WO2004009267A1 - Method for manufacture of a metal shell, and a cup designed to serve as a blank - Google Patents

Method for manufacture of a metal shell, and a cup designed to serve as a blank Download PDF

Info

Publication number
WO2004009267A1
WO2004009267A1 PCT/SE2003/001156 SE0301156W WO2004009267A1 WO 2004009267 A1 WO2004009267 A1 WO 2004009267A1 SE 0301156 W SE0301156 W SE 0301156W WO 2004009267 A1 WO2004009267 A1 WO 2004009267A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
counterdie
shell
mandrel
preferredly
Prior art date
Application number
PCT/SE2003/001156
Other languages
French (fr)
Inventor
Lennart HÅKANSSON
Original Assignee
Zakrisdalsverken Aktiebolag
HÅKANSSON, Lilian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0202293A external-priority patent/SE0202293D0/en
Priority claimed from SE0202766A external-priority patent/SE525752C2/en
Application filed by Zakrisdalsverken Aktiebolag, HÅKANSSON, Lilian filed Critical Zakrisdalsverken Aktiebolag
Priority to AU2003251254A priority Critical patent/AU2003251254A1/en
Priority to CA002492603A priority patent/CA2492603A1/en
Priority to EP03765416A priority patent/EP1536899B1/en
Priority to DE60326466T priority patent/DE60326466D1/en
Priority to US10/521,165 priority patent/US7225658B2/en
Publication of WO2004009267A1 publication Critical patent/WO2004009267A1/en
Priority to NO20050982A priority patent/NO331967B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/16Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes
    • B21C1/22Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles
    • B21C1/24Metal drawing by machines or apparatus in which the drawing action is effected by other means than drums, e.g. by a longitudinally-moved carriage pulling or pushing the work or stock for making metal sheets, bars, or tubes specially adapted for making tubular articles by means of mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/06Making machine elements axles or shafts
    • B21K1/12Making machine elements axles or shafts of specially-shaped cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/02Producing blanks in the shape of discs or cups as semifinished articles for making hollow articles, e.g. to be deep-drawn or extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/04Shaping thin-walled hollow articles, e.g. cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/12Shaping end portions of hollow articles
    • B21K21/14Shaping end portions of hollow articles closed or substantially-closed ends, e.g. cartridge bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B33/00Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor

Definitions

  • Cold forging can be divided into three main types, cold flow pressing, deep drawing and upsetting.
  • a thin circular disk cut out of cold-rolled sheet in a suitable material quality for example SSEN 6082 (European standard), which is specially alloyed aluminium.
  • a suitable material quality for example SSEN 6082 (European standard), which is specially alloyed aluminium.
  • Another suitable material can be brass.
  • the round is shaped in a preliminary production stage by means of deep drawing and turning to form a cup that is then washed, annealed and pickled, following which it is worked further including by means of further deep drawing to give a finished shell.
  • a round of this kind can have a thickness of around 10 mm and a diameter of approx. 160 mm.
  • the grain structure of the material brings the disadvantage that the material flows with varying ease in different directions.
  • the material will move in the directions in which it flows most easily, i.e. where the resistance to deformation is lowest, and the result is that the material will not be distributed entirely evenly when the wall is formed.
  • the method does not offer any opportunity either to obtain a certain thickness of the cup's bottom and walls in a controlled manner, resulting in disadvantages in subsequent production stages.
  • a surrounding wall is formed that is deformed uniformly, so that the upper open end of the cup acquires a substantially even edge that does not need to be turned.
  • the cup is then washed, annealed again and pickled in order to undergo deep drawing to form a shell in the next production stage.
  • the shell is cut off at the top edge to the desired length and the bottom flanged to the desired shape, following which the remaining material in the bottom of the shell is cut out.
  • the shell is solution heat treated, artificially aged and turned before it is surface finished and given a final inspection for delivery to the customer.
  • the wear on the flanging tools as a result of such overheating can be avoided or irmiimized by adjusting the bottom thickness of the cup depending on the quantity of material required for flanging in the prelirninary cold flow pressing.
  • Fig. 2 shows a cross-section of a body that has been turned to size and provided with a drilled hole in the centre;
  • Fig. 3D shows a cross-section of a cup that has been obtained by cold flow pressing of a body
  • Fig. 5 shows a cross-section of a shell following cutting to the correct length
  • Fig. 1 A shows a cross-section of the round R, which according to a method currently used in Sweden forms a blank in the manufacture of a deep-drawn metal shell.
  • the round R is in the form of a circular disk that is cut out of a cold-rolled sheet with a degree of deformation of at least 30%.
  • the degree of deformation is essential, as it gives the material the necessary strength properties to withstand the load that plastic working brings about during the manufacturing process.
  • Figs. 3A-3C show diagrammatically how a cup 1 is obtained by cold flow pressing of a body 3 and Fig. 3D shows a cup 1 obtained by cold flow pressing.
  • Cold flow pressing is a forming method in which the material, in this case an aluminium body 3, is forced to flow out into a restricted space by applying a pressing force to the material.
  • the restricted space is formed by a counterdie 6, which interacts with a mandrel 9 in such a way that a space of the desired shape is formed between these two when they are brought together.
  • the space can be wholly or partly delimited by these two tools 6, 9.
  • the counterdie 6 refers to the forming tool that externally shapes the blank that is to be worked and the mandrel 9 refers to the forming tool used to give a blank an internal shape in various types of cold forming machines.
  • the body 3 can be turned to size if necessary, following which it is provided with a hole 17, for example by drilling a hole 17.
  • the hole 17, which is preferably a through hole, is suitably drilled so that it coincides with the central axis C of the body 3.
  • the body 3 is then annealed and a lubricant applied.
  • the body 3 is shown placed in the counterdie 6, which is done in such a way that a first end surface 4 of the body 3 that is essentially perpendicular to the central axis C of the body 3 is placed facing towards the bottom 7 of the counterdie 6.
  • the inner wall 8 of the counterdie 6 encloses at least a part of the body 3 and preferably the whole body 3, so that the body 3 is hereby placed in the counterdie 6.
  • the mandrel 9 is applied to the end surface 5 of the body 3 lying free.
  • the mandrel 9 is provided with a guide pin 18, which fits into the hole 17 in the centre of the body 3.
  • the guide pin 18 is preferably placed centrally on the mandrel 9 and the guide pin 18 preferably has a cylindrical cross-section.
  • the guide pin 18 interacts with the through hole 17 of the body 3 and a hole 19 in the counterdie 6, so that correct positioning of the body 3 is obtained. This preferably means that the body 3 is centred.
  • the guide pin can be arranged fixedly or movably to interact with the mandrel.
  • the guide pin in Figure 3 A is an example of a fixed guide pin.
  • a movable guide pin is movable in an axial direction inside the mandrel.
  • the guide pin is suitably arranged so that its central axis coincides with the central axis of the mandrel. It is hereby ensured that the quantity of material in the body 3 is distributed symmetrically around the mandrel 9, which gives advantages in production.
  • the through hole 17 of the body 3 and the hole 19 of the counterdie suitably have a shape and dimension that correspond to the shape and dimension of the guide pin 18.
  • a suitable dimension of the guide pin can be in the range of 5-30 mm.
  • the hole 19 in the counterdie is preferably placed centrally in the bottom of the counterdie 6.
  • the advantage is achieved that the mandrel can act symmetrically on the body 3, particularly if the hole 19 of the counterdie is placed centrally in the bottom of the counterdie 6 and the guide pin 18 can also interact with the hole 19 in the counterdie.
  • This gives a symmetrical distribution of the quantity of material around the mandrel 9.
  • the mandrel 9 preferably has a circular-cylindrical cross-section.
  • the counterdie 6 surrounds the material both on the underside and to the side and when the mandrel 9 is pressed down in the body 3 the material will flow out towards the sides of the body 3 and gradually be forced upwards into the space formed between the walls 10 and 8 respectively of the mandrel 9 and counterdie 6, so that a cup 1 is formed, which is shown in Fig. 3B.
  • the size of the body 3 is adapted so that a sufficient amount of material is available for production but without the quantity of waste being unnecessarily great.
  • the thickness of the bottom of the cup 1 is reduced and the height of the wall of the cup 1 increases as the mandrel 9 acts on the body 3 when this lies in the counterdie 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)
  • Table Devices Or Equipment (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Preparation Of Fruits And Vegetables (AREA)

Abstract

The invention relates to manufacture of a cup (1) that is designed to serve as a blank in the production of a metal shell (2) by providing a body (3)of a bar material, placing the body (3) in a counterdie (6) in which a first end surface of the body (3),which is substantially perpendicular to the central axis (C) of the body, is placed facing towards the bottom of the counterdie while the inner wall of the counterdie (6) encloses at least a part of the body and preferably the whole body, so that the body (3) is hereby placed in the counterdie (6), applying a mandrel (9) to a second end surface of the body that is substantially perpendicular to the central axis C of the body (3), applying a pressing force to the mandrel (9) so that the body (3) is cold flow pressed through plastic deformation into a cup (1). The invention also relates to an application of a body for manufacture of a blank for a grenade/cartridge shell and a process for manufacture of a grenade/cartridge shell.

Description

METHOD FOR MANUFACTURE OF A METAL SHELL, AND A CUP DESIGNED TO SERVE AS A BLANK.
TECHNICAL FIELD The present invention relates to a method for manufacture of a metal shell in a steel, aluminium or copper alloy. The invention also relates to a method for manufacture of a cup designed to serve as a blank.
PRIOR ART Forming of metals can take place both in a warm and a cold state. The present invention relates to forming through a specific method called cold forging. Cold forging can be divided into three main types, cold flow pressing, deep drawing and upsetting.
Cold forging refers to a method of forming at a temperature that lies below the recrystallization temperature of the material. Cold forging has a number of advantages compared with other methods of forming, some of the advantages being forming of complicated shapes, a reduction in material wastage and good surface smoothness without the need for subsequent working. Cold forging also offers the opportunity to influence the metal's grain structure, size and orientation in a unique way. This gives improved electrical and mechanical properties, improved hardenability and improved hardness through deformation hardening.
For cold working of a metal, it is necessary for it to have specific properties including good ductility. Carbon steel, low alloy steel, specific aluminium alloys, brass and bronze are metals with these properties. Apart from adding various alloying metals to the metal, desirable properties are obtained by transformations of the structure of the material due to heat treatment among other things.
An example is given in JP57089466 of how it is said to be possible to achieve good cold working properties by alloying alummium with 1.0 - 3.0 percent by weight Mn and up to 0.3 percent by weight Fe and directly following casting into a billet, i.e. a bar of slender dimensions, in this case with a diameter of 155 mm, quenching the material to thereby obtain magnesium in solid solution in the material. This billet is cut into pieces, which are then cold flow pressed to the desired shape and it is stated that the product obtained has good strength properties without any heat treatment being required. The manufacture of metal shells, and in particular of shells for use in cartridge production, currently takes place from a blank consisting of a round, i.e. a thin circular disk cut out of cold-rolled sheet in a suitable material quality, for example SSEN 6082 (European standard), which is specially alloyed aluminium. Another suitable material can be brass. The round is shaped in a preliminary production stage by means of deep drawing and turning to form a cup that is then washed, annealed and pickled, following which it is worked further including by means of further deep drawing to give a finished shell. To manufacture cartridge shells, a round of this kind can have a thickness of around 10 mm and a diameter of approx. 160 mm.
For the round to withstand the load caused by subsequent deep drawing to form a finished shell, the material is required to a have a degree of reduction of at least 30% from the cold rolling. Cold rolling gives a characteristic structure of the material consisting of grain stretched in the direction of rolling, which gives desired strength properties through deformation hardening.
An example of the prior art for the manufacture of shells is shown in US patent 2,264,266.
In the manufacture of a shell from this round that is of immediate interest to the invention, however, the grain structure of the material brings the disadvantage that the material flows with varying ease in different directions. During deep drawing, the material will move in the directions in which it flows most easily, i.e. where the resistance to deformation is lowest, and the result is that the material will not be distributed entirely evenly when the wall is formed. This results in the formation of characteristic so-called drawing lugs in the top edge of the cup, for which reason the cup has to be turned so that an even top edge is obtained. The method does not offer any opportunity either to obtain a certain thickness of the cup's bottom and walls in a controlled manner, resulting in disadvantages in subsequent production stages.
BRIEF DESCRIPTION OF THE INVENTION
The invention relates to a method for manufacture of a cup that is designed to serve as a blank in the production of a metal shell in an aluminium or copper alloy, for example, especially aluminium in a grade termed SSEN 6082. The invention is particularly well suited to the manufacture of blanks designed to be used in the production of shells with through holes, for example grenade or cartridge shells. The blank for the cup is obtained by cutting from a standardized bar material of suitable dimensions to give a body of suitable length . The bar material can be pressed, drawn or rolled bar with a circular, square, rectangular, hexagonal or other cross-section. To manufacture a cartridge shell, a bar with a circular cross-section is best used, so that a circular-cylindrical body is obtained on cutting. The body is characterized in that it is solid and has two end surfaces that are substantially parallel to one another and has a substantial extension in all planes, i.e. an extension vertically, laterally and longitudinally. The ratio between the largest and the smallest dimension can lie in this case in a range between 1:1 - 5:1. The body is turned if necessary to the exact diameter. The body is annealed and a lubricant applied, following which the body is cold flow pressed to give a cup.
In cold flow pressing, a surrounding wall is formed that is deformed uniformly, so that the upper open end of the cup acquires a substantially even edge that does not need to be turned. The cup is then washed, annealed again and pickled in order to undergo deep drawing to form a shell in the next production stage. The shell is cut off at the top edge to the desired length and the bottom flanged to the desired shape, following which the remaining material in the bottom of the shell is cut out. Finally the shell is solution heat treated, artificially aged and turned before it is surface finished and given a final inspection for delivery to the customer.
Due to the initial cold flow pressing, the bottom thickness of the cup can easily be varied as it is determined as a function of the quantity of material required for the flanging. "When a round is used, the cup's bottom thickness cannot be varied, as the cup is formed by deep drawing of the round, which deep drawing is not designed to reduce the bottom thickness. On the other hand, it occurs that the bottom thickness is reduced unintentionally owing to the grain structure of the material, which gives rise to disadvantages in production.
It has also proved to be the case that the use of a round results in unnecessary wear on the flanging tools. The wear is caused by the flanging tools having to be compressed more than is desirable as the quantity of material remaining in the bottom of the shell is sometimes very little. This results in very high temperatures in the remaining material in the bottom of the shell, which increases the wear on the tools.
The reason that there is sometimes too little material is that the cold-rolled material structure in the round does not flow equally easily in all directions, which is why it is difficult to control the thickness. According to the present invention, the wear on the flanging tools as a result of such overheating can be avoided or irmiimized by adjusting the bottom thickness of the cup depending on the quantity of material required for flanging in the prelirninary cold flow pressing.
The invention also has cost advantages. By using a bar material that is cut into the correct lengths, the consumption of raw material is rrunimized in the sense that no wastage or very little wastage occurs compared with manufacturing shells from rounds, in which the rounds are cut out of cold-rolled sheet, resulting in large amounts of waste. This means that the rounds are comparatively expensive to purchase. The fact that the forming of the cup can be done in an ordinary press of a standard type by simply exchanging tools also makes production cheaper. Due to cold flow pressing the cup acquires such material properties as well as such dimensional accuracy that it can be deep drawn to a finished shell without any intermediate working, which offers cost advantages. The reduced wear on the tools in flanging offers a further cost advantage.
OBJECT OF THE INVENTION
One object of the invention is to offer a method of manufacture of a metal shell in which the material has improved flow properties in the preliminary forming of a blank into a cup. Another object of the invention is to deteπnine the thickness of the cup's bottom and wall easily and also in a more controlled manner. A further object is to offer a more flexible and cost-effective production process.
DESCRIPTION OF FIGURES
Fig. 1 A shows a cross-section of a round from a sheet material; Fig. 1 B shows a cross-section of a body from a bar material;
Fig. 2 shows a cross-section of a body that has been turned to size and provided with a drilled hole in the centre;
Figs. 3 A-3C show diagrammatically cold flow pressing of a body to form a cup;
Fig. 3D shows a cross-section of a cup that has been obtained by cold flow pressing of a body;
Figs. 4A-4B show diagrammatically deep drawing of a cup to form a shell;
Fig. 4C shows a cross-section of a shell directly following deep drawing;
Fig. 5 shows a cross-section of a shell following cutting to the correct length;
Fig. 6 shows a cross-section of a shell following flanging of the bottom; Fig. 7 shows a cross-section of a shell following cutting out of the bottom;
Fig. 8 shows a cross-section of a finished shell following drawing.
DETAILED DESCRIPTION
The invention is to be described in greater detail with reference to the enclosed figures, which show the various manufacturing stages for a shell that constitutes an example of a suitable product according to the invention and can also be said to show a preferred embodiment. The finished shell has a diameter of 10-500 mm, preferably 30-350 mm and even more preferredly 50-200 mm and a height of 50-3000 mm, preferably 50-2000 mm and even more preferredly 100-1000 mm, and has a minimum wall thickness in the mouth of the shell of 0.5-3.0 mm, preferably 1.2-2.0 mm and even more preferredly 1.3- 1.7 mm. However, the invention is not restricted to the manufacture of shells but is also suitable for the production of other objects that are to be cold flow pressed and deep drawn, for example cylinders. Depending on the size of the products manufactured, the tools and machines are adapted to withstand the load that the various production stages entail. The manufacture of a deep-drawn metal shell 2 takes place today from a blank in the form of a round R from a cold-rolled sheet. The round R is relatively thin in relation to its diameter. When producing a metal shell according to the invention, one starts instead from a body 3 cut from a bar material. The body 3 is cold flow pressed to give a cup 1, • which is shaped into a shell 2 by deep drawing and worked further to the desired shape. The body 3 has a substantial extension in all dimensions.
Fig. 1 A shows a cross-section of the round R, which according to a method currently used in Sweden forms a blank in the manufacture of a deep-drawn metal shell. The round R is in the form of a circular disk that is cut out of a cold-rolled sheet with a degree of deformation of at least 30%. The degree of deformation is essential, as it gives the material the necessary strength properties to withstand the load that plastic working brings about during the manufacturing process.
The dimensions of the round R are determined by the quantity of material required for production and it is essential that the round has a suitable thickness which, in the preliminary process stage when the round is formed into a cup by deep drawing, gives the cup its bottom thickness. The round R is provided with a drilled hole 16 in the centre and its edges are deburred, following which it is annealed and pickled. The purpose of the hole 16 is to drain away liquid during pickling.
Fig. IB shows a side view of a body 3 that forms a blank in the manufacture of a shell according to the invention. The body 3 is obtained by cutting a bar material of a suitable dimension to a suitable length. The bar material is cut so that the section surfaces 4, 5 of the body 3 are substantially parallel to one another and substantially at right angles to the central axis C of the bar. If necessary the body 3 is turned all round to the exact dimensions. The body 3 has a width or diameter of 10-500 mm, preferably 30-350 mm and even more preferredly 50-200 mm and a height of 5-300 mm, preferably 10-100 and even more preferredly 20-50 mm. The section surfaces 4, 5 of the body 3 are its end surfaces and height refers to the distance between its two end surfaces 4, 5. In a preferred embodiment, the cup 3 is circular-cylindrical but it can also have a different shape, for example a shape with a square cross-section.
Fig. 2 shows a cross-section of a body 3 that has been turned to the exact dimensions and provided with a hole 17 in the centre, for example a drilled hole. In this case the hole 17 serves two purposes, on the one hand to drain away the pickling liquid, but also to centre the body 3 in interaction with a mandrel 9 (see Fig. 3 A) during cold flow pressing so that the quantity of material is distributed symmetrically, which gives better accuracy of the wall thickness.
Figs. 3A-3C show diagrammatically how a cup 1 is obtained by cold flow pressing of a body 3 and Fig. 3D shows a cup 1 obtained by cold flow pressing. Cold flow pressing is a forming method in which the material, in this case an aluminium body 3, is forced to flow out into a restricted space by applying a pressing force to the material. The restricted space is formed by a counterdie 6, which interacts with a mandrel 9 in such a way that a space of the desired shape is formed between these two when they are brought together. The space can be wholly or partly delimited by these two tools 6, 9.
The counterdie 6 refers to the forming tool that externally shapes the blank that is to be worked and the mandrel 9 refers to the forming tool used to give a blank an internal shape in various types of cold forming machines.
In cold flow pressing of a cup 1 according to Fig. 3D for the manufacture of a shell 2 according to the invention, the body 3 can be turned to size if necessary, following which it is provided with a hole 17, for example by drilling a hole 17. The hole 17, which is preferably a through hole, is suitably drilled so that it coincides with the central axis C of the body 3. The body 3 is then annealed and a lubricant applied. With reference to Fig. 3 A, the body 3 is shown placed in the counterdie 6, which is done in such a way that a first end surface 4 of the body 3 that is essentially perpendicular to the central axis C of the body 3 is placed facing towards the bottom 7 of the counterdie 6. The inner wall 8 of the counterdie 6 encloses at least a part of the body 3 and preferably the whole body 3, so that the body 3 is hereby placed in the counterdie 6. The mandrel 9 is applied to the end surface 5 of the body 3 lying free. At the front the mandrel 9 is provided with a guide pin 18, which fits into the hole 17 in the centre of the body 3. The guide pin 18 is preferably placed centrally on the mandrel 9 and the guide pin 18 preferably has a cylindrical cross-section. The guide pin 18 interacts with the through hole 17 of the body 3 and a hole 19 in the counterdie 6, so that correct positioning of the body 3 is obtained. This preferably means that the body 3 is centred. The guide pin can be arranged fixedly or movably to interact with the mandrel. The guide pin in Figure 3 A is an example of a fixed guide pin. A movable guide pin is movable in an axial direction inside the mandrel. The guide pin is suitably arranged so that its central axis coincides with the central axis of the mandrel. It is hereby ensured that the quantity of material in the body 3 is distributed symmetrically around the mandrel 9, which gives advantages in production. It is perceived that the through hole 17 of the body 3 and the hole 19 of the counterdie suitably have a shape and dimension that correspond to the shape and dimension of the guide pin 18. A suitable dimension of the guide pin can be in the range of 5-30 mm. It is also perceived that the hole 19 in the counterdie is preferably placed centrally in the bottom of the counterdie 6. When the hole 17 in the body 3 coincides with the central axis C of the body and the guide pin 18 of the mandrel 9 is placed centrally on the mandrel, the advantage is achieved that the mandrel can act symmetrically on the body 3, particularly if the hole 19 of the counterdie is placed centrally in the bottom of the counterdie 6 and the guide pin 18 can also interact with the hole 19 in the counterdie. This gives a symmetrical distribution of the quantity of material around the mandrel 9. It is to be understood that the mandrel 9 preferably has a circular-cylindrical cross-section.
The counterdie 6 surrounds the material both on the underside and to the side and when the mandrel 9 is pressed down in the body 3 the material will flow out towards the sides of the body 3 and gradually be forced upwards into the space formed between the walls 10 and 8 respectively of the mandrel 9 and counterdie 6, so that a cup 1 is formed, which is shown in Fig. 3B. The size of the body 3 is adapted so that a sufficient amount of material is available for production but without the quantity of waste being unnecessarily great. During cold flow pressing, the thickness of the bottom of the cup 1 is reduced and the height of the wall of the cup 1 increases as the mandrel 9 acts on the body 3 when this lies in the counterdie 6. The cold flow pressing is completed when a predetermined height of the wall of the cup 1 and/or a predetermined thickness of the bottom of the cup 1 is obtained, see Fig. 3C. These dimensions depend on a number of parameters and are decided primarily by the required quantity of material being present in the bottom and wall of the cup 1 respectively for the manufacture of a shell 2 that is true to gauge. Another parameter that decides the dimensions of the cup 1 is that it is desirable to attain a predeteπnined degree of deformation of the finished shell 2. The degree of deformation influences the strength properties of the material through deformation hardening and also has an effect on the hardenability, so that a high degree of deformation gives better hardenability. The cold flow pressing operation in which the body 3 is formed into a cup by the mandrel 9 and the counterdie 6 can be carried out at room temperature, which contributes to a cost-effective procedure.
The degree of deformation is calculated as the ratio between the total area reduction and the original area in a given cross-section. The degree of deformation in cold flow pressing, i.e. production stages 3A-3C, is calculated as (A1-A2)/A1 where Al is the cross-sectional area of the body that is marked in Fig. 3 A and A2 is the cross-sectional area of the cup and is marked in Fig. 3C. The degree of deformation is calculated in the same way in deep drawing and flanging.
The body 3 has a homogeneous material structure in a direction coaxial with the central axis C of the body 3 that coincides with the direction of movement of the mandrel 9. In cold flow pressing a ckcumferential wall 11 is formed and the homogeneous material structure means that the wall 11 is deformed uniformly, so that an upper open end 12 of the cup 1 acquires an essentially even edge 13 due to the cold flow pressing. The thickness of the wall can also be controlled in a better manner as a result of the homogeneous material structure. With reference to Fig. 3D, a finished cup 1 is shown in which the circumferential wall 11 formed in cold flow pressing in any cross-section perpendicular to the central axis C of the cup 1 has an essentially even material thickness dv in a range in which dv = 1-50 mm, preferably 2-25 mm and even more preferredly 3-10 mm and in which the material thickness dv is permitted a maximum variation of 1.0 mm, preferably a maximum of 0.5 mm and even more preferredly a maximum of 0.05 mm. The bottom 14 of the cup 1, formed in cold flow pressing by uniform deformation, has a bottom thickness da in a range in which dβ = l-50mm, preferably 2-25 mm and even more preferredly 3-10 mm and in which the material thickness ds is permitted a maximum variation of 1.0 mm, preferably a maximum of 0.5 mm and even more preferredly a maximum of 0.05 mm. Due to the fact that the cup acquires a high dimensional accuracy, no further working needs to be done before the deep drawing, which is a major advantage.
Figures 4 A and 4B show schematically how a shell 2 is obtained by deep drawing of a cup 1 and Fig. 4C shows a shell 2 directly following deep drawing. The cold flow pressed cup 1 is washed, annealed and pickled and is thus ready for deep drawing. The deep drawing proceeds such that the cup 1 is placed over a deep drawing counterdie 26, see Fig. 4A, where the deep drawing counterdie 26 has the form of rings 27, 28, 29 placed on top of one another, which have a gradually dimim^hing diameter and in which the smallest diameter corresponds to the outer dimensions of the finished shell 2. The cup 1 is placed so that the bottom 14 of the cup 1 is over the opening of the deep drawing counterdie 26 and the upper open end 12 of the cup 1 faces away from the deep drawing counterdie 26. A mandrel 30 in the form of a rod is guided down into the cup 1 and when it reaches the bottom 14 it pulls the cup 1 down with it through the deep drawing counterdie 26, see Fig. 4B, due to which the shell wall is thinned out when it passes the gradually diminishing holes in the deep drawing counterdie 26. The end of the mandrel 30 that is pressed against the bottom 14 of the cup 1 has a shape that gives the wall 20 of the shell a gradually increasing inner diameter from its bottom 21 and upwards in a direction along the wall 20 of the shell. At a suitable distance from the end, the shape of the mandrel 30 passes over to wholly cylindrical, when the diameter corresponds to the inner diameter of the finished shell. To be able to be guided down into the cup 1, the mandrel 30 has a diameter that is 0.1 - 0.5 mm less than the diameter of the cup 1. During deep drawing the wall will be pressed until it bears on the mandrel 30 due to the effect of the outer deep drawing counterdie 26. Depending on how great a reduction is to be made in the thickness of the wall, the number of stages by which the diameter of the deep drawing counterdie 26 diminishes is varied, so that a large reduction requires more stages than a small one. The composition of the material with regard to the starting blank and its strength properties are also of importance for the number of stages that are required. In manufacture of a shell 2 according to the invention, the homogeneous material structure has a positive effect insofar as the shell wall has the same strength overall. This means that the possibility exists of designing the forming tools with fewer stages, whereby the tool cost is reduced.
Following deep drawing, the wall 20 of the shell 2 is to be cut off at its open end to the correct length. To do this, the shell 2 is placed over a mandrel 31, according to Fig. 5, in a machine that also executes the subsequent working processes up to the finished shell.
When the shell wall has been cut off, flanging of the bottom 21 of the shell 2 follows. In the flanging, a counterdie (not shown) is pressed against the outside of the bottom 21 of the shell 2 and according to the same principle as in cold flow pressing, the mandrel 31 interacts with the counterdie (not shown), the bottom 21 of the shell 2 being formed into a flange 22 with an appearance according to the cross-section in Fig. 6. Since the bottom thickness dβ of the cup 1 can easily be varied in the initial cold flow pressing, it is easy to adapt the quantity of material to different types of flanges.
According to an aspect of the invention, the bottom thickness dβ of the cup 1 is to be chosen so that wear on the tools that are used in flanging is prevented or reduced. In one embodiment of the invention, the bottom thickness dβ is chosen so that it allows the flanging to be executed so that a central part A of the bottom 21 of the shell 2 acquires a thickness dA in a range in which dA = 1 mm - 10 mm, preferably 4 mm - 6 mm and preferably approx. 5 mm. Following flanging, cutting out of the remaining material in the central part A of the bottom 21 of the shell 2 takes place and then the shell 2 is washed. Fig. 7 shows a cross- section of a shell 2 following cutting of the bottom.
To give the shell 2 the desired strength properties it is solution heat treated and quenched according to methods that are well known to the expert. The shell 2 is given its final form, which is shown in Fig. 8, by a slight drawing of the shell wall. Artificial aging to give the shell 2 the desirable strength, turning, surface treatment and final inspection then take place, the production process thus being completed.
It is also possible to adapt production so that the shell 2 is given the required strength properties only by the plastic deformation that manufacture causes, so that the subsequent solution heat treatment and related artificial aging can be avoided, which offers cost advantages for the production process.
The shell 2 can suitably be used as a shell 2 in the production of ammunition, i.e. grenade shells or cartridge shells and thus high demands are made on the strength of the shell to ensure the function of the shell. A shell manufactured according to the invention has proved to meet these requirements well.
With production according to the invention, production advantages can be obtained. Due to the fact that the mandrel for cold flow pressing is provided with a guide pin 18, a cup 1 can be manufactured that has such dimensional accuracy that no further working is required prior to deep drawing, which also offers cost advantages. In this connection, it is important that the guide pin 18 has such strength that it provides steady guidance. The guide pin 18 cannot therefore be made too small, as it would result in a risk of it bending, with uneven material distribution and poor dimensional accuracy as a result. To obtain sufficient strength, a guide pin 18 designed to be used for manufacture of a shell 2 according to the invention can suitably have a diameter in the range 5-30 mm, preferably 10-30 mm. The expert perceives that the method according to the invention is therefore designed primarily for manufacture of shells with through holes.
As described earlier, the cup 3 is given favourable material properties due to the plastic deformation that cold flow pressing gives rise to. This brings with it the advantage that the later deep drawing from cup 1 to shell 2 can be executed in a single stage. This preferably means that the shell is drawn to its finished length in a single stage. This gives further cost advantages. As stated earlier, the body 3 can undergo a turning operation following cutting from a bar in order to adjust the diameter of the body 3 to the counterdie 6. However, no machining other than that required to adapt the diameter needs to be carried out. As stated earlier, it is however very advantageous to drill a through hole 17 through the body 3. On cutting the body 3 from a bar, the height of the body 3 is suitably selected so that the height of the body is adapted to the counterdie 6 already on cutting from the bar. However, further plastic working should preferably be avoided, since such working could affect the homogeneous material structure around the central axis C of the body 3.
It is perceived that the invention also relates to equipment for manufacture of a shell 2, which equipment comprises a counterdie 6 such as described above and a mandrel 9 with guide pin 18 such as described above. The equipment according to the invention also comprises a further counterdie 26 for deep drawing as described above, in which the deep drawing counterdie 26 takes the form of rings 27, 28, 29 placed on top of one another, which have a gradually diminishing diameter and in which the smallest diameter corresponds to the outer dimensions of the finished shell 2. The equipment according to the invention also comprises a mandrel 30 in the form of a rod designed to interact with the deep drawing counterdie 26 in that the mandrel 30 is guided down into the cup 1 and pulls the cup 1 down with it through the deep drawing counterdie 26, due to which the wall 20 of the shell is tiiinned out when it passes the gradually diminishing holes in the deep drawing counterdie 26. The equipment according to the invention can also comprise means for cutting a bar, for example a metal saw or other cutting device. Furthermore, the equipment according to the invention can comprise means for annealing and pickling as well as means for cutting the shell wall and means for flanging.
ADVANTAGES OF THE INVENTION '
Manufacture of shells according to the invention results in a number of advantages, several of which are evident from the description of the figures. In addition to these already stated advantages, the invention also results in the following advantages:
By using a bar material that is cut into the correct lengths, the consumption of raw materials is minimized in the sense that no wastage or very little wastage arises compared with manufacturing shells from rounds, where the rounds are cut from cold- rolled sheet, which results in large amounts of waste. This means that the rounds are relatively expensive to purchase. Manufacture from a round also requires the cup to be turned at its upper edge, which is not required with manufacture according to the invention, which further reduces wastage.
From the production engineering aspect, it is of course also an advantage if wastage is minimized when producing the raw material, as otherwise large amounts of material are handled and worked unnecessarily, with the energy consumption and environmental pollution this entails.
The homogeneous material structure in the body means that the material flows more uniformly in all directions and a more controlled cup formation is thereby obtained than when a round is used. Due to this, the cup can be manufactured with greater precision of the wall and bottom thickness.
A substantial advantage of the invention is that the bottom thickness can easily be varied. By pressing the mandrel down to a certain depth in the body, a predetermined thickness of the bottom of the cup is obtained. Thus, the thickness is adjusted depending on the quantity of material required for flanging. By adjusting the thickness it is possible to avoid overheating and related wear of the flanging tools as a result of a bottom that is too thin, which is not possible in manufacture from a round.
The expert perceives that with a variable body according to the invention, shells and cylinders can be manufactured with great flexibility as far as the form of the finished product is concerned. It is possible for example to produce open, closed or partly open bottom sections. With cold flow pressing the bottom can be formed with parts projecting in the pressing direction in a number of different shapes, for example cooling flanges, rods and other forms that can then be worked further into, for example, eyes, fastening devices or other things. The shape of the shell wall can also be varied. The outer sheath surface of the wall can be circular or cornered, while the inner can have a completely different shape. A variable body also offers great flexibility during the actual production process, where the final product can be given desirable properties, e.g. desirable strength properties through deformation hardening and desirable hardenability through a degree of reduction.
The homogeneous material structure also gives the advantage that the cup acquires an essentially even upper edge on cold flow pressing and no turning of the edge is therefore required, which is a must when manufacturing from rounds. Due in particular to the fact that cold flow pressing of a cup from a bar material is combined with subsequent deep drawing from a cup to a shell, an efficient procedure is obtained for manufacturing shells.

Claims

1. Method for manufacture of a cup (1) that is designed to serve as a blank in the production of a metal shell (2), which method comprises the following stages: a) provision of a body (3) of a bar material, which body (3) has a through hole (17), b) placing of the body (3) in a counterdie (6) and in which a first end surface (4) of the body (3) that is substantially perpendicular to the central axis (C) of the body (3) is placed facing towards the bottom (7) of the counterdie (6) while the inner wall (8) of the counterdie (6) encloses at least a part of the body (3) and preferably the whole body (3), so that the body (3) is hereby placed in the counterdie (6), c) application of a mandrel (9) to a second end surface (5) of the body (3) that is substantially perpendicular to the central axis (C) of the body (3), in which the mandrel (9) has a centrally placed guide pin (18) for interacting with the through hole (17) of the body (3) so that the body (3) is thereby centred in relation to the mandrel (9), d) application of a pressing force to the mandrel (9), so that the body (3) is cold flow pressed into a cup (1) by plastic deformation.
2. Method according to claim 1, characterized in that the guide pin (18) interacts with a centrally placed hole (19) in the bottom of the counterdie (6) so that the mandrel (9) is thereby centred in relation to the counterdie (6).
3. Method according to claim 1, characterized in that the body (3) has a width or diameter of 10-500 mm, preferably 30-350 mm and even more preferredly 50-200 mm and has a height of 5-300 mm, preferably 10-100 and even more preferredly 20-50 mm.
4. Method for manufacture according to claim 1 or 3, characterized in that the body (3) forms a part of a bar and has a chiefly homogeneous material structure around the central axis (C) of the bar material.
5. Method according to claim 1, 3 or 4, characterized in that in the cold flow pressing a surrounding wall (11) is formed that is deformed uniformly, so that an upper open end (12) of the cup (1) acquires a substantially even edge (14) due to the cold flow pressing and that the surrounding wall (11) formed in cold flow pressing in any cross-section perpendicular to the central axis (C) of the cup (1) has a substantially even material thickness dV in a range in which dV = 1 -50 mm, preferably 2-25 mm and even more preferredly 3-10 mm and in which the material thickness is permitted a maximum variation of 1.0 mm, preferably a maximum of 0.5 mm and even more preferredly a maximum of 0.05 mm.
6. Method according to claim 1, 3 or 4, characterized in that in the cold flow pressing a bottom (14) is formed that is deformed uniformly in which the bottom thickness dB = 1- 50 mm, preferably 2-25 mm and even more preferredly 3-10 mm and in which the material thickness is permitted a maximum variation of 1.0 mm, preferably a maximum of 0.5 mm and even more preferredly a maximum of 0.05 mm.
7. Method according to claim 6, characterized in that a central part (A) of the bottom of the shell (2) following flanging has a thickness in the range 1 mm - 10 mm.
8. Method according to any of the above claims, characterized in that said shell (2) is a cartridge shell (2) in which the cartridge shell (2) has a diameter of 10-500 mm, preferably 30-350 mm and even more preferredly 50-200 mm and a height of 20-3000 mm, preferably 50-2000 mm and even more preferredly 100-1000 mm and has a minimum wall thickness at the mouth of the shell (2) of 0.5-3.0 mm, preferably 1.2-2.0 mm and even more preferredly 1.3- 1.7 mm.
9. Process for manufacture of a shell, preferably a grenade/cartridge shell (2), which process comprises the following stages: a) provision of a circular-cylindrical body of a bar material, b) achieving, for example by drilling, a through hole (17) in the body (3), which hole (17) coincides with a central axis (C) of the body (3), c) placing of the body (3) in a counterdie (6) and in which a first end surface (4) of the body (3) that is substantially perpendicular to the central axis (C) of the body is turned towards the bottom (7) of the counterdie (6) while the inner wall (8) of the counterdie (6) encloses at least a part of the body (3) and preferably the whole body (3), so that the body (3) is hereby placed in the counterdie (6), d) application of a mandrel (9) to a second end surface (5) of the body (3) that is substantially perpendicular to the central axis (C) of the body (3), in which the mandrel (9) has a centrally placed guide pin (18) for interacting with the through hole (17) of the body (3) so that the body (3) is thereby centred in relation to the mandrel (9), e) application of a pressing force to the mandrel (9), so that the body (3) is cold flow pressed into a cup (1) by plastic deformation, f) deep drawing of the cup (1) thus produced so that a shell (2) is formed.
10. Process according to claim 9, characterized in that the cold flow pressing is terminated when the bottom (14) of the cup (1) has acquired a predetemiined thickness in the range 3 mm - 10 mm.
PCT/SE2003/001156 2002-07-23 2003-07-03 Method for manufacture of a metal shell, and a cup designed to serve as a blank WO2004009267A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003251254A AU2003251254A1 (en) 2002-07-23 2003-07-03 Method for manufacture of a metal shell, and a cup designed to serve as a blank
CA002492603A CA2492603A1 (en) 2002-07-23 2003-07-03 Method for manufacture of a metal shell, and a cup designed to serve as a blank
EP03765416A EP1536899B1 (en) 2002-07-23 2003-07-03 Method for manufacture of a metal shell, and a cup designed to serve as a blank
DE60326466T DE60326466D1 (en) 2002-07-23 2003-07-03 METHOD FOR PRODUCING A METAL BOWL AND MUGING THEREFOR AS ROLLING
US10/521,165 US7225658B2 (en) 2002-07-23 2003-07-03 Method for manufacture of a metal shell, and a cup designed to serve as a blank
NO20050982A NO331967B1 (en) 2002-07-23 2005-02-23 Process for making a metal sleeve and cup, designed to serve as a blank

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE0202293A SE0202293D0 (en) 2002-07-23 2002-07-23 Method for the manufacture of a metal sleeve and method for the manufacture of a cup intended to constitute a substance
SE0202293-7 2002-07-23
SE0202766-2 2002-09-16
SE0202766A SE525752C2 (en) 2002-09-16 2002-09-16 Cup manufacturing method for shell production, involves applying pressing force to mandrel so that body is cold flow pressed into cup by plastic deformation, where mandrel has pin for interacting with hole

Publications (1)

Publication Number Publication Date
WO2004009267A1 true WO2004009267A1 (en) 2004-01-29

Family

ID=30772316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2003/001156 WO2004009267A1 (en) 2002-07-23 2003-07-03 Method for manufacture of a metal shell, and a cup designed to serve as a blank

Country Status (8)

Country Link
US (1) US7225658B2 (en)
EP (1) EP1536899B1 (en)
AT (1) ATE424267T1 (en)
AU (1) AU2003251254A1 (en)
CA (1) CA2492603A1 (en)
DE (1) DE60326466D1 (en)
NO (1) NO331967B1 (en)
WO (1) WO2004009267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557903A4 (en) * 2010-04-09 2015-03-18 Mitsubishi Heavy Ind Ltd Method of manufacturing outer conductor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG191747A1 (en) * 2010-12-20 2013-08-30 Showa Denko Kk Punch for cold backward extrusion forging
WO2012100965A1 (en) 2012-03-14 2012-08-02 Fritz Hakemann Method for producing a gastronomy container and gastronomy container made of sheet metal
AU2014320132B2 (en) * 2013-09-13 2017-06-29 Bae Systems Plc Improved ammunition production
CN107262542B (en) * 2017-06-27 2019-02-05 中北大学 A kind of almag cup shell rotary extrusion forming method
CN107350305B (en) * 2017-07-03 2019-04-02 中北大学 A kind of extrusion stretching manufacturing process of high-performance magnesium-alloy thin-wall tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2264266A (en) * 1940-06-12 1941-11-25 Remington Arms Co Inc Ammunition
US3706118A (en) * 1968-07-11 1972-12-19 Ralph W Hilton Method for the manufacture of an aluminum cartridge case
JPS5789466A (en) * 1980-11-25 1982-06-03 Mitsubishi Keikinzoku Kogyo Kk Cold-forging method for aluminum alloy
US4570843A (en) * 1981-01-14 1986-02-18 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing anode cylinders of electron tubes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507140A (en) * 1967-05-24 1970-04-21 Aluminum Co Of America Metal slugs and a method of producing the same
JPS53133570A (en) * 1977-04-28 1978-11-21 Kyodo Printing Co Ltd Manufacturing method of compound tube
JPS6021539B2 (en) * 1978-08-08 1985-05-28 共同印刷株式会社 Composite tube and its manufacturing method
DE3936106A1 (en) * 1989-10-30 1991-05-02 Taisei Kako Co ALUMINUM TUBE MANUFACTURING DEVICE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2264266A (en) * 1940-06-12 1941-11-25 Remington Arms Co Inc Ammunition
US3706118A (en) * 1968-07-11 1972-12-19 Ralph W Hilton Method for the manufacture of an aluminum cartridge case
JPS5789466A (en) * 1980-11-25 1982-06-03 Mitsubishi Keikinzoku Kogyo Kk Cold-forging method for aluminum alloy
US4570843A (en) * 1981-01-14 1986-02-18 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing anode cylinders of electron tubes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198228, Derwent World Patents Index; Class M21, AN 1982-58034E, XP002985185 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557903A4 (en) * 2010-04-09 2015-03-18 Mitsubishi Heavy Ind Ltd Method of manufacturing outer conductor
US9055659B2 (en) 2010-04-09 2015-06-09 Mitsubishi Heavy Industries, Ltd. Method for manufacturing outer conductor

Also Published As

Publication number Publication date
US20060112751A1 (en) 2006-06-01
DE60326466D1 (en) 2009-04-16
NO331967B1 (en) 2012-05-14
ATE424267T1 (en) 2009-03-15
EP1536899A1 (en) 2005-06-08
NO20050982L (en) 2005-02-23
AU2003251254A1 (en) 2004-02-09
CA2492603A1 (en) 2004-01-29
EP1536899B1 (en) 2009-03-04
US7225658B2 (en) 2007-06-05

Similar Documents

Publication Publication Date Title
CN101422861B (en) Accurate forming method of special-shape deep-hole type parts
DE4418251C2 (en) Method of manufacturing a gear having a central bore
US20090205453A1 (en) Ring gear and manufacturing method for such a ring gear
US4472207A (en) Method for manufacturing blank material suitable for oil drilling non-magnetic stabilizer
JP6112752B2 (en) Method for thermomechanical processing of tool steel and tools made from thermomechanically processed tool steel
CN1168825A (en) Process for mfg. connecting rod rough forging
US6053023A (en) Method of cold forging a workpiece having a non-circular opening
EP1536899B1 (en) Method for manufacture of a metal shell, and a cup designed to serve as a blank
CN105624570A (en) High-strength low-carbon alloy steel brake drum
CN111037244A (en) Hollow shaft and manufacturing method thereof
EP3815809B1 (en) Blind rivet nut and manufacturing method therefor
CN114192712B (en) Die forging forming die and die forging forming method for large L-shaped hollow thin-wall pipeline
US7093526B2 (en) Forming die apparatus
DE112005000491T5 (en) A method of extruding tubes from metal alloy billets
US5129961A (en) Cylindrical, iron-based sintered slugs of specified porosity for subsequent plastic deformation processing and method for making them
US5201966A (en) Method for making cylindrical, iron-based sintered slugs of specified porosity for subsequent plastic deformation processing
US6474127B1 (en) Pressing method, in particular for obtaining hydraulic cylinders and high-pressure filters
US4885927A (en) Method and apparatus for press forming intricate metallic shapes such as spool valve elements
JP2003088922A (en) Method for plastic working of metallic material by temperature inclination
JP2518980B2 (en) Method for drilling precision aluminum alloy product with holes
EP3865228A1 (en) Method for manufacturing a work piece
Bhupatiraju et al. Cold extrusion
KR20010025151A (en) Auto transmission
RU1819729C (en) Method of making parts such as sleeves
Singh Forming Operations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003765416

Country of ref document: EP

Ref document number: 2492603

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 48/CHENP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2003765416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006112751

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521165

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10521165

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP