WO2004017071A2 - Method for joining surfaces, semiconductor with joined surfaces, bio-chip and bio-sensor - Google Patents

Method for joining surfaces, semiconductor with joined surfaces, bio-chip and bio-sensor Download PDF

Info

Publication number
WO2004017071A2
WO2004017071A2 PCT/EP2003/008955 EP0308955W WO2004017071A2 WO 2004017071 A2 WO2004017071 A2 WO 2004017071A2 EP 0308955 W EP0308955 W EP 0308955W WO 2004017071 A2 WO2004017071 A2 WO 2004017071A2
Authority
WO
WIPO (PCT)
Prior art keywords
monoreactive
substance
reactive
carrier
semiconductor
Prior art date
Application number
PCT/EP2003/008955
Other languages
German (de)
French (fr)
Other versions
WO2004017071A3 (en
Inventor
Holger Klapproth
Original Assignee
Micronas Holding Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micronas Holding Gmbh filed Critical Micronas Holding Gmbh
Priority to AU2003266280A priority Critical patent/AU2003266280A1/en
Publication of WO2004017071A2 publication Critical patent/WO2004017071A2/en
Publication of WO2004017071A3 publication Critical patent/WO2004017071A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/04Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving separate application of adhesive ingredients to the different surfaces to be joined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/761Biomolecules or bio-macromolecules, e.g. proteins, chlorophyl, lipids or enzymes

Definitions

  • the present invention relates to a method for connecting surfaces, a semiconductor whose surfaces are connected to the surface of a second semiconductor and a bio-chip or bio-sensor comprising such a semiconductor.
  • biochips For the qualitative and quantitative detection of substances in a sample to be analyzed, planar systems are used, which are referred to as biochips or biosensors.
  • the biochips form a carrier, on the surface of which a large number of grid-like detection areas are formed. The individual areas differ from each other in their specificity towards a substance to be detected. Since biological systems in particular are based on interactions of biologically active macromolecules, biochips are particularly suitable for the detection of biologically active molecules such as nucleic acids (DNA or RNA), oligo- and polypeptides, proteins, antibodies as well as receptors and ligands.
  • DNA or RNA nucleic acids
  • oligo- and polypeptides proteins
  • antibodies as well as receptors and ligands.
  • biochips were produced that are based on solid-phase technologies with self-organizing monolayers ("seif-assembled monolayers", "SAM”) of bifunctional molecules.
  • SAM self-organizing monolayers
  • the bifunctional molecules bind on one side to the surface of the solid support and on the other side to macromolecules that are present in a sample to be examined. A certain interaction is detected with the aid of suitable labels, for example radioactive labeling or chemo- or bioluminescence.
  • suitable labels for example radioactive labeling or chemo- or bioluminescence.
  • surfaces made of metal or semimetal oxides, such as aluminum oxide, quartz glass or glass are immersed in a solution of bifunctional molecules ("liner").
  • the solution contains a halosilane or alkoxysilane group for coupling to the support surface, so that a self-organizing monolayer can form.
  • the linkers are coupled to the macromolecules to be detected from the sample to be tested via suitable further functional groups, such as amino or epoxy groups.
  • WO 02/10752 A2 describes a sensor chip with a carrier surface made of metal oxide or semimetal oxide, to which a homogeneous polysiloxane layer is applied.
  • the sensor chip is immersed in a solution of a bifunctional silane and pulled out at a defined speed in the range from 0.1 to 10 mm / s.
  • the bifunctional silane is present in a solvent with a boiling temperature between 50 and 150 ° C, a concentration of 0.1 to 50% by weight and a temperature of 20 to 100 ° C.
  • the layer of bifunctional silane is formed by crosslinking, forming a polysiloxane multilayer on the surface of the sensor chip.
  • WO 00/43539 A2 describes a layer ("monolayer") which is composed of a polyfunctional polymer.
  • Polymer chains are arranged on a surface and each polymer chain comprises many identical or different units, which in turn carry functional groups. An interaction between the polymer and a molecule from a sample to be tested is possible via these functional groups.
  • the polyfunctional polymer chains are also called “polymer brush” because they protrude from the surface like brushes.
  • the present invention relates to a method for connecting surfaces, which can also be referred to as molecular bonding of surfaces. The process therefore provides a new connection technology for two surfaces. For this purpose, the surface of a first carrier is coated with at least one monoreactive substance.
  • the monoreactive substance is then immobilized on the surface of the first support and thus permanently attached.
  • the first coated carrier produced in this way is brought into spatial proximity with a second carrier coated with a monoreactive substance, so that the coated surfaces face one another.
  • the contact between the two coated surfaces causes the monoreactive substances to react chemically with one another so that a permanent, permanent connection is created.
  • the surfaces of the two supports can be coated simultaneously with the same reactive substance.
  • different reactive substances can be used to coat the two surfaces of the first and the second carrier.
  • polymers with identical monomers form after the chemical bond, while when different reactive substances are used, polymers form from different monomers.
  • both the first and the second carrier can be coated not only with one but also with two or more identical or different reactive substances. In this way, any polymers can be assembled from a wide variety of monomer units.
  • a substance for crosslinking can additionally be applied to one or both coated supports.
  • This cross-linking substance is a bireactive molecule, a polymer brush (WO 00/43539 A2), a so-called “surface attached network” (EP 0 210 578) or a coating made of a thin polymer film.
  • the surfaces of the first and second carriers can be coated with an epoxy, so that crosslinking by means of polyethylglycol is possible.
  • an epoxy is shown by way of example in FIG. 3.
  • the carrier used in the process is a semiconductor or a related substance.
  • the surface of the semiconductor consists of silicon, semimetal oxides, especially silicon oxide (SiO x ), aluminum oxide or silicon nitride.
  • the monoreactive substance can be applied to the surface of the semiconductor in one layer in the form of a monolayer.
  • FIG. 4 shows an example of a monolayer of an aminosilane.
  • the reactive substance can also be applied to the surface in several layers as reactive layers. These reactive layers are collectively referred to as a poly layer, which forms a gel-like structure.
  • the gel structure has the particular advantage that unevenness in the surface structure can be effectively compensated for.
  • a layer thickness of the monoreactive substance of approximately 2 nm is particularly suitable.
  • the monoreactive substance can in particular be a reactive silane.
  • Silane has only one silane group as a reactive group.
  • the organic group is then, for example, a saturated aliphatic hydrocarbon.
  • a chemical link to these groups can be established by means of radical formers, but the silane itself is not reactive.
  • the compound is extremely stable since it has no other reactive groups. The binding to a reactive substance leads to a reaction product that is final, so that the binding cannot be broken apart from extreme violence.
  • silanes are chlorosilanes and alkoxysilanes, although thiols or disulfide groups can also be used.
  • the following substances are particularly suitable as starting silanes, the structural formulas of which are given in FIG. 1:
  • 4,4'-azobis (4-cyano-petanoic acid (3'-chlorodimethylsilyl) propyl ester); represented as compound 1 in FIG. 1, the corresponding di- and trichloro or mono-, di- and trialkoxysilane analogs are also suitable;
  • glycidoxypropyltrimethoxysilane for coating the surface of the first support and aminopropyltrimethoxysilane for coating the surface of the second support is particularly preferred. If an azosilane is used to coat the first support and a propyl-trichlorosilane is used to coat the second support, the chemical connection between the two silanes can take place via thermally induced radical formation.
  • the monoreactive substances can be applied by various processes such as spin coating, gas phase deposition, condensation or spraying.
  • immersing the substrates to be coated in liquids with reactive substance is particularly suitable. This coating is referred to as dip coating.
  • the chemical bond that occurs between the monoreactive substances on the surfaces of the two supports is a covalent bond. Examples of such connections are shown in FIGS. 2, 3 and 5, the two supports, which are provided with the reference numerals 1 and 2, also being shown schematically in FIG. 5.
  • the type of molecular bond on which the covalent bond between the monoreactive substances is based is a nucleophilic or electrophilic addition or substitution.
  • the functional groups are selected from the prior art literature taking into account the class of molecules to be immobilized. The conditions of the reaction time, the temperature and the pH value are also decisive for the selection. A number of examples can be found in the publication by GT Hermanson, "Bioconjugate Techniques", Academic Press 1996.
  • Active or reactive esters such as N-hydroxysuccinimides (NHS esters) and amines, aliphatics, epoxies, thiols, isothiocyanates, isocyanates, azides, carboxyl groups or maleimides are particularly suitable.
  • spacers can be arranged between the functional groups mentioned above and the actual silane.
  • spacers in particular acrylic and methacrylic esters or amides of C 2 0 -C ⁇ Alkohohlen or C2 - Cio amines in question.
  • the alcohols or amines carry additional functional groups at the end that does not form the ester or amide bond. This functional group is either required directly for the interaction with the other reactive silane, or it is formed in a further step by the action of another functional group.
  • the spacers can also be formed from individual monomers such as, for example, acrylic chlorides or methacrylic acid and their derivatives or reactive esters such as N-hydroxysuccinimides or other monomers, for example maleic anhydride.
  • the preferred reactive monomers can form covalent bonds with the bifunctional alcohols or amines used as spacers.
  • the monoreactive substance can form a cross-linked polymer with reactive side groups on the surface of the support. This creates a particularly strong connection between the two semiconductors.
  • the polymer preferably has a melting point of below 150 ° C., so that the polymer can be converted into the liquid state when the semiconductors are connected.
  • a spacer with a photolabile group is activated by exposure, so that the reactive group from the Si long group is separated. This prevents a connection at this point.
  • any sil system can be destroyed by using hard UV light, so that the specific reactivity no longer exists at this point.
  • the invention also relates to a semiconductor, the surface of which is connected to the surface of a second semiconductor by the method described, and a biochip or biosensor which has such a semiconductor.

Abstract

The invention relates to a method for bonding surfaces, and to a semiconductor with surfaces bound thereby, and to bio-chips and bio-sensors comprising this semiconductor.

Description

Beschreibungdescription
Verfahren zum Verbinden von Oberflächen, Halbleiter mit verbundenen Oberflächen sowie Bio-Chip und Bio-SensorProcess for connecting surfaces, semiconductors with connected surfaces as well as bio-chip and bio-sensor
Die vorliegende Erfindung betrifft ein Verfahren zum Verbinden von Oberflächen, einen Halbleiter dessen Oberflächen mit der Oberfläche eines zweiten Halbleiters verbunden sind sowie einen Bio-Chip oder Bio-Sensor, der einen solchen Halbleiter umfasst .The present invention relates to a method for connecting surfaces, a semiconductor whose surfaces are connected to the surface of a second semiconductor and a bio-chip or bio-sensor comprising such a semiconductor.
In der Analytik und molekularen Diagnostik gewinnen Mikro- und Nanotechnologien zunehmend an Bedeutung. Für den qualita- tiven und quantitativen Nachweis von Substanzen in einer zu analysierenden Probe werden planare Systeme verwendet, die als Biochips bzw. Biosensoren bezeichnet werden. Die Biochips bilden einen Träger, auf dessen Oberfläche eine Vielzahl von rasterartig angeordneten Nachweisbereichen ausgebildet ist. Die einzelnen Bereiche unterscheiden sich dabei voneinander in ihrer Spezifität gegenüber einer nachzuweisenden Substanz. Da vor allem biologische Systeme auf Interaktionen von biologisch aktiven Makromolekülen beruhen, eignen sich Biochips besonders für den Nachweis von biologisch aktiven Molekülen wie Nukleinsäuren (DNA oder RNA) , Oligo- und Polypeptiden, Proteinen, Antikörpern sowie Rezeptoren und Liganden.Micro and nanotechnologies are becoming increasingly important in analytics and molecular diagnostics. For the qualitative and quantitative detection of substances in a sample to be analyzed, planar systems are used, which are referred to as biochips or biosensors. The biochips form a carrier, on the surface of which a large number of grid-like detection areas are formed. The individual areas differ from each other in their specificity towards a substance to be detected. Since biological systems in particular are based on interactions of biologically active macromolecules, biochips are particularly suitable for the detection of biologically active molecules such as nucleic acids (DNA or RNA), oligo- and polypeptides, proteins, antibodies as well as receptors and ligands.
Daher wurden zahlreiche Biochips hergestellt, die auf Festphasentechnologien mit sich selbst organisierenden Mono- schichten ( "seif-assembled monolayers", "SAM") von bifunktio- nellen Molekülen beruhen. Die bifunktionellen Moleküle binden mit einer Seite an die Oberfläche des festen Trägers und mit der anderen Seite an Makromoleküle, die in einer zu untersuchenden Probe vorliegen. Der Nachweis einer bestimmten Inter- aktion erfolgt mit Hilfe geeigneter Markierungen, beispielsweise radioaktiver Markierung oder Chemo- bzw. Biolumineszenz . Für die Herstellung von Biochips werden Oberflächen aus Metall oder Halbmetalloxiden, wie Aluminiumoxid, Quarzglas, oder Glas in eine Lösung von bifunktionellen Molekülen ("Lin- kern") getaucht. Die Lösung enthält eine Halogensilan oder Alkoxysilangruppe zur Kopplung an die Trägeroberfläche, so dass sich eine selbst organisierende Monoschicht ausbilden kann. Die Kopplung der Linker an die nachzuweisenden Makromoleküle aus der zu testenden Probe erfolgt über geeignete wei- tere funktioneile Gruppen, wie Amino- oder Epoxygruppen .For this reason, numerous biochips were produced that are based on solid-phase technologies with self-organizing monolayers ("seif-assembled monolayers", "SAM") of bifunctional molecules. The bifunctional molecules bind on one side to the surface of the solid support and on the other side to macromolecules that are present in a sample to be examined. A certain interaction is detected with the aid of suitable labels, for example radioactive labeling or chemo- or bioluminescence. For the production of biochips, surfaces made of metal or semimetal oxides, such as aluminum oxide, quartz glass or glass, are immersed in a solution of bifunctional molecules ("liner"). The solution contains a halosilane or alkoxysilane group for coupling to the support surface, so that a self-organizing monolayer can form. The linkers are coupled to the macromolecules to be detected from the sample to be tested via suitable further functional groups, such as amino or epoxy groups.
In der WO 02/10752 A2 wird ein Sensorchip mit einer Trägeroberfläche aus Metalloxid oder Halbmetalloxid beschrieben, auf die eine homogene Polysiloxanschicht aufgebracht ist. Zur Herstellung dieser Mehrfachschicht wird der Sensorchip in eine Lösung eines bifunktionellen Silans eingetaucht und mit einer definierten Geschwindigkeit im Bereich von 0,1 bis 10 mm/s herausgezogen. Das bifunktionelle Silan liegt in einem Lösungsmittel mit einer Siedetemperatur zwischen 50 und 150°C, einer Konzentration von 0,1 bis 50 Gew.-% und einer Temperatur von 20 bis 100°C vor. Dadurch dass der Sensorchip mit einer definierten Geschwindigkeit aus der Lösung herausgezogen wird, bildet sich die Schicht aus bifunktionellem Silan unter Bildung einer Polysiloxan-Mehrfachschicht auf der Oberfläche des Sensorchips durch Vernetzung aus.WO 02/10752 A2 describes a sensor chip with a carrier surface made of metal oxide or semimetal oxide, to which a homogeneous polysiloxane layer is applied. To produce this multilayer, the sensor chip is immersed in a solution of a bifunctional silane and pulled out at a defined speed in the range from 0.1 to 10 mm / s. The bifunctional silane is present in a solvent with a boiling temperature between 50 and 150 ° C, a concentration of 0.1 to 50% by weight and a temperature of 20 to 100 ° C. As a result of the sensor chip being pulled out of the solution at a defined speed, the layer of bifunctional silane is formed by crosslinking, forming a polysiloxane multilayer on the surface of the sensor chip.
Demgegenüber beschreibt die WO 00/43539 A2 eine Schicht ( "Monolayer" ) , die aus einem polyfunktionellen Polymer aufgebaut ist. Polymerketten sind an einer Oberfläche angeordnet und jede Poly erkette umfasst viele identische oder verschiedene Einheiten, die ihrerseits funktioneile Gruppen tragen. Über diese funktioneilen Gruppen wird eine Interaktion zwischen dem Polymer und einem Molekül aus einer zu testenden Probe möglich. Die polyfunktionellen Polymerketten werden auch als "polymer brush" bezeichnet, weil sie bürstenähnlich von der Oberfläche abstehen. Die vorliegende Erfindung betrifft ein Verfahren zum Verbinden von Oberflächen, was auch als molekulares Verkleben von Oberflächen bezeichnet werden kann. Das Verfahren stellt daher eine neue Verbindungstechnik für zwei Oberflächen zur Verfügung. Hierfür wird die Oberfläche eines ersten Trägers mit mindestens einer monoreaktiven Substanz beschichtet. Anschließend wird die monoreaktive Substanz auf der Oberfläche des ersten Trägers immobilisiert und damit dauerhaft befestigt. Der so hergestellte erste beschichtete Träger wird mit einem zweiten mit einer monoreaktiven Substanz beschichteten Träger in räumliche Nähe gebracht, so dass die beschichteten Oberflächen einander zugewandt sind. Durch den Kontakt der beiden beschichteten Oberflächen reagieren die monoreaktiven Substanzen chemisch miteinander, so dass eine feste dauerhaf- te Verbindung entsteht. Dadurch dass die Immobilisierung der reaktiven Substanz auf den Trägern sowie das in Kontakt bringen der beschichteten Oberflächen der Träger gleichzeitig in einem einzigen Schritt erfolgt, ist das Verfahren besonders einfach und kostengünstig durchzuführen.In contrast, WO 00/43539 A2 describes a layer ("monolayer") which is composed of a polyfunctional polymer. Polymer chains are arranged on a surface and each polymer chain comprises many identical or different units, which in turn carry functional groups. An interaction between the polymer and a molecule from a sample to be tested is possible via these functional groups. The polyfunctional polymer chains are also called "polymer brush" because they protrude from the surface like brushes. The present invention relates to a method for connecting surfaces, which can also be referred to as molecular bonding of surfaces. The process therefore provides a new connection technology for two surfaces. For this purpose, the surface of a first carrier is coated with at least one monoreactive substance. The monoreactive substance is then immobilized on the surface of the first support and thus permanently attached. The first coated carrier produced in this way is brought into spatial proximity with a second carrier coated with a monoreactive substance, so that the coated surfaces face one another. The contact between the two coated surfaces causes the monoreactive substances to react chemically with one another so that a permanent, permanent connection is created. The fact that the immobilization of the reactive substance on the supports and the contacting of the coated surfaces of the supports takes place simultaneously in a single step, makes the method particularly simple and inexpensive to carry out.
Die Oberflächen der beiden Träger können gleichzeitig mit derselben reaktiven Substanz beschichtet werden. Alternativ dazu können aber verschiedene reaktive Substanzen zur Beschichtung der beiden Oberflächen des ersten und des zweiten Trägers verwendet werden. Bei Verwendung nur einer reaktiven Substanz bilden sich nach der chemischen Verbindung Polymere mit identischen Monomeren aus, während sich bei Verwendung von verschiedenen reaktiven Substanzen Polymere aus unterschiedlichen Monomeren ausbilden.The surfaces of the two supports can be coated simultaneously with the same reactive substance. Alternatively, however, different reactive substances can be used to coat the two surfaces of the first and the second carrier. When only one reactive substance is used, polymers with identical monomers form after the chemical bond, while when different reactive substances are used, polymers form from different monomers.
Die Oberfläche sowohl des ersten als auch des zweiten Trägers kann nicht nur mit einer sondern auch mit zwei oder mehreren identischen oder verschiedenen reaktiven Substanzen beschichtet werden. Auf diese Weise können beliebige Polymere aus den unterschiedlichsten Monomereinheiten zusammengesetzt werden. Nachdem die monoreaktive Substanz auf der Oberfläche des ersten und des zweiten Trägers aufgetragen und immobilisiert wurde, kann zusätzlich auf einen oder auf beide beschichtete Träger eine Substanz zur Kreuzvernetzung aufgebracht werden. Diese Kreuzvernetzungssubstanz ( "Crosslinker" ) ist ein bireaktives Molekül, ein polymer brush (WO 00/43539 A2) , ein sogenanntes "surface attached network" (EP 0 210 578) oder eine Beschichtung aus einem dünnen Polymerfilm. Wenn die Eigenreaktivität der monoreaktiven Substanz nicht ausreichend ist, empfiehlt sich das Aufbringen eines Polymers zur Vernetzung, das die gewünschten Eigenschaften besitzt. Beispielsweise können die Oberflächen des ersten und des zweiten Trägers mit einem Epoxid beschichtet werden, so dass eine Vernetzung durch Polyethylglykol möglich ist. Ein solches Epoxid ist exemplarisch in Figur 3 gezeigt.The surface of both the first and the second carrier can be coated not only with one but also with two or more identical or different reactive substances. In this way, any polymers can be assembled from a wide variety of monomer units. After the monoreactive substance has been applied and immobilized on the surface of the first and second supports, a substance for crosslinking can additionally be applied to one or both coated supports. This cross-linking substance ("crosslinker") is a bireactive molecule, a polymer brush (WO 00/43539 A2), a so-called "surface attached network" (EP 0 210 578) or a coating made of a thin polymer film. If the intrinsic reactivity of the monoreactive substance is not sufficient, it is advisable to apply a polymer for crosslinking which has the desired properties. For example, the surfaces of the first and second carriers can be coated with an epoxy, so that crosslinking by means of polyethylglycol is possible. Such an epoxy is shown by way of example in FIG. 3.
Der in dem Verfahren verwendete Träger ist ein Halbleiter o- der eine verwandte Substanz. Die Oberfläche des Halbleiters besteht aus Silizium, Halbmetalloxiden, vor allem Silizium- oxid (SiOx) , Aluminiumoxid oder Siliziumnitrid.The carrier used in the process is a semiconductor or a related substance. The surface of the semiconductor consists of silicon, semimetal oxides, especially silicon oxide (SiO x ), aluminum oxide or silicon nitride.
Die monoreaktive Substanz kann einschichtig in Form einer Mo- nolage auf die Oberfläche des Halbleiters aufgebracht werden. Figur 4 zeigt beispielhaft eine Monolage eines Aminosilans.The monoreactive substance can be applied to the surface of the semiconductor in one layer in the form of a monolayer. FIG. 4 shows an example of a monolayer of an aminosilane.
Alternativ kann die reaktive Substanz auch in mehreren Schichten als reaktive Lagen auf die Oberfläche aufgebracht werden. Diese reaktiven Lagen werden zusammenfassend als Po- lylage bezeichnet, die eine gelähnliche Struktur bildet. Die Gelstruktur weist den besonderen Vorteil auf, dass Unebenheiten der Oberflächenstruktur wirksam ausgeglichen werden können.Alternatively, the reactive substance can also be applied to the surface in several layers as reactive layers. These reactive layers are collectively referred to as a poly layer, which forms a gel-like structure. The gel structure has the particular advantage that unevenness in the surface structure can be effectively compensated for.
Besonders geeignet ist eine Schichtdicke der monoreaktiven Substanz von ca. 2 nm. Die monoreaktive Substanz kann insbesondere ein reaktives Si- lan sein. Silan weist nur eine Silangruppe als reaktive Gruppe auf. Die organische Gruppe ist dann beispielsweise ein gesättigter aliphatischer Kohlenwasserstoff. Mittels Radikal- bildnern kann eine chemische Verbindung zu diesen Gruppen aufgebaut werden, wobei das Silan selbst aber nicht reaktiv ist. Die Verbindung ist extrem stabil, da sie keine weiteren reaktiven Gruppen aufweist. Die Bindung an eine reaktive Substanz führt zu einem Reaktionsprodukt, das endgültig ist, so dass die Bindung außer durch extreme Gewalteinwirkung nicht aufzulösen ist.A layer thickness of the monoreactive substance of approximately 2 nm is particularly suitable. The monoreactive substance can in particular be a reactive silane. Silane has only one silane group as a reactive group. The organic group is then, for example, a saturated aliphatic hydrocarbon. A chemical link to these groups can be established by means of radical formers, but the silane itself is not reactive. The compound is extremely stable since it has no other reactive groups. The binding to a reactive substance leads to a reaction product that is final, so that the binding cannot be broken apart from extreme violence.
Besonders geeignete Silane sind Chlorsilane und Alkoxysilane, wobei aber Thiole oder Disulfidgruppen ebenfalls verwendet werden können. Als Ausgangssilane sind folgende Substanzen besonders geeignet, deren Strukturformeln in Figur 1 angegeben sind:Particularly suitable silanes are chlorosilanes and alkoxysilanes, although thiols or disulfide groups can also be used. The following substances are particularly suitable as starting silanes, the structural formulas of which are given in FIG. 1:
4,4' -Azobis- (4-cyano-petansäure (3 ' -chlordimethylsilyl) - propylester) ; als Verbindung 1 in Figur 1 dargestellt, ebenso geeignet sind die entsprechenden Di- und Tri- chlor- oder Mono-, Di- und Trialkoxysilananaloge;4,4'-azobis (4-cyano-petanoic acid (3'-chlorodimethylsilyl) propyl ester); represented as compound 1 in FIG. 1, the corresponding di- and trichloro or mono-, di- and trialkoxysilane analogs are also suitable;
2,4' -Azo- (4-cyano-petansäure (3 " -chlordimethylsilyl) - propylester) , als Verbindung 2 in Figur 1 dargestellt, ebenso geeignet sind die entsprechenden Di- und Tri- chlor- oder Mono-, Di- und Trialkoxysilananaloge sowie die jeweilige Verbindung mit einem Undecyl- statt einem Propyl-; oder Disulfid oder Thiolderivate dieses gene- rellen Typs der Azoverbindung;2,4 'azo (4-cyano-petanoic acid (3 "-chlorodimethylsilyl) propyl ester), shown as compound 2 in FIG. 1, the corresponding di- and trichloro- or mono-, di- and Trialkoxysilane analogs and the respective compound with an undecyl instead of a propyl or disulfide or thiol derivatives of this general type of azo compound;
4- (3 ' -Chlordimethylsilyl) propyloxy) -benzophenon, als Verbindung 3 in Figur 1 dargestellt, ebenso geeignet sind die entsprechenden Di- und Trichlor- oder Mono-, Di- und Trialkoxysilananaloge; Silane und Disulfid/Thiolderivate von Arylazomalodi- nitrilen, als Verbindung 4 in Figur 1 dargestellt.4- (3 '-chlorodimethylsilyl) propyloxy) benzophenone, shown as compound 3 in FIG. 1, the corresponding di- and trichloro- or mono-, di- and trialkoxysilane analogs are also suitable; Silanes and disulfide / thiol derivatives of arylazomalodinitriles, shown as compound 4 in Figure 1.
Besonders bevorzugt ist die Verwendung von Glycid-oxypropyl- trimethoxy-silan zur Beschichtung der Oberfläche des ersten Trägers und Aminopropyl-trimethoxy-silan zur Beschichtung der Oberfläche des zweiten Trägers. Wenn ein Azosilan zur Beschichtung des ersten Trägers und ein Propyl-trichlor-silan zur Beschichtung des zweiten Trägers verwendet wird, kann die chemische Verbindung zwischen beiden Silanen über thermisch induzierte Radikalbildung stattfinden.The use of glycidoxypropyltrimethoxysilane for coating the surface of the first support and aminopropyltrimethoxysilane for coating the surface of the second support is particularly preferred. If an azosilane is used to coat the first support and a propyl-trichlorosilane is used to coat the second support, the chemical connection between the two silanes can take place via thermally induced radical formation.
Die monoreaktiven Substanzen können durch verschiedene Ver- fahren wie beispielsweise Aufschleudern (Spin Coating) , Gas- phasenabscheidung, Kondensation oder Besprühen aufgebracht werden. Daneben eignet sich insbesondere das Eintauchen der zu beschichtenden Träger in Flüssigkeiten mit reaktiver Substanz. Diese Beschichtung wird als Tauchbeschichtung bezeich- net.The monoreactive substances can be applied by various processes such as spin coating, gas phase deposition, condensation or spraying. In addition, immersing the substrates to be coated in liquids with reactive substance is particularly suitable. This coating is referred to as dip coating.
Die chemische Bindung, die zwischen den monoreaktiven Substanzen auf den Oberflächen der beiden Träger zustande kommt, ist eine kovalente Bindung. Beispiele solcher Verbindungen sind in den Figuren 2, 3 und 5 gezeigt, wobei in Figur 5 schematisch auch die beiden Träger, die mit den Bezugszeichen 1 bzw. 2 versehen sind, dargestellt sind.The chemical bond that occurs between the monoreactive substances on the surfaces of the two supports is a covalent bond. Examples of such connections are shown in FIGS. 2, 3 and 5, the two supports, which are provided with the reference numerals 1 and 2, also being shown schematically in FIG. 5.
Der molekulare Bindungstyp, auf dem die kovalente Bindung zwischen den monoreaktiven Substanzen beruht, ist eine nukle- ophile oder elektrophile Addition oder Substitution. Außerdem kann eine radikalische Reaktion zwischen funktioneilen Gruppen stattfinden. Die funktioneilen Gruppen werden aus der Literatur des Standes der Technik unter Berücksichtigung der Klasse von Molekülen, die immobilisiert werden sollen, ausgewählt. Ebenso sind die Bedingungen der Reaktionszeit, der Temperatur sowie des pH-Wertes entscheidend für die Auswahl. Eine Reihe von Beispielen können aus der Publikation von G. T. Hermanson, "Bioconjugate Techniques", Academic Press 1996, entnommen werden. Besonders geeignet sind aktive oder reaktive Ester, wie N-Hydroxysuccinimide (NHS-Ester) sowie Amine, Aliphate, Epoxide, Thiole, Isothiocyanate, Isocyanate, Azide, carboxylische Gruppen oder Maleinimide.The type of molecular bond on which the covalent bond between the monoreactive substances is based is a nucleophilic or electrophilic addition or substitution. There can also be a radical reaction between functional groups. The functional groups are selected from the prior art literature taking into account the class of molecules to be immobilized. The conditions of the reaction time, the temperature and the pH value are also decisive for the selection. A number of examples can be found in the publication by GT Hermanson, "Bioconjugate Techniques", Academic Press 1996. Active or reactive esters, such as N-hydroxysuccinimides (NHS esters) and amines, aliphatics, epoxies, thiols, isothiocyanates, isocyanates, azides, carboxyl groups or maleimides are particularly suitable.
Darüber hinaus können zwischen den oben genannten funktioneilen Gruppen und dem eigentlichen Silan sogenannte Spacer an- geordnet sein. Als Spacer kommen insbesondere acrylische und methacrylische Ester oder Amide von C2-Cι0 Alkohohlen oder C2- Cio Aminen in Frage. Um als Spacer verwendet zu werden, tragen die Alkohole oder Amine zusätzliche funktioneile Gruppen an dem Ende, das nicht die Ester- oder Amidbindung bildet. Diese funktioneile Gruppe wird entweder direkt für die Interaktion mit dem anderen reaktiven Silan benötigt, oder sie wird durch die Einwirkung einer weiteren funktioneilen Gruppe in einem weiteren Schritt gebildet. Die Spacer können auch aus einzelnen Monomeren wie beispielsweise acrylischen Chlo- riden oder Methacrylsäure und deren Derivaten oder reaktiven Estern wie N-Hydroxysuccinimiden oder anderen Monomeren, z.B. Maleinanhydrid gebildet werden. Die bevorzugten reaktiven Mo- nomere können kovalente Bindungen mit den bifunktionellen Alkoholen oder Aminen, die als Spacer verwendet werden, einge- hen.In addition, so-called spacers can be arranged between the functional groups mentioned above and the actual silane. As spacers in particular acrylic and methacrylic esters or amides of C 2 0 -Cι Alkohohlen or C2 - Cio amines in question. In order to be used as a spacer, the alcohols or amines carry additional functional groups at the end that does not form the ester or amide bond. This functional group is either required directly for the interaction with the other reactive silane, or it is formed in a further step by the action of another functional group. The spacers can also be formed from individual monomers such as, for example, acrylic chlorides or methacrylic acid and their derivatives or reactive esters such as N-hydroxysuccinimides or other monomers, for example maleic anhydride. The preferred reactive monomers can form covalent bonds with the bifunctional alcohols or amines used as spacers.
Die monoreaktive Substanz kann auf der Oberfläche des Trägers ein quervernetztes Polymer mit reaktiven Seitengruppen bilden. Dadurch kommt es zu einer besonders starken Verbindung zwischen den beiden Halbleitern. Das Polymer besitzt vorzugsweise einen Schmelzpunkt von unter 150°C, so dass das Polymer beim Verbinden der Halbleiter in den flüssigen Zustand überführt werden kann.The monoreactive substance can form a cross-linked polymer with reactive side groups on the surface of the support. This creates a particularly strong connection between the two semiconductors. The polymer preferably has a melting point of below 150 ° C., so that the polymer can be converted into the liquid state when the semiconductors are connected.
Bevorzugt ist weiterhin, einen Spacer mit einer photolabilen Gruppe zu verwenden. Diese photolabile Gruppe wird durch Belichtung aktiviert, so dass die reaktive Gruppe von der Si- langruppe abgetrennt wird. Dadurch wird ein Verbinden an dieser Stelle verhindert. Grundsätzlich kann durch die Verwendung von hartem UV-Licht jede Silanlage zerstört werden, so dass die spezifische Reaktivität an dieser Stelle nicht mehr existiert.It is further preferred to use a spacer with a photolabile group. This photolabile group is activated by exposure, so that the reactive group from the Si long group is separated. This prevents a connection at this point. In principle, any sil system can be destroyed by using hard UV light, so that the specific reactivity no longer exists at this point.
Die Erfindung betrifft darüber hinaus einen Halbleiter, dessen Oberfläche mit der Oberfläche eines zweiten Halbleiters durch das beschriebene Verfahren verbunden ist, sowie einen Biochip oder Biosensor der einen solchen Halbleiter aufweist. The invention also relates to a semiconductor, the surface of which is connected to the surface of a second semiconductor by the method described, and a biochip or biosensor which has such a semiconductor.

Claims

Patentansprücheclaims
1. Verfahren zum Verbinden von Oberflächen, das folgende Schritte aufweist:1. A method for connecting surfaces, comprising the following steps:
(a) Beschichten der Oberfläche eines ersten Trägers mit mindestens einer monoreaktiven Substanz;(a) coating the surface of a first carrier with at least one monoreactive substance;
(b) Immobilisieren der monoreaktiven Substanz auf der Oberfläche des ersten Trägers, wodurch ein beschichteter Träger erhalten wird;(b) immobilizing the monoreactive substance on the surface of the first support, whereby a coated support is obtained;
(c) In Kontakt bringen des ersten beschichteten Trägers mit einem zweiten beschichteten Träger, wodurch sich die monoreaktiven Substanzen chemisch verbinden,(c) contacting the first coated carrier with a second coated carrier, whereby the monoreactive substances chemically combine,
wobei die Schritte (b) und (c) gleichzeitig erfolgen.steps (b) and (c) taking place simultaneously.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Oberflächen des ersten und des zweiten Trägers mit derselben oder verschiedenen reaktiven Substanzen beschichtet werden.2. The method according to claim 1, characterized in that the surfaces of the first and the second carrier are coated with the same or different reactive substances.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Oberflächen des ersten und/oder des zweiten Trägers mit zwei oder mehreren identischen oder verschiedenen reaktiven Substanzen beschichtet werden.3. The method according to claim 1 or 2, characterized in that the surfaces of the first and / or the second carrier are coated with two or more identical or different reactive substances.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach Schritt (b) zusätzlich der Schritt (b' ) durchgeführt wird:4. The method according to any one of the preceding claims, characterized in that after step (b) step (b ') is additionally carried out:
(b') Aufbringen einer Kreuzvernetzungssubstanz auf den ersten und/oder den zweiten beschichteten Träger. (b ') applying a cross-linking substance to the first and / or the second coated carrier.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Träger ein Halbleiter mit einer Oberfläche aus Silizium, Halbmetalloxiden, insbesondere SiOx oder Aluminiumoxid ist.5. The method according to any one of the preceding claims, characterized in that the carrier is a semiconductor with a surface made of silicon, semimetal oxides, in particular SiO x or aluminum oxide.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die monoreaktive Substanz einschichtig in Form einer Monolage oder mehrschichtig in Form einer Polylage aufgebracht wird.5. The method according to any one of the preceding claims, characterized in that the monoreactive substance is applied in one layer in the form of a monolayer or in multiple layers in the form of a poly layer.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Polylage ein Gel bildet.7. The method according to claim 6, characterized in that the poly layer forms a gel.
8. Verfahren nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass die monoreaktive Substanz eine Schicht mit einer Dicke von 2 nm bildet.8. The method according to any one of the preceding claims, characterized in that the monoreactive substance forms a layer with a thickness of 2 nm.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die monoreaktive Substanz re- aktives Silan ist.9. The method according to any one of the preceding claims, characterized in that the monoreactive substance is reactive silane.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das reaktive Silan Glycid-oxypropyl-trimethoxy-silan oder Aminopropyl-trimethoxy-silan ist.10. The method according to claim 9, characterized in that the reactive silane is glycidoxypropyl-trimethoxy-silane or aminopropyl-trimethoxy-silane.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das reaktive Silan ein Azosilan oder ein Propyl- trichlor-silan ist.11. The method according to claim 9, characterized in that the reactive silane is an azosilane or a propyl trichlorosilane.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die monoreaktive Substanz durch spincoating, Tauschbeschichten, Gasphasenabschei- dung, Kondensation oder Besprühen aufgebracht werden.12. The method according to any one of the preceding claims, characterized in that the monoreactive substance is applied by spin coating, exchange coating, gas phase deposition, condensation or spraying.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die chemische Bindung zwi- sehen den monoreaktiven Substanzen eine kovalente Bindung ist.13. The method according to any one of the preceding claims, characterized in that the chemical bond between see the monoreactive substances is a covalent bond.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, die chemische Bindung zwischen den monoreaktiven Substanzen auf einer nukleophilen oder elektrophilen Addition oder Substitution, oder einer radikalischen Reaktion zwischen funktioneilen Gruppen beruht .14. The method according to any one of the preceding claims, characterized in that the chemical bond between the monoreactive substances is based on a nucleophilic or electrophilic addition or substitution, or a radical reaction between functional groups.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die funktioneilen Gruppen aktive oder reaktive Ester, insbesondere N-Hydroxysuccinimide (NHS-Ester) sowie Amine, Aliphate, Epoxide, Thiole, Isothiocyanate, Isocyana- te, Azide, carboxylische Gruppen oder Maleinimide sind.15. The method according to claim 14, characterized in that the functional groups are active or reactive esters, in particular N-hydroxysuccinimides (NHS esters) and amines, aliphatics, epoxides, thiols, isothiocyanates, isocyanates, azides, carboxyl groups or maleimides ,
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass zwischen der funktioneilen Gruppe und dem Silan Spacer angeordnet sind.16. The method according to claim 14 or 15, characterized in that are arranged between the functional group and the silane spacer.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Spacer acrylische oder methacrylische Ester oder A- mide von C2-Cι0 Alkoholen oder C2-Cι0 Aminen sind.17. The method according to claim 16, characterized in that the spacers are acrylic or methacrylic esters or amides of C 2 -Cι 0 alcohols or C 2 -Cι 0 amines.
18. Verfahren nach Anspruch 16 oder 17, dadurch gekennzeichnet, dass der Spacer eine photolabile Gruppe aufweist.18. The method according to claim 16 or 17, characterized in that the spacer has a photolabile group.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die monoreaktive Substanz ein quervernetztes Polymer mit reaktiven Seitengruppen auf der Oberfläche des Trägers bildet.19. The method according to any one of the preceding claims, characterized in that the monoreactive substance forms a cross-linked polymer with reactive side groups on the surface of the support.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass das quervernetzte Polymer einen Schmelzpunkt von unter 150°C aufweist. 20. The method according to claim 19, characterized in that the cross-linked polymer has a melting point of below 150 ° C.
21. Halbleiter, dessen Oberfläche mit der Oberfläche eines zweiten Halbleiters durch ein Verfahren nach einem der vorhergehenden Ansprüche verbunden ist.21. A semiconductor whose surface is connected to the surface of a second semiconductor by a method according to one of the preceding claims.
22. Bio-Chip oder Bio-Sensor, der einen Halbleiter nach Anspruch 21 aufweist. 22. Bio-chip or bio-sensor having a semiconductor according to claim 21.
PCT/EP2003/008955 2002-08-14 2003-08-12 Method for joining surfaces, semiconductor with joined surfaces, bio-chip and bio-sensor WO2004017071A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003266280A AU2003266280A1 (en) 2002-08-14 2003-08-12 Method for joining surfaces, semiconductor with joined surfaces, bio-chip and bio-sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10237280A DE10237280A1 (en) 2002-08-14 2002-08-14 Process for connecting surfaces, semiconductors with bonded surfaces as well as bio-chip and bio-sensor
DE10237280.2 2002-08-14

Publications (2)

Publication Number Publication Date
WO2004017071A2 true WO2004017071A2 (en) 2004-02-26
WO2004017071A3 WO2004017071A3 (en) 2004-05-27

Family

ID=31501749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008955 WO2004017071A2 (en) 2002-08-14 2003-08-12 Method for joining surfaces, semiconductor with joined surfaces, bio-chip and bio-sensor

Country Status (3)

Country Link
AU (1) AU2003266280A1 (en)
DE (1) DE10237280A1 (en)
WO (1) WO2004017071A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032128A1 (en) * 2006-09-15 2008-03-20 National Center Of Scientific Research ''demokritos'' Bonding technique

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887244A1 (en) * 2005-06-15 2006-12-22 Commissariat Energie Atomique COMPOUNDS FOR PLACING OBJECTS BY SELF-ASSEMBLY AND APPLICATIONS
US8808808B2 (en) 2005-07-22 2014-08-19 Molecular Imprints, Inc. Method for imprint lithography utilizing an adhesion primer layer
US8557351B2 (en) * 2005-07-22 2013-10-15 Molecular Imprints, Inc. Method for adhering materials together
US8846195B2 (en) 2005-07-22 2014-09-30 Canon Nanotechnologies, Inc. Ultra-thin polymeric adhesion layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693172A (en) * 1992-10-07 1997-12-02 Zeldin; Martel Methods and compositions for interfacially bonding mineral surfaces and the like
US6190778B1 (en) * 1998-04-28 2001-02-20 Degussa-Huls Aktiengesellschaft Process for joining two solid bodies and the resultant structural element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304582A (en) * 1988-04-28 1994-04-19 Matsushita Electric Industrial Co., Ltd. Process for producing polyacetylene or polyacene type long conjugated polymers
DE3832666A1 (en) * 1988-09-27 1990-04-05 Telefunken Electronic Gmbh HIGH FREQUENCY TRANSMITTERS, IN PARTICULAR FOR FUSE FACILITIES
DE4234423C2 (en) * 1992-10-13 1996-10-10 Inst Mikrotechnik Mainz Gmbh Metal or semiconductor substrates coated with a resist and method for achieving stable resist-substrate adhesion
DE19752412A1 (en) * 1996-11-27 1998-05-28 Max Planck Gesellschaft Process for joining solid bodies e.g. for microelectronic components
ATE278956T1 (en) * 2000-07-27 2004-10-15 Micronas Holding Gmbh SENSOR CHIPS WITH POLYSILOXANE MULTIPLE LAYERS
DE60033648T2 (en) * 2000-07-27 2007-11-08 Micronas Holding Gmbh Surface-mounted polyfunctional polymer networks for sensor chips
DE10137376A1 (en) * 2001-07-31 2003-02-27 Infineon Technologies Ag Use of poly-o-hydroxyamide polymers for adhesive bonding, especially for bonding chips and-or wafers, e.g. silicon wafers with titanium nitride-coated silicon chips

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693172A (en) * 1992-10-07 1997-12-02 Zeldin; Martel Methods and compositions for interfacially bonding mineral surfaces and the like
US6190778B1 (en) * 1998-04-28 2001-02-20 Degussa-Huls Aktiengesellschaft Process for joining two solid bodies and the resultant structural element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEINKIRCHNER J ET AL: "SILICON WAFER BONDING VIA DESIGNED MONOLAYERS" ADVANCED MATERIALS, VCH VERLAGSGESELLSCHAFT, WEINHEIM, DE, Bd. 7, Nr. 7, 1. Juli 1995 (1995-07-01), Seiten 662-665, XP000520485 ISSN: 0935-9648 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032128A1 (en) * 2006-09-15 2008-03-20 National Center Of Scientific Research ''demokritos'' Bonding technique
GR20060100518A (en) * 2006-09-15 2008-04-15 Εθνικο Κεντρο Ερευνας Φυσικων Επιστημων (Εκεφε) "Δημοκριτος" Bonding technique.

Also Published As

Publication number Publication date
AU2003266280A1 (en) 2004-03-03
WO2004017071A3 (en) 2004-05-27
DE10237280A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
DE60029561T2 (en) IMMOBILIZATION OF MOLECULES ON SURFACES OVER POLYMER BRUSHES
DE69817850T2 (en) COVALENT IMMOBILIZATION WITH A HIGH SURFACE DENSITY OF OLIGONUCLEOTIDE MONO LAYERS
US20060286682A1 (en) Surface treatment
DE60126319T2 (en) IMMOBILIZATION OF BIOPOLYMERS ON AMINated SUBSTRATES THROUGH DIRECT ADSORPTION
DE60225593T2 (en) IMMOBILIZATION OF BINDING MATERIALS
EP1721160B1 (en) Method for covalently immobilising biomolecules on polymeric surfaces
DE112005003134T5 (en) Electrically active combinatorial-chemical (electrically-active combinatorial-chemical; eacc) chip for biochemical analyte determination
EP2252410B1 (en) Surface modification
US6221674B1 (en) Process for the application of reagent spots
DE60033648T2 (en) Surface-mounted polyfunctional polymer networks for sensor chips
DE10108483A1 (en) Phosphorus-containing polymers for optical signal converters
WO2004017071A2 (en) Method for joining surfaces, semiconductor with joined surfaces, bio-chip and bio-sensor
DE60033665T2 (en) Patterned polymer surfaces suitable for bioconjugations and methods for their preparation
DE69637317T2 (en) MOLECULAR ALIGNMENT OF MACROMOLECULES WITH THE HELP OF A LIQUID MUSIC ON A HIGH-SPECIFIC SURFACE
DE60024432T2 (en) BINDING POLYMER FOR AMIN- LIGAND COMPOUNDS AND ITS USE
DE60015980T2 (en) BIOSENSOR SYSTEM WITH INCREASED SENSITIVITY THROUGH MOLECULAR AMPLIFICATION OF THE SIGNAL
DE19745668A1 (en) Coupling of bio-technological functional units
DE10323685A1 (en) Process for the covalent immobilization of probe biomolecules on organic surfaces
DE10013993A1 (en) Article with activated surface for binding macromolecules, useful for making e.g. sensors or arrays, comprises dendrimer framework, containing reactive groups, on a substrate
US20090171052A1 (en) Polyelectrolyte Monolayers and Multilayers for Optical Signal Transducers
WO2003087823A1 (en) Method for immobilizing molecules on surfaces
DE102015115359B4 (en) biosensor chip
WO2007090511A1 (en) Polyelectrolyte monolayers and multilayers for optical signal converters
DE102008019928A1 (en) Procedures for applying spots with capture molecules on substrate surface for chip, particularly optical sensor, involve washing substrate surface of chip by dipping in aqueous solution of cationic polyelectrolyte
EP1071951B1 (en) Modified surface for carrying out or detecting affinity reactions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP