hydrogen peroxide and nitric acid (hereinafter referred to as “third wastewater”) contains almost no fluorine. Here, p pm is based on mass.
このようなフッ素の濃度が高い第 1廃水および第 2廃水と、 炭酸カルシウムお よび/または硫酸カルシウムとを混合することにより、 難溶性のフッ化カルシゥ ムが生成する。 そして、 このフッ化カルシウムを膜処理などにより回収すること により、 廃水中に残存するフッ素濃度を低下させることができる。  By mixing the first wastewater and the second wastewater having a high concentration of fluorine with calcium carbonate and / or calcium sulfate, hardly soluble calcium fluoride is generated. Then, by recovering the calcium fluoride by a membrane treatment or the like, the concentration of fluorine remaining in the wastewater can be reduced.
ここで使用する炭酸カルシウムおよび硫酸カルシゥムは、 粒子の状態のまま廃 水中に直接加えても良く、 あらかじめ水に分散させたスラリ一の状態で加えても 良い。  The calcium carbonate and calcium sulfate used here may be added directly to the wastewater in the form of particles, or may be added in the form of a slurry previously dispersed in water.
また、 炭酸カルシウムおよび硫酸カルシウムの粒径は 5〜 5 Ομπιの範囲であ ることが好ましい。 このような粒径の炭酸カルシウムおよび硫酸カルシウムを使 用すると、 生成するフッ化カルシウムの粒径も使用した炭酸カルシウムおよび硫 酸カルシウムと同程度の 5〜5 0μπιとなり、 フッ化カルシウムを膜処理で回収 する際の膜の目づまりが起きにく く、 短時間ですむなど、 濾過性に優れる。  The particle size of calcium carbonate and calcium sulfate is preferably in the range of 5 to 5 μπι. When calcium carbonate and calcium sulfate having such a particle size are used, the particle size of the generated calcium fluoride is 5 to 50 μπι, which is almost the same as that of the used calcium carbonate and calcium sulfate. Excellent filtration properties, such as less clogging of the membrane during recovery and shorter time.
ここで生成するフッ化カルシウムの粒径が、 使用した炭酸カルシウムおよび硫 酸カルシウムの粒径と同程度となる理由については以下のように説明できる。 すなわち、 炭酸カルシウムおよび硫酸カルシウムは、 いずれも水への溶解度が 非常に低い。 一方、 わずかに溶解しているカルシウムイオンと、 フッ素イオンと の反応、 すなわち、 下記式 (2) で表される反応の反応速度は大きい。 よって、 フッ素が溶解している廃水と、 炭酸カルシウムおよびノまたは硫酸カルシウムと を混合すると、 溶解している微量のカルシウムイオンは直ちにフッ素ィオンと反 応し、 難溶性のフッ化カルシウムを生成する。 すると、 溶液の平衡状態が移動し、 炭酸カルシウムおよび硫酸カルシウムの粒子が、 その表面から再びわずかに溶解 する。 そして、 溶解により生成したカルシウムイオンは、 粒子表面において直ち にフッ素イオンと反応し、 不溶性のフッ化カルシウムを再び生成すると考えられ る。 The reason why the particle size of the generated calcium fluoride is substantially the same as the particle size of the calcium carbonate and calcium sulfate used can be explained as follows. That is, both calcium carbonate and calcium sulfate have very low solubility in water. On the other hand, slightly dissolved calcium ions and fluoride ions The reaction rate of the reaction represented by the following formula (2) is large. Thus, when waste water in which fluorine is dissolved is mixed with calcium carbonate and calcium or calcium sulfate, a small amount of dissolved calcium ion immediately reacts with fluorine ion to form hardly soluble calcium fluoride. This shifts the equilibrium of the solution, causing the calcium carbonate and calcium sulfate particles to slightly dissolve again from their surface. It is considered that the calcium ions generated by the dissolution immediately react with the fluorine ions on the particle surface to again generate insoluble calcium fluoride.
C a 2 + + 2 F-→C a F 2 · · ' (2) C a 2 + + 2 F- → C a F 2
このように、 炭酸カルシウムおよび硫酸カルシウムは、 溶解度が低くて、 溶解 速度は高く、 一方、 カルシウムイオンとフッ素イオンとの反応は速いため、 フッ 化カルシウムの生成反応は炭酸カルシウムおよび硫酸カルシウムの粒子表面で起 こり、 その結果、 最終的に得られるフッ化カルシウムの粒径は、 もともと使用し た炭酸カルシウムおよび硫酸カルシゥムの粒径とほぼ同じとなると考えられる。 ここで、 使用する炭酸カルシウムおよび硫酸カルシウムの粒径が 5μπι未満で あると、 生成するフッ化カルシウムの粒径も小さくなり、 その結果、 膜処理によ る濾過性が低下する傾向がある。 一方、 粒径が 5 Ομπιを超えると、 フッ化カル シゥムの生成速度が非常に遅くなり、 効率が低くなる傾向がある。  As described above, calcium carbonate and calcium sulfate have low solubility and a high dissolution rate, while the reaction between calcium ions and fluoride ions is fast, so that the formation of calcium fluoride takes place on the surface of the calcium carbonate and calcium sulfate particles. As a result, the particle size of the finally obtained calcium fluoride is considered to be almost the same as the particle size of the calcium carbonate and calcium sulfate originally used. Here, if the particle size of the calcium carbonate and calcium sulfate used is less than 5 μπι, the particle size of the generated calcium fluoride also becomes small, and as a result, the filterability by membrane treatment tends to decrease. On the other hand, when the particle size exceeds 5 μππι, the formation rate of calcium fluoride becomes extremely slow, and the efficiency tends to decrease.
また、 ここで、 溶解しているフッ素のモル数 (MF) と、 炭酸カルシウムおよ ぴ硫酸カルシウムにおけるカルシウムのモル数 (MC a) との比率 MC a/ 2MFが, 1. 2〜2. 0の範囲となるように、 フッ素が溶解した廃水などの水溶液と炭酸 カルシウムおよび硫酸カルシウムとを混合することが好ましい。 MCaZ 2MFが 1. 2未満では、 フッ化カルシウムの生成速度が遅い傾向がある。 一方、 MC a/ 2MF力 S 2. 0を超える過剰の炭酸カルシウムおよび硫酸カルシウムを使用して も、 フッ素の回収効果はあまり変わらない。 比率 MCaZ 2MFが、 1. 2〜 2. 0の範囲であると、 過剰な炭酸カルシウムおよび硫酸カルシゥを使用することな く、 短時間でフッ化カルシウムを生成させることができ、 その結果、 残存するフ ッ素濃度を数十〜数百 p p mまで効果的に低下させることができる。 In addition, here, the number of moles of fluorine is dissolved with (M F), the ratio M C a / 2M F with calcium carbonate Oyo Pi moles of calcium in the calcium sulfate (M C a) is 1.2 It is preferable to mix calcium carbonate and calcium sulfate with an aqueous solution such as wastewater in which fluorine is dissolved so as to be in the range of 2.0 to 2.0. The M Ca Z 2M F is 1. less than 2, the rate of formation of calcium fluoride tends to be slower. On the other hand, the use of excess calcium and calcium sulfate carbonate exceeding M C a / 2M F force S 2. 0, the recovery effect of the fluorine does not change much. Ratio M Ca Z 2M F is 1. 2 2. in the range of 0, such that the use of an excess of calcium carbonate and sulfate Karushiu Ku, a short time it is possible to produce calcium fluoride, as a result However, the remaining fluorine concentration can be effectively reduced to tens to hundreds of ppm.
なお、 硫酸カルシウムとしては、 無水物 (C a S〇4) 、 水和物 (C a S 04 ' 0 As the calcium sulfate, anhydrous (C a S_〇 4), hydrate (C a S 0 4 ' 0
6 6
1 / 2 H20, C a S 04 · 2 H20) が使用できるが、 これらのなかでも室温付 近における水への溶解度は低いが、 その溶解速度が大きい C a S 04が好ましい。 また、 フッ素が溶解した水溶液と炭酸カルシウムおよび硫酸カルシウムとの混 合は、 連続的に行っても、 バッチ式で行ってもよいが、 バッチ式の方が効果的に フッ素濃度を低減させることができる。 1/2 H 2 0, C a S 0 4 · 2 H 2 0) , but can be used, but low solubility in water at near-equipped room temperature Among these, the dissolution rate is high C a S 0 4 preferable. The mixing of the aqueous solution in which fluorine is dissolved with calcium carbonate and calcium sulfate may be performed continuously or in a batch system, but the batch system is more effective in reducing the fluorine concentration. it can.
さらに、 生成したフッ化カルシウムの回収は、 助剤凝集分離、 遠心分離、 沈降 分離などの方法で行ってもよいが、 中空糸膜、 フィルタープレスなどの膜を使用 した膜処理で行うことが好ましい。  Further, the generated calcium fluoride may be recovered by a method such as coagulation separation, centrifugation, sedimentation, or the like, but is preferably performed by a membrane treatment using a hollow fiber membrane, a filter press, or the like. .
以上説明したようにこのようなフッ素の回収方法によれば、 カルシウム化合物 として、 水への溶解度が非常に低い炭酸カルシウムおよび硫酸カルシウムを使用 するので、 フッ化カルシゥムの生成反応を炭酸カルシゥムおよび硫酸カルシゥム の粒子表面で進行させることができる。 そのため、 得られるフッ化カルシウムの 粒径は、 使用する炭酸カルシウムおよび硫酸力ルシゥムの粒径とほぼ同じに制御 され、 使用する炭酸カルシウムおよび硫酸カルシウムの粒径を適宜選択すること によって、 所望の粒径のフッ化カルシウムを生成させることができる。 このよう な方法によれば、 比較的粒径が大きく、 濾過性の優れたフッ化カルシウムを容易 に生成可能であるので、 膜処理による回収を短時間で行って廃水中のフッ素濃度 を効果的に低減させることができる。  As described above, according to such a method for recovering fluorine, calcium carbonate and calcium sulfate having extremely low solubility in water are used as the calcium compound. Therefore, the formation reaction of calcium fluoride is performed using calcium carbonate and calcium sulfate. On the surface of the particles. Therefore, the particle size of the obtained calcium fluoride is controlled to be substantially the same as the particle size of the calcium carbonate and sulfated calcium used, and by appropriately selecting the particle size of the calcium carbonate and calcium sulfate used, the desired particle size is obtained. A diameter of calcium fluoride can be produced. According to such a method, calcium fluoride having a relatively large particle size and excellent filterability can be easily generated, so that the recovery by membrane treatment is performed in a short time to effectively reduce the fluorine concentration in the wastewater. Can be reduced.
(実施例)  (Example)
以下、 実施例を示して本発明を具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to examples.
(実施例 1 )  (Example 1)
タンタル原料化合物を、 8 7 0°C程度に加熱されて溶融状態にある希釈塩中に 還元剤とともに投入し、 還元反応を行った。 ここでタンタル原料化合物としては K2T a F 7を、 希釈塩としては KFを、 還元剤としては N aを使用した。 The tantalum raw material compound was charged together with a reducing agent into a diluted salt that was heated to about 870 ° C and was in a molten state, and a reduction reaction was performed. Here, K 2 Ta F 7 was used as a tantalum raw material compound, KF was used as a diluting salt, and Na was used as a reducing agent.
還元反応終了後、 溶融状態にある反応融液を冷却し、 得られた集塊を、 まず、 水で洗浄した。 ここで得られた廃水を第 1廃水とする。 ついで、 3%のフッ酸で 洗浄した。 ここで得られた廃水を第 2廃水とする。 さらに、 1. 5%の過酸化水 素水と 9%の硝酸で洗浄した。 ここで得られた廃水を第 3廃水とする。  After the completion of the reduction reaction, the reaction melt in a molten state was cooled, and the obtained agglomerates were first washed with water. The wastewater obtained here is designated as the first wastewater. Then, it was washed with 3% hydrofluoric acid. The wastewater obtained here is designated as the second wastewater. Further, it was washed with 1.5% hydrogen peroxide and 9% nitric acid. The wastewater obtained here is the third wastewater.
第 1廃水、 第 2廃水中に溶解しているフッ素濃度は、 J I S K— 0 1 0 2に よる分析によれば、 それぞれ 1 0 0 p p m、 200 0 0 p p mであった。 第 3廃 水中に溶解しているフッ素濃度は 5 0 p p mであった。 The concentration of fluorine dissolved in the first wastewater and the second wastewater is JISK-0102 According to the analysis, they were 100 ppm and 2000 ppm, respectively. The concentration of fluorine dissolved in the third wastewater was 50 ppm.
第 1廃水と第 2廃水とを混合して得られた混合廃水 2 L (フッ素濃度 1 00 0 O p pm) と、 平均粒径 (累積質量 5 0%の粒径) 3 8. 7 1μπιの C a S〇4が 水中に分散したスラ リー 0. 7 Lとを混合し、 室温において 1 0分間攪拌したと ころフッ化カルシウムが析出した。 The mixed wastewater 2 L (fluorine concentration 100000 Op pm) obtained by mixing the first wastewater and the second wastewater and the average particle diameter (particle diameter of the cumulative mass 50%) 38.7 7.1μπι C a S_〇 4 is mixed with slurries 0. 7 L dispersed in water, calcium fluoride rollers and stirred for 10 minutes at room temperature to precipitate.
なお、 この際、 フッ素のモル数 (MF) と硫酸カルシウムにおけるカルシウム のモル数 (MC a) との比率 2MFは 1. 5とした。 At this time, the ratio 2M F number of moles of fluorine (M F) the moles of calcium in calcium sulfate and (M C a) was 1.5.
ついで、 フッ化カルシウムが析出した混合廃水を、 目開き 0. 4 5μπιのフィ ルタを使用して膜処理したところ、 目詰まりが起こることなく、 スムーズに膜処 理を行うことができた。  Next, when the mixed wastewater on which calcium fluoride was precipitated was subjected to membrane treatment using a filter having an aperture of 0.45 μπι, membrane treatment could be performed smoothly without clogging.
また、 得られたフッ化カルシウムの平均粒径 (累積質量 5 0 %の粒径) は、 4 2. Ο Ομηιであり、 使用した C a S Ο 4の平均粒径と同程度であった。 The average particle size of the obtained calcium fluoride (cumulative mass 50% of the particle diameter) is 4 2. Ο Ομηι, an average particle diameter of the same order of C a S Ο 4 used.
さらに、 得られた濾液を J I S K— 0 1 0 2により分析したところ、 溶解し ているフッ素濃度は 2 0 p p mであり、 フッ素を 9 9. 8 %の回収率で回収する ことができた。  Further, when the obtained filtrate was analyzed by JISK-0102, the concentration of dissolved fluorine was 20 ppm, and fluorine could be recovered at a recovery rate of 99.8%.
さらに濾過の際の濾過比抵抗 αを算出したところ、 a [m/k g] は 1 01 1ォ ーダ一であり、 濾過性に優れていた。 Was further calculated filtered resistivity α during filtration, a [m / kg] is 1 0 1 1 O over da one, was excellent in filterability.
(実施例 2〜 20)  (Examples 2 to 20)
フッ素のモル数 (MF) と C a S 04におけるカルシウムのモル数 (MC a) と の比率 MC a/ 2MFを種々変化させた以外は実施例 1 と同様にして、 フッ化カル シゥムを析出させ、 その混合廃水を膜処理した。 得られた濾液について、 実施例 1 と同様に分析し、 比率 MC a/2MFと濾液中のフッ素濃度 (残存フッ素濃度) との関係を、 実施例 1の結果と併せて図 1に示した。 Except that the number of moles of fluorine (M F) and C a S 0 moles of calcium in 4 (M C a) and the ratio M C a / 2M F of was varied in the same manner as in Example 1, fluorinated Calcium was deposited, and the mixed wastewater was subjected to membrane treatment. The obtained filtrate was similarly analyzed as in Example 1, the relationship between the ratio M C a / 2M F and the fluorine concentration in the filtrate (the residual fluorine concentration), shown in Figure 1 together with the results of Example 1 Was.
(実施例 2 1〜 2 2)  (Examples 21 to 22)
使用した C a S〇4の平均粒径 (累積質量 5 0%の粒径) を、 実施例 2 1では 1 8. 9 5μηι、 実施例 2 2では 5. 74 μπιとした以外は実施例 1 と同様にして フッ化カルシウムを析出させ、 その混合廃水を膜処理したが、 目詰まりが起こる ことなく、 スムーズに行うことができた。 T/JP2003/010450 The average particle size of C a S_〇 4 using (cumulative mass 50% particle size), in Example 2 1 1 8. 9 5μηι, except for using 5. 74 μπι Example 2 2 Example 1 Calcium fluoride was precipitated in the same manner as described above, and the mixed wastewater was subjected to membrane treatment, but was smoothly performed without clogging. T / JP2003 / 010450
8 8
また、 得られたフッ化カルシウムの平均粒径 (累積質量 5 0%の粒径) は、 実 施例 2 1では 20. 2 μηι、 実施例 2 2では 8. 1 μηιであり、 使用した C a S O 4の平均粒径と同程度であった。 The average particle size (particle size at a cumulative mass of 50%) of the obtained calcium fluoride was 20.2 μηι in Example 21 and 8.1 μηι in Example 22. a The average particle size of SO 4 was almost the same.
(比較例 1 )  (Comparative Example 1)
C a S〇4の代わりに平均粒径 (累積質量 50%の粒径) が 5 0μπιの硝酸カル シゥムを使用した以外は実施例 1 と同様にして、 フッ化カルシウムを析出させ、 ついでその混合廃水を膜処理し、 得られた濾液について、 実施例 1 と同様に分析 した。 Except that the average particle size in place of the C a S_〇 4 (cumulative mass 50% particle size) was used nitrate Cal Shiumu of 5 0Myupaiiota in the same manner as in Example 1, to precipitate calcium fluoride, then the mixture The wastewater was subjected to membrane treatment, and the obtained filtrate was analyzed in the same manner as in Example 1.
しかしながら、 得られたフッ化カルシウムの平均粒径 (累積質量 5 0 %の粒 径) は 0. 2μπιと微細であり、 膜処理には長時間を要した。 また、 濾過の際の 濾過比抵抗 αを算出したところ、 a [m/k g] は 1 013オーダーであった。 However, the average particle size of the obtained calcium fluoride (particle size at a cumulative mass of 50%) was as fine as 0.2 μπι, and the film treatment required a long time. Further, when the filtration specific resistance α at the time of filtration was calculated, a [m / kg] was in the order of 10 13 .
(比較例 2)  (Comparative Example 2)
C a S 04の代わりに平均粒径 (累積質量 5 0%の粒径) が 5 0μιηの塩化カル シゥムを使用した以外は実施例 1 と同様にして、 フッ化カルシウムを析出させ、 ついでその混合廃水を膜処理し、 得られた濾液について、 実施例 1 と同様に分析 した。 Except C a S 0 4 average particle size in place of (cumulative mass 50% particle size) was used 5 0Myuiotaita chloride Cal Shiumu in the same manner as in Example 1, to precipitate calcium fluoride, followed by the The mixed wastewater was subjected to membrane treatment, and the obtained filtrate was analyzed in the same manner as in Example 1.
しかしながら、 得られたフッ化カルシウムの平均粒径 (累積質量 5 0 %の粒 径) は 0. 7μπιと微細であり、 膜処理には長時間を要した。 また、 濾過の際の 濾過比抵抗 αを算出したところ、 a [m/k g] は 1 013オーダーであった。 なお、 濾過比抵抗 aは、 R u t hの濾過理論: R=ac V/Aで定義される。 こ こで R : ケーク濾過抵抗、 c : 単位当たりケーク質量、 V :濾過流量、 A :濾過 面積であって、 スラリーの濾過しやすさを表す。 However, the average particle size of the obtained calcium fluoride (particle size at a cumulative mass of 50%) was as fine as 0.7 μπι, and the film treatment required a long time. Further, when the filtration specific resistance α at the time of filtration was calculated, a [m / kg] was in the order of 10 13 . The filtration specific resistance a is defined by Ruth's filtration theory: R = ac V / A. Here, R: cake filtration resistance, c: cake mass per unit, V: filtration flow rate, A: filtration area, indicating the ease of filtration of the slurry.
(実施例 2 3〜 2 8)  (Examples 23 to 28)
第 1廃水と第 2廃水とを混合して得られた混合廃水と、 C a S 04が水中に分 散したスラリーとの攪拌時間を種々変化させ、 各攪拌時間における濾液中の残存 フッ素濃度を測定した。 また、 フッ素のモル数 (MF) と硫酸カルシウムにおけ るカルシウムのモル数 (MCa) との比率 MC aZ2MFは、 実施例 2 3で 1. 0、 実施例 24で 1. 1、 実施例 2 5で 1. 2、 実施例 2 6で 1. 3、 実施例 2 7で 1. 4、 実施例 2 8で 1. 5とした。 各 MCaZ 2MFにおける残存フッ素濃度の攪拌時間に対する経時変化を図 2に 示す。 Mixing the waste water obtained by mixing the first and Wastewater a second wastewater, C a S 0 4 while varying the agitation time and distributed slurry in water, the residual fluorine concentration in the filtrate at each agitation time Was measured. The ratio M C a Z2M F number of moles of fluorine (M F) and the number of moles of calcium that put the calcium sulfate and (M Ca) is 1.1 at 1.0, Example 24 in Example 2 3 It was 1.2 in Example 25, 1.3 in Example 26, 1.4 in Example 27, and 1.5 in Example 28. The time course for the stirring time of the residual fluorine concentration in each M Ca Z 2M F shown in FIG.
以上の結果から、 硫酸カルシウム (C a S〇4) を使用した場合、 使用した硫 酸カルシウムとほぼ同程度の平均粒径のフッ化カルシウムを生成させることがで き、 濾過もスムーズに行うことができた。 また、 MC a/2MFが 1. 1〜2. 0、 さらには 1. 2〜 2. 0の範囲で、 特に効果的に残存フッ素濃度を低下させるこ とができることが明らかとなった。 From the above results, when using calcium sulfate (C a S_〇 4), Ki de be generated substantially calcium fluoride having an average particle diameter substantially equal to that of sulfuric acid calcium used, also be carried out smoothly filtered Was completed. Further, M C a / 2M F is 1.1 to 2.0, more in the range of 1.2 to 2.0, it became clear that it is the this to particular reduced effectively residual fluorine concentration.
なお、 硫酸カルシウム (C a S〇4) のかわりに炭酸カルシウムを使用した場 合も、 使用した炭酸カルシウムとほぼ同程度の平均粒径のフッ化カルシウムを生 成させることができ、 MC a/2MFが 1. 1〜 2. 0、 さらには 1. 1〜 2. 0 の範囲で、 特に効果的に残存フッ素濃度を低下させることができた。 産業上の利用可能性 Incidentally, if using calcium carbonate in place of calcium sulfate (C a S_〇 4), it can be made live calcium fluoride having an average particle diameter of approximately the same as the calcium carbonate used, M C a / 2M F is 1.1 to 2.0, more in the range of 1.1 to 2.0, it could be particularly reduced effectively residual fluorine concentration. Industrial applicability
以上説明したように本発明の回収方法によれば、 カルシウム化合物として、 水 への溶解度が非常に低い炭酸カルシウムおよび/または硫酸カルシウムを使用す るので、 使用する炭酸カルシウムおよび硫酸カルシウムの粒径を適宜選択するこ とによって、 所望の粒径のフッ化カルシウムを生成させることができる。 すなわ ち、 このような方法によれば、 比較的粒径が大きく、 濾過性の優れたフッ化カル シゥムを容易に生成可能であるので、 膜処理による回収を短時間で行つて廃水な どに溶解しているフッ素濃度を効果的に低減させることができる。  As described above, according to the recovery method of the present invention, calcium carbonate and / or calcium sulfate having extremely low solubility in water is used as the calcium compound. By appropriately selecting, calcium fluoride having a desired particle size can be generated. In other words, according to such a method, calcium fluoride having a relatively large particle size and excellent filterability can be easily produced. The concentration of fluorine dissolved in the metal can be effectively reduced.

Claims

請求の範囲 . The scope of the claims .
1. フッ素の回収方法であって、 フッ素が溶解した水溶液と炭酸カルシウムと を混合して、 フッ化カルシウムを生成させることによってフッ素を回収する段階 を含み、 1. A method for recovering fluorine, comprising: mixing an aqueous solution in which fluorine is dissolved and calcium carbonate to generate calcium fluoride, thereby recovering fluorine.
前記炭酸カルシウムは、 粒径 5〜 5 Ομπιの粒子であるフッ素の回収方法。  A method for recovering fluorine, wherein the calcium carbonate is particles having a particle size of 5 to 5 μμπι.
2. 請求項 1に記載のフッ素の回収方法であって、 2. The method for recovering fluorine according to claim 1, wherein
前記フッ素のモル数 (MF) と、 前記炭酸カルシウムにおけるカルシウムのモ ル数 (MCa) との比率 MCaZ 2MFが、 1. 2〜2. 0の範囲であるフッ素の回 収方法。 The moles of the fluorine (M F), the ratio M Ca Z 2M F of molar number of calcium and (M Ca) in the calcium carbonate, from 1.2 to 2. Fluorine recovered method ranges from 0 .
3. フッ素の回収方法であって、 フッ素が溶解した水溶液と硫酸カルシウムと を混合して、 フッ化カルシウムを生成させることによってフッ素を回収する段階 を含むフッ素の回収方法。 3. A method for recovering fluorine, comprising: mixing an aqueous solution in which fluorine is dissolved with calcium sulfate to generate calcium fluoride, thereby recovering fluorine.
4. 請求項 3に記載のフッ素の回収方法であって、 前記硫酸カルシウムは、 粒 径 5〜5 Ομπιの粒子であるフッ素の回収方法。 4. The method for recovering fluorine according to claim 3, wherein the calcium sulfate is particles having a particle diameter of 5 to 5 μμπι.
5. 請求項 3に記載のフッ素の回収方法であって、 前記フッ素のモル数 (Μ F) と、 前記硫酸カルシウムにおけるカルシウムのモル数 (MC a) との比率 MCa //2MFが、 1. 2〜2. 0の範囲であるフッ素の回収方法。 5. The method for recovering fluorine according to claim 3, wherein a ratio M Ca // 2M F between the number of moles of fluorine (モ ルF ) and the number of moles of calcium in the calcium sulfate (M C a ) is satisfied. The method of recovering fluorine, which is in the range of 1.2 to 2.0.
6. 請求項 4に記載のフッ素の回収方法であって、 前記フッ素のモル数 (M F) と、 前記硫酸カルシウムにおけるカルシウムのモル数 (MCa) との比率 MCa Z2MFが、 1. 2〜2. 0の範囲であるフッ素の回収方法。 6. A fluorine recovery method according to claim 4, the number of moles of the fluorine and (M F), the ratio M Ca Z2M F number of moles of calcium and (M Ca) in the calcium sulfate, 1. A method for recovering fluorine in the range of 2 to 2.0.
PCT/JP2003/010450 2002-08-20 2003-08-19 Method of recovering fluorine WO2004018369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003262247A AU2003262247A1 (en) 2002-08-20 2003-08-19 Method of recovering fluorine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002239217A JP2004074041A (en) 2002-08-20 2002-08-20 Recovering method of fluorine
JP2002-239217 2002-08-20

Publications (1)

Publication Number Publication Date
WO2004018369A1 true WO2004018369A1 (en) 2004-03-04

Family

ID=31943857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010450 WO2004018369A1 (en) 2002-08-20 2003-08-19 Method of recovering fluorine

Country Status (3)

Country Link
JP (1) JP2004074041A (en)
AU (1) AU2003262247A1 (en)
WO (1) WO2004018369A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328191C (en) * 2004-06-01 2007-07-25 三洋电机株式会社 Treatment apparatus and method of treating water to be treated using the same
WO2013153846A1 (en) * 2012-04-13 2013-10-17 セントラル硝子株式会社 Method and device for manufacturing calcium fluoride
WO2013153847A1 (en) * 2012-04-13 2013-10-17 セントラル硝子株式会社 Method and device for manufacturing calcium fluoride
US10136709B2 (en) 2013-09-06 2018-11-27 Oliver Joen-An Ma Cantilever umbrella

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747587B2 (en) * 2005-01-27 2011-08-17 株式会社ニコン Method for producing calcium fluoride sintered body
JP4953586B2 (en) * 2005-04-14 2012-06-13 キャボットスーパーメタル株式会社 Fluorine recovery method
JP4591452B2 (en) * 2007-01-16 2010-12-01 パナソニック株式会社 Method and apparatus for treating fluorine-containing water
JP5440095B2 (en) * 2009-10-22 2014-03-12 栗田工業株式会社 Method and apparatus for treating fluorine-containing water
JP2013188673A (en) * 2012-03-13 2013-09-26 Toshiba Corp Fluorine recovery device, fluorine recovery system, and fluorine recovery method
JP5502924B2 (en) * 2012-03-30 2014-05-28 株式会社東芝 Water treatment method
JP2014133188A (en) * 2013-01-08 2014-07-24 Toshiba Corp Water treatment method and water treatment apparatus
KR20150107872A (en) * 2013-02-21 2015-09-23 화이자 인코포레이티드 Solid forms of a selective cdk4/6 inhibitor
JP5649749B2 (en) * 2014-01-31 2015-01-07 株式会社東芝 Water treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122880A (en) * 1973-03-28 1974-11-25
US5362461A (en) * 1991-10-03 1994-11-08 Kurita Water Industries, Ltd. Method for recovering calcium fluoride from fluoroetchant
JP2001137864A (en) * 1999-11-10 2001-05-22 Daikin Ind Ltd Method for treating waste water containing hydrofluoric acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122880A (en) * 1973-03-28 1974-11-25
US5362461A (en) * 1991-10-03 1994-11-08 Kurita Water Industries, Ltd. Method for recovering calcium fluoride from fluoroetchant
JP2001137864A (en) * 1999-11-10 2001-05-22 Daikin Ind Ltd Method for treating waste water containing hydrofluoric acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328191C (en) * 2004-06-01 2007-07-25 三洋电机株式会社 Treatment apparatus and method of treating water to be treated using the same
US7452463B2 (en) 2004-06-01 2008-11-18 Sanyo Electric Co., Ltd. Apparatus for treating water
WO2013153846A1 (en) * 2012-04-13 2013-10-17 セントラル硝子株式会社 Method and device for manufacturing calcium fluoride
WO2013153847A1 (en) * 2012-04-13 2013-10-17 セントラル硝子株式会社 Method and device for manufacturing calcium fluoride
US10136709B2 (en) 2013-09-06 2018-11-27 Oliver Joen-An Ma Cantilever umbrella

Also Published As

Publication number Publication date
JP2004074041A (en) 2004-03-11
AU2003262247A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
WO2004018369A1 (en) Method of recovering fluorine
RU2233898C2 (en) Method of preparation of magnesium chloride solution
JPH09217133A (en) Method for recovering useful element from rear earth-nickel alloy
JP5392576B2 (en) Method for recovering silicon, titanium and fluorine
CN103305695A (en) Method for preparing nano-lead dioxide powder from waste lead paste by wet process
JPH0356686A (en) Simultaneous recovery of manganese dioxide and zinc
TWI763694B (en) Purified potassium hexafluoromanganate and methods for purifying potassium hexafluoromanganate
JP2002003222A (en) Basic cobalt carbonate and method for manufacturing it
JP2002363662A (en) Method for recovery of high-purity tantalum, high-purity tantalum sputtering target, and thin film deposited by using this sputtering target
JP4245899B2 (en) Metal recovery method
US20230114285A1 (en) Processes for delithiating transtition metal oxides
KR20000035098A (en) Process for preparing usable products from an impure ferric sulfate solution
JP2012087085A (en) Method of producing high-purity niobium solution
JPH11189888A (en) Production of sodium pressure
JP3532640B2 (en) Method for recovering positive electrode material from nickel-hydrogen secondary battery and method for recovering raw material for recovering effective metal from negative electrode
JP3455942B2 (en) Method for producing metal alkoxide by electrolytic method
KR20040091071A (en) Purification method for producing high purity niobium compound and/or tantalum compound
JP2547500B2 (en) How to reduce tantalum
CN113415785B (en) Method for separating and recovering hydrofluoric acid from fluorine-containing mixed acid
JPH03236486A (en) Production of nitrogen trifluoride by electrolysis of molten salt
JP2764887B2 (en) Method for recovering valuable materials from copper-containing ion solution
JP2008095200A (en) Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
WO2004037470A1 (en) Niobium powder, process for producing the same and solid electrolytic capacitor therefrom
US918647A (en) Treating anode slime from the electrolytic refining of lead.
JPH07769A (en) Recovering method for acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase