WO2004012934A1 - Structure stratifiee de protection - Google Patents

Structure stratifiee de protection Download PDF

Info

Publication number
WO2004012934A1
WO2004012934A1 PCT/US2003/024115 US0324115W WO2004012934A1 WO 2004012934 A1 WO2004012934 A1 WO 2004012934A1 US 0324115 W US0324115 W US 0324115W WO 2004012934 A1 WO2004012934 A1 WO 2004012934A1
Authority
WO
WIPO (PCT)
Prior art keywords
undulations
laminate structure
flexible support
support layers
protective
Prior art date
Application number
PCT/US2003/024115
Other languages
English (en)
Inventor
Mark Elden Schuchardt
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to AU2003257116A priority Critical patent/AU2003257116A1/en
Publication of WO2004012934A1 publication Critical patent/WO2004012934A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/3737Planar, e.g. in sheet form
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/28Shock absorbing
    • A41D31/285Shock absorbing using layered materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/373Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape
    • F16F1/376Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by having a particular shape having projections, studs, serrations or the like on at least one surface

Definitions

  • This invention relates to protective laminate structures. More particularly, the invention relates to laminate structures suitable for use in protective pads, protective apparel, or energy absorbing structures such as crash barriers.
  • U.S. Patent No. 5,599,290 discloses protective garments used to prevent bone fractures.
  • the garments include arrays of flexible elastomeric polymer membrane enclosures filled with a shear-thickening material such as a dilatant material.
  • the membrane enclosures are of a substantially flat rectangular shape that result in a pattern of bending along two perpendicular axes. In addition, the flat membrane shape adds little to the ability of the structure to absorb compressive shocks.
  • PCT Patent Publication No. WO 00/69293 discloses an energy absorbing protective member having flexible thermoplastic envelopes filled with an energy absorbing material such as a dilatant material.
  • the envelopes have a folded shape with an apex that helps to absorb energy when it is crushed. At the same time, the folded structure tends to be rigid making apparel utilizing such structures less flexible than is desirable.
  • WO 00/69293 discloses connecting numerous small folded envelope structures. However, such configurations are complicated and expensive to produce.
  • Figure 1 is a perspective view of a portion of the laminate structure of the invention.
  • Figure 2 is a cross-sectional view of a portion of the laminate shown in Figure 1.
  • Figure 3 is a plan view of a portion of a laminate structure like that shown in Figure 1.
  • a laminate structure according to the invention is comprised of a layer of a sheer-thickening material sandwiched between two firm yet flexible support layers.
  • the laminate structure of the invention has undulations that help to absorb sudden shocks, but the undulations are of a rounded shape and they are distributed in a pattern that greatly improves the flexibility of the laminate structure.
  • Planer sections of the laminate structure of the invention can be incorporated into padding in protective garments such as flack jackets, motor cycle jackets and pants, protective workwear, and protective sports clothing. Sections of the laminate structure of the invention can also be incorporated into protective pads, such as padding used in sports equipment, or pads that can be inserted into receiving pockets of protective apparel. Alternatively, larger sections of the laminate structure of the invention can be incorporated into shock absorbing structures such as crash barriers.
  • a preferred embodiment of the invention is shown in Figure 1.
  • a laminate structure 10 is comprised of a layer of a shear-thickening material 14 sandwiched between two firm yet flexible support layers 12 and 16.
  • the shear-thickening material is a material that is flexible under ordinary conditions, but that becomes substantially more stiff and rigid upon being subjected to a sudden mechanical stress or shock.
  • Preferred sheer-thickening materials are dilatant compounds which are soft and flexible under ordinary conditions, but become much stiffer and more rigid when subjected to a sudden impact or shock. Upon being subjected to a sudden mechanical stress, a dilatant compound's ability to transmit shear forces almost instantaneously increases by a very significant amount.
  • Polymers suitable for dilatant material include copolymers of styrene and acrylic acid or methylacrylic acid or their esters, and dimethyl siloxane hydroterminater polymers.
  • One well known dilatent material is sold as a children's toy under the name Silly Putty®.
  • the firm yet flexible support layers 12 and 16 may be comprised of a sheet structures that can hold a fixed shape but that are flexible as well.
  • the support layers 12 and 16 are comprised of a material offering good flexibility, and good impact and tear resistance, even at low temperatures when required. Examples of such materials may include thermoplastic polymer sheets, woven fabrics, nonwovens, papers, and metal foils. Where the laminate structures are to be used in apparel, it is preferred that the flexible support layers be permeable to moisture vapor.
  • Preferred materials for the support layers 12 and 16 are synthetic thermoplastic films and nonwoven sheets. Especially preferred materials are moisture vapor permeable thermoplastic elastomer films such as block polyether copolymers.
  • the thermoplastic polymer resin is comprised primarily of a block polyether copolymer, such as a polyether ester copolymer, a polyether amide copolymer, a polyurethane copolymer, polyvinyl alcohol, or a combination thereof.
  • Preferred copolyether ester block copolymers are segmented elastomers having soft polyether segments and hard polyester segments, as disclosed in U.S. Patent No. 4,739,012 (assigned to DuPont).
  • Suitable polyether ester block copolymers are sold by DuPont under the name Hytrel®.
  • Hytrel® is a registered trademark of DuPont.
  • Suitable copolyether amide copolymers are copolyamides available under the name Pebax® from DuPont.
  • the flexible support layers 12 and 16 comprise sheets of copolyetherester elastomers having Shore D hardness of 40 to 50, and a thickness of 0.2 to 5 mm, and more preferably 0.5 to 1 mm.
  • One particularly preferred copolyether ester elastomer that has been advantageously used in making the flexible support layers is DuPont' s Hytrel® Grade 5544 resin.
  • the flexible support layers are formed with individual undulations that can be crushed to help absorb and distribute the energy from sudden shocks.
  • the undulations are preferably individual rounded shapes and they are distributed in a pattern that greatly improves the overall flexibility of the laminate structure.
  • the undulations are each substantially frustum shaped.
  • each individual undulation could have an elliptical shape, another rounded shape, a square shape, or a polygonal shape. It is preferred that the largest cross-section of the base of each undulation be no more than 2.5 times the smallest cross-section of the base of the undulation.
  • each individual undulation 18 has a substantially flat top 20.
  • each undulation 18 is formed in both the top flexible support layer 12 and the bottom flexible support layer 16, and each individual undulation has substantially the same shape.
  • each undulation could have frustum shape with a base diameter of 15 to 20 mm, a top diameter of 7 to 10 mm and a height of 8 to 12 mm.
  • the thickness of the shear-thickening material layer 14 is from 1 to 10 mm, and more preferably between 2 and 7 mm.
  • the individual undulations are arranged in a pattern that provides at least three bending axes along which the laminate structure can naturally bend. More preferably, the pattern of individual undulations provides at least four bending axes, and even more preferably at least 5 or 6 bending axes. With the preferred offset pattern shown in Figure 3, there are six bending axes including a diagonal axis (a), a vertical a vertical axis (b), another diagonal axis (c), another diagonal axis (d), a horizontal axis (e), and another diagonal axis (f).
  • the undulations in the flexible support layers can be made by a variety of means including hot or cold stamping and embossing, roll forming, thermo forming (with vacuum and/or pressure), hydro forming with pressurized fluid, injection molding, blow molding, or compression molding.
  • the process applied depends upon the composition of the support layers, the form of the support layers (eg., nonwoven, film), and the desired production volume and production rate .
  • the desired undulations can be economically formed by a cold stamping process.
  • the support structure is a synthetic nonwoven sheet
  • the undulation pattern can be advantageously formed by the use of heated embossing rolls with complementary interlocking surfaces.
  • the shear-thickening layer 14 can be extruded directly onto either the bottom of the top flexible support layer 12 or the top of the bottom flexible support layer 16.
  • the shear-thickening layer 14 can be prepared as a preformed film that is laid over one of the flexible layers.
  • the shear- thickening layer is a dimethyl siloxane hydroterminater polymer
  • the layer readily conforms to the shape of the flexible layer on which the shear-thickening layer is extruded or laid down. Once the shear-thickening layer is in place, the remaining flexible layer can be added over the shear-thickening layer. Suction between the layers and surface tension are generally sufficient to hold the layers of the laminate structure in place.
  • the flexible support layers 12 and 16 can be thermally welded to each other at desired points or they can be joined by other mechanical means, such as by sewing. Such joining techniques may also be used to break the laminate structure into sub-compartments so as to prevent migration of the shear-thickening layer 14.
  • the laminate structure of the invention exhibits excellent shock absorbing properties while at the same time being relatively lightweight and extraordinarily flexible. While the characteristics and advantages of the present invention have been set forth in the description above, together with details of the structure and function of the invention, the disclosure is illustrative only, and the full scope of the invention is as set forth in the claims that follow.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention concerne une structure stratifiée de protection comprenant une couche de matériau d'épaississement par cisaillement comprise entre une première et une seconde couche de support souple, lesquelles première et seconde couches de support souples sont formées de multiples ondulations correspondantes individuelles, lesquelles ondulations comportent chacune une base et une partie supérieure sensiblement plate et sont disposées selon un motif répétitif de rangées décalées. Cette structure stratifiée comprend au moins trois axes de flexion définis par des rangées adjacentes d'ondulations individuelles.
PCT/US2003/024115 2002-08-01 2003-07-31 Structure stratifiee de protection WO2004012934A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003257116A AU2003257116A1 (en) 2002-08-01 2003-07-31 Protective laminate structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40043102P 2002-08-01 2002-08-01
US60/400,431 2002-08-01

Publications (1)

Publication Number Publication Date
WO2004012934A1 true WO2004012934A1 (fr) 2004-02-12

Family

ID=31495822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/024115 WO2004012934A1 (fr) 2002-08-01 2003-07-31 Structure stratifiee de protection

Country Status (2)

Country Link
AU (1) AU2003257116A1 (fr)
WO (1) WO2004012934A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226878B2 (en) 2003-05-19 2007-06-05 The University Of Delaware Advanced body armor utilizing shear thickening fluids
WO2008088974A2 (fr) 2007-01-19 2008-07-24 James Riddell Ferguson Matériau absorbant un choc d'impact
WO2010076257A3 (fr) * 2008-12-19 2010-09-10 Daniel James Plant Système absorbant l'énergie
EP2319880A2 (fr) 2006-09-07 2011-05-11 University Of Delaware Confinement de fluide dilatant dans des composites polymères
CN105555519A (zh) * 2013-09-30 2016-05-04 布尔诺科技大学 防弹材料、其制备方法和用途
WO2016174431A1 (fr) * 2015-04-27 2016-11-03 Design Blue Limited Matériaux absorbant de l'énergie comprenant des cônes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8524366U1 (de) * 1985-08-24 1989-04-06 Andrä, Johann, 8000 München Stoßschutzpolster, insbesondere für die Anbringung an stoßempfindlichen Körperstellen von Sportlern
US5486400A (en) * 1994-11-28 1996-01-23 Fishel; James D. Christmas tree ornament protector
EP0797933A2 (fr) * 1992-11-20 1997-10-01 Beth Israel Deaconess Medical Center, Inc. Vêtement destiné à prévenir les fractures et son procédé de fabrication
WO2000069293A1 (fr) * 1999-05-12 2000-11-23 Plant, Daniel, James Element de protection amortisseur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8524366U1 (de) * 1985-08-24 1989-04-06 Andrä, Johann, 8000 München Stoßschutzpolster, insbesondere für die Anbringung an stoßempfindlichen Körperstellen von Sportlern
EP0797933A2 (fr) * 1992-11-20 1997-10-01 Beth Israel Deaconess Medical Center, Inc. Vêtement destiné à prévenir les fractures et son procédé de fabrication
US5486400A (en) * 1994-11-28 1996-01-23 Fishel; James D. Christmas tree ornament protector
WO2000069293A1 (fr) * 1999-05-12 2000-11-23 Plant, Daniel, James Element de protection amortisseur

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498276B2 (en) 2003-05-19 2009-03-03 University Of Delaware Advanced body armor utilizing shear thickening fluids
US7226878B2 (en) 2003-05-19 2007-06-05 The University Of Delaware Advanced body armor utilizing shear thickening fluids
US7825045B1 (en) 2003-05-19 2010-11-02 University Of Delaware Advanced body armor
EP2319880A2 (fr) 2006-09-07 2011-05-11 University Of Delaware Confinement de fluide dilatant dans des composites polymères
EP2324910A2 (fr) 2006-09-07 2011-05-25 University Of Delaware Confinement de fluide dilatant dans des composites polymères
EP2324909A2 (fr) 2006-09-07 2011-05-25 University Of Delaware Confinement de fluide dilatant dans des composites polymères
EP2109374A4 (fr) * 2007-01-19 2012-02-29 James Riddell Ferguson Matériau absorbant un choc d'impact
WO2008088974A2 (fr) 2007-01-19 2008-07-24 James Riddell Ferguson Matériau absorbant un choc d'impact
EP2109374A2 (fr) * 2007-01-19 2009-10-21 James Riddell Ferguson Matériau absorbant un choc d'impact
WO2010076257A3 (fr) * 2008-12-19 2010-09-10 Daniel James Plant Système absorbant l'énergie
US9375041B2 (en) 2008-12-19 2016-06-28 Daniel James Plant Energy absorbing system
US10408294B2 (en) 2008-12-19 2019-09-10 Rheon Labs Ltd Energy absorbing system
US11746849B2 (en) 2008-12-19 2023-09-05 Rheon Labs Ltd Energy absorbing system
CN105555519A (zh) * 2013-09-30 2016-05-04 布尔诺科技大学 防弹材料、其制备方法和用途
CN105555519B (zh) * 2013-09-30 2018-04-03 布尔诺科技大学 防弹材料、其制备方法和用途
WO2016174431A1 (fr) * 2015-04-27 2016-11-03 Design Blue Limited Matériaux absorbant de l'énergie comprenant des cônes

Also Published As

Publication number Publication date
AU2003257116A1 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
US5972477A (en) Laminated fiber networks
US4584228A (en) Bullet-proof vest or the like
US10197125B2 (en) Interdigitated cellular cushioning
EP3340820B1 (fr) Systèmes d'absorption d'énergie
JP3779992B2 (ja) 成形できるパネル及びそれを製造する方法
AU639080B2 (en) Elastomeric composite fabric
JP3947225B2 (ja) 熱可塑性三次元繊維網状構造体
TWI639549B (zh) 壓縮耐久性優異之網狀構造物
US20100299812A1 (en) Protective arrangement
AU2007231741A1 (en) Flexible material and method of manufacturing the flexible material
TW201502329A (zh) 包含擠製網目的襯墊及其製造方法
KR20000076200A (ko) 에너지 흡수용 삽입물을 가진 유연성 경량 보호용 패드
TW200932980A (en) Ultra-resilient pad
JP3226030U (ja) クッション複合構造、およびそれを用いた靴パッドと個人用保護具
WO2004012934A1 (fr) Structure stratifiee de protection
EP1700625B1 (fr) Element Protecteur pour des parties du corps
EP2552265A1 (fr) Systèmes et procédés de formation d'un coussinet de protection
GB2073009A (en) Improvements in or relating to leg guards
JP2006116182A (ja) 座席シート及びその製造方法並びに該座席シートのへたり回復処理方法
JP3025480B2 (ja) 衝撃吸収衣服素材
JP2015198877A (ja) クッション体および座席シート
JP2014504567A (ja) 超弾力性クッションおよびその製造方法
WO2024057946A1 (fr) Dispositif de protection
TW202019683A (zh) 墊體複合材結構、墊體及護具
JP2006241645A (ja) 繊維プレスボード

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP