WO2004010068A1 - Heat exchanger, and reactor and radiation heater using the heat exchanger - Google Patents

Heat exchanger, and reactor and radiation heater using the heat exchanger Download PDF

Info

Publication number
WO2004010068A1
WO2004010068A1 PCT/JP2003/009202 JP0309202W WO2004010068A1 WO 2004010068 A1 WO2004010068 A1 WO 2004010068A1 JP 0309202 W JP0309202 W JP 0309202W WO 2004010068 A1 WO2004010068 A1 WO 2004010068A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
transfer body
heat transfer
heat
heat exchanger
Prior art date
Application number
PCT/JP2003/009202
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Obuchi
Junko Uchisawa
Akihiko Ooi
Tetsuya Namba
Norio Nakayama
Atsushi Ogata
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to EP03741512A priority Critical patent/EP1541952A4/en
Priority to US10/521,774 priority patent/US20060153755A1/en
Priority to AU2003281543A priority patent/AU2003281543A1/en
Publication of WO2004010068A1 publication Critical patent/WO2004010068A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • F28D9/0018Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Definitions

  • the present invention relates to a heat exchanger, a reactor using the heat exchanger, and radiation heat, and is particularly applied to the field of thermal engineering for saving energy consumption and the environmental technology field for the purpose of purifying exhaust gas from the atmosphere. And a suitable technique.
  • the present invention has been made in view of the actual situation of the prior art, and can provide a larger heat transfer area within a limited capacity, is relatively easy to manufacture, and has a high heat exchange efficiency. It is an object of the present invention to provide a heat exchanger capable of bringing about a dramatic improvement, a reactor using the heat exchanger, and a radiant beam. Disclosure of the invention
  • the heat transfer body has a bellows shape, and both fluids are mainly in the bellows portion of the heat transfer body. It is comprised so that a space
  • gap part may flow in parallel or countercurrent along a ridgeline direction or a valley line direction.
  • the heat transfer body has a bellows shape, and both fluids are mainly in the bellows portion of the heat transfer body.
  • the gap is configured to flow in the ridge line direction or the valley line direction, and one fluid is opposite to the heat transfer body at one end or both ends intersecting the ridge line of the bellows portion of the heat transfer body.
  • a fluid wrapping space portion for wrapping around the gap portion of the bellows portion on the side, and the fluid circulated to the opposite side through the fluid wrapping space portion exchanges heat with the other fluid to be heat exchanged.
  • a self-heat exchange type heat exchanger characterized by performing.
  • the heat transfer body has a bellows shape, and both fluids are mainly bellows of the heat transfer body. Configured to counter-flow along the ridge line direction or the valley line direction of the gap of the part, and At one or both ends that intersect the ridgeline of the bellows portion of the heat transfer body, there is a fluid wrapping space for allowing one of the fluids to wrap around the gap of the bellows portion on the opposite side of the heat transfer body, ⁇
  • the self-heat exchange heat exchanger that exchanges heat by the fluid that circulates to the opposite side through the body wrapping space becomes the other fluid to be heat-exchanged
  • a reactor comprising a heating element or an endothermic body provided in the fluid circulation space of the heat exchanger.
  • a catalyst that promotes an exothermic reaction is supported on the entire surface of the heat transfer body of the heat exchanger or the surface in the vicinity of the fluid wrapping space, and the fluid containing the reaction component is used.
  • the reactor according to (3) characterized in that it is characterized in that
  • An exothermic reaction is used on the entire surface of the heat exchanger of the heat exchanger or on the surface of the region near the inlet / outlet of the fluid.
  • a catalyst that adsorbs reaction components at a low temperature and desorbs them at a high temperature is supported on the entire surface of the heat transfer body of the heat exchanger or in the vicinity of the fluid wrapping space.
  • the fluid containing the reaction component is used as the fluid
  • the above-mentioned (3) is characterized in that a particulate removal filter for capturing and removing particulates is disposed in close contact with the end surface of the heat exchanger on the side where the fluid circulates.
  • a particulate removal filter for capturing and removing particulates is disposed in close contact with the end surface of the heat exchanger on the side where the fluid circulates.
  • a fine particle removing filter for capturing and removing fine particles is disposed in close contact with an end surface of the heat exchanger on the side where the fluid in the heat transfer body circulates. (4) The reactor described in.
  • the heat transfer body is provided with a filter function capable of gas permeation and particulate trapping, and is not provided with a fluid wrap-around portion through which the fluid of the heat transfer body flows. ) Or the reactor according to (4).
  • the heat transfer body has a bellows shape, and both fluids are mainly bellows of the heat transfer body. Configured to counter-flow along the ridge line direction or the valley line direction of the gap of the part, and A fluid wrapping space for allowing one fluid to wrap around the gap of the bellows portion on the opposite side of the heat transfer body at one end or both ends intersecting the ridge line of the bellows portion of the heat transfer body; A self-heat exchange type heat exchanger in which the fluid that has flowed to the opposite side through the wraparound space serves as the other fluid to be exchanged for heat exchange;
  • a radiation heater characterized in that a part of the wall separating the fluid wraparound space where the combustion burner is installed and the outside is constituted by a heat radiation plate.
  • the heat transfer body has a bellows shape, and both fluids are mainly snakes of the heat transfer body. It is configured so as to counter-flow along the ridgeline direction or the valley line direction in the gap portion of the abdominal portion, and one fluid is transferred to the one end portion or both end portions that intersect the ridgeline of the bellows portion of the heat transfer body. It has a fluid wrapping space for wrapping around the gap of the bellows part on the opposite side of the body, and the fluid that circulates to the opposite side through the fluid wrapping space becomes the other fluid for heat exchange.
  • a self-heat exchange heat exchanger that exchanges heat
  • a radiation heater comprising a part comprising a heat radiation plate and containing the reaction component as a fluid.
  • the heat transfer body is a non-breathable heat transfer body, and is configured by combining the heat transfer body, a spacer structure, and a fill evening cloth.
  • FIG. 1 is a three-dimensional perspective view showing a heat exchanger according to a first embodiment of the present invention.
  • FIG. 2 (a) is a front perspective view of FIG. 1, and (b) and (c) are front perspective views of modifications.
  • FIG. 3 is a diagram showing another example of the first embodiment.
  • FIG. 4 is a diagram showing another example of the first embodiment.
  • FIG. 5 is a perspective view showing a heat exchanger according to a second embodiment of the present invention.
  • FIG. 6 (a) is a front perspective view of FIG. 5, and (b) and (c) are other front perspective views. FIG. .
  • FIG. 4 is a front perspective view showing the reactor of the third embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 8 is a front perspective view showing the reactor of the fourth embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 9 is a front perspective view showing the reactor of the fifth embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 10 is a front perspective view showing the reactor of the sixth embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 11 is a front perspective view showing the reactor of the seventh embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 12 is a front perspective view showing the reactor of the eighth embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 13 is an explanatory diagram of an alternate-enclosed particulate filter.
  • FIG. 14 is a front perspective view of the radiation spot of the ninth embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 15 is a front perspective view of the radiant light of the 10th embodiment based on the self-heat exchanger according to the present invention.
  • FIG. 16 is an explanatory diagram of the first modification.
  • FIG. 17 is an explanatory diagram of the first modification.
  • FIG. 18 is an explanatory diagram of the second modification.
  • FIG. 19 is an explanatory diagram of Modification 2.
  • FIG. 20 is an explanatory diagram of Modification 3.
  • FIG. 21 is an explanatory diagram of Modification 4.
  • FIG. 22 is an explanatory diagram of Modification 5.
  • FIG. 23 is an explanatory diagram of Modification 6. BEST MODE FOR CARRYING OUT THE INVENTION
  • embodiments of the present invention will be described based on preferred examples.
  • FIG. 1 shows a three-dimensional perspective view of a heat exchanger according to a first embodiment of the present invention.
  • the heat exchanger of this example has a bellows type heat transfer body (BF).
  • This bellows type heat transfer body (BF) has a bellows type (bellows type or accordion type) structure that separates the high temperature fluid 1 from the low temperature fluid 2 or 2.
  • Both end faces (A and ⁇ ') intersecting the ridgeline of the bellows portion of the bellows type heat transfer body (BF) are sealed by closely contacting the upper and lower walls of the heat exchanger via a sealing material (not shown).
  • a sealing material not shown
  • both ends (a and a ') of the heat transfer body (BF) parallel to the ridgeline of the bellows portion are welded or sealed (not shown) with the side walls (C, C) constituting both sides of the heat exchanger.
  • the distance between the ridge line part of the heat transfer body (BF) and the side face of the container ( ⁇ and ⁇ ') is bellows.
  • the two fluid outlets (D, D ', ⁇ , ⁇ ') are front and back sides ( ⁇ and ⁇ ') relative to the ridge spring of the heat transfer body (BF). It is provided near both upper and lower ends.
  • the triangular wave shape is exemplified here as the cross-sectional shape of the heat transfer body (BF), the shape is not limited to this, and the wave shape or a flat plate shape in which only the ridge portion is semicircular may be used.
  • the heat transfer body (BF) may be formed by bending a foil-like stainless steel or by firing a plate-shaped ceramic material before firing into a bellows shape.
  • the foil-like stainless steel or the plate-like ceramic surface before firing is made uneven or the corrugated plate is perpendicular to the ridgeline of the wave Alternatively, it may be bent in a non-parallel direction to form a bellows type so that adjacent bellow surfaces touch each other.
  • FIG. 2 (a) is a front perspective view of the structure shown in FIG. D and E are the same fluid 1 entrance as Fig.1. On the back side of each, there are entrances D 'and ⁇ ' for fluid 2.
  • B and b ' are the ridge and valley lines of the bellows type heat transfer body (BF) as seen from the front.
  • the overall shape of the bellows-type heat transfer body (BF) is not limited to the rectangular parallelepiped as shown here.
  • the fluid inflow / outflow part is expanded like a fan. The distribution resistance of this part may be reduced.
  • the entire bellows type heat transfer body may be a fan type. By doing so, the flow velocity of the fluid can be changed along the flow, and in some cases, more efficient heat exchange can be achieved.
  • the configuration shown in FIG. 3 may be formed by making the shape of FIG. 2 (c) round in the circumferential direction.
  • the end portions of the heat transfer body (BF) parallel to the ridge line are sealed by means such as welding to each other or using a sealing material.
  • the symbols in Fig. 3 indicate the parts corresponding to Fig. 1.
  • D, E, D ', and E' are the inlets and outlets of fluids 1 and 2 (2 '), respectively, as shown in Fig. 1.
  • countercurrent flow (2) is also countercurrent.
  • 2 ' In this structure, it is necessary to seal outside the cylinder surface A, A 5.
  • both ends (a and a 'in Fig. 1) parallel to the ridgeline of the bellows disappear.
  • the distance between the heat transfer (BF) ridge and the side of the container need only be sufficiently smaller than the bellows pitch, and sealing is not necessary.
  • FIG. 4 a structure in which bellows type heat transfer bodies are arranged as shown in Fig. 4 is also possible.
  • the heat transfer body (BF) is placed in a space between the outer cylinder B and the inner cylinder B ′.
  • Seal with heat (BF) by means such as close contact with sealant.
  • Fig. 4 a structure in which bellows type heat transfer bodies are arranged as shown in Fig. 4 is also possible.
  • the heat transfer body (BF) is placed in a space between the outer cylinder B and the inner cylinder B ′.
  • Seal with heat (BF) by means such as close contact with sealant.
  • FIG. 5 shows a heat exchanger according to the second embodiment of the present invention.
  • the heat exchanger of the present embodiment is a two-fluid bulkhead heat exchanger having the structure shown in FIG. 1, and a pair of fluid inlets / outlets (D) on opposite sides of the bellows type heat transfer body (BF) (D , D ', ⁇ , ⁇ ') instead of D as the inlet, D 'as the outlet, and one end (A 5 ) of the heat transfer body (BF) is not tightly sealed, but the inlet (D ) Is provided with a fluid wrap-around space (F) for wrapping the fluid entering from the heat transfer body (BF) to the opposite side.
  • the other configuration is the same as that of the first embodiment.
  • any of the heat exchangers shown in FIGS. 2, 3 and 4 can be a corresponding self-heat exchanger.
  • the heat exchanger of this embodiment seals pipes and fluids compared to a self-heat exchanger that uses a conventional heat exchanger structure represented by a multi-tube cylindrical type.
  • the structure is greatly simplified, and even if the number of bellows is increased, the whole and seal structure are not complicated at all, and a self-heat exchanger with extremely high heat exchange efficiency can be obtained. .
  • Fig. 6 (a) is a front perspective view of the structure of the self-heat exchanger of Fig. 5.
  • b is the ridgeline
  • b ' is the valley line (corresponding to the ridgeline of the opposite bellows).
  • the fluid wraparound space (F) where the temperature is an extreme value must be present.
  • the fluid inlet / outlet (D, D 5 ) is provided in the center of the ridge line direction of the heat transfer body (BF), as shown in Fig. 6 (b).
  • the fluid flowing in from the flow branches in the vertical direction circulates in the spaces (F, F ') adjacent to the different end faces of the heat transfer body (BF), then merges and exits from the outlet (D') You can do it. By doing so, the seal between the heat transfer body (BF) and the container 'b on the surface (A) becomes unnecessary.
  • Fig. 6 (c) shows a bellows-type heat transfer body (BF) along the ridgeline direction for a self-heat exchanger with an inlet / outlet in the center as shown in Fig. 6 (b) and where fluid flows.
  • the overall shape of the long rectangular parallelepiped is made into an annular shape, and both ends of the heat transfer body (BF) intersecting with the ridge line share the same fluid wraparound space (F).
  • This modification has the advantage of eliminating the need for a seal at the end face of the bellows portion while making the space (F) where the temperature is an extreme value one place.
  • the reactor shown in Fig. 7 is based on the self-heat exchanger shown in Fig. 5, and has a heating element (Hitoshi) or endothermic element (G) in the fluid wrapping space (F).
  • This reactor is integrated with the heat exchanger.
  • heat is transferred between an inflow fluid having a low temperature (high) and an effluent fluid heated (cooled) through a space (F) having a maximum (minimum) temperature.
  • the temperature at the outlet (D ') with respect to the entrance (D) does not become so high (eg, low) even if the space (F) becomes very hot (low temperature), the temperature at F, D, etc. (20 ° C, 700 ° C, 90 ° C, respectively) o
  • the temperature at F, D, etc. (20 ° C, 700 ° C, 90 ° C, respectively) o
  • it is necessary to heat the fluid to react with it. Therefore, it can be used as a reactor that can reduce energy (electric power). Therefore, it can be expected to be applied to chemical reaction equipment in general.
  • the performance of the self-heat exchange reactor of the third embodiment shown in Fig. 6 is roughly estimated.
  • the total area of the bellows surface is A (m 2 )
  • the heat transfer rate from the high temperature fluid to the low temperature fluid across this heat transfer surface is K (W / m 2 K)
  • the distance between adjacent bellow surfaces is d ( m).
  • the coefficient 140Z17 is a dimensionless number usually called a Nu s se 1 t number, and is a value determined analytically under given conditions. Is the thermal conductivity of the fluid (W / m. K), D is the dimension called the representative length.
  • represents the mass flow rate (kg s) of the fluid
  • C P represents the constant-pressure specific heat (JZkg ⁇ K) of the fluid.
  • JZkg ⁇ K the constant-pressure specific heat
  • Table 2 shows the results of a prototype of the reactor with the same dimensions as the calculation example above (No. 1) and its performance.
  • Stainless steel foil with a thickness of 0.03 mm was used as the heat transfer material.
  • FIG. 8 shows a reactor according to the fourth embodiment of the present invention.
  • heating in the reactor described in FIG. 7 is performed by catalytic reaction of reaction components contained in the fluid.
  • This reactor is a self-heat exchanger with the structure shown in Fig. 5.
  • the catalyst ( ⁇ ) is supported on the entire surface of the heat transfer body (BF) or the surface close to the end surface where the fluid circulates. It is an integrated catalytic reactor.
  • the self-heat exchange structure with a bellows type heat transfer surface with a high heat exchange rate and the monolithic catalyst support structure are integrated, and the temperature of the reaction fluid is obtained as in the case of Fig. 7. Enough temperature for catalytic reaction inside the reactor (for example!), And the temperatures at F, D, 20 ° C :, 300 ° C, 50 ° C;), respectively, A highly efficient and energy-saving reaction can be realized.
  • a stainless steel foil having a thickness of 0.03 mm, a width of 200 mm, and a length of 2720 mm is perpendicular to the longitudinal direction as a heat transfer body.
  • it was folded into a total of 68 planes at intervals of 40 mm, and a rectangular bellows-shaped heat transfer body with a total shape of about 40 X 40 X 200 mm as shown in Fig. 5 was produced.
  • the distance between adjacent surfaces of the folded heat transfer body was about 0.59 mm.
  • a rectangular parallelepiped container made of stainless steel with a thickness of 0.6 mm In. This container has access corresponding to D and D 'in Fig. 5.
  • a vent was provided to circulate air containing low concentrations of volatile organic components (VOC).
  • VOC volatile organic components Table 3 shows the VOC removal performance and heat exchange performance results for this prototype # 2. At room temperature, these VOCs with a concentration of 0.3% or less can be converted into self-oxidation, that is, only by the heat generated by their own oxidation without any external auxiliary heat except during ignition. It was possible to continue to decompose more than 90%.
  • FIG. 9 shows a reactor according to the fifth embodiment of the present invention.
  • This reactor is a self-heat exchanger with the structure shown in Fig. 5.
  • the catalyst (H) for reacting the reaction components contained in the fluid is supported on the entire surface of the body (BF) or the surface of the region near the fluid inlet / outlet, and the entire surface of the heat transfer body (BF) or It has a structure in which an adsorbent (I) that adsorbs reaction components at a low temperature and desorbs at a high temperature is supported on the surface of the region close to the end face of the heat transfer body (BF) through which the fluid flows.
  • an adsorbent (I) that adsorbs reaction components at a low temperature and desorbs at a high temperature is supported on the surface of the region close to the end face of the heat transfer body (BF) through which the fluid flows.
  • the adsorbent (I) is used to trap the reaction components.
  • the fluid temperature rises it is heated from the part close to the inlet / outlet of the heat transfer body (B F), but the heating of the part where the fluid wraps around is considerably delayed due to the heat storage property of the heat transfer body (B F).
  • the heat spreads over the entire heat transfer body (BF) and the adsorbed reaction components are desorbed the temperature near the fluid outlet becomes higher and the conditions for the catalyst reaction to occur are achieved. Therefore, the reaction components are decomposed with high efficiency and do not come out to the discharge side.
  • the reactor with such a structure is easy to get out at the start of the engine, and the exhaust gas temperature is low, which makes it difficult to treat with conventional catalyst components overnight. It is suitable as a companion overnight.
  • FIG. 10 shows a reactor according to the sixth embodiment of the present invention.
  • This reactor is a reactor integrated with a self-heat exchanger equipped with a heating element (G) with the structure shown in Fig. 7.
  • a filter (J) that can trap fine particles is used as a heat transfer element (J The structure is in close contact with the end face of BF).
  • this reactor by placing a filter (J) in the space (F) where the temperature is highest, carbon or high-boiling organic components that can be decomposed at high temperatures are removed from the fluid.
  • This is a self-regenerating filter trap that can be processed without increasing the temperature of the inlet / outlet without applying much heat energy.
  • Diesel engine Particulate matter (PM) in exhaust gas, especially solid carbon (soot) in it, can not be oxidized and removed promptly unless it exceeds 60 ° C.
  • the exhaust gas temperature is intermittent
  • there is a technology that oxidizes (PM) trapped in Phil and captured in the evening and regenerates the filter but the energy (fuel) required for this has become considerable.
  • this reactor has the advantage that the temperature at which PM oxidation occurs quickly can be obtained without applying much energy.
  • a PM oxidation catalyst containing Mo, V, etc. is supported on Phil Yuichi (J)
  • the temperature to be reached can be reduced to 500 ° C, 400 ° C, etc. It is also possible to lower the energy loss.
  • This reactor can be applied as a self-regenerating diesel particulate filter.
  • FIG. 11 shows a reactor according to a seventh embodiment of the present invention.
  • This reactor has a structure in which heating is carried out by catalytic reaction instead of providing the heating element (G) in the self-regenerative type filter trap described in Fig. 1 (b).
  • this reactor is provided with a filter (J) for capturing and removing fine particles on the end face of the heat transfer body (B F) on the side where the fluid flows.
  • this reactor the temperature in the filter (J) can be increased to a necessary level by adding as much catalytic reaction components as necessary to the fluid.
  • this reactor can be used as a self-regenerating fill trap that treats PM in diesel engine exhaust gas. Since the heating is performed by catalytic oxidation of the fuel, the heat energy utilization efficiency is higher than that through the heating element, so that it is more practical.
  • This reactor can also be used as a self-regenerating diesel particulate filter.
  • FIG. 12 shows a reactor according to the eighth embodiment of the present invention.
  • This reactor uses a porous material (K) having a filter function as the heat transfer body (BF) in the self-heat exchanger having the structure shown in Fig. 5, and the fluid of the heat transfer body (BF) flows around.
  • the space (F) at the end is eliminated and the space between the heat transfer body (BF) and the face (A,) is sealed.
  • the fluid entering from the inlet (D) passes through the heat transfer body wall, exits to the opposite surface, and is discharged from the outlet (D 5 ). Meanwhile, fine particles floating in the fluid are trapped on the surface of the heat transfer body.
  • a catalyst that promotes the catalytic oxidation reaction is supported on the heat transfer body (BF), and the reaction components are added to the fluid just before entering the reactor.
  • the heat transfer body / filter 1 itself is heated by the heat generated by the catalytic reaction.
  • the self-heat exchange channel structure similar to that in Fig. 5 raises the temperature at the lower part of the heat transfer body, which is realized in the lower part of the region where fine particles are decomposed and removed.
  • the degree of regeneration of the filter can be ascertained by means such as measuring the differential pressure across the reactor, and the heating degree of the reactor can be adjusted until it reaches the required level.
  • an alternating-sealed fine particle filter (Fig. 13; L is a porous wall having a filter function; M is a honeycomb-structured channel inlet / outlet). It is possible to obtain a fill area density similar to that of the alternately plugged sealant, and it is possible to regenerate the fill with less heat energy because of its self-heat exchange capability.
  • This reactor can also be used as a self-regenerative diesel particulate fill.
  • FIG. 14 shows the radiation heat according to the ninth embodiment of the present invention.
  • this radiant heat is applied to the combustion burner (N) in the space (F) where the fluid circulates and to the part of the wall that partitions the space (F) and the outside. It has a structure with a heat radiation plate (P) with a high heat radiation rate.
  • a gas containing a combustion oxidant such as air that reacts with fuel (0) is used as the fluid.
  • FIG. 15 shows the radiation effect according to the 10th embodiment of the present invention.
  • This radiant beam is a radiant beam that uses a catalytic reactor integrated with the self-heat exchanger in Fig. 8, and is part of the wall that separates the space (F) where the fluid circulates from the outside. It has a structure with a heat radiating plate (p) with high thermal conductivity and high heat emissivity.
  • a fluid containing a reaction component that reacts exothermically by the action of the catalyst is used.
  • an oxidation catalyst such as platinum is used as the catalyst, and a mixture of hydrocarbon and air is used as the fluid. It only has to be.
  • At least one type of structure having air permeability different from that of the heat transfer body (BF)- is provided in the gap portion of the bellows portion of the heat transfer body (BF). It is sandwiched between the top. This structure is made to play the role of a spacer.
  • Fig. 16 shows a structure in which a stainless steel mesh piece (m, m 5 ) that has almost the same shape as one bent surface of a bellows-type heat transfer body (BF) is used. BF) is sandwiched between all the voids. By sandwiching such a structure, the heat transfer surface spacing becomes uniform, the heat radiation in the gap of the bellows type heat transfer body (BF) is blocked, and the heat insulation in the flow path direction is increased. The heat transfer through the structure increases between adjacent heat transfer surfaces, the temperature in the direction perpendicular to the flow path becomes uniform, and the mechanical strength of the structure of the bellows heat transfer body (BF) increases. Effective, improving heat exchange performance and durability Can be raised.
  • the one with as large an opening ratio as possible that is, one with a large mesh interval (opening ratio) relative to the diameter of the wire wire used for the net.
  • the mesh direction is either square with respect to the ridge line (or valley line) of the heat transfer element (BF) as shown in Fig. 16, or diagonally as shown in Fig. 17 (a). Also good.
  • a wire mesh piece with a cut surface of the wire at the end instead of a wire mesh piece with a cut surface of the wire at the end, as shown in Fig. 17 (b), a wire-wire bent into a loop shape and processed into a wire mesh shape can be used. It is possible to prevent damage to the heat transfer body (BF) and the below-mentioned filler material at one end of the wire.
  • Table 4 shows a bellows-shaped transmission in which stainless steel foil with the same dimensions as the prototype No. 1 unit, ie, a thickness of 0.03 mm, a length of 1600 mm, and a width of 200 mm, is bent into 40 planes every 40 mm perpendicular to the length direction.
  • the thermal element (BF) an alumina-supported white metal catalyst is supported on both surfaces with a width of about 100 mm in the vicinity of the fluid wrapping side, and a plain weave stainless steel wire mesh with a 0.44 mm wire diameter
  • Self-heat exchange type catalytic reactor (prototype No. 3) with 39 structures with an open area of 73.9% squared in a 40 x 175 mm rectangle and a bellows-shaped gap. This shows the performance. In this case, the gap interval was about 1 mm.
  • VO the reaction continued in an auto-oxidative manner under the reaction conditions shown in Table 4.
  • the heat transfer area is about 2/3. Nevertheless, the heat exchange rate improved by more than 10% under the same flow rate condition, and in the case of toluene, the heat exchange rate reached 92% under the flow rate condition of 0.64 L / s.
  • V 0 C concentration which can continue catalytic combustion in an auto-oxidative manner, has become extremely small, and with toluene at the same flow rate, the reaction proceeds even at a low concentration of 0.023%.
  • a material having a filter function is formed into a bellows type heat transfer body (BF) using a spacer structure in the eighth embodiment.
  • a material with low structural strength which has been thought to be difficult to use as a heat transfer body until now, is also a bellows type heat transfer body ( BF) can be used.
  • Fig. 18 shows a bellows shape by combining a heat-resistant film Yuichi Cross (FC) with the structure (m, m 5 ), which has the function of capturing combustible fine particles such as particulate matter discharged from a diesel engine. It was used as a heat transfer body (BF) (self-heat exchanger-type Phil Yuichi trap). Folding one end of the filter cloth (FC) to increase the thickness (R in Fig.
  • FC heat-resistant film Yuichi Cross
  • Fig. 18 (b) is a front perspective view of this structure.
  • the fluid typically combustion exhaust gas
  • the fluid containing combustible particulates entering from (D) moves down the front gap where the spacer (m) is located and traps too much particulates. It passes through the filter cloth (FC) at the part with high air permeability that is not installed, flows upward through the gap on the back side where the spacer (m ') is located, and from the back side outlet (D') Discharged. During this time, self-heat exchange is performed between the forward side and the return side.
  • Fig. 19 (a) shows that not only is the thickness of the fill evening cross (FC) similar to that of Fig. 18 (a) folded to increase the thickness, but the other end is also folded to the opposite side to increase the thickness.
  • FIG. 18 (b) the seal material (s) shown in FIG. 18 (b) is unnecessary, and the structure as a self-heat exchange type filter trap can be simplified.
  • the fluid inlet (D) should be brought upward rather than the front side as before. Is also possible.
  • the outlet (D ') is on the back side as in Fig. 19 (a).
  • the fluid By setting the entrance at this position, the fluid easily flows evenly into the plurality of outward gaps of the bellows type heat transfer body (BF), so that the heat exchange performance and the particulate capturing function are improved.
  • BF bellows type heat transfer body
  • This modified example 3 is the one in which a functional material such as a catalyst, an adsorbent, a heat storage material, a fill material, etc. is sandwiched in the gap portion of the bellows portion of the heat transfer body (BF) in the second embodiment.
  • a functional material such as a catalyst, an adsorbent, a heat storage material, a fill material, etc.
  • the catalyst, the adsorbent, and the heat storage material are all heat transfer bodies (BF).
  • these functional materials are sandwiched between the heat transfer body gaps separately from the heat transfer body (BF). It is.
  • the first of the third modification is a structure in which the spacer structure used in the first modification carries functional materials such as a catalyst, an adsorbing material, and a heat storage material.
  • the second modification 3 uses a structure that combines a role as a spacer and a functional material. For example, it is possible to use a technique in which a pellet type catalyst having a substantially uniform particle size and appropriate mechanical strength is further packed in the gap.
  • the third modification 3 has a structure in which a functional material is sandwiched in addition to the spacer structure.
  • FIG. 20 shows a third example of the third modification.
  • the neighborhood is shown.
  • a belt-shaped heat-resistant cloth (CL) carrying a functional material such as a catalyst is further sandwiched between the heat transfer body (BF) and the spacer (m ').
  • Table 5 shows the self-heat exchanger with the same size and the same mesh structure (m, m ') as the prototype No. 3, except that the catalyst was not supported on the heat transfer body (BF).
  • Self-heat exchange type catalytic reactor prototype No. 4 with a heat-resistant cloth (CL) carrying a platinum catalyst that is 1600 mm long and 40 mm wide and sandwiched only on the return path near the end of the fluid wrap. The performance is shown. Compared to the results in Table 4, the heat exchange rate under the same conditions is improved by about 2%.
  • Heat exchange rate [(folded part temperature-inlet temperature) bar folded part temperature + outlet temperature-inlet temperature) 1 X 100 Prototype No. 4 unit with a filter function and a carbon oxidation catalyst A heat resistant cloth (CL) made of mullite that supports vanadium oxide is brought into close contact with the end surface of the heat transfer body (BF), and the direction of the gas flow path is opposite to that shown in Table 5, that is, the catalyst support is Prototype No. 5 was made to be on the outbound side, and the performance as a self-heat exchange type film evening trap was verified.
  • the fluid used here is room temperature air with a force of 0.1 to 1 mg / "L suspended in a bomb, and simulates diesel exhaust.
  • This modified example 4 is a self-heat exchange type heat exchanger having the same function as that of the second embodiment, wherein a part of the heat transfer body surface is opened, and this is used as a fluid wraparound part.
  • the fluid wraparound part (F) of the self-heat exchange type heat exchanger described in the example uses the end face formed by bending the heat transfer body (BF) in the shape of a bellows.
  • a first modification of the fourth modification is that a part of the thermal body edge is cut to arbitrarily form the boundary around which the fluid flows and the shape of the space.
  • Figure 21 shows a specific example.
  • a part of the heat transfer body (BF) is cut into a trapezoidal shape on one bent surface of the bellows type heat transfer body (BF) to form a fluid wrap-around part (Q).
  • Other faces may be cut together, or the location may be shifted, or the cut shape may be changed to a triangle, rectangle, or other shape.
  • the fluid wrap-around space can be formed without providing a gap between the heat transfer body (BF) and the sealing material (s 5 ).
  • the second of the fourth modification is that, in the second embodiment, an opening having a closed periphery is provided on each bent surface of the heat transfer body (BF), and this is used as a fluid wraparound.
  • An example is shown in Fig. 21 (b).
  • This is a circular opening (S) provided at a location away from the fluid inlet / outlet of each folded surface of the bellows type heat transfer body (BF).
  • the fundamental difference from Fig. 21 (a) is that the opening does not overlap the end of the heat transfer element (BF) and occupies a closed planar area.
  • Modification 5 is a combination of a non-breathable heat transfer body (BF), a spacer structure, and a fill evening cross. That is, in Modification 1 in which a heat transfer body (BF) and a spacer structure (m, m, for example, a wire mesh) are combined, The structure is further extended from the end face of the fluid wrapping part of the heat transfer body (BF), and a Phil evening cross (FC) is formed in the shape of a bellows around it.
  • BF non-breathable heat transfer body
  • spacer structure m, m, for example, a wire mesh
  • FIG. 22 shows an example of the fifth modification.
  • a rectangular spacer (m ') is sandwiched on the return path side of the non-breathable heat transfer body (BF).
  • fill the evening cross which is formed in a bellows shape and folded at the end so as to cover a part of the heat transfer body (BF) and the protruding part of the spacer (m '). Cover with (FC).
  • the spacer (m) is sandwiched between the forward air gap so that it does not overlap the R part and spans both the fill-cross (FC) and the heat transfer body (BF).
  • FIG. 22 (b) is a cross-sectional view showing the positional relationship of these components more clearly, taken from a plane perpendicular to the heat transfer surface. Since the Phil Yuichi Cross (FC) extends from the end face of the heat transfer body (BF) and the tip is sealed with the folded part, the fluid passes through the Phil Yuichi Cross (FC) and the spacer ( It has a structure that flows to the return side with m ') in between, and as a result, it functions as a self-heat exchanger with a fill evening trap. Alternatively, the end of the return-side gap may be sealed by reversing the direction of the Phil Yuichi Cross (FC) (right of Fig. 22 (b)).
  • This modified example 6 is a self-heat exchange type filter that combines a heat transfer body (BF) having the shape of modified example 4, a spacer structure (m, m 5 ), and a filter cloth. It is.
  • FIG. 23 shows two examples of Modification 6.
  • a notch as shown in Fig. 2 (a) is made at the end of the heat transfer body, and the filter cloth (FC ) And the spacer structure (m, m 5 ), the ventilation part (Q) has the function of filling even if the outward spacer (m) does not protrude from the end of the heat transfer body. ) Is formed.
  • the heat transfer body (BF) and the spacer (m) The end faces can be aligned, making it easy to assemble as a Phil evening trap.
  • the heat exchanger according to the present invention the reactor using the heat exchanger, and the radiation heater have a large heat exchange surface within a limited capacity and are relatively easy to manufacture. Since the exchange efficiency is dramatically improved, this heat exchanger is a self-heat exchange type, and a self-heat exchange reactor that combines a self-heat exchanger with a catalytic reaction or combustion burner, and energy saving. It is suitable for use in the field of thermal engineering to save energy consumption and environmental technology for the purpose of purifying exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Air Supply (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

An autothermal-type heat exchanger where larger heat transmission area is achievable in spite of a limited capacity, relatively easy to produce, and provides vast improvement in heat exchange efficiency. A heat exchanger having a partition wall-type heat transmission body (BF) for partitioning a high temperature fluid (1) and a low temperature fluid (2) is characterized as follows. The heat transmission body (BF) has a bellows shape and formed such that both fluids (1, 2) flow in gaps in the bellows portion of the heat transmission body (BF) in the directions opposed to each other along ridge lines or valley lines of the bellows portion. At one end or both ends of the heat transmission body (BF) at which one end or both ends the ridge lines of the bellows portion intersect, there is provided a flow-around space portion(s) (F) for causing one of the fluids to flow around into the gaps of the bellows portion on the opposite side. Heat is exchanged such that one of the fluids that flow around into the opposite side through the flow-around portion(s) (F) becomes the other fluid whose heat is to be exchanged.

Description

明 細 書 熱交換器並びにそれを用いた反応器及び輻射ヒー夕 技術分野  Technical description Heat exchanger and reactor and radiation heater using the same
本発明は、 熱交換器並びにそれを用いた反応器及び輻射ヒ一夕に関し、 特にェ ネルギ一消費を節約するための熱工学分野、 及び大気ゃ排ガス浄化を目的とする 環境技術分野に適用して好適な技術に関するものである。 背景技術  The present invention relates to a heat exchanger, a reactor using the heat exchanger, and radiation heat, and is particularly applied to the field of thermal engineering for saving energy consumption and the environmental technology field for the purpose of purifying exhaust gas from the atmosphere. And a suitable technique. Background art
隔壁型熱交換器の性能を向上させる方法のひとつとして、 伝熱体 (隔壁) の面 積を限られた空間容量の中でできる限り大きくする試みが多くなされている。 伝 熱体の形状を蛇腹型とすることはその方法のひとつとして典型的なものである。 また、 性能を向上する他の方法として、 2つの流体の流れ方向を、 伝熱面を挟ん で共に同方向に向かう並流、 あるいは互いに反対方向に向かう向流にそろえるこ とも行われている。 このような流れを実現するため、 多管円筒式構造や、 多数の プレス成形された伝熱板を重ねたプレート式構造、 スパイラル形式などの熱交換 器が作られている。  As one of the methods for improving the performance of the bulkhead heat exchanger, many attempts have been made to increase the area of the heat transfer body (partition) as much as possible within the limited space capacity. Making the shape of the heat transfer body bellows is a typical method. Another way to improve performance is to align the flow directions of the two fluids so that they flow in the same direction across the heat transfer surface, or in opposite directions. In order to realize such a flow, heat exchangers such as a multi-tubular cylindrical structure, a plate structure in which a large number of press-formed heat transfer plates are stacked, and a spiral type have been made.
一方、 1つの流体について上流と下流の間で熱交換を行うと、 余分な熱ェネル ギ一をあまり消費することなく、 流れの一部分においてだけ温度を変化させるこ とができ、 様々な化学反応や熱処理プロセスにおける熱エネルギーロスを小さく することができる。 さらに、 このような自己熱交換器と触媒あるいはバーナー燃 焼を一体化したものとして、 スパイラル型構造の自己熱交換器を利用した方式 (文献:第 3 9回燃焼シンポジウム、 発表番号 C 1 4 5、 平成 1 3年 1 1月 2 1 日〜 1 1月 2 3日、 横浜、 参照。)、 回転蓄熱型熱交換器を利用した方式 (「燃料 消費 5 0 %削減、 エネルギー環境設計ガスバーナー」 日経産業新閬、 平成 1 4年 6月 2 5日、 参照。)、 流路方向を一定時間ごとに切り替える蓄熱室式熱交換器 を利用した方式 (特開 2 0 0 1 - 3 4 9 5 2 4号公報参照。 文献:第 3 9回燃焼 シンポジウム、 発表番号 C 1 4 4、 平成 1 3年 1 1月 2 1日〜 1 1月 2 3日、 横 浜、 参照。) などが知られている。 On the other hand, if heat is exchanged between upstream and downstream for one fluid, the temperature can be changed only in a part of the flow without consuming excessive heat energy, and various chemical reactions and Thermal energy loss in the heat treatment process can be reduced. Furthermore, a system that uses a self-heat exchanger with a spiral structure as an integration of such a self-heat exchanger and catalyst or burner combustion (Reference: 39th Combustion Symposium, Publication Number C 1 4 5 , 1 January 1 1-1 January 2 3, 1991, Yokohama, and a method using a rotary heat storage type heat exchanger (“50% reduction in fuel consumption, energy environment design gas burner”) Nikkei Sangyo, see June 25, Heisei 14).) Heat storage chamber type heat exchanger that switches the flow direction at regular intervals. (See JP 2 0 0 1-3 4 9 5 2 4 publication.) Literature: The 9th Combustion Symposium, Presentation Number C 1 4 4, 2001 1 January 2 1-1 January 23rd, see Yokohama, etc.).
しかしながら、 これら各種方式の熱交換器は、 依然、 熱交換面積が十分ではな く、 製作も複雑であるという難点があった。 また、 熱交換効率やエネルギー消費 の点でも改善の余地があつた。  However, these various types of heat exchangers still have the disadvantages that the heat exchange area is not sufficient and the manufacture is complicated. There was also room for improvement in terms of heat exchange efficiency and energy consumption.
本発明は、 このような従来技術の実情に鑑みてなされたもので、 限られた容量 の中でより大きな伝熱面積が得られ、 かつ、 製作が比較的容易であり、 熱交換効 率の飛躍的な向上をもたらすことができる熱交換器並びにそれを用いた反応器及 び輻射ヒ一夕を提供することをその課題とする。 発明の開示  The present invention has been made in view of the actual situation of the prior art, and can provide a larger heat transfer area within a limited capacity, is relatively easy to manufacture, and has a high heat exchange efficiency. It is an object of the present invention to provide a heat exchanger capable of bringing about a dramatic improvement, a reactor using the heat exchanger, and a radiant beam. Disclosure of the invention
本発明によれば、 上記課題は下記の技術的手段により解決される。  According to the present invention, the above problem is solved by the following technical means.
( 1 ) 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交換器に おいて、 該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹部分の 空隙部を稜線方向又は谷線方向に沿って並流又は向流するように構成されている ことを特徴とする熱交換器。  (1) In a heat exchanger having a partition-type heat transfer body for separating a high-temperature fluid and a low-temperature fluid, the heat transfer body has a bellows shape, and both fluids are mainly in the bellows portion of the heat transfer body. It is comprised so that a space | gap part may flow in parallel or countercurrent along a ridgeline direction or a valley line direction. The heat exchanger characterized by the above-mentioned.
( 2 ) 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交換器に おいて、 該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹部分の 空隙部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱 体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝熱体の反対 側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部を有し、 該流体 回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すべき他方の流体と なつて熱交換を行うことを特徴とする自己熱交換型熱交換器。  (2) In a heat exchanger having a partition type heat transfer body for separating a high-temperature fluid and a low-temperature fluid, the heat transfer body has a bellows shape, and both fluids are mainly in the bellows portion of the heat transfer body. The gap is configured to flow in the ridge line direction or the valley line direction, and one fluid is opposite to the heat transfer body at one end or both ends intersecting the ridge line of the bellows portion of the heat transfer body. A fluid wrapping space portion for wrapping around the gap portion of the bellows portion on the side, and the fluid circulated to the opposite side through the fluid wrapping space portion exchanges heat with the other fluid to be heat exchanged. A self-heat exchange type heat exchanger characterized by performing.
( 3 ) ( a ) 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交 換器において、 該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹 部分の空隙部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝熱体 の反^側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部を有し、 該^体回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すべき他方の 流体となって熱交換を行う自己熱交換型熱交換器と、 (3) (a) In a heat exchanger having a partition type heat transfer body for separating a high temperature fluid and a low temperature fluid, the heat transfer body has a bellows shape, and both fluids are mainly bellows of the heat transfer body. Configured to counter-flow along the ridge line direction or the valley line direction of the gap of the part, and At one or both ends that intersect the ridgeline of the bellows portion of the heat transfer body, there is a fluid wrapping space for allowing one of the fluids to wrap around the gap of the bellows portion on the opposite side of the heat transfer body, ^ The self-heat exchange heat exchanger that exchanges heat by the fluid that circulates to the opposite side through the body wrapping space becomes the other fluid to be heat-exchanged,
( b ) 該熱交換器の該流体回り込み空間部に設けられた発熱体又は吸熱体とか らなることを特徴とする反応器。  (b) A reactor comprising a heating element or an endothermic body provided in the fluid circulation space of the heat exchanger.
( 4 ) 該熱交換器の該伝熱体の全表面又は該流体回り込み空間部近傍の表面に、 発熱反応を促す触媒を担持させ、 かつ、 流体として該反応成分を含むものを用い ることを特徴とする前記 (3 ) に記載の反応器。  (4) A catalyst that promotes an exothermic reaction is supported on the entire surface of the heat transfer body of the heat exchanger or the surface in the vicinity of the fluid wrapping space, and the fluid containing the reaction component is used. The reactor according to (3), characterized in that it is characterized in that
( 5 ) 該熱交換器の該伝熱体として蓄熱性のあるものを用い、 該熱交換器の該 伝熱体の全表面、 又は該流体の入り出口に近い側の領域表面に、 発熱反応を促す 触媒を担持させるとともに、 該熱交換器の該伝熱体の全表面、 又は該流体回り込 み空間部近傍の表面に、 反応成分を低温で吸着し高温で離脱させる吸着剤を担持 させ、 かつ、 流体として該反応成分を含むものを用いることを特徴とする前記 (5) An exothermic reaction is used on the entire surface of the heat exchanger of the heat exchanger or on the surface of the region near the inlet / outlet of the fluid. And a catalyst that adsorbs reaction components at a low temperature and desorbs them at a high temperature is supported on the entire surface of the heat transfer body of the heat exchanger or in the vicinity of the fluid wrapping space. And the fluid containing the reaction component is used as the fluid
( 3 ) に記載の反応器。 (3) Reactor as described in.
( 6 ) 該熱交換器の該伝熱体における流体が回り込む側の端面に、 微粒子を捕 捉、 除去するための微粒子除去用フィルタ一を密着配置させたことを特徴とする 前記 ( 3 ) に記載の反応器。  (6) The above-mentioned (3) is characterized in that a particulate removal filter for capturing and removing particulates is disposed in close contact with the end surface of the heat exchanger on the side where the fluid circulates. The reactor described.
( 7 ) 該熱交換器の該伝熱体における流体が回.り込む側の端面に、 微粒子を捕 捉、 除去するための微粒子除去用フィル夕一を密着配置させたことを特徴とする 前記 (4 ) に記載の反応器。  (7) A fine particle removing filter for capturing and removing fine particles is disposed in close contact with an end surface of the heat exchanger on the side where the fluid in the heat transfer body circulates. (4) The reactor described in.
( 8 ) 該伝熱体が、 気体透過及び微粒子捕捉が可能なフィルター機能を備えた ものであり、 かつ、 該伝熱体の流体が回り込む流体回り込み部を設けないことを 特徴とする前記 (3 ) 又は (4 ) に記載の反応器。  (8) The heat transfer body is provided with a filter function capable of gas permeation and particulate trapping, and is not provided with a fluid wrap-around portion through which the fluid of the heat transfer body flows. ) Or the reactor according to (4).
( 9 ) ( a ) 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交 換器において、 該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹 部分の空隙部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝熱 体の反対側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部を有し、 該流体回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すべき他方 の流体となって熱交換を行う自己熱交換型熱交換器と、 (9) (a) In a heat exchanger having a partition type heat transfer body for separating a high temperature fluid and a low temperature fluid, the heat transfer body has a bellows shape, and both fluids are mainly bellows of the heat transfer body. Configured to counter-flow along the ridge line direction or the valley line direction of the gap of the part, and A fluid wrapping space for allowing one fluid to wrap around the gap of the bellows portion on the opposite side of the heat transfer body at one end or both ends intersecting the ridge line of the bellows portion of the heat transfer body; A self-heat exchange type heat exchanger in which the fluid that has flowed to the opposite side through the wraparound space serves as the other fluid to be exchanged for heat exchange;
( b ) 該熱交換器の該流体回り込み空間部に設置された燃焼パーナ一とからな り、  (b) a combustion pan installed in the fluid wrapping space of the heat exchanger;
該燃焼バーナーを設置した該流体回り込み空間部と外部とを隔てる壁の一部を、 熱輻射板で構成したことを特徴とする輻射ヒー夕。  A radiation heater characterized in that a part of the wall separating the fluid wraparound space where the combustion burner is installed and the outside is constituted by a heat radiation plate.
( 1 0 ) ( a ) 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱 交換器において、 該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇 腹部分の空隙部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝熱体 の反対側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部を有し、 該流体回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すベき他方の 流体となって熱交換を行う自己熱交換型熱交換器と、  (10) (a) In a heat exchanger having a partition type heat transfer body for separating a high temperature fluid and a low temperature fluid, the heat transfer body has a bellows shape, and both fluids are mainly snakes of the heat transfer body. It is configured so as to counter-flow along the ridgeline direction or the valley line direction in the gap portion of the abdominal portion, and one fluid is transferred to the one end portion or both end portions that intersect the ridgeline of the bellows portion of the heat transfer body. It has a fluid wrapping space for wrapping around the gap of the bellows part on the opposite side of the body, and the fluid that circulates to the opposite side through the fluid wrapping space becomes the other fluid for heat exchange. A self-heat exchange heat exchanger that exchanges heat,
( b ) 該熱交換器の該伝熱体の全表面又は該流体回り込み空間部近傍の表面に 担持させた、 発熱反応を促す触媒とからなり、 該流体回り込み空間部と外部とを 隔てる壁の一部を、 熱輻射板で構成し、 かつ、 流体として該反応成分を含むもの を用いることを特徴とする輻射ヒー夕。  (b) a catalyst that promotes an exothermic reaction, supported on the entire surface of the heat transfer body of the heat exchanger or in the vicinity of the fluid wrapping space, and that separates the fluid wrapping space from the outside A radiation heater comprising a part comprising a heat radiation plate and containing the reaction component as a fluid.
( 1 1 ) 該伝熱体の蛇腹部分の空隙部に、 該伝熱体とは別個の通気性を有する 構造体を少なくとも 1種類以上挟んだことを特徴とする前記 (2 ) に記載の自己 熱交換型熱交換器。  (11) The self-conducting body as described in (2) above, wherein at least one type of air-permeable structure separate from the heat transfer body is sandwiched in the space of the bellows portion of the heat transfer body. Heat exchange type heat exchanger.
( 1 2 ) 該通気性を有する構造体が、 スぺーサ一としての役割を果たすもので あることを特徴とする前記 ( 1 1 ) に記載の自己熱交換型熱交換器。  (1 2) The self-heat exchange type heat exchanger as described in (1) above, wherein the air-permeable structure plays a role as a spacer.
( 1 3 ) 該伝熱体の蛇腹部分の空隙部に、 触媒、 吸着剤、 蓄熱材、 フィル夕一 材などの機能性材料を挟んだことを特徴とする前記 (2 ) に記載の自己熱交換型 熱交換器。 ( 14) 伝熱体面の一部を開口し、 そこを流体回り込み部分としたことを特徴 とする前記 (2) に記載の自己熱交換型熱交換器。 (1 3) The self-heating device as described in (2) above, wherein a functional material such as a catalyst, an adsorbent, a heat storage material, or a fill material is sandwiched in the gap of the bellows portion of the heat transfer body. Exchangeable heat exchanger. (14) The self-heat exchange type heat exchanger as described in (2) above, wherein a part of the surface of the heat transfer body is opened and used as a fluid wraparound part.
( 15) 該伝熱体の端部の一部分を切り取り、 そこを流体回り込み部としたこ とを特徴とする前記 ( 14) に記載の自己熱交換型熱交換器。  (15) The self-heat exchange heat exchanger according to (14), wherein a part of the end portion of the heat transfer body is cut out and used as a fluid wrap-around portion.
( 16) 伝熱体面の一部に周囲が閉じた 1又は複数の開口部を設け、 そこを流 体回り込み部としたことを特徴とする前記 ( 14) に記載の自 3熱交換型熱交換  (16) The self-three heat exchange type heat exchange according to (14) above, wherein one or more openings having a closed periphery are provided in a part of the heat transfer body surface, and this is used as a fluid wraparound portion.
( 17) 該伝熱体として通気性のないものを用い、 該伝熱体とスぺ一サ一用構 造体とフィル夕一クロスとを組み合わせて構成されることを特徴とする前記 ( 1 2) に記載の自己熱交換型熱交換器。 (17) The heat transfer body is a non-breathable heat transfer body, and is configured by combining the heat transfer body, a spacer structure, and a fill evening cloth. The self-heat exchange type heat exchanger as described in 2).
( 18) 該構造体を該伝熱体の流体回り込み部端面からさらに延長して突出さ せ、 その回りにフィル夕一クロスを蛇腹状に形成したことを特徴とする前記 ( 1 7) に記載の自己熱交換型熱交換器。  (18) The structure according to (17), wherein the structure is further extended and protruded from the end surface of the fluid wrap portion of the heat transfer body, and a fill evening cross is formed around the end of the structure. Self heat exchange type heat exchanger.
( 19) 伝熱体面の一部を開口し、 そこを流体回り込み部分とするか、 又は該 伝熱体の端部の一部分を切り取り、 そこを流体回り込み部としたことを特徴とす る前記 ( 17) に記載の自己熱交換型熱交換器。  (19) The above-mentioned (1) characterized in that a part of the heat transfer body surface is opened and used as a fluid wrap-around part, or a part of the end of the heat transfer body is cut out and used as a fluid wrap-around part. The self-heat exchange type heat exchanger as described in 17).
(20) フィル夕一機能を持つ該伝熱体がスぺ一サ一用構造体を用いて蛇腹形 に保持、 形成されていることを特徴とする前記 (8) に記載の反応器。 図面の簡単な説明  (20) The reactor according to (8), wherein the heat transfer body having a fill function is held and formed in a bellows shape using a spacer structure. Brief Description of Drawings
第 1図は、 本発明による第 1実施例の熱交換器を示す立体透視図である。  FIG. 1 is a three-dimensional perspective view showing a heat exchanger according to a first embodiment of the present invention.
第 2図は、 (a) は第 1図の正面透視図、 (b) 及び (c) は変形例の正面透 視図である。  2 (a) is a front perspective view of FIG. 1, and (b) and (c) are front perspective views of modifications.
第 3図は、 第 1実施例の別例を示す図である。  FIG. 3 is a diagram showing another example of the first embodiment.
第 4図は、 第 1実施例の別例を示す図である。  FIG. 4 is a diagram showing another example of the first embodiment.
第 5図は、 本発明による第 2実施例に係る熱交換器を示す斜視図である。  FIG. 5 is a perspective view showing a heat exchanger according to a second embodiment of the present invention.
第 6図は、 (a) は第 5図の正面透視図、 (b) 及び (c) は別例の正面透視 図である。 . 6 (a) is a front perspective view of FIG. 5, and (b) and (c) are other front perspective views. FIG. .
第 Ί図は、 本発明による自己熱交換器をべ一スとした第 3実施例の反応器を示 す正面透視図である。  FIG. 4 is a front perspective view showing the reactor of the third embodiment based on the self-heat exchanger according to the present invention.
第 8図は、 本発明による自己熱交換器をベースとした第 4実施例の反応器を示 す正面透視図である。 - 第 9図は、 本発明による自己熱交換器をベースとした第 5実施例の反応器を示 す正面透視図である。  FIG. 8 is a front perspective view showing the reactor of the fourth embodiment based on the self-heat exchanger according to the present invention. FIG. 9 is a front perspective view showing the reactor of the fifth embodiment based on the self-heat exchanger according to the present invention.
第 1 0図は、 本発明による自己熱交換器をベースとした第 6実施例の反応器を 示す正面透視図である。  FIG. 10 is a front perspective view showing the reactor of the sixth embodiment based on the self-heat exchanger according to the present invention.
第 1 1図は、 本発明による自己熱交換器をベースとした第 7実施例の反応器を 示す正面透視図である。  FIG. 11 is a front perspective view showing the reactor of the seventh embodiment based on the self-heat exchanger according to the present invention.
第 1 2図は、 本発明による自己熱交換器をベースとした第 8実施例の反応器を 示す正面透視図である。  FIG. 12 is a front perspective view showing the reactor of the eighth embodiment based on the self-heat exchanger according to the present invention.
第 1 3図は、 交互封じ型の微粒子フィル夕一の説明図である。  FIG. 13 is an explanatory diagram of an alternate-enclosed particulate filter.
第 1 4図は、 本発明による自己熱交換器をべ一スとした第 9実施例の輻射ヒ一 夕の正面透視図である。  FIG. 14 is a front perspective view of the radiation spot of the ninth embodiment based on the self-heat exchanger according to the present invention.
第 1 5図は、 本発明による自己熱交換器をベースとした第 1 0実施例の輻射ヒ 一夕の正面透視図である。  FIG. 15 is a front perspective view of the radiant light of the 10th embodiment based on the self-heat exchanger according to the present invention.
第 1 6図は、 変形例 1の説明図である。  FIG. 16 is an explanatory diagram of the first modification.
第 1 7図は、 変形例 1の説明図である。  FIG. 17 is an explanatory diagram of the first modification.
第 1 8図は、 変形例 2の説明図である。  FIG. 18 is an explanatory diagram of the second modification.
第 1 9図は、 変形例 2の説明図である。  FIG. 19 is an explanatory diagram of Modification 2.
第 2 0図は、 変形例 3の説明図である。  FIG. 20 is an explanatory diagram of Modification 3.
第 2 1図は、 変形例 4の説明図である。  FIG. 21 is an explanatory diagram of Modification 4.
第 2 2図は、 変形例 5の説明図である。  FIG. 22 is an explanatory diagram of Modification 5.
第 2 3図は、 変形例 6の説明図である。 発明を実施するための最良の形態 以下、 本発明の実施の形態を好ましい実施例に基づいて説明する。 FIG. 23 is an explanatory diagram of Modification 6. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described based on preferred examples.
(第 1実施例)  (First example)
第 1図に本発明の第 1実施例に係る熱交換器を立体透視斜視図で示す。  FIG. 1 shows a three-dimensional perspective view of a heat exchanger according to a first embodiment of the present invention.
本実施例の熱交換器は、 蛇腹型伝熱体 (BF) を有する。 この蛇腹型伝熱体 (BF) は、 高温流体 1と低温流体 2又は 2, を隔てる隔壁が蛇腹型 (ベローズ 型あるいはアコーディオン型) 構造となっている。 蛇腹型伝熱体 (BF) の蛇腹 部分の稜線と交わる両端面 (A及び Α') は、 当該熱交換器の上下部壁とシール 材 (図示せず) 等を介して密着させることによりシールされている。 また、 蛇腹 部分の稜線と平行な伝熱体 (BF) の両端部 (a及び a') は、 当該熱交換器の 両側面を構成する側壁 (C、 C) と溶接あるいはシール材 (図示せず) を介し て密着させることによりシールされている。 また、 伝熱体 (BF) の稜線と相対 する熱交換器の前後側面 (B及び Β') については、 伝熱体 (BF) の稜線部と 容器側面 (Β及び Β') の間隔が蛇腹のピッチに比べて充分小さくなつており、 さらに 2流体の出入り口 (D, D'、 Ε, Ε') が、 伝熱体 (BF) の稜 ί泉と相 対する前後側面 (Β及び Β') の上下両端近くに設けられている。  The heat exchanger of this example has a bellows type heat transfer body (BF). This bellows type heat transfer body (BF) has a bellows type (bellows type or accordion type) structure that separates the high temperature fluid 1 from the low temperature fluid 2 or 2. Both end faces (A and Α ') intersecting the ridgeline of the bellows portion of the bellows type heat transfer body (BF) are sealed by closely contacting the upper and lower walls of the heat exchanger via a sealing material (not shown). Has been. In addition, both ends (a and a ') of the heat transfer body (BF) parallel to the ridgeline of the bellows portion are welded or sealed (not shown) with the side walls (C, C) constituting both sides of the heat exchanger. It is sealed by bringing it into close contact with each other. In addition, for the front and rear side faces (B and Β ') of the heat exchanger facing the ridge line of the heat transfer body (BF), the distance between the ridge line part of the heat transfer body (BF) and the side face of the container (Β and Β') is bellows. The two fluid outlets (D, D ', Ε, Ε') are front and back sides (前後 and Β ') relative to the ridge spring of the heat transfer body (BF). It is provided near both upper and lower ends.
上記のような構造をとることにより、 前面及び背面の入り口から入つた温度の 異なる 2つの流体が、 蛇腹型伝熱体 (BF) を隔ててそれそれの空隙部を蛇腹の 稜線方向に、 互いに並流 (流れ 1及び 2) あるいは向流 (1及び 2,) すること が実現できる。 また、 伝熱体を蛇腹型構造とすることにより、 限られた容量の中 で大きな伝熱面積が得られる。 また、 蛇腹型伝熱体はその製作が比較的容易であ り、 熱交換効率が飛躍的に向上する。  By adopting the structure as described above, two fluids entering at the front and back entrances with different temperatures are separated from each other by the bellows type heat transfer body (BF) and the gaps in the direction of the bellows ridgeline. Cocurrent (flow 1 and 2) or countercurrent (1 and 2,) can be realized. In addition, by using a bellows type heat transfer body, a large heat transfer area can be obtained within a limited capacity. In addition, the bellows type heat transfer body is relatively easy to manufacture, and the heat exchange efficiency is dramatically improved.
伝熱体 (BF) の断面形状としてここでは三角波型を例示したが、 これに限定 されるものではなく、 波型や稜線部だけ半円形になった平板型でもよい。 また、 伝熱体 (BF) としては、 箔状ステンレスを折り曲げて形づくつたものや、 焼成 前の板状のセラミック材を蛇腹型に成形した後に焼成したものでもよい。 また、 外部からの圧縮力による蛇腹型伝熱体の破損や変形を防ぐ方法として、 上記の箔 状ステンレスや焼成前の板状セラミック表面に凹凸をつけたり、 波形に加工した 板をその波の稜線と垂直あるいは平行でない方向で折り曲げて蛇腹型として、 隣 り合う蛇腹面が互いに接するようにすればよい。 Although the triangular wave shape is exemplified here as the cross-sectional shape of the heat transfer body (BF), the shape is not limited to this, and the wave shape or a flat plate shape in which only the ridge portion is semicircular may be used. In addition, the heat transfer body (BF) may be formed by bending a foil-like stainless steel or by firing a plate-shaped ceramic material before firing into a bellows shape. Also, As a method to prevent damage and deformation of the bellows type heat transfer body due to external compressive force, the foil-like stainless steel or the plate-like ceramic surface before firing is made uneven or the corrugated plate is perpendicular to the ridgeline of the wave Alternatively, it may be bent in a non-parallel direction to form a bellows type so that adjacent bellow surfaces touch each other.
第 2図 (a) は、 第 1図で示した構造を流体 1の出入り口側から見た正面透視 図である。 D、 Eは第 1図と同じ流体 1の出入り口である。 それぞれの裏側に流 体 2の出入り口 D'、 Ε' が設けられている。 また、 b、 b' は、 それそれ正面 から見た蛇腹型伝熱体 (BF) の稜線及び谷線である。 蛇腹型伝熱体 (BF) の 全体形状についても、 ここで示したような直方体に限定されず、 たとえば第 2図 (b) に示すように、 流体の流入出部分を扇子のように広げて、 この部分の流通 抵抗を小さくする形としてもよい。 また、 第 2図 (c) に示すように蛇腹型伝熱 体全体を扇子型としてもよい。 このようにすることにより流体の流速を流れに沿 つて変化させることができ、 より効率的な熱交換を達成できる場合もある。  FIG. 2 (a) is a front perspective view of the structure shown in FIG. D and E are the same fluid 1 entrance as Fig.1. On the back side of each, there are entrances D 'and Ε' for fluid 2. B and b 'are the ridge and valley lines of the bellows type heat transfer body (BF) as seen from the front. The overall shape of the bellows-type heat transfer body (BF) is not limited to the rectangular parallelepiped as shown here. For example, as shown in Fig. 2 (b), the fluid inflow / outflow part is expanded like a fan. The distribution resistance of this part may be reduced. Further, as shown in FIG. 2 (c), the entire bellows type heat transfer body may be a fan type. By doing so, the flow velocity of the fluid can be changed along the flow, and in some cases, more efficient heat exchange can be achieved.
さらに、 第 2図 (c) の形状を円周方向に一周させた第 3図のような形態とす ることもできる。 この場合、 稜線と平行な伝熱体 (BF) の端部を互いに溶接あ るいはシール材を介して密着させるなどの手段によりシールする。 第 3図中の各 記号は第 1図と対応した各部分を示している。 D, E, D', E' は第 1図と同 様に、 それぞれ流体 1, 2 (2 ') の出入り口であり、 流体 2の方向を変えるこ とにより並流 (2) にも向流 (2') にもなる。 この構造では、 外内筒面 A、 A 5 でのシールが必要である。 ただし、 このような円筒状とすることにより蛇腹の 稜線と平行な両端部 (第 1図の a及び a') は消失する。 面 B及び B' について は第 1図の場合と同じく、 伝熱 (BF) の稜線部と容器側面の間隔が蛇腹のピッ チに比べて充分小さければよく、 シールの必要はない。 Furthermore, the configuration shown in FIG. 3 may be formed by making the shape of FIG. 2 (c) round in the circumferential direction. In this case, the end portions of the heat transfer body (BF) parallel to the ridge line are sealed by means such as welding to each other or using a sealing material. The symbols in Fig. 3 indicate the parts corresponding to Fig. 1. D, E, D ', and E' are the inlets and outlets of fluids 1 and 2 (2 '), respectively, as shown in Fig. 1. By changing the direction of fluid 2, countercurrent flow (2) is also countercurrent. (2 ') In this structure, it is necessary to seal outside the cylinder surface A, A 5. However, by adopting such a cylindrical shape, both ends (a and a 'in Fig. 1) parallel to the ridgeline of the bellows disappear. For surfaces B and B ', as in Fig. 1, the distance between the heat transfer (BF) ridge and the side of the container need only be sufficiently smaller than the bellows pitch, and sealing is not necessary.
また、 同じく円筒状であるが、 蛇腹型伝熱体を第 4図に示すように配置した構 造も可能である。 第 4図中の各記号も第 1図と対応した各部分を示している。 こ の場合、 伝熱体 (BF) は外筒 Bと内筒 B' に挟まれた空間内に置かれる。 伝熱 体 (BF) の稜線と垂直な端面 (A及び Α') において、 それそれの容器面と伝 熱体 (BF) とをシ一ル材を介して密着させるなどの手段によりシールする。 ま た、 伝熱体 (BF) の稜線と平行する両端部については、 互いに完全に密着させ るか溶接して、 流体が伝熱体 (BF) の反対面にリークしないようにシールする 必要はあるが、 第 3図の構造の場合と同様に、 この部分での容器壁とのシール部 は消失し、 不要になる。 一方、 B, B' 面においては、 第 1図の場合と同様に、 伝熱体 (BF) の稜線と各面との距離がそれぞれの面における蛇腹のピッチより 充分小さければよく、 シールの必要はない。 Although it is also cylindrical, a structure in which bellows type heat transfer bodies are arranged as shown in Fig. 4 is also possible. Each symbol in FIG. 4 also indicates each part corresponding to FIG. In this case, the heat transfer body (BF) is placed in a space between the outer cylinder B and the inner cylinder B ′. At the end faces (A and Α ') perpendicular to the ridge line of the heat transfer body (BF), Seal with heat (BF) by means such as close contact with sealant. In addition, it is necessary to seal both ends parallel to the ridge line of the heat transfer body (BF) so that the fluid does not leak to the opposite surface of the heat transfer body (BF) by completely contacting each other or welding. However, as in the case of the structure shown in Fig. 3, the seal with the container wall disappears at this point, making it unnecessary. On the other hand, on the B and B 'faces, as in Fig. 1, the distance between the ridgeline of the heat transfer element (BF) and each face should be sufficiently smaller than the pitch of the bellows on each face. There is no.
(第 2実施例)  (Second embodiment)
本発明による第 2実施例に係る熱交換器を第 5図に示す。 本実施例の熱交換器 は、 第 1図の構造を持つ 2流体用の隔壁型熱交換器において、 蛇腹型伝熱体 (B F) を挟んで互いに反対側にある一対の流体の出入り口 (D、 D'、 Ε, Ε') の代わりに Dを入り口、 D' を出口とし、 さらに、 伝熱体 (BF) の一方の端部 (A5) を密着シールするのではなく、 入り口 (D) から入った流体を伝熱体 (BF) の反対面側に回り込ませるための流体回り込み空間部 (F) を設けたこ とを特徴とするものである。 それ以外の構成は第 1実施例と同様である。 FIG. 5 shows a heat exchanger according to the second embodiment of the present invention. The heat exchanger of the present embodiment is a two-fluid bulkhead heat exchanger having the structure shown in FIG. 1, and a pair of fluid inlets / outlets (D) on opposite sides of the bellows type heat transfer body (BF) (D , D ', Ε, Ε') instead of D as the inlet, D 'as the outlet, and one end (A 5 ) of the heat transfer body (BF) is not tightly sealed, but the inlet (D ) Is provided with a fluid wrap-around space (F) for wrapping the fluid entering from the heat transfer body (BF) to the opposite side. The other configuration is the same as that of the first embodiment.
このような構造をとることにより、 ひとつの流体がその上流と下流で蛇腹型伝 熱体 (BF) を挟んで互いに向流する自己熱交換型の熱交換器となる。 また、 同 様の変形を施すことにより、 第 2、 3、 4図のいずれの熱交換器についても、 対 応する自己熱交換器とすることができる。  By adopting such a structure, it becomes a self-heat exchange type heat exchanger in which one fluid flows counter-currently between the upstream and downstream sides of the bellows type heat transfer body (BF). In addition, by applying the same modification, any of the heat exchangers shown in FIGS. 2, 3 and 4 can be a corresponding self-heat exchanger.
本実施例の熱交換器は、 第 1実施例の作用効果に加え、 多管円筒式に代表され る従来型の熱交換器構造を利用した自己熱交換器に比べて配管及び流体をシール するための構造が大幅に簡略化され、 さらに蛇腹の数を増加させても全体及びシ —ル構造が全く複雑にならない利点を持ち、 熱交換効率がきわめて高い自己熱交 換器を得ることができる。  In addition to the effects of the first embodiment, the heat exchanger of this embodiment seals pipes and fluids compared to a self-heat exchanger that uses a conventional heat exchanger structure represented by a multi-tube cylindrical type. The structure is greatly simplified, and even if the number of bellows is increased, the whole and seal structure are not complicated at all, and a self-heat exchanger with extremely high heat exchange efficiency can be obtained. .
第 6図 (a) は第 5図の自己熱交換器の構造を正面透視図としたものである。 図中 bは稜線、 b' は谷線 (反対側の蛇腹部分の稜線に対応) を示す。  Fig. 6 (a) is a front perspective view of the structure of the self-heat exchanger of Fig. 5. In the figure, b is the ridgeline, and b 'is the valley line (corresponding to the ridgeline of the opposite bellows).
第 2実施例においては、 温度が極値となる流体回り込み空間部 (F) は必ずし も 1力所である必要はなく、 第 6図 (b) のように、 伝熱体 (BF) の稜線方向 の中央部に流体出入り口 (D, D5) を設けることにより、 入り口 (D) から流 入した流体が上下方向に分流し、 それぞれ伝熱体 (BF) の異なる端面に隣接し た空間部 (F, F') で回り込んだ後、 合流して出口 (D') から出るようにし てもよ 。 このようにすることにより、 面 (A) における伝熱体 (BF) と容器 'b間のシールが不要になる。 In the second embodiment, the fluid wraparound space (F) where the temperature is an extreme value must be present. However, as shown in Fig. 6 (b), the fluid inlet / outlet (D, D 5 ) is provided in the center of the ridge line direction of the heat transfer body (BF), as shown in Fig. 6 (b). The fluid flowing in from the flow branches in the vertical direction, circulates in the spaces (F, F ') adjacent to the different end faces of the heat transfer body (BF), then merges and exits from the outlet (D') You can do it. By doing so, the seal between the heat transfer body (BF) and the container 'b on the surface (A) becomes unnecessary.
さらに、 第 6図 (c) は、 第 6図 (b) のような中央部に出入り口を持ち流体 が分流する自己熱交換器について、 蛇腹型伝熱体 (BF) を稜線方向に沿って細 長い直方体の全体形状とし、 さらに円環状にして、 稜線と交わる伝熱体 (BF) の両端部が同じ流体回り込み空間部 (F) を共有する形としたものである。 この 変形例では、 温度が極値となる空間部 (F) を一力所にしつつ、 蛇腹部分の端面 におけるシールが不要になる利点がある。  Furthermore, Fig. 6 (c) shows a bellows-type heat transfer body (BF) along the ridgeline direction for a self-heat exchanger with an inlet / outlet in the center as shown in Fig. 6 (b) and where fluid flows. The overall shape of the long rectangular parallelepiped is made into an annular shape, and both ends of the heat transfer body (BF) intersecting with the ridge line share the same fluid wraparound space (F). This modification has the advantage of eliminating the need for a seal at the end face of the bellows portion while making the space (F) where the temperature is an extreme value one place.
(第 3実施例)  (Third example)
以下第 5図に示す構造の自己熱交換器をベースとした反応器について説明する。 第 7図に示す反応器は、 第 5図に示す自己熱交換器をベースとし、 流体回り込 み空間部 (F) に発熱体 (ヒ一夕) あるいは吸熱体 (G) を組み込んだ、 自己熱 交換器と一体化した反応器である。 このような構造の反応器では、 温度の低い (高い) 流入流体と、 最高 (最低) 温度となる空間部 (F) を経て加熱 (冷却) された流出流体との間で伝熱することにより、 空間部 (F) でかなりの高温 (低 温) になっても、 入り口 (D) に対する出口 (D') での温度はそれほど高く (低く) ならない (例えば!), F, D, における温度がそれぞれ 20°C、 700 °C、 90°C)o このような構造のものは、 流体を熱反応させるため加熱する必要 はあるが再び取り出すときの温度はなるべく変化させたくないとき、 加熱のため のエネルギー (電力) を小さくできる反応器として利用できる。 従って、 化学反 応装置全般への応用が期待できる。  Hereinafter, a reactor based on the self-heat exchanger having the structure shown in FIG. 5 will be described. The reactor shown in Fig. 7 is based on the self-heat exchanger shown in Fig. 5, and has a heating element (Hitoshi) or endothermic element (G) in the fluid wrapping space (F). This reactor is integrated with the heat exchanger. In a reactor having such a structure, heat is transferred between an inflow fluid having a low temperature (high) and an effluent fluid heated (cooled) through a space (F) having a maximum (minimum) temperature. The temperature at the outlet (D ') with respect to the entrance (D) does not become so high (eg, low) even if the space (F) becomes very hot (low temperature), the temperature at F, D, etc. (20 ° C, 700 ° C, 90 ° C, respectively) o With such a structure, it is necessary to heat the fluid to react with it. Therefore, it can be used as a reactor that can reduce energy (electric power). Therefore, it can be expected to be applied to chemical reaction equipment in general.
第 3実施例の性能の理論的見積もり : Theoretical estimation of the performance of the third embodiment:
第 Ί図に示す第 3実施例の自己熱交換型反応器の性能を概略的に見積もる。 該 伝熱体 (BF) の蛇腹形の稜線部 (あるいは谷部) の折り曲げ形状が半円形とな つており各伝熱面が互いに平行であるとすると、 この場合の熱伝導は平行平板を 挟んだ異なる流体間での熱伝導とみなすことができる。 蛇腹面の総面積が A (m 2)、 この伝熱面を挟んだ高温流体から低温流体への熱通過率が K (W/m2 · K)、 隣合う蛇腹面の面間隔が d (m) であるとする。 面間隔 d= 10.— 3 (= 1 mm) 程度の場合、 この反応器内での流体の流速が 1 m/sオーダ一における流 れは層流となることが予想される。 平行平板間を流れる層流では、 壁面と高温、 低温各流体との間の熱通過率 h (W/m2 · K) は、 熱流束一定という条件 (向 流の自己熱交換形反応器はこの条件で近似できる) の下では、 The performance of the self-heat exchange reactor of the third embodiment shown in Fig. 6 is roughly estimated. The If the bent shape of the bellows-shaped ridgeline (or valley) of the heat transfer body (BF) is semicircular and the heat transfer surfaces are parallel to each other, the heat conduction in this case sandwiches the parallel plates. It can be regarded as heat conduction between different fluids. The total area of the bellows surface is A (m 2 ), the heat transfer rate from the high temperature fluid to the low temperature fluid across this heat transfer surface is K (W / m 2 K), and the distance between adjacent bellow surfaces is d ( m). When the surface separation is d = 10.− 3 (= 1 mm), it is expected that the flow in the reactor will be laminar when the flow velocity of the fluid is on the order of 1 m / s. In laminar flow flowing between parallel plates, the heat transfer rate h (W / m 2 · K) between the wall surface and each of the high-temperature and low-temperature fluids is the condition that the heat flux is constant (the countercurrent self-heat exchange reactor is Under this condition)
h= 140/17 χ λ/D  h = 140/17 χ λ / D
で与えられる。 ここで、 係数 140Z17は通常 Nu s s e 1 t数と呼ばれる無 次元数であり、 与えられた条件では解析的に決められる値である。 えは流体の熱 伝導率 (W/m. K)、 Dは代表長さと呼ばれる寸法で、 平行平板の場合は Given in. Here, the coefficient 140Z17 is a dimensionless number usually called a Nu s se 1 t number, and is a value determined analytically under given conditions. Is the thermal conductivity of the fluid (W / m. K), D is the dimension called the representative length.
D = 2 d  D = 2 d
である。 また、 It is. Also,
K二 1/2 h  K 2 1/2 h
となる。 これらの式をまとめると、 結局 It becomes. Summing up these equations,
K = 35/ 17 X λ/d  K = 35/17 X λ / d
となる。 さて第 7図において、 発熱体を使用する場合を仮定し、 その発熱量を仮 に Q (W)、 流体の熱容量流量 (温度依存性がないものとする) を〃 CP ( J/K • s) とし、 熱交換体は理想的に断熱されて排熱以外の放熱は全くないものとす ると、 流体の入口温度 Tiと出口温度 T。の関係は、 It becomes. In Fig. 7, assuming that a heating element is used, let Q (W) be the calorific value, and the heat capacity flow rate of the fluid (assuming no temperature dependence) 〃 C P (J / K • s) and the heat exchanger is ideally insulated and has no heat dissipation except exhaust heat. Fluid inlet temperature Ti and outlet temperature T. The relationship
T。一 TFQZ (〃CP) T. TFQZ (〃C P )
となる。 ただし、 ここで〃は流体の質量流量 (kg s) を、 CPは流体の定圧 比熱 (JZkg · K) を表す。 また、 流体回り込み部 (F) に流入する流体温度 Triと流体回り込み部 (F) から流出する流体温度 Tr。の間にも It becomes. Here, 〃 represents the mass flow rate (kg s) of the fluid, and C P represents the constant-pressure specific heat (JZkg · K) of the fluid. Also, the fluid temperature T ri flowing into the fluid wrap-around section (F) and the fluid temperature T r flowing out of the fluid wrap-around section (F). Between
ΤΓ0— Tri = Q/ (u P) が成り立つ。 ここで、 どれだけの割合の熱が高温側流体から低温側流体に移動さ れたかを意味する熱交換率 を、 Τ Γ0 — T ri = Q / (u P ) Holds. Here, the heat exchange rate, which means how much heat is transferred from the hot fluid to the cold fluid,
Φ= ( T ro - T o) / ( T ro - T i)  Φ = (T ro-T o) / (T ro-T i)
と定義すると、 Defined as
Φ= ( T ro - T o ) ' ( T ro— T。十 T。― T i) = ( T ro - T o) / ( T ro— T。
Figure imgf000014_0001
Φ = (Tro-To) '(Tro-T. Ten T.-Ti) = (Tro-To) / (Tro-T.
Figure imgf000014_0001
となり、 さらに、And then
Cp (ΤΓΟ-Τ Ο) ΚΑ (Τ。一 Ti) = 3 5/1 7 X λ/ά · A · Q/ (〃 より、 Cp (Τ Γ Ο-Τ Ο) ΚΑ (Τ. 一 Ti) = 3 5/1 7 X λ / ά · A · Q / (From 〃
φ= (3 5/1 7 X λ/d - A) / (//Cp+ (3 5/1 7 x λ/ά · A)) · φ = (3 5/1 7 X λ / d-A) / (// Cp + (3 5/1 7 x λ / άA))
… ·( 1) … (1)
となる。 It becomes.
( 1 ) 式を用いて、 長さ 1600 mm、 幅 2 00 mm (すなわち A= 0. 3 2 m2) の長方形薄板を 40mm間隔ごとに 40面に折り曲げ、 隣り合う面間隔を lmm (=d) とした蛇腹型伝熱体 (B F) について、 流入流体として 20°C空 気 (密度 p= 1. 1 6 6 kg/m\ 定圧比熱 CP= 1 00 5 J/k g · K)、 熱 交換器の作動条件が 20°C付近で人 (= 0. 02 5 7W/m · K) が一定と仮定 した場合の、 空気流速 V (L/s) と熱交換率 øの関係を求めた結果を表 1に示 す。 なお、 この場合 は、Using the equation (1), a rectangular thin plate with a length of 1600 mm and a width of 200 mm (i.e., A = 0.32 m 2 ) is bent into 40 planes at intervals of 40 mm, and the interval between adjacent planes is lmm (= d ) And 20 ° C air (density p = 1. 1 6 6 kg / m \ constant pressure specific heat C P = 100 5 J / kg · K), heat The relationship between the air flow velocity V (L / s) and the heat exchange rate ø when the operating condition of the exchanger is assumed to be constant around 20 ° C (= 0.02 5 7W / m The results are shown in Table 1. In this case,
Figure imgf000014_0002
Figure imgf000014_0002
として算出した。 Calculated as
(表 1) 室温付近の空気を流体とした場合の流速と熱交換率の関係 (table 1) Relationship between flow rate and heat exchange rate when air near room temperature is used as fluid
( φは本文中の式 (1)と (2)ょリ、下の各パラメータ値を用いて算出) 流速 熱交換率 p (kg/m3)= 1.166 (φ is calculated using equations (1) and (2) below and the following parameter values) Flow velocity Heat exchange rate p (kg / m 3 ) = 1.166
v(l_/s) 0x100 (%) Cp (J/kgK)= 1005  v (l_ / s) 0x100 (%) Cp (J / kgK) = 1005
1 93.5 d (m)= 0.001  1 93.5 d (m) = 0.001
2 87.8 λ (W/msK)= 0.0257  2 87.8 λ (W / msK) = 0.0257
3 82.8 A (m2)= 0.32 蛇腹形に成形したこの熱交換体の体積 Vは、 約 0. 32 Lに過ぎない。 従って v= 1 LZsのときの空間速度は 3 6 00 v/V= 1 12 50 h—1となる。 この ような高い空間速度においても、 計算の際に仮定したように伝熱体 (BF) を完 全に平行平板型に折り曲げることができれば、 熱交換率 9 3. 5%というきわめ て高い性能を発揮することが予想される。 同様にさらに高空間速度の v= 2 L/ s (SV= 2 2 500 h— 、 3 L/s (SV= 3 3 75 0 h一1) でも、 それぞ れ 87. 8%、 82. 8%という高い熱交換率が得られる。 3 82.8 A (m 2 ) = 0.32 The volume V of this heat exchanger formed into a bellows shape is only about 0.32 L. Therefore, the space velocity when v = 1 LZs is 3 6 00 v / V = 1 12 50 h− 1 . Even at such high space velocities, if the heat transfer body (BF) can be bent completely into a parallel plate as assumed in the calculation, the heat exchange rate of 93.5% is extremely high. It is expected to demonstrate. Similarly, even at higher space velocities of v = 2 L / s (SV = 2 2 500 h—, 3 L / s (SV = 3 3 75 0 h 1 )), 87.8% and 82.8 respectively. A high heat exchange rate of% is obtained.
第 3実施例の性能検証実験: Performance verification experiment of the third embodiment:
次に、 上記の計算例と同寸法の反応器を試作 ( 1号器) して性能を調べた結果 を表 2に示す。 伝熱体材料としては厚さ 0. 03 mmのステンレス箔を用いた。 また、 発熱体として流体回り込み部 (F) にカンタル線を設け、 通電により約 5 0W発熱させた。 v= l, 2 , 3 LZsにてそれそれ 78 , 6 9 , 6 8 %の熱交換性能が得られた。  Next, Table 2 shows the results of a prototype of the reactor with the same dimensions as the calculation example above (No. 1) and its performance. Stainless steel foil with a thickness of 0.03 mm was used as the heat transfer material. In addition, a Kanthal wire was installed in the fluid wrapping part (F) as a heating element, and heat was generated by approximately 50 W when energized. Heat exchange performance of 78, 69, 68% was obtained for v = l, 2, 3 LZs.
(表 2) 試作 1号器による熱交換性能試験 (Table 2) Heat exchange performance test using the first prototype
/JIL里 入口温度出口;皿度 折 y返し部 Ittxす哭半 * / JIL village entrance temperature outlet; plate degree folding y return part Ittx Sugihan *
(L/s) T, (°C) T0(°C) 流出側温度 Tra(°C) Φ (%) (L / s) T, (° C) T 0 (° C) Outlet temperature T ra (° C) Φ (%)
1.1 23 52 152 78  1.1 23 52 152 78
2.0 23 41 82 69 2.0 23 41 82 69
2.9 22 34 60 68  2.9 22 34 60 68
*ø = { (Tr。— T。)/(Tro— η) } χΐοο * ø = {(T r .— T.) / (T ro — η)} χΐοο
(第 4実施例) (Example 4)
第 8図に本発明による第 4実施例に係る反応器を示す。 この反応器は、 第 7図 で説明した反応器における加熱を流体内に含まれる反応成分の触媒反応で行うも のである。 この反応器は、 第 5図の構造を持つ自己熱交換器において、 伝熱体 (BF) の全表面、 あるいは流体が回り込む端面に近い表面に触媒 (Η) を担持 させ、 自己熱交換器と一体化した触媒反応器である。 この反応器では、 熱交換率 の高い蛇腹型伝熱面を持つ自己熱交換構造とモノリス型触媒担体構造を一体化さ せることにより、 第 7図の場合と同様に、 反応流体の温度を結果的にそれほど上 昇させることなく反応器内部で触媒反応に十分な温度が得られ (例えば!), F, D, における温度がそれそれ 20°C:、 300°C、 50°C;)、 高効率で省エネルギ —的な反応を実現することができる。  FIG. 8 shows a reactor according to the fourth embodiment of the present invention. In this reactor, heating in the reactor described in FIG. 7 is performed by catalytic reaction of reaction components contained in the fluid. This reactor is a self-heat exchanger with the structure shown in Fig. 5. The catalyst (Η) is supported on the entire surface of the heat transfer body (BF) or the surface close to the end surface where the fluid circulates. It is an integrated catalytic reactor. In this reactor, the self-heat exchange structure with a bellows type heat transfer surface with a high heat exchange rate and the monolithic catalyst support structure are integrated, and the temperature of the reaction fluid is obtained as in the case of Fig. 7. Enough temperature for catalytic reaction inside the reactor (for example!), And the temperatures at F, D, 20 ° C :, 300 ° C, 50 ° C;), respectively, A highly efficient and energy-saving reaction can be realized.
第 4実施例の性能検証実験: Performance verification experiment of the fourth embodiment:
第 4実施例の自己熱交換型触媒反応器の性能を実際に検証するため、 伝熱体と して厚さ 0. 03mm、 幅 200mm、 長さ 2720 mmのステンレス箔を長手 方向に対して直角に 40 mm間隔で計 68面に折り曲げ、 全体形状として約 40 X 40 X 200mmの、 第 5図に示すような直方体の蛇腹形伝熱体を作製した。 この時の折り曲げられた伝熱体の隣り合う面間隔は約 0. 59mmであった。 さ らに、 この伝熱体の流体が回り込む側の端面から流体出入口方向へ幅約 40 mm の範囲にアルミナ担持白金触媒をコーティングした後、 厚さ 0. 6 mmのステン レス板製の直方体容器に収めた。 この容器には第 5図の D、 D' に相当する出入 り口を設け、 低濃度の揮発性有機成分 (VOC) を含む空気を流通させた。 この 試作 2号器について、 各 VOCの除去性能と熱交換性能結果を表 3に示す。 室温 空気に含まれる濃度 0. 3%以下のこれら VOCを、 着火の際を除き外部からの 補助的な熱を加えることなく、 それ自身の酸化によって生ずる熱だけで、 すなわ ち自己酸化的に 90%以上分解し続けることができた。 トルエンに関しては、 流 量 1. lL/s (S V= 1240 Oh ) という比較的高空間速度でも、 濃度約 0. 1%のトルエンを約 94%の除去率で C〇2と H20に完全分解した。 In order to actually verify the performance of the self-heat exchange type catalytic reactor of the fourth example, a stainless steel foil having a thickness of 0.03 mm, a width of 200 mm, and a length of 2720 mm is perpendicular to the longitudinal direction as a heat transfer body. In addition, it was folded into a total of 68 planes at intervals of 40 mm, and a rectangular bellows-shaped heat transfer body with a total shape of about 40 X 40 X 200 mm as shown in Fig. 5 was produced. At this time, the distance between adjacent surfaces of the folded heat transfer body was about 0.59 mm. Furthermore, after coating the alumina-supported platinum catalyst in a range of about 40 mm in width from the end surface of the heat transfer body where the fluid circulates in the direction of the fluid inlet / outlet, a rectangular parallelepiped container made of stainless steel with a thickness of 0.6 mm In. This container has access corresponding to D and D 'in Fig. 5. A vent was provided to circulate air containing low concentrations of volatile organic components (VOC). Table 3 shows the VOC removal performance and heat exchange performance results for this prototype # 2. At room temperature, these VOCs with a concentration of 0.3% or less can be converted into self-oxidation, that is, only by the heat generated by their own oxidation without any external auxiliary heat except during ignition. It was possible to continue to decompose more than 90%. With respect to toluene, flow rate 1. lL / s (SV = 1240 Oh) at a relatively high space velocity that completely C_〇 2 and H 2 0 concentration of about 0.1% of the toluene removal rate of about 94% Disassembled.
(表 3)  (Table 3)
自己熱交換型触媒反応器 (試作 2号器)による低濃度燃焼性ガスの触媒燃焼  Catalytic combustion of low-concentration combustible gas in a self-heat exchange type catalytic reactor (prototype No. 2)
Figure imgf000017_0001
Figure imgf000017_0001
塗装工場などでは、 トルエン、 キシレンなどの揮発性有機成分 (いわゆる VO C、 vol at i le organi c c o mp o u n d s; による空気汚染 が問題になっている。 ところが、 本反応器を用いれば、 例えばトルエンを 0. 1 %含む空気を付加的な加熱エネルギーを要することなく、 白金触媒などの酸化触 媒を用いることにより、 トルエンの触媒燃焼で生じた熱のみを利用することによ り反応温度を維持して酸化分解することができる。 すなわち、 本反応器は、 空気 中の低濃度揮発性有機汚染物質を処理する装置などへの応用が期待できる。  In paint factories and the like, air pollution due to volatile organic components such as toluene and xylene (so-called VO C, vol at i le organic cco mpounds; has become a problem. However, if this reactor is used, for example, toluene The reaction temperature is maintained by using only the heat generated by the catalytic combustion of toluene by using an oxidation catalyst such as platinum catalyst without requiring additional heating energy for 0.1% air. In other words, this reactor can be expected to be applied to devices that treat low-concentration volatile organic pollutants in the air.
(第 5実施例)  (Fifth embodiment)
第 9図に本発明による第 5実施例に係る反応器を示す。 この反応器は、 第 5図 の構造の自己熱交換器において、 伝熱体 (BF) に蓄熱性を持たせ、 さらに伝熱 体 (B F ) の全表面、 あるいは流体の入出口に近い側の領域表面に、 流体に含ま れる反応成分を反応させる触媒 (H) を担持させるとともに、 伝熱体 (B F ) の 全表面、 あるいは流体が回り込む伝熱体 (B F ) の端面側に近い領域表面に、 反 応成分を低温で吸着し高温で脱離させる吸着剤 (I ) を担持させた構造となって いる。 FIG. 9 shows a reactor according to the fifth embodiment of the present invention. This reactor is a self-heat exchanger with the structure shown in Fig. 5. The catalyst (H) for reacting the reaction components contained in the fluid is supported on the entire surface of the body (BF) or the surface of the region near the fluid inlet / outlet, and the entire surface of the heat transfer body (BF) or It has a structure in which an adsorbent (I) that adsorbs reaction components at a low temperature and desorbs at a high temperature is supported on the surface of the region close to the end face of the heat transfer body (BF) through which the fluid flows.
本反応器によれば、 流体温度がしだいに上昇する過渡的な反応条件において、 温度が低いうちは、 吸着剤 (I ) に反応成分を吸着させることにより捕捉してお く。 流体温度が上昇するにつれ、 伝熱体 (B F ) の入出口に近い部分から加熱さ れるが、 流体が回り込む側部分の加熱は伝熱体 (B F ) の蓄熱性により、 これよ りかなり遅れる。 このため、 加熱が伝熱体 (B F ) 全体に行き渡って、 いったん 吸着した反応成分が脱離する頃には、 流体出口付近の温度はさらに高くなつて触 媒反応が起こる条件が達成されているので、 反応成分が高効率で分解され、 排出 側に出ることがない。 このような構造の反応器は、 エンジン始動時に出やすく、 また、 排ガス温度が低いために従来の触媒コンパ一夕では処理しにくい、 ェンジ ン始動時に排出される炭化水素を処理するための自動車排ガスコンパ一夕として 好適である。  According to this reactor, under transient reaction conditions in which the fluid temperature gradually rises, while the temperature is low, the adsorbent (I) is used to trap the reaction components. As the fluid temperature rises, it is heated from the part close to the inlet / outlet of the heat transfer body (B F), but the heating of the part where the fluid wraps around is considerably delayed due to the heat storage property of the heat transfer body (B F). For this reason, when the heat spreads over the entire heat transfer body (BF) and the adsorbed reaction components are desorbed, the temperature near the fluid outlet becomes higher and the conditions for the catalyst reaction to occur are achieved. Therefore, the reaction components are decomposed with high efficiency and do not come out to the discharge side. The reactor with such a structure is easy to get out at the start of the engine, and the exhaust gas temperature is low, which makes it difficult to treat with conventional catalyst components overnight. It is suitable as a companion overnight.
(第 6実施例)  (Sixth embodiment)
第 1 0図に本発明 よる第 6実施例に係る反応器を示す。 この反応器は、 第 7 図の構造の発熱体 (G) を備えた自己熱交換器と一体化した反応器において、 微 粒子を捕捉できるフィルタ一 (J ) を、 流体が回り込む伝熱体 (B F ) の端面に 密着させた構造となっている。  FIG. 10 shows a reactor according to the sixth embodiment of the present invention. This reactor is a reactor integrated with a self-heat exchanger equipped with a heating element (G) with the structure shown in Fig. 7. A filter (J) that can trap fine particles is used as a heat transfer element (J The structure is in close contact with the end face of BF).
本反応器によれば、 温度が最も高くなる空間部 (F ) にフィルタ一 (J ) を配 置することにより、 高温にすると分解できる炭素や高沸点有機成分からなる微粒 子などを、 流体の入出口温度をそれほど上昇させず熱エネルギーをそれほどかけ なくても処理できる自己再生型フィルタートラヅプとなる。 ディーゼルエンジン 排ガス中の粒子状物質 (P M)、 とりわけその中の固体炭素分 (すす) は 6 0 0 °C以上にならないと速やかに酸化除去できない。 従来では、 排ガス温度を間欠的 にここまで上昇させてフィル夕一に捕捉された (P M) を酸化し、 フィルタ一再 生する技術があつたが、 これに必要なエネルギー (燃料) がかなりのものとなつ ていた。 ところが、 本反応器によれば、 それほどエネルギーをかけることなく、 P M酸化が速やかに起こる温度を得ることができる利点がある。 本反応器では、 フィル夕一 (J ) に、 M oや Vなどを含む P M酸化用触媒を担持しておけば、 到 達すべき温度を 5 0 0 °Cや 4 0 0 °Cなどへと下げることも可能であり、 エネルギ 一損失をさらに小さくすることも可能である。 本反応器は、 自己再生型のディ一 ゼルパ一ティキュレートフィル夕一としての応用が可能である。 According to this reactor, by placing a filter (J) in the space (F) where the temperature is highest, carbon or high-boiling organic components that can be decomposed at high temperatures are removed from the fluid. This is a self-regenerating filter trap that can be processed without increasing the temperature of the inlet / outlet without applying much heat energy. Diesel engine Particulate matter (PM) in exhaust gas, especially solid carbon (soot) in it, can not be oxidized and removed promptly unless it exceeds 60 ° C. Conventionally, the exhaust gas temperature is intermittent However, there is a technology that oxidizes (PM) trapped in Phil and captured in the evening and regenerates the filter, but the energy (fuel) required for this has become considerable. However, this reactor has the advantage that the temperature at which PM oxidation occurs quickly can be obtained without applying much energy. In this reactor, if a PM oxidation catalyst containing Mo, V, etc. is supported on Phil Yuichi (J), the temperature to be reached can be reduced to 500 ° C, 400 ° C, etc. It is also possible to lower the energy loss. This reactor can be applied as a self-regenerating diesel particulate filter.
(第 7実施例)  (Seventh embodiment)
第 1 1図に本発明による第 7実施例に係る反応器を示す。 この反応器は、 第 1 ◦図で説明した自己再生型フィル夕一トラヅプにおいて、 発熱体 (G) を設ける 代わりに、 その加熱を触媒反応で行う構造となっている。 すなわち、 本反応器は、 伝熱体 (B F ) の流体が回り込む側の端面に、 微粒子を補足、 除去するためのフ ィル夕一 (J ) を設けている。  FIG. 11 shows a reactor according to a seventh embodiment of the present invention. This reactor has a structure in which heating is carried out by catalytic reaction instead of providing the heating element (G) in the self-regenerative type filter trap described in Fig. 1 (b). In other words, this reactor is provided with a filter (J) for capturing and removing fine particles on the end face of the heat transfer body (B F) on the side where the fluid flows.
本反応器によれば、 流体に触媒反応成分を必要なだけ添加することにより、 フ ィル夕一 (J ) における温度を必要なまでに高めることができる。 本反応器は、 第 1 0図の場合と同じく、 ディーゼルエンジン排ガス中の P Mを処理する自己再 生型フィル夕一トラップとして使用できる。 加熱を燃料の触媒酸化で行うことに より、 発熱体を介するよりも熱エネルギー利用効率が高いので、 より実用的なも のである。 本反応器も、 自己再生型のディーゼルパーティキュレートフィル夕一 としての応用が可能である。  According to this reactor, the temperature in the filter (J) can be increased to a necessary level by adding as much catalytic reaction components as necessary to the fluid. As in Fig. 10, this reactor can be used as a self-regenerating fill trap that treats PM in diesel engine exhaust gas. Since the heating is performed by catalytic oxidation of the fuel, the heat energy utilization efficiency is higher than that through the heating element, so that it is more practical. This reactor can also be used as a self-regenerating diesel particulate filter.
(第 8実施例)  (Eighth embodiment)
第 1 2図に本発明による第 8実施例に係る反応器を示す。 この反応器は、 第 5 図の構造の自己熱交換器において、 伝熱体 (B F ) としてフィルター機能を有す る多孔性材料 (K ) を用いるとともに、 伝熱体 (B F ) の流体が回り込む端部の 空間部 (F ) をなくし、 伝熱体 (B F ) と面 (A,) との間をシールした構造と したものである。 02 FIG. 12 shows a reactor according to the eighth embodiment of the present invention. This reactor uses a porous material (K) having a filter function as the heat transfer body (BF) in the self-heat exchanger having the structure shown in Fig. 5, and the fluid of the heat transfer body (BF) flows around. The space (F) at the end is eliminated and the space between the heat transfer body (BF) and the face (A,) is sealed. 02
18  18
この構造の反応器では、 入り口 (D ) から入った流体は伝熱体壁を通過して反 対面に出て、 出口 (D 5 ) より排出される。 その間に、 流体中に浮遊する微粒子 が伝熱体面に捕捉される。 本反応器では、 伝熱体 (B F ) に触媒酸化反応を促す 触媒を担持させ、 さらにその反応成分を本反応器に入る手前で流体に添加するこ とにより、 第 8図あるいは第 1 1図の場合と同様に、 触媒反応によって生じた熱 により伝熱体兼フィルタ一自体が加熱される。 さらに第 5図と同様の自己熱交換 型流路構造により伝熱体下部ほど温度が高くなり、 微粒子の分解除去がある領域 より下部で実現する。 フィルタ一再生度 (流体の透過のしゃすさ) は、 本反応器 前後の差圧を測るなどの手段により把握し、 必要なレベルに達するまで当反応器 の加熱度を調節すればよい。 In the reactor having this structure, the fluid entering from the inlet (D) passes through the heat transfer body wall, exits to the opposite surface, and is discharged from the outlet (D 5 ). Meanwhile, fine particles floating in the fluid are trapped on the surface of the heat transfer body. In this reactor, a catalyst that promotes the catalytic oxidation reaction is supported on the heat transfer body (BF), and the reaction components are added to the fluid just before entering the reactor. As in the case of, the heat transfer body / filter 1 itself is heated by the heat generated by the catalytic reaction. Furthermore, the self-heat exchange channel structure similar to that in Fig. 5 raises the temperature at the lower part of the heat transfer body, which is realized in the lower part of the region where fine particles are decomposed and removed. The degree of regeneration of the filter (shaking of fluid permeation) can be ascertained by means such as measuring the differential pressure across the reactor, and the heating degree of the reactor can be adjusted until it reaches the required level.
また、 本反応器によれば、 従来多用されている交互封じ型の微粒子フィル夕一 (第 1 3図、 Lはフィル夕一機能を有する多孔質壁、 Mはハニカム構造の流路出 入り口を交互に塞ぐ目封じ材) と同程度のフィル夕一面積密度を得ることも可能 であり、 さらに自己熱交換能を有するので熱エネルギーの無駄の少ないフィル夕 —再生を行うことが可能である。 本反応器も、 自己再生型のディーゼルパーティ キュレートフィル夕一としての応用が可能である。  In addition, according to the present reactor, an alternating-sealed fine particle filter (Fig. 13; L is a porous wall having a filter function; M is a honeycomb-structured channel inlet / outlet). It is possible to obtain a fill area density similar to that of the alternately plugged sealant, and it is possible to regenerate the fill with less heat energy because of its self-heat exchange capability. This reactor can also be used as a self-regenerative diesel particulate fill.
(第 9実施例)  (Ninth example)
次に、 第 5図に示す構造の自己熱交換器をベースとした輻射ヒ一夕について説 明する。 第 1 4図は本発明による第 9実施例に係る輻射ヒー夕を示す。 この輻射 ヒー夕は、 第 5図の自己熱交換器において、 流体が回り込む空間部 (F ) に燃焼 バーナー (N) と、 空間部 (F ) と外部とを仕切る壁の一部分に熱伝導度及び熱 輻射率が高い熱輻射板 ( P ) を備えた構造となっている。 本輻射ヒー夕では、 流 体としては、 燃料 (0 ) と反応する空気など燃焼用酸化剤を含む気体を使う。 このような構造によれば、 燃焼排ガスが持っている熱を温度の低い流入気体に 伝達することにより、 燃焼排ガスに捨てる熱エネルギーの少ない高効率の輻射ヒ —夕とすることができる。 本輻射ヒー夕は、 燃焼排ガスへの熱エネルギー損失が 少ない省エネ的なガス燃焼加熱器としての応用が可能である。 (第 1 0実施例) Next, we will explain the radiation effect based on the self-heat exchanger with the structure shown in Fig. 5. FIG. 14 shows the radiation heat according to the ninth embodiment of the present invention. In the self-heat exchanger shown in Fig. 5, this radiant heat is applied to the combustion burner (N) in the space (F) where the fluid circulates and to the part of the wall that partitions the space (F) and the outside. It has a structure with a heat radiation plate (P) with a high heat radiation rate. In this radiant heat, a gas containing a combustion oxidant such as air that reacts with fuel (0) is used as the fluid. According to such a structure, by transferring the heat of the combustion exhaust gas to the inflowing gas having a low temperature, it is possible to obtain a high-efficiency radiant heat with less heat energy discarded to the combustion exhaust gas. This radiant heat can be applied as an energy-saving gas-fired heater with little loss of thermal energy to the flue gas. (Example 10)
第 1 5図に本発明による第 1 0実施例に係る輻射ヒ一夕を示す。 この輻射ヒ一 夕は、 第 8図の自己熱交換器と一体化した触媒反応器を用いた輻射ヒ一夕であつ て、 流体が回り込む空間部 (F ) と外部とを仕切る壁の一部分に熱伝導度及び熱 輻射率が高い熱輻射板 (p ) を備えた構造となっている。 本輻射ヒー夕では、 流 体としては、 該触媒の作用により発熱反応する反応成分を含むものを使い、 通常 は、 触媒として白金などの酸化触媒を、 流体として炭化水素と空気の混合気を用 いればよい。  FIG. 15 shows the radiation effect according to the 10th embodiment of the present invention. This radiant beam is a radiant beam that uses a catalytic reactor integrated with the self-heat exchanger in Fig. 8, and is part of the wall that separates the space (F) where the fluid circulates from the outside. It has a structure with a heat radiating plate (p) with high thermal conductivity and high heat emissivity. In this radiation heater, a fluid containing a reaction component that reacts exothermically by the action of the catalyst is used. Usually, an oxidation catalyst such as platinum is used as the catalyst, and a mixture of hydrocarbon and air is used as the fluid. It only has to be.
このような構造によれば、 触媒反応で生じた流体によつて運ばれる排熱の大部 分を温度の低い流入流体に伝達することにより、 流体に捨てる排熱エネルギーの 少ない高効率の輻射ヒー夕とすることができる。 本輻射ヒー夕も、 燃焼排ガスへ の熱エネルギー損失が少ない省エネ的なガス燃焼加熱器としての応用が可能であ る。  According to such a structure, most of the exhaust heat carried by the fluid generated by the catalytic reaction is transferred to the inflowing fluid at a low temperature, so that the highly efficient radiation heat with less exhaust heat energy discarded to the fluid is obtained. It can be evening. This radiant heat can also be applied as an energy-saving gas combustion heater with little loss of thermal energy to the combustion exhaust gas.
以上本発明の実施例を述べたが、 次に本発明の実施例の典型的ないくつかの変 形例について述べる。  The embodiments of the present invention have been described above. Next, some typical modifications of the embodiments of the present invention will be described.
(変形例 1 )  (Modification 1)
この変形例 1は、 前記第 2実施例において、 伝熱体 (B F ) の蛇腹部分の空隙 部に、 該伝熱体 (B F )-とは別個の通気性を有する構造体を少なくとも 1種類以 上挟んだものである。 そして、 この構造体をスぺーサ一の役割を果たすようにし たものである。  In Modification 1, in the second embodiment, at least one type of structure having air permeability different from that of the heat transfer body (BF)-is provided in the gap portion of the bellows portion of the heat transfer body (BF). It is sandwiched between the top. This structure is made to play the role of a spacer.
第 1 6図は、 該構造体として、 蛇腹形伝熱体 (B F ) の一つの折り曲げ面とほ ぼ同形状のステンレス金網片 (m, m 5 ) を用い、 これらを蛇腹形伝熱体 (B F ) のすベての空隙部に挟んだものである。 このような構造体を挟むことにより、 伝熱面間隔が一様になる、 蛇腹形伝熱体 (B F ) の空隙部における熱輻射が遮ら れて流路方向の断熱性が増す、 その一方で隣合う伝熱面間で該構造体を通しての 伝熱性が高まり流路と直角方向の温度が均一化する、 蛇腹形伝熱体 (B F ) の構 造体としての機械的強度が増す、 などの効果が得られ、 熱交換性能や耐久性を向 上させることができる。 通気性を良くして熱交換器での圧損を小さくするために は、 なるべく開口率の大きい、 すなわち網に用いるワイヤー線の直径に対して網 目間隔 (開口率) が大きいものを使用することが望ましい。 また、 網目の方向と しては、 第 16図に示すように伝熱体 (BF) の稜線 (あるいは谷線) に対して 正方としても、 第 17図 (a) に示すように斜方としてもよい。 また、 端部にヮ ィャ一線の切断面がある金網片ではなく、 第 17図 (b) に示すように、 ワイヤ —線をループ型に折り曲げて金網状に加工したものを使用すれば、 伝熱体 (B F ) や以下に示すフィル夕一材などがワイヤ一端部で損傷することを防ぐことが できる。 Fig. 16 shows a structure in which a stainless steel mesh piece (m, m 5 ) that has almost the same shape as one bent surface of a bellows-type heat transfer body (BF) is used. BF) is sandwiched between all the voids. By sandwiching such a structure, the heat transfer surface spacing becomes uniform, the heat radiation in the gap of the bellows type heat transfer body (BF) is blocked, and the heat insulation in the flow path direction is increased. The heat transfer through the structure increases between adjacent heat transfer surfaces, the temperature in the direction perpendicular to the flow path becomes uniform, and the mechanical strength of the structure of the bellows heat transfer body (BF) increases. Effective, improving heat exchange performance and durability Can be raised. In order to improve the air permeability and reduce the pressure loss in the heat exchanger, use the one with as large an opening ratio as possible, that is, one with a large mesh interval (opening ratio) relative to the diameter of the wire wire used for the net. Is desirable. The mesh direction is either square with respect to the ridge line (or valley line) of the heat transfer element (BF) as shown in Fig. 16, or diagonally as shown in Fig. 17 (a). Also good. In addition, instead of a wire mesh piece with a cut surface of the wire at the end, as shown in Fig. 17 (b), a wire-wire bent into a loop shape and processed into a wire mesh shape can be used. It is possible to prevent damage to the heat transfer body (BF) and the below-mentioned filler material at one end of the wire.
次に、 上記変形例 1の実証結果の一例を示す。 表 4は、 試作 1号器と同寸法、 すなわち厚さ 0. 03mm、 長さ 1600 mm、 幅 200 mmのステンレス箔を 長さ方向に対して直角に 40mmごとに 40面に折り曲げた蛇腹形伝熱体 (B F) について、 流体回り込み側近傍の幅約 100mmの両表面にアルミナ担持白 金触媒を担持し、 さらに、 線径 0. 45mm、 8メッシュの平織ステンレス金網 Next, an example of the verification result of Modification 1 is shown. Table 4 shows a bellows-shaped transmission in which stainless steel foil with the same dimensions as the prototype No. 1 unit, ie, a thickness of 0.03 mm, a length of 1600 mm, and a width of 200 mm, is bent into 40 planes every 40 mm perpendicular to the length direction. As for the thermal element (BF), an alumina-supported white metal catalyst is supported on both surfaces with a width of about 100 mm in the vicinity of the fluid wrapping side, and a plain weave stainless steel wire mesh with a 0.44 mm wire diameter
(開口率 73. 9%) を網目方向を正方として 40 x 175 mmの長方形にカヅ トした構造体 39枚を蛇腹形の空隙部に挟んだ自己熱交換型触媒反応器 (試作 3 号器) の性能を示したものである。 この場合の空隙部間隔は約 1 mmとなった。 いずれの VO ( にっぃても、 表 4に示した反応条件において自己酸化的に反応が 継続した。 表 3の結果と比べて明らかなように、 伝熱体面積が 2/3程度である にもかかわらず熱交換率は同流速条件で 10%以上も向上した。 トルエンの場合、 流速 0. 64 L/sの流速条件で熱交換率は 92%にまで達している。 これに伴 つて触媒燃焼を自己酸化的に継続できる V 0 C濃度が著しく小さくなり、 同流速 条件のトルエンでは、 0. 023 %という低濃度でも反応が進行している。 また、 VOC除去率も試作 2号器と比べて全般的に格段に向上している。 たとえば、 流 速 2. 92 LZsという高空間速度 (=32800 h でも、 0. 06%のト ルェンが自己酸化的に 99 %の除去率で C 02と H 20に完全分解した。 Self-heat exchange type catalytic reactor (prototype No. 3) with 39 structures with an open area of 73.9% squared in a 40 x 175 mm rectangle and a bellows-shaped gap. This shows the performance. In this case, the gap interval was about 1 mm. Regardless of VO (, the reaction continued in an auto-oxidative manner under the reaction conditions shown in Table 4. As is clear from the results in Table 3, the heat transfer area is about 2/3. Nevertheless, the heat exchange rate improved by more than 10% under the same flow rate condition, and in the case of toluene, the heat exchange rate reached 92% under the flow rate condition of 0.64 L / s. The V 0 C concentration, which can continue catalytic combustion in an auto-oxidative manner, has become extremely small, and with toluene at the same flow rate, the reaction proceeds even at a low concentration of 0.023%. For example, even at a high space velocity of 2.92 LZs (= 32800 h, 0.06% of trout is autooxidatively with 99% removal rate. Completely decomposed into 0 2 and H 2 0.
(表 4) 自己熱交換型触媒反応器 (試作 3号器)による低濃度燃焼性ガスの触媒燃焼 (Table 4) Catalytic combustion of low-concentration combustible gas in a self-heat exchange type catalytic reactor (prototype No. 3)
Figure imgf000023_0001
Figure imgf000023_0001
(変形例 2)  (Modification 2)
この変形例 2は、 前記第 8実施例において、 フィルター機能を持つ材料をスぺ ーサ一用構造体を用いて蛇腹形伝熱体 (BF) に形成したものである。  In the second modification, a material having a filter function is formed into a bellows type heat transfer body (BF) using a spacer structure in the eighth embodiment.
伝熱体空隙部にスぺーサ一としての構造体を挟む変形例によれば'、 これまで伝 熱体として使用しにくいと思われていた構造的強度の弱い材料も蛇腹形伝熱体 (BF) として使用することが可能になる。 第 18図は、 ディーゼルエンジンか ら排出される粒子状物質などの燃焼性微粒子を補足する機能を持つ耐熱性フィル 夕一クロス (FC) を該構造体 (m, m5) と組み合わせて蛇腹形伝熱体 (B F) として利用したもの (自己熱交換器型フィル夕一トラップ) である。 フィル タークロス (FC) の一端を折り畳んで厚みを増し (第 18図 (a) の Rの部 分)、 さらに蛇腹状に折った上で横方向から圧縮することにより、 フィルターク ロス (FC) の一方の面側の空隙部が蛇腹状の長手方向の一端でフィルタークロ ス (FC) 自身により閉じられる。 これを流路出入り口を持つ直方体容器に収め、 フィル夕一を折り返さない方の端面を適当なシール材 (第 18図 (b) の s) で 塞く、とともに、 フィル夕一クロス (FC) の折り畳み部 (R) が外側に折り返さ れた部分と熱交換器容器との間についても密着あるいは適当なシール材 (図示せ ず) を用いて塞ぐことにより、 自己熱交換型フィル夕一トラップとなる。 すなわ ち、 第 18図 (b) はこの構造体の正面透視図であるが、 図の正面側入り口According to the modified example in which the structure as a spacer is sandwiched in the gap of the heat transfer body ', a material with low structural strength, which has been thought to be difficult to use as a heat transfer body until now, is also a bellows type heat transfer body ( BF) can be used. Fig. 18 shows a bellows shape by combining a heat-resistant film Yuichi Cross (FC) with the structure (m, m 5 ), which has the function of capturing combustible fine particles such as particulate matter discharged from a diesel engine. It was used as a heat transfer body (BF) (self-heat exchanger-type Phil Yuichi trap). Folding one end of the filter cloth (FC) to increase the thickness (R in Fig. 18 (a)), folding it further into a bellows shape, and then compressing the filter cloth (FC) from the horizontal direction, The gap on one side is closed by the filter cross (FC) itself at one end in the longitudinal direction of the bellows. Place this in a rectangular parallelepiped container with a channel inlet and outlet, and seal the end face that does not fold back the film with an appropriate sealing material (Fig. 18 (b) s). At the same time, close the area where the folded part (R) of the Phil Yuichi Cross (FC) is folded back and the heat exchanger container with close contact or a suitable sealing material (not shown). As a result, it becomes a self-heat exchange type Phil evening trap. In other words, Fig. 18 (b) is a front perspective view of this structure.
(D) から入った燃焼性微粒子を含む流体 (典型的には燃焼排ガス) は、 スぺ一 サ一 (m) が配置されている正面側空隙部を下方に移動しつつ微粒子があまり捕 捉されていない通気性の高い部分でフィルタークロス (FC) を透過し、 スぺ一 サ一 (m') が配置されている背面側空隙部を上方に流れて、 背面側出口 (D ') より排出される。 この間、 往路側と復路側の間で自己熱交換がなされる。 さらに、 第 19図 (a) は、 第 18図 (a) と同様のフィル夕一クロス (F C) の一端を折り畳んで厚みを持たせるだけでなく、 他端部も反対側に折り畳ん で厚みを持たせた後、 スぺーサ一 (m :正面側に配置、 m, :背面側に配置) を 用いて蛇腹形とした自己熱交換器型フィル夕一トラップの正面透視図である。 こ のようにすると蛇腹形の空隙部の両端が交互に目封じされる。 その結果、 第 18 図 (b) で示したシ一ル材 (s) が不要となり、 自己熱交換型フィルタートラヅ プとしての構造が簡略化できる。 また、 この交互目封じした蛇腹形伝熱体 (B F) では、 第 19図 (b) に示すように、 流体入り口 (D) をこれまでのように 正面側でなく、 上方に持ってくることも可能である。 なお出口 (D') は、 第 1 9図 (a) と同じく背面側にある。 入り口をこの位置とすることにより、 流体が 蛇腹形伝熱体 (BF) の複数の往路空隙部に均等に流入しやすくなるので、 熱交 換性能や微粒子捕捉機能が向上する。 もちろんこの場合、 流路方向を反対向きと することも可能である。 The fluid (typically combustion exhaust gas) containing combustible particulates entering from (D) moves down the front gap where the spacer (m) is located and traps too much particulates. It passes through the filter cloth (FC) at the part with high air permeability that is not installed, flows upward through the gap on the back side where the spacer (m ') is located, and from the back side outlet (D') Discharged. During this time, self-heat exchange is performed between the forward side and the return side. In addition, Fig. 19 (a) shows that not only is the thickness of the fill evening cross (FC) similar to that of Fig. 18 (a) folded to increase the thickness, but the other end is also folded to the opposite side to increase the thickness. After holding, it is a front perspective view of a self-heat exchanger type filter evening trap that has a bellows shape using a spacer (m: arranged on the front side, m ,: arranged on the back side). In this way, both ends of the bellows-shaped gap are alternately plugged. As a result, the seal material (s) shown in FIG. 18 (b) is unnecessary, and the structure as a self-heat exchange type filter trap can be simplified. Also, in this alternately sealed bellows-shaped heat transfer body (BF), as shown in Fig. 19 (b), the fluid inlet (D) should be brought upward rather than the front side as before. Is also possible. The outlet (D ') is on the back side as in Fig. 19 (a). By setting the entrance at this position, the fluid easily flows evenly into the plurality of outward gaps of the bellows type heat transfer body (BF), so that the heat exchange performance and the particulate capturing function are improved. Of course, in this case, it is also possible to set the flow direction to the opposite direction.
(変形例 3)  (Modification 3)
この変形例 3は、 前記第 2実施例において、 該伝熱体 (BF) の蛇腹部分の空 隙部に、 触媒、 吸着材、 蓄熱材、 フィル夕一材などの機能性材料を挟んだもので あ 。  This modified example 3 is the one in which a functional material such as a catalyst, an adsorbent, a heat storage material, a fill material, etc. is sandwiched in the gap portion of the bellows portion of the heat transfer body (BF) in the second embodiment. Well.
前記実施例 4、 5、 8では、 触媒、 吸着材、 蓄熱材はいずれも伝熱体 (BF) と兼用か伝熱体 (BF) に直接担持されているものとしたが、 この変形例 3は、 これらの機能性材料を伝熱体 (BF) とは別個に、 伝熱体空隙部に挟んだもので ある。 In Examples 4, 5, and 8, the catalyst, the adsorbent, and the heat storage material are all heat transfer bodies (BF). In this modified example 3, these functional materials are sandwiched between the heat transfer body gaps separately from the heat transfer body (BF). It is.
本変形例 3の第一は、 変形例 1で用いたスぺーサ一用構造体に触媒、 吸着材、 蓄熱材などの機能性材料を担持したものである。  The first of the third modification is a structure in which the spacer structure used in the first modification carries functional materials such as a catalyst, an adsorbing material, and a heat storage material.
また、 本変形例 3の第二は、 スぺ一サ一としての役割と機能性材料を兼用する 構造体を用いたものである。 例えば粒径がほぼ一定で、 適当な機械的強度を有す るペレツト型触媒を空隙部に一層分そろえて充填するなどの手法を利用すること ができる。  The second modification 3 uses a structure that combines a role as a spacer and a functional material. For example, it is possible to use a technique in which a pellet type catalyst having a substantially uniform particle size and appropriate mechanical strength is further packed in the gap.
また、 本変形例 3の第三は、 スぺーサ一用構造体に加えて機能性材料を挟んだ ものがある。  In addition, the third modification 3 has a structure in which a functional material is sandwiched in addition to the spacer structure.
ここで、 本変形例 3の第三の一例を第 20図に示す。 この例は、 第 16図で示 したのと同様のスぺ一サ一 (m :往路側、 及び m':復路側) を挟んだ蛇腹形伝 熱体 (BF) について、 流体が回り込む端部近傍を示したものである。 この付近 において、 伝熱体 (BF) とスぺ一サー (m') の間に、 触媒等の機能性材料を 担持した帯状の耐熱性クロス (CL) をさらに挟み込んだ配置を示している。 こ のように伝熱体 (BF) と別個の機能性材料を挟むことにより、 自己熱交換器と しての往路あるいは復路側だけに機能性材料を置くことが可能になり、 各種の性 能向上を図ることができる。  Here, FIG. 20 shows a third example of the third modification. In this example, the end where the fluid wraps around the bellows type heat transfer body (BF) with the same spacers as shown in Fig. 16 (m: forward path side and m ': return path side). The neighborhood is shown. In this vicinity, a belt-shaped heat-resistant cloth (CL) carrying a functional material such as a catalyst is further sandwiched between the heat transfer body (BF) and the spacer (m '). By sandwiching a functional material separate from the heat transfer body (BF) in this way, it becomes possible to place the functional material only on the forward or return path side as a self-heat exchanger. Improvements can be made.
また、 本変形例 3の第三の上記例 (第 20図) の実証例を示す。 表 5は、 触媒 を伝熱体 (BF) に担持しなかったこと以外は試作 3号器と同寸法、 同構造の金 網形構造体 (m, m') を挟んだ自己熱交換器に、 長さ 1600 mm、 幅 40 m mの帯状の、 白金触媒を担持した耐熱性クロス (CL) を流体回り込み端部付近 の復路側のみに挟んだ自己熱交換型触媒反応器 (試作 4号器) の性能を示したも のである。 表 4の結果と比べて、 同条件での熱交換率が 2%程度向上している。 また、 エチレンについてみると、 流速 1. 98 L/sという高い空間速度 (22 300 h"1) でも、 表 1に示した理論値にほぼ等しい高い熱交換率が得られてい る。 これは、 前述したスぺ一サ一用構造体 (m, m5) の効果に加えて、 触媒反 応が復路側のみで起こるため、 上流側 (往路側) へ熱交換しやすい配置にしたた めと考えられる。 In addition, a demonstration example of the third example (Fig. 20) of Modification 3 is shown. Table 5 shows the self-heat exchanger with the same size and the same mesh structure (m, m ') as the prototype No. 3, except that the catalyst was not supported on the heat transfer body (BF). Self-heat exchange type catalytic reactor (prototype No. 4) with a heat-resistant cloth (CL) carrying a platinum catalyst that is 1600 mm long and 40 mm wide and sandwiched only on the return path near the end of the fluid wrap. The performance is shown. Compared to the results in Table 4, the heat exchange rate under the same conditions is improved by about 2%. As for ethylene, a high heat exchange rate almost equal to the theoretical value shown in Table 1 was obtained even at a high space velocity of 1.98 L / s (22 300 h " 1 ). The In addition to the effect of the spacer structure (m, m 5 ) described above, the catalyst reaction occurs only on the return path side, so that the heat exchange to the upstream side (outward path side) is easy. This is probably because of this.
(表 5) 自己熱交換型触媒反応器 (試作 4号器)による低濃度燃焼性ガスの触媒燃焼  (Table 5) Catalytic combustion of low-concentration combustible gas in a self-heat exchange type catalytic reactor (prototype No. 4)
~反応ガス成分 全流量入口濃度—入口温度一 口温—度折リ返し部温度 熱交換率  ~ Reaction gas components Total flow rate inlet concentration-Inlet temperature, mouth temperature-Frequently-returned portion temperature Heat exchange rate
 氺
L/s % °C °C °C % エチレン 0.33 0.0215 27 39 148 91  L / s% ° C ° C ° C% Ethylene 0.33 0.0215 27 39 148 91
0.63 0.0260 28 44 172 90  0.63 0.0260 28 44 172 90
1.13 0.0515 28 51 231 90  1.13 0.0515 28 51 231 90
1.98 0.0807 29 65 300 88 プロパン 0.33 0.1610 26 58 529 94  1.98 0.0807 29 65 300 88 Propane 0.33 0.1610 26 58 529 94
0.63 0.1810 26 54 429 93  0.63 0.1810 26 54 429 93
*熱交換率 = [(折り返し部温度 -入口温度)バ折り返し部温度 +出口温度-入口温度) 1 X 100 試作 4号器に対して、 さらに、 フィルター機能を持ち、 またカーボン酸化触媒 を持つ五酸化バナジウムを担持したムライ ト質の耐熱性クロス (CL) を伝熱体 (BF) の流体回り込み部端面に密着させ、 気体流路方向が表 5の場合と逆、 す なわち触媒担持体が往路側にあるようにした試作 5号器を作り、 自己熱交換型フ ィル夕一トラップとしての性能を検証した。 ここで用いた流体は、 力一ボンブラ ヅクを 0. 1〜 1 mg/"L浮遊させた室温空気で、 ディーゼル排ガスを模したも のである。 反応温度を上げるため、 さらに空気に対して H2を 1. 5%添加した。 この混合気体の流速は 0. 33 LZsとした。 その結果、 H2が白金触媒上で酸 化された際の反応熱と自己交換機能により、 この反応器の折り返し部における平 均温度 Tr。は 567 °Cまで上昇するとともに、 捕捉されずに本試作器を通過した 力一ボンブラック量 0. 109 g (二 Wc) と力一ボンブラックの酸化によって 生じた C02と COから算出された焼却カーボン量 0. 175g (二 WCOx) から 求められた力一ボン除去率 ø
Figure imgf000026_0001
(Wc + Wcox) x 100) は 62 %と なった。 なお、 上記の Tr。と入り口温度 29°C (Ti)、 出口温度 123°C (T o) から求めた熱交換率は約 83%であった。
* Heat exchange rate = [(folded part temperature-inlet temperature) bar folded part temperature + outlet temperature-inlet temperature) 1 X 100 Prototype No. 4 unit with a filter function and a carbon oxidation catalyst A heat resistant cloth (CL) made of mullite that supports vanadium oxide is brought into close contact with the end surface of the heat transfer body (BF), and the direction of the gas flow path is opposite to that shown in Table 5, that is, the catalyst support is Prototype No. 5 was made to be on the outbound side, and the performance as a self-heat exchange type film evening trap was verified. The fluid used here is room temperature air with a force of 0.1 to 1 mg / "L suspended in a bomb, and simulates diesel exhaust. To increase the reaction temperature, H 2 The flow rate of this mixed gas was 0.33 LZs, and as a result, the reaction heat and the self-exchange function when H 2 was oxidized on the platinum catalyst turned the reactor back. The average temperature T r in the zone rises to 567 ° C and is generated by the oxidation of force-bon black that is 0.109 g (2 W c ) The amount of incinerated carbon calculated from C0 2 and CO is 0.175 g (2 W COx ).
Figure imgf000026_0001
(Wc + Wcox) x 100) was 62%. T r above. And inlet temperature 29 ° C (Ti), outlet temperature 123 ° C (T The heat exchange rate obtained from o) was about 83%.
(変形例 4)  (Modification 4)
この変形例 4は、 前記第 2実施例と同様の機能を有する自己熱交換型熱交換器 であって、 伝熱体面の一部を開口し、 そこを流体回り込み部分としたものである 前記第 2実施例で述べた自己熱交換型熱交換器の流体回り込み部 (F) は、 伝 熱体 (BF) を蛇腹状に折り曲げて形成される端面をそのまま用いているが、 こ の付近の伝熱体端部に一部切り込みを入れて、 流体が回り込む境界や空間の形状 を恣意的に形成したものが本変形例 4の第一である。 具体的な一例を第 21図 This modified example 4 is a self-heat exchange type heat exchanger having the same function as that of the second embodiment, wherein a part of the heat transfer body surface is opened, and this is used as a fluid wraparound part. 2 The fluid wraparound part (F) of the self-heat exchange type heat exchanger described in the example uses the end face formed by bending the heat transfer body (BF) in the shape of a bellows. A first modification of the fourth modification is that a part of the thermal body edge is cut to arbitrarily form the boundary around which the fluid flows and the shape of the space. Figure 21 shows a specific example.
(a) に示す。 これは、 蛇腹型伝熱体 (BF) の一つの折り曲げ面において、 伝 熱体 (BF) の一部を台形状に切り取って流体回り込み部 (Q) としたものであ る。 他の面についてもこれと合同に切りとつてもよいし、 また、 場所をずらした り、 切り取り形状を三角形、 長方形あるいはその他の形状に変更して切り取って もよい。 このようにすると、 伝熱体 (BF) とシール材 (s5) の間に隙間を設 けなくても、 流体回り込み部空間を形成することができる。 Shown in (a). In this case, a part of the heat transfer body (BF) is cut into a trapezoidal shape on one bent surface of the bellows type heat transfer body (BF) to form a fluid wrap-around part (Q). Other faces may be cut together, or the location may be shifted, or the cut shape may be changed to a triangle, rectangle, or other shape. In this way, the fluid wrap-around space can be formed without providing a gap between the heat transfer body (BF) and the sealing material (s 5 ).
本変形例 4のその二は、 前記第 2実施例において、 伝熱体 (BF) の各折り曲 げ面に周囲が閉じた開口部を設け、 そこを流体回り込み部としたものである。 そ の一例を第 21図 (b) に示す。 これは、 蛇腹型伝熱体 (BF) の各折り曲げ面 の流体出入り口から離れた箇所に円形の開口部 (S) を設けたものである。 この 時、 第 21図 (a) との根本的な相違は、 開口部が伝熱体 (BF) の端部と重な らず、 閉じられた平面領域を占めていることである。 開口部 (S) は図示したよ うに各折り曲げ面ごとに複数個あっても、 また 1個でも構わない。 このような鬨 口部 (S) を設けることにより、 伝熱体端面に流体回り込みのための空間をわざ わざ設けることなく、 自己熱交換のための流路を形成することができる。  The second of the fourth modification is that, in the second embodiment, an opening having a closed periphery is provided on each bent surface of the heat transfer body (BF), and this is used as a fluid wraparound. An example is shown in Fig. 21 (b). This is a circular opening (S) provided at a location away from the fluid inlet / outlet of each folded surface of the bellows type heat transfer body (BF). At this time, the fundamental difference from Fig. 21 (a) is that the opening does not overlap the end of the heat transfer element (BF) and occupies a closed planar area. As shown in the figure, there may be a plurality of openings (S) or a single opening (S). By providing such an opening (S), it is possible to form a flow path for self-heat exchange without providing a space for fluid wraparound on the end face of the heat transfer body.
(変形例 5)  (Modification 5)
この変形例 5は、 通気性のない伝熱体 (BF) とスぺ一サ一用構造体とフィル 夕一クロスとを組み合わせたものである。 すなわち、 伝熱体 (BF) とスぺ一サ —用構造体 (m, m, :例えば金網) を組み合わせた前記変形例 1において、 該 構造体を伝熱体 (BF) の流体回り込み部端面からさらに延長して突出させ、 そ の回りにフィル夕一クロス (FC) を蛇腹状に形成したものである。 Modification 5 is a combination of a non-breathable heat transfer body (BF), a spacer structure, and a fill evening cross. That is, in Modification 1 in which a heat transfer body (BF) and a spacer structure (m, m, for example, a wire mesh) are combined, The structure is further extended from the end face of the fluid wrapping part of the heat transfer body (BF), and a Phil evening cross (FC) is formed in the shape of a bellows around it.
第 22図は本変形例 5の一例を示す。 第 22図 (a) に示すように、 通気性を 持たない伝熱体 (BF) の復路側に長方形のスぺ一サ一 (m') を挟む。 その際、 スぺ—サー (Π1') の端が伝熱体 (BF) の流体回り込み端面より突出するよう に配置する。 次いで、 伝熱体 (BF) の一部とスぺ一サー (m') の突出部分に かかるように、 蛇腹状に形成し端部を折りたたんで厚み (R) を持たせたフィル 夕一クロス (FC) をかぶせる。 さらに、 R部分とは重ならず、 かつ、 フィル夕 —クロス (FC) と伝熱体 (BF) の両方にまたがるようにスぺ一サ一 (m) を 往路側空隙部に挟む。 FIG. 22 shows an example of the fifth modification. As shown in Fig. 22 (a), a rectangular spacer (m ') is sandwiched on the return path side of the non-breathable heat transfer body (BF). At that time, place the end of the spacer ( Π1 ') so that it protrudes from the end face of the heat transfer body (BF). Next, fill the evening cross, which is formed in a bellows shape and folded at the end so as to cover a part of the heat transfer body (BF) and the protruding part of the spacer (m '). Cover with (FC). In addition, the spacer (m) is sandwiched between the forward air gap so that it does not overlap the R part and spans both the fill-cross (FC) and the heat transfer body (BF).
第 22図 (b) は、 これら構成物の位置関係をより明瞭に示した、 伝熱面に垂 直な平面で切り取ってみたときの断面図である。 伝熱体 (BF) の端面からさら にフィル夕一クロス (FC) が伸びて、 その先が折り畳み部分でシールされてい るため、 流体は、 フィル夕一クロス (FC) を通してスぺーサ一 (m') を挟ん だ復路側に流れ込む構造となっており、 結果的にフィル夕一トラップを備えた自 己熱交換器として機能する。 なお、 フィル夕一クロス (FC) の折り畳み方向を 逆にして復路側空隙部の端部をシールする方式としてもよい (第 22図 (b) の 右)。  FIG. 22 (b) is a cross-sectional view showing the positional relationship of these components more clearly, taken from a plane perpendicular to the heat transfer surface. Since the Phil Yuichi Cross (FC) extends from the end face of the heat transfer body (BF) and the tip is sealed with the folded part, the fluid passes through the Phil Yuichi Cross (FC) and the spacer ( It has a structure that flows to the return side with m ') in between, and as a result, it functions as a self-heat exchanger with a fill evening trap. Alternatively, the end of the return-side gap may be sealed by reversing the direction of the Phil Yuichi Cross (FC) (right of Fig. 22 (b)).
(変形例 6)  (Modification 6)
この変形例 6は、 変形例 4の形状を持つ伝熱体 (BF) とスぺ一サ一用構造体 (m, m5) とフィルタ一クロスを組み合わせた自己熱交換型フィル夕一トラヅ プである。 第 23図に本変形例 6の二例を示す。 This modified example 6 is a self-heat exchange type filter that combines a heat transfer body (BF) having the shape of modified example 4, a spacer structure (m, m 5 ), and a filter cloth. It is. FIG. 23 shows two examples of Modification 6.
第 23図 (a) は、 スぺ一サ一を伝熱体端部から突出させるかわりに、 第 2 1 図 (a) のような切り込み部分を伝熱体端部に作り、 フィルタークロス (FC) とスぺ一サ一用構造体 (m, m5) を配置することにより、 往路側スぺーサー (m) を伝熱体端部から突出させないでもフィル夕一機能を持つ通気部 (Q) を 形成したものである。 このようにすると、 伝熱体 (BF) とスぺーサ一 (m) の 端面を揃えることができ、 フィル夕一トラップとしての組み立てが容易になる。 また、 第 21図 (b) のような伝熱体端部と重ならない開口部を持つ伝熱体 (BF) を用いて、 第 23図 (b) のようにフィル夕一クロス (FC) とスぺ一 サー用構造体 (m, m5) を配置してもよい。 このようにすると、 伝熱体 (B F) とフィル夕一クロス (FC) とスぺ一サ一 (m5) の端面が重なり (スぺ一 サ一 (m) の端面はこれらより R分だけ引っ込んでいる)、 フィルタ一トラップ としての組み立てがさらに容易になる。 産業上の利用可能性 In Fig. 23 (a), instead of projecting the spacer from the end of the heat transfer body, a notch as shown in Fig. 2 (a) is made at the end of the heat transfer body, and the filter cloth (FC ) And the spacer structure (m, m 5 ), the ventilation part (Q) has the function of filling even if the outward spacer (m) does not protrude from the end of the heat transfer body. ) Is formed. In this way, the heat transfer body (BF) and the spacer (m) The end faces can be aligned, making it easy to assemble as a Phil evening trap. Also, using a heat transfer body (BF) with an opening that does not overlap with the end of the heat transfer body as shown in Fig. 21 (b), and the A spacer structure (m, m 5 ) may be arranged. In this way, the end faces of the heat transfer body (BF), Phil Yuichi Cross (FC), and spacer 1 (m 5 ) overlap (the end face of spacer 1 (m) is R by this amount. It is easier to assemble as a filter trap. Industrial applicability
以上のように、 本発明に係る熱交換器並びにそれを用いた反応器及び輻射ヒー 夕は、 限られた容量の中で熱交換面が大きくかつ製作が比較的容易で、 熱交換器 の熱交換効率が飛躍的に向上するので、 この熱交換器と、 これを自己熱交換型と したもの、 さらに自己熱交換器と触媒反応や燃焼バーナーなどを組み合わせた自 3熱交換型反応器や省エネルギー的な輻射ヒ一夕の提供が可能となり、 特にエネ ルギ一消費を節約するための熱工学分野、 及び大気ゃ排ガス浄化を目的とする環 境技術分野に用いるのに適している。  As described above, the heat exchanger according to the present invention, the reactor using the heat exchanger, and the radiation heater have a large heat exchange surface within a limited capacity and are relatively easy to manufacture. Since the exchange efficiency is dramatically improved, this heat exchanger is a self-heat exchange type, and a self-heat exchange reactor that combines a self-heat exchanger with a catalytic reaction or combustion burner, and energy saving. It is suitable for use in the field of thermal engineering to save energy consumption and environmental technology for the purpose of purifying exhaust gas.

Claims

請求: .載爵 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交換器におい て、 Claim: .In a heat exchanger having a bulkhead type heat transfer material for separating a high temperature fluid and a low temperature fluid,
該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹部分の空隙 部を稜線方向又は谷線方向に沿って並流又は向流するように構成されている ことを特徴とする熱交換器。  The heat transfer body has a bellows shape, and both fluids are configured to co-flow or counter flow along the ridge line direction or the valley line direction mainly in the gap portion of the bellows portion of the heat transfer body. Heat exchanger.
高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交換器におい て、  In a heat exchanger having a partition type heat transfer body for separating a high temperature fluid and a low temperature fluid,
該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹部分の空隙 部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝 熱体の反対側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部 を有し、  The heat transfer body has a bellows shape, and both fluids are configured so as to mainly flow in the ridge line direction or the valley line direction in the void portion of the bellows part of the heat transfer body, and the heat transfer body At one end or both ends that intersect the ridgeline of the bellows portion, there is a fluid wrapping space for allowing one fluid to wrap around the gap portion of the bellows portion on the opposite side of the heat transfer body,
該流体回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すべき他 方の流体となつて熱交換を行うことを特徴とする自己熱交換型熱交換器。 ( a ) 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交換器 において、  A self-heat exchange type heat exchanger, wherein the fluid that has flowed to the opposite side through the fluid wrapping space portion exchanges heat with the other fluid to be heat-exchanged. (a) In a heat exchanger having a partition type heat transfer body for separating a high temperature fluid and a low temperature fluid,
該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹部分の空隙 部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝 熱体の反対側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部 を有し、  The heat transfer body has a bellows shape, and both fluids are configured so as to mainly flow in the ridge line direction or the valley line direction in the gap portion of the bellows portion of the heat transfer body, and the heat transfer body At one end or both ends that intersect the ridgeline of the bellows portion, there is a fluid wrapping space for allowing one fluid to wrap around the gap portion of the bellows portion on the opposite side of the heat transfer body,
該流体回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すべき他 方の流体となって熱交換を行う自己熱交換型熱交換器と、  A self-heat exchanging heat exchanger in which the fluid that has flowed to the opposite side through the fluid wrapping space becomes the other fluid to be heat-exchanged and performs heat exchange;
( b ) 該熱交換器の該流体回り込み空間部に設けられた発熱体又は吸熱体とか らなることを特徴とする反応器。 該熱交換器の該伝熱体の全表面又は該流体回り込み空間部近傍の表面に、 発 熱反応を促す触媒を担持させ、 かつ、 流体として該反応成分を含むものを用 いることを特徴とする請求範囲第 3項に記載の反応器。 (b) A reactor comprising a heating element or an endothermic body provided in the fluid circulation space of the heat exchanger. A catalyst that promotes a heat generation reaction is supported on the entire surface of the heat transfer body of the heat exchanger or the surface in the vicinity of the fluid wrapping space, and the reaction component is used as a fluid. The reactor according to claim 3.
該熱交換器の該伝熱体として蓄熱性のあるものを用い、 該熱交換器の該伝熱 体の全表面、 又は該流体の入り出口に近い側の領域表面に、 発熱反応を促す 触媒を担持させるとともに、 該熱交換器の該伝熱体の全表面、 又は該流体回 り込み空間部近傍の表面に、 反応成分を低温で吸着し高温で離脱させる吸着 剤を担持させ、 かつ、 流体として該反応成分を含むものを用いることを特徴 とする請求範囲第 3項に記載の反応器。 A catalyst that promotes an exothermic reaction on the entire surface of the heat exchanger of the heat exchanger or on the surface of the region near the inlet / outlet of the fluid. And an adsorbent that adsorbs reaction components at a low temperature and desorbs them at a high temperature on the entire surface of the heat transfer body of the heat exchanger or the surface in the vicinity of the fluid entrainment space, and 4. The reactor according to claim 3, wherein a fluid containing the reaction component is used as the fluid.
該熱交換器の該伝熱体における流体が回り込む側の端面に、 微粒子を捕捉、 除去するための微粒子除去用フィル夕一を密着配置させたことを特徴とする 請求範囲第 3項に記載の反応器。 4. The fine particle removal film for capturing and removing fine particles is disposed in close contact with the end surface of the heat exchanger on the side where the fluid circulates in the heat exchanger. Reactor.
該熱交換器の該伝熱体における流体が回り込む側の端面に、 微粒子を捕捉、 除去するための微粒子除去用フィル夕一を密着配置させたことを特徴とする 請求範囲第 4項に記載の反応器。 5. The fine particle removal film for capturing and removing fine particles is disposed in close contact with an end surface of the heat exchanger on the side where the fluid flows in the heat transfer body. Reactor.
該伝熱体が、 気体透過及ぴ微粒子捕捉が可能なフィルター機能を備えたもの であり、 かつ、 該伝熱体の流体が回り込む流体回り込み部を設けないことを 特徴とする請求範囲第 3又は 4項に記載の反応器。 ― The heat transfer body is provided with a filter function capable of gas permeation and capture of fine particles, and does not have a fluid wraparound portion around which the fluid of the heat transfer body flows. The reactor according to item 4. -
高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交換器におい て、 In a heat exchanger having a partition type heat transfer body for separating a high temperature fluid and a low temperature fluid,
該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹部分の空隙 部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝 熱体の反対側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部 有し、 The heat transfer body has a bellows shape, and both fluids are configured so as to mainly flow in the ridge line direction or the valley line direction in the gap portion of the bellows portion of the heat transfer body, and the heat transfer body A fluid wrapping space for allowing one fluid to wrap around the gap of the bellows portion on the opposite side of the heat transfer body at one or both ends intersecting the ridgeline of the bellows portion;
該流体回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すべき他 方の流体となって熱交換を行う自己熱交換型熱交換器と、 ( b ) 該熱交換器の該流体回り込み空間部に設置された燃焼バーナーとからな 、 A self-heat exchanging heat exchanger in which the fluid that has flowed to the opposite side through the fluid wrapping space becomes the other fluid to be heat-exchanged and performs heat exchange; (b) a combustion burner installed in the fluid wrapping space of the heat exchanger;
該燃焼バーナーを設置した該流体回り込み空間部と外部とを隔てる壁の一部 を、 熱輻射板で構成したことを特徴とする輻射ヒー夕。 A radiation heater characterized in that a part of the wall separating the fluid wraparound space where the combustion burner is installed and the outside is constituted by a heat radiation plate.
. 高温流体と低温流体を隔てるための隔壁型の伝熱体を有する熱交換器にお いて、  In a heat exchanger having a partition type heat transfer body for separating a high temperature fluid and a low temperature fluid,
該伝熱体が蛇腹型形状であり、 両流体が主として該伝熱体の蛇腹部分の空隙 部を稜線方向又は谷線方向に沿って向流するように構成され、 かつ、 該伝熱体の蛇腹部分の稜線と交わる一端部又は両端部に、 一方の流体を該伝 熱体の反対側の蛇腹部分の空隙部に回り込ませるための流体回り込み空間部 を有し、  The heat transfer body has a bellows shape, and both fluids are configured so as to mainly flow in the ridge line direction or the valley line direction in the gap portion of the bellows portion of the heat transfer body, and the heat transfer body At one end or both ends that intersect the ridgeline of the bellows portion, there is a fluid wrapping space for allowing one fluid to wrap around the gap portion of the bellows portion on the opposite side of the heat transfer body,
該流体回り込み空間部を介して反対側に回り込んだ流体が、 熱交換すべき他 方の流体となって熱交換を行う自己熱交換型熱交換器と、  A self-heat exchanging heat exchanger in which the fluid that has flowed to the opposite side through the fluid wrapping space becomes the other fluid to be heat-exchanged and performs heat exchange;
( b ) 該熱交換器の該伝熱体の全表面又は該流体回り込み空間部近傍の表面に 担持させた、 発熱反応を促す触媒とからなり、  (b) a catalyst that promotes an exothermic reaction carried on the entire surface of the heat transfer body of the heat exchanger or the surface in the vicinity of the fluid wraparound space,
該流体回り込み空間部と外部とを隔てる壁の一部を、 熱輻射板で構成し、 か つ、 流体として該反応成分を含むものを用いることを特徴とする輻射ヒー夕。 . 該伝熱体の蛇腹部分の空隙部に、 該伝熱体とは別個の通気性を有する構造 体を少なくとも 1種類以上挟んだことを特徴とする請求範囲第 2項に記載の 自己熱交換型熱交換器。 A radiation heater characterized in that a part of a wall separating the fluid wrapping space portion and the outside is constituted by a heat radiation plate, and a fluid containing the reaction component is used as a fluid. 3. The self-heat exchange according to claim 2, wherein at least one type of air-permeable structure separate from the heat transfer body is sandwiched in the space of the bellows portion of the heat transfer body. Mold heat exchanger.
. 該通気性を有する構造体が、 スぺーサ一としての役割を果たすものである ことを特徴とする請求範囲第 1 1項に記載の自己熱交換型熱交換器。 The self-heat exchange heat exchanger according to claim 11, wherein the air-permeable structure plays a role as a spacer.
. 該伝熱体の蛇腹部分の空隙部に、 触媒、 吸着剤、 蓄熱材、 フィル夕一材な どの機能性材料を挾んだことを特徴とする請求範囲第 2項に記載の自己熱交 換型熱交換器。 3. The self-heat exchange according to claim 2, wherein a functional material such as a catalyst, an adsorbent, a heat storage material, or a fill material is contained in a gap portion of the bellows portion of the heat transfer body. Convertible heat exchanger.
. 伝熱体面の一部を開口し、 そこを流体回り込み部分としたことを特徴とす る請求範囲第 2項に記載の自 3熱交換型熱交換器。 3. The self-heat exchange type heat exchanger according to claim 2, wherein a part of the heat transfer body surface is opened, and the part is used as a fluid wraparound part.
. 該伝熱体の端部の一部分を切り取り、 そこを流体回り込み部としたことを 特徴とする請求範囲第 1 4項に記載の自己熱交換型熱交換器。The self-heat exchange type heat exchanger according to claim 14, wherein a part of the end portion of the heat transfer body is cut out and used as a fluid wraparound portion.
. 伝熱体面の一部に周囲が閉じた 1又は複数の開口部を設け、 そこを流体回 り込み部としたことを特徴とする請求範囲第 1 4項に記載の自己熱交換型熱 交換器。The self-heat exchange type heat exchange according to claim 14 characterized in that one or a plurality of openings having a closed periphery are provided in a part of the surface of the heat transfer body, and this is used as a fluid entrainment part. vessel.
. 該伝熱体として通気性のないものを用い、 該伝熱体とスぺ一サ一用構造体 とフィル夕一クロスとを組み合わせて構成されることを特徴とする請求範囲 第 1 2項に記載の自己熱交換型熱交換器。A non-breathable heat transfer member is used, and the heat transfer member, a spacer structure, and a fill evening cloth are combined. A self-heat exchange type heat exchanger as described in 1.
. 該構造体を該伝熱体の流体回り込み部端面からさらに延長して突出させ、 その回りにフィルタークロスを蛇腹状に形成したことを特徴とする請求範囲 第 1 7項に記載の自己熱交換型熱交換器。The self-heat exchange according to claim 17, characterized in that the structure is further extended from the end face of the fluid wrapping portion of the heat transfer body and protruded, and a filter cloth is formed around the end of the structure. Mold heat exchanger.
. 伝熱体面の一部を開口し、 そこを流体回り込み部分とするか、 又は該伝熱 体の端部の一部分を切り取り、 そこを流体回り込み部としたことを特徴とす る請求範囲第 1 7項に記載の自己熱交換型熱交換器。 A part of the surface of the heat transfer body is opened and used as a fluid wrap around part, or a part of the end of the heat transfer body is cut out and used as a fluid wrap around part. Claim 1 The self-heat exchange type heat exchanger according to item 7.
. フィルター機能を持つ該伝熱体がスぺ一サー用構造体を用いて蛇腹形に保 持、 形成されていることを特徴とする請求範囲第 8項に記載の反応器。 9. The reactor according to claim 8, wherein the heat transfer body having a filter function is formed in a bellows shape using a spacer structure.
PCT/JP2003/009202 2002-07-22 2003-07-18 Heat exchanger, and reactor and radiation heater using the heat exchanger WO2004010068A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03741512A EP1541952A4 (en) 2002-07-22 2003-07-18 Heat exchanger, and reactor and radiation heater using the heat exchanger
US10/521,774 US20060153755A1 (en) 2002-07-22 2003-07-18 Heat exchanger and reactor and radiation heater using the heat exchanger
AU2003281543A AU2003281543A1 (en) 2002-07-22 2003-07-18 Heat exchanger, and reactor and radiation heater using the heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002212210 2002-07-22
JP2002-212210 2002-07-22
JP2003-274039 2003-07-14
JP2003274039A JP4041888B2 (en) 2002-07-22 2003-07-14 Self heat exchange type heat exchanger

Publications (1)

Publication Number Publication Date
WO2004010068A1 true WO2004010068A1 (en) 2004-01-29

Family

ID=30772227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009202 WO2004010068A1 (en) 2002-07-22 2003-07-18 Heat exchanger, and reactor and radiation heater using the heat exchanger

Country Status (4)

Country Link
EP (1) EP1541952A4 (en)
JP (1) JP4041888B2 (en)
AU (1) AU2003281543A1 (en)
WO (1) WO2004010068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039265A (en) * 2018-10-08 2021-06-25 勃林格殷格翰国际公司 Continuous flow reactor for virus inactivation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470746B2 (en) 2005-01-25 2010-06-02 株式会社デンソー NOx purification device
JP4639381B2 (en) * 2005-12-26 2011-02-23 独立行政法人産業技術総合研究所 Exhaust gas purification device
JP2007198706A (en) * 2006-01-30 2007-08-09 National Institute Of Advanced Industrial & Technology Internal heating type heat exchange structure having intersecting passage directions
JP2008157592A (en) * 2006-12-26 2008-07-10 National Institute Of Advanced Industrial & Technology Stacked integrated self heat exchange structure
NL1035752C2 (en) * 2008-07-25 2010-01-26 Panvest B V Device suitable for treating a fluid and method suitable for manufacturing such a device.
US20100193168A1 (en) * 2009-02-02 2010-08-05 Johnson Jr Alfred Leroy Heat exchanger
WO2010110410A1 (en) * 2009-03-27 2010-09-30 独立行政法人産業技術総合研究所 Heat exchanger-integrated reaction device having outgoing and return ducts for reaction section
JP6258037B2 (en) 2011-01-06 2018-01-10 ブルーム エナジー コーポレーション Components of SOFC hot box
CN103486876B (en) * 2013-06-21 2016-01-13 无锡小天鹅股份有限公司 Heat-exchanger rig and dryer thereof or washing-drying integral machine
CN104634926A (en) * 2013-11-11 2015-05-20 中国辐射防护研究院 Circulating iodine adsorber performance test method and device
CN103801245B (en) * 2014-01-27 2015-06-03 石祖嘉 Tubular type double-annular channel double-sided heat-exchange large-flux microchannel reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061509A (en) * 1973-10-03 1975-05-27
JPS6113171U (en) * 1984-06-29 1986-01-25 株式会社 土屋製作所 Heat exchanger
JPH11264679A (en) * 1998-03-17 1999-09-28 Konica Corp Heat exchanger and heat exchanging method
EP1016777A2 (en) * 1998-12-30 2000-07-05 Ab Volvo Catalytic purification device
JP2002188435A (en) * 2000-10-12 2002-07-05 Toyota Motor Corp Exhaust gas purifying filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061509A (en) * 1973-10-03 1975-05-27
JPS6113171U (en) * 1984-06-29 1986-01-25 株式会社 土屋製作所 Heat exchanger
JPH11264679A (en) * 1998-03-17 1999-09-28 Konica Corp Heat exchanger and heat exchanging method
EP1016777A2 (en) * 1998-12-30 2000-07-05 Ab Volvo Catalytic purification device
JP2002188435A (en) * 2000-10-12 2002-07-05 Toyota Motor Corp Exhaust gas purifying filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1541952A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039265A (en) * 2018-10-08 2021-06-25 勃林格殷格翰国际公司 Continuous flow reactor for virus inactivation

Also Published As

Publication number Publication date
AU2003281543A1 (en) 2004-02-09
EP1541952A4 (en) 2008-02-13
EP1541952A1 (en) 2005-06-15
JP4041888B2 (en) 2008-02-06
JP2004069293A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
WO2004010068A1 (en) Heat exchanger, and reactor and radiation heater using the heat exchanger
US20060096282A1 (en) Method and apparatus for purifying exhaust gases
JP5835030B2 (en) Heat storage device
JP2008157592A (en) Stacked integrated self heat exchange structure
US8574507B2 (en) Heat exchanger-integrated reaction device having supplying and return ducts for reaction section
JP3739044B2 (en) Heat exchanger and heat exchange reactor using the same
JP2009535554A (en) Backflow heat exchanger for exhaust system
US20060153755A1 (en) Heat exchanger and reactor and radiation heater using the heat exchanger
EP1016777B1 (en) Catalytic purification device
JP4613355B2 (en) Reactor using self heat exchange type heat exchanger
JP4288377B2 (en) Radiant heater using self-heat exchange type heat exchanger
JP5495066B2 (en) Heat exchanger integrated reactor
JPH10141049A (en) Exhaust emission control converter
WO2014192555A1 (en) Chemical heat storage device
JP2016033434A (en) Chemical heat storage device
JPWO2005075800A1 (en) Reactor with heat exchange function
JP6256224B2 (en) Chemical heat storage device
CN213713048U (en) Fluidized bed furnace for heating primary air by using waste gas waste heat of fluidized bed
TWI817493B (en) Low temperature hydrogen oxidation system
WO2016009916A1 (en) Chemical heat storage apparatus
WO2016166781A1 (en) Heat exchanger and voc treatment apparatus using same
JP2004535269A5 (en)
JP2743641B2 (en) Catalyst purification device
CN112460612A (en) Diffused gas flameless catalytic combustion sensible heat utilization device
US20070240408A1 (en) Particle burner including a catalyst booster for exhaust systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003741512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006153755

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521774

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003741512

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10521774

Country of ref document: US